
University of Paderborn
Heinz Nixdorf Institute
Fürstenallee 11
33102 Paderborn

Modeling and Automated Synthesis of
Reconfigurable Interfaces

Dissertation

A thesis submitted to the

Faculty of Computer Science, Electrical Engineering and Mathematics

of the

University of Paderborn

in partial fulfillment of the requirements for the

degree of Dr. rer. nat.

Stefan Ihmor

Paderborn, Germany
September 14, 2006

Supervisors:

1. Prof. Dr. Wolfram Hardt, Chemnitz University of Technology

2. Prof. Dr. Franz J. Rammig, University of Paderborn

3. Prof. Dr. Daniel D. Gajski, University of California, Irvine

Date of public examination: 22 November, 2006

Acknowledgements

This work was carried out at the Department of Computer Science, Electrical Engineering
and Mathematics of the University of Paderborn from 2002 to 2006. Initially starting my
Ph.D. in the Informatik und Prozesslabor (IPL), I finished this thesis at the Heinz Nixdorf
Institute (HNI), an interdisciplinary center of research and technology of the University
of Paderborn.

First of all, I would like to express my gratitude to my supervisors, Professor Rammig and
Professor Hardt (Chemnitz University of Technology). I consider it a great accomplishment
to have completed this dissertation under their direction. I was very fortunate to work as a
member of both chairs. Therefore, I thank Professor Hardt and Professor Rammig for their
helpful advice, their excellent support and their constant guidance during this work.

Within the working groups of both professors, I had the opportunity to work on research
projects, to supervise student projects, and to advise several students on their bachelor and
master theses. All of this, including my involvement in the lectures of Prof. Rammig and
Prof. Hardt, has given to me a detailed insight into the wide field of embedded systems.

In the same way I want to thank my colleagues Klaus Danne, Florian Dittmann, Marcelo
Götz, Tales Heimfarth, Peter Janacik, Christophe Bobda, Thomas Lehmann, Achim Ret-
tberg, and Mauro Zanella for their cooperation in different projects. Their constructive
criticism improved the quality of the thesis considerably and brought novel ideas into my
work. Furthermore, I am particulary thankful to my colleagues Markus Visarius and André
Meisel from the Chemnitz University of Technology for their cooperation and interesting
discussions.

I also thank my working students Michel Camel Kouamo Sime, Bertrand Gnokam Defo
and all Bachelor and Master Students who implemented a considerable part of my con-
cepts. Thanks also to Sheila Fleißner who spent a lot of time to revise the language of the
manuscript.

Finally, I would like to express my gratefulness to my dear parents Anna and Gerhard. Their
care and never ending support were a great motivation for me.

Paderborn, September 2006

Contents

List of Figures iii

List of Tables viii

1 Introduction 1
1.1 Motivation and Challenges . 1
1.2 Aim of the Thesis . 3
1.3 Contribution of the Thesis . 5
1.4 Organization of the Work . 6

2 Communication Framework for Embedded Systems 7
2.1 Framework . 7

2.1.1 Tasks & Media . 8
2.1.2 System Composition . 8
2.1.3 Hardware & Software Interfaces . 9
2.1.4 Modeling Interfaces . 11
2.1.5 Scenarios for Interface Adaptation . 17

2.2 System Architecture . 17
2.2.1 The IFS System Architecture Model 17
2.2.2 Modeling the IFB Target-Platform . 19
2.2.3 Hardware Execution Platform . 20
2.2.4 Software Execution Platform . 22
2.2.5 The Hardware/Software Interface . 23

2.3 The Role of Reconfiguration . 25
2.4 Summary . 26

3 Background & Related Work 27
3.1 System-Level Design . 27

3.1.1 Levels of Abstraction . 28
3.1.2 Y-Chart and P-Chart . 30
3.1.3 Intellectual Property and IP-Based Design 31

3.2 Interface-Aware (System-Level) Design Flows 34
3.2.1 Interface and IP Descriptions . 34
3.2.2 Design Flows . 40

3.3 Reconfigurable Systems . 42
3.3.1 The FPGA – A Reconfigurable Hardware Platform 42

i

Contents

3.3.2 Communication in Reconfigurable Architectures 44
3.3.3 How to Avoid the Communication Gap? 46

3.4 Dedicated Interface Synthesis Approaches . 48
3.4.1 Interface Synthesis for Communication APIs (SW/SW) 50
3.4.2 Systematic Protocol Construction Approaches (HW/HW) 51
3.4.3 Protocol Wrapping/Adaptation Approaches (HW/HW) 52
3.4.4 Adaptation of Hardware Software Interfaces (HW/SW) 54

3.5 Summary . 56
3.5.1 Interface Synthesis Requirements Specification 57

4 Interface Synthesis Methodology 59
4.1 Interface Synthesis Design Flow . 60

4.1.1 Modeling Phase . 61
4.1.2 Synthesis Phase . 63
4.1.3 Integration Phase . 65

4.2 IFS Modeling Concept . 66
4.2.1 The Interface Synthesis Format . 67
4.2.2 Interaction of XML and Java . 70
4.2.3 UML 2.0 and its Interaction with XML and Java 71

4.3 Concepts of the Interface Block . 73
4.3.1 IFB Macro-Structure . 73

4.4 IFB Reconfiguration . 80
4.4.1 The Runtime Reconfigurable IFB (RTR-IFB) 82
4.4.2 Formalization of the FPGA-Placement 90
4.4.3 Runtime Self-Reconfiguration Using the RCU 91
4.4.4 Example: A Multi-Controller Design 92

4.5 Fail-Safe Behavior . 95
4.5.1 Basic Concepts of Error Processing . 96
4.5.2 Integrating Error Processing into an IFB 97
4.5.3 Case-Study: Robot Scenario . 98

4.6 Relation to the ISO/OSI Model . 100
4.7 Prototyping of Real-Time Communication . 101
4.8 Summary . 103

5 The Detailed Interface Synthesis Design Flow 105
5.1 Modeling-Phase . 105

5.1.1 Modeling the UML 2.0 Profile . 106
5.1.2 Tool Coupling of the IFS-Editor with the CASE tool Fujaba 113
5.1.3 Model Transformation from UML 2.0 to Java 115

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis 116
5.2.1 Prepare Synthesis Input . 118
5.2.2 Basic Blocks . 120
5.2.3 Protocol Matrix and Protocol Packages 120
5.2.4 Protocol Frames . 122
5.2.5 Protocol Synthesis – Generation of the Protocol State Machines . . . 124
5.2.6 IFD-Mapping . 130
5.2.7 IFD Optimization and Creation of the Protocol Frames 136
5.2.8 Assembly of the IFB Model (Intermediate Representation) 137

ii

Contents

5.3 Synthesis Phase – Design Step 2 : IFB Code Generation 143
5.3.1 Frame Processing . 144
5.3.2 Adapted Frame Processing Model . 144
5.3.3 Overview of the Generated VHDL Code Pattern 145
5.3.4 The Three levels of IFS Code Generation 146

5.4 Code Integration Phase . 147
5.5 Extension of the Interface Synthesis Design Flow 148

5.5.1 Creation of a Globally Optimized Communication Infrastructure . . . 148
5.6 Summary . 151

6 The Interface Block (IFB) 153
6.1 IFB Hardware Template . 153

6.1.1 Protocol Handler . 156
6.1.2 Sequence Handler . 156
6.1.3 Control Unit . 158

6.2 Cycle Accurate Analysis of an IFB . 161
6.3 Timing Analysis . 162

6.3.1 Feasibility Analysis . 162
6.3.2 Schedulability Analysis . 164

6.4 IFB Optimization . 168
6.4.1 Data Flow (Latency) Optimization . 168
6.4.2 Area Optimization . 173

6.5 Summary . 179

7 Results 181
7.1 The IFS Design Environment: IFS-Editor 181
7.2 Case-Study : Adaptation of RFID to I2C . 183
7.3 Comparison With Other Approaches . 185

8 Conclusion and Outlook 187
8.1 Conclusion . 187
8.2 Outlook . 190

A Extensions to the Interface Synthesis 191
A.1 Communication Cycles . 191
A.2 Generating Basic Blocks . 192
A.3 Grammar of the IFD-Mapping Language . 193
A.4 VHDL Examples for the Created IFB Target Code 194
A.5 Template of the Reconfiguration Control Unit 198
A.6 Validity Period of Control Signals inside Protocol Frames 199

Own Previous Work 201

Advised Bachelor Thesis and Diploma Thesis 205

Bibliography 207

List of Abbreviations 223

iii

Contents

iv

List of Figures

1.1 Integrated Design Flow: Overview . 3

2.1 Specification of a memory map . 10
2.2 The hardware/software interface based on memory mapped I/O 10
2.3 Interface topology for a fully interlocked handshake 13
2.4 Signal waveform annotated with FSM values (states + timing) 14
2.5 The shared communication protocol modeled as WSM 14
2.6 Compliance of two waveform state machines 16
2.7 IFS System Architecture . 18
2.8 Exemplary System Architecture comprising two Interface Blocks 18
2.9 Virtex-II Pro – Generic Architecture Overview [152] 20
2.10 Classical FPGA Structure [124] . 20
2.11 Virtex-II Pro Slice (Top Half) [152] . 21
2.12 Virtex-II Pro Embedded PPC 405 Core Block Diagramm [152] 22
2.13 Virtex-II Pro Processor Block Architecture [152] 23
2.14 Virtex-II Pro CoreConnect Block Diagramm [152] 24
2.15 Virtex-II Pro Hardware/Software Interface . 25

3.1 Abstraction versus complexity . 29
3.2 System-level design in the Y-Chart . 30
3.3 System-level design in the P-Chart . 31
3.4 Interface representation as Timing Diagram 36
3.5 IP representation with CWL [114] . 36
3.6 CWL example [114] . 37
3.7 Architecture of the IPQ-Format [239] . 38
3.8 CWL regular expression visualized as state machine [114] 39
3.9 IP integration using wrapper channels & adapter modules [121]. 41
3.10 Xilinx Bus Macros [170] . 43
3.11 Slotted FPGA design . 45
3.12 DyNoC structure [60] . 46
3.13 DyNoC implementation [60] . 46
3.14 Survey of Protocol-Engineering [172] . 48
3.15 Interface synthesis classification tree [200] . 51

4.1 The Interface Synthesis Design Flow . 60
4.2 IFS Modeling Concept . 66

v

List of Figures

4.3 IFS model transformation . 66
4.4 Excerpt of the XML based IFS-Format (XML-Scheme) 68
4.5 Interaction of XML and Java on the instance level 70
4.6 The basic IFB Macro-Structure as hierarchical tree representation 74
4.7 The IFB Macro-Structure . 74
4.8 Electronic codebook (ECB) mode encryption and decryption 76
4.9 Chipher block chaining (CBC) mode encryption 77
4.10 Pipelined Input - Processing -Output execution 78
4.11 Classification of reconfiguration modes . 80
4.12 Micro vs. macro reconfiguration . 82
4.13 Communication graph . 83
4.14 Interface centered design . 83
4.15 Combination of I - P - O and communication graph 84
4.16 I - P -O graph including the current state of I - P - O progress 85
4.17 RTR-IFB reconfiguration flow . 86
4.18 Execution of the reconfiguration behavior as FSM 87
4.19 How to determine the correct reconfiguration behavior 88
4.20 Placement of an RTR-IFB on an FPGA . 89
4.21 Multi controller scheduling . 92
4.22 Placement and routing of the synthesized IFB 94
4.23 The synthesized IFB visualized by the Xilinx FPGA Editor 94
4.24 Error handling in a robot scenario . 99
4.25 ISO/OSI layer based communication gap . 100
4.26 Rapid prototyping of communication . 101
4.27 Abstract view of communication . 101
4.28 ACL in a multi-task communication system 102

5.1 Interface Synthesis Design Flow: the modeling phase 106
5.2 IFSComponent diagram . 107
5.3 Interrelation of Component, Port, Interface, and Protocol State Machine . . . 108
5.4 Stereotype IFSInterface and Signal . 108
5.5 IFSComponent diagram presenting an exemplary System Architecture. 109
5.6 Waveform State Machine as UML class diagram. 110
5.7 Extension of the protocol state machine in the UML 2.0 meta-model. 110
5.8 Example of the IFS protocol description syntax. 111
5.9 Stereotypes for reference signals . 112
5.10 Class diagram: Tool coupling and UML model transformation 113
5.11 Recursive descend of UML model transformation 114
5.12 Connecting interfaces in the System Architecture 115
5.13 Interface Synthesis Design Flow: the IFB model synthesis phase 117
5.14 Flattening the transition attribute repetition 118
5.15 Loop unrolling for repetitions . 118
5.16 The basic blocks of a protocol visualized as CFG. 120
5.17 Annotated waveform diagram . 121
5.18 Derived protocol matrix . 121
5.19 Protocol packages of protocol matrix . 121
5.20 Protocol packages merged to protocol frames 122
5.21 Generation of incoming and outgoing protocol super-frames 123

vi

List of Figures

5.22 Transformation of the WSM into the PSM . 124
5.23 Interpretation of automata outputs in the PSM 125
5.24 ∆ Direction-UseCase Matrix and ∆ Value Matrix of parallel sender 126
5.25 Detect states, packages, and frames of parallel sender 126
5.26 ∆ Direction-UseCase Matrix and ∆ Value Matrix of parallel receiver 127
5.27 Detect states, packages, and frames of parallel receiver 127
5.28 ∆ Direction-UseCase Matrix and ∆ Value Matrix of serial sender 128
5.29 Detect states, packages, and frames of serial sender 128
5.30 Signal dependencies of the waveform diagram 128
5.31 IFD-Mapping: Assignment of data bits . 131
5.32 IFD-Mapping: Boolean equations and constants 132
5.33 IFD-Mapping: Mapping multiple package instances of a super-frame 133
5.34 Construction of the package graph . 134
5.35 Causality in the package praph . 135
5.36 Example for a valid IFD-Mapping . 135
5.37 Example for an invalid IFD-Mapping that leads to a deadlock 135
5.38 Optimized protocol matrix consisting of sub-packages 136
5.39 Input of the IFB model synthesis as class diagram 137
5.40 The three available EIFDs coding styles . 139
5.41 The IFB intermediate structure as EIFD-tree 140
5.42 PH-Mode synthesis – Construction of a data frame (incoming data) 141
5.43 SH-Mode synthesis – Creation of the state machines for the data processing . 142
5.44 Interface Synthesis Design Flow: the IFB code generation phase 143
5.45 The code generation technique frame processing 144
5.46 Adapted model of the frame processing for the IFB code generation 144
5.47 The three levels of the IFB code generation 146
5.48 Interface Synthesis Design Flow: the IFB code integration phase 147
5.49 Goals for the distribution of IFBs . 149

6.1 IFB Hardware Template (left side) . 154
6.2 IFB Hardware Template (right side) . 155
6.3 The DataWriter realizes the outgoing IFB internal memory 157
6.4 The memory bus arbitration implemented as scheduler 158
6.5 The memory management unit, implemented as a scoreboard 159
6.6 The Reconfiguration Unit . 160
6.7 Definition of the real-time attributes period, deadline and execution time . . 165
6.8 Reduction of serial frames . 166
6.9 Reduction of parallel frames . 166
6.10 Exemplary reduction of a protocol . 167
6.11 Two communication cycles (simple schedule) depicted as Gantt diagram . . . 168
6.12 Advanced execution of the processing - and the output stage 169
6.13 Latency optimization approach I) – The frame-based schedule 170
6.14 Integration of the optimization approach into the control unit 171
6.15 Latency optimization approach II) – The sub-frame-based schedule 171
6.16 A qualitative evaluation of the optimization approaches 172
6.17 The reconfigured IFB execution pipeline . 173
6.18 RTR pipeline architecture providing multi-functional pipeline stages 174
6.19 Reconfigured execution of an exemplary I - P - O graph 176

vii

List of Figures

6.20 Required pipeline clock cycles and slot utilization 178
6.21 Multi-slot vs. single-slot reconfiguration given four slots 178

7.1 IFS-Editor – Component based System Architecture view 182
7.2 IFS-Editor – The IFD-Mapping Editor . 182
7.3 Low level synthesis results generated with Xilinx ISE 183
7.4 The RFID – I2C design, illustrated by the Xilinx FPGA Editor 184
7.5 The RFID – I2C design, illustrated by the Xilinx Floorplanner 184

8.1 The resulting integrated design flow . 187

A.1 Two succeeding communication cycles . 191
A.2 Example for the generation of basic blocks . 192
A.3 Template of the Reconfiguration Control Unit 198
A.4 Validity period of the control signals inside a protocol frame 199

viii

List of Tables

2.1 Examples for hardware and software . 8

4.1 System failure states [126] . 95
4.2 Communication failures and detection mechanisms [126] 96

6.1 Refined I - P - O sequence . 161
6.2 I - P - O clock cycles, required to process multiple data bits 162

ix

List of Tables

x

Listings

2.1 Exemplary VHDL Entity . 9
4.1 XML-Scheme – Tag, Type, Default Value, Comment, and Unit 68
4.2 XML-Scheme – Tag, Type, Default Value, Comment, Enumeration 69
6.1 Protocol reduction pseudo code . 165
A.1 Generated VHDL Register File . 194
A.2 Generated SH-Mode in VHDL . 196

xi

Listings

xii

CHAPTER 1

Introduction

1.1 Motivation and Challenges

Most embedded systems consist of distributed but highly interconnected applications. Due
to the growing complexity and number of interacting components, the design of communi-
cation has become a central aspect along with the system functionality itself. Hence, many
resources are invested to design and implement reliable and efficient communication systems.

Abstraction in the form of system-level design is one way to cope with the complexity of
designing such systems. Model-driven development and hardware/software codesign are also
well-known methodologies of abstraction. As the major drawback, abstraction involves the
Design Gap that characterizes the distance between the concept and the final implementation
of a design. A common technique to overcome the Design Gap is to sequentially derive a
more precise implementation from the abstract model in an iterative process. Therefore,
a particular implementation is reapplied as input for the next iteration, also denoted as
the synthesis step. In many cases, EDA (Electronic Design Automation) tools combine
particular synthesis steps into an integrated design flow.

The automation of synthesis steps is an important feature of a design flow. It allows us
to evaluate even complex models and speeds up the synthesis process. Additionally, the
design flow becomes less error prone and it helps to create implementations for platforms
with limited resources and specific characteristics. Furthermore, automation facilitates to
enforce compliance with design rules or coding styles and thus, simplifies the reuse and
maintainability of the created code. Automated testing and verification allows us to increase
the code quality and is essential during the development of safety critical systems.

The increasing complexity and the shorter time-to-market of embedded systems have forced
hardware designers to consider reuse of Intellectual Properties (IPs). The composition of IPs
is one of the most central but also error-prone parts during system integration. Since most
IPs are provided by different vendors, they comprise incompatible interfaces and protocols.
In this case, the designer has to create an adapter or wrapper for the integrated IP. A full

1

1 Introduction

understanding of all interfaces is required for this process, which is complicated especially for
hard IPs where the designer has to rely on informal descriptions. We can observe a similar
development for reusable software components, called COTS (Commercial Off-The-Shelf).

An outstanding class of computing systems is denoted by the term reconfigurable systems.
Beginning with first approaches in the 60’s [111, 110], reconfigurable computing became
very popular, especially due to the enormous technical improvements within the last decade.
Specific hardware architectures have been developed like Field Programmable Gate Arrays
(FPGAs), Programmable Logic Arrays (PLAs), and Complex Programmable Logic Devices
(CPLDs). These platforms offer the ability to configure the implemented hardware circuit
offline (configuration, offline or static reconfiguration). Nevertheless, some FPGAs even
provide dynamic reconfiguration during runtime (online or runtime reconfiguration).

Next to the implementation of the applications, the inter-module communication represents
a critical aspect in reconfigurable computing. In particular, module interdependencies in
real-time environments lead to massive reconfiguration efforts. The runtime reconfiguration
of modules has to be handled, while the synchronization and inter-module communication
of the remaining system has to be kept running to avoid communication gaps.

We classify relevant methodologies that explicitly handle interfaces as follows:

Interface-Aware (System-Level) Design Flows

This class copes with interfaces as part of integrated design flows on a high-level of abstrac-
tion. In most cases, the interfaces are derived as a consequence of a successive refinement
process. On the one hand, default-interfaces with standardized protocols are applied; on the
other hand, the interfaces result from user-specific component libraries. If generic interfaces
are used, the designer parameterizes them during the steps of the refinement process.

Interfaces in Reconfigurable Systems

Since powerful reconfigurable architectures are available, various approaches have been de-
veloped to cope with reconfigurable computing. Even nowadays, technical platform details
set up a significant barrier in the design process of reconfigurable systems. This is espe-
cially true for the interfaces within reconfigurable systems, which require a substantiated
knowledge about hardware programming. Approaches that focus on the communication in
reconfigurable systems concentrate on restricted sets of components, comprising homogenous
interfaces that consist of compliant protocols between the exchanged modules.

Dedicated Interface Synthesis Approaches

The approaches within this class are designed to synthesize dedicated protocol adapters for
components with incompatible protocols. Protocol state machines or regular expressions are
applied to model the interfaces that have to be interconnected. Specific algorithms create
the adapter modules based on the modeled interfaces in a completely or partially automated
way. Until now, the reconfiguration aspect was not considered by approaches of this class.

We can find various representatives for the three classes in literature. The most relevant
approaches will be presented in Chapter 3. However, we lack an appropriate methodology
that provides an integrated design flow that specializes in the synthesis of dedicated protocol
adaptation exploiting reconfigurable computing paradigms like runtime reconfiguration.

2

1.2 Aim of the Thesis

1.2 Aim of the Thesis

The aim of this thesis is to provide a methodology for the communication-based design
of runtime reconfigurable embedded systems. The center stage of this methodology is an
integrated design flow that consolidates interface synthesis techniques with reconfigurable
computing concepts as presented in Figure 1.1. The major objective of the presented design
flow is the automated generation of an interface adapter module that interconnects tasks
and media comprising incompatible interfaces.

INTEGRATION

Integrated
Design
Flow

Reconfigurable
Computing Concepts

Interface Synthesis
Techniques

Interface Adapter

consolidate

generate

DESIGN
PHASES

MODELING

SYNTHESIS

Figure 1.1: Integrated Design Flow: Overview

Integrated Design Flow

The designated fields of application regarding our approach are the reconfigurable computing
domain, the rapid system prototyping of embedded systems, and the IP-based System-on-
Chip design. An analysis of these domains clarifies the intention of our methodology and
helps us to derive important requirements for the design flow.

A fundamental limitation of IP-based design is that, apart from an initial configuration, the
IPs may not be modified anymore during the integration process. In most cases, an alteration
of an IP would imply a breach of warranty, and, in the case of hard IPs, a modification would
not even be technically feasible. For this reason, the integration and flexible reuse of IPs
has to be considered by our design flow.

Rapid system prototyping demands a high degree of flexibility in the composition of het-
erogeneous components and the possibility to create solutions very quickly. Therefore, our
design flow has to provide a maximum degree of adaptability in combination with an efficient
generation process of the interface adapter modules.

Another aim of this thesis is to close the gap between hardware and software. Therefore, our
design methodology covers the scope of hardware as well as software interfaces. However, in
this thesis we restrict ourselves to software interfaces in the form of memory mapped I/O.
Message based communication like function calls cannot be expressed in our models. In this
way, we can treat hardware and software interfaces in consistent manner.

3

1 Introduction

The interface adapter itself can be implemented either in hardware or software. This decision
is a challenge in the field of hardware/software codesign and depends, for example, on the
available execution platforms. In this thesis, we concentrate our synthesis efforts on the
creation of the hardware realization, which allows us to employ hardware paradigms like
parallelism and analysis techniques, like a cycle accurate schedulability analysis.

To interconnect tasks with media, we model the interfaces of tasks and media in a unified
manner. Restricting ourselves to the observable behavior of an interface, we do not consider
the internal nature of tasks and media and therefore, treat them as a black box model. In
this way, also the inner functionality of an IP, which represents a task or medium, remains
a black box and does not have to be understood in order to be integrated.

To cope with the complexity of all theses requirements, the design flow is structured into
three consecutive design phases as presented in Figure 1.1. Within the modeling phase, we
define the communication infrastructure that comprehends a description of each interacting
component. Our model has to provide all the information that is required for the synthesis
phase. The particular synthesis steps create an implementation of the adapter module in
a defined target language in an automated way. Finally, this implementation has to be
integrated into the ongoing system design process.

Automated Interface Synthesis

It is a primary goal of our design flow to generate transparent interface adapter modules.
Transparency is fundamental for the protocol adaptation of tasks that are not aware of an
interconnecting interface. Another requirement is to support synchronous and asynchronous
I/O. As usual for interfaces, the adapter module must not loose or unpredictably tamper
with the transferred data. To cope with fail critical systems, the interface has to provide
strategies to detect and handle communication errors. Furthermore, we have to derive a
maximum of information from the modeling phase as input for the synthesis process to
optimize the degree of automation. Thereby, we avoid the creation of product automata
to create resource efficient implementations. In our case, the well-known data processing
concept Input–Processing–Output provides the basic principle for the modular structure of
our interface adapter. The output’s level of abstraction depends on the deployed low-level
synthesis flow that we apply for the integration of the generated adapter module.

Runtime Reconfigurable Protocol Adapter

Runtime reconfiguration becomes critical whenever it affects the interaction of components.
This is especially true in the case of real-time systems, which demand a deterministic behav-
ior during runtime. For this purpose, existing approaches evade disturbing effects that result
from the reconfiguration of interacting components. A well-known problem, for example,
is the absence of tasks due to partial runtime reconfiguration. In general, the remaining
system does not consider the reconfiguration of particular components and thus, assumes
the complete behavior to be present all the time. To guarantee a continuous and thereby
deterministic system behavior anyway, the model and the implementation of our interface
adapter have to support the reconfiguration of particular tasks. Therefore, our approach
deploys and extends existing reconfigurable computing techniques. One way to improve the
interface adapter module is to perform a reconfigured execution. In this case, we apply
reconfiguration techniques to optimize the area consumption, which is required to execute
the hardware implementation on a runtime reconfigurable platform.

4

1.3 Contribution of the Thesis

1.3 Contribution of the Thesis

Our contribution to the field of communication-based design is the Interface Synthesis (IFS)
approach that combines the modeling and automated synthesis of runtime reconfigurable
interfaces. We developed the Interface Synthesis Design Flow to create interface adapter
modules, called Interface Block (IFB), to interconnect tasks and media comprising interfaces
with incompatible protocols.

Interface Synthesis Design Flow and Interface Block

The Interface Synthesis Design Flow is structured as presented in Figure 1.1 and starts with
a UML2.0 based modeling. To provide a standardized and intuitive graphical user interface
(GUI) we developed a UML2.0 profile, customized for the Interface Synthesis Design Flow.
We will demonstrate that this is an adequate way for the model-based design of real-time
interfaces in embedded systems.

We developed the IFS System Architecture to design complex communication scenarios.
The System Architecture describes a hierarchical structure composed of architectural com-
ponents (system, board, chip) and interacting communication components (task, medium).
To perform an automated synthesis we require information about the target platform and
the communication components that we are going to interconnect. Our design methodology
distinguishes between statically determinate interface descriptions (IFD) of communication
components, and a mapping of the exchanged data (IFD-Mapping) that has to be defined
each time we create an IFB. In this way, we avoid defining a global data semantics for IFDs
and earn a maximum degree of freedom in interconnecting heterogeneous components.

The modeling phase is followed by an automated interface synthesis that results in a target
language independent IFB model. A subsequent code generation creates an executable
IFB implementation that can be integrated into a standard design flow. Based on the
modular design of the IFB we developed a hardware template on the RT (Register Transfer)
level that allows us to create runtime reconfigurable adapter modules. Due to the specific
architecture of the IFB Hardware Template, which defines a precise construction pattern
for the hardware implementation, we can perform a cycle-accurate evaluation of the IFB.
With this information, we can accomplish a precise schedulability analysis of the protocol
adaptation even for complex scenarios including several communication partners.

To guarantee predictability during runtime reconfiguration, our approach employs reconfig-
urable computing techniques. Thus, whenever a connected task is exchanged, the affected
parts of the IFB are reconfigured as well, and a predefined behavior is executed during
the reconfiguration process. In combination with a reconfiguration control unit (RCU) the
IFB provides a basis technology to compose embedded systems that allow deterministic
reconfiguration of tasks and media at runtime.

EDA Tool: IFS-Editor

To evaluate our Interface Synthesis methodology, we have developed an EDA tool called IFS-
Editor. This Java-tool provides complete functionality to generate runtime reconfigurable
IFBs. Modeling, synthesis, and code generation, are particular design phases that have been
implemented as functional entities which are closely linked. Interactive wizards guide the
designer through the synthesis and the code generation phases.

5

1 Introduction

The design entry can be performed in accordance to the defined UML2.0 profile by the UML
case tool Fujaba (From UML to Java and back again [69]). A model transformation allows
automatic transferring of a design from Fujaba to the IFS-Editor [36].

Currently, the code generation has been developed for the hardware description language
VHDL. This allows us to create the synthesizable VHDL code of an IFB. Finally, in the
integration phase, the created IFB VHDL code can be integrated into the system design.
Standardized tools for the low-level hardware synthesis, for example Xilinx ISE, or compiler
(like the GNU C-compiler (gcc)), are supposed to be used to create the final configuration
bit-streams or the executable files, respectively.

1.4 Organization of the Work

This thesis is organized as follows:

Chapter 2 describes a communication framework for embedded systems and defines our
terminology in the context of the IFS methodology. We present our interface descrip-
tion format and define our System Architecture model. Starting from this, we deliver
scenarios for the adaptation of interfaces and discuss the role of reconfiguration.

Chapter 3 provides a survey of related work. We discuss related approaches and highlight
analogies and differences to the presented one. In accordance with the motivation,
we distinguish between interface-aware (system-level) design flows, dedicated interface
synthesis approaches, and interfaces in reconfigurable systems.

Chapter 4 presents the Interface Synthesis methodology in the form of an integrated design
flow. We introduce the concepts of the Interface Synthesis Design Flow and define our
modeling concept. Furthermore, we explain the structural composition of the Interface
Block and describe the functionality of its components. Afterwards, we present the
methodology and the realization of the runtime reconfigurable interface block.

Chapter 5 refers to the details of the Interface Synthesis Design Flow. Here, we discuss the
consecutive design steps: modeling, synthesis, code generation, and code integration.
To provide an abstract and intuitive modeling of the System Architecture, we define a
specific UML 2.0 profile and the related model transformation. Afterwards, we focus
on the developed IFB synthesis algorithms and the code generation techniques.

Chapter 6 specializes on the hardware implementation of the Interface Block. We explain
the IFB Hardware Template and perform a cycle accurate timing analysis for the
schedulability analysis of multiple adapted protocols. Furthermore, we deliver two
optimization approaches, which minimize the latency and the required chip area.

Chapter 7 discusses the implementation of the Interface Synthesis Design Flow in the form
of the IFS-Editor. This Java tool represents an adequate EDA tool that implements
all major aspects of the Interface Synthesis Design Flow. We provide a representative
case-study to evaluate the IFB, and compare our results with related work.

Chapter 8 summarizes the presented work. It concludes this thesis and gives a brief outlook
on future work in the field of the Interface Synthesis Design Flow and the automated
synthesis of Interface Blocks.

6

CHAPTER 2

Communication Framework for Embedded Systems

Developing an integrated design flow that provides a high-level modeling and an automated
synthesis of interface adapter modules is not an easy task. To make this feasible, we require a
framework that characterizes our approach precisely and identifies its intention. To introduce
into the Interface Synthesis methodology we begin this chapter by systematically developing
this communication framework. Within the framework, we define our terminology, specify
dedicated fields of application, and describe the challenges that our methodology copes
with. Furthermore, we discuss the relevance of the system architecture, with a focus on
the various interfaces. To exemplify the derived concepts, we present the Virtex-II Pro
FPGA. The chapter ends with a discussion about the role of reconfiguration in embedded
real-time systems and introduces the term “communication gap” as the main challenge for
our approach which results from runtime reconfiguration.

2.1 Framework

Terms like interface and synthesis have several meanings throughout the computer science
domain. Thus, before presenting our Interface Synthesis approach, we have to outline a
framework that places our work into correct context. First of all, our approach focuses on
the embedded systems domain. While small platforms comprise few resources and a tiny
functionality, modern embedded systems constitute an increasing part of our technological
environment. We can find them in the form of highly integrated System-on-Chip solutions
as well as in the form of extensive architectures, as known from automobiles or aircrafts.
Most of the complex embedded systems are distributed and consist of several heterogeneous
software and hardware platforms.

Based on the heterogenity of complex embedded systems, we can find multifaceted kinds of
interfaces. Our approach handles the adaptation of such interfaces through a wide spectrum
of embedded systems. We can find a high variety in embedded systems since their composi-
tion mainly depends on the desired functionality. To better confine our framework, we will
now classify the terms tasks and media.

7

2 Communication Framework for Embedded Systems

2.1.1 Tasks & Media

In contrast to general-purpose computers, embedded systems are subject to specific condi-
tions and, in general, perform a pre-defined function. This function can be partitioned into
units, called tasks. Media are used to interconnect tasks but do not provide any computing
power. Tasks and media can be implemented in either software or hardware. Examples for
tasks and media are given in Tabular 2.1.

Hardware Software

Tasks - Fast Fourier Transformation - Electronic Stability Program
- Distance Sensor - Park Distance Control

Media - Firewire, CAN, RS232 - SOAP
- AMBA - TMO

Table 2.1: Examples for hardware and software

The Fast Fourier Transformation (FFT) is a typical representative of a hardware task.
The FFT algorithm does not change during runtime and is available as efficient hardware
implementation, which grants a high performance. In our methodology, dedicated hardware
components like a distance sensor could also be treated as a hardware task, as long as it
comprises a digital interface. Applications like the Electronic Stability Program (ESP) or
the Park Distance Control (PDC) are exemplary software tasks, which usually communicate
via function calls or memory mapped I/O to interact in a distributed environment.

Familiar examples for media in the form of hardware are Firewire, CAN, or RS232, which can
be found in embedded real-time systems. The Advanced Microprocessor Bus Architecture
(AMBA) is a well-known candidate for the interconnection of hardware tasks in the System
on-Chip design. In contrast, SOAP (originally Simple Object Access Protocol) or TMO
(Time-triggered Message-triggered Object) are representatives for media in software-based
systems. SOAP, in combination with TCP/IP based web-services as well as TMO denote a
service-oriented middleware that establishes the communication between software tasks.

In our terminology, a medium neither specifies a communication channel in the meaning of
communications engineering nor a “primitive wire”between two tasks. Comparable to tasks,
each medium consists of interfaces comprising a self-contained communication protocol.

2.1.2 System Composition

We distinguish between two kinds of execution platforms in embedded systems: software
execution platforms like processors and hardware devices, which can be either dedicated or
programmable. The selection of particular execution platforms or in general, the allocation
of architectural components as well as the binding of tasks and media to these components
is a well understood problem [232]. Therefore, we treat the allocation and binding process
as completed for our approach. The decision whether tasks or media are implemented
in hardware or in software is not considered in this work either, as is challenge of the
hardware/software codesign domain [179]. Thus, for our approach the system composition
has to be completed, except for the adaptation of the remaining incompatible interfaces.

8

2.1 Framework

2.1.3 Hardware & Software Interfaces

If we partition an embedded system into its hardware and software components, we can
identify up to three kinds of interfaces:

• Hardware/Hardware interfaces

• Software/Software interfaces

• Hardware/Software interfaces

Hardware/Hardware Interfaces

Typical hardware/hardware interfaces are related to hardware execution platforms and can
be found in the hardware development process as, for example, in the IP-based design. Here,
a designer has to connect the interfaces of particular IPs with other IPs or with a full-custom
design. In the case of VHDL, interfaces are represented by entities, which are modeled in
the form of port descriptions.

Example-Code 2.1: Exemplary VHDL Entity

01 ---

02 -- Entity: Hardware interface for a fully interlocked protocol

03 ---

04 ENTITY hw_interface IS

05 PORT(DATA : INOUT std_logic_vector (7 downto 0);

06 ACK : IN std_logic;

07 RDY : OUT std_logic);

08 END hw_Interface;

Example-Code 2.1 presents the interface (VHDL uses the keyword entity for this purpose)
of a fully interlocked protocol which includes a bidirectional data word, as well as a ready
and an acknowledge signal of the standard logic type (a multi value logic defined by the
IEEE). Each signal represents an electrical signal. A digital logic applies the values logic one
and logic zero to a signal. When a design is mapped to the target technology, the logical
values are replaced by technology-dependent voltage levels.

Software/Software Interfaces

Basically, software communicates in the form of function calls. One special development
is the memory mapped I/O, which is very common in embedded systems. In this case,
the software applications communicate via read()- and write()-functions on a shared piece
of memory that is mapped into the present address space. Therefore, the software has to
be aware of the exact position (address) and the meaning of the exchanged bits inside the
shared memory. Beginning with these two versions, we can find software/software interfaces
modeled in the form of an Application Programmer Interface (API) or a memory map.

The example depicted in Figure 2.1 specifies a memory map in accordance to Example-
Code 2.1. The memory defines the bit fields that are required for a fully interlocked protocol,
including an eight bit data word, as well as the two ready and acknowledge bits. The given
shared memory is mapped into a 32-bit address space and holds the 28 bits starting from
the base address 0x1234FF00. The address of each bit is determined by summing up the
base address and the particular offset. Therefore, the address of the acknowledge bit (Ack)
in our example is 0x1234FF01.

9

2 Communication Framework for Embedded Systems

- - - - - -

D2D1 D3 D4 D5 D6 D7 D8
BaseAddress

0x00

0x08
Offset

0x10 - - - - - -

0x1234FF00
Rdy Ack Shared

Memory

Figure 2.1: Specification of a memory map

Hardware/Software Interfaces & Memory Mapped I/O

From a technical point of view, the implementation of hardware/software interfaces is based
on memory mapped I/O [144]. To exchange information between hardware and software we
utilize a piece of shared memory, which can be available in the form of dedicated registers
to the point of distributed RAM (Random Access Memory). Shared memory is addressed
implicitly or explicitly. The status registers of a Central Processing Unit (CPU) [145], for
example, are implicitly addressed; while the memory space of FireWire (IEEE 1394) expects
the address to be given in addition to the data [48].

To characterize hardware/software interfaces more in more detail, we distinguish between
two possible realizations for memory mapped I/O. As depicted in the middle of Figure 2.2,
we assume a hardware device (bottom) sharing a piece of memory with a software process
(top). The shared memory can be closer to the software as shown on the left side or be a
part of the hardware design as presented on the right.

On the left side of Figure 2.2, a RAM is employed as shared memory for the memory mapped
I/O. In this case, the software running on the processor can easily access the RAM by read()-
and write()-functions [199]. A hardware circuit, which is synthesized into the FPGA, requires
a separate memory interface to access the “external”RAM. Usually, this memory interface is
realized by a memory bus IP, which is additionally integrated into the hardware design. In
the other case, the memory is a part of the hardware design, as presented on the right side of
Figure 2.2. Here, the memory is a set of dedicated registers (register file), which have been
synthesized for the memory mapped I/O. While the hardware is directly interconnected to

Software
(SW)

Hardware
(HW)

Shared
Memory

SW: Application

HW: Circuit

Shared Memory:
i.e. Register File

Memory Interface:
Memory Bus Driver

SW: Application

Shared Memory:
i.e. RAM +

HW: Circuit

Memory Interface:
Memory Bus IP

Memory Bus read()write()

I/O

I/O

Realization IIRealization I Concept

+

Figure 2.2: The hardware/software interface based on memory mapped I/O

10

2.1 Framework

the synthesized registers, the software running on the processor cannot directly access the
shared memory. Therefore, we have to integrate a memory bus driver that handles the data
transmission between the processor and the FPGA.

In general, our Interface Synthesis methodology can be applied to all three kinds of interfaces
(Hw/Hw, Sw/Sw and Hw/Sw). As we concentrate on embedded systems and focus on the
development of a hardware implementation of the Interface Block, we do not consider API-
based communication of software tasks and media. Existing tools like the Common Object
Request Broker Architecture (CORBA) provide a well-established technology that already
handles this sector and so we are not going to re-implement it. Therefore, every time we
mention software interfaces, we implicitly refer to memory mapped I/O.

2.1.4 Modeling Interfaces

As we will see, our understanding of tasks and media allows us to model hardware and
software interfaces in a unified manner including port descriptions and memory maps. Re-
stricting ourselves to the observable behavior of interfaces, we do not consider the internal
nature of tasks and media and therefore, treat them as a black box. In this way, the inner
functionality of an IP, which also represents a task or medium, remains a black box and does
not have to be understood in order to be integrated. Therefore, from the communication
point of view we can even use the item task and medium as synonyms.

The term observable behavior denotes the entire information about the I/O that crosses the
border of a component through a particular interface. In the introduction, we had stated
that our primary goal is the generation of transparent interface adapter modules. Therefore,
it is obviously not only a restriction, but also a necessity to refer to the observable behavior
in our interface model since a transparent interface adapter is never allowed to access task-
internal signals. In our methodology, interfaces are defined by three aspects:

• Physical interface structure (Topology)

• Electrical properties (Nature)

• Communication protocol (Behavior)

A division of topology and behavior is already known from hardware description languages
like VHDL [173, 180] and Verilog [223]. It allows the separated development and the reuse
of particular code-fragments. Furthermore, we can find a comparable tripartition in existing
meta-languages that are used to describe hardware IPs, for example, the VSIA format
[131, 132]. Our interface description format (IFD-Format) actually became part of the IPQ
format [239, 238], which is a standardized European format for the retrieval of IPs as part
of the IP based design process [241, 240].

The presented tripartition is adequate to model reconfigurable distributed embedded sys-
tems. When tasks, which can be resident only within chips, are exchanged, the structure of
all connected chip interfaces remains unchanged, although the behavior which is performed
on these interfaces may vary. A good example is the Spyder FPGA-Board [51] that owns two
expansion-headers, directly connected to the FPGA. Although the functionality performed
on the I/O pins may vary, the structure of this chip interface is unchangeable.

11

2 Communication Framework for Embedded Systems

Physical Interface Structure (Topology)

As we have seen in the previous example, the physical structure of an interface is fixed
and thus does not change over time. In contrast, the behavior (communication protocol)
that is performed by an interface can vary in programmable architectures. This is true for
signal-based I/O as well as for memory mapped I/O. We apply a compact notation using
set theory to define our models. To refer to objects inside these models we assign unique
identifiers. Each identifier consists of a name, a comment and a locally unique integer value.

Definition 2.1 Unique identifier to characterize objects

ID := (Name, Comment, ID) with ID ∈ N ∧ ∀xi, xj ∈ ID : xi = xj ⇔ i ≡ j

To model the physical structure of signal-based I/O we define a signal-based interface (SBIF).
It comprises a number of ports, which in turn provide a number of pins. Each pin belongs
to exactly one port. To provide the maximum degree of freedom, each pin owns a Direction
{input, output, bidirectional} and a Data-Type {bit, std logic, GND, VCC, other}.

Definition 2.2 Signal-Based Interface (SBIF)

SBIF := (Ports, Pins)
port ∈ Ports = (ID, PinList) : Define port
pin ∈ Pins = (ID, Direction, Data-Type) ∈ PinList : Define pin
∀ i, j | i 6= j : PinListi

⋂
PinListj = ∅ : Unique pin assignment

Like signal-based interfaces, shared memory consists of a number of registers, which comprise
a number of bits that provide an ID and a Direction {read, write, read/write}. Each register
is parameterized by a base address, the accessible data size (1, ..., n bits), the minimum
allocation size and the maximum allocation size. The accessible data size is a memory
specific value and defines the amount of bits that can be written or read at the same time.
Minimum- and maximum allocation size specify a number of “words” in the dimension of the
accessible data size. To get the minimum (maximum) number of bits that can be accessed
simultaneously we multiply the minimum (maximum) allocation size by the accessible data
size. The total register-size results from the number of bits modeled inside the bit-list.

Definition 2.3 Memory Mapped Interface (MMIF)

MMIF := (Registers, Bits)
register ∈ Registers = (ID, BaseAddress, AccessibleDataSize,

MinAllocSize, MaxAllocSize, BitList) : Define register
bit ∈ Bits = (ID, Direction) ∈ BitList : Define bit
∀ i, j | i 6= j : BitListi

⋂
BitListj = ∅ : Unique bit assignment

When we introduced hardware and software interfaces, we presented examples for both kind
of interfaces. The interface given in Example-Code 2.1 depicts an SBIF containing the three
ports: DATA, ACK and RDY. The DATA-port consists of eight bidirectional pins of the
type std logic. The following two ports (ACK and RDY) are 1-bit std logic signals which
are incoming and outgoing, respectively. The MMIF presented in Figure 2.1 defines exactly
one register. The register starts at base Address 0x1234FF00 and its accessible data size is
1 bit. To access the Ack- and Rdy-bit the minimum allocation size is 1, where the maximum
allocation size is 8 (for the 8-bit Data bit-field). To allow also read and write operations,
the direction has to be read/write.

12

2.1 Framework

Component

Interface

Ack Rdy Data

8

Figure 2.3: Interface topology for a fully interlocked handshake

To handle signal based I/O and memory mapped I/O consistently we define the interface
topology that unifies shared properties of SBIF and MMIF. The topology considers the width
(number of I/O signals) and the direction of I/O signals. Here, we apply the directions of a
SBIF (input, output ...); the directions of a MMIF are mapped correspondingly. As depicted
in Figure 2.3 the two delivered examples describe a topologically equivalent interface.

Definition 2.4 Topology of an Interface
Topology := (IOPorts, IOSignals)
ioport ∈ IOPorts = (ID × IOSignalList) : Define ioport
iosignal ∈ IOSignals = (ID × Direction) ∈ IOSignalList : Define iosignal
∀ i, j | i 6= j : IOSignalListi

⋂
IOSignalListj = ∅ : Unique iosignal assignment

To interconnect interfaces, we have to ensure their connectivity. This means that all of the
considered topology-parameters have to match except for the direction, which has to be
inverted. A significant characteristic of each physical interface are its electrical properties.

Electrical Properties (Nature)

Electrical properties describe the characteristic nature of an interface in the form of its
electronic parameters. These parameters could be used to retrieve specific devices or to
create dedicated circuits related to the given electrical parameters. Until now, our approach
does not handle this low-level adaptation of interfaces.

Otherwise, the electrical properties can be used to verify the electrical compatibility of two
interfaces, which is a necessary criterion to read and write signals properly and thus, to
guarantee a correct protocol adaptation.

Some examples for electrical properties, which are part of our interface description, are
given afterwards. We distinguish between properties that carry a single value out of an
enumeration and those, which define an interval:

• Enumeration: IO-Technology-Type ∈ {TTL, Open Collector, LVDS, ... }
• Interval: Voltage ∈ [VMin, VMax]

• Interval: Jitter ∈ [JMin, JMax]

Two interfaces IFA and IFB are electrical compatible if the electrical properties Pel of two
interfaces IFA and IFB are equal in the case of a single value:

Pel(IFA) = Pel(IFB)

or they share at least one common value in the case of an interval:

Pel(IFA)
⋂

Pel(IFB) 6= ∅

13

2 Communication Framework for Embedded Systems

Communication Protocol (Behavior)

Next to the physical structure and the electrical properties, we have to describe the dynamic
behavior of interfaces. Typically, the behavior of an interface is denoted as communication
protocol or simply as protocol. An adequate model for us to describe protocols has to be
applicable to our topology model and allows us to specify asynchronous and synchronous
protocols, the values of all I/O signals over time, and the timing (for timed protocols).

As presented in Figure 2.4, which depicts a protocol including a fully interlocked handshake,
signal waveforms provide a graphical method to represent communication protocols. They
provide the advantage of describing the behavior of multiple signals over time. The particular
values that a signal can take are represented by defined waveforms as visualized in Figure 2.4
(logic one → ’1’, logic zero → ’0’, unknown → ’X’ and high impedance → ’Z’). The four
values are a subset of the IEEE standard IEEE.STD LOGIC 1164 [174]. A disadvantage of
signal waveforms is that we can visualize only particular traces (or scenarios) [116].

To overcome this drawback, we model the entire communication protocol of (at least) two
interacting component interfaces as a finite state machine (FSM) that represents the complete
waveform diagram, considering all possible traces (see Figure 2.5). We call this automata
the waveform state machine (WSM). Relating to the WSM, a signal waveform diagram
is nothing more than the visualization of a particular path through the WSM [146]. As
demonstrated in Figure 2.4, we can model the state machine of our exemplary protocol by a
sequence of five states, which would be repeated infinitely. We define the WSM as follows:

Definition 2.5 Waveform State Machine (WSM)

Protocol := (S, TC, PP , δ, λ, s0)
S : A finite number of states
TC : A set of transition conditions
PP : A set of protocol pins
δ : S × TC → S The state transition function
λ : S → (V al 7→ PP) The (Moore) output function
s0 ∈ S The start state

Similar to a FSM, the WSM owns a finite number of states S. s0 ∈ S is the start state,
which means that the current state of the automata is initially set to this state. As depicted
in Figure 2.5, the WSM implies all states of the interacting protocol state machines, which
cause observable effects on the shared signals. In our protocol synthesis, we use the WSM as
input to construct a state machine inside the interface adapter which interacts with the task.
In Section 5.2.5 we define the detailed functionality of our protocol synthesis algorithm.

Data

Rdy

Ack

State 1 2 3 4 5 1

T
'X'

'Z'

'1'

'0'

Figure 2.4: Signal waveform annotated with
FSM values (states + timing)

Task A

Black Box

IF: FSM

Model

Task B

IF: FSM

WSM
1 2 3 4 5 1

1 2

3
5 4

I/OI/O

Black Box
Model

Figure 2.5: The shared communication pro-
tocol modeled as WSM

14

2.1 Framework

The state transition function δ : current state × transition condition → next state allows
us to define synchronous as well as asynchronous transitions. The decision for one of the two
kinds depends on the signals that are triggered by the transition conditions (TC), which
represent the dependencies within the waveform diagram. We distinguish between signal
based dependencies and time dependencies. Under certain conditions, we can identify the
signal based dependencies automatically as far as they result from observable signal events.
We discuss these conditions in Section 5.2.5. As time is a non observable parameter, we
have to model it explicitly. Therefore, the TC of the WSM specify the timing in the case of
timed protocols. We distinguish between three types of timing:

• clocks,
• timer (= deadlines) and
• periodic time schedules.

Clocks are used to model periodic signal events with a constant frequency. Timer and
deadlines, which are in fact the same, describe time intervals, which exceed after the
TimerOrDeadline has been started. We have seen an example of a timer in Figure 2.4.
Here the time T specifies that amount of time, which the data signals require to become
stable. Real-time systems often use predefined time schedules to define a global timing as
with TTP [108, 167]. Particular events are modeled within a hyper-period that is executed
repeatedly. All events, which are related to a transition condition, have to be fulfilled to let
the transition fire. Including the given timing model, we define transition conditions as:

Definition 2.6 Transition Condition (TC)

TC := [Cond { (and | or | nand | nor | xor) Cond) }] (Extended Backus-Naur form)
Cond ∈ {Clock ’event, TimerOrDeadline exceeded, Event ∈ Periodic Schedule arrived}

The output function λ : S → (V al 7→ PP) defines Moore-outputs, which assign a value V al
to a protocol pin PP depending on the current state. Protocol pins are virtual I/O signals,
which are required to describe protocols independently of a particular topology. Protocol
pins and its allowed values are defined as follows:

Definition 2.7 Protocol Pin (PP)

PP := (ID, Direction, Data-Type, Behavior)
Direction = {incoming, outgoing, bidirectional}
Data-Type = {bit, std logic, other}
Behavior = {control, data, data+control}

Definition 2.8 Signal Value (Val) assigned to PP

V al := (Value, Direction, UseCase)
Value = {logic one, logic zero, unknown, high impedance}
Direction = {incoming, outgoing}
UseCase = {control, data}

Each PP owns the parameters direction, data-type, and behavior, which define the general
characteristics of the virtual I/O signal. Each value, which is assigned to a PP, specifies the
status for exactly one particular state and has to match the general PP parameters. Thus,
a bidirectional data+control PP can hold incoming data in one state and outgoing control
information in another state. However, we would not be allowed to assign outgoing data to
an incoming control PP or high impedance to a PP of the type bit.

15

2 Communication Framework for Embedded Systems

The application of protocol pins allows a separated development and a more comfortable
reuse of topologies and protocols. However, this separation needs the mapping of protocols
to topologies, the so-called protocol-map. Each entry of the protocol-map allocates exactly
one matching I/O signal of the physical structure for every protocol pin.

Definition 2.9 Protocol-Map

Protocol-Map := (Topology, Protocol, γ)
Topology : Given topology
Protocol : Given protocol
γ : pp ∈ PP → x ∈ {Pins, Bits} PP mapping function
∀ i, j, m, n | i = j : ppm → xi ∧ ppn → xj ⇒ ppm ≡ ppn Max. one PP per Bit/Pin

Each pin or bit within the topology may be allocated by a maximum of one protocol pin. If
there are not enough pins or bits, the protocol cannot be executed on this topology. Unused
pins or registers do not cause problems except that they are wasted resources. We know
this effect from scalable protocols like the RS232. In the simplest version, this protocol uses
only two pins of a Sub-D connector. The most complex version requires all nine pins.

We may couple two protocols if they are compliant to each other (see Figure 2.6). This is
a metric, different from the functional equality. On one hand, the two state machines may
never halt (end state) or run into a deadlock. On the other hand, the modeled times have to
match and the transferred data has to be semantically compatible. With our current model,
we cannot determine automatically whether two interfaces are compliant, or not.

Including the given definitions, we are now able to model an interface description as:

Definition 2.10 Interface Description (IFD)

IFD := (Topology, Nature, Protocol, ProtocolMap)

Based on these IFDs our interface synthesis algorithm will automatically synthesize the
protocol state machines inside the IFB, which interact with the connected tasks and media.
This level of abstraction appears to be rather deep for the description of interfaces in a high-
level synthesis approach. Nevertheless, we require a bit and cycle accurate behavior model
for our IFB synthesis, which is applicable to signal-based as well as to memory mapped I/O.

Figure 2.6: Compliance of two waveform state machines

16

2.2 System Architecture

2.1.5 Scenarios for Interface Adaptation

Based on the similarity criteria that we introduced for the topology, the nature, and the
protocols we now can discuss characteristic scenarios for the interconnection of interfaces.

I) No compatibility (electrical properties): At our level of abstraction, the (electrical) com-
patibility of interfaces is a necessary criteria for the interface adaptation. Without it,
we must not interconnect physical signals, or we cannot guarantee the correct handling
of the electrical signal values.

II) Compatibility, connectivity (topology) and compliance (protocol) satisfied: The given
interfaces are fully matched and can be directly interconnected.

III) Compatibility and compliance satisfied, but no connectivity: In this special case, we
hold compliant protocols that are performed on physically different interfaces. As
each protocol requires a number of I/O signals, the compliant protocols must possess
a common subset of PPs. Therefore, we just have to interconnect this subset of I/O
signals from each interface with each other to adapt the heterogeneous interfaces.

IV) Compatibility but no compliance: Independent of the connectivity, this very common
scenario describes the classical case of interface adaptation. Two heterogeneous inter-
faces, which cannot be directly interconnected, have to be adapted. This scenario also
defines the field of application for our Interface Synthesis approach.

2.2 System Architecture

An important aspect of an embedded system is the underlying system architecture. The
hardware and software execution platforms of distributed embedded systems are closely
coupled to execute the desired functionality. As one part of this functionality, the system
has to provide the computing power to perform and the resources to implement the protocol
adaptation. In the case of developing the functionality of a complete system within a single
component we are talking about System-on-Chip (SoC) Design. Otherwise, we have to
handle distributed architectures consisting of multiple interconnected components.

2.2.1 The IFS System Architecture Model

The IFS System Architecture model has been developed to design complex communication
scenarios. As depicted in Figure 2.7, the System Architecture defines a hierarchical structure
composed of the system components: system, board, chip, task, and medium. To decide be-
tween passive and active elements, we distinguish between architecture components (system,
board, and chip) and communication components (task, medium). The main objective of
the System Architecture is to model the available communication infrastructure.

The communication infrastructure allows us to place interacting communication components
not only in one component but to distribute them over several interconnected components.
Therefore, they have to be connected via interfaces of the architecture components. Compat-
ible communication components may directly communicate via the present interconnections
while incompatible tasks are interconnected by Interface Blocks.

17

2 Communication Framework for Embedded Systems

System

Board 1 Board nMedia

Chip 1 Chip kMedia

IFB Tasks Media TPD

TPD

IFD IFD

Architecture Components
Communication Components

TPD

Figure 2.7: IFS System Architecture

To get an idea how a realistic system could look like, Figure 2.8 depicts an exemplary
System Architecture composed of the Board B1 and the two chips FPGA1 and FPGA2. Each
chip implements two tasks. Further on, there exists a medium on the system-level (RS232)
and on the board-level (USB). IFB1 adapts these two media and is placed on FPGA1. IFB2
connects Task3 and Task4 while it is executed on FPGA2. In this way, IFB1 represents the
adaptation of two incompatible media, while IFB2 is a typical representative for the IP-based
SoC design. Both IFBs acquire their clocks from the related chip (CLKs). A common reset
(Reset) is available from the board level. The edges between the interfaces (blue squares:
Ix) represent physically existing interconnections between the component interfaces and are
modeled by the so-called interface-map.

System
Level

Board: B1

Task 1

I1

Task 2

I1

IFB 1

I1 I2 I3 I4

Chip: FPGA1

I1 I2CLKs

USB

I1
RS232

I1 I1

Task 3

I1

Task 4

I1

IFB 2

I1 I2 I3 I4

Chip: FPGA2

I1 CLKs

Reset

I3

Figure 2.8: Exemplary System Architecture comprising two Interface Blocks

18

2.2 System Architecture

As depicted in Figure 2.7, each communication component possesses an IFD. To model the
communication infrastructure within the System Architecture each architecture component
provides an interface-map and a description of its private interfaces, which consists of the
interface topology and its electrical properties. A protocol is not included here, since the
behavior of an architecture component interface is only determined by the interconnected
communication components. An interface-map is defined as follows:

Definition 2.11 Interface-Map

Interface-Map := (Topology 1, Topology 2, SigMap)
t1 ∈ Topology 1 : Topology No.1
t2 ∈ Topology 2 : Topology No.2
SigMap 3 σ = (iosignal ∈ IOSignals ∈ t1, iosignal ∈ IOSignals ∈ t2) Signal mapping

Each entry σ ∈ SigMap of an interface-map links two IOSignals of the given topologies. In
contrast to the protocol-map, we can connect one and the same IOSignal to multiple signals.
A protocol-map is available in each architecture component. Thus, we may select the inter-
faces of the current architecture component, the interfaces of the contained communication
components and, except for the system, the available parent interfaces to create an entry in
the map. In this way, we can compose architectures with realistic interconnections.

2.2.2 Modeling the IFB Target-Platform

Chips are extraordinary architecture components, as only chips possess the resources to
implement tasks. By contrast, media are self-contained communication components that
can exist on the system, board and chip level. Next to the tasks, the Interface Blocks also
have to be implemented on the chip level (see Figure 2.7). Even if there are only media to
be adapted, the related IFB has to be placed inside a chip as presented in Figure 2.8. If
there are multiple IFBs in the System Architecture, the process of creating and mapping
IFBs to chips offers the chance to optimize the total communication costs.

Next to the IFDs of the adapted tasks, the information about the platform that executes
the created IFB is an important input for our synthesis algorithm. The hardware version
of the IFB, for example, is a synchronous design, which requires a clock and a reset signal
that have to be provided by the related chip. We define our target platform description as:

Definition 2.12 Target-Platform Description (TPD)

AC = {System, Board, Chip } × TPD : Architecture Component

TPD =
{

Topology, Nature, InterfaceMap, Resources : AC 3 ac = Chip
Topology, Nature, InterfaceMap : else

The resource attribute is present only at the chip level. It comprises information about the
available implementation resources and clock networks of the target platform. A clock is
characterized by its frequency and the type of its clock-network, which specifies the technical
distribution of a clock signal inside the hardware platform.

To perform the protocol adaptation for a given protocol frequency fprot , the selected IFB
clock frequency fIFB that triggers the synchronous IFB has to satisfy: fIFB > CPB · fprot .
The Cycles-Per-Bit (CPB) value defines the maximum number of clock-cycles, which are
required to process a particular bit inside the IFB. The CPB value depends on the IFB

19

2 Communication Framework for Embedded Systems

implementation and the kind and number of processed protocols. In Section 6.3 we discuss
the detailed IFB execution and provide a formalization for the real-time analysis after we
introduced the IFB hardware circuit.

Furthermore, the target platform has to provide sufficient implementation resources to place
the IFB implementation. Software execution platforms possess resources in the form of
memory ; while hardware resources are measured in gate equivalents, or in the case of FPGAs
in complex logic blocks (CLB). The size of an IFB implementation depends, among others,
on the low-level synthesis process, which allows us to derive the final size.

In this thesis, we focus on one target architecture, namely the Virtex-II Pro from Xilinx,
which is an FPGA with up to four embedded PowerPCs. It consists of the typical FPGA
building blocks like processing elements and programmable I/O as presented in Figure 2.9.
Furthermore, we can find dedicated high speed I/Os and Block RAM (BRAM), which are
also shared with the embedded processors. In this way, the Virtex-II Pro chip provides a
very compact architecture that is well equipped to implement real-time capable embedded
systems in the form of the presented System Architecture.

2.2.3 Hardware Execution Platform

An FPGA is an array of processing elements, called configurable logic blocks (CLBs) used to
build combinatorial and synchronous logic designs. The CLBs are connected via an array of
programmable interconnection elements. This routing structure consists of horizontal and
vertical wires to interconnect the inputs and outputs of the CLBs as presented in Figure 2.10.
Additional switch matrices (SM) allow the programming of the interconnections based on
programmable multiplexers. In this way, the switch matrices can interconnect the vertical
and horizontal lines, thus making a routing possible on the FPGA.

© 2004 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DS083-2 (v4.0) June 30, 2004 www.xilinx.com 1
Product Specification 1-800-255-7778

Virtex-II Pro(1) Array Functional Description

This module describes the following Virtex-II Pro functional
components, as shown in Figure 1:

• Embedded RocketIO™ (up to 3.125 Gb/s) or
RocketIO X (up to 10.3125 Gb/s) Multi-Gigabit
Transceivers (MGTs)

• Processor blocks with embedded IBM PowerPC™ 405
RISC CPU core (PPC405) and integration circuitry.

• FPGA fabric based on Virtex-II architecture.

Virtex-II Pro User Guides
Virtex-II Pro User Guides cover theory of operation in more
detail, and include implementation details, primitives and
attributes, command/instruction sets, and many HDL code
examples where appropriate. All parameter specifications
are given only in Module 3 of this Data Sheet.

These User Guides are available:

• For a description of PPC405 embedded core

programming models and internal core operations,
refer to PowerPC Processor Reference Guide and
PowerPC 405 Processor Block Reference Guide.

• For detailed RocketIO transceiver digital/analog design
considerations, refer to RocketIO Transceiver User
Guide.

• For detailed RocketIO X transceiver digital/analog
design considerations, refer to RocketIO X
Transceiver User Guide,

• For a detailed description of the FPGA fabric (CLB,
IOB, DCM, etc.), refer to Virtex-II Pro Platform FPGA
User Guide.

All of the documents above, as well as a complete listing
and description of Xilinx-developed Intellectual Property
cores for Virtex-II Pro, are available on the Xilinx website.

Contents of This Module
• Functional Description: RocketIO X Multi-Gigabit

Transceiver (MGT)
• Functional Description: RocketIO Multi-Gigabit

Transceiver (MGT)
• Functional Description: Processor Block
• Functional Description: Embedded PowerPC 405 Core
• Functional Description: FPGA
• Revision History

Virtex-II Pro Compared to Virtex-II Devices
Virtex-II Pro devices are built on the Virtex-II FPGA archi-
tecture. Most FPGA features are identical to Virtex-II
devices. Major differences are described below:

• The Virtex-II Pro FPGA family is the first to incorporate
embedded PPC405 and RocketIO/RocketIO X cores.

• VCCAUX, the auxiliary supply voltage, is 2.5V instead of
3.3V as for Virtex-II devices. Advanced processing at
0.13 µm has resulted in a smaller die, faster speed,
and lower power consumption.

• Virtex-II Pro devices are neither bitstream-compatible nor
pin-compatible with Virtex-II devices. However, Virtex-II
designs can be compiled into Virtex-II Pro devices.

• On-chip input LVDS differential termination is available.
• SSTL3, AGP-2X/AGP, LVPECL_33, LVDS_33, and

LVDSEXT_33 standards are not supported.
• The open-drain output pin TDO does not have an

internal pull-up resistor.

5
9 Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Functional Description

DS083-2 (v4.0) June 30, 2004 Product Specification

1. Unless otherwise noted, "Virtex-II Pro" refers to members of the Virtex-II Pro and/or Virtex-II Pro X families.

R

Figure 1: Virtex-II Pro Generic Architecture Overview

CLB

M
ul

tip
lie

rs
 a

nd
B

lo
ck

 S
el

ec
tR

A
M

P
ro

ce
ss

or
 B

lo
ck

Configurable
Logic

SelectIO-Ultra DS083-1_01_050304

DCM
RocketIO or RocketIO X
Multi-Gigabit Transceiver

CLB

CLB

CLB

Figure 2.9: Virtex-II Pro – Generic Archi-
tecture Overview [152] Figure 2.10: Classical FPGA Structure [124]

20

2.2 System Architecture

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description
R

DS083-2 (v4.0) June 30, 2004 www.xilinx.com 36
Product Specification 1-800-255-7778

The output from the function generator in each slice drives both the slice output and the D input of the storage element.
Figure 34 shows a more detailed view of a single slice.

Configurations

Look-Up Table

Virtex-II Pro function generators are implemented as
4-input look-up tables (LUTs). Four independent inputs are
provided to each of the two function generators in a slice (F
and G). These function generators are each capable of
implementing any arbitrarily defined boolean function of four
inputs. The propagation delay is therefore independent of
the function implemented. Signals from the function gener-
ators can exit the slice (X or Y output), can input the XOR
dedicated gate (see arithmetic logic), or input the carry-logic
multiplexer (see fast look-ahead carry logic), or feed the D
input of the storage element, or go to the MUXF5 (not
shown in Figure 34).

In addition to the basic LUTs, the Virtex-II Pro slice contains
logic (MUXF5 and MUXFX multiplexers) that combines
function generators to provide any function of five, six,
seven, or eight inputs. The MUXFX is either MUXF6,
MUXF7, or MUXF8 according to the slice considered in the
CLB. Selected functions up to nine inputs (MUXF5 multi-
plexer) can be implemented in one slice. The MUXFX can
also be a MUXF6, MUXF7, or MUXF8 multiplexer to map
any function of six, seven, or eight inputs and selected wide
logic functions.

Register/Latch

The storage elements in a Virtex-II Pro slice can be config-
ured either as edge-triggered D-type flip-flops or as
level-sensitive latches. The D input can be directly driven by

Figure 34: Virtex-II Pro Slice (Top Half)

G4

SOPIN

A4
G3 A3
G2 A2
G1 A1

WG4 WG4
WG3 WG3
WG2 WG2
WG1

BY

WG1

Dual-Port

LUT

FF
LATCH

RAM
ROM

Shift-Reg

D

0

MC15

WS

SR

SR

REV

DI

G

Y

G2

G1
BY

1
0

PROD

D Q

CECE
CKCLK

MUXCY
YB

DIG

DY

Y

0 1

MUXCY
0 1

1

SOPOUT

DYMUX

GYMUX

YBMUX

ORCY

WSG
WE[2:0]

SHIFTOUT

CYOG

XORG

WE
CLK

WSF

ALTDIG

CE

SR

CLK

SLICEWE[2:0]

MULTAND

Shared between
x & y Registers

SHIFTIN COUT

CIN DS031_01_112502

Q

Figure 2.11: Virtex-II Pro Slice (Top Half) [152]

A CLB element comprises four similar slices, with fast local feedback within the CLB. The
four slices are split in two columns of two slices with two independent carry logic chains and
one common shift chain. Figure 2.11 depicts the upper half of a particular slice in detail,
which is constructed from look up tables (LUT), flip-flops (FF) and multiplexers (MUX).

The LUTs represent the basic computing elements inside an FPGA. An n-input LUT is
an n-address memory used to store the 2n possible values of an n-input boolean function.
Thus, it is possible to implement any function of n variables. Therefore, the functional
characteristics are computed for each combination of the n variables and stored in the LUT.
During runtime, the actual input variables address the LUT that delivers the stored function
value as output.

Flip-flops store values temporally and are synthesized to registers. The values, remembered
within this memory, can originate from LUT-outputs or an external source. The Multiplexers
within the CLBs are required to connect LUT-outputs or CLB-input signals with the internal
flip-flops or the CLB-output.

21

2 Communication Framework for Embedded Systems

2.2.4 Software Execution Platform

Inside the Virtex-II Pro, there are up to four PowerPCs 405 (PPC405) cores embedded
into the FPGA as software execution platforms. The PPC405 core is a 32-bit Harvard
architecture processor. Figure 2.12 illustrates its functional blocks:

• Fetch & Decode unit

• Execution unit

• Memory Management unit

• Cache units

• Timers

• Debug logic unit

The processor provides a five stage pipeline consisting of a fetch, decode, execute, write-
back, and load write-back stage. With this manageable architecture the PPC405 is a typical
processor for embedded systems.

The two cache units can be disabled, which is demanded to perform real-time processing.
To guarantee a predictable execution of software we would have to perform a worst case
execution time analysis (WCET-Analysis), and in the case of multiple threads we require a
schedulability analysis. Further on, we have to consider the communication with peripheral
units; for example, the communication with synthesized hardware units within the FPGA.

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description
R

DS083-2 (v4.0) June 30, 2004 www.xilinx.com 20
Product Specification 1-800-255-7778

The Trace port provides instruction execution trace informa-
tion to an external trace tool. The PPC405 core is capable of
back trace and forward trace. Back trace is the tracing of
instructions prior to a debug event while forward trace is the
tracing of instructions after a debug event.

The processor JTAG port and the FPGA JTAG port can be
accessed independently, or the two can be programmati-
cally linked together and accessed via the dedicated FPGA
JTAG pins.

For detailed information on the PPC405 JTAG interface,
please refer to the "JTAG Interface" section of the PowerPC
405 Processor Block Reference Guide

CoreConnect™ Bus Architecture
The Processor Block is compatible with the CoreConnect™
bus architecture. Any CoreConnect compliant cores includ-
ing Xilinx soft IP can integrate with the Processor Block
through this high-performance bus architecture imple-
mented on FPGA fabric.

The CoreConnect architecture provides three buses for
interconnecting Processor Blocks, Xilinx soft IP, third party
IP, and custom logic, as shown in Figure 15:

• Processor Local Bus (PLB)
• On-Chip Peripheral Bus (OPB)
• Device Control Register (DCR) bus

High-performance peripherals connect to the high-band-
width, low-latency PLB. Slower peripheral cores connect to
the OPB, which reduces traffic on the PLB, resulting in
greater overall system performance.

For more information, refer to:
http://www-3.ibm.com/chips/techlib/techlib.nfs/product
families/CoreConnect_Bus_Architecture/

Functional Description: Embedded PowerPC 405 Core
This section offers a brief overview of the various functional blocks shown in Figure 16.

Embedded PPC405 Core
The embedded PPC405 core is a 32-bit Harvard architec-
ture processor. Figure 16 illustrates its functional blocks:

• Cache units
• Memory Management unit
• Fetch Decode unit

Figure 15: CoreConnect Block Diagram

DS083-2_02a_010202

System
Core

System
Core

System
Core

Processor
Block

Peripheral
Core

Peripheral
Core

Processor Local Bus On-Chip Peripheral Bus
Bus

Bridge

CoreConnect Bus Architecture

A
rbiterA

rb
ite

r

DCR Bus

Instruction Data

D
C

R
 B

us

DCR
Bus

Figure 16: Embedded PPC405 Core Block Diagram

MACALU

DS083-2_01_062001

PLB Master
Interface

Data
OCM

JTAG Instruction
Trace

D-Cache
Controller

D-Cache
Array

I-Cache
Controller

I-Cache
Array

Data
Cache

Unit

Instruction
Cache

Unit

32 x 32
GPR

Execution Unit (EXU)

PLB Master
Interface

Instruction
OCM

Instruction Shadow
TLB

(4 Entry)

Unified TLB
(64 Entry)

Data Shadow
TLB

(8 Entry)

Fetch
and

Decode
Logic

3-Element
Fetch
Queue
(PFB1,
PFB0,
DCD)

Timers

(FIT,
PIT,

Watchdog)

Debug Logic

Timers
&

Debug

Fetch & DecodeMMU

Cache Units

Execution Unit

Figure 2.12: Virtex-II Pro Embedded PPC 405 Core Block Diagramm [152]

22

2.2 System Architecture

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description
R

DS083-2 (v4.0) June 30, 2004 www.xilinx.com 18
Product Specification 1-800-255-7778

Functional Description: Processor Block
This section briefly describes the interfaces and compo-
nents of the Processor Block. The subsequent section,
Functional Description: Embedded PowerPC 405 Core
beginning on page 20, offers a summary of major PPC405
core features. For an in-depth discussion on both the Pro-
cessor Block and PPC405, see tthe PowerPC Processor
Reference Guide and the PowerPC 405 Processor Block
Reference Guide available on the Xilinx website at
http://www.xilinx.com.

Processor Block Overview
Figure 14 shows the internal architecture of the Processor
Block.

Within the Virtex-II Pro Processor Block, there are four com-
ponents:

• Embedded IBM PowerPC 405-D5 RISC CPU core
• On-Chip Memory (OCM) controllers and interfaces
• Clock/control interface logic
• CPU-FPGA Interfaces

Embedded PowerPC 405 RISC Core
The PowerPC 405D5 core is a 0.13 µm implementation of
the IBM PowerPC 405D4 core. The advanced process tech-
nology enables the embedded PowerPC 405 (PPC405)

core to operate at 300+ MHz while maintaining low power
consumption. Specially designed interface logic integrates
the core with the surrounding CLBs, block RAMs, and gen-
eral routing resources. Up to four Processor Blocks can be
available in a single Virtex-II Pro device.

The embedded PPC405 core implements the PowerPC
User Instruction Set Architecture (UISA), user-level regis-
ters, programming model, data types, and addressing
modes for 32-bit fixed-point operations. 64-bit operations,
auxiliary processor operations, and floating-point opera-
tions are trapped and can be emulated in software.

Most of the PPC405 core features are compatible with the
specifications for the PowerPC Virtual Environment
Architecture (VEA) and Operating Environment Architecture
(OEA). They also provide a number of optimizations and
extensions to the lower layers of the PowerPC Architecture.
The full architecture of the PPC405 is defined by the
PowerPC Embedded Environment and PowerPC UISA
documentation, available from IBM.

On-Chip Memory (OCM) Controllers

Introduction
The OCM controllers serve as dedicated interfaces
between the block RAMs in the FPGA fabric (see 18 Kb
Block SelectRAM+ Resources, page 44) and OCM sig-
nals available on the embedded PPC405 core. The OCM
signals on the PPC405 core are designed to provide very
quick access to a fixed amount of instruction and data mem-
ory space. The OCM controller provides an interface to both
the 64-bit Instruction-Side Block RAM (ISBRAM) and the
32-bit Data-Side Block RAM (DSBRAM). The designer can
choose to implement:

• ISBRAM only
• DSBRAM only
• Both ISBRAM and DSBRAM
• No ISBRAM and no DSBRAM

One of OCM’s primary advantages is that it guarantees a
fixed latency of execution for a higher level of determinism.
Additionally, it reduces cache pollution and thrashing, since
the cache remains available for caching code from other
memory resources.

Typical applications for DSOCM include scratch-pad mem-
ory, as well as use of the dual-port feature of block RAM to
enable bidirectional data transfer between processor and
FPGA. Typical applications for ISOCM include storage of
interrupt service routines.

Functional Features

Common Features

• Separate Instruction and Data memory interface
between processor core and BRAMs in FPGA

• Dedicated interface to Device Control Register (DCR)
bus for ISOCM and DSOCM

Figure 14: Processor Block Architecture

Processor Block = CPU Core + Interface Logic + CPU-FPGA Interface
DS083-2_03a_060701

PPC 405
Core

O
C

M
C

o
n

tr
o

ll
e

r

O
C

M
C

o
n

tr
o

ll
e

r

Control

BRAM BRAM

BRAMBRAM

F
P

G
A

 C
L

B
 A

rr
ay

Interface Logic

CPU-FPGA Interfaces

Figure 2.13: Virtex-II Pro Processor Block Architecture [152]

2.2.5 The Hardware/Software Interface

To interact with its environment, the PPC405 is surrounded by an interface logic, which
enables the processor to access peripheral units, external I/O interfaces, and the user defined
hardware inside the FPGA. All signals which cross the border of the interface logic have to
be routed through the FPGA. Figure 2.13 illustrates the components of the interface logic:

• On-Chip Memory (OCM) controllers and interfaces

• Clock/control interface logic

• CPU-FPGA interfaces

The OCM controller allows the CPU and the FPGA to access the shared memory; here, in
the form of BRAM. Clocks are distributed via the Clock/control interface logic. To connect
the processor block with its environment, the Virtex-II Pro provides three different bus
systems, which are closely coupled together (see Figure 2.14):

• Processor Local Bus (PLB)

• On-Chip Peripheral Bus (OPB)

• Device Control Register (DCR) bus

23

2 Communication Framework for Embedded Systems

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Functional Description
R

DS083-2 (v4.0) June 30, 2004 www.xilinx.com 20
Product Specification 1-800-255-7778

The Trace port provides instruction execution trace informa-
tion to an external trace tool. The PPC405 core is capable of
back trace and forward trace. Back trace is the tracing of
instructions prior to a debug event while forward trace is the
tracing of instructions after a debug event.

The processor JTAG port and the FPGA JTAG port can be
accessed independently, or the two can be programmati-
cally linked together and accessed via the dedicated FPGA
JTAG pins.

For detailed information on the PPC405 JTAG interface,
please refer to the "JTAG Interface" section of the PowerPC
405 Processor Block Reference Guide

CoreConnect™ Bus Architecture
The Processor Block is compatible with the CoreConnect™
bus architecture. Any CoreConnect compliant cores includ-
ing Xilinx soft IP can integrate with the Processor Block
through this high-performance bus architecture imple-
mented on FPGA fabric.

The CoreConnect architecture provides three buses for
interconnecting Processor Blocks, Xilinx soft IP, third party
IP, and custom logic, as shown in Figure 15:

• Processor Local Bus (PLB)
• On-Chip Peripheral Bus (OPB)
• Device Control Register (DCR) bus

High-performance peripherals connect to the high-band-
width, low-latency PLB. Slower peripheral cores connect to
the OPB, which reduces traffic on the PLB, resulting in
greater overall system performance.

For more information, refer to:
http://www-3.ibm.com/chips/techlib/techlib.nfs/product
families/CoreConnect_Bus_Architecture/

Functional Description: Embedded PowerPC 405 Core
This section offers a brief overview of the various functional blocks shown in Figure 16.

Embedded PPC405 Core
The embedded PPC405 core is a 32-bit Harvard architec-
ture processor. Figure 16 illustrates its functional blocks:

• Cache units
• Memory Management unit
• Fetch Decode unit

Figure 15: CoreConnect Block Diagram

DS083-2_02a_010202

System
Core

System
Core

System
Core

Processor
Block

Peripheral
Core

Peripheral
Core

Processor Local Bus On-Chip Peripheral Bus
Bus

Bridge

CoreConnect Bus Architecture

A
rbiterA

rb
ite

r

DCR Bus

Instruction Data

D
C

R
 B

us
DCR
Bus

Figure 16: Embedded PPC405 Core Block Diagram

MACALU

DS083-2_01_062001

PLB Master
Interface

Data
OCM

JTAG Instruction
Trace

D-Cache
Controller

D-Cache
Array

I-Cache
Controller

I-Cache
Array

Data
Cache
Unit

Instruction
Cache
Unit

32 x 32
GPR

Execution Unit (EXU)

PLB Master
Interface

Instruction
OCM

Instruction Shadow
TLB

(4 Entry)

Unified TLB
(64 Entry)

Data Shadow
TLB

(8 Entry)

Fetch
and

Decode
Logic

3-Element
Fetch
Queue
(PFB1,
PFB0,
DCD)

Timers

(FIT,
PIT,

Watchdog)

Debug Logic

Timers
&

Debug

Fetch & DecodeMMU

Cache Units

Execution Unit

Figure 2.14: Virtex-II Pro CoreConnect Block Diagramm [152]

The processor local bus is a high-bandwidth, low-latency bus to connect high-performance
peripherals. An on-chip peripheral bus, which is bridged to the PLB, connects slower periph-
eral cores, which reduces traffic on the PLB, resulting in greater overall system performance.
PLB and OPB are elements of the standardized high-performance CoreConnect Bus Archi-
tecture. The device control register bus is designed to transfer data between the CPU’s
general purpose registers and the DCR slave logic’s device control registers. The DCR
bus removes configuration registers from the memory address map, reduces loading, and
improves bandwidth of the processor local bus [150].

Memory Mapped I/O

Based on the available technology provided by the Virtex-II Pro, we can implement both
versions of memory mapped I/O between hardware (FPGA) and software (PPC405). On
one hand, the Virtex-II Pro offers Block RAM and on the other hand we can synthesize
dedicated registers inside the FPGA. A drawback is that we always have to consider the
previously presented interface logic.

Figure 2.15 presents an exemplary HW/SW interface deploying synthesized registers as
shared memory. An application that is executed on the PowerPC accesses these registers
via the OPB bus. Therefore, the created OPB driver provides objects that can be written
or read by the application. An OPB IFIP (OPB interface IP) connects the OPB with the
synthesized data registers. The hardware circuit inside the FPGA can directly access the
shared registers. The presented HW/SW interface has been studied in [31].

A basic requirement of the Interface Synthesis approach is the ability to reconfigure the target
platform. The Virtex-II Pro allows the runtime reconfiguration of the hardware (FPGA) and
the software (program, executed in the PPC405) side. With the possibility to implement
tasks in hardware and software, including the option to establish a memory mapped I/O
in the two presented variants, the Virtex-II Pro is the ideal platform to demonstrate our
Interface Synthesis methodology.

24

2.3 The Role of Reconfiguration

VIRTEX-II PRO

Power PC (PPC)

OPB (On-chip peripheral bus)

 R <= Bus2IP_Data ;
 IP2Bus_Data <= R ;

Application (SW)
(C, C++, Java)

FPGA (CLBs)

Register File

Application (HW)
(VHDL, Verilog)

OPB IFIP (Xilinx)
Memory IF:

OPB driver

Operating
System

(DREAMS)

Connect OPB with Register File

 write (d, addr(d)) ; Bus2IP_Data = d
 read (addr(d)) ; d = IP2Bus_Data

Map Data Object into Register File

 Data d ;
 Register r ;
 r.setData(d) ;
 d = r.getData() ;

Data Objects

 Signal D : bit ;
 D <= R ;
 R <= D ;

(Port-) Signals

Reg: RData d

D

D

Bus2IP_Data : in std_logic_vector (0 to n-1);
 IP2Bus_Data : out std_logic_vector (0 to n-1);

D

d

Figure 2.15: Virtex-II Pro Hardware/Software Interface

2.3 The Role of Reconfiguration

Reconfigurable systems may fill the gap between application-specific platforms based on
custom hardware functions, and software programmable systems based on traditional mi-
croprocessors [79]. The resulting is one system, which can provide a higher performance by
implementing dedicated functions in hardware, and still be flexible based on reprogrammable
hardware like FPGAs and/or using a microprocessor (hybrid architectures).

The inherent flexibility of reconfigurable computing has the potential to sustain a new gener-
ation of electronic devices that are able to self-modify themselves according to user’s needs.
A cell phone, for instance, could be reconfigured to perform the functions of a PDA, MP3
player, digital camera, navigation system, and game pad, among others. Note that this is
a scenario completely different from nowadays’ multipurpose devices, which require specific
circuitry to be integrated for each function they are supposed to perform. A reconfigurable
cell phone would instead reprogram its hardware and software building blocks on-the-fly,
just as the user selects a different function. If the device were to function as an MP3 player,
reprogramming would give rise to a specific audio decoder. While performing a game pad,
reprogramming would probably build a kind of graphics processing unit (GPU). In this
example, reconfiguration is directly dictated by the distinct applications, which explicitly
activate the reprogramming of building blocks as they are activated [242, 40].

25

2 Communication Framework for Embedded Systems

Another reconfigurable computing scenario that has been consistently explored regards the
implicit reconfiguration of hardware components without direct intervention by applications.
This perspective of reconfigurable computing is based on the constant monitoring of hard-
ware operational conditions, so as to initiate a pre-programmed reconfiguration whenever
the associated conditions are observed. A good example of this kind of reconfiguration is a
processor that is able to instantiate additional functional units as it detects overload situ-
ations. For instance, an application that runs into a heavy floating-point operations cycle
would induce the processor to instantiate an additional floating-point unit (FPU) along with
the structures needed to operate both units in parallel [54]. On a higher level of abstraction,
we can employ this ability to reconfigure as a basic function of the operating system (OS). In
doing so, we are able to improve the Quality of Service (QoS) for a dynamically changing set
of applications [190, 189]. Furthermore, reconfigurable OS enable us to provide application
specific hardware acceleration by migrating OS services into hardware [187, 85, 62, 140, 42].

In both scenarios, the main benefit associated with reconfigurable computing techniques is
the possibility of reusing hardware and software components for multiple purposes, elimi-
nating undesirable resource replications and allowing the system to go with requirements
that were not initially taken into consideration. Eliminating replicated components directly
improves metrics such as size and power consumption, while increasing reusability and flex-
ibility directly affect non-recurring engineering costs. Nonetheless, in order to achieve these
benefits, it is not enough that designers base their projects on FPGAs that support partial
reconfiguration; the reconfiguration process has to take into account not only the exchanged
applications but also the communication with the interacting components. This is especially
critical in real-time systems, which have to guarantee a deterministic behavior at all times,
including the reconfiguration process. The blackout time in which tasks are not available
due to their reconfiguration is denoted as communication gap. It is a major challenge in our
approach to avoid reconfiguration based communication gaps.

2.4 Summary

In this chapter, we have defined a framework to state out precisely the intention of our
Interface Synthesis methodology. We introduced the terms interface description (IFD) and
target platform description (TPD) as an essential input for the automated interface synthesis
process. While an IFD specifies an interface by its topology, electrical properties, and protocol,
the TPD delivers the resource information about the platform that executes the IFB.

Further on, we defined the three interface criteria compatibility, connectivity, and compliance
that we applied to various scenarios to find out the field of application for an Interface Block
and to address the challenges that our methodology copes with.

Afterwards, we have presented the IFS System Architecture. This model allows us to specify
the communication infrastructure of complex communication scenarios, which are composed
of hierarchical system components. Thereby, we distinguish the system components between
passive architecture components and interacting communication components.

Finally, we discussed the role of reconfiguration in embedded real-time systems. Based on
this, we introduced the term communication gap as the main challenge for our approach
resulting from runtime reconfiguration.

26

CHAPTER 3

Background & Related Work

This chapter presents relevant related work and discusses the current state-of-the-art. For a
better understanding, we deliver some additional background information. In conformance
with Chapter 1 we subdivide the related work into the three domains:

• Interface-Aware (System-Level) Design Flows

• Interfaces in Reconfigurable Systems

• Dedicated Interface Synthesis Approaches

To characterize and classify these approaches we require some kind of metrics. This is
especially important for contrasting our integrated design flow with existing ones. We can
find an excellent introduction for system-level design in [93]1, including the aspects Levels of
Abstraction, Y-Chart, and Intellectual Properties. In the next section, we deliver an updated
excerpt of this work that reflects the most relevant aspects related to this thesis. In addition
to the Y-Chart, we present the P-Chart which is an extension of the Y-Chart and considers
multiple aspects of the design process. This introduction into aspects of the system-level
design allows us to discuss the advantages and disadvantages of particular approaches and
provides the basis for the comparison to our Interface Synthesis approach.

3.1 System-Level Design

System-level design (SLD) copes with the increasing complexity of embedded systems by
raising the level of abstraction. In contrast to behavioral synthesis, which deals with the
implementation of algorithms in application-specific hardware (ASIC design), system-level
design focuses on the problem of mapping an abstract specification model of an entire system
onto a target architecture (e. g. SoC design). In many cases, the design of large embedded
systems considers mechanical as well as electrical aspects. In this thesis, we focus on the
electronic system design (ESD) which refers to the electronic part of the SLD process.

1Ph.D. thesis written by Rainer Dömer, now Assistant Professor at the University of California, Irvine

27

3 Background & Related Work

Compared to the high cost of developing dedicated hardware, a software implementation
is inexpensive. In addition, software can easily be modified if requirements change or new
features need to be added. However, a software implementation may not be possible due
to performance constraints. A task of the system-level design is to trade-off an inexpensive
and flexible software solution versus a high-speed hardware implementation. Therefore, a
major challenge of system-level design is the HW/SW codesign. Codesign is defined as
the design of systems involving both hardware and software. The main task of codesign is
the partitioning of a single system specification into hardware and software parts. Then,
depending on whether a specific component is to be implemented in software or hardware,
standard software technologies and established hardware design methods, respectively, are
used for the final implementation of the component.

The system design flow usually starts from a formal, abstract specification of the intended
design. After the specification has been validated for functional correctness, it is refined by
a sequence of refinement steps, which eventually map the initial specification onto a selected
target architecture. The interface synthesis process, which is presented in this thesis, can
be seen as a specific refinement step.

A very important issue in the system-level design is the reuse of predesigned, complex
components, often referred to as Intellectual Property (IP). In fact, the reuse of IP is the
main key to cope with the complexity involved with SoC design. In contrast to redesigning
a system completely from scratch, the use and integration of complex components, which
are predesigned (possibly by somebody else) and well tested, drastically reduces the design
complexity. Thus, reuse of IP saves a great amount of design and testing time and, hence,
allows a shorter time-to-market.

While the idea of IP reuse promises great benefits for system design, there are also problems
to be solved. In order to allow easy and seamless integration in a new system, IP compo-
nents need to be portable to different technologies and must provide standard or flexible
interfaces. Good documentation about the IPs functionality, its requirements with respect
to the environment, and its performance and other metrics, are required as well.

The reuse of IP has to be an integral part of the system design methodology. The selection,
easy insertion, and replacement of IP components (“plug-and-play”) in the system must be
directly supported by the design models, the tools and the languages being used throughout
the design process. These and other issues involved with the reuse of IP are addressed in
more detail in Section 3.1.3.

3.1.1 Levels of Abstraction

In computer science, a well known solution for dealing with complexity is to exploit hierarchy
and to move to higher levels of abstraction. This effectively reduces the complexity in terms
of the number of objects to be handled at one time.

Figure 3.1 illustrates this for digital systems. An embedded system, which at the lowest level
consists of 10ths of millions of transistors, typically reduces to only thousands of components
at the register-transfer level (RTL). Furthermore, RTL components are grouped together at
the algorithm level. Finally, at the highest, the so-called system level, the one system is
composed of only few components that include microprocessors, special-purpose hardware,
memories, and buses.

28

3.1 System-Level Design

4 CHAPTER 1. INTRODUCTION

must be directly supported by the design models, the tools and the languages being used
throughout the design process. These and other issues involved with the reuse of IP are
addressed in more detail in Section 1.1.5.

1.1.1 Levels of abstraction

In computer science, a well-known solution for dealing with complexity is to exploit hier-
archy and to move to higher levels of abstraction. This effectively reduces the complexity
in terms of the number of objects to be handled at one time.

A
bs

tr
ac

tio
n

A
cc

ur
ac

y

Transistor

Gate

Algorithm

System
1E0

1E6

1E5

1E4

1E3

1E7

1E2

1E1

Level Number of Components

RT

Figure 1.1: Abstraction versus complexity

Figure 1.1 illustrates this for digital systems. An embedded system, which at the lowest
level consists of 10ths of millions of transistors, typically reduces to only thousands of com-
ponents at the register-transfer level (RTL). Furthermore, RTL components are grouped to-
gether at the algorithm level. Finally, at the highest, the so-called system level, the one sys-
tem is composed of only few components which include microprocessors, special-purpose
hardware, memories and busses. From Figure 1.1, it is obvious that a complex embedded
system is easier to deal with at the abstract system level than at the detailed gate or transistor
level.

The level of abstraction is a trade-off with the level ofaccuracy. A high abstraction level
implies low accuracy, and vice versa. The design process of a new system usually starts
from a highly abstract specification model and ends with a highly accurate implementation
model which reflects the real system with all its details.

The advantage of such a top-down approach is that all necessary design decisions can
be made at an abstraction level where all irrelevant details are left out in the model. This
allows the design tasks to work with a system model with minimum complexity.

Figure 3.1: Abstraction versus complexity

From Figure 3.1, it is obvious that a complex embedded system is easier to deal with at the
abstract system level than at the detailed gate or transistor level.

The level of abstraction is a trade-off with the level of accuracy. A high abstraction level
implies low accuracy, and vice versa. The design process of a new system usually starts
from a highly abstract specification model and ends with a highly accurate implementation
model which reflects the real system with all its details.

The advantage of such a top-down approach is that all necessary design decisions can be
made at an abstraction level where all irrelevant details are left out of the model. This
allows the design tasks to work with a system model in minimum complexity.

The concepts of abstraction and hierarchy are closely related. In digital systems, hierarchy
is inherent in the structure of a system. Every system is composed of a set of components,
and each component is a (sub-) system that, again, is composed of (sub-) components. In
other words, the terms system and component are recursively defined.

In order to break the recursion in this definition and to clearly identify the system and
its components, it is necessary to name the current abstraction level. The abstraction level
defines the type of the components used and, thus, also determines the system. For example,
at the gate level, the components are logic gates and the system is the composition of such
gates. One level below, at the transistor level, a single gate can represent an entire system
that is composed of a set of transistors.

It should be pointed out that the term system, in general, refers to different things in
different contexts. For example, a modern aircraft can be viewed as one single system or
as a collection of thousands of systems. Within this work, unless stated otherwise, the
term system refers to a digital, embedded system, which can be implemented by use of
application-specific hardware and software running on one or multiple execution platforms.

Please note that this definition of a system is consistent with the term System-on-Chip. It
is also well defined with respect to the abstraction level for the SoC design, the system level.
A precise definition of system-level design will be given in the following section by use of the
Y-Chart and the P-Chart, which is a derived version of the Y-Chart.

29

3 Background & Related Work

3.1.2 Y-Chart and P-Chart

The Y-Chart [206, 117], shown in Figure 3.2, is a conceptual framework which coordinates
abstraction levels in different domains. This can be used to compare and classify different
design tools and design methodologies. The Y-Chart distinguishes three domains represented
by three axes.

A typical design process starts from the behavioral domain, which specifies the pure behavior
of the system without any implementation details, for example in form of program functions
or mathematical equations. The design is then mapped onto an architecture in the structural
domain. The structural architecture is composed of components, for example logic gates or
RT components, depending on the level of abstraction. Finally, an implementation of the
design is manufactured in the physical domain.

The level of abstraction, as introduced in Section 3.1.1, is orthogonal to the domains. Start-
ing from the center of the chart, the abstraction level, indicated by the dashed, concentric
circles, increases from the transistor level up to the system level.

The Y-Chart allows us to illustrate design flows and design tasks as paths on the chart. For
example, a complete system design flow starts on the behavioral axis at the system level.
After step-wise refinement towards the center of the chart and mapping onto a structural
and physical implementation, it finally ends on the physical axis at the transistor level.

6 CHAPTER 1. INTRODUCTION

Transistor

Gate

RT

Algorithm

System

Physical

Domain
Behavioral Structural

Domain

Domain

Level

System−level Design

Figure 1.2: System-level design in the Y-Chart

axis. The definition of system-level design is indicated by the arrow in Figure 1.2. The task
of system-level design is to synthesize a structural system architecture from a behavioral
system specification.

As another example, high-level synthesis (HLS) is represented by an arc from the be-
havioral to the structural axis on the RT level.

Furthermore, the tasks of refinement and optimization can be demonstrated on the Y-
Chart as well.Refinementis represented by an arrow on the behavioral axis from a high to
a lower abstraction level. On the other hand,optimizationcan be represented as an arrow at
any point in the chart which points back to its starting point. Thus, such optimization is a
task that is performed in-place and can occur at any level in any domain.

Recently, the Rugby model [JKH99] was proposed as a new conceptual framework tar-
geted to represent codesign tasks. In contrast to the Y-Chart, the Rugby model explicitly
separates software and hardware design. Furthermore, the Rugby model distinguishes five
orthogonal dimensions, namely time, data, computation, communication and transforma-
tion. As such, the Rugby model is much more complex and not as abstract as the Y-Chart1.

1The “beauty” of the Y-Chart lies in its simplicity.

Figure 3.2: System-level design in the Y-Chart

30

3.1 System-Level Design

Folie 1© Siemens and Universität Paderborn 2001
ECEC 2001 / 19. April 2001

A.Rettberg, W. Thronicke/ C-LAB99-06-15

Specification
Modeling

Verification

Analysis Rapid Prototyping

Operating-
system

SW-Synthesis

HW-Synthesis

Figure 3.3: System-level design in the P-Chart

On the Y-Chart, synthesis is represented by an arc from the behavioral to the structural
axis. The definition of system-level design is indicated by the arrow in Figure 1.2. The task
of system-level design is to synthesize a structural system architecture from a behavioral
system specification. As another example, high-level synthesis (HLS) is represented by an
arc from the behavioral to the structural axis on the RT level.

Furthermore, the tasks of refinement and optimization can be demonstrated on the Y-Chart
as well. Refinement is represented by an arrow on the behavioral axis from a high to a lower
abstraction level. On the other hand, optimization can be represented as an arrow at any
point in the chart, which points back to its starting point. Thus, such optimization is a task
that is performed in-place and can occur at any level in any domain.

The P-Chart [136, 138, 139, 203] as depicted in Figure 3.3 is an extension of the Y-Chart, that
explicitly models eight orthogonal design dimensions, namely SW-Synthesis, HW-Synthesis,
Operating System, Rapid Prototyping, Specification, Modeling, Analysis, and Verification.
Furthermore, the P-Chart model distinguishes between level of abstraction and the design
view. The stack of the layered pie-elements models the different abstraction levels while the
separation within each element describes the design view.

3.1.3 Intellectual Property and IP-Based Design

As stated earlier, the reuse of Intellectual Properties (IPs) is a key issue in SoC design. This
section elaborates on IP components and the benefits, problems, and requirements with IP
reuse and IP-based design.

IP Components

At the system level, predesigned components are frequently called IPs. IP components are
independent processing elements, in other words, they have their own flow of control and
interact with the other system components via their IP interfaces. Unlike full-custom com-
ponents, which are synthesized from scratch specifically for one application, IP components
are selected from an IP library and are fixed or allow only limited customization.

31

3 Background & Related Work

Nowadays, IP components include memories, processors, and industry standard circuits.
Memory IPs, like RAM and ROM blocks, can usually be customized in size, whereas proces-
sor IPs typically come as fixed cores. Processor IPs include embedded micro controllers,
general-purpose processors, and digital signal processors. Special-purpose IPs implement
industry standards, for example, encoding and decoding algorithms like MPEG, JPEG,
etc., or communication devices like PCI or VME bus interfaces.

IP components can be categorized into hard, firm, and soft IPs. Hard IP components
are developed by use of a standard design process and are fully implemented in a specific
technology. In particular, for hard IPs, there is a physical representation of the layout,
for example, in the form of a GDS-II file. Since hard IPs are fully implemented, their
performance characteristics and other metrics are very accurate and predictable. However,
hard IPs are inflexible and limited to a specific target technology. Soft IP components, in
contrast, are very flexible IPs that come typically in form of synthesizable RTL code. Usually,
soft IPs can be parameterized or are user-configurable in terms of data size, features, etc.
Since soft IPs are synthesizable, they can be implemented in any target technology as well.
However, the implementation metrics of soft IPs are not as predictable as for hard IPs,
because the final implementation has yet to be synthesized. Firm IPs exist between hard
and soft IPs. We can find firm IPs, for example, in the form of EDIF-netlists. On one hand,
this representation allows us to integrate the IP into the design flow on a higher level of
abstraction than hard IPs. On the other hand, this format protects the IP still quite well,
as modifications on netlists (gate level) are complicated.

IP components can also be classified into internal and external IPs. Since the process of
developing the system is decoupled from the development of the IP components, these tasks
can be performed independently by separate design teams in possibly different companies.
Internal IPs are developed inside the same company which builds the system. Typical
internal IPs include legacy designs which can be reused from former products that have been
proven to be successful. External IP components are developed and provided by IP providers
outside the company building the system. While the system house, also-called IP integrator,
can focus on the problem of the system specification, integration, and implementation, IP
vendors develop and offer the required IP components. With this approach, the system house
benefits from a large library of optimized, well-tested, and well-documented components,
which are available when needed. IP providers, on the other hand, take advantage of their
expertise in specialized design areas without the need to build and sell complete systems.

IP Reuse

The reuse of predesigned components is well known in the EDA. For example, at the RT
level, reuse includes the instantiation of components from the RTL library, such as registers,
multipliers, arithmetic-logic units (ALU), etc. Reusing components drastically reduces the
time and the cost of the design because the reused components are already designed, opti-
mized, and tested. However, in order to exploit these benefits, several problems have to be
overcome.

The main two problems involved with design reuse are component matching and component
integration. First, the task of matching is to find a corresponding counterpart in the com-
ponent library for a part of the design specification. A component can only be used in the
implementation if it matches the functionality and meets the constraints in the specification.
Then, the task of component selection is to choose one component from the set of matching

32

3.1 System-Level Design

components that best meets the design goals. Typical design goals are minimal cost or
best performance. Finally, when a suitable component is chosen, it must be integrated with
the rest of the design. The task of integration is to ensure that the component is properly
connected and controlled so that it cooperates with the other system components and works
with the right data at the right time.

One way to select applicable IPs is to provide the system design and the IP with meta-
data that can be evaluated automatically. Such meta-data offers information about the
structure and the functionality of IPs. In the last years XML based description languages
have emerged that allow us to employ web services, for example the web based retrieval of
IPs. One format that has been especially developed for this purpose is the IPQ-Format.

The integration of IPs includes similar problems. Instead of communicating through plain
ports, IP components usually interact via non-trivial interfaces by use of possibly complex
communication protocols. Hence, IP integration typically requires interface synthesis and
protocol translation to be performed. The diversity of external or even internal IPs is one of
the main challenges for the automated interface synthesis that is addicted to the integration
of incompatible IPs. The automated adaptation of interfaces always requires a minimum
amount of information, modeled in a formal and computer readable format.

While the matching, selection, and integration of IP components are tasks performed by sys-
tem integrators, IP providers have to deal with the task of IP protection, which is discussed
in the following section.

IP Protection

Since business of IP vendors depends on selling their intellectual property to other companies,
IP providers have to protect their IP from being copied, modified, or reverse engineered.
IP protection addresses the security issues for external IPs. In general, IP components are
covered by a copyright and can be further protected by legal contracts and non-disclosure
or non-distribution agreements. However, it is usually very difficult to detect and to prove
that an IP is used without permission. Therefore, technical measures are taken in addition
to legal guarantees.

For hard IPs, protection can be easily achieved by keeping the final implementation with
the IP provider. Instead of the real implementation, the system integrator is supplied with
simulation models and estimation data of the IP. With these models, the system can be
developed without the need for the real IP. Typically, the deliverables for a hard IP include
simulation and timing models at different levels of abstraction, performance, power, and
other metrics, a floor plan model, and comprehensive documentation about the functionality
and interface specification of the IP.

For soft and firm IPs, a different approach is necessary. Since the final implementation will
be synthesized by the system integrator, the complete, synthesizable model must be made
available. In order to still hide the implementation or algorithm details, the IP can be
provided in a pre-compiled format without a source code. This is basically the same, well-
known idea used in the software business to protect proprietary code from being reverse
engineered. In general we can say that the more a particular IP is protected, the more
complicated becomes its integration, as the form of documentation becomes more abstract
and cannot be evaluated automatically by synthesis tools.

33

3 Background & Related Work

3.2 Interface-Aware (System-Level) Design Flows

In this section, we discuss relevant (system-level) design flows that explicitly support the
modeling of communication infrastructures and the description of interfaces and/or cope
with IP-Based design. Thereby, the interface representation is of special interest for us, as
it constitutes the basis for each interface synthesis flow. For this reason, we examine state-
of-the-art interface and IP descriptions, which are standardized and automatically evaluable
before we proceed with the design flows.

3.2.1 Interface and IP Descriptions

To perform an automated interface synthesis we require a precise and formal specification
of the interfaces that we are going to adapt. In Chapter 2, we defined our way to model
hardware and software interfaces. Other formal languages with respect to interfaces are:

HW, SW & HW/SW languages

- VHDL [174, 171], Verilog [223]

- C, C++, Handle-C [52]

- Esterel [57], LOTOS [250, 162], Estelle [249]

- ASN.1 [105, 80]

System-Level languages

- System Verilog [228, 151]

- System C [53, 78], SpecC [98, 72]

- SDL [83, 88], SLDL [213]

- UML 2.0 [192, 100]

ASN.1 [80]

All these languages are able to model interfaces, but they were not designed to describe
IPs. The Abstract Syntax Notation One (ASN.1), for example, is an industry standard
in telecommunications and computer networking. It was first standardized in 1984 by the
CCITT (International Telegraph and Telephone Consultative Committee, now called ITU-
T, International Telecommunication Union - Telecommunication Standardization Sector)
under the name “X.409 Recommendation”. A little later, ISO (International Organization
for Standardization) chose to adopt this notation and split this recommendation into two
separate documents: the abstract syntax (ASN.1) and the encoding rules (BER).

ASN.1 is a flexible notation that describes data structures for representing, encoding, trans-
mitting, and decoding data. It provides a set of formal rules for describing the structure of
objects that are independent of machine-specific encoding techniques and is a precise, formal
notation that removes ambiguities [105]. ASN.1 was designed to specify data protocols in an
open system interconnection (OSI) environment. Standardized XML Encoding Rules (XER)
allow ASN.1 specifications to be used as XML schema against which XML documents can
be validated. Fast Web Services specify ASN.1 specific SOAP messages, which allow ASN.1
to interact with distributed web services.

In the case of IPs the interface information is usually delivered as meta-data encapsulated in
the IP description. Thereby, the interface description has to be independent of the particular
IP type and may not contravene the IP protection rules. Text documents, which recently
exist in different styles, e.g. Word documents, are useless for this task, since they cannot
be evaluated automatically. Afterwards, we present four recent standards, which are well
established and developed further with the support of the EDA industry.

34

3.2 Interface-Aware (System-Level) Design Flows

VSI Alliance, VCT2 & SLIF [47]

The VSI Alliance was formed in 1996 by a group of major EDA and Semiconductor compa-
nies. Currently the alliance incorporates about 200 members including companies, individu-
als, and organizations. The primary vision was to accelerate SoC development dramatically
by specifying open standards that facilitate the mix and match of virtual components from
multiple sources [45]. VSIA expanded that vision to meet the growing needs of the IC
Industry by including software and hardware IP for System-on-a-Chip (SoC) Design [46].

Primary Goals: IP Based Design

- Minimize Design Time
- Maximize IP Reuse
- Optimize System Level

Advanced Goals: System Based Design

- Minimize System Design
- Maximize Software reuse
- Optimize HW/SW tradeoff

One condition to achieve these goals is an improved interaction of the IP-creator and the
-integrator. Thereby, the IP creator is reliable for the IP authoring that means to create
predictable and pre-verified Virtual Components2 (VC), which are ready for the System-
Chip integration. The main improvement of the design efficiency results from designing with
blocks of 100,000 transistors. In order not to loose this efficiency gain, IP integrators are not
allowed to modify VCs. VSIA offers several specifications, standards, and other technical
documents for different areas of handling VCs/IPs. One of these documents specifies a
system level design model taxonomy that defines general modeling concepts for system
models, architecture models as well as hardware and software models [46].

The Virtual Component Attributes (VCA) With Formats for Profiling, Selection, and Trans-
fer Standard 2 (VCT 2) [131] defines the IP meta-data including IP attributes, the data types
and structure of IP Properties, and a functional taxonomy. The Virtual Component Transfer
Specification (VCT) [132] handles the transfer of the IP contend.

In conformance to VCT2 the System-Level Interface Behavioral Documentation Standard
(SLD 1 1.0) [130] defines data types, attributes, and transactions on ports. This description
of VC System-Level Interfaces (SLIF) can be applied to compose systems of VCs but it
cannot be employed for the automated synthesis of interface adapters.

SPIRIT [81]

SPIRIT is an emerging standard, which is still under development [181, 182]. EDA compa-
nies like Arm, Cadence, Mentor Graphics, Philips, ST and Synopsys are driving forces of
this IP description. SPIRIT intends to create two standards:

IP meta-data description: The meta-data standard will create a common way to describe
IPs, compatible with automated integration techniques and enabling integrators to use
IPs from multiple sources with SPIRIT-compliant tools.

IP tool integration API: The tool integration API is going to provide a standard method
for linking tools into an IP framework, enabling a more flexible, optimized development
environment. SPIRIT-compliant tools will be able to interpret, configure, integrate,
and manipulate IP blocks that comply with the proposed IP meta-data description.

2In VSIA IPs are also-called Virtual Components

35

3 Background & Related Work

SPIRIT is fully architecture-agnostic, both for interconnect - and virtual components. It can
describe SoC designs and is a common standard for IP description that tools from multiple
vendors can interpret. A SPIRIT description can be used by IP catalogs to display and
exchange IP integration requirements. Thereby, it is fully design-language neutral.

Compared to VSIA’s VCT standard, SPIRIT is a design deliverable that relates design
intent to design implementation, while VCT is a mechanism for bundling and exchanging
packages of design deliverables.

In spite of these features, SPIRIT does not expose proprietary data about an IP, as it encap-
sulates only such data that many IP suppliers provide openly in technical reference manuals
today. SPIRIT 1.0 does not describe the internal architecture of an IP. The extensibility
mechanism in SPIRIT provides a consistent way for users to add their requirements to the
basic SPIRIT 1.0 descriptions.

CWL

To improve the reusability of design resources in the large scale integration (LSI) system
design process, an IP interface description language called Component Wrapper Language
(CWL) has been jointly developed in cooperation with Hitachi, Fujitsu Laboratories, and
Fujitsu in 2002 [114].

One feature of this language is the capability to write formal and compact descriptions of
signal changes at input/output ports for IP. This enables the following three primary goals
of the Component Wrapper Language:

Removal of ambiguity: Correct conveyance of interface specifications

Facilitation of design: Automation of connection between IPs

Facilitation of verification: Support of IP design verification and connection of IPs

The advanced goals of the CWL are to increase the IP reusability and accelerate the system
LSI design process by distributing interface specification descriptions in the CWL and the
IPs in individual packages.

72002/9/1 Copyright © Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi, Ltd. 2002. All rights reserved.

IPIP clk

rst_

en_

ad[9:0]

wait_

dt[7:0]

Xa

Xd
Q(Xa) W W O(Xd)

Q(Xa) W* O(Xd)Q(Xa) W* O(Xd)CWL representation :

Basic form of representation in the Basic form of representation in the
Component Wrapper LanguageComponent Wrapper Language

u Regular expression provides for the compact and exhaustive
representation of signal sequences on input/output ports.

Figure 3.4: Interface representation as Timing Diagram

72002/9/1 Copyright © Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi, Ltd. 2002. All rights reserved.

IPIP clk

rst_

en_

ad[9:0]

wait_

dt[7:0]

Xa

Xd
Q(Xa) W W O(Xd)

Q(Xa) W* O(Xd)Q(Xa) W* O(Xd)CWL representation :

Basic form of representation in the Basic form of representation in the
Component Wrapper LanguageComponent Wrapper Language

u Regular expression provides for the compact and exhaustive
representation of signal sequences on input/output ports.

Figure 3.5: IP representation
with CWL [114]

36

3.2 Interface-Aware (System-Level) Design Flows

The Component Wrapper Language is a language used to correctly define the interface
specifications of the target IP. Such interface specifications include specifications of logical
signal changes as well as structural specifications, such as I/O pin information.

The key to this language is its method of describing these specifications, such as signal-
waveform change specifications as presented in Figure 3.4. The waveform representation
method in the Component Wrapper Language is based on regular expressions (see Fig-
ure 3.5), which are suitable for compactly representing individual sets of value sequences,
such as waveform specifications. To be precise, the waveform pattern for “one clock cycle”
is used instead of “one character” [115].

Timing diagrams (also-called signal waveform diagrams) are used to represent waveforms in
specifications. As mentioned in Chapter 2, one drawback of this method is that only one
sample representation of waveform specifications can be shown in a diagram. It is certainly
helpful for understanding the specifications, but many timing diagrams have to be described
to cover all cases.

62002/9/1 Copyright © Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi, Ltd. 2002. All rights reserved.

Presenting the ComponentPresenting the Component WrapperWrapper Language Language
for interface descriptionfor interface description

uThe Component Wrapper Language(CWL) provides a way to formally and
exhaustively specify interfaces.

lCWL provides for the definition of ports, protocols, and transactions.

lCWL is independent of such design languages as VerilogHDL,

VHDL, and SystemC.

D

clk

cmd

req

ack

dat[31:0]

IP

(read)

(write)

D

interface FullHandshake;
port;

input.clock clk;
input.control cmd;
input.control req;
output.control ack;
inout.data[31:0] dat;

endport
word;

read{reg[31:0] D}: RR+ RA(D);
write{reg[31:0] D}: WR(D)+ WA(D);

endword

interface FullHandshake;
port;

input.clock clk;
input.control cmd;
input.control req;
output.control ack;
inout.data[31:0] dat;

endport
word;

read{reg[31:0] D}: RR+ RA(D);
write{reg[31:0] D}: WR(D)+ WA(D);

endword

CWL

Figure 3.6: CWL example [114]

Writing descriptions of all cases is difficult, and doing so would needlessly increase the
quantity of specifications. Moreover, computers cannot directly process timing diagrams
written on paper, and manual work is thus necessary to use verification tools. This leads to
a possibility of human error in addition to extra labor-hours of design work. Therefore, CWL
descriptions allow the definition of ports, protocols, and transactions [116]. The example
depicted in Figure 3.6 provides the following four parts:

Port declaration: This part defines the structural I/O information of the target IP.

Signal value naming: This part names the waveform pattern for one cycle. By labeling and
using this waveform pattern, it becomes the minimum unit of representation.

Pattern definition for each function: This part defines the pattern of each transaction.
The definition of pattern can also be represented hierarchically. The primary transac-
tion operations are “read” and “write”.

Overall definition: This part describes the operation of the complete target IP.

37

3 Background & Related Work

IPQ

The IPQ Format is intended to express IP Content and IP Characterization data and offers
a unified IP description format. It is designed to support IP-based design services, including
web-services. Consequently, the IPQ Format has to be powerful enough to comprehend all
data that has to be exchanged between the IP integrator and different IP related services.
This data spans mainly two areas: the comprehensive description of IPs and the input data
for and output data from the utilized IP services. According to this division, the IPQ Format
is constructed as defined in Figure 3.7. The whole IPQ Format has been implemented using
XML Schema [20, 19, 22, 17].

The IP Data Format is responsible for the specification of the IP. On one hand, it must
be capable of describing IPs precisely, since most IP services need certain parts of the IP
Content. On the other hand, some services might only need meta-data about specific IP
properties such as its operating frequency or whether it meets certain design guidelines.
Accordingly, IPQ distinguishes between the content and the characterization of an IP.

The IP Content covers all deliverables of the design itself (HDL-files, layouts, test-scripts,
manuals, data sheets, detailed validation documentation, etc.). For the development of
the IP Content section, the Philips Semiconductors CoReUse standards [226] played an
important role. The content data items are inserted into a skeleton of XML tags. Next to
this structure, the XML skeleton conveys some semantics to the whole IP Content portion.

The IP Characterization describes the IP in a way that allows us to assess its characteristics,
quality, suitability, and reusability. It consists of a set of IP attributes (power consumption,
throughput, gate count, area, etc.). The attributes and their hierarchy are compatible with
the VCT 2 standard. Aside from the VSIA attributes, the IP Characterization contains
so-called quality criteria. These are based on a set of quality metrics from the Open-MORE
Assessment Program [160, 159, 158, 128] which basically indicates whether an IP meets
certain rules and guidelines like verification and validation strategies, testability, etc.

In contrast to other formats used, e. g., by D&R [90, 135] and VCX [112, 122], the IP Data
Format integrates the IP Characterization and the IP Content portion. An IPQ toolbox
[18, 23] has been implemented that exploits this close integration to address many different

IPQ Format

IPQ TaxonomiesIPQ Transfer Format

IP Data Format IP Service Format

IP CharacterizationIP Contend

Figure 3.7: Architecture of the IPQ-Format [239]

38

3.2 Interface-Aware (System-Level) Design Flows

IP related web services [24], including retrieval services [21, 16] as well as processing services.
As the IPQ Format allows the modeling of dependencies between different IP attributes, it
can also accommodate parametrizable IPs.

However, IP specification data is not sufficient to invoke external tools. Typically, tools need
additional information like environment settings, control files, and other configuration data.
Furthermore, the data they return is very diverse and cannot be expressed with a limited set
of XML tags like the one the IP Data Format provides. Therefore, the necessary additional
information is captured in the IP Service Format. This format consists of two portions, the
service invocation and the service result portion.

The IPQ Taxonomy is a tree-like classification scheme. It turned out that taxonomies are
very helpful in the IP context, because they allow the classification of IPs in various scenarios.
In an IP taxonomy tree, every IP is assigned to a node (i. e., category). Depending on the
type of taxonomy, an IP´s assignment to a particular taxonomy node describes the IP´s
function, architecture, or application domain, etc. A functional class taxonomy like the one
defined in [169], e. g., identifies IP functions.

Additional information about the IPQ Format can be found in [134, 89, 164, 204, 215].

IFD-Format

Our interface description (IFD) model that we presented in Chapter 2 has been developed
as part of the IPQ Format [20, 22]. In this context, it covers the specification and modeling
of IP interfaces. The XML representation of an IFD, namely the IFD-Format [29], defines
an XML sub-scheme of the IP characterization.

The IFD-Format has been developed based on VSIA’s VCT 2 and is compliant with this
important industry standard. To perform an automated interface synthesis including IPs,
it was necessary to enhance the available information. Although the specification of the
interface structure is mainly covered by the VCT2, it has been completely reorganized,
as this information is distributed through several topics of the VCT 2. By contrast, the
IFD-Format presents an interface-centric representation.

The behavioral interface description has been developed independently of any VSIA stan-
dard, since this aspect is not covered appropriately. Similar to the CWL, timing diagrams
have been selected as an origin to model communication protocols. While the CWL uses

82002/9/1 Copyright © Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi, Ltd. 2002. All rights reserved.

Differences between timing diagrams and Differences between timing diagrams and
Component Wrapper LanguageComponent Wrapper Language

u A timing diagram only shows one sample of the possible waveforms in the
specification.

u The Component Wrapper Language provides a way to exhaustively represent the
waveform specification.

A [B+ | C D <E>] FA [B+ | C D <E>] F

A B F

C D

B

F

E
F

A C D F

Timing diagrams

A C D F

A C D F

CWL

Figure 3.8: CWL regular expression visualized as state machine [114]

39

3 Background & Related Work

regular expressions to model the waveforms, the IFD-Format is based on state machines.
As regular expressions are equivalent to FSM [146, 188], each CWL expression can be for-
mulated and visualized as state machine as depicted in Figure 3.8. Nevertheless, the CWL
FSM and the state machines used in the IFD are different, but they can be converted into
one another. We discuss this aspect in Section 3.4.

Due to the fact that the IFD is part of the IPQ Format, IPQ IPs can be directly handled by
the interface synthesis approach presented in this thesis. Therefore, the Interface Synthesis
methodology proposes the IPQ Format as the recommended IP description format.

3.2.2 Design Flows

The (system-level) design flows that we discuss afterwards explicitly consider the interfacing
of components. Although some of the given examples are scientific approaches, all of them
are well considered by the EDA industry.

UML2.0 Based Design Flows

UML provides the basis for several design flows. Tools like the Enterprise Architect3, To-
gether4, and Rational Rose5 already support the UML2.0 standard or are going towards it.
An advantage of UML 2.0 is its extensibility, thus designers can define UML profiles con-
sisting of stereotypes and tagged values [192]. Several approaches for real-time extensions
to the UML 2.0 have been proposed to support hard real-time [123, 216, 100, 99, 125].

ARTiSAN: ARTiSAN Software is a provider of UML tools used for the modeling of real-
time embedded systems, and of software engineering for designing mission-critical and safety-
critical applications [233]. Next to UML, ARTiSAN offers an implementation of SysML
[142, 141]. In their system design process, ARTiSAN breaks a system up into different
areas of functionality [235]. One of these areas is the “physical view”. By applying UML
stereotypes to elements on an assembly diagram, the system architecture can be described.
The busses and interconnects, software and hardware interfaces, and the other integrated
systems can all be shown in this type of diagram. A second way to model interfaces is by
modeling sequences of interactions in Interaction Diagrams. To also capture IP specification
and IP integration ARTiSAN presented a combination of UML and Autosar [234].

Rhapsody: I-Logix offers Collaborative Model-Driven Development (MDD) solutions for
systems design through software development focused on real-time embedded applications
[148]. Each design is iteratively analyzed, validated, and tested throughout the development
process. In the presented MDD approach IP reuse is realized by inlining available legacy code
[149]. In order to facilitate the reuse of IP captured as models in a UML based CASE tool,
Rhapsody provides an XMI interface. Rhapsody’s XMI interface allows the transfer of IP
from a 3rd party tool into Rhapsody without any loss of information. System architectures
can be modeled with Rhapsody comparable to ARTiSAN [186, 102, 103]. The intermodule
communication is modeled in the form of sequence diagrams. In [101] I-Logix introduces
a methodology to model the requirements of communication systems and how to design
protocols. In addition, Rhapsody provides a CORBA interface implemented in C++ [104].

3Sparx Systems, Online at http://www.sparxsystems.com.au/ [229]
4Borland, Online at http://www.togethersoft.com/ [64]
5IBM, Online at http://www.rational.com/ [202]

40

3.2 Interface-Aware (System-Level) Design Flows

Autosar

The AUTOSAR (AUTomotive Open System Architecture) partnership was launched by
the BMW Group, Bosch, Continental, DaimlerChrysler, Siemens VDO and Volkswagen
with the aim to manage the growing automotive electric/electronic (E/E) complexity and
thus, to establish an open standard for the development of automotive functionality [49].
AUTOSAR focuses on the integration of SW modules based on standardized interfaces and
APIs [209, 210] to provide an increased scalability and flexibility in the design process. While
the currently available concept allows the integration of functional modules from multiple
suppliers, it does not handle the adaptation of heterogeneous components.

SpecC

A scientific approach, which offers a system-level design flow that deals with communication
synthesis, is the SpecC language [121, 97]. The SpecC methodology offers a complete design
flow from an abstract model to a concrete implementation on Register Transfer level. On
the highest level, synthesizable behaviors (see behavior B in Figure 3.9) are connected by
channels. This leads to a strict separation of computation and communication. To do so,
the SpecC methodology expects a SpecC conform description of the interfaces. Therefore,
incompatible tasks, e. g. IPs, can be connected to the remaining design by wrapper chan-
nels and adapter modules. Both, wrapper channels and adapter modules are related to a
transducer T . The in-lining of the module into the transducer T results in a synthesizable
behavior B as presented in Figure 3.9. The creation of the wrappers or adapter modules is
based on the use of high-level communication functions (v1, v2). Although a complete design
methodology is covered by the SpecC approach, the automated generation of the wrapper
channels or the adapter modules is not considered.

T

 IP
v2

v1
T

 IP
v2

v1

wrapper channel

A

adapter module

 B

Figure 3.9: IP integration using wrapper channels & adapter modules [121].

A closer look shows that a SpecC adapter module behaves quite similarly to the functionality
on an IFB. Both modules adapt two incompatible interfaces, even though the two approaches
use a different methodology. Due to the high similarity, an automated way of generating a
SpecC adapter module is conceivable.

Conclusion

The UML based design flows concentrate on the development of software for embedded
real-time systems. Hardware is not generally considered while UML allows a very abstract
and intuitive modeling. Each presented flow provides a concept for handling IPs and is
able to create the required interface code. Nevertheless, only Autosar and SpecC focuses
on HDL code generation. All of the design flows have in common that they do not cope
with runtime reconfiguration. Further approaches with an emphasis on interface adaptation
and/or interface synthesis are discussed in Section 3.4.

41

3 Background & Related Work

3.3 Reconfigurable Systems

In this section, we concentrate on reconfigurable architectures to analyze communication
techniques that are available in reconfigurable designs. We focus on those hardware plat-
forms, which are potential execution platforms for the hardware realization of the Interface
Block. To handle on-chip reconfiguration we consider partially reconfigurable devices, e. g.,
the Virtex FPGA series from Xilinx Inc., next to those architectures that can be only com-
pletely reconfigured. Hereby, we are especially interested in communication techniques that
support runtime reconfigurable designs, for example, on-chip busses.

In general, the reconfiguration of software and hardware execution platforms means to switch
between a number of predesigned configuration contexts. A typical scenario for software
reconfiguration is to replace parts of the executed program code. The reconfiguration process
of hardware is more complex. In dependency of the architectural granularity – in general
we distinguish between fine and coarse-grained architectures – a set of adjustable hardware
elements has to be configured.

3.3.1 The FPGA – A Reconfigurable Hardware Platform

In the case of an FPGA, which is a fine grained architecture, a configuration bit-stream
is written into the configuration memory (SRAM) via a unique reconfiguration port to
determine the behavior of the particular Complex Logic Blocks (see Figure 2.10).

The configuration of FPGAs is technically restricted to a column-wise programming style.
Thereby, each column is a combination of two adjacent slices as presented in Figure 2.11.
Each fragment of a partitioned task, which can span a number of adjacent columns, is called
module. A partitioned design is then distributed through the design space in the dimensions
of space and time. At the least, this means a mapping of FPGA columns according to a
given time slot. Spatial- and partial reprogramming methodologies cope with this problem.

There are two different ways of reprogramming an FPGA. The first approach, referred to as
complete reconfiguration, stops the total device in execution and updates the portion of the
configuration memory in the design which has to be changed. To interrupt the execution, all
clocks are frozen. No computation or communication will be performed in any way until the
clocks are reactivated again. The second approach, called partial or runtime reconfiguration,
does not influence the functionality of unchanged sections of the FPGA in any way. It just
reconfigures the affected frames by updating the dedicated configuration memory.

A challenge for each partially reconfigurable hardware device is the (technical) ability to
disconnect the reconfigured circuitry from the remaining one. Therefore, whenever we are
involved in partially reconfigurable designs we have to consider three aspects:

1. Modules that are mapped to identical columns have to share the same I/O resources.

2. The electrical interruption of I/O signals may not disturb the integrity of signal values
during the reconfiguration process.

3. Single failures or even the complete breakdown of the ongoing communication protocol
in the form of a deadlock or a lifelock that occurs from the absence of reconfigured
communication partners has to be prevented.

42

3.3 Reconfigurable Systems

The Xilinx Bus Macro

Partial configuration demands that resources, used by a reconfigurable module, cannot exist
outside of a dedicated frame boundary. Moreover, the routing that is used to connect signals
crossing reconfigurable module boundaries cannot change when a module is reconfigured.
Therefore, all modules which are mapped to the same columns have to share the same I/O
signals. To make this technically possible, we include fixed points into our design at the
intermediate layer between two modules. As long as not the complete routing information
is known during the generation of new modules, we have to refer to these fixed points to
interconnect various modules.

Two Flows for Partial Reconfiguration: Module Based or Small Bit Manipulations

XAPP290 (v1.0) May 17, 2002 www.xilinx.com 3
1-800-255-7778

R

9. A reconfigurable module’s boundary cannot be changed. The position and region occupied
by any single reconfigurable module is always fixed.

10. Reconfigurable modules communicate with other modules, both fixed and reconfigurable,
by using a special bus macro (described in the Bus Macro Communication section).

11. The implementation must be designed so that the static portions of the design do not rely
on the state of the module under reconfiguration while reconfiguration is taking place. The
implementation should ensure proper operation of the design during the reconfiguration
process. Explicit handshaking (e.g., module ready/not-ready) logic may be required.

12. The state of the storage elements inside the reconfigurable module are preserved during
and after the reconfiguration process. Designs can take advantage of this fact to utilize
"prior state" information after a new configuration is loaded. On the other hand, it is not
possible to utilize the FPGA devices global set/reset (GSR) logic to independently initialize
the state of the reconfigurable module. If set/reset initialization is required for the
reconfigurable module, user-defined set/reset signals should be defined in the source HDL.

A layout of a design with two modules that are reconfigurable (shaded) are shown in Figure 1.

Implementation Flow Overview
Creating a partial reconfiguration design requires the creation and implementation of the
design within a set of specific guidelines. The partial reconfiguration flow utilizes a modified
form of the Xilinx Modular Design process. For more details on modular design, see the
modular design chapter of the Development System Reference Guide.

A general description of the flow is:

1. Design Entry - Write and synthesize HDL code in conformance with partial reconfiguration
guidelines.

2. Initial Budgeting - Design the floorplan, constrain the logic, and create timing constraints for
top-level design and each module.

3. Run Active Implementation (NGDBUILD, MAP, PAR, etc.) for:

Figure 1: Design Layout with Two Reconfigurable Modules

X290_01_032602

Fixed
Logic

PR
Logic

PR
Logic

Fixed
Logic

Fixed
Logic

B
U
S

M
A
C
R
O

B
U
S

M
A
C
R
O

B
U
S

M
A
C
R
O

B
U
S

M
A
C
R
O

Boundaries

Possible I/Os
for

this block

Figure 3.10: Xilinx Bus Macros [170]

The TBUF bus [170, 237], which was presented by Xilinx, is an example how a predictable
control of routing resources of signals that cross module boundaries can be realized. It is also
known as Xilinx Bus Macro and can be applied to Virtex FPGAs as depicted in Figure 3.10.
Using these Bus Macros, the required fixed points are automatically included by the partial
design flow to perform an exact placement and routing of the inter-module signals.

Up to four bits of data can be shared per macro, and the user has to instantiate as many
of these macros as needed to cover all the cross-module signals in his design. The final
size of a bus macro is determined by the number of connected signals. In Figure 3.10 some
bus macros of different sizes are placed between two reconfigurable modules and two fixed
modules on the borders of the design.

Electrical Signal Integrity

The implementation of the Bus Macros is based on tri-state drivers. Due to this, a recon-
figuration will always lead to the state of high impedance on the dedicated tri-states, and
thus keep the signal integrity of those signals, which are created by the remaining circuitry.
Developments that are more recent apply specific gates to assume the tri-state functionality,
which is cheaper by the meaning of hardware costs [236].

43

3 Background & Related Work

Our approach does not replace the necessity for such fixed points between interconnected
modules when they are reconfigured dynamically. Quite the contrary, to cut an established
connection properly at runtime, a tri-state buffer has to be included when using FPGAs.
However, our approach includes automatically all of these fixed points inside the runtime
reconfigurable IFB, and thus they become transparent for the designer.

Reconfiguration Based Communication Gap

Nevertheless, these fixed points bring some restrictions along. In real-time environments, it
is necessary to provide a predictable behavior at runtime for all tasks of the design. This
implies the computational as well as the communication aspect. During the reconfiguration
process of one module, the other modules will remain active, but the communication might
get stuck because of the missing signal source or destination. We call such a break in the
communication protocol a reconfiguration based communication gap. Although the insertion
of fixed points allows us to set all remaining communication lines to high impedance, a
complex behavior cannot be specified. This definitely violates the requirements of many
real-time protocols.

3.3.2 Communication in Reconfigurable Architectures

In the literature, we can find three classes of communication architectures that support the
inter-module communication and avoid the overhead of a full reconfiguration:

Communication via third (Processor or dedicated I/O module) This approach has been
proposed by Brebner and Walder et al. The communication is performed via a third
(CPU in [67] and dedicated I/O module in [225, 247]), which offers an I/O buffer for
the modules. To communicate, the sender has to copy the message into its send-buffer
inside the CPU. Periodically, the CPU transfers all incoming messages into the receive-
buffer of the destination modules. This procedure increases the communication costs
and allows only a sequentialized communication through both buffers.

On-Chip Busses In bus based communication architectures [147, 67] all modules interact
via a bus system. This requires an arbitration of the bus to guarantee an exclusive
access of the device. The serialization of the communication that results from the
bus arbitration is one of the major drawbacks, as modules possibly have to wait for
their bus grant for a long time. Nevertheless, busses represent a cheap communication
architecture.

On-Chip Networks Networks on a Chip (NoC) consist of a set of communication nodes,
which are embedded in a network infrastructure and communicate by sending messages
[84, 56, 143]. In [176, 177] the inter-module communication has been realized by NoC
with nodes of a static size, whereas [60, 61] support nodes of a dynamic size as well.

To implement the bus and NoC based approaches, the FPGA is divided into fix slots of
a non-variable size (slotted architecture), which of course, prevent the free reconfiguration
of the device. The division into slots can lead to a fragmentation of the FPGA as some
modules require less size that one slot provides, while others require the resources of several
slots. The slotted FPGA architecture is explained in detail next.

44

3.3 Reconfigurable Systems

M2 M3

FPGA

Reconfigurable Slots Columns Fixed Part

Fixed
Points

Uniform Module
Interface

Communication
Signals

Module Inter-
connection

M1

Control

Reconfig.
&

Arbitration

Figure 3.11: Slotted FPGA design

Slotted FPGA Architecture

In many cases, existing architectures using partial reconfiguration employ the presented
technical features to compose slot-based FPGA designs as depicted in Figure 3.11. A slotted
FPGA design consists of a set of homogenous slots, which are runtime reconfigurable and
optional fixed parts. The fixed parts usually implement the FPGA internal control in the
form of FSMs which are used to arbitrate the SoC bus, to control the (self-) reconfiguration,
or to perform other module independent computation. Each reconfigurable slot provides a
dynamic container that accepts modules which have been created for this type of slot. Next
to the dimension – in our case the number of columns – it is necessary that each slot and thus,
each module, consists of a uniform module interface, including a compliant communication
protocol, to fulfill the first condition for module reconfiguration. The required fixed points
have to be part of this interface. The published approaches of this domain employ either
standardized or proprietary bus or network interfaces. Two examples for such systems are
given afterwards.

Example 1 : Raptor 2000

The Raptor 2000 is an FPGA board that can hold up to six Xilinx Virtex FPGAs [157].
The approaches presented in [129, 156, 68] utilize the AMBA bus as standard SoC-bus to
interconnect the particular slots. Therefore, each module has to implement the AMBA bus
interface. The AMBA bus arbitration is implemented in a fixed FPGA area.

Example 2 : DyNoC

The DyNoC architecture presented by [60, 61] proposes a Dynamical-Network-on-Chip, con-
sisting of several reconfigurable nodes, which are connected by a network routing structure.
The routing network is able to guide a communication packet to the correct receiver node.
DyNoC works with an proprietary network interface protocol. Therefore, each reconfigurable
node has to satisfy the DyNoC interface standard.

45

3 Background & Related Work

= PE = Network logic = Network = Local wires

M2

M1
M4

M3

Abbildung 2: Beispiel einer Konfigurationsgeometrie mit zweidimensionaler Modulanordnung
und gitterartigen Kommunikationsstruktur. Gezeigt ist eine Realisierung des von uns entwickel-
ten paketbasierten DyNoC-Prinzips: Module (M1 bis M4) können mehrere Gitterzellen belegen
(“PE”), die Kommunikation erfolgt über ein gitterförmiges Netwerk (“Network”); Routing und
Modulanschluss erfolgt an den Netzwerkknoten (“Network logic”) [BMK+04].

M3M2

Switches

M5M4M1
M4M3

RMB
Switch

RMB
Switch

RMB
Switch

RMB
Switch

RMB
Switch

Bus-Makros

M1 M5

FPGA

M2

Abbildung 3: Beispiel einer RMB-Architektur,
bei der gleichzeitig Modul M1 mit Modul M4
und Modul M2 mit Modul M5 kommunizieren

Abbildung 4: Umsetzung der RMB-
Architektur in einem Xilinx FPGA. Ko-
stenanalysen des Flächenoverheads in
Abhängigkeit von Bitbreiten, Modul- und
Segmentzahl werden in [ADBT04] beschrie-
ben.

delle als die freie zweidimensionale Platzierung zu betrachten. Dabei ist es wichtig, gleichzeitig
mit der Geometrie der Platzierung auch die Kommunikationsstrukturen zu modellieren, da diese
bei den Fragestellungen sehr stark interagieren. Die Intermodulkommunikation wurde bisher in
allen bekannten Ansätzen ignoriert!

Wie wir im Folgenden darstellen werden, lässt sich bei genauerer Betrachtung, vor allem durch
die Möglichkeiten praktischer Realisierung motiviert, eine genaue Unterteilung erarbeiten. Die
dargestellten Untersuchungen zur rekonfigurierbaren Geometrie bilden die Grundlage unserer
weitergehenden Entwicklungsvorhaben, die wir im Einzelnen im Abschnitt 3 beschreiben werden.

Geometrie von Chips, Modulen, Tasks, Rekonfigurationen: Ausgehend von der Vorstel-
lung eines frei konfigurierbaren zweidimensionalen Feldes gleichartiger Zellen ist uns eine Reihe
von Fortschritten gelungen, die wir auch in den kommenden Abschnitten darstellen werden.

6

Figure 3.12: DyNoC structure [60]

= PE = Network logic = Network = Local wires

M2

M1
M4

M3

Abbildung 2: Beispiel einer Konfigurationsgeometrie mit zweidimensionaler Modulanordnung
und gitterartigen Kommunikationsstruktur. Gezeigt ist eine Realisierung des von uns entwickel-
ten paketbasierten DyNoC-Prinzips: Module (M1 bis M4) können mehrere Gitterzellen belegen
(“PE”), die Kommunikation erfolgt über ein gitterförmiges Netwerk (“Network”); Routing und
Modulanschluss erfolgt an den Netzwerkknoten (“Network logic”) [BMK+04].

M3M2

Switches

M5M4M1
M4M3

RMB
Switch

RMB
Switch

RMB
Switch

RMB
Switch

RMB
Switch

Bus-Makros

M1 M5

FPGA

M2

Abbildung 3: Beispiel einer RMB-Architektur,
bei der gleichzeitig Modul M1 mit Modul M4
und Modul M2 mit Modul M5 kommunizieren

Abbildung 4: Umsetzung der RMB-
Architektur in einem Xilinx FPGA. Ko-
stenanalysen des Flächenoverheads in
Abhängigkeit von Bitbreiten, Modul- und
Segmentzahl werden in [ADBT04] beschrie-
ben.

delle als die freie zweidimensionale Platzierung zu betrachten. Dabei ist es wichtig, gleichzeitig
mit der Geometrie der Platzierung auch die Kommunikationsstrukturen zu modellieren, da diese
bei den Fragestellungen sehr stark interagieren. Die Intermodulkommunikation wurde bisher in
allen bekannten Ansätzen ignoriert!

Wie wir im Folgenden darstellen werden, lässt sich bei genauerer Betrachtung, vor allem durch
die Möglichkeiten praktischer Realisierung motiviert, eine genaue Unterteilung erarbeiten. Die
dargestellten Untersuchungen zur rekonfigurierbaren Geometrie bilden die Grundlage unserer
weitergehenden Entwicklungsvorhaben, die wir im Einzelnen im Abschnitt 3 beschreiben werden.

Geometrie von Chips, Modulen, Tasks, Rekonfigurationen: Ausgehend von der Vorstel-
lung eines frei konfigurierbaren zweidimensionalen Feldes gleichartiger Zellen ist uns eine Reihe
von Fortschritten gelungen, die wir auch in den kommenden Abschnitten darstellen werden.

6

Figure 3.13: DyNoC implementation [60]

Figure 3.12 depicts a configuration geometry with a two-dimensional module placement and
a communication network realized as mesh. Each module (M1 to M4) may occupy several
Processing Elements (PE). The communication is carried out via the edges of the meshed
network structure while the routing takes place in the network nodes (network logic) [63].

A possible implementation of the DyNoC architecture on a Xilinx FPGA is presented in
Figure 3.13 which has been created by mapping the two-dimensional meshed network to a
one dimensional slotted architecture (as depicted in Figure 3.11). A cost analysis of the
required chip area in dependency of the bus width, including the amount modules and the
number of segments is given in [41].

3.3.3 How to Avoid the Communication Gap?

Even if the electrical and the signal routing problems are solved by the synergy of modern
technology and EDA tools, the challenge of the reconfiguration based communication gap re-
mains unsolved in general. However, in real-time systems we require deterministic behavior.
Therefore, the published approaches have developed strategies to avoid the reconfiguration
based communication gap. We can classify these strategies into four categories:

Reconfiguration Time Hiding

Designs of this category do not access affected signals during the reconfiguration process.
We can often find this solution in embedded controller implementations, since they own such
a low sample frequency that the reconfiguration can be performed completely between two
samples [87, 86]. In this way, the reconfiguration time is hidden by the sampling rate.

Another strategy to hide the reconfiguration time results from applying the concept of
pipelining [5, 212, 211, 71]. If the reconfiguration phase becomes an independent stage
inside the pipelined execution, it can be completely hidden, as long as the reconfiguration
time is not dominating and thus, does not determine the pipeline clock. Signals related to
the exchanged stage, which is actually “processed” in the reconfiguration stage, may not be
accessed.

46

3.3 Reconfigurable Systems

Context Switching

In this case, the architecture is not really reconfigured! Both the old and the new contexts
are already physically established and a reconfiguration in this category just means switching
between both contexts, which could be done by a simple multiplexer. Since the switching
process is performed within a single clock cycle, we do not obtain any communication gap.

Redundancy

Redundant systems offer the opportunity to reconfigure one instance while the other instance
keeps running. After the reconfiguration is finished, the instances have to be switched, as
discussed previously. This category allows us to apply the complete reconfiguration, which
is important when FPGAs of vendors other than Xilinx (e. g., Altera or Atmel) are used.

It is a necessary condition that the redundancy has to be greater than or equal to the quotient
of the reconfiguration time to the computation time. If, for example, the reconfiguration
time would be 3 ns and the computation would add up to only 1 ns, the design requires at
least a three times redundant architecture if all devices work fully parallel and in a cyclic
manner. Another drawback of redundant systems is that the current state and the computed
results of all modules, even those inside unchanged slots, have to be transferred from the
current device to that one which continues with the computation.

Reconfiguration Time Agnostic

Approaches that belong to this category do not care for the reconfiguration time. The
applications of this class are not applicable to real-time or fail-critical systems, since we
have to assume a break of the communication protocol, e. g., a deadlock in the protocol
FSM or the loss or falsification of data, which could cause the complete system to crash.

Conclusion

We have seen that we do not have to care explicitly for electrical effects in matters of reconfig-
uration. The device vendors offer solutions to handle the interconnection of communication
signals, for example, the Bus Macros in the case of Xilinx Virtex FPGAs. Further on, the
mapping and routing for sharing I/O signals between several modules is supported by the
synthesis tools.

We have presented four strategies on how actual designs cope with the communication
gap. To ignore the reconfiguration time in a reconfigurable embedded real-time system is
completely out of the question. In special scenarios, the reconfiguration time can be hidden,
for example, as additional stage in pipelined architectures. If there is enough area available
on the device, all contexts can be implemented in parallel and a simple reconfiguration-
context switch may solve the problem. The same is true if we possess sufficient redundancy
in our architecture and the device synchronization is no handicap. In whichever scenario
the particular methodologies may perform well, neither of the approaches offers a solution
to treat the reconfiguration based communication gap in general.

Based on the partial reconfigurability, our approach allows us to execute an a-priori defined
behavior during the reconfiguration of interconnected blocks. In this way the design works
deterministically all the time. The IFB architecture and the reconfiguration process that we
developed to cope with this challenge is precisely explained in Chapter 6.

47

3 Background & Related Work

3.4 Dedicated Interface Synthesis Approaches

The third section of background information and related work is dedicated to the synthesis
of interface adapters. This field of research is embedded in the protocol-engineering domain
[172, 161] as depicted in Figure 3.14. Protocols are either modeled in the form of service
specifications or directly as protocol specifications. To process a service specification, it has
to be transformed into a protocol specification by a protocol synthesis. The final protocol
implementation (executable protocol) is then created by a further synthesis step. Ideally,
this final implementation step is performed fully automated. Protocol-engineering employs
four kinds of operations on protocol specifications:

Validation / Verification Protocol validation - and verification methods are used to ensure
the functional correctness of protocol specifications and allow us to proof if all timing
constraints are met. Further on, it helps to find deadlocks and synchronization faults.
While validation methods are based on tests – in [30] we present a probability-based
testing method – verification utilizes formal methods, i. e., model checking.

Conversion / Internetworking The aspect conversion / internetworking handles the inter-
connection of interacting communication partners for SoC as well as for heterogeneous
distributed environments. Whenever we have to cope with the adaptation of incom-
patible protocols, we apply interface synthesis techniques for the protocol conversion.

Performance Analysis Based on the performance analysis we are able to measure values
like throughput, redundancy, latency, response time, failure sensitivity, etc. These
metrics make protocols comparable between each other, enable us to fine tune, and
select them for dedicated fields of applications.

Conformance Testing In addition to the other services, the conformance testing is applied
to proof if a generated protocol has been created consistent with the protocol specifica-
tion. Equivalence checking is one formal method to proof the conformance of protocol
implementation and protocol specification.

Service
Specification

Synthesis

Automatic
Implementation

Protocol
Specification

Validation /
Verification

Conversioning /
Interworking

Performance
Analysis

Conformance
Testing

1

1

1

1

Protocol
Implementation

Figure 3.14: Survey of Protocol-Engineering [172]

48

3.4 Dedicated Interface Synthesis Approaches

This thesis is related to the protocol-engineering operation Conversion / Internetworking in
combination with the automatic implementation of the interface adapter implementation.
Thereby, the interface descriptions of the adapted components, which are by our definition
an interface model including the communication protocol, have to be available as input for
our synthesis algorithms.

It is important to note, that we strictly differentiate between the terms interface adapter and
interface, even though the term interface is often used as synonym for interface adapter in the
literature. An interface is an integral part of a communication component while an interface
adapter is a self-containing entity that interconnects interfaces. Due to the ambiguity of the
term interface, existing interface synthesis approaches cover the construction of component
interfaces as well as the synthesis of self-containing protocol adapters.

Systematic Protocol Construction vs. Protocol Wrapping/Adaptation

The systematic construction or modification of (component) interfaces is one possibility for
composing interacting communication systems. Therefore, partially modeled protocols are
extended or additional interfaces are created, from the information provided by a number
of completely designed protocols, to integrate further components. The protocol translation
is directly integrated into the interfaces and becomes an inextricable part of the protocol.
This kind of communication synthesis is applicable only to user-defined designs, since the
interfaces and therewith the components have to be modified. To create or extend interfaces
in this way, we require an insight into the component’s white box model.

In the case of IP based design, interfaces are fixed and cannot (or may not) be modified.
Here, the available interface information is applied to create wrapper or adapter modules
that interoperate between the interacting components. The operation of adapter or wrapper
modules is performed transparently for the interconnected interfaces and gets by with the
information of the component’s black box model.

On one hand, it is more efficient to implement the protocol translation directly inside the
interfaces by means of implementation resources and latency, as no additional translation
entity has to be added. On the other hand, the transparency of the adapter/wrapper
solutions does not necessitate the intervention into components. To construct interacting
interfaces we can either utilize analytic or synthetic protocol synthesis steps [200]; while the
creation of adapter modules is restricted to analytical methods, which create the protocol
translation by an analysis of the information delivered by the interconnected interfaces.

Protocol Translation Paradigms

Independent of the realization as stand-alone adapter or the integrated version, the protocol
translation paradigm plays an important role. We distinguish between two methodologies:
the one is based on product automata while the other applies the Input - Processing -Output
(I - P - O) concept. Approaches related to the first class construct an optimized transla-
tion automaton that is a minimized version of the product automaton. The second class
subdivides the process of protocol translation into three consecutive processing steps and
thus avoids the complexity problem of a state explosion that the product automata impli-
cates. Therefore, the separated processing steps have to communicate with each other to
synchronize and exchange data, which also implies an overhead.

49

3 Background & Related Work

Hardware vs. Software Interface Adaptation

Analog to the description of interfaces we have to distinguish between interface synthesis
approaches for hardware, software, and hardware/software interfaces. The adaptation of
software is usually performed by specific middleware solutions that establish the interaction
of communication APIs represented by functions or public object methods.

On the hardware side, dedicated translation circuits implementing control and data path
are created. A common technique of adapting software APIs to hardware interfaces is to
synthesize customized drivers that become part of the communication middleware or are
directly integrated into the operating system. Next to API based communication, memory
mapped I/O has to be considered for Hw/Sw interface as presented in Chapter 2.

3.4.1 Interface Synthesis for Communication APIs (SW/SW)

The API based interface synthesis is not the focus of this work, therefore we won’t go into
detail here. Just to convey the idea of the most relevant approach in the object-oriented
domain, we introduce CORBA.

CORBA

The Common Object Request Broker Architecture (CORBA) is an open distributed object
computing infrastructure standardized by the Object Management Group (OMG). It defines
APIs, protocols, and object/service information models to enable heterogeneous applications
written in various languages, and running on various platforms to interoperate.

The OMG defines interfaces as follows [191]: “An interface is a description of a set of possible
operations that a client may request of an object, through that interface. It provides a
syntactic description of how a service, provided by an object supporting this interface, is
accessed via this set of operations. An object satisfies an interface if it provides its service
through the operations of the interface according to the specification of the operations”.

In a general sense CORBA “wraps” code written in some language into a bundle containing
additional information on the capabilities of the code inside, and how to call it. The resulting
wrapped objects can then be called from other programs (or CORBA objects) over the
network. In this sense, CORBA can be considered as a machine-readable documentation
format, similar to a header file but with considerably more information.

CORBA uses an interface definition language, the OMG IDL, to specify object interfaces
[191]. It then specifies a “mapping” from the IDL to specific implementation languages like
C++ or Java. This mapping precisely describes how the CORBA data types are to be used
in both client and server implementations. Standard mappings exist for Ada, C, C++, Lisp,
Smalltalk, Java, and Python.

To communicate, CORBA applies the abstract General Inter-ORB Protocol (GIOP) [196].
The IIOP (Internet Inter-Orb Protocol), for example, is a concrete implementation of the
GIOP for TCP/IP. To connect to CORBA each object has to implement the GIOP itself.
Therefore, a fully transparent adaptation of software components is not possible. For this
reason, CORBA cannot be directly used to adapt COTS (Commercial Off-The-Shelf), which
do not already implement the CORBA standard.

50

3.4 Dedicated Interface Synthesis Approaches

3.4.2 Systematic Protocol Construction Approaches (HW/HW)

Early work on the analysis and synthesis of protocols has been published by [251]. From the
mid 80th to the mid 90th the interface synthesis domain was very popular and thus, many
publications can be found in literature related to this period.

Interface Synthesis Classification Tree

Probert and Saleh classify relevant interface synthesis approaches for the systematic protocol
construction published in this period in [200] and [207]. One result of this work is the
interface synthesis classification tree (depicted in Figure 3.15) that distinguishes between
Service Oriented and Non-Service Oriented methodologies.

A service oriented method that synthesizes protocol specifications from service specifications Chu
was presented by Chu et al. [77]. The services are modeled as FSMs that describe the
interleaving of the interactions at two service access points (SAP). A synthesis algorithm
transforms this specification into two closely synchronized protocol machines, which interact
via a reliable communication channel.

Another service oriented approach modeling services as interaction of SAPs was proposed Merlin,
v. Boch-
mann

by v.Bochmann et al. [245, 243]. The required service specifications are described by a
subset of LOTOS operations [231]. A syntactic tree representation of this specification is
automatically processed into protocol entities using a set of production rules. A mixed
method described by v.Bochmann and Merlin in [183], starts from a given service definition
and the specification of all but one of the protocol entities, then synthesizes the missing
entity. Therefore, a tightly coupled interaction model is used that defines the sending and
the subsequent receiving of a message as an atomic operation without a delay. More recent
work of v. Bochmann handles the synthesis of complete communication systems [244].

In [208] a set of distributed services specified by FSMs is mapped to a number of given SAPs. Probert,
SalehWith the help of transition synthesis rules, FSM based protocol specifications are composed

of message transmissions and receptions. These rules are service primitives customized by
the direction, the temporal order, and the structure of the given service specification.

Non-service oriented methods start from partial or complete protocol descriptions as men-
tioned before and perform an automated or interactive synthesis based on FSMs.

Synthesis Methods

Service Oriented Non-service Oriented

FSM based LOTOS based FSM based

Automatic Interactive

Figure 3.15: Interface synthesis classification tree [200]

51

3 Background & Related Work

Zhang et al. propose an interactive synthesis method to create interfaces that communicateZhang
via FIFO channels [252]. Based on a set of production rules, the synthesis algorithm creates
the global state transition graph of the protocol to be synthesized and then produces the
protocol by decomposing this graph into two communicating FSMs.

Similarly, Zafiropulo et al. [251] present an interface synthesis based on production rulesZafi-
using FIFO channels. Every time a designer adds transitions to one protocol, a tracking al-ropulo
gorithm extends the interacting FSM by a complementary transition. After each design step,
the application of the production rules is evaluated. In this way, properties like deadlocks,
incompleteness, and the ambiguity of particular states can be detected.

Another approach with an integrated protocol translation and including a FIFO channel hasGouda
been published by Gouda et al. in [127]. Two interacting FSMs M’ and N’ are created by
an algorithm called “machine synthesis algorithm” from the incomplete FSM specification
M. A second algorithm, the “channel capacity algorithm”determines the required size of the
FIFO between M’ and N’. Due to synchronization problems in states that write and read as
well, data can be lost, as the FIFO content is discarded as part of the resynchronization.

A communication using two reliable unidirectional channels between a local given entity andRama-
moorthy an automatically generated peer entity has been proposed by Ramamoorthy et al. in [201].

Therefore, a Perti Net model of the local entity is translated into an FSM representation.
Based on six transformation rules, the peer entity is constructed including a set of fixed
communication patterns. To be able to apply Petri Net analysis techniques, the peer entity
is then translated into a Petri Net representation.

Kakuda et al. presented a component based synthesis algorithm using process interactionKakuda
diagrams [154, 155]. In their concept, each component represents a protocol specification
primitive consisting of a pair of fundamental process behavior diagrams. Inputs of the proto-
col synthesis are process interaction diagrams. Starting from these diagrams, the protocols
are synthesized by combining the previously modeled components.

The presented approaches differ clearly from our methodology as we propose a protocol
translation in the form of an interface adapter. We decided on the adapter solution to allow
the direct adaptation of IPs and thus, to support a system composition exclusively based
on IP components. Approaches that handle the translation based on wrapper or adapter
modules are discussed afterwards.

3.4.3 Protocol Wrapping/Adaptation Approaches (HW/HW)

Two approaches using wrappers for the adaptation of VCs and IPs are VSIA’s OCB VCI
standard and SpecC. VSIA specifies the adaptation of Virtual Component Interfaces (VCI)VSIA –
within the On-Chip Bus Virtual Component Interface (OCB VCI) standard [106]. To in-OCB VCI
terconnect two virtual components one master wrapper and one slave wrapper are created
for the VCIs. The data between the two wrapper modules is transmitted over an on-Chip
bus (OCB) of the SoC integrator’s choice. VCIs are classified into Peripheral VCIs (PVCI),
Basic VCIs (BVCI), and Advanced VCIs (AVCI), which allow us to model interfaces of
an increasing complexity. Protocols between initiator (master wrapper) and target (slave
wrapper) are composed of simple request and response messages. The protocol translation
is performed by wrapping both protocols to the shared bus protocol. A disadvantage of the
OCB VCI is that it is not automated and the translation has to be implemented by hand.

52

3.4 Dedicated Interface Synthesis Approaches

Like OCB VCI, SpecC allows the integration of incompatible IPs, by the use of hand written Gajski,
Dömer –
SpecC

wrappers [95, 96, 98], to translate the communication protocols specified by bus functions
(as depicted in Figure 3.9). Alternatively, the protocol translation can be implemented by
user defined adapter modules. The wrapper/adapter modules have to be written in the
SpecC language and become part of the SpecC synthesis flow. An automated generation of
the wrapper/adapter modules is not offered by the SpecC approach [218, 94].

Another approach taken by Gajski et al. [185, 184] proposes to reduce protocol specifications Gajski
to the combination of five basic operations (data read/write, control read/write, time delay).
The protocol description is then broken into blocks (called relations) whose execution is
guarded by a condition on one of the control wires or by a time delay. Finally, the relations
of the two protocols are matched into sets that transfer the same amount of data. Although
this algorithm is able to account for data width mismatch between the two modules, the
procedural specification of the protocols makes it difficult to adapt different data sequencing,
so that only the synchronization problem is solved. The concept was extended to IP based
design in [217] and an automatic communication refinement for system level design in [39].

A different work is that of Boriello [66, 65], who introduces the “event graph” to establish Boriello
the correct synchronization of data sequencing. The limitation of this approach is that the
two protocols should be made compatible by manually assigning labels to the data on both
sides, since the specification of the protocols is given at a very low-level of abstraction using
waveforms. Jane Sun [227] extends the approach by providing a library of components that
frees the user from considering low-level details, but does not solve the mentioned problems.

Akella and McMillan presented an approach, which assumes a pair of interacting protocols Akella,
Mc Millanto be given, modeled in the form of two deterministic finite state machines, while a third

FSM represents the valid transfer of data [43]. The product machine is taken and pruned
of the invalid/useless states. The limitation here is that no data width mismatch can be
handled and that the designer must manually enter the intended behavior of the interface
in the form of the third FSM (called the C-machine).

Similar to Akella and McMillan, Passerone developed a protocol adapter that automatically Passerone
resolves the correspondence between pieces of data of two interacting components. The
adapter can translate between different sequencing of the data. It is created in the form
of a deterministic FSM in combination with a simple data path from regular expressions
based on the automata theory presented in [146]. The synthesis algorithm of the communi-
cation protocol applies a grammar-based specification similar to the one presented in [188].
The effectiveness of protocol intensive specifications based on grammars has been shown in
[214]. However, the approach considers only point-to-point connections and assumes the
two communicating parties to be driven by the same clock (synchronous communication),
a limitation that is not present in [185] and in [66]. Both sides apply the same data types
without an understanding of the concrete data semantics. The translated data is interpreted
as strings of bits, therefore the number of sent bits has to be identical to the number of bits
received. Therefore, the context sensitive translation of data is impossible.

Müller and Siegmund presented a SystemC based specification for protocols [220]. From Müller,
Siegmundthis specification a deterministic interface adapter FSM is generated [222, 221]. In order to

avoid a consideration of the complete product FSM, an architecture template is introduced.
For the resulting interface adapter FSM, VHDL code is generated as input for a low-level
synthesis [219].

53

3 Background & Related Work

In [205] Interface Based design was proposed as a methodology that attempts to orthogo-Sangiovanni
nalize the communication and the behavior of IPs. Therefore, IP blocks are abstracted toVincentelli
a transition or messaging level. In this abstract view, complex blocks exchange messages
using a robust user-defined type system rather than using complex signaling conventions
based on conventional wires.

The abstracted communication leads to an improvement in the simulation performance
comparable to the approach presented in [120, 218] by Dömer and Gajski. However, this
abstract level is not sufficient for the automated implementation of the protocol translation.
One solution to get to the final implementation is the stepwise refine of the protocols down
to a pin- and cycle-accurate bus functional model.

The interface synthesis algorithm presented in [224] can be used to generate a cycle-accurate,De Micheli –
synchronous interface between two hardware subsystems, given an HDL model of each sub-POLARIS
system. The algorithm has been implemented in the POLARIS hardware composition tool.
An interface adapter provides a FIFO-In and a FIFO-Out queue for each connected compo-
nent (data path) in combination with a state machine (control path), which is responsible
for the arbitration of the message exchange. The translation is performed by a central state
machine that is created by the synthesis algorithm analyzing the HDL input.

The presented work on POLARIS focuses on generating a low-level, synthesizable description
of synchronous interface adapters between hardware components. Similarly, [76] describes
a mechanism for creating the glue logic between two hardware components, but requires a
functional description of component ports.

3.4.4 Adaptation of Hardware Software Interfaces (HW/SW)

Next to the presented approaches for hardware and software, the interface synthesis has
become an important research area in the hardware/software codesign domain as well. One
approach, specialized on programmable devices, has been published by Eisenring & Teich
in [107]. Knudsen & Madsen developed a communication estimation model and show, by
the use of this model, the importance of integrating communication protocol selection with
hardware/software partitioning [163]. Another research aspect focuses on the optimization
of high-level communication between subsystems given a set of communication constraints
as published by Ernst et al. in [109].

Interface modeling languages, such as that developed by Öberg et al. [188], allow a designer
to explore a interface design space and generate a synthesizable description of the interface.
Rosenstiel et al. [204, 133] describe a methodology for modeling an interface with a behav-
ioral description suitable for high-level synthesis. Other interface synthesis research, such as
that performed in [119] by Glesner, has investigated specifying and scheduling communica-
tion between hardware and software subsystems.

The Chinook approach extends the commonly used concept of device drivers to include theBoriello –
bus interface as well [248]. The driver/interface is described in a timing diagram descriptionChinook
that captures both the behavior and timing constraints for the interface. The description
is synthesized into low-level software code that accesses the device via the ports of a micro
controller together with the required glue-logic. The synthesis procedure tries to find the
cheapest implementation (smallest amount of hardware) regarding both timing and resource
constraints.

54

3.4 Dedicated Interface Synthesis Approaches

In their later work, Ortega et al. expand the approach to communication synthesis for Ortega
a distributed system [198, 197, 76, 75]. Input to the system is a behavioral description
consisting of communication processes. The processes communicate with each other via
messages sent through ports connected by channels. All communication is broadcast type
that is one to many unidirectional.

For each output port, the designer selects a high-level abstract protocol, that is, blocking
or non-blocking, along with a deadline constraint. For each input port, the designer se-
lects the appropriate queuing semantics. The designer also defines a system architecture
that consists of heterogeneous processors connected by standard bus protocols (for exam-
ple, TTP [166, 165]). Processes and communication channels are then mapped onto the
selected architecture. The system then generates the communication interfaces. If there is
no direct connection between two communicating processes, intermediate hop processes are
automatically inserted to route a message from one bus to another bus. For each processor,
a customized real-time operating system is generated that includes a real-time scheduler, a
message routing process, and device drivers.

A further approach for the hardware/software interface synthesis was presented in [193] O’Nils
that ranges from the specification to implementation and the validation of hardware/soft-
ware interface protocols. O’Nils models the information that is required for the automated
interface synthesis in the form of grammar-based protocol specifications, information about
the processor, and information related to the operating system. A synthesis tool allows us
to generate device driver functions, a combination of device driver functions, and a DMA
controller or simulation models. The approach includes a design space exploration with the
combination of a processor, operating systems, and protocols.

A methodology published by Oppenheimer & Nebel allows the automated synthesis of shared Nebel,
Oppen-
heimer

memory for the communication of hardware and software via memory mapped I/O [194].
As input for the synthesis algorithm, it is necessary to specify the communication registers
in every detail. The approach proposes to model hardware/software interfaces in an XML-
based interface description language called COMIX [195]. The abstract and target language
independent modeling technique based on COMIX is intended to improve the designer’s
productivity and the systems reliability through reuse and automatically generated target
code. A tool architecture named COHSID has been implemented to generate software device
drivers and hardware I/O components automatically from a COMIX specification.

CoWare is a commercialized codesign environment that addresses interface synthesis for CoWare
hardware/software communication. CoWare targets at the simulation and the design of
heterogeneous DSP systems. Supported input languages include SystemC, VHDL, Verilog,
and C. In CoWare, interprocess communication is done with point-to-point communication
channels.

The communication semantics is based on the concept of rendezvous channel communication
via send/receive operations. Hardware/software communication channels are mapped onto
a fixed architecture. This architecture is based on several library models. For software, the
communication is captured as parameterized C functions that are mapped onto a software
model, that is, they adapt to processor specific I/O handling, interrupt handling, etc. For
hardware, a hardware interface cell is generated to connect via a handshake protocol to an
I/O control unit. This I/O control unit is a link between the processor and the handshake
protocol.

55

3 Background & Related Work

3.5 Summary

In the last section, we introduced the protocol-engineering domain. The interface synthesis
is a sub-domain that covers the two aspects protocol conversion and automated synthesis
of the protocol implementation. As stated in the introduction, these aspects are also major
challenges of this thesis. Another technique of the protocol-engineering domain with a direct
relation to our work is the conformance testing, which is used to validate the final protocol
implementation. We do not have to cope with this challenge as we ensure the correctness of
our implementation by a completely automated synthesis without any user interaction.

Furthermore, we introduced the Interface Synthesis Classification Tree. It distinguishes
between service orient approaches, which have to be synthesized into a protocol description
before they can be further processed, and the non-service oriented ones, which directly start
from the protocol description. The approach presented in this thesis belongs to the second
class, since the modeling phase provides the interface synthesis with a specific protocol
description.

We have seen two alternatives on where to implement the protocol translation. On one hand,
systematic protocol construction techniques are applied to extend component interfaces by
the required communication parts; on the other hand, protocol wrapper or adapter modules
offer a self-contained protocol translation. While the first method requires a direct interven-
tion into the interacting components, the second method also supports black box models,
and thus the integration of IPs. Nevertheless, the systematic protocol construction allows
implementations that are more efficient by the meaning of implementation resources and
latency compared to wrapper and adapter modules.

One metric for the classification of protocol adapters is the protocol translation paradigm,
which can be based on I - P - O or an optimized version of the product automata. The second
method is mostly applied in the case of FSM or grammar based approaches. Here, the main
goal is to avoid a state explosion by creating a minimal state machine that translates between
the communicating partners. The I - P -O concept avoids this problem by nature and is used
in scenarios that are more complex. Therefore, the I - P - O scheme implies an additional
implementation overhead concerning internal synchronization and communication.

We introduced several approaches related to hardware and/or software interfaces to sum-
marize the most relevant related work and the current state of the art in interface synthesis.
As we have seen, the adaptation of interfaces has been continuously explored during the
last decades. By contrast, reconfiguration is a quite recent paradigm to the computing
domain which has become very popular within the last years, and not only through the
advances in reconfigurable platforms. Newly developed reconfigurable computing concepts
need adequate methodologies to support the automated interface synthesis in reconfigurable
embedded systems. This implies the automation to create executable code for reconfigurable
architectures as well as the use of modern modeling languages like UML 2.0.

Obviously, the reconfiguration of system functionality requires the ability to adapt exchanged
modules. Even if these modules are compatible by their interfaces, there remains the need
for a deterministic behavior during the reconfiguration process in order to avoid commu-
nication gaps. We lack a combination of interface synthesis and reconfiguration concepts
with an automated tool support. By our state of knowledge, there exists no approach in the
literature, comparable to ours, that combines all three aspects.

56

3.5 Summary

3.5.1 Interface Synthesis Requirements Specification

As contribution to the state of the art, we propose an innovative methodology that allows
us to perform a deterministic and transparent reconfiguration of tasks at runtime due to the
synergy of interface synthesis concepts and reconfiguration techniques. As first approach in
the interface synthesis/reconfiguration domain, we present an integrated high level synthesis
design flow from UML2.0 down to synthesizable VHDL.

With respect to the delivered background information we can now specify the requirements
for our Interface Synthesis Design Flow and the Interface Block:

Design Flow Requirements

• Integrated design flow to create the Interface Block

– Provide an abstract and intuitive modeling

– Maximize the degree of automation

• Combine interface synthesis with runtime reconfiguration techniques

In this thesis, we present an interface-centered design methodology embedded into an inte-
grated design flow, including the automated synthesis of the Interface Block. We selected
UML 2.0 as the modeling language to provide an abstract and intuitive interface to the
designer. As we propose a scenario-based protocol translation, a mapping of the adapted
interfaces has to be provided for each synthesis process. Aside from this user interaction,
the interface synthesis process works completely automated.

Interface Synthesis Requirements

• Interconnect multiple hardware/software tasks/media with incompatible protocols

• Interface adaptation

– Self-containing and transparent protocol adapter

– I - P - O based protocol translation

– Protocol adapter implementable in hardware and software

– Handle synchronous and asynchronous communication

• Scenario-based protocol translation

While many approaches are restricted to point-to-point and master/slave communication,
our approach supports the adaptation of multiple components including duplex traffic. De-
pending on the execution platform and the applied code generation, synchronous and/or
asynchronous communication can be processed, while both variants can be expressed in our
models. The self-containing Interface Block works completely transparent and requires no
interaction with component internal signals.

Our interface adapter model applies the I - P -O paradigm for the protocol translation. To
process the transmitted data, a set of interacting FSMs is generated from the given protocol
description and the current data mapping. Thereby, our protocol description is comparable
to the one presented in [217] by Gajski et al., which also applies the I - P -O scheme but
provides no data transformation; the data is just passed through in a customized queue.

57

3 Background & Related Work

Next to signal based HW/HW interfaces, the presented approach is allows the adaptation of
SW/SW and HW/SW interfaces based on memory mapped I/O. Considering function-based
communication including the creation of dedicated device drivers is out of the scope of this
work, but is part of our ongoing research.

We distinguish between the IFB model and a specific IFB implementation. The IFB model
has been designed to be as general as possible to support hardware, as well as software in-
terfaces. The IFB implementation presented in this thesis proposes a hardware construction
pattern on the RT-level (Register Transfer level) – the IFB Hardware Template – optimized
for the adaptation of several hardware interfaces, including memory mapped I/O. As the
implementation of an IFB varies due to the applied programming paradigms, the precise
evaluation of an IFB is highly dependable on the concrete implementation model.

Reconfiguration Requirements

• Support coarse-grained reconfiguration of the IFB to

– Allow the predictable and transparent reconfiguration of tasks and media

– Guarantee deterministic behavior during reconfiguration

– Bridge communication gaps

• Allow fine-grained reconfiguration of the IFB (reconfigured IFB execution) to

– Optimize the required area of the IFB hardware implementation

To exploit the capacity of runtime reconfiguration we developed a course-grained and a
fine-grained IFB reconfiguration. The course-grained method allows the predictable and
transparent reconfiguration of tasks and media at runtime. This is done by executing a
predefined behavior in relation to the currently reconfigured tasks or media. To perform
a transparent reconfiguration means to exchange affected components without informing or
interrupting the unaffected ones. With the help of the coarse-grained reconfiguration, our
Interface Block allows us to handle communication gaps and thus, to make general use of
runtime reconfiguration in real-time and fail-critical embedded systems.

In the case of the fine-grained IFB reconfiguration, we employ runtime reconfiguration to
perform a reconfigured execution of an Interface Block. The I - P - O scheme naturally leads
to a pipelined data processing. Depending on the interacting protocols, some “stages” of
this pipeline – which can be of the type input, processing, or output – can be idle. In our
approach, only those stages, which currently have to process data, are downloaded to the
reconfigurable hardware device (FPGA) by replacing unused stages on the chip. In this way,
reconfiguration helps to save implementation resources in the form of required chip area and
thus reduces the costs of our Interface Block.

The following Chapter 4 presents our methodology that we developed to fulfill the previously
mentioned requirements. Afterwards, we explain the realization of the integrated design flow
(Chapter 5) and the hardware implementation of the Interface Block (Chapter 6) in detail.

58

CHAPTER 4

Interface Synthesis Methodology

“Divide et impera” (lat., in English: divide and conquer) is a sentence formulated by the
French king Lui XI, or perhaps even by Juilius Caesar. At that time, it described a military
strategy to govern occupied territory. The sentence also represents a well-known strategy
to solve problems in the computer science domain (e. g., in divide-and-conquer algorithms).
In the figurative sense, it means to divide a problem into manageable subproblems, which
can be solved more efficiently than the problem as a whole. Thereby, the solutions of the
particular subproblems are joined to solve the original problem itself. This strategy can be
reapplied recursively down to the level of atomic subproblems.

In Chapter 2 we have defined a communication framework to characterize our approach and
to introduce the fields of application of an IFB. In the following Chapter 3 we offered further
background information including system-level design, abstraction levels, IP-based design,
dynamic reconfiguration, and interface synthesis. Altogether, this information provides the
basis for our Interface Synthesis methodology.

In the first part of this chapter, we apply the divide-and-conquer principle to refine the Inter-
face Synthesis Design Flow, which is a central aspect of the Interface Synthesis methodology,
successively into manageable portions. We explain the partitioning of the design flow into
design phases and design steps. In doing so, we deliver an abstract survey of the particular
phases and figure out their functionality as well as their interaction. We take a closer look
at the syntax and semantics of protocols and discuss our IFS modeling concept with respect
to XML, Jave and UML. A detailed explanation of the Interface Synthesis Design Flow is
subject of Chapter 5.

In the second part of this chapter, we introduce our protocol adapter, the Interface Block
(IFB), which is automatically generated by the Interface Synthesis Design Flow. We present
the IFB Macro-Structure that describes the internal structure of an IFB and explain its
functionality as basis for the Chapters 5 and 6. Based on this, we discuss the pipelined data
processing inside the IFB. Another important aspect is the IFB reconfiguration. Finally, we
highlight the relation of the IFB to the ISO/OSI model and introduce an environment for
real-time communication.

59

4 Interface Synthesis Methodology

4.1 Interface Synthesis Design Flow

The Interface Synthesis Design Flow is an integrated design flow, which was developed to
create transparent adapter modules between the interfaces of interacting tasks 1 comprising
incompatible protocols. The resulting adapter modules are called Interface Block (IFB). The
Interface Block model was designed to support the interconnection of software interfaces as
well as hardware interfaces.

I.

II.

III.

IV.

R
EC

O
N

FIG
U

R
A

TIO
N

INTERFACE SYNTHESIS
DESIGN FLOW

M
O

D
EL

IN
G

SY
N

TH
ES

IS

INTEGRATE
IFB TARGET CODE

GENERATE
IFB MODEL

DESIGN SYSTEM
ARCHITECTURE

INTEGRATED DESIGN FLOW

GENERATE
IFB TARGET CODE

IN
TE

G
R

A
TI

O
N

Figure 4.1: The Interface Synthesis Design Flow

As presented in Figure 4.1, the Interface Synthesis Design Flow implies all necessary design
steps, beginning with an abstract modeling, to create the executable IFB code. Therefore,
the particular design steps of the Interface Synthesis Design Flow (colored in blue) have
to be passed through sequentially. Basically, the flow divides into a modeling phase and a
synthesis phase. The modeling phase consists of only one particular design step, whereas
the synthesis phase is split into two successive design steps. As shown on the bottom of
Figure 4.1, the Interface Synthesis Design Flow is followed by a completing integration phase.

1As stated in Chapter 2 we use the term “task” as synonym for “task and medium” since all propositions
are true for media and tasks. If this is not true in a special case, we will explicitly mention this.

60

4.1 Interface Synthesis Design Flow

4.1.1 Modeling Phase

The modeling phase comprises only one design step, entitled “Design System Architecture”.
It describes an interactive process in which a designer specifies the input for the IFB synthesis
and is based on our modeling concept that we introduce in the next section.

As presented in Section 2.2 the IFS System Architecture has been developed to model
complex communication scenarios optimized for the embedded systems domain. We employ
the System Architecture to describe the communication infrastructure, which is composed of
architecture components and communication components. The components themselves are
treated as black box, only accessible by their interfaces. Based on the interface descriptions
(IFDs) and the target platform descriptions (TPDs), which are related to the communication
components and the architecture components, respectively, the System Architecture covers
nearly all information that is required for the automated synthesis of the IFB.

Protocol-Syntax & Protocol-Semantics

The missing information refers to the mapping of the user-data that is transmitted via
the IFB. If we remember the definition of an IFD, given in Chapter 2, we are able to
model protocols as part of the IFD. This means that we can precisely specify states, state
transitions, and the value of protocol-pins in particular states. This allows us to model the
(packet-) structure of all data and control bits inside a protocol. We call this the protocol
syntax.

Definition 2.8 in Chapter 2 considers SignalValue, UseCase and Direction to be assigned to a
protocol-pin (e. g., incoming data, value ‘unknown’ or outgoing control, value ‘1’). Although
we are able to model the protocol syntax, we cannot model the semantics of particular bits
within the IFD. This aspect differentiates our approach from many others. The decision to
dispense with global semantics for single bits is based on the following reasons:

Approaches that utilize global semantics to map data are reduced to designated scenarios.
Given a scenario that defines a data word ‘a’ inside the two protocols P1 and P2, the data
word ‘a’ can be mapped by its name between P1 and P2. In this case, the data word ‘a’ is
restricted to the current scenario and may own a completely different meaning from a data
word ‘a’ in another scenario using the protocols P3 and P4. If it is necessary, for example,
to interconnect P1 and P3, both specifications would have to be rewritten.

As we divide bits into control- and data bits, one could imagine finding a more general
description for the control bits. For example, a start bit or a CRC field (Cyclic Redundancy
Check) could be labeled in such a way that they were recognized correctly in many different
use-cases. Defining such a characterization for the data bits, which represent the information
of a protocol, would lead to an explosion of the name space. In all those cases, where the
meaning of the data bits depends on a particular combination of two interfaces, a static
description becomes useless.

Let us demonstrate the necessity of a scenario-based data mapping by an example: There
are two toy-trains, one produced by Märklin, the other by Trix. Both train systems provide
a serial interface (RS232) to control the trains. A microprocessor inside the train system
interprets the incoming serial packages to decode the commands, like “stop train 2”.

61

4 Interface Synthesis Methodology

Although Märklin and Trix use the same protocol-syntax, the meaning and thus, the protocol
semantics of the data bits inside the serial packages is completely different. This results not
only from different bit positions inside the data packages, but also from the coding of the
train-control information. On one hand, Trix submits the train address together with the
selected command in a first package. A second package, immediately sent after the first
one, contains the parameters for the selected command. On the other hand, Märklin applies
coded commands, generated by summing up the train address and the current parameter. To
use one controller for both toy-trains, an active data mapping (protocol translation) between
the controller and at least one of the train systems is indispensable.

As we can see, the definition of a semantics for individual data words is useful only in
particular use-cases, which share a common “vocabulary”. In general, we cannot declare
a global protocol-semantics. Thus, an automated protocol translation can be established
at most for either Trix or Märklin. For this reason, it is completely satisfying if an IFD
provides a static specification of the protocol-syntax, which is use-case independent. The
use-case specific information is interactively added during the interface synthesis process.

To support more than the simple routing of data, we omitted traditional models for data
semantics. Instead, we developed the IFD-Mapping to handle the protocol information that
is modeled within the IFDs, which supports even complex mapping algorithms. Therefore,
it employs a mapping language defined by grammar that we present in Chapter 5.

The Level of Abstraction & Hardware/Software Interfaces

The way to model interfaces and the protocol translation are characteristic aspects of each
interface synthesis approach. IFDs and TPDs provide a bit - and cycle-accurate behavior
model. This level of abstraction appears to be rather deep for a high level synthesis approach.
Nevertheless, this detailed information is required to generate the behavior model of the IFB.
The presented“low level”representation ensures the highest degree of freedom in combination
with a maximum degree of optimization for the IFB synthesis process.

As another advantage of the low level IFD representation, we are able to reduce hardware
and software interfaces to a common denominator. We exploited this fact when we explained
the HW/SW interfaces based on memory mapped I/O in Chapter 2. Only due to the low
level of abstraction concerning memory mapped I/O and signal-based communication we
are able to provide a common interface topology for both kinds of communication.

It would be the job of an additional abstraction layer to allow more complex data types, like
integer values or customized std logic vectors, which are often used in hardware description
languages (HDL) as VHDL. This abstraction layer would also have to provide the translation
between an abstract data type and its bit-level representation in both directions.

The idea to apply complex data types is also the first step towards the integration of function
based communication, since the parameters in function calls are either standard or abstract
data types. Thus, each abstract data type (ADT) inside a function call can be expressed
in a bit-accurate representation similar to hardware, if we posses the functionality to switch
between the different abstraction levels. Next to this, the execution semantics of function
calls has to be considered. We do not go into detail here, as this aspect is ongoing research.

The presented interface synthesis currently allows us to design and to create IFBs for
HW/HW interfaces and HW/SW interfaces restricted to memory mapped I/O.

62

4.1 Interface Synthesis Design Flow

Reuse & IP Based Design

To ensure reliability and efficiency in the design and implementation of communication
systems, the reuse of well-tested components is an important technique next to the use of
standardized interfaces and communication protocols. For this reason, the integration and
flexible reuse of IPs became an integral part of system design in the IFS approach. The
Interface Synthesis Design Flow offers an automated interface synthesis for incompatible
IPs, which no longer requires the full understanding of IP internals. Therefore, the inner
functionality of an IP can be kept as a black box model.

The proposed separation of protocol syntax and semantics goes in accordance with the
presented IP integration rules, as we require only use-case independent properties of the
IP interfaces. Similar to user-defined tasks, the automated integration demands only the
IFD. The information on how to map the information, which is exchanged through the IP
interfaces, is added during the IP integration process. In this way, our approach supports
the adaptation of incompatible IPs as part of the design process. Thus, the IFS-Flow is
well suited for the rapid design and evaluation of communication system prototypes using
IP-based design.

4.1.2 Synthesis Phase

In contrast to the modeling process, the synthesis process is mostly automated. To cope
with the complexity of creating an IFB, we have broken up the synthesis phase into the
two design steps “generate IFB model” and “generate IFB target code”. In the first step, we
create a target language independent intermediate representation of the IFB; in the second
step, we generate a target language dependent implementation of the IFB.

Generation of the IFB model

To perform an automated interface synthesis, we have to gather the input for our synthesis
algorithm. Therefore, we select the necessary information from the System Architecture,
which has been composed in the modeling phase. This information comprises a number of
use-case-independent interface descriptions and the target platform description of the chip
which is intended to implement the IFB.

Target Platform : After generating the IFB, the target platform becomes the execution
platform for the IFB implementation. Therefore, the target platform description (TPD)
provides the information, which is required to create the IFB, in such a way that it can be
directly executed on the target device or processed further in the integration phase.

Our synthesis approach considers the number of available resources and clock networks. For
software, resources can be specified as amount of memory; the hardware side uses gates
or gate equivalents as a common unit. The amount of resources allows our synthesis to
determine if the implemented IFB can be placed on the target device. Actually, a dedicated
IFB synthesis for specific resources is out of our scope. The available clock frequency is
essential to estimate if an IFB satisfies the specified timings of the adapted protocols. In
Chapter 2 we already mentioned this point when we introduced the TPD. We have to take
into account that even if we can synthesize an IFB, which satisfies the given timing, it can
be invalidated by a lower level synthesis process within the integration phase. Therefore,
the timing analysis is an essential, but no satisfying criterion, to create an executable IFB.

63

4 Interface Synthesis Methodology

Component Interfaces : Apart from the target platform description, we require an inter-
face description (IFD) of each component interface which we are going to interconnect by the
current IFB. As defined in our communication framework, an IFD is use-case-independent
and thus, a changeless property of each component. It comprises the information about
three aspects: physical structure, electrical properties, and communication protocol.

The communication protocol given inside an IFD describes the task’s interface behavior from
the viewpoint of the task. As defined in Section 2.1.4, we apply a waveform state machine
to represent waveform diagrams including branches in the protocol. This state machine
specifies all I/O signals of the interface, including their directions, modeled from the tasks
point of view.

We employ the IFDs to construct communication stubs inside the Interface Block. A stub
establishes the transparent communication with a task conform to its protocol, i. e., the task
must not recognize that it interacts with the IFB. Therefore the stub pretends with the
task, to be a compliant communication partner. To do so, the created stub operates “com-
plemented” with the component’s protocol state machine. A stub extracts the information
that is assembled into the redundancy of the communication protocol by the component and
vise versa. In this way, we obtain an amount of incoming and outgoing data.

To create a stub, the waveform state machine given in the IFD has to be transformed
into a protocol state machine. This transformation is automatically performed in a process
called protocol synthesis. The resulting FSM implements the opposite behavior of the task’s
interface. In contrast to the waveform state machine, the protocol state machine comprises
only those states which are relevant for the local execution of the protocol. Incoming control
signals are transformed to state transition conditions, while outgoing control signals remain
part of the Moore output function. Incoming and outgoing data signals are distinguished
to be read or written by the IFB, respectively. A more detailed explanation of the protocol
synthesis is given in Section 5.2.5.

Nevertheless, the protocol transformation is only the first step within the protocol synthesis.
The second one handles the creation of the data translation, based on the IFD-Mapping.
This scenario related data mapping is created interactively based on the selected IFDs.

Data Mapping : To model the protocol transformation inside the IFB we have defined the
IFD-Mapping, which has to be provided by the designer during the synthesis process. The
mapping file can be either selected from a database or interactively entered by a designer.
An IFD-Mapping comprises a set of rules, called Mapping Functions (fMap), which describe
the mapping of incoming to outgoing data. A single Mapping Function is of the form:

Mapping Function : dataOut <= fMap (dataIn1, ... , dataInk)

As usual for the I - P -O concept, outgoing data depends on incoming data, possibly even
from multiple sources. Therefore, fMap allows modeling of four data processing operations:

1) Assign constant values

2) Shuffle incoming data

3) Guarded data assignment & Boolean equations

4) Complex data processing including a data processing library → FSM

64

4.1 Interface Synthesis Design Flow

We support assigning constant values or an arbitrary mapping of incoming data bits to out-
going data bits (shuffle data). Further, our mapping allows guarded assignments by applying
Boolean equations on incoming data bits. To also handle complex behavior, the designer can
model FSMs to process incoming bits. We can encapsulate mapping functions in a library
of reusable data processing functions to support the reuse of complex or frequently required
data processing operations, like the evaluation of a CRC (Cyclic Redundancy Check) field.
The functions of this library can then be accessed from other IDF-Mappings.

Based on the IFD-Mapping, the protocol synthesis generates a set of state machines, which
process the data provided by the stubs, to perform the protocol translation. However, the
IFD-Mapping is not only utilized to create the protocol transformation, it is also applied to
customize the IFB internal control and data memory as well as optimizing the boxing and
unpacking of data portions inside the stubs. Similar to the stubs and the data processing,
the IFB control is implemented as interacting FSMs, which coordinate the IFB operations.

Since the definition of the IFD-Mapping is an essential part of the synthesis process, we
developed an automated design flow. If we act on the assumption that we select a predefined
IFD-Mapping from a library as input of the synthesis, we obtain a completely automatic
interface synthesis process. The result of the first synthesis design step is a target language
independent IFB model, which is still qualified to be implemented in software or hardware.

Code Generation

After creating the IFB model, we attach standard code generation techniques to create
an implementation of the IFB. The result of the code generation varies depending on the
selected target architecture. In software, the IFB could be compiled into a communication
library, for example, a dll (Dynamic Link Library, Microsoft Windows). In the case of a
hardware design, we have to create the IFB implementation on that abstraction layer which
is demanded by the subsequent low-level synthesis process.

Until now, we have developed the IFB code generation for the hardware description language
VHDL. The code generator is based on the code generation technique frame processing, which
is in particular adequate for generating the IFB, due to the modular structure of the IFB
and VHDL. With the help of the IFS-Editor we are able to create the VHDL code of
particular IFBs, the “configware” 2 for single chips, and the code of complete systems, which
can be employed for a simulation of the system’s communication behavior.

The synthesis phase is followed by a design step named “Integrate IFB target code”. This
process includes all necessary actions to create an executable system implementation, using
the created IFB code as a building block.

4.1.3 Integration Phase

The integration phase is not primary a part of the Interface Synthesis Design Flow itself. It
rather concludes the flow and offers the design step to create the executable parts for the
target platform. This could mean integrating the generated IFB code into an existent design
or to create a new design including the IFB code. Therefore, it is essential to possess the
implementation of the other communication components in a similar format as the generated
IFB code. In this design phase, we resort to available tools, as compilers (software) and
dedicated synthesis tools (hardware), e. g., Xilinx ISE in the case of Xilinx FPGAs.

2Configware is a software used to set up a (re-)configurable device. The term was formed by R.Hartenstein.

65

4 Interface Synthesis Methodology

4.2 IFS Modeling Concept

To constitute a formal basis for the composition of System Architecture models, we defined
the IFS Modeling Concept [1, 36]. Figure 4.2 illustrates this concept in the form of a circular
chart that consists of three sectors and three levels (rings). The outer level represents
the domain specific modeling language that is considered as standard for the particular
sector. The models, which are expressed with the help of the according modeling language,
are depicted in the middle level. Each model itself is again used as meta-model for the
construction of the model instances, presented in the inner level. The modeling layer (middle
level) is continuous, as identical information is specified in each sector, which permits a
transformation between the different models. The same is true for the instance layer (inner
level) as a special development of the models. In our modeling concept, we deal with the
three sectors: XML, Java, and UML.

The IFS-Format has been developed to provide a formal representation of the IFS System
Architecture. We modeled the IFS-Format as an XML-scheme. Therefore, the dedicated
sector is marked with “XML”. An instance of the IFS-Format is called IFS-Instance and
represents a valid specification of the System Architecture.

To automate the interface synthesis process and to evaluate the developed concepts, we
implemented an EDA tool, the IFS-Editor, in accordance to the IFS-Format. The sector
named “Java” handles this tool written in Java, which facilitates editing and visualizing
IFS-Instances. We implemented the IFS-Editor as M-V-C (Model -View - Controller) ar-
chitecture, which means a separation of data structure, graphical user interface (GUI), and
the applied algorithms. The object-oriented data structure of the data model (IFS-Data-
Structure) implements precisely the defined sub-schemes of the IFS-Format (blue arrow).
Thus, IFS-Instances can be loaded and stored (blue double-headed arrow). The representa-
tion of an IFS-Instance in Java is called IFS-Object. The automated interface synthesis is
performed on these objects.

Figure 4.2: IFS Modeling Concept Figure 4.3: IFS model transformation

66

4.2 IFS Modeling Concept

To provide an abstract and intuitive modeling for the designer, the IFS-Format has been
transferred into UML. As depicted in Figure 4.2, we derived a UML2.0 profile from the
IFS-Format (red arrow), namely the IFS-Model, which allows the model-based design of the
System Architecture. Alternatively, we could have developed the IFS-Model from the IFS-
Data-Structure with the help of reengineering techniques. An instance of the IFS-Model is
named IFS-Model-Instance. The transformation of models and instances is guaranteed due
to the equivalence of the information that is expressed on the modeling layer.

In the next section, we explain the IFS-Format in more detail and present the dependency
of the XML and the Java sector. Afterwards, we discuss the trade-off between different
solutions for the model transformation of the UML sector into the XML and the Java sector
on the model and the instance level as presented in Figure 4.3.

4.2.1 The Interface Synthesis Format

We have deployed the Interface Synthesis Format (IFS-Format) as meta-model for the IFS
System Architecture. On one hand, it defines our data exchange format; on the other hand,
it has been used as a template for the implementation of the data structure in the IFS-
Editor. Due to this consistence between exchange format and internal data structure,
data can be easily imported and exported, as we will see in the next section.

As part of the IPQ Format, which has been introduced previously, the IFS-Format fulfills
the role of describing interfaces of IPs within the IP characterization. In this way, our
approach allows the seamless integration of “IPQ-IPs” into our design flow and therewith,
the automated adaptation of these IPs.

Similar to IPQ, the IFS-Format has been modeled in the form of an XML scheme [246].
A detailed description of the IFS-Format is given in [29]. The XML scheme is composed
of hierarchical sub-schemes as presented in Figure 4.4, which depicts the sub-scheme of the
“task level”. In accordance with the presented communication framework in Section 2.1.4
the task consists of an identification, a number of physical interface descriptions (Interface)
and protocol descriptions (Protocol), which are mapped by protocol maps (ProtocolMap).
Interface, Protocol, and ProtocolMap again are XML sub-schemes. Additionally, a Version
attribute has been added to each sub-scheme for a version management of the created XML
instances. VHDLFile is a task specific and optional tag that references the file that represents
the implementation of the current task.

In its role as meta-model, the XML scheme defines precisely the structure of the creatable
XML instances, which represent valid samples of the IFS System Architecture. Thereby,
an XML instance may describe a particular component up to a complete system, including
several architecture and communication components. In particular, the IFD and the TPD
are the two instances required for the interface synthesis. Therefore, the IFD of an IPQ-IP
is automatically derived from the IP’s meta-data. A collection of IFDs in the form of IFS-
Instances, for example, in a database, can be used as design library in the modeling phase
of our Interface Synthesis Design Flow.

Since creating XML instances by hand is very error-prone and quite labor intensive, even
with the help of XML editors, the IFS-Editor provides a graphical design front-end for
modeling also complex communication infrastructures. The tool allows the graphical mod-
eling of components in combination with specific masks for the component’s parameters.

67

4 Interface Synthesis Methodology

Figure 4.4: Excerpt of the XML based IFS-Format (XML-Scheme)

Each XML scheme carries information which is usually used by XML editors to validate the
correctness of XML instances, or to facilitate the design process of the XML scheme or the
XML instances. We employ this data inside the IFS-Editor to check the design entry and
enhance the design process. Therefore, we acquire the following parameters from the XML
scheme of the IFS-Format:

• Tag

• Type

• Default Value

• Comment

• Unit

• Enumeration

68

4.2 IFS Modeling Concept

Example-Code 4.1: XML-Scheme – Tag, Type, Default Value, Comment, and Unit

01 <xs:element name="VLogicOne" default="3.3">

02 <xs:annotation >

03 <xs:documentation >Voltage related to logic one.</xs:documentation >

04 </xs:annotation >

05 <xs:complexType >

06 <xs:simpleContent >

07 <xs:extension base="ipq:NR3 ..1.12 ES..2">

08 <xs:attribute name="unit" type="xs:string" fixed="V"/>

09 </xs:extension >

10 </xs:simpleContent >

11 </xs:complexType >

12 </xs:element >

As presented in the XML Example-Code 4.1, which is an excerpt of the IFS-Format, we
see the definition of the physical voltage level as one attribute of each physical interface. It
specifies the value of the physical voltage that is related to binary value “logic one”. Among
others, we evaluate this attribute to check the connectivity of two interfaces.

The given example provides information about the XML element name (Tag =VLogicOne),
its data type (Type = ipq:NR3..1.12ES..2), the default value (Default Value =3.3), a comment
(Documentation=Voltage related to logic one.), and the unit of the value (Unit =V).

Example-Code 4.2: XML-Scheme – Tag, Type, Default Value, Comment, Enumeration

01 <xs:element default="Input" name="Direction">

02 <xs:annotation >

03 <xs:documentation >Direction of ProtocolPin.</xs:documentation >

04 </xs:annotation >

05 <xs:simpleType >

06 <xs:restriction base="ipq:M ..32">

07 <xs:enumeration value="Input"></xs:enumeration >

08 <xs:enumeration value="Output"></xs:enumeration >

09 <xs:enumeration value="Bidirectional"></xs:enumeration >

10 <xs:enumeration value="Special(GND ,VCC)"></xs:enumeration >

11 <xs:enumeration value="Other"></xs:enumeration >

12 </xs:restriction >

13 </xs:simpleType >

14 </xs:element >

XML Example-Code 4.2 depicts the direction attribute of the ProtocolPins. The values Tag,
Type, and Comment are defined similar to Example-Code 4.1. In addition, an enumeration
specifies a set of predefined values (Enumeration= Input, Output ...), which can be selected
in the IFS-Editor instead of typing in a value. The attribute Default Value defines the
initial selection. Therefore, this attribute has to be a member of the enumeration.

Based on VSIA, IPQ defines a number of standard data types, which are employed in the
IFS-Editor to perform a consistency check of the inserted data. Within the IFS-Editor,
tags and units are visualized in the interactive masks while comments are displayed as tool-
tip. Each text field inside the masks, where the designer can enter a value, is initialized with
its default value to avoid invalid or empty input data.

The combination of IFS-Format and IFS-Editor is a synergy of the two sectors XML and
Java on the model layer. The interaction on the instance level is given in the next section.

69

4 Interface Synthesis Methodology

4.2.2 Interaction of XML and Java

IFS-Instances are used as data exchange format for the IFS. Therefore, it is necessary to
import (load) and to export (store) the XML instances using the IFS-Editor. The close
interaction of the Java tool and XML on the instance level is visualized in Figure 4.5. To
simplify the loading and storing of IFS-Instances we developed a data structure that directly
works on the XML instances.

IFS-EDITOR

IFS-API

IFS Java Data Structure
(IFDS)

XMLElement4Java API

XMLElement API

DOM API

DOM Tree

DOM Parser

XML InstanceExchange & Storage

Handle XML

Standardized XML
Data Structure

Access DOM

Restriction to XML

Hide XML to Java

Interface Synthesis
Data Structure

Access IFDS

Application Layer

Figure 4.5: Interaction of XML and Java on the instance level

We attach the standardized Document Object Model (DOM) to cope with XML instances
(read & write XML). The data structure of DOM is a rather complex tree of uniform element
nodes without a semantics for the particular node.

Based on the DOM API we apply the so-called XMLElement-API, which restricts the general
DOM view to an XML-wise programming model3. With the help of this API, the DOM
tree nodes can be traversed as XML elements.

On top of the XMLElement-API, we put the XMLElement4Java-API to hide the usage of
XML and DOM completely from the upper layers. The defined programming interface allows
us to establish a truly object-oriented realization of the IFS-Data-Structure. The center of
the XMLElement4Java-API are the two data types X4J and X4JVector that define methods
to get and set data without dealing any knowledge of the lower layer implementation.

With the help of these two data types, the IFS-Objects of the IFS-Data-Structure (IFDS)
have been implemented. The IFS-Editor and the synthesis algorithms work on these
objects using the visible object methods.

3This API has been developed as part of the IPQ project

70

4.2 IFS Modeling Concept

The method setDirection("Input") of a ProtocolPin, for example, calls the setValue()
method of the X4J attribute direction inside the IFS-Object ProtocolPin. In a first step, the
setValue() method checks the passed value "Input" against the type and the enumeration,
which are defined in the XML scheme for this attribute. If this check passes successfully,
the function call is delegated to the XMLElement-API and finally to the DOM-API. Here,
DOM updates the dedicated node in its tree to store the new value.

To save an IFS-Instance we can simply export the DOM model as XML instance. Loading
an XML instance is more complicated, as we have to construct the IFDs layer additionally
after importing the DOM model.

4.2.3 UML2.0 and its Interaction with XML and Java

In a second step we extended our modeling concept to the Unified Modeling Language (UML)
due to is high familiarity with many designers and the possibility of defining specific profiles.
There exists many popular UML CASE-tools (Computer-Aided-Software-Engineering tools)
that we can employ to model the System Architecture. With the help of UML, we provide
an intuitive and abstract way to model our communication infrastructures.

Because of the expressiveness of UML2.0, it is possible to model the complete information
covered by the IFS-Format. Nevertheless, the modeling and subsequent transformation of
the IFS-Models into the IFS-Format is only feasible if every part of the IFS-Model owns a
precise semantics relating to the IFS-Format. For this reason, we defined a UML 2.0 profile
of the IFS-Format that comprises a specific semantics and certain syntax restrictions.

The UML2.0 Profile

We analyzed the IFS-Format and UML2.0 to define an intuitive UML2.0 profile. For that
purpose, we selected a set of UML diagrams and defined a precise semantics. The UML 2.0
profile consists of component diagrams, class diagrams, and protocol state machines.

We apply component diagrams to describe the structural aspects and connections of the
System Architecture in the form of a component hierarchy. Class diagrams specify the
static parameters of the System Architecture; for example, the electrical properties of the
interfaces. These parameters are modeled in the form of class attributes and data types,
which are linked to the component instances inside the component diagrams.

UML ports provide the connections between the components. Protocol state machines that
are related to the UML ports are utilized to describe the behavioral aspect. As usual for
extensions of the meta-model, all added classes are defined as stereotypes.

The UML 2.0 profile defines our IFS-Model which is textual and syntactically restricted to
the IFS-Format. The IFS-Model samples as meta-model for the creation of the IFS-Model-
Instances as depicted in Figure 4.2. To show the proof of concept, the hitherto developed
UML 2.0 model is restricted to the required bit abstraction level. In Section 5.1, we discuss
the UML 2.0 profile in detail.

In order to integrate the UML 2.0 profile into the Interface Synthesis Design Flow and thus
make it a useable modeling front-end, the transformation of the IFS-Model into either the
IFS-Format or the IFS-Data-Structure has to be achieved.

71

4 Interface Synthesis Methodology

Concepts for the Model Transformation

As presented in Figure 4.3, there exists two alternatives for the transformation of the IFS-
Model. The first way is to export the UML design as XMI (XML Meta-Data Interchange)
and use this file for the model transformation. There are well-established techniques to
convert XMI files like XSLT, DOM and SAX. All these approaches require the model to be
exported in one of the available XMI formats. Apart from the restriction to one XMI version,
a lot of efficiency is lost due to the export and adjacent transformation. Furthermore, the
specification of complex XSLT scripts is very labor-intensive and error-prone.

Alternatively, we can translate an IFS-Model-Instance based on the data structure of the
used UML editor (red arrow in Figure 4.3). This is much faster but requires knowledge about
and access to the internal data structure of the CASE-tool, which is usually not available
for the commercial tools.

Nevertheless, there exists one CASE-tool, namely Fujaba (From UML to Java and back
again [69]), which has been developed at the University of Paderborn. This tool fulfills our
needs concerning UML and grants us the required access to the internal data structure.
Therefore, we decided on the direct translation of the data structure based on Fujaba for
the model transformation.

Implementation of the Model Transformation

The model transformation is divided into the coupling of the IFS-Editor and Fujaba, and the
model translation itself. To transform the Fujaba data structure we implemented a translator
using standard compiler techniques. Input of the translation is the Fujaba data structure of
the created IFS-Model-Instance. A parser traverses this tree structure with a single recursive
descend and creates the IFS-Data-Structure with the help of pattern matching.

The definition and the implementation of the UML 2.0 profile and the model transformation
was presented in [1, 36]. Furthermore, this work demonstrates how to model a communica-
tion system based on our UML 2.0 profile in Fujaba by an extensive example.

The next section introduces our interface adapter module, the Interface Block.

72

4.3 Concepts of the Interface Block

4.3 Concepts of the Interface Block

The Interface Synthesis Design Flow has been developed to generate an interface adapter
module, called Interface Block (IFB). In this section, we introduce the IFB Macro-Structure,
which depicts the structural composition of the IFB model based on communicating FSMs.
With the help of the IFB Macro-Structure, we explain the functionality of individual IFB
components and discuss the realization of the Input - Processing - Output concept.

Furthermore, we present the modifications and extensions towards the reconfigurable IFB
and discuss the IFB as a fail-safe interface adapter. Afterwards, we demonstrate the rela-
tionship to the ISO/OSI model and introduce an environment for real-time communication.

On one hand, we apply the IFB Macro-Structure as a specification for the IFB model
synthesis, presented in Chapter 5. On the other hand, we refine the IFB Macro-Structure
to the IFB Hardware Template for the IFB realization in hardware as given in Chapter 6.

4.3.1 IFB Macro-Structure

To explain the construction of the IFB Macro-Structure, we begin with the elementary
case: the protocol translation for one sender and one receiver. Within the context of my
Diploma Thesis [7, 3], I developed the basic concepts of the IFB, which worked as a peer-
to-peer adapter module supporting simplex communication [2]. Figure 4.6 illustrates the
hierarchical structural of this basic IFB in a tree-like representation.

In accordance to the Input - Processing - Output concept, the IFB Macro-Structure is divided
into an incoming protocol handler (PHIN), an outgoing protocol handler (PHOUT), and the
sequence handler (SH). Each handler comprises a set of operation modes. The PH-Modes
accomplish the role of the stubs while the SH-Modes perform the protocol translation. It
is essential to separate PH and SH to avoid the construction of the product automata.
Furthermore, the structuring into independent modes is crucial for the reconfigurable IFB.

A control unit (CU) performs the internal supervision of the Interface Block. Therefore,
the CU provides control signals to the PH-Modes and the SH-Modes and evaluates their
status signals (vertical communication). The processed data signals in combination with the
required handshake signals are communicated in the horizontal direction. This partitioning
of signals is further on referred to as orthogonal communication structure [14, 13, 12].

To transfer data through the IFB, the PHIN reads incoming data, which is then processed
by the related SH-Mode, and finally sent to the receiver with the help of the PHOUT . For
these purposes, the PH-Modes, the SH-Modes, and the CU are implemented as interacting
state machines. As mentioned before, it is an advantage of the I - P - O concept to avoid the
creation of complex product automata. We reproduce this effect by subdividing the IFB
into the PH, the SH, and the CU. However, this division accounts for the introduction of
additional states into the FSMs, which are required for the synchronization and the fully
interlocked handshaking that guarantees a lossless data exchange inside the IFB.

Due to the modular structure, we could easily extend the basic IFB and integrate further
functionality into the interacting IFB parts. The final structure of the IFB Macro-Structure
is illustrated in Figure 4.7. This model considers the interconnection of multiple commu-
nication partners including duplex traffic. Therefore, the PHIN and the PHOUT have been
merged into only one PH, which comprises PH-Modes that can receive and send data.

73

4 Interface Synthesis Methodology

control
M

E

D

I

U

M

status

data

handshake status

T

A

S

K

stubs stubs

PH
M1

CU

SHPH
IN

control

PH
M2

PH
OUT

PH
M2

PH
M1

SH
M1

SH
M2

SH
M3

Figure 4.6: The basic IFB Macro-Structure as hierarchical tree representation

Protocol HandlerProtocol Handler

PHM1

S w i t c h

PHM2 PHM3 SHM3

M
 e

 m
 o

 r
y

SHM2

SHM1

Sequence H.Sequence H.

Task
B

Task
A

IF1 IF2 IF3

Control UnitControl Unit

Ctrl Status Ctrl Status

Figure 4.7: The IFB Macro-Structure

74

4.3 Concepts of the Interface Block

Protocol Handler

To establish the external communication with the tasks, the IFB provides a stub for each
connected (component) interface. These stubs are implemented by the so-called PH-Modes
inside the Protocol Handler (PH). To perform a transparent protocol adaptation, each PH-
Mode implements the complementary protocol of the related interface in the form of a finite
state machine. Once started, a PH-Mode executes this state machine continuously, which
is synthesized based on the associated IFD and extended with additional states to interact
with the control unit and the sequence handler. To create the state machine of a stub, the
waveform state machine given in the IFD is transformed into a protocol state machine. The
detailed protocol synthesis is handled in Section 5.2.5.

Usually the interconnected interfaces are independent of each other; therefore, the PH-
Modes have to work in parallel to serve all interfaces continuously. It is easy to implement
this aspect in hardware, as parallelism is a natural paradigm of hardware. One solution for
software could be the realization as “semi-parallel” threads.

A PH-Mode extracts the relevant information from the incoming data, which is mapped in
the IFD-Mapping, and provides it to the SH. Therefore, the PH-Mode stores the extracted
data bits in an IFB internal memory inside the SH. Similar to the extraction of incoming
information, a PH-Mode merges the processed values into the outgoing data, which is trans-
mitted to the task. To sequentialize the memory access of the parallel PH-Modes, we added
the switch inside the PH, which acts as memory interface to the internal memory.

Sequence Handler

The Sequence Handler (SH) does not have to communicate with external interfaces. It
stores the IFB internal data and performs the data transformation between the PH-Modes
according to the mapping functions which are specified in the IFD-Mapping.

There exists several concepts to implement the internal memory. We decided on a dedicated
memory that provides the space for exactly one instance of each incoming and outgoing
data word, instead of utilizing data queues. This decision is based on the IFD-Mapping
and the resulting protocol translation that considers only the current instances of incoming
and outgoing data packets. In hardware, the internal memory can be provided by a default
memory, like a Block RAM, or created as dedicated memory within the synthesis process.

The IFD-Mapping specifies the scenario-based protocol translation in the form of mapping
functions. Each mapping function is implemented by an SH-Mode that performs the data
processing based on the four mentioned data mapping operations (see Section 4.1.2, Page 64)
as there are: assign constant values and shuffle incoming data in combination with the
guarded assignment of data and the complex data processing based on FSMs. In this way,
the SH-Modes comprehend a multifaceted functionality, starting from a simple forwarding
of data up to complex modification algorithms. Furthermore, the FSMs allow us to store
passed data intermediately as this history information can be coded into the available states.
Nevertheless, this way to store the passed data is very resource-inefficient.

To activate an SH-Mode, the input data given in the mapping function has to be completely
received and stored inside the local memory. When the data processing has finished, the
SH-Mode stores the computed output value in the internal memory and informs the CU to
grant permission for this data packet to be sent by the dedicated PH-Mode.

75

4 Interface Synthesis Methodology

The four data processing operations, in combination with the ability to store data, span a
wide area of possible applications. To overcome the limitation of FSMs we afford to define
variables. This extends our FSMs to linear bounded automata, which allow us, for example, to
model a complete processor inside an SH-Mode. Admittedly, this is not the actual intention
of an SH-Mode – thus, we restrict ourselves to process incoming into outgoing data.

In the following example, we demonstrate a reasonable application for an SH-Mode. Fur-
thermore, we discuss the according code of the mapping functions. The example descends
from the cryptographic domain and handles the block cipher en- and decryption inside the
IFB. Therefore we expect a sender which offers its data as plaintext, and a receiver that
requires this data to be coded as ciphertext, or vise versa.

Example: Block ciphers map blocks of a fixed size to other blocks of the same size. Both,
plaintext and ciphertext are element of the set Σn of words with the block-size n ∈ N over
the alphabet Σ. The applied plaintext-space (P) and ciphertext-space (C) is P =C =Σn.
The key-space is the set S (Σn) of all permutations of Σn, which contains (|Σ|n)! elements.
For one particular key π ∈ S(Σn) we define the encoding-function Eπ : Σn → Σn, v 7→ π(v)
and the according decoding-function Dπ : Σn → Σn, v 7→ π−1(v).

An interesting example of the block ciphers is the permutation code. It applies keys that
allow only such permutations that result from exchanging the position of the characters. If
Σ = {0, 1} we call this a bit-permutation. In this case, the key-space belongs to the group
of permutations Sn. For π ∈ Sn we define: Eπ : Σn → Σn, (v1, ..., vn) 7→ π(vπ(1), ..., vπ(n))
and Dπ : Σn → Σn, (v1, ..., vn) 7→ (vπ−1(1), ..., vπ−1(n)). A simple cipher that utilizes the
bit-permutation is the electronic codebook mode.

Electronic Codebook Mode (ECB-Mode) The electronic codebook (ECB) mode splits the
messages into blocks of a given block-size and encrypts each of them separately as depicted in
Figure 4.8. The disadvantage of this method is that identical plaintext blocks are encrypted
to identical ciphertext blocks; therefore, it does not hide data patterns. The term “Mode”
in “ECB-Mode” should not be mistaken with that one in “SH-Mode” or “PH-Mode”.

Block Cipher
EncryptionKey

Plaintext

Ciphertext

Block Cipher
DecryptionKey

Ciphertext

Plaintext

Figure 4.8: Electronic codebook (ECB) mode encryption and decryption

The key for a simple right-shift would look like: π =
(

1 2 3 ... n
n 1 2 ... n− 1

)
.

An SH-Mode can easily perform the encoding and decoding conform to the ECB-Mode.
The related IFD-Mapping is quite simple, since it comprises only one operation for the
relocation of data bits: Pout <= Pin[n] + Pin[1 : n− 1]; The precise syntax and semantics
of the IFD-Mapping language are presented in Section 5.2.6.

76

4.3 Concepts of the Interface Block

Cipher-Block Chaining Mode (CBC-Mode) In the cipher-block chaining (CBC) mode,
each block of plaintext is XORed with the previous ciphertext block before being encrypted.
This way each ciphertext block is dependent on all plaintext blocks up to that point.

Block Cipher
Encryption

Key

Plaintext

Ciphertext

Block Cipher
Encryption

Key

Plaintext

Ciphertext

Initialization Vector

Block Cipher
Encryption

Key

Plaintext

Ciphertext

Figure 4.9: Chipher block chaining (CBC) mode encryption

An SH-Mode can also perform as CBC-Mode. Therefore, we could model an FSM that
covers all possible words (in the case of n-bit words, it would be 2n states) to remember
the last computed value for the XOR-operation with the current value. IT obviously makes
no sense to realize the CBC-Mode for a greater bit-width in this way. Therefore, the IFD-
Mapping language provides variables. In the case of a software IFB, they become“variables”
in the classical meaning; in hardware we implement them as registers, which belong to the
related SH-Mode. These variables represent the memory of the linear bounded automata
and allow us to also implement complex behaviors resource-efficiently.

The IFD-Mapping for the CBC-Mode looks like:

1. bit [n] prevV al; // Declaration of the variable

2. Pout <= Pin[n] xor prevV al[n] + Pin[1 : n− 1] xor prevV al[1 : n− 1];

3. prevV al := Pin; // Store value of Pin in variable after computation of Pout

In general, the SH-Modes can process data in parallel similar to the PH-Modes. However,
three conditions have to be fulfilled to perform a parallel protocol transformation. First of
all, the platform has to support the parallel execution of multiple SH-Modes. This aspect
is similar to the PH-Modes and has already been discussed before.

The second aspect is also of technical nature. If multiple SH-Modes shall work in parallel,
they have to be able to read from and write into the IFB internal memory in parallel.
From our point of view, this requirement can only be met in hardware with the help of a
synthesized register file with a direct connection to the SH-Modes.

Thirdly, in contrast to the PH-Modes, the SH-Modes are not completely independent of
each other. When different mapping functions demand identical pieces of input data, we
obtain SH-Modes that consume the same bits from the internal memory. Depending on the
complexity of the mapping functions, the computation time of these SH-Modes can vary. To
make sure that each SH-Mode reads out each piece of data exactly once, the interdependent
SH-Modes have to be synchronized. As all PH - and SH-Modes have to be modular and
self-containing to be reconfigurable, the synchronization of the SH-Modes has become a task
of the CU. Thus, the SH-Modes themselves are not aware of existing dependencies. All three
aspects have to be satisfied truly to process data in parallel.

77

4 Interface Synthesis Methodology

Control Unit

The synchronization of the SH-Modes is only one aspect of the CU functionality. Altogether,
the CU provides the IFB internal control and is responsible for the IFB reconfiguration.

If there is more than one receiving or sending interface connected to an IFB (Multi-Task
IFB) or if complex mapping functions have to be executed, an active control of the PH -
and the SH-Modes is required to guarantee the causality of the I - P -O scheme. Therefore,
the CU is responsible for the overall coordination of the data flow inside the IFB. It aims
to optimize this data flow in order to minimize the latency produced by the IFB.

The latency is a critical aspect for the reaction time of communicating nodes. It represents
the delay of the utilized communication link. As a transparent part of this link, the latency
produced by an interface adapter adds on the latency of the communication link. Therefore,
it is a major goal to minimize the latency of the IFB in order to optimize the latency of the
communication link, and thereby, to maximize the possible data transfer rate [5].

For this reason, the PH-Modes and SH-Modes work in an interleaved manner as a pipeline [26].
This is possible since all modes are self-contained and decoupled by the internal memory
located inside the SH. As there exists exactly one dedicated memory cell for each incoming
and outgoing data word in this memory, the IFB pipeline structure (depicted in Figure 4.10)
is comparable to a classical three-staged execution pipeline. The pipelined data processing
is another crucial reason for the decision to utilize a dedicated memory instead of queues.

To induce a maximum workload for an IFB, we assume tasks that continuously try to send
and receive data wherever possible. The I - P -O pipeline executes this sequence of actions:

1. If the condition to receive data is met, the CU admits the dedicated PH-Mode to receive
data. Therefore, the CU grants the write-access to the memory via the PH-Switch.

2. The PH-Mode reads the incoming data and transfers it into the incoming memory.

3. If the condition for processing data is met, the dedicated SH-Mode is activated.

4. The PH-Mode processes the stored data according to its mapping function and writes
the result into the outgoing memory.

5. If the condition to send data is met, the CU admits the dedicated PH-Mode to transmit
data. Therefore, the CU grants the read-access to the memory via the PH-Switch.

6. The PH-Mode reads the processed data from the outgoing memory and merges it into
the outgoing data.

 Input Processing Output

PH SH PH

I P O
R
e
g

R
e
g

Figure 4.10: Pipelined Input - Processing -Output execution

78

4.3 Concepts of the Interface Block

Causality condition to receive data

• The PH-Mode reaches a state in its protocol where it has to read mapped data.

• The previous instance of the current data word has been processed by all relevant
SH-Modes.

Causality condition to process data

• The input data of an SH-Mode has been completely received and stored inside the
incoming memory.

• The previously processed data word has been sent by the dedicated PH-Mode.

Causality condition to send data

• The PH-Mode reaches a state in its protocol where it has to write mapped data.

• The required data word has been completely processed by the dedicated SH-Mode.

To check the presented causality conditions, grant access to the PH-Switch, and start the
SH-Modes, the CU performs an active resource management including the

- arbitration of memory bus inside the PH-Switch and the

- memory management of the internal memory.

As we will see in Chapter 6, we ensure the causality of the I - P -O pipeline in hardware with
the help of a scoreboard, which is responsible for the memory management. The scoreboard
notifies incoming and leaving data of both memories and utilizes this information to start
the data processing (SH-Modes) and evaluate the three mentioned conditions.

In case of a Multi-Task IFB, we also have to schedule the memory-access of the PH-Modes
via the PH-Switch. This is essential, as the memory interface allows a maximum number of
one writing and one reading PH-Mode at the same time. In conformance with the internal
memory, the PH-Switch is separated into two parts: the incoming and the outgoing memory-
bus interface. The CU provides a controller for each memory interface which manages the
memory access of the PH-Modes. Thus, the scheduling of the Input and the Output of the
I - P - O scheme is accomplished as arbitration of the memory-bus interface.

Depending on the system requirements, we can implement different scheduling strategies for
the PH-Modes; for example, fair schedulers, which treat all interfaces equally or priority-
based schedulers that prefer special interfaces. In order to make an estimation about the
schedulability of given scenarios, we have to apply the concepts of scheduling theory. How-
ever, the schedulability analysis requires a more detailed model of the IFB than we have
presented up until now. In Section 6.3 we demonstrate our solution for the hardware IFB.

Up until now, we explained the functionality of the “static” IFB, which can be employed
for the development of non-changing environments, e. g. in the ASIC design. Every time
we cope with dynamic environments, which allow the interchanging of tasks at runtime, we
create a runtime reconfigurable IFB (RTR-IFB). Within an RTR-IFB, the second task of the
CU is to handle the IFB reconfiguration. This requires a Reconfiguration Controller, which
interacts with an external Reconfiguration Control Unit (RCU). Our interface synthesis
process supports the creation of both IFB variants.

79

4 Interface Synthesis Methodology

4.4 IFB Reconfiguration

The IFB reconfiguration that we present in this work offers the basis technology to reconfigure
communicating tasks at runtime without a communication gap [9, 8]. Thus, it has been
our job to model the IFB internal reconfiguration and develop techniques for its technical
implementation. The more abstract part of modeling the reconfiguration process on the
system-level, including innovative reconfiguration strategies, is developed in a cooperation
by Meisel and Hardt [242, 137]. We address this work only briefly with respect to the RCU.

As depicted in Figure 4.11 we classify the diverse reconfiguration modes into the categories
static reconfiguration and dynamic reconfiguration. In the literature, the static reconfigu-
ration is also known as offline reconfiguration, while the dynamic reconfiguration is often
referred to as online reconfiguration or runtime reconfiguration.

Static (Re-) Configuration

We apply static (re-) configuration to devices that we can configure just once or that we
initialize offline before the complete system is started. Due to this limitation, we can handle
only a fixed set of a-priori implemented tasks, which are completely available and attached
to the considered system.

Of course, statically reconfigurable systems can pretend reconfiguration by the means of
“context switching” which we introduced in Chapter 3. This process of reconfiguration can
be understood as an activation of subsets of the implemented functionality. In this way, a
restricted set of behaviors can be executed due to the combination of differently activated
tasks. We use static reconfiguration in systems, where we own enough resources to place all
functionalities in parallel. In this way, we save the complicated reconfiguration controller
and do not waste time for the replacement and the establishment (transfer of the task’s
state) of tasks. The switching of tasks produces only a minimum of inevitable overhead.

Static (Re-)Configuration Dynamic Reconfiguration

 Offline Reconfiguration Online Reconfiguration
 Runtime Reconfiguration

(Re-)Configuration
once or before execution

complete

Reconfiguration
at runtime

complete

– Fixed Taskset – Fixed Taskset &
– Dynamic Taskset

partial

macromicro
(Task switching)

Figure 4.11: Classification of reconfiguration modes

80

4.4 IFB Reconfiguration

Dynamic Reconfiguration

Due to the ability to reconfigure the devices of this class at runtime, we can handle dynamic
and fixed task sets.

Fixed task set: Here, we consider predefined systems with a constant set of reconfigurable
modules. This is comparable to the static reconfiguration, with the difference that not
all tasks have to be present in the target platform at all times.

Dynamic task set: In this class, we cope with dynamic sets of tasks, which can change at
runtime. An acceptance test has to be satisfied before a new task may join the current
task set. E. g., the task has to fit into the slots and match the fixed points of a slotted
architecture. In real-time systems, an additional scheduling analysis has to be passed.

To integrate a new task into the current scenario we have to pass through the IFS-
Flow once again to carry the changes forward to the IFB. Actually, the IFS-Flow is
uncoupled from the reconfiguration process itself. Whenever necessary, we create a
new IFB, or parts of it, for the partial reconfiguration process, with the help of the
Interface Synthesis Design Flow. Therefore, we rerun our design flow as stated in
Figure 4.1 by the dotted arrow.

Dependent on our platform we are able to perform a complete or a partial reconfiguration
(see Chapter 3). We distinguish between two models of partial reconfiguration:

Macro reconfiguration: The macro reconfiguration allows us to exchange complete tasks.
Often these tasks are precompiled and available for the reconfiguration from some kind
of memory, like a RAM, a ROM, or an EPROM. The RCU loads complete tasks and
configures the complete or a part of the execution platform with it.

Micro reconfiguration: The micro reconfiguration aims at the reconfigured execution of the
tasks themselves. This is reasonable for tasks whose functionality is composed of a
large number of atomic operations. With the help of the micro reconfiguration, it is
possible to reuse the same resources of one execution platform for sequential operations
inside one task. Spatial reconfiguration techniques have been developed to manage
these kinds of shared resources over time [59, 58, 113]. The micro reconfiguration is a
kind of recursive application of the macro reconfiguration, when we assume that the
atomic operations inside one task themselves are representable by a task graph.

The decision of where to apply which kind of reconfiguration is strongly affected by the
field of application and the reconfigurable architecture. Only a few devices, e. g., the Xilinx
Virtex and Xilinx Spartan family support the whole palette of reconfiguration techniques.
Figure 4.12 illustrates an overview on where to deploy complete and partial, as well as micro
and macro reconfiguration concerning a Xilinx FPGA in dependency of the reconfiguration
time tR and the computation time tC . In our example tR = 1 – 5 milliseconds (Virtex).

The complete reconfiguration makes sense for systems with tC/tR � 1. Examples for this
category could be the Hubble telescope or a traffic light that work for hours or perhaps
even for years with the same functionality until they are reconfigured. In these systems,
the reconfiguration overhead is nonrelevant compared with the runtime. Therefore, we can
afford a costly procedure that carries out the complete reconfiguration. Nonetheless, we
have to take care of the “short” time in which the reconfiguration disables the device.

81

4 Interface Synthesis Methodology

log (tC / tR)

log(tC)/s

6-6

6

1 Year3 ms50 ns 1h

3

-6

1min

4

-4
-2

1s

com
plet
e

part
ial

Xilinx FPGAs
tR = 1-5·10-3s

8

-9 9

mic
ro

mac
ro

Figure 4.12: Micro vs. macro reconfiguration

If we cannot afford to switch off the complete device we can deploy partial reconfiguration.
The micro reconfiguration model for the reconfigured execution of tasks works at high clock
frequencies even for tC/tR � 1. A precise scheduling of the reconfigured resources is required
to create the necessary data and control path in time. The micro reconfiguration model is
mainly deployed to coarse-grained architectures where the complexity and the associated
reconfiguration overhead are still manageable.

Fine-grained architectures are ideal for the macro reconfiguration. Due to their high scala-
bility, we can easily map the “macroscopic” tasks onto the reconfigurable architecture; e. g.,
into the slots of a slotted FPGA architecture. Based on the presented techniques to hide the
reconfiguration time, we can gain an increase in the overall performance even for tC/tR < 1.

The IFB was designed to cope with complex communication protocols as they are utilized
on the macro level and above. On the micro level, an IFB would add quite a lot of avoidable
overhead. Here, simple registers would fit better in most cases. For the static reconfiguration
we create static IFBs, whereas an RTR-IFB is required for the runtime reconfiguration of
tasks at the macro level. In Section 6.4.2 we present an approach to minimize the required
IFB resources with the help of micro reconfiguration (reconfigured IFB execution).

4.4.1 The Runtime Reconfigurable IFB (RTR-IFB)

Every time we exchange tasks at runtime, the affected parts of the interconnected interface
adapters have to be reconfigured as well. In the case of an IFB, the affected parts are those
PH-Modes and SH-Modes that are dedicated to the exchanged tasks. To support the runtime
reconfiguration of modes, the IFB has been extended with a Reconfiguration Controller
inside the CU, and a tri-state bank (bus macros) for the hardware realization inside the
PH and the SH for enabling the physical disconnection of the modes. The Reconfiguration
Controller interacts with an external Reconfiguration Control Unit (RCU) that determines
which tasks are exchanged and the point in time to perform the reconfiguration. Afterwards,
we discuss the following challenges concerning the RTR-IFB:

1. When to reconfigure the RTR-IFB

2. The RTR-IFB reconfiguration flow

3. Modeling reconfiguration scenarios

4. Mapping the RTR-IFB to a reconfigurable architecture

82

4.4 IFB Reconfiguration

Valid Points in Time to Reconfigure the RTR-IFB

It is an important feature for an interface not to loose data. Therefore, an IFB cannot be
reconfigured at any point in time. For example, it is not allowed to interrupt the reception or
the transmission of data (PH-Modes). As a transparent adapter module, the reconfiguration
of the IFB has to be transparent for the tasks as well. Thus, a task must not recognize when
the IFB is reconfigured. This implies, of course, ongoing transmissions. Furthermore, the
processing of data (SH-Modes) may not be interrupted, as this could invalidate the state of
the internal memory management.

Nevertheless, to reconfigure an IFB we have to exchange affected PH-Modes and SH-Modes.
Thus, we have to identify valid points in time where we are allowed to halt these modes for
reconfiguration. We demonstrate the main idea on where to find such moments with the
help of the I - P -O graph.

I - P -O Graph & Communication Graph

The communication graph [11] is the first step on our way to the I - P -O graph. As presented
in Figure 4.13 the communication graph is a combination of the IFS System Architecture
and the specification graph model [232]. Thereby, the architecture graph derives from the
Architecture-Components of the System Architecture. Task nodes (T1, ..., T5) represent the
available tasks which are connected by communication nodes (C1, ..., C4). A mapping binds
the task nodes to the available processing units (PU) of the architecture graph. One possible
processing unit could be an FPGA.

At least one IFB has to be allocated to interconnect multiple incompatible tasks. In contrast
to the specification graph, the IFB, which can be seen as the realization of one or multiple
communication nodes, is bound to an implementation platform as well. In this way, all
channel nodes of the architecture graph reduce to simple interconnections without any own
behavior. Thus, the channel nodes were omitted in the communication graph.

Multi-Task IFBs can adapt several interfaces. Therefore, multiple communication nodes of
the communication graph can be mapped to an IFB node as depicted in Figure 4.14. We
call this the interface centered design style.

IFBALLOCATION

BINDING

BINDING

PU

FPGA

C1 C2 C3

T1

T3 T4

T2

T5

C4

Figure 4.13: Communication graph

IFB
C1

T1 T2

T3 T5T4

C2 C3
C4

Figure 4.14: Interface centered design

83

4 Interface Synthesis Methodology

I1 I2

O1 O3

P1 P2 P3C1

I

O

P

T1 T2

T3 T4 T5

O2

I F B

Figure 4.15: Combination of I - P - O and communication graph

In the next step on our way to I - P -O graph, we consider the pipelined execution of the IFB.
Figure 4.15 illustrates the combination of the communication graph and the I - P - O based
data processing of the IFB. Inside the IFB each communication node is implemented as an
I - P - O sequence. The PH-Modes implement the I and O nodes while the SH-Modes realize
the P nodes. In the case of several tasks (in our example T1 ... T5) the resulting graph is
constructed as follows (under the assumption that each task comprises exactly one interface
which reads the output of its previous tasks and offers the input for the succeeding tasks):

1. Add one input node (→ PH-Mode) for each task that delivers data.

2. Create one output node (→ PH-Mode) for each consuming task.

3. Insert processing nodes: As each processing node represents a mapping function, which
allows multiple inputs, we require exactly one processing node per output node.

The precise construction of the communication cycle is presented in Figure A.1. As usual
for communicating systems, we assume the task-graph to be executed repeatedly. From the
viewpoint of an IFB, only the input, processing, and output nodes that are mapped to this
IFB are relevant. One iteration through the I - P - O nodes that belong to one IFB is called
communication cycle. To execute multiple communication cycles, we insert an edge that
leads from the output nodes back to the input nodes as depicted in Figure 4.16.

The dotted line presents a notional progress of the I - P -O pipeline. When the progress line
runs through a node, the related stage of the I - P -O pipeline is currently executed. After a
node finishes processing, the progress line advances to the outgoing edges. In our example,
the stages related to I1 and P1 already finished, while I2 is currently receiving data. Thus,
O1 is the only stage that is ready for execution. P2 and P3 cannot start until I2 finishes.

We may halt affected PH-Modes and SH-Modes in any position where the I - P - O progress
line does not intersect the node of an affected mode. Otherwise, the related mode would
be currently active. If this claim is fulfilled, our condition for reconfiguring, which is that
all affected modes are idle, is satisfied and there is no data lost in the IFB. Inside the
communication cycle, there exists three kinds of edges for the progress line to intersect:

84

4.4 IFB Reconfiguration

PH-Modes

SH-Modes

Current state of I-P-O progress

PH-ModesI1

P1 P2

O1 O2

P3

O3

I2

Figure 4.16: I - P -O graph including the current state of I - P - O progress

1) An edge between an output - and an input node:
⇒ In the beginning of a communication cycle the IFB holds no data to loose.

2) An edge between an input - and a processing node:
⇒ The received data is processed by the related SH-Recon-Mode.

3) An edge between a processing - and an output node:
⇒ If the receiving tasks is reconfigured the computed data is obsolete anyway and will
be overwritten in the next communication cycle. Otherwise, the PH-Mode, which is
related to the output node, transfers the processed data to the receiving task.

To guarantee that the actual state of the I - P - O progress is not influenced by the reconfig-
uration process, it is handled inside the CU. The Reconfiguration Controller in the CU also
deals with the correct accomplishment of the IFB internal reconfiguration process.

The RTR-IFB Reconfiguration Flow

The reconfiguration flow of an IFB is illustrated in detail by Figure 4.17 [8]. When for some
reason the reconfiguration of a task has to take place, the RCU informs the Reconfiguration
Controller to activate the IFB internal reconfiguration procedure. Therefore, the RCU has
to declare the IDs of the exchanged tasks. Based on these IDs the IFB determines which
modes (PH-Modes and SH-Modes) are affected by the current reconfiguration process.

As a first step of the IFB reconfiguration, the control unit halts the reconfigured PH-Modes
and SH-Modes. For this reason, we extended the scoreboard with the functionality to await
all affected modes to become idle and keep them from further processing. Remember, a
PH-Mode is idle if it does not to read or write data, an SH-Mode if it does not process data.

After halting the affected modes, the CU switches between the reconfigured SH-Modes and
the related SH-Recon-Modes. Therefore, each SH-Mode possesses an SH-Recon-Mode that
represents a user-defined behavior, specified at design time, which is executed during the
reconfiguration. Thus, we guarantee a deterministic behavior for real-time environments.
As illustrated in Figure 4.18 an SH-Recon-Mode comprises an FSM that offers the reconfig-
uration behavior for different scenarios in the form of modification state sequences.

85

4 Interface Synthesis Methodology

Disconnect reconfigured modes

PH-Modes

Inform CU

SH-Modes

Reconfigure (exchange) modes

External RCU

Reconnect reconfigured modes

Reconfiguration Controller
starts reconfiguration procedure

Halt affected
PH- Modes

Restart execution of
changed PH-Modes

E
x

c
h

a
n

g
e

o
n

ly
a

ffe
c

te
d

m
o

d
e

s

R
e

c
o

n
fi

g
u

r
a

ti
o

n
o

f
d

e
v

ic
e

PH-Modes SH-Modes

PH-Modes SH-Modes

Halt affected and
switch to

SH-Modes
SH-Recon-Modes

Switch back to
changed SH-Modes

Figure 4.17: RTR-IFB reconfiguration flow

Afterwards, the affected modes are disconnected by setting the bus macros to high im-
pedance. Now, the reconfiguration of the tasks in combination with the previously gener-
ated PH-Modes takes place. The affected SH-Modes are reconfigured as well: for additional
tasks new SH-Modes are inserted, for replaced tasks the obsolete SH-Modes are replaced.
After this, the exchanged modes are reconnected by the bus macros and the PH-Modes
are activated. Synchronously, the SH-Recon-Modes are switched back to the SH-Modes. A
special partitioning of the RTR-IFB model assures the reconfigurability of the modes inside
the IFB Macro-Structure. The placement of this partition is described afterwards.

Modeling and Implementation of Reconfiguration Scenarios

An SH-Recon-Mode is able to provide the reconfiguration behavior for each possible recon-
figuration scenario, which means for all combinations of exchanged tasks. As we can see
in Figure 4.18 an SH-Recon-Mode is implemented as FSM. In its initial state, the FSM
evaluates the IDs of the reconfigured tasks, which are provided by the RCU.

If only one out of n Tasks can be reconfigured simultaneously, we have to distinguish between
n different reconfiguration scenarios. If an arbitrary combination is allowed, we have to cope
with a maximum of 2n− 1 different scenarios. The scenario in which no task is reconfigured
does not have to be considered here. More or less, the SH-Mode covers this scenario.

86

4.4 IFB Reconfiguration

Dispatch
over Recon-

TaskID

Modify S1

Modify Sn

M
odifications

S
2 …

 S
n-1

Done

Modify S1

Modify Sn

M
odifications

S
2 …

 S
n-1

R
ec

on
Ta

sk
ID

 =
t

R
ec

on
Ta

sk
ID

 =
 1

. . .

ReconTaskID = 1ReconTaskID = n

Figure 4.18: Execution of the reconfiguration behavior as FSM

Nevertheless, the functionality of an SH-Mode must not be joined with its SH-Recon-Mode,
as the two modes have to be separated for the reconfiguration; one mode is always active,
while the other one can be reconfigured. This leads to the fact that not only SH-Modes
can be reconfigured, but also SH-Recon-Modes. In this way, we can adjust the behavior for
particular reconfiguration events. In systems that reconfigure only at well-known points of
time, we could even free the resources that implement the SH-Recon-Modes and use them
ulteriorly. In this case, the SH-Recon-Modes would have to be reestablished just in time for
the scheduled reconfiguration.

Similar to the SH-Modes, we employ linear bounded automata in the SH-Recon-Modes to
model the reconfiguration behavior; for example, a static sequence of modification states or
a simple work around based on the last transmitted value. Static state sequences can be
useful for systems that provide a kind of “default behavior” or “fail-safe behavior”. During
reconfiguration, we could force the system to execute this behavior. We can also simulate a
tri-state behavior by doing nothing. For controllers it could be a clever idea to repeat the last
received data or to apply the results of a “mini-controller”. In general, the possible behavior
depends on the reconfiguration scenario that determines which tasks are reconfigured and
which ones have to be served furthermore.

Let us illustrate a representative reconfiguration scenario through an example. Therefore, we
assume five tasks, which offer and / or request data packets. As we will see later, packages
are the central objects for the protocol translation. We identify the packages within the
synthesis flow from the given protocol descriptions inside the IFDs. T1, for example, provides
the incoming package Pin1 and consumes the two outgoing packages Pout1 and Pout2.

Five interacting tasks T1, ..., T5:

T1 → {Pin1, Pout1, Pout2},
T2 → {Pin3},
T3 → {Pin4, Pin5},

T4 → {Pin2, Pout3},
T5 → {Pin6, Pout4}

Mapping functions of this scenario:

1) Pout1 <= fmap(Pin2, Pin5),
2) Pout3 <= fmap(Pin3),
3) Pout4 <= fmap(Pin4, Pin6)

87

4 Interface Synthesis Methodology

T

1

2

3

4

5

Pin4Pin3T

1

2

3

4

5

Pout3 Pout4 Pin6T

1

2

3

4

5

Pin2Pout1 Pin5

The task, this package belongs to, is still working

The reconfigured task is nonrelevant for this SH-Recon-Mode

The task, this package belongs to, is reconfigured

Serve packages

No data available

Figure 4.19: How to determine the correct reconfiguration behavior

Three mapping functions define the data mapping for this communication scenario. The first
mapping function, e. g., requires the data packages Pin2 and Pin5 to process Pout1. Here, the
precise mapping operation that is specified by the mapping functions is nonrelevant. Based
on the tasks and the mapping functions, we created the three tables depicted in Figure 4.19.
Each row stands for one of the five tasks (→ reconfiguration scenario), while the columns
represent the parameters of the associated mapping functions. There exists always one
column for the dedicated package Pout and 0 .. n columns for the incoming packages Pin.

If a mapping function is completely independent of a task, which means it does not map
any data packages related to one of its interfaces, the row of this task is marked by a dashed
line in the related table. The left table, for example, which is dedicated to the first mapping
function, is independent of task T2 and T5. The SH-Recon-Mode which implements this
mapping function is unaffected by a reconfiguration of these tasks. Thus, their IDs does not
have to be evaluated in the initial state of the FSM.

In case of a mapping function being affected by a task, stop signs depict which packages are
not available, whereas worker symbols show which packages have to be further served during
the reconfiguration of this task. The first mapping function (left tabular), for example,
depends on the tasks T1, T3 and T4. In case T4 is reconfigured, the incoming data package
Pin2 is unavailable during the reconfiguration process. However, the data package Pin5 is
still available. The designer can now specify a reconfiguration behavior that transforms the
available packages Pin5 into the outgoing package Pout1. The last transmitted value of Pin2
is stored in the incoming memory and can be employed in order to create Pout1.

If several tasks are reconfigured simultaneously, we have to combine the affected lines.
Thereby, a worker symbol overwrites a dotted line; a stop sign overwrites all others. In
this way, we obtain a maximum of 2n − 1 rows (reconfiguration scenarios) for each table.

The presented tables define precisely which data is unavailable and which packages have to
be further served in a particular reconfiguration scenario. In this way, these tables simplify
specification of the reconfiguration behavior for particular scenarios.

88

4.4 IFB Reconfiguration

SH

PH

TB
U
F

Task

T1

Task

T2

PHM2
PHM1

TB
U
F

CU

SH
RM1

SH
M1

SH
RM2 SH

M2

Figure 4.20: Placement of an RTR-IFB on an FPGA

The FPGA-Placement of an RTR-IFB

There exists different possibilities to place an RTR-IFB onto an FPGA [9, 8]. Figure 4.20
presents one possible mapping of an RTR-IFB to a slotted FPGA architecture, which offers
the necessary degree of freedom for the reconfiguration of particular modes. Only the skele-
ton of the IFB Macro-Structure is placed into a fixed slot, here depicted on the right side.
The skeleton of an IFB consists of the CU, the PH and the SH, and is never changed during
runtime. As we will see in the realization chapter, it is important to construct the static
IFB skeleton in such a way that it can handle all those interfaces, including the derived
PH-Modes and SH-Modes, which it has to adapt during its life cycle.

The PH-Modes, SH-Modes, and SH-Recon-Modes are connected to the skeleton by bus
macros and implemented in separated slots that can be reconfigured independently, managed
by the CU in cooperation with the RCU. This facilitates the highest degree of freedom for
the reconfiguration of particular modes. According to our introduction of reconfigurable
architectures in Chapter 3, each mode provides the necessary fixed points to be connected
to the concerning PH or SH inside the RTR-IFB skeleton.

If possible, we place a PH-Mode into one slot together with the implementation of its related
task. On one hand, this is more resource-efficient than to locate them into separate slots;
on the other hand, it means less overhead for the RCU as the PH-Modes always have to be
reconfigured together with the task. The combination of a task and its stub can be easily
created in the low-level synthesis after the modules of the IFB have been created in the
Interface Synthesis Design Flow.

During reconfiguration, only the affected SH-Modes are switched to the SH-Recon-Modes,
which then operate in parallel to the unaffected SH-Modes. To facilitate arbitrary reconfig-
uration scenarios, we place each SH-Mode in a separate slot. In case the IFB is actually not
reconfigured, all SH-Recon-Modes are idle. Therefore, we implement them altogether in one
slot, which can be reconfigured at any time of the “normal” operation.

89

4 Interface Synthesis Methodology

4.4.2 Formalization of the FPGA-Placement

As mentioned earlier, an FPGA consists of atomic units called slices. It is reconfigured in
columns that comprise two slices each. Several columns can be grouped into a reconfiguration
block (RB). Notice, the slots of a slotted architecture are special RBs which are all of the
same size. For technology reasons, two reconfiguration blocks are separated by bus macros
(BM). In Figure 3.10, reconfigurable and fixed blocks are distinguished, but a fixed block
can be understood as a special case of an RB. This leads to the following definitions [9, 15]:

In accordance with the slotted architecture, we define reconfigurable implementation units
(Uimpl) as paired reconfiguration block and a bus macro:

Uimpl = (RB× BM)

The slots of an FPGA, which hold the active configuration, can be seen as a sequence of
implementation units. The length of this sequence depends on the FPGA type which is
used. The size of a single BM or RB may vary, but the pairwise sequence has to be ensured.

FPGA = {u1, u2, ..., umax }, with ui ∈ Uimpl, i = 1 ...max

To create the communication graph of our system S we apply the problem graph [232].
Therefore, we have to define a task set T and a set of communication nodes C:

Task set : T = { t1, t2, ..., tn }
Set of communication nodes : C = { c1, c2, ..., cm }

The IFB is defined as a tuple of protocol handler, sequence handler, and control unit:

IFB = (PH,SH, CU)

The PH-Modes and SH-Modes are collected in sets:

PH = { phm1, phm2, ..., phmi }
SH = { shm1, shm2, ..., shmk }

Now, each communication node c is mapped to exactly one IFB:

∀ c ∈ C : c 7→ ifba ∧ c 7→ ifbb ⇒ ifba ≡ ifbb 6= ∅ | ifba, ifbb ∈ IFB

To model the different application scenarios, we define system configurations CS as CS(t1, ..., tc).
In dependency of the executed tasks, each configuration represents the implementation units
required to implement a particular scenario (task set) including the IFB components.

CS(t1, ..., tc) = {u1, u2, ..., uz } ⊆ FPGA | (t1, ..., tc) ⊂ T

The mapping function M binds elements (here: tasks) to available implementation units:

∀ t ∈ T : ∃ ut ∈ CS : t
M7−→ ut

90

4.4 IFB Reconfiguration

In the same way we map the PH, the SH, the CU as well as the PH-Modes (phm), the
SH-Modes (shm), and the SH-Recon-Modes (shrm):

• ∃ PH, SH, CU : ∃ uph, ush, ucu ∈ CS :

PH
M7−→ uph ∧ SH

M7−→ ush ∧ CU
M7−→ ucu ⇒ uph ≡ ush ≡ ucu

• ∃ phm ∈ PH, t ∈ T : ∃ uph, ut ∈ CS :

phm
M7−→ uph ∧ t

M7−→ ut ⇒ uph ≡ ut

• ∃ shma, shmb ∈ SH : ∃ ua, ub ∈ CS :

shma
M7−→ ua ∧ shmb

M7−→ ub : shma 6= shmb ⇔ ua 6= ub

• ∀ shrma, shrmb ∈ SH : ∃ ua, ub ∈ CS :

shrma
M7−→ ua ∧ shrmb

M7−→ ub : shrma 6= shrmb ⇔ ua ≡ ub

The equations formally express the presented conditions for an IFB. Each PH-Mode is
mapped to the same implementation unit as its related task. SH-Modes never share an
implementation unit; whereas all SH-Recon-Modes, as well as PH, SH, and CU, are packet
into one implementation unit. Obviously, the implementation units of a configuration CS

are pairwise disjoint.

4.4.3 Runtime Self-Reconfiguration Using the RCU

The RCU affords the automated reconfiguration of communication nodes in combination
with the IFB, which is executed whenever a task (-node) is reconfigured. Therefore, we
introduce R(t) that indicates the implementation units that are related to the task t ∈ T .

R(t) = { t
M7−→ ut, t 7→ (phm

M7−→ uph), t 7→ (shm
M7−→ ush) }

To reconfigure a task t by tR, we have to update the implementation units determined by
R(tR). If we cope with complete configurations instead of single tasks, the related units are
determined by CS =

⋃
i=1..cR(ti). We can minimize the set of reconfigured units when tasks

belong to several configurations. ∆R(CSR
, CS) = CSR

\CS lists only those implementation
units of the new context CSR

that differ from the current configuration CS . The key function
K(tR) → Addr(R(tR)) delivers the addresses of the units related to tR. In hardware, we
implement K as a lookup table that delivers the memory locations of the reconfigured modes.

The algorithm for the self-reconfiguration based on configurations consists of five steps:

0) The configuration CS shall be reconfigured by CSR

1) The RCU informs the affected IFBs to prepare for the reconfiguration of t ∈ CS

2) The IFBs disconnect the related modes and execute the dedicated reconfig. behavior

3) The RCU reconfigures the implementation units resulting from ∆R(CSR
, CS)

4) The IFBs reactivate the reconfigured modes

5) The RCU finishes the current reconfiguration process

91

4 Interface Synthesis Methodology

The Reconfiguration Control Unit

As we have seen, one Reconfiguration Control Unit (RCU) can serve multiple tasks and
IFBs. Thus, we require only one RCU instance in a reconfigurable device. We implement
the RCU as FSM that we map to an additional implementation unit. If there were enough
space in the fixed slot of one IFB skeleton, it could be also implemented therein.

The RCU implements a plug-and-play mechanism for tasks on FPGAs. Whenever we want
to exchange a task, the RCU triggers the automatic reconfiguration of the affected IFBs.
Therefore, we store the previously synthesized bit-streams of the tasks and the modes in a
memory, e. g., the BRAM of the FPGA. To reconfigure an implementation unit, the RCU
activates the download of the dedicated bit-stream from the memory into the FPGA via
the reconfiguration port. To address the right bit-stream the RCU makes use of the key
function K(tR) → Addr(R(tR)) = {MemLoc1,MemLoc2, ...,MemLocn } that holds the
memory locations (MemLoc) of all modes. The addresses of the tasks do not have to be
stored, as this information is implied by the location of the related PH-Modes.

4.4.4 Example: A Multi-Controller Design

Before we go on with the fail-safe behavior of an IFB, we deliver an example where we
applied an RTR-IFB to a multi controller design [8]. The design comprehends multiple
controller variants for the control algorithm, which can be exchanged by reconfiguration.
The controller has been implemented and evaluated in our working group [87, 86, 55] using
the Xilinx design flow for partial reconfiguration.

In the original design, a high-level control exchanges the alternative instances of the control
algorithm via reconfiguration at runtime. A multiplexer, which also provides the necessary
fixed points for the inter-module communication, implements the context switching. To keep
the example simple, we assume an identical sampling rate for all controller variants.

If the sum of reconfiguration and computation time remains within the sampling period, we
can seamlessly carry out the reconfiguration next to the computation in a one-slot solution.
Otherwise, the active controller has to operate during the reconfiguration process until the
circuitry of the new controller is fully established and the multiplexer is able to switch
between them. This kind of reconfiguration requires a two-slot solution where it is not
possible for the controllers to share the same resources.

 Multiplexer

Switch &
SynchExecute T1

Execute T2Config. T2

Slots

Time

Sw

S2

S1

 RTR-IFB

Execute T1 Execute T2

Slots

IFB

S1

Time

Config. T2

Reconf.

Figure 4.21: Multi controller scheduling

92

4.4 IFB Reconfiguration

The left scheduling diagram in Figure 4.21 illustrates the reconfiguration procedure for the
two-slot solution. Control variant T1 is computing in slot S1, while T2 is configured into slot
S2. The slot named Sw holds the multiplexer. The hatched area represents the switching
process of T1 and T2, which happens immediately after T2 is established. However, to avoid
reconfiguration-based communication gaps, we have to allocate two slots for T1 and T2.

Timing Estimations

We assume a worst case computation-time tC of 500 ns for our controller variants. The time
for the complete reconfiguration of a small FPGA is about 1 – 5ms and ranges up to 500 ms
for large ones, like the Virtex-II Pro. When we divide our slotted FPGA architecture into
ten logical slots, we have to cope with configuration times tR from 100 µs to 50ms per slot.
As we can see, the reconfiguration lasts 200 to 100,000 times longer than the computation.
This is an example of a macro reconfiguration with a very frequent reconfiguration.

To compensate the configuration time tR in a two-slot solution, the active time tA of a
controller, which specifies the time interval between initialization and replacement by means
of reconfiguration, has to be tA > tR + tC . Depending on the sample-rate fS (our controllers
operate at a sample-rate of fS = 10 kHz → tS = 1/fS = 100µs), we have to cope with
tR / tS = 1 – 500 samples which are affected by a single reconfiguration process. This makes
clear that the task-switching time cannot be discounted as a negligible side-effect.

The Embedded RTR-IFB

The presented timing characteristics indicate that it makes sense to introduce an RTR-IFB
into this design. This means to replace the high-level control by an RCU and to substitute
the multiplexer with an RTR-IFB. The RCU is comparable to the high-level control in
functionality and size. Admittedly, an RTR-IFB is much larger than a single multiplexer;
however, it saves to allocate the second slot as presented in the scheduling diagram on the
right side of Figure 4.21. Depending on the size of the controller algorithm, it is actually
possible to reduce the total size of a design using an IFB.

With the help of the SH-Recon-Modes, we are able to transparently perform a deterministic
behavior during the reconfiguration process for the unaffected tasks. For example, the SH-
Recon-Mode could repeat the last set-value of the exchanged controller, or compute new
values based on a mini-controller, if the controller’s sensors are connected to the IFB as
well. As this process happens transparently for the sensors and actuators, we can remove the
current controller immediately and configure the new one into the same slot (see Figure 4.21).

Results: The RTR-IFB Implementation

We used the design tool ISE from Xilinx Inc. to generate the target code for our hardware
platform, a board named Digilab 2E from Digilent Inc. carrying a Xilinx Spartan2E FPGA.
Figure 4.22 and 4.23 illustrate our results of the implemented IFB.

In Figure 4.22 a screen shot of the floorplanner can be seen. The blue parts on the right and
left represent the protocol handler. The yellow area implements the reconfigurable parts
including the fixed TBUF fixpoints. The control unit and the RCU are located on the
very left. Figure 4.23 illustrates the implemented IFB using the Xilinx FPGA Editor. This
illustration depicts the final circuit that is downloaded into the FPGA.

93

4 Interface Synthesis Methodology

Figure 4.22: Placement and routing of
the synthesized IFB

Figure 4.23: The synthesized IFB visualized by
the Xilinx FPGA Editor

What Did We Learn From the Multi Controller Example?

The first question is: Which generality does the presented example have? Embedded systems
are mainly separated into the data-processing and the control domains. As our controllers
apply typical control values, the presented example is significant for many applications. The
positive effects that we can observe in the multi controller example are:

• The Interface Synthesis Design Flow speeds up the design process due to a comfortable
integration of tasks, especially those with heterogenous interfaces.

• The IFB handles the synchronization of the complete reconfiguration steps.

• The designs are no longer restricted to task-specific demands like sampling rates in
relation to the reconfiguration times.

• We can easily specify the designated reconfiguration behavior as an SH-Recon-Mode.
This prevents reconfiguration based communication gaps and guarantees a predictable
behavior during the reconfiguration.

• Decreasing the number of slots increases the utilization of the reconfigurable device.

There are also two possible drawbacks resulting from the integration of the RTR-IFB:

• The reconfiguration time increases because of the additional RTR-IFB components.

• The design space exceeds the “hand-made” solution.

In cases where we save a sufficient number of slots, we can even reduce the total design
size and thus shorten the configuration time. In the motivation we mentioned the Design
Gap, which concludes that there are so many implementation resources available that we
cannot manage them efficiently anymore. Therefore, we are convinced that the mentioned
drawbacks are acceptable or even negligible compared to the advantages.

94

4.5 Fail-Safe Behavior

4.5 Fail-Safe Behavior

Next to the real-time capability, it is an important feature of the IFB to provide fail-safe
functionality for the application in fail critical embedded systems. In [6, 32] we present a
methodology to extend the IFB with fail-safe behavior.

Some helpful applications in the embedded systems domain have been innovated just to
improve our living standard. Restricted to these systems, a reduced performance is uncritical
even if it is not satisfactory for the user. Such systems are categorized as fail-soft. On the
other hand, applications that control safety critical systems with real-time constraints have
to consist of a deterministic behavior, even in case of an error.

As shown in Table 4.1 we distinguish between six states of system behavior. The most
important execution modes for safety critical systems, next to the default state go, are the
states fail-operational and fail-safe or fail-stop-safe. As long as we can overcome all occurring
errors with the help of fault tolerance mechanisms, fail-operational is to be preferred to fail-
safe. If an error correction cannot be guaranteed, a fail-safe behavior must be implemented.

System state System behavior
go System runs safe and accurate
fail-operational System runs fault tolerant, without a loss of performance
fail-soft System execution is safe, but the performance is restricted
fail-safe, Just system safety is guaranteed, maybe with no performance
fail-stop-safe
fail-unsafe Unpredictable system behavior

Table 4.1: System failure states [126]

Fail-safe means to bring a running system into a safe state [230, 126] where only the system
safety is guaranteed, maybe without any remaining performance. Thereby, unpredictable
behavior is prevented. A system has to be forced into the fail-safe state when a malfunction
would result in the damage of people, materials, or the system itself. Such a malfunction
could arise from the breakdown of partial system functionality or result from a communica-
tion error in the form of corrupted or lost signals.

Our approach copes with the error processing for a large bandwidth of communication errors.
The process of communication error processing has been divided into an error detection and
a fail-safe behavior phase. We developed a methodology to transparently relocate both
phases from the interacting nodes into the Interface Block.

The advantage of this methodology is that IFBs already deal with communication, and
especially the protocols. From the implementation view, it is much easier to extend an
IFB by a communication error processing than to implement the functionality in the task
itself. To perform the error detection, an adequate protocol guard has to be integrated in
the dedicated PH-Mode. A definition of the expected fail-safe behavior allows us to extend
the protocol transformation. In this way, communication failures are hidden from the tasks
already due to the interface. Fail-operational, as well as fail-safe behavior, is transparently
executed based on the interface adapters of the interacting nodes.

95

4 Interface Synthesis Methodology

4.5.1 Basic Concepts of Error Processing

Safety critical systems demand a predictable system behavior in case a failure occurs. In or-
der to guarantee predictability, fail-safe mechanisms are used next to the important concept
of redundancy. Some strategies for error detection are explained in the following section and
an overview of fail-safe strategies used in well-known protocols is discussed afterwards.

Concepts of Error Detection

To integrate communication error processing into the IFB, it is necessary to be aware of
the failures that may occur during the communication and how to discern them. A set
of communication errors is presented in Table 4.2 next to a collection of well-known error
detection techniques. Transmission errors and insertion change the bit pattern of a message.
The disappearance of messages on the receiving side is called loss, in contrast to repetition. A
false sequence of packages is critical, especially for control-dominated systems. The disguise
of messages changes the target address and leads to wrong data receivers. If a message is
falsified before it is provided with any safety mechanism, it is called falsification. A wrong
appearance of signals in time is called timing error.

As shown in Table 4.2, a parity-bit is a simple technique to detect transmission errors. It
is easy to implement, but the number of recognizable errors is limited to an odd number of
bit faults. Rectangle codes extend the parity check to a two-dimensional check over several
messages. Hamming codes add redundancy for detecting and correcting the wrong bit pat-
tern. Techniques like cyclic redundancy check (CRC), PID-check, or frame-check detect most
transmission errors. Using more complex data structures, we are able to discern repetition,
loss, false sequences, and timing errors. Representatives of this class are acknowledge-fault
detection and the message descriptor list (MEDL) [168].

In order to reach a higher degree of error detection, different methods can be combined. Due
to this combination, a reliable error detection for safety critical systems can be obtained.

mechanism fa
u
lt

tr
an

sm
.

er
ro

r

re
pe

ti
ti
on

lo
ss

in
se

rt
io

n

fa
ls

e
se

qu
en

ce

fa
ls

ifi
ca

ti
on

di
sg

ui
se

ti
m

in
g

er
ro

r

Parity X
Rectangle code X X
Hamming code X X
CRC X X
Frame-Check X X
PID-Check X X
ACK-Fault Det. X X X
MEDL X X X X

Table 4.2: Communication failures and detection mechanisms [126]

96

4.5 Fail-Safe Behavior

Error Checks of Popular Protocols

Compared to the ISO/OSI reference model, communication failure checks can be found in
each layer. They vary in functionality and complexity. As we will see in the following
section, complete sections of the reference model have to be implemented by the designer if
there is no support given on the existing implementation platform. An IFB can be used to
overcome gaps, which result from missing or incompatible layers inside the ISO/OSI model.
The communication failure checks, which originally would be realized in the bypassed layers,
are implemented in the IFB instead.

Many popular protocols contain methods for error detection and correction. For instance,
RS-232 adds a parity bit; USB uses a CRC of 5- or 16-bits depending on the transmitted
package. Protocols, which have been designed for safety critical systems, often combine
several failure detection methods as time-triggered protocols (TTP) do. TTP/A employs a
message descriptor list (MEDL) in cooperation with a parity bit. TTP/C combines a MEDL
with a CRC, which is more powerful in error detection [168].

Other protocols like LVDS and RS-458 define only electrical parameters of the physical layer.
The developer, himself, has to implement the functionality between the application and the
physical layer. This challenge can be rather complex, faulty, and costly in terms of time and
money.

4.5.2 Integrating Error Processing into an IFB

The integration of communication error processing into an IFB has to cope with two phases:
the error detection and the execution of fail-safe behavior.

Executing Error Processing Inside an IFB

From our point of view, communication errors may result only from the adapted protocols,
never from the IFB itself. Thus, the functionality for discerning communication errors has
to be located inside the PH-Modes. We implement the error detection as a so-called protocol
guard which performs a monitoring of the executed protocol. An additional FSM that is
closely coupled to the FSM, which implements the communication protocol, provides the
dedicated monitoring functionality.

As one advantage of this approach, we can perform all error checks presented in Table 4.2,
except semantic tests (falsification, disguise), in parallel to the data processing. To inform
the CU about a communication error, we make use of failure IDs. We specify as many failure
IDs as required for each PH-Mode to activate the various fail-safe behaviors by the CU.

To integrate fail-safe behavior into the IFB, we reminisce about the method to implement
reconfiguration behavior (see Section 4.4.1). The idea is to provide additional user-defined
SH-Modes that can be activated during runtime. Within these modes, the designer specifies
the behavior that is executed while the fail-safe mode is activated. Deterministic behavior
can also be assured for real-time environments in this way.

If we can assure that no communication error occurs during the reconfiguration of the PH-
Recon-Modes, we can even integrate the fail-safe functionality into the PH-Recon-Modes as
a further part of the user-defined FSM.

97

4 Interface Synthesis Methodology

The way we handle communication errors is quite similar to the reconfiguration flow depicted
in Figure 4.17. Our method of handling communication errors excludes undefined states
and unpredictable system behavior. The detailed procedure for coping with communication
errors consists of six steps:

1) The communication error is detected by a protocol guard, e. g. a timing violation in a
timed transition.

2) The protocol guard informs the CU that a failure occurred by updating the failure ID.
The ID specifies which fail-safe behavior has to be executed.

3) The CU determines the affected SH-Modes and switches between active and fail-safe
SH-Mode (or SH-Recon-Mode where applicable), which has been previously specified
by the system designer.

4) In parallel to 3), the task dependent PH-Mode is reset and reactivated in the initial
state of the protocol. The PH-Mode tries to synchronize itself with the protocol to
reestablish the connection. Meanwhile, the protocol guard in the PH-Mode listens for
a reactivation of the communication.

5) In the case of a successful reactivation, the protocol-guard informs the CU.

6) The CU switches immediately back to the default SH-Mode.

Integration into the Communication Synthesis Flow

To integrate communication error processing into the Interface Synthesis Design Flow, the
failure detection and the description of fail-safe behavior have to be included in the abstract
description level as well. The detection of communication failures belongs to the external
protocols and therefore has to be part of the IFDs. Only the designer of an IFD is aware
of the functionality of the protocol guard. Thus, the specification of the protocol guard is
composed a-priori and gets part of the protocol description inside the IFD. Of course, the
protocol synthesis has to treat this part of the IFD differently from the original protocol de-
scription. To speed up the design process, a set of predetermined error-detection techniques,
as presented in Table 4.2, can be provided to the designer. The designer has to specify the
fail-safe behavior for dedicated communication errors in the form of an SH-Mode or a state
sequence in an SH-Recon-Mode.

Actually, the fail-safe behavior has not been integrated into the Interface Synthesis De-
sign Flow. Nevertheless, the presented theory copes with all challenges of this problem.
Therefore, there remains the pure implementation aspect which is part of future work.

4.5.3 Case-Study: Robot Scenario

An example that has been implemented by hand shall demonstrate the functionality and
limitations of our approach. The scenario given in figure 4.24 consists of a task which sends a
one-byte set-value to a robot controller with four degrees of freedom. We assume a high-level
controller or a user to be represented by this task. The communication between the task and
the controller is established by an IFB. We use the serial RS232 protocol that implies 8 bit of

98

4.5 Fail-Safe Behavior

R1

RS232 with parity bit

Task

Bit 7 + 6

Bit 5 + 4

Bit 3 + 2

Bit 1 + 0

Home11

Angel –1°10

Angel +1°01

No move00

functionBit-value

Con-

troller
IFB

Figure 4.24: Error handling in a robot scenario

data and one parity bit. The parity bit is evaluated to avoid transmission errors. Therefore,
we use a parity checker as one protocol guard. Additionally, the controller expects a message
from the task every millisecond. This time condition is guarded by a watchdog.

If one protocol guard observes its error condition to be fulfilled, the dedicated fail-safe mode
in the SH is activated and generates the fail-safe control data for the robot controller. The
fail-safe data for a wrong parity is defined as ”00000000”. By transmitting this data to the
controller, it is guaranteed that no further movement takes place by stopping the complete
robot arm. A timing error causes the robot to go back to its default position by sending
”11111111”. A properly received message would reestablish the communication here. These
actions guarantee a predictable behavior in each situation.

The descriptions for the parity checker and the watchdog have been modeled as FSMs and
were linked into the existing IFD. Due to this linkage, the protocol guards are able to
exchange data with the protocol FSM and the control unit. Therefore, the signals of the
protocol guard were hooked into the vertical and horizontal communication structure of the
IFB. The same is true for the fail-safe behavior. As a further SH-Mode, the fail-safe behavior
is treated as equivalent to the synthesized SH-Modes.

A large bandwidth of communication errors can be treated in the same way as given in
our robot example. By definition, our approach is actually limited to syntactical checks
and thus does not perform any semantic error detections. This is also the reason why we
cannot detect falsification or disguise in general. This limitation has been committed to keep
semantic understanding out of the connecting interface. In fact, the technical limitation of
the communication error processing algorithms is restricted to the expressive power of linear
bounded automata.

99

4 Interface Synthesis Methodology

4.6 Relation to the ISO/OSI Model

Every communication between component interfaces is based on communication protocols.
To compare different forms of communication we often use the ISO/OSI reference model.
This model allows us to classify a communicating component related to one of the seven
ISO/OSI layers (see Figure 4.25). Those layers, which are implemented by a particular
component interface, are called protocol stack. Beginning with the lowest layer, the protocol
stack grows up to that layer which is required for a particular application. Therefore,
applications with a simple I/O protocol, like a computer keyboard, implement only a small
protocol stack; whereas complicating applications, like a program for home banking, grow
up to the application layer.

Until now, we introduced the reconfiguration based communication gap, which copes with
I/O problems during runtime reconfiguration. The second kind of gap is the ISO/OSI layer
based communication gap [4]. It describes the challenge of adapting interfaces of different
ISO/OSI layers. We can deploy an IFB above the physical layer to overcome these gaps,
which result from missing or incompatible layers inside the ISO/OSI model. Therefore,
the functionality that originally would be realized in the bypassed layers, for example, the
handling of communication failures, has to be implemented in the IFB instead.

The ISO/OSI model describes scenarios where tasks are interconnected by communication
media. Media are located below the physical layer while tasks access the protocol stack
from above. Therefore, it is our aim to adapt high-level task interfaces with low-level media
interfaces, which are separated by an ISO/OSI layer based communication gap as illustrated
in Figure 4.25. The figure illustrates four media that implement different protocol stacks:
RS-232 and RS-485 define only the physical layer, CAN implies also the link layer, while
Firewire (IEEE 1394) goes up to the network layer. The upper two layers of the ISO/OSI
model are dedicated to the tasks. It is not an intended aim of the IFB to adapt the abstract
protocols of this high-level communication. The same is true for the layers four and five,
that we denoted as Abstract Communication Layer (ACL). The ACL is part of our real-time
environment for the rapid prototyping of communication.

7: Application

6: Presentation

5: Session

4: Transport

2: Link

Task

ACL

3: Network

1: Physical

Abstract
Communication Layer

SW Application / Device

IFB
fills

comm.
gap

Existing Implementations

IFB

ISO/OSIConcept

Fire-
wireCAN

RS-232 RS-485

A
C
C
E
S
SMe-

dium

Figure 4.25: ISO/OSI layer based communication gap

100

4.7 Prototyping of Real-Time Communication

4.7 Prototyping of Real-Time Communication

To facilitate the rapid prototyping of real-time communication scenarios, we developed a
specific approach based on the ISO/OSI model. Figure 4.26 illustrates a common situation:
A sending task generates data that has to be transmitted to the receiving task via a medium.
It is the duty of the IFB to accept, modify and generate protocol conform bit-streams. The
abstract communication layer (ACL) provides real-time capable communication channels.

In conformance to the ISO/OSI standard, each layer provides a number of services to the
upper layer and thus hides all technical implementation details of the lower layers. For that
purpose, the ACL provides various services to the tasks like transmit - and receive messages
on logical channels. Both messages and channels support priorities as well as transmission
deadlines [4].

Rapid Prototyping of
Real-Time Communication

A Case-Study: Interacting robots

S. Ihmor, N. Bastos Jr., R. Cardoso Klein, M. Visarius, W. Hardt
Informatik- und Prozess Labor (IPL), University of Paderborn,

{ihmor, nilson, cardoso, visi, hardt }@upb.de

Abstract

The implementation of real-time communication
within the design of embedded systems becomes more
and more the real system bottleneck. For this reason the
evaluation of the communication characteristics is very
essential in an early design stage. In this paper we
present an evaluation method for real-time
communication based on rapid prototyping. Key points
are the ISO/OSI layer conform implementation,
exchangeable hardware and software modules and the
adaptation of a wide range of real-time protocols. These
aspects are implemented and illustrated in our case-
study: Two interacting robots with five degrees of
freedom, each.

1. Introduction

During the last decade chip integration density has

increased rapidly. Thus high performance computation
units are available in embedded system design. This
leads to bandwidth intensive communication with hard
real-time restrictions in many application areas, e.g. the
analysis of video streams or real-time data exchange
between interacting robots.

The implementation of the task communication is
an often neglected necessity and of reasonable
complexity. Often the quantity of I/O dominates the final
size of a die. In order to optimize the use to capacity and
to minimize time to market the implementation of
communication has to be included into the automated
design flow. In this paper we present a structured
approach to support the rapid prototyping design phase.

The aspects of communication can be structured
into two main parts. Figure 1 illustrates a common
situation: A sending task generates data which has to be
transmitted to the receiving task via a medium, e.g.
copper or fiber optics. The first part, the interface block
(IFB), implements the functionality to accept, modify
and generate protocol conform bit-streams. IFBs
implement the mentioned communication aspects in an
ISO/OSI conform way. Main components of an IFB are

the protocol- and sequence handler (Figure 1). For
details according the IFB see [5, 7, 8 and 9]. The second
part is the abstract communication layer (ACL).
ISO/OSI conform, each layer provides services to the
upper layer and thus hides all technical implementation
details of the lower layers. For that purpose the ACL
provides various services to the tasks like transmit and
receive messages on logical channels. Both, messages
and channels support priorities as well as transmission
deadlines.

The system performance is strongly influenced by

the implementation of these parts which underlines the
necessity of a real-time evaluation platform. For this
reason a case-study has been set up: the interacting
robots. This prototyping platform will be used either for
teaching of students as well as for illustration and
evaluation of our approaches in scientific research.

The first step to realize this case-study has been to
improve the robots by electronically and mechanically
reengineering. The idea was to implement cooperative
tasks between the robots [3, 10], using a fast real-time
communication (Figure 1) [1, 2]. Thus the second job in
this project was to develop the abstract communication
layer based on the services of IFBs. Finally two
graphical user interfaces (GUI) were designed to control
the robots from a PC either with a C++ application, or
via internet, using a Java applet.

Medium

Sending
Task

Protocol
Sequence

IFB

Protocol

H
an

dler
Abstract

Communication
Layer

Receiving
Task

Protocol
Sequence

IFB

Protocol

H
an

dler

Abstract
Communication

Layer

D
A
T
A

Medium

Sending
Task

Protocol
Sequence

IFB

Protocol

H
an

dler
Abstract

Communication
Layer

Sending
Task

Protocol
Sequence

IFB

Protocol

H
an

dler
Abstract

Communication
Layer

Receiving
Task

Protocol
Sequence

IFB

Protocol

H
an

dler

Abstract
Communication

Layer

Receiving
Task

Protocol
Sequence

IFB

Protocol

H
an

dler

Abstract
Communication

Layer

D
A
T
A

D
A
T
A

Figure 1: Rapid-prototyping of communication Figure 4.26: Rapid prototyping of communication

Abstract Communication Layer (ACL)

We created the abstract communication layer to add a higher class of service and safety to
the programming of embedded systems. The ACL encapsulates the lower level interfaces of
real-time capable media and thus hides them to tasks, as shown in Figure 4.27. Without
the ACL, the computational nodes would have to also consider the details of the real-time
communication on the session and transport layers.

The rest of the paper is structured as follows. In
chapter two related work is presented followed by the
prototyping of real-time communication in chapter three.
Our case-study is described precisely in chapter four.
Evaluation aspects are given in chapter fife. Afterwards a
conclusion and future work is presented in chapter 6.

2. Related Work

Mechatronic engineering is a combination of

diverse disciplines of engineering: mechanical, electrical,
control and computer science. This project has a high
range of actual subjects taken from these areas. The case-
study “interacting robots” has been realized in
cooperation with the Mechatronics Laboratory Paderborn
(MLaP). This institute is very well experienced in the
electrical, mechanical, controlling area and informatics
(CAMeL-View, IPANEMA [17, 19]). They developed
e.g. the “X-Mobile” [16, 18], which is a prototype with
active suspension for each wheel. The RABBIT [15]
system is a real-time communication platform. This
hardware system is a modular rapid-prototyping platform
for distributed mechatronic systems to support real-time
information processing. The RABBIT system comprises
originally in three main modules: MPC555, FPGA and
IEEE 1394.

Some ideas which occur in the abstract
communication layer are well known from the transputer
technology. Basic methodologies like transmit and
receive functionality are well understood and used for
decades as abstraction in communication systems [20].
The ISO/OSI model was used as standard reference
model to classify our approaches [20].

The IFB methodology is used to fill the gap
between the abstract communication layer and the
hardware. IFBs are dynamical interface modules which
have been developed at the computer science and process
laboratory (IPL) in Paderborn [4, 5, 7]. Starting from an
abstract description various interfaces can be generated
[8]. The main functionality is based on protocol- and
sequence handling based on finite state machines (FSM)
[7, 9]. The IFB provides a homogenous interface
(service) to the abstract communication layer,
independent of physical hardware details or the protocol
which is running on the medium. Thus the evaluation of
various high level communication prototypes is
supported in a modular way.

The modeling and implementation of real-time
interfaces and tasks is an important aspect for our
approach. Literature references can be found in [6, 13,
14] where standard methodologies are explained in
detail. To generate synthesizable HDL code our design is
based on methodologies and synthesis techniques found
in [11, 12].

3. Prototyping of RT-Communication

3.1 Abstract Communication Layer

The abstract communication layer was created to

add a higher class of service and safety to the
programming of embedded systems. It was designed to
encapsulate the lower level interfaces between multiple
tasks or devices, as shown in Figure 2. Without the ACL
the computational nodes are directly connected via IFBs
to the medium and have therefore to consider a lot of
communication details.

When the ACL is included in the design process a

programmer can concentrate his effort in developing the
tasks and just call functions of the ACL. The most
important functions are the reservation of a channel
specifying the media that one wants to use, including
priorities and time restrictions. Further functions can be
called to schedule (send) or to read messages from a
specific channel (Figure 3), while multiple logical
channels can be mapped on one physical medium.

An important aspect of the abstraction is that one

channel behaves as a single entity to perform a one way
communication between two tasks with a unique priority
level inside of the system. The messages themselves
consist of priorities, too. The order in a transmit process
will be determined first by the channel priority (unique)
and after that by the message priority. If there are two
messages in a channel with the same priority the message
that was scheduled first will be sent first.

To be able to offer a uniform API to the ACL, it’s
necessary to maintain important characteristics of the
different kinds of medium implemented. In our prototype
we used the IFB technology to realize this aspect.

Node

Interface Block

Computation:
Processor /

Device

Medium

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Medium

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Figure 2: Abstract level view to communication

Task 1 Task 2

Task 4Task 3

Channel 1

Channel 4

Ch 2 MessageCh 3

Task 1 Task 2

Task 4Task 3

Channel 1

Channel 4

Ch 2 MessageCh 3

Figure 3: ACL in a multi-task communication system

Figure 4.27: Abstract view of communication

101

4 Interface Synthesis Methodology

By including the ACL in the design process, the programmer may concentrate his efforts
in developing the tasks and just call the API functions of the ACL. The most important
functions are the reservation of a channel, and specifying the media that one wants to use,
including priorities and time restrictions (see Figure 4.28). Further, there exist functions to
schedule (send) or read messages from a specific channel.

To optimize the utilization of the available real-time connections, multiple logical channels
are mapped onto one physical medium. The reservation of a channel has to pass an accep-
tance test based on a schedulability analysis, which guarantees that the maximum utilization
of a particular medium (100 %) is never exceeded.

The rest of the paper is structured as follows. In
chapter two related work is presented followed by the
prototyping of real-time communication in chapter three.
Our case-study is described precisely in chapter four.
Evaluation aspects are given in chapter fife. Afterwards a
conclusion and future work is presented in chapter 6.

2. Related Work

Mechatronic engineering is a combination of

diverse disciplines of engineering: mechanical, electrical,
control and computer science. This project has a high
range of actual subjects taken from these areas. The case-
study “interacting robots” has been realized in
cooperation with the Mechatronics Laboratory Paderborn
(MLaP). This institute is very well experienced in the
electrical, mechanical, controlling area and informatics
(CAMeL-View, IPANEMA [17, 19]). They developed
e.g. the “X-Mobile” [16, 18], which is a prototype with
active suspension for each wheel. The RABBIT [15]
system is a real-time communication platform. This
hardware system is a modular rapid-prototyping platform
for distributed mechatronic systems to support real-time
information processing. The RABBIT system comprises
originally in three main modules: MPC555, FPGA and
IEEE 1394.

Some ideas which occur in the abstract
communication layer are well known from the transputer
technology. Basic methodologies like transmit and
receive functionality are well understood and used for
decades as abstraction in communication systems [20].
The ISO/OSI model was used as standard reference
model to classify our approaches [20].

The IFB methodology is used to fill the gap
between the abstract communication layer and the
hardware. IFBs are dynamical interface modules which
have been developed at the computer science and process
laboratory (IPL) in Paderborn [4, 5, 7]. Starting from an
abstract description various interfaces can be generated
[8]. The main functionality is based on protocol- and
sequence handling based on finite state machines (FSM)
[7, 9]. The IFB provides a homogenous interface
(service) to the abstract communication layer,
independent of physical hardware details or the protocol
which is running on the medium. Thus the evaluation of
various high level communication prototypes is
supported in a modular way.

The modeling and implementation of real-time
interfaces and tasks is an important aspect for our
approach. Literature references can be found in [6, 13,
14] where standard methodologies are explained in
detail. To generate synthesizable HDL code our design is
based on methodologies and synthesis techniques found
in [11, 12].

3. Prototyping of RT-Communication

3.1 Abstract Communication Layer

The abstract communication layer was created to

add a higher class of service and safety to the
programming of embedded systems. It was designed to
encapsulate the lower level interfaces between multiple
tasks or devices, as shown in Figure 2. Without the ACL
the computational nodes are directly connected via IFBs
to the medium and have therefore to consider a lot of
communication details.

When the ACL is included in the design process a

programmer can concentrate his effort in developing the
tasks and just call functions of the ACL. The most
important functions are the reservation of a channel
specifying the media that one wants to use, including
priorities and time restrictions. Further functions can be
called to schedule (send) or to read messages from a
specific channel (Figure 3), while multiple logical
channels can be mapped on one physical medium.

An important aspect of the abstraction is that one

channel behaves as a single entity to perform a one way
communication between two tasks with a unique priority
level inside of the system. The messages themselves
consist of priorities, too. The order in a transmit process
will be determined first by the channel priority (unique)
and after that by the message priority. If there are two
messages in a channel with the same priority the message
that was scheduled first will be sent first.

To be able to offer a uniform API to the ACL, it’s
necessary to maintain important characteristics of the
different kinds of medium implemented. In our prototype
we used the IFB technology to realize this aspect.

Node

Interface Block

Computation:
Processor /

Device

Medium

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Medium

Node

Interface Block

Computation:
Processor /

Device

Node

Interface Block

Computation:
Processor /

Device

Figure 2: Abstract level view to communication

Task 1 Task 2

Task 4Task 3

Channel 1

Channel 4

Ch 2 MessageCh 3

Task 1 Task 2

Task 4Task 3

Channel 1

Channel 4

Ch 2 MessageCh 3

Figure 3: ACL in a multi-task communication system Figure 4.28: ACL in a multi-task communication system

Each logical channel behaves as a single entity. It provides a one way communication between
two tasks with a unique system-wide priority level. The messages themselves consist of
priorities as well. We determine the order in a transmit process firstly by the unique channel
priority and secondly by the message priority. If there are two messages in a channel with
the same priority, the message that was scheduled first will be sent first.

An IFB provides the technology to support a wide range of protocol stacks. In this way,
the IFB is able to provide a uniform API for the ACL for different kinds of media. ACL
and IFB communicate via memory mapped I/O. According to the different protocol stacks
the IFBs have to adapt to the physical layer (1), the link layer (2), or the network layer (3)
of the ISO/OSI model (see Figure 4.26). Because of the transparency of an IFB, which is
in accordance with the ISO/OSI concept to hide lower level details, the ACL is not able to
determine between different communication media.

To make use of the IFB, we have to describe the IFD of each protocol that we like to support.
RS-232, RS-485, CAN, asynchronous - and isochronous FireWire are our favorite real-time
media. However, RS-232, RS-485, CAN and FireWire (in the asynchronous mode) do not
guarantee a real-time communication by nature. We can solve this problem by scheduling
the medium access, for example, using time slots similar to TTP.

Until now, we modeled and tested the IFB for the two protocols RS-232 and RS-485 in
this scenario. Additionally, we implemented an ACL solution that deploys an isochronous
FireWire communication based on shared memory [4]. Apart from this real-time example,
we created an IFD also for the I2C bus.

102

4.8 Summary

4.8 Summary

In this chapter, we presented our Interface Synthesis methodology. We introduced the
Interface Synthesis Design Flow and its partitioning into design phases and design steps.
Structuring the design flow in this way helps us to cope with the complexity of automatically
generating reconfigurable IFBs. Furthermore, we introduced our modeling concept which
accomplishes the three domains XML, Java, and UML.

Afterwards, we explained our interface adapter module, the Interface Block. On one hand,
we refer to the IFB Macro-Structure, which defines the conceptual design of the IFB; on the
other hand, we explained the features and the functionality of the runtime reconfigurable
IFB. In the end, we presented how to employ an IFB in fail-critical application scenarios
and described its relationship to the well known ISO/OSI model.

Interface Synthesis Design Flow

The first design phase of the Interface Synthesis Design Flow encapsulates the modeling
aspect. Within this phase, we specify the System Architecture that provides the IFDs and
TPDs as input for the automated IFB synthesis. With the help of the System Architecture
we are able to model the communication infrastructure of complex communication scenarios
very elegantly, which is interesting for the rapid design of distributed embedded systems.

As our approach proposes a scenario-based interface synthesis, we have to clearly distinguish
between the syntax and semantics of protocols, which are modeled inside the IFDs. Our
IFDs are limited to the protocol syntax that defines the use-case independent structure of
protocols. The semantics of particular bits does not have to be specified in our approach,
which is especially interesting for the adaptation of generic IPs.

The information on how to process the data inside the IFB for a dedicated scenario is
added in the interface synthesis phase. The strict separation of static structure and flexible
behavior is especially helpful for the rapid prototyping of communication systems, as we are
able to evaluate different IFBs without any modifications in the System Architecture model.

The subsequent synthesis phase divides into the creation of a target language independent
IFB model and a code generation design step based on standard compiler techniques. As
the next chapter is dedicated to the synthesis phase, we gave only a rough overview of the
two design steps and the subsequent integration phase.

Modeling Concept

Afterwards, we presented our IFS Modeling Concept with respect to XML, Java, and UML.
We highlighted the relevance and the interaction of the three modeling languages related to
our approach. In the form of an XML scheme, the IFS-Format defines the formal model for
the System Architecture and the exchange format of the IFS-Editor. We implemented the
IFS-Format as IFS-Data-Structure, which defines the data model in the M–V–C architecture
of the IFS-Editor.

To provide an intuitive and abstract modeling of the System Architecture, we developed
a UML 2.0 profile. It is an outstanding feature of our approach to provide an integrated
design flow, which is completely implemented by the IFS-Editor, reaching from an abstract
UML 2.0 model down to executable hardware. Therefore, we explain our UML 2.0 profile
and its model transformation in the following chapter in greater detail.

103

4 Interface Synthesis Methodology

The Interface Block

In the second part of this chapter we introduced the Interface Block. We presented the
IFB Macro-Structure that is composed of the protocol handler, the sequence handler, and
the control unit, and discussed the functions and interaction of these components. The PH
provides the PH-Modes, which act as stubs that pack and unpack the information that is
exchanged with the adapted interfaces. The SH-Modes process this information according
to the mapping functions specified in the IFD-Mapping. With the help of the mapping
functions, we can assign constant values, shuffle incoming data in combination with the
guarded assignment of data, and perform complex data processing based on FSMs.

Based on the IFB Macro-Structure, we explained the pipelined data processing inside the
IFB, which is an important aspect for the reconfiguration of an IFB. To motivate runtime
reconfigurable IFBs, we classified the reconfiguration in static - vs. dynamic -, complete -
vs. partial - as well as micro - vs. macro reconfiguration. While a simple IFB fulfills all
needs of the static reconfiguration, we require a runtime reconfigurable IFB for systems
using macro reconfiguration. We answered the questions of when to reconfigure an RTR-
IFB and explained the detailed reconfiguration flow. Afterwards, we presented the modeling
of reconfiguration scenarios and discussed a flexible solution to map RTR-IFBs to a slotted
FPGA architecture. The RTR-IFBs prevent reconfiguration-based communication gaps by
executing deterministic behavior during runtime.

An important feature for the embedded domain is the application of the IFB as a fail-safe
interface adapter in fail critical environments. We discussed how far the IFB is able to detect
and handle communication errors and presented a realistic robot example.

Finally, we explained the relationship of the IFB to the ISO/OSI model. To handle ISO/OSI
based communication gaps, the IFB emulates the bridged functionality within its SH-Modes.
In this way, we can adapt even incompatible or separated ISO/OSI layers. The ACL is
an environment for real-time communication that provides logical channels for real-time
communication. In combination with an IFB, the ACL is able to employ various real-time
capable media like RS232, RS485, and FireWire.

104

CHAPTER 5

The Detailed Interface Synthesis Design Flow

After introducing the composition and the coherences of our design flow in the last chapter,
we now highlight important aspects of the Interface Synthesis Design Flow. The first point
of interest is the developed UML 2.0 profile, related to the modeling phase. Afterwards,
we discuss the synthesis design phase with a main focus on the protocol synthesis and the
assembly of the intermediate representation of the IFB model. The chapter concludes with
an insight into the external integration phase. We present the relation to Part-Y, an EDA
tool for the partial runtime reconfiguration that we have developed in our working group.

5.1 Modeling-Phase

Figure 5.1 highlights the important aspects of the modeling phase. The main goal is the
modeling of the communication infrastructure in the form of the System Architecture as
input for the interface synthesis. To maximize the reuse of our models, we make them
available in an IFS IP data-base. In Figure 5.1 we distinguish between two data-bases, one
for communication components and the other for architecture components. The stored IPs
are IFS-Instances in the XML format presented in our modeling concept (see Section 4.2).

The Interface Synthesis Design Flow supports three ways to compose new components of
the System Architecture or to add externally created models:

• XML instances (including IP meta-data)

• IFS-Editor (graphical component view + interactive masks)

• UML 2.0 (Fujaba)

XML instances are suitable to store and exchange information. Therefore, we can add
components to the System Architecture by loading components from the IFS IP database
or by importing the meta-data of an IP. However, it is error prone and inefficient to model
XML instances by hand. Therefore, we support the design entry within the IFS-Editor.

105

5 The Detailed Interface Synthesis Design Flow

MODEL COMMUNICATION INFRASTRUCTURE

TASKS
&

MEDIA

IP-
DATA
BASES

PLUGIN

SYSTEMS &
EXECUTION
PLATFORMS

SYSTEM ARCHITECTURE

STEP I – MODELING PHASE

COMPOSED OF:
- ARCHITECTURE COMPONENTS
- COMMUNICATION COMPONENTS

SYSTEM

BOARD

CHIP

TASK /
MEDIUM

UML2.0 (E.G. FUJABA)
- COMPONENT DIAGRAMMS
- PROTOCOL STATE MACHINES
- CLASS DIAGRAMMS

Figure 5.1: Interface Synthesis Design Flow: the modeling phase

The IFS-Editor provides a graphical component view in combination with interactive
masks for entering the detailed parameters. Furthermore, we implemented a visualization
of the waveform state machines as protocol traces in the form of timing diagrams.

Since UML 2.0 and the related CASE tools are familiar to many designers, we extended our
modeling concept. Therefore, we developed a UML 2.0 profile that we transferred to the
CASE tool Fujaba, which offers a comfortable way for modeling the System Architecture.
Thus, we dispose of an integrated design flow that copes all the way from UML 2.0 models
all the way down to executable hardware. Afterwards, we give a short introduction into the
defined profile.

The main intention of the UML2.0 profile is to deliver the input for the IFB synthesis sim-
ilarly to the System Architecture including architecture - and communication components.
The IFD-Mapping remains part of the IFS-Editor because of the IFS specific mapping
language, which is a central part of the synthesis process. For this reason, we translate the
composed IFS-Models into the IFS-Data-Structure in order to generate the required IFBs.

5.1.1 Modeling the UML2.0 Profile

We analyzed the IFS-Format and UML2.0 to define an intuitive UML2.0 profile. For that
purpose we selected a set of UML diagrams and defined precise semantics related to the
IFS-Format. The developed UML 2.0 profile comprises component diagrams, class diagrams,
and protocol state machines. In the following section, we present important aspects of our
UML 2.0 profile and the model transformation. A detailed description is given in [1, 36].

106

5.1 Modeling-Phase

Modeling the System Architecture

We employ component and class diagrams to describe the structural aspects of the IFS
System Architecture. With the help of these diagrams, we model the component hierarchy
according to the component tree in Figure 2.7, including the electrical properties of the
interfaces. UML ports provide the connections between the components. Protocol state
machines, which are related to the UML ports, define the communication behavior. As
usual for extensions of the UML meta-model, we define the added classes as stereotypes.

Structural Description

Figure 5.2 presents the IFSComponent diagram, which models the hierarchical structure of
the System Architecture. A central class of the diagram is the stereotype IFSComponent that
extends the meta-model class Component. According to the IFS-Format, this class provides a
unique identification and a version stereotype. The stereotypes CommunicationComponent
and ArchitectureComponent derived from IFSComponent.

On one hand, the stereotypes System, Board, Chip (right circle) represent the available archi-
tecture components; on the other hand, Medium and Task (left circle) define the interacting
communication components. While we are allowed to assign media to each architecture
component, tasks are bound to the chip level.

Figure 5.2: IFSComponent diagram

107

5 The Detailed Interface Synthesis Design Flow

Figure 5.3: Interrelation of Component, Port, Interface, and Protocol State Machine

Figure 5.4: Stereotype IFSInterface and Signal

108

5.1 Modeling-Phase

As we can see in Figure 5.3, which is an excerpt of the UML2.0 meta-model, the class
Port acts as connector between Component, Interface, and Protocol State Machine. In our
profile, we define the stereotype IFSPort as a refinement of the meta-model class Port. With
the help of the IFSPorts, we are able to combine the structural, electrical, and behavioral
aspects of an IFSComponent interface similar to an IFD.

The electrical properties of the physical interfaces are incorporated as attributes in the
stereotype IFSInterface, which is illustrated in Figure 5.4. Furthermore, this class defines
the interface topology implemented as an association with the stereotype Signal. Each signal
instance consists of a name and a value that specifies the initial value and the pin width.
Additional to the physical interface, these pins also represent the ProtocolPins, which are
required for the waveform state machine. In this situation, we fundamentally redefine the
semantics of UML, as we do not think of interfaces in the meaning of provided - and requested
interfaces using function calls. The waveform state machines based on ProtocolPins are
dedicated to specify timing diagrams for a couple of interconnected components.

An example for a signal could be {SignalName = sig, Value = "0X1Z"}. Based on this
input, our model transformation would create a port named“sig” consisting of four pins with
the default values {0, X, 1, Z}. Until now, we support only the basic data types “bit” and
“std logic”. In this example, the resulting data type would be “std logic” as the values “high
impedance” and “unknown” are included.

Figure 5.5 illustrates an exemplary System Architecture including two connected tasks and
media. The ports of the architecture components inherit their behavior from the connected
communication components. In the example we depicted only compatible tasks and media,
which can be directly connected via the available ports of the architecture components.

<<System>>sys1

<<Board>>board1

<<Chip>>chip1

<<Board>> board2

<<Chip>> chip2

Port that describes its I/O
behavior using protocol
state machines.

Port without protocol state
machine. Inherits behavior
from connected task or
medium.

<<Task>>
task1

<<Medium>>
medium2

<<Medium>>
medium1

<<Task>>
task2

Figure 5.5: IFSComponent diagram presenting an exemplary System Architecture.

109

5 The Detailed Interface Synthesis Design Flow

Figure 5.6: Waveform State Machine as UML class diagram.

Figure 5.7: Extension of the protocol state machine in the UML 2.0 meta-model.

110

5.1 Modeling-Phase

Behavioral Description

To keep the inner functionality of communication components as a black box, we restrict our
profile to the behavior descriptions of I/O protocols. For our UML 2.0 profile this means that
we exclusively support behavior descriptions related to IFSPorts. As defined in Section 2.1.4,
we model protocols as timing diagrams in the form of waveform state machines.

Figure 5.6 illustrates the IFS-Model of the waveform state machine as a state chart. The
classes within the circle define the state machine, consisting of states, outputs, transitions,
and transition conditions. The class ProtocolPin in this diagram corresponds to the stereo-
type Signal in Figure 5.4. The output of the state machine defines the values of the related
signals from the IFSInterface for each state. We implement the static attributes of the
waveform state machine as attributes of the stereotype IFSPort. The dynamic aspects are
implemented as protocol state machine related to the IFSPort.

To deal with waveform state machines, we adjusted the meta-model of the protocol state
machine class diagram (as depicted in Figure 5.7). We extended the classes Activity and
Constraint to the IFSActivity and IFSConstraint stereotypes. IFSActivity introduces the
Behavior and Direction attributes to the output, while IFSConstraint extends the transitions
with the ExpectedValue, SignalSource, and TransitionType attributes according to Figure 5.8.

The example depicts a protocol state machine consisting of three states. In state0 we
specify the signal values for the two ProtocolPins X_Motor and Y_Motor. The automata
output C.O:Y_Motor = ’10’, for example, appoints the values ’1’ and ’0’ to the two pins of
the port Y_Motor acting as outgoing control in this state. Remember, all these attributes
describe only the protocol syntax; we do not specify any meaning by this.

The transition condition (S.PP:Y_Motor = ’10’) awaits the two ProtocolPins of Y_Motor
to become ’10’. This condition is ORed with (S.GD:TimeEvent_1 = ’HV’) that describes a
transition condition triggered by a high value on the synchronous global date TimeEvent_1.
A global date is one of the available reference signals that are available to model time.

Figure 5.8: Example of the IFS protocol description syntax.

111

5 The Detailed Interface Synthesis Design Flow

Figure 5.9: Stereotypes for reference signals

As depicted in Figure 5.6, a transition condition can depend on five different kinds of triggers,
which divide into signal events (ProtocolPin) and time events (all others):

• ProtocolPin

• TPD clock

• Reference clock: Clock

• Reference clock: TimerOrDeadline

• Reference clock: GlobalDate

ProtocolPins provide triggers for the (incoming control) signal events high and low value as
well as rising and falling edge. With the help of TPD clocks and the reference signals, we
are able to react on time events and thus to model timed protocols for real-time communi-
cation. TPD clocks are periodic signals provided by the target platform. As illustrated in
Figure 5.9, there are three kinds of reference signals available: TimerOrDeadlines (specify
time intervals), ReferenceClocks (allow user defined clocks), and GlobalDates (can be used
to model time events in a cyclic and static time schedule).

Reference signals are artificial times that we derive from the available target platform clocks,
modeled in the target platform description of the stereotype chip. To be able to reconfigure
PH-Modes that refer to the specific reference signals, we implement the reference signals
directly within the PH-Modes. The drawback of this method is that we create one instance
for each reference signal, which can lead to redundant reference clocks and global dates. The
extended UML2.0 meta-model constitutes the basis for the model transformation into the
IFS-Data-Structure.

112

5.1 Modeling-Phase

5.1.2 Tool Coupling of the IFS-Editor with the CASE tool Fujaba

The UML 2.0 profile allows the composing of IFS-Model-Instances; and in our case, with
the help of the CASE tool Fujaba. To close the gap between UML2.0 and Java/XML,
we developed an automatic transformation of the IFS-Model into the IFS-Data-Structure.
The model transformation is divided into the coupling of the IFS-Editor with Fujaba and
the translation of the IFS-Model-Instance. Figure 5.10 presents the class diagram of the
implemented model transformation.

The IFS-Editor and Fujaba exist as packages. The class FujabaHandler establishes the tool
coupling in such a way that the editor can start, close, and import the current component
diagram from Fujaba. The class SystemArchitecture represents those Java classes which
implement the IFS-Data-Structure. The classes on the right describe the translator with
the central class Synch2Fujaba(), which implements the Java interface Synch2IFS. The
interface was defined to offer basic classes for the transformation of the Fujaba model into
the IFS-Format. Therefore Synch2X4J, which creates the IFS-Object structure from the
XMLElement tree when loading an IFS-Instance (XML file), also implements the interface.

FujabaTools offers features to parse and evaluate expressions in the IFS-Model-Instance like
transition conditions and automata outputs. The InterfaceProtocolFactory is part of the
data structure. It handles the creation of IFS interfaces from IFS protocols and vise versa.

Figure 5.10: Class diagram: Tool coupling and UML model transformation

113

5 The Detailed Interface Synthesis Design Flow

Reference SignalsProtocol

…

Start End

SystemCreate
Version

Create Identification
(Component class)

Create
SystemArchitecture

Interface

Board
…

Chip…

Task
…

Port

State

Transition

Create
Protocol &

- ProtocolPins

Create
TansitionConditions

1

3

2

4

6

11

13

Create
Board

Create
Chip

Create
Task

Insert Interfaces &
create InterfaceMaps

Create
Identification
& Properties

Create
Ports & Pins

Handle
System

Attributes

Handle
Board Attributes

Handle
Chip Attributes

Handle
Task Attributes

14Create
Interfaces

create InterfaceMaps

15

16

TransitionCondition

Create
All States

Create
Transitions

…

… …

Handle
Protocol

Attributes

Handle
Interface

Attributes

Create
- Identification &
Characterization

- Version

Create
Reference

Signals

Return
SystemArchitecture

5

7

12

24

17

26

Handle Guards

Create
Output

18

19

27

TPD

TPDClock

Handle
TPD Attributes

Create
TPDCreate

TPDClock

…
Create Identification

(TPDClock class)

8

9

10

Elements of component diagram
(Structure description)

UML Class related to a Component
(Attributes of structure description)

Extension classes
(Represents the stereotypes)

Create IFS-Object

Statechart
(Behavior description)

… Handle several instances

Create
ToD

Create
RefClk

Create
GlobalDate

20

23 22 21

Port Interface
29

30

Insert Interfaces &
create InterfaceMaps

Port Interface
31

32

…

…

…

25

Update
ProtocolPins

Trigger

Handle
Do Action

Insert Interfaces &
create ProtocolMaps

Interface

28

…

…

Figure 5.11: Recursive descend of UML model transformation

114

5.1 Modeling-Phase

5.1.3 Model Transformation from UML2.0 to Java

The developed IFS-Model translator converts IFS-Model-Instances into IFS-Objects. For
the implementation, we resorted to well-known compiler techniques [44]. A typical compiler
front-end consists of a lexical, a syntax, and a semantic analysis. In our approach, the
lexical analysis is integrated in the set()-Methods of the IFS-Objects (see Section 4.2.1).
This works fault tolerantly and ignores faulty inputs. The construction of the syntax tree is
redundant, as the IFS-Model-Instances are available as object trees. A syntax - and semantic
check of this tree is not necessary since the data structure is generated by the CASE tool.

The compiler back-end performs a pattern-based model translation. Each pattern defines
a set of translation rules for specific object constellations within the IFS-Model. To find
these patterns, a parser traverses the UML 2.0 data structure of the IFS-Model-Instance
by a recursive descent (as illustrated in Figure 5.11). If the parser detects a known object
constellation, it creates the instances of the according IFS-Objects and initializes them with
the attributes it came upon. Some objects cannot be created in a single step. These objects
are intermediatly stored and finished when the parser detects the missing information.

Figure 5.11 illustrates the recursive descend that we perform when synch2Fujaba() is called.
The parser obtains the handle of the current UML-Model-Instance as a parameter. Primarily,
synch2System() creates the IFS-Object SystemArchitecture if it detects the IFSComponent
System in the UML 2.0 data structure. If this was successful, synch2System() recursively
tries to create its subcomponents. When synch2Fujaba() finishes the recursive descent, it
returns a reference on the resulting IFS-Object tree to the FujabaHandler.

To complete the modeling phase, we interlink unconnected interfaces inside the IFS-Editor,
as presented in Figure 5.12. According to Section 2.1.5, we can directly connect interfaces,
that are compliant, connective, and compatible, via interface maps. Otherwise, we have
to generate an IFB. Therefore, the interfaces have to be at least (electrically) compatible.
After creating the IFB, it is interlinked to the adapted interfaces via interface-maps. In the
following section, we describe the IFB synthesis flow including the IFD-Mapping.

<< Exit >>
Interfaces cannot

be connected!

no

yes

Compliance &
Connectivity

no

yes
Establish

connections
(Interface-Map)

IFB required !

Compatibility &
Connections avail.

Synthesize IFB

Interfaces (IFDs)

Target Platform (TPD)

IFDMapping

Figure 5.12: Connecting interfaces in the System Architecture

115

5 The Detailed Interface Synthesis Design Flow

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

Figure 5.13 delivers an overview of the first design step of the synthesis phase. The aim of this
design step is to create a target language independent model of the IFB. This intermediate
representation of the IFB is added to the System Architecture when the synthesis finishes
successfully. Similar to other components, an IFB can be exported and imported as IFB-IP.

It is a specialty of our approach that we do not store the final result of the interface synthesis
(the IFB intermediate representation), but the input of the synthesis algorithm, namely the
selected IDFs, the TPD, and the IFD-Mapping. This is done for two reasons. Firstly, the
amount of stored data is largely reduced. However, we have to perform the intrinsic part of
the IFB synthesis each time we load an IFB (in Figure 5.13 denoted as “Create IFB”). Since
the import process of XML files is also a time-consuming process (remember the API-stack
presented in Figure 4.5), both effects cancel each other out more or less.

Secondly, storing an IFB as input of the synthesis facilitates the further development of the
synthesis algorithms, as we can still import previously generated IFBs. The result is an
updated IFB model, which is consistent with the modifications of the synthesis algorithm
without any user assistance.

As depicted in Figure 5.13, the synthesis flow is composed of several consecutive processing
and synthesis steps, which are grouped into modules (yellow rectangles). The IFS-Editor
encapsulates these modules as plugins within the so called Synthesis Wizard, which guides
the designer through the particular stages of this design step. Additionally, the Synthesis
Wizard manages the input and the output of the particular modules (green blocks). The
IFB model synthesis is divided into the following user I/O - and synthesis steps:

Interactive User I/O Steps : Manage Input and Output

Select Input: In the first step, we collect the IFDs of the adapted interfaces and the TPD
of the platform that executes the IFB from the System Architecture.

Map Data: Before we create the IFD-Mapping, we have to adapt the selected input, which
is part of the synthesis steps. In a first step, we flatten the IFDs and complement the
specified directions. Afterwards, we assure the descriptions to satisfy our design rules.
In the next step, which represents the first part of the protocol synthesis, we transform
the waveform state machines into protocol state machines.

Now, we are able to specify the IFD-Mapping with the help of the IFD-Mapping Editor.
Therefore, the designer interactively defines the scenario-based data processing or loads
a previously created IFD-Mapping.

Define Reconfigurability: After finishing the IFD-Mapping, we specify whether to create
the static or runtime reconfigurable version of the IFB. In the case of a RTR-IFB, we
have to provide the appropriate Reconfiguration Control Unit.

Connect IFB : When the IFB model has been successfully generated, we interlink the IFB
interfaces to the adapted interfaces inside the System Architecture by creating the
necessary interface-maps. Furthermore, we define and interlink the clock and the reset
signal with the IFB.

116

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

SYSTEM ARCHITECTURE

ADAPT
INPUTS

SELECT
INPUT

SYSTEM

BOARD

CHIP

TASK

SYNTHESIS
WIZARD

SYNTHESIS
WIZARD

TPD
SELECT

CONNECTED INTERFACES
& EXECUTION PLATFORM

PLUGIN

MAP
DATA

SELECT
RECONFIGURATION

CONTROL UNIT

ENTER
IFD-MAPPING

DEFINE
RECONFIGURABILITY

PLUGIN

PERSONALIZE
IFB-HW-TEMPLATE

Assemble
IFB Macro Structure

(PH, SH, CU & Modes)

Create
Internal EIFDs as
IFB components

IFD-MAPPING RCU

CONNECT
IFB DEFINE CLK, RESET

EIFD FACTORY
IFB INTERNAL COMPONENTSCREATE

IFB

IFB-DESCRIPTION

IFB-DESCRIPTION
INTERCONNECTED TO SYSTEM ARCHITECTURE

IFDIFD

STEP II – SYNTHESIS PHASE

CREATE TARGET LANGUAGE INDEPENDET IFB MODEL

IFD-MAPPING EDITOR
SPECIFY MAPPING FUNCTION

AS MAPPING EQUATIONS

POUT <= FMAP (PIN1 … PINX)

IFDIFDIFDIFD
TPDTPD

ASSEMBLE EIFDS TO
IFB MACRO STRUCTURE

- ASSURE DESIGN RULES

- FLATTEN & COMPLEMENT IFDS

- EXTRACT PROTOCOL FSMS

- OPTIMIZE IFDS

- CREATE DATA FRAMES

Figure 5.13: Interface Synthesis Design Flow: the IFB model synthesis phase

117

5 The Detailed Interface Synthesis Design Flow

Automated Synthesis Steps : Construct IFB Model

Adapt Inputs: As mentioned earlier, we have to preprocess the inputs and transform the
waveform state machines into the protocol state machines (protocol synthesis).

Create IFB : The aim of this step is the assembly of a target language independent IFB
model, which is consistent with the IFB Macro-Structure. The model is composed of
a hierarchy of extended IFDs (EIFD) which have been created by the EIFD Factory.

To create the EIFDs, we optimize the adapted IFDs based on the IFD-Mapping and
identify the resulting data frames.

5.2.1 Prepare Synthesis Input

To improve the modeling process, we support complex expressions for the Repetition and
AutomataOutput protocol attributes. We defined these expressions in a Backus-Naur form
as presented afterwards. Our synthesis algorithms cannot handle these complex expressions.
Therefore, we flatten them right in the beginning.

Flatten IFDs

Definition 5.1 Complex expression for the transition attribute Repetition

Repetition := [1-9][0-9]* * (* : * [1-9][0-9]*)?

The expression, which defines the repetition attribute of a transition, consists of an integer
value that determines the number of repetitions optionally followed by an ID. The repetition
value specifies how often the current state has to be executed before the transition to the
next state is taken. Thereby, the given transition condition TC is applied for the n-1 self-
transitions as well as for the final transition to the succeeding state. Figure 5.14 depicts the
simple case without ID : Repetition := 2. To flatten repetitions we insert n-1 clones of the
repeated state to the protocol in our example, S1′ .

 S1 S32 S1 S3 S1'
TC TC TC

Repetition = 2

flatten

Figure 5.14: Flattening the transition attribute repetition

Figure 5.15 illustrates a repetition value including an ID : Repetition := 2:1. The ID spec-
ifies the first state of a complete sequence of repeated states. A loop, defined in such a way,
must not overlap with another loop. In this case the flattening process for repetitions results
in a simple loop unrolling, which also supports branches and nested loops inside the loop.

 S2 S32 S1 S3 S2

Repetition = 2:1

 S1 S1' S2'

flatten

Figure 5.15: Loop unrolling for repetitions

118

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

Definition 5.2 Complex expression for the attribute RefProtocolPin

Interval := [1-9][0-9]* * (* : * [1-9][0-9]*)?

AutomataOutput := Interval (* , * Interval)*

With the help of the complex attribute “RefProtocolPin” (inside an AutomataOutput) that
refers to those ProtocolPins which are defined by this AutomataOutput, we can specify a
particular value for a complete set of ProtocolPins by listing up the referenced ProtocolPin
IDs. Some examples for valid expressions are: (2), (1:3), (5: 2, 5, 6:8). The complex
terms are comma separated enumerations of ranges of ProtocolPin IDs. To flatten this
attribute, the algorithm creates one automata output for each referenced ProtocolPin.

Assure Design Rules

After flattening the IFDs, we assure important design rules to enable a successful synthesis.
Therefore, we analyze the IFDs and the TPD. Afterwards, one can find a list containing the
most relevant actions, performed within this process:

• Remove unreferenced or incompletely specified Pins & ProtocolPins

• Remove dead states

• Remove invalid AutomataOutputs & Transitions

• Remove unreferenced TPD clocks

Our motivation for shrinking the descriptions is for avoiding synthesis errors and for min-
imizing the number of resources that we allocate for the IFB. For example, it would be a
waste of resources to create signals for unreferenced pins that are never written or read.

An additional feature updates the object identifiers to a VHDL compliant notation. For
example, the signal name“My Ack”would be changed into My_Ack. Otherwise, the generated
VHDL code would imply syntactical errors from the beginning.

Complement IFDs

The IFB operates as a communication partner of the tasks. Since the designer models the
waveform state machine inside the IFD from the viewpoint of the task, we have to invert all
directions to create the protocol state machines inside the IFB:

• Input =⇒ Output

• Output =⇒ Input

• Bidirectional =⇒ Bidirectional

In our protocol synthesis algorithms we apply specific data structures that abstract from the
IFDs. A fundamental understanding of these data structures is essential for comprehending
the developed synthesis algorithms. First of all, we can subdivide each protocol, defined as
waveform state machine, in a set of non-branching state sequences, the basic blocks. The
protocol matrix represents each basic block in the form of a two dimensional matrix. This
internal protocol representation is input for the protocol synthesis and allows us to detect
packages and frames, which are essential to create and evaluate the IFD-Mapping.

119

5 The Detailed Interface Synthesis Design Flow

5.2.2 Basic Blocks

The IFDs utilize waveform state machines to describe behavior. We can visualize the implied
protocols as directed graphs. In these graphs, the vertices represent the states and the
directed edges stand for the state transitions. In this thesis, we define basic blocks similarly
to the well-known pendant in software.

Definition 5.3 Basic Block (BB)

A basic block is an ordered set of states that are on a path of maximum length in a protocol
graph. On this path, only the first and the last vertex can have a degree higher than one.
The graph representation of a waveform state machine in the form of BBs results in a Control
Flow Graph.

Definition 5.4 Control Flow Graph (CFG)

CFG = {V ;E}
V = Basic Blocks
E ⊆ V × V , a set of edges (= transitions) between BBs.

BB1
 S3 S7

 S4 S5

 S6

BB2

BB3

BB4

 S2 S1

Figure 5.16: The basic blocks of a protocol visualized as CFG.

Figure 5.16 represents a CFG that consists of the four basic blocks BB1 ... BB4. The
CFG was created from a protocol with the states S1 to S7. A detailed example for the
creation of BBs is given in Figure A.2. In our design tool, we implemented a protocol
parser that automatically determines the basic blocks of a given protocol and returns the
constructed CFG. A protocol viewer allows the visualization of protocols, in the form of
waveform diagrams, based on valid traces of basic blocks in the CFG. Furthermore, the
basic blocks provide the foundation for computing packages and frames.

5.2.3 Protocol Matrix and Protocol Packages

Protocol packages play a central role in the Interface Synthesis Design Flow, especially for
the IFD-Mapping. The mapping functions are defined on data packages, which exist next
to the control packages. Packages abstract from the structure of the protocol and the basic
blocks in order to facilitate an intuitive specification of the data mapping.

Afterwards we show that basic blocks are adequate for detecting protocol packages, since
packages do not proceed the borders of a basic block. This has to do with the fact that data
words do not begin in one basic block and continue in a succeeding one [37]. A consequence
of this property is that we use basic blocks as the basic data structure for the IFB synthesis.
Nevertheless, basic blocks are not an efficient data structure for the detection of packages.

120

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

States
1 2 3 4 5 6 7 8

1

2

3

4

9

ID ID ID OD OD ODIC OC OC

OC OC OD ODODOC OC OC OC

ID ID

ID ID

IC

IC

OD ODOD

OD ODOD

IC

IC OD

ID

OC

OC

ProtocolPins

Figure 5.17: Annotated waveform diagram

ProtocolPins

1 2 3 4 5 6 7 8

1

2

3

4

ID

ID

ID

ID

ID ID ID

OC OC OC

IC

OD

OD

OD

OD

OD

OD

OD

OD

IC

IC OD

OD

OD

OD

IC

IC OC

OC

OC

OC

OD

OC

OC

ID

9

OC

States

Figure 5.18: Derived protocol matrix

Therefore, we derive a protocol matrix from each basic block. Similar to waveform diagrams,
each column of the matrix represents a state of a basic block and each row stands for a par-
ticular ProtocolPin. Figure 5.17 shows a fictive waveform diagram including the annotations
for the attributes Direction and UseCase: { Incoming, Outgoing } × {Data, Control }.

The deduced protocol matrix is depicted in Figure 5.18. Each protocol matrix node (PMN)
comprises the complete information that is defined by the AutomataOutput for the current
state and the related ProtocolPin: {Direction, UseCase, Value }. In the depicted version
of the protocol matrix, we display the attributes Direction × UseCase. We call this the
Direction-UseCase Matrix. Next to this, we require the Value Matrix for the protocol
synthesis that illustrates the attribute Value. Remember, both derivations are one and the
same protocol matrix where we depict different parameters, which is helpful for the graphical
explanation of our algorithms.

In the IFS terminology, protocol packages (or simply packages) consist of homogenous bits
which are adjacent PMNs in the protocol matrix. Thereby, packages can be two dimensional.
One dimension refers to the number of ProtocolPins, which specifies the amount of bits that
are transmitted in parallel. The other dimension is the number of succeeding states that
indicates the length of a package. However, the length of a packet is not equal to the quantity
of sequentially transmitted bits, since one bit may be pending for several states. To find out
the real number of data bits is a challenge of the protocol synthesis algorithm.

In the Direction-UseCase Matrix, each package is a rectangular field of the maximum size
consisting of homogenous protocol matrix nodes. Figure 5.19 illustrates the data packages of
our exemplary protocol matrix. As we can see, a package can also be a single PMN.

States1 2 3 4 5 6 7 8

1

2

3

4

ID

ID

ID

ID

ID ID ID

OC OC OC

IC

OD

OD

OD

OD

OD

OD

OD

IC

IC OD

OD

OD

OD

IC

IC OC

OC

OC

ODOC

P
ro
to
co
lP
in
s

OD

OC

OC

ID

OC

9

Figure 5.19: Protocol packages of protocol matrix

121

5 The Detailed Interface Synthesis Design Flow

The algorithm for detecting protocol packages is quite simple. In the first step, it analyzes the
Direction-UseCase Matrix line-by-line for horizontally adjacent and homogenous PMNs. It
creates packages of a height one and the respective maximum width. In the second step, the
algorithm merges the one-dimensional packages into two-dimensional packages by affiliating
homogenous packages of the same width and horizontal position (states). For more details
on basic blocks, protocol packages, and the underlying protocol parser see [34, 1, 37].

As presented in Figure 5.19, data packages can overlap themselves by their covered states.
To handle these parallel packages, we introduce another data structure, the protocol frame.

5.2.4 Protocol Frames

The IFB internal communication between PH and SH provides exactly one memory bus
for incoming and one for outgoing data. Each bus can serve at most one sender/receiver
at each point of time. Therefore, we encapsulate parallel packages that overlap in the
state space in protocol frames (simply called frames). The memory bus can be requested
exclusively for reading or writing data in the form of complete frames. For this reason, each
frame comprises a unique ID that we utilize for assigning the encapsulated data packages
to a dedicated memory location inside the internal memory. In this way, we ensure the
continuous transmission of parallel packages between PH and SH.

Each frame encapsulates a maximum set of overlapping data packages. In contrast to the
packages, frames are one-dimensional and must not overlap with other frames. By merging
overlapping packages into frames, each frame defines an interval of states that does not
overlap with the interval of another frame. A state that is not covered by a data package
does not become part of a frame, either. As consequence of the packages, frames are confined
to exist inside of a basic block.

Figure 5.20 illustrates the frames that result from the packages of our exemplary protocol
matrix: Frame 1 for incoming data, Frame 2 for outgoing data, and Frame 3 being a mixed
frame. The states 1 – 3 hold two overlapping incoming data packages which are merged to
Frame 1. As no other packages cover these states, there are no more packages in this frame.
The second frame, Frame 2, comprises four outgoing data packages. As we can see in this
example, it is not necessary for all packages inside of one frame to share one collective state;
it is sufficient if there exists pairs of at least two data packages, each with a shared state.

Frame 2

States1 2 3 4 5 6 7 8

1

2

3

4

ID

ID

ID

ID

ID ID ID

OC OC OC

IC

OD

OD

OD

OD

OD

OD

OD

IC

IC OD

OD

OD

OD

IC

IC OC

OC

OC

ODOC

P
ro
to
co
lP
in
s

Frame 1

OD

OC

OC

ID

OC

9

F.3

Figure 5.20: Protocol packages merged to protocol frames

122

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

Pure vs. Mixed Frames

As presented in Figure 5.20, we distinguish between two kinds of frames: the pure frames,
which comprise either incoming or outgoing data packages (Frame 1, Frame 2) and mixed
frames, which comprehend both kinds of packages (Frame 3). Pure frames are sufficient for
simplex communication, while we have to permit mixed frames for duplex communication.

Our methodology is able to cope with both variants. However, in the current IFB hardware
implementation, we restricted ourselves to pure frames in order to simplify the synthesis
process and the resulting IFB design. Currently, each PH-Mode consists of a set of states
and signals for communication with the PH-Switch and the memory bus arbiter inside the
CU. These IFB internal communication resources, including the control overhead within the
memory bus arbiter, would have to be doubled to permit duplex traffic.

Super-Frames

With the help of the IFD-Mapping, we map incoming data to outgoing data. To be more
precise, we map incoming data packages to outgoing packages. To cope with packages of a
different capability (= height ·width of a data package) we support package instances. For
example, it is possible to receive a parallel 32-bit word that has to be transmitted in four
serial 8-bit packages. This necessitates a repeated transmission of the outgoing frame that
comprises the 8-bit package, which again implies the repeated execution of the basic block
that contains the outgoing frame. The same problem exists when several instances of small
incoming data packages are assembled into a large outgoing data package.

As depicted in Figure 5.21, the repeated execution of input or output frames disagrees with
the pipelined execution of the communication cycle (I - P -O graph). To handle multiple input
or output frame instances, we create a super-frame which encapsulates as many repetitions
of the related basic block as defined by the IFD-Mapping. To construct a super-frame, we
flatten the repeated basic blocks into a linear sequence of states. Therefore, the related
basic blocks have to provide a self transition. As we can flatten only complete basic blocks
into super-frames, multiple packages can be affected as result of the repetition of a single
package. These packages have to be considered in the IFD-Mapping as well to not to loose
any data. For more details about frames and super-frames see [1, 26, 34].

Repeated
Output
Package

I

P

n

O

I

P

n

OP

O

In

I1

P

I

On

O1

S
up
er
-fr
am
e

I

O

S
up
er
-fr
am
eRepeated

Input
Package

Figure 5.21: Generation of incoming and outgoing protocol super-frames

123

5 The Detailed Interface Synthesis Design Flow

5.2.5 Protocol Synthesis – Generation of the Protocol State Machines

A PH-Mode acts as the opposite communication partner of a component interface. Therefore,
the IFB behavior has to be complemented to the one of the interface. The protocol synthesis
takes the flattened and complemented IFDs as input to generate the behavior model of the
PH-Modes. This model is a finite state machine, the so called protocol state machine (PSM).
To construct the PSM, we transform the waveform state machine (WSM), given in the IFD,
in such a way that it implements the complemented communication protocol.

The WSM, depicted on the left side of Figure 5.22, specifies the communication protocol for
two or more interacting entities as defined in Section 2.1.4. Thereby, the WSM represents
the complete waveform diagram of the communication protocol from the viewpoint of the
component interface (indicated by the attribute direction). To adopt the viewpoint of the
IFB, we invert the directions as presented in the previous synthesis step.

To generate the PSM of a PH-Mode it is not necessary to know the complete PSM of the
component interface. For example, it is not required for the IFB to consider the signal that
starts a serial transmission; it is sufficient to recognize the observable result: a change on
the transmit data signal. However, the limitation to reactions on observable signal events,
which are modeled by the AutomataOutputs of the WSM, restricts the possible PSMs that
we can synthesize. The timing, which is a non observable attribute, constitutes the only
exception since it is specified within the transition conditions of the WSM.

Nevertheless, as there is no chance to access IP internal signals, the limitation to observable
signals is crucial for an IP based interface synthesis approach. Therefore, the created PSM
has to get by with the observable signals between the IFB and the component interface. For
this reason, the WSM model comprehends exactly that subset of the interacting protocol
state machines, which causes observable effects on the shared signals. To derive the PSM
from the WSM we have to perform the following synthesis steps:

1) Identify the states that belong to the PSM

2) Create signal based transition conditions

3) Identify the particular data bits

Figure 5.22: Transformation of the WSM into the PSM

124

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

Definition of Protocol State Machine

Before explaining the three synthesis steps, we have to define the formal model of the protocol
state machine. For details of the terms used in the PSM definition (S, TC, PP, δ, and λ),
we refer to the definition of the WSM (see Definition 2.5) :

Definition 5.5 Protocol State Machine (PSM)

Protocol := (S, TC, PP , δ, λ, s0)
S : A finite number of states
TC : A set of transition conditions
PP : A set of protocol pins
δ : S × TC → S The state transition function
λ : S → (V al 7→ PP) The (Moore) output function
s0 ∈ S The start state

Obviously, the PSM model consists of the same elements as the WSM model. However,
the meaning of the PSM model is different from the one of the WSM. As depicted on the
right side of Figure 5.22, a PSM describes a control path (blue) and a data path (red). Since
the WSM comprises states which are related to multiple communication partners, it is one
challenge of the protocol synthesis algorithm to find out the states that belong to the control
path of the PSM which implements the PH-Mode.

In the WSM model we utilize the AutomataOutputs to define the values of ProtocolPins
related to specific states as representation of the waveform diagram. The supported values
are (In, Out) × (Control, Data) × (0, 1, Z, X). To create the PSM, we interpret the given
outputs in step 2) and 3) of the protocol synthesis algorithm according to the table presented
in Figure 5.23. We apply the control signals to specify the transition conditions (TC) of
the control path. As illustrated in Figure 5.22, the outgoing control signals (C) remain an
AutomataOutput in λ, while incoming control signals are transformed into TCs in δ. It is
reasonable to evaluate only constant values in a TC. Terefore, dynamic values are forbidden.

The data signals model the data path (D) in the form of AutomataOutputs in λ. Dynamic
incoming data is written into the IFB internal memory in the SH; dynamic outgoing data
is read from this memory. Since the transmission of incoming data constants is redundant,
we ignore them. Outgoing data constants are directly integrated into the PH-Mode.

Control

Automata Outputs
(Fixed values in PH-Mode)

Data

Out

Transition Conditions < Redundant > (ignored)
In

Constant
(0, 1, Z)

< Forbidden >

< Forbidden >Dynamic
(X)

Constant
(0, 1, Z)
Dynamic

(X)

Automata Outputs
(Dynamic values read from SH)

Automata Outputs
(Fixed values in PH-Mode)

Automata Outputs
(Dynamic values written to SH)

Figure 5.23: Interpretation of automata outputs in the PSM

125

5 The Detailed Interface Synthesis Design Flow

Protocol Synthesis Step 1) : Identify States

As we transform the WSM into the PSM, the states of the PSM are a subset of the WSM:
SPSM ⊆ SWSM . There exist three possible cases for a state belonging to the PSM:

I) A state belongs to the PSM when it comprises an AutomataOutput that changes the
value of an outgoing signal (independent of control or data). This means, a state s of
the WSM belongs to the PSM when there exists at least one pair of AutomataOutputs
related to s and its predecessor state sp that assigns a differing value to one and the
same ProtocolPin, while the direction in state s is output.

II) The state s has to be present in the PSM if there exists a timed transition in s.

III) Furthermore, we have to consider a state in the PSM when all AutomataOutputs of
the current state s are pairwise equal to the predecessor state sp, and at least one
ProtocolPin provides incoming data. We defined this case, which is not covered by the
two previous conditions, to model separate states for reading data.

Based on these rules we can identify the states that belong to the PSM. In a succeeding
synthesis step, where we create the final state machine of the PH-Mode, we insert additional
states to the PSM which secure the IFB internal communication.

To explain the state detection algorithm we refer to the parallel data transfer protocol pre-
sented in Figure 2.4. In Figure 5.24 we depicted the representation of this protocol as
∆ Direction-UseCase Matrix and ∆ Value Matrix. Note that we split the fourth state into
the two states“Read Data”and“Set DA”. For a better overview, we sort the incoming signals
to the top and the outgoing signals to the bottom of the matrices.

Data

DR

DA

OD

IC

OC

IC IC IC IC IC

OC OC OC OC OC

OD OD OD OD OD

ΔDirection-UseCase Matrix

L L L L H H

ΔValue Matrix

Input

Output

Release DA

Set Data

Set DR

Read Data

Set DA

Release DR

L L LH H H

ZZ X X X X
Release DA

Set Data

Set DR

Read Data

Set DA

Release DR

Figure 5.24: ∆ Direction-UseCase Matrix and ∆ Value Matrix of parallel sender

L L L L H H

L L LH H H

ZZ X X X X

RE FE

PSM

L LH

ZX X

States

Automata
Output

Rel.
DA

Set
Data

Set
DR

Read
Data

Set
DA

Rel.
DR

Set
Data

Set
DR

Rel.
DR

Transition
Conditions

Packages & Frames

ox: Output Bit

Set
Data

Set
DR

Rel.
DR

ix: Input Bit

o1

Data
Package

Frame

Identify States

Figure 5.25: Detect states, packages, and frames of parallel sender

126

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

To identify the states that fulfill the first condition, we search for unequal horizontally
adjacent nodes in the Value Matrix. In this way we obtain the ∆ Value Matrix as depicted
in Figure 5.24. The green boxes visualize the available pairs of unequal outgoing PMNs.
Each state that belongs to the right PMN of such a green box (bold font) becomes a state
of the PSM as highlighted on the left side of Figure 5.25.

In our example – in which the IFB acts as a parallel sender – we identify the states Set Data,
Set DR and Release DR. To consider all states, the algorithm compares also the last state of
a basic block with the first state of all succeeding basic blocks. In this case, a basic block
provides a self-transition, this means comparing the last with the first state of the basic
block. In this way we detected the ∆ for the DA signal covering the first and the last state.

Based on the parallel protocol we also can explain the third condition to consider a state in
the PSM. Therefore, the IFB has to act as parallel receiver as presented in Figure 5.26 and
Figure 5.27. As we will see, reversing the direction results in the inverse set of states. With
the help of the first condition we identify the states Release DA and Set DA. In addition, the
state Read Data and its previous state Set DR also satisfy the third condition: Both columns
comprise pairwise equal PMNs (dotted rectangle in the ∆ Value Matrix) and own at least
one ProtocolPin that is incoming data (dotted shape in the ∆ Direction-UseCase Matrix).
Therefore, we add also the state Read Data to the PSM. As we will see in the third protocol
synthesis step, we read incoming data within this state.

To illustrate the second condition we switch to the serial RS232 protocol. In contrast
to parallel protocols, we can also find ∆′s in the ∆ Direction-UseCase Matrix for serial
protocols, as particular ProtocolPins act as control - as well as data signal.

Data

DR

ID

IC

OC

IC IC IC IC IC

OC OC OC OC OC

ID ID ID ID ID

ΔDirection-UseCase Matrix

L L L L H H

ΔValue Matrix

Output

Input

Release DA

Set Data

Set DR

Read Data

Set DA

Release DR

L L LH H H

ZZ X X X X

Release DA

Set Data

Set DR

Read Data

Set DA

Release DR

DA

Figure 5.26: ∆ Direction-UseCase Matrix and ∆ Value Matrix of parallel receiver

Identify States

RE FE

PSM

XX

HL L

Rel.
DA

Set
Data

Set
DR

Read
Data

Set
DA

Rel.
DR

Packages & Frames

i1

L L L L H H

L L LH H H

ZZ X X X X

Rel.
DA

Read
Data

Set
DA

Rel.
DA

Read
Data

Set
DA

Figure 5.27: Detect states, packages, and frames of parallel receiver

127

5 The Detailed Interface Synthesis Design Flow

t1 t1 t1 t1 t1 t1 t1t1 t1 t1 t1 t1 t1 t1

TxD

ΔDirection-UseCase Matrix

OC

ΔValue Matrix

Idle

OC OC OCOD OD OD OD H L HHX X X X

Start Bit

Data Bit 1

Data Bit 2

Data Bit 3

Data Bit 4

Stop Bit 1

Stop Bit 2

Idle
Start Bit

Data Bit 1

Data Bit 2

Data Bit 3

Data Bit 4

Stop Bit 1

Stop Bit 2

Figure 5.28: ∆ Direction-UseCase Matrix and ∆ Value Matrix of serial sender

Packages & FramesIdentify States = PSM

Idle Start
Bit

Data
Bit 1

Data
Bit 2

Data
Bit 3

Data
Bit 4

Stop
Bit 1

Stop
Bit 2

t1 t1 t1 t1 t1 t1 t1

H L HHX X X X

Idle Start
Bit

Data
Bit 1

Data
Bit 2

Data
Bit 3

Data
Bit 4

Stop
Bit 1

Stop
Bit 2

t1 t1 t1 t1 t1 t1 t1

H L HHo1 o2 o3 o4

Figure 5.29: Detect states, packages, and frames of serial sender

The RS 232 protocol presented in Figure 5.28 and Figure 5.29 comprises 1 start bit, 4 data
bits, and 2 stop bits next to an initial idle bit. Each state except of the idle state consists
of a timed transition (timer t1), which has been derived from the WSM (see Section 2.1.4).
Therefore, all of these states belong to the PSM in order to reproduce the given timing.

Furthermore, we include the first state of the WSM as an exception of the first condition.
If the start state of the WSM assigns outgoing signal values to at least one ProtocolPin, it
has to be added to the PSM to guarantee a correct initialization of the protocol. In the case
of the RS 232 protocol, the first state would be deleted otherwise, as it is not required for
the repeated execution of the protocol. However, for the proper start of the PH-Mode it is
necessary to include this state.

Protocol Synthesis Step 2) : Create Signal Based Transition Conditions

As presented in our UML2.0 profile, we know five different kinds of transition conditions.
Four of them (TPD clock + 3 types of reference signals: TimerOrDeadline, ReferenceClock,
and GlobalDate) are explicitly modeled in the WSM. Therefore, the second step of the
protocol synthesis algorithm is to cope with the signal based transition conditions. These
transition conditions represent those signal dependencies that we can derive automatically
from observable events on the ProtocolPins. In timing diagrams, we usually model such
dependencies in the form of arrows as visualized in Figure 5.30. To recognize the observable
signal dependencies, we analyze the existing AutomataOutputs of the related WSM.

Data

Rdy

Ack

State 1 2 3 4 5 1

T
Data

Rdy

Ack

State 1 2 3 4 5 1

T

TC

Figure 5.30: Signal dependencies of the waveform diagram

128

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

To create the signal based transition conditions (TC) for the current state Scurr ∈ PSM ,
we interpret the changes on incoming control signals ∈ WSM , which occur between Scurr

and the succeeding state Ssucc ∈ PSM , as the observable reasons for the signal based TCs.
A drawback using this approach is that we cannot exactly detect the proper reasons for a
state change. However, by converting all changes on all incoming control signals within
the above mentioned interval into TCs, the actual (observable) causes are always included.
Therefore, it is satisfying to apply all created TCs (without selecting specific ones) as we
derive all of them directly from the WSM, which specifies the executed protocol.

To create signal based TCs, the protocol synthesis analyzes the ∆ Value Matrix for ∆′s
on incoming control (IC) signals (in comparison to the state recognition procedure), which
are then transformed into TCs and added to the transition list of the related state. The
change from low to high on the DR signal in the 4th – 5th state in Figure 5.25, for example,
is transformed into a TC that triggers on a rising edge (RE) in the state Set DR.

If we identify a sequence of incoming control ∆′s related to one and the same ProtocolPin,
which indicates multiple sequential transition conditions, we have two possibilities: either
we opt for the last event or we assume the complete sequence to be the cause for the state
change. In the second case, we have to add additional states to the PSM to reconstruct the
complete sequence of transition conditions. An example for a sequence of incoming control
signals is the port knocking technique used in the firewall domain.

Protocol Synthesis Step 3) : Identify Data Bits

The data bits included in the protocol matrix carry the value X. Depending on the protocol,
one data bit can be pending for several states. Therefore, the third part of the protocol
synthesis has to identify the X ′s which represent discrete data bits.

In general, a continuous sequence of X ′s is interpreted as one and the same data bit. Two
data bits are either separated by a state that assigns a value different from X to the related
ProtocolPin, or the state that holds a data bit provides a timed transition. Figure 5.25
shows an example for a data bit that covers four states in the WSM. As the sequence of the
four X ′s is neither separated by a differing value nor covers a state that comprises a timed
transition, we assume these four PMNs to represent only one data bit.

In the case of outgoing data, the first state of a sequence of X ′s represents the data bit, since
outgoing data must be initialized in the first state. As we will always detect an outgoing
∆ in the first state of a sequence of X ′s, this state becomes definitely part of the PSM
(guaranteed by the first condition). Figure 5.25 illustrates the detected data bit in the state
Set Data for the parallel sender, including the resulting protocol package and protocol frame.
The outgoing data bits in Figure 5.29 model a large protocol package that consists of four
bits, as each of the states provides a timed transition.

As mentioned before, we can specify a separate state that is recognized to read incoming
data (see incoming data package in the state Read Data in Figure 5.27). If such a state is not
found for an incoming data sequence we act similarly to outgoing data and decide for the
first state that belongs to the PSM. To mark the correct data bit in the PSM, we invalidate
all other data bits of the sequence in such a way that they are ignored in the following IFB
synthesis process. For this reason, we have to write or read data in each state of the PSM
that comprises a (remaining) AutomataOutput for outgoing - or incoming data.

129

5 The Detailed Interface Synthesis Design Flow

5.2.6 IFD-Mapping

Based on the generated PSM we are now able to explain the IFD-Mapping that defines the
scenario based data processing inside the IFB. Therefore, we extract the data packages from
the PSM, which works similar to the identification of the packages in the WSM model. This
is possible as the WSM- and the PSM model are equivalent in respect to this aspect.

The IFD-Mapping does not define “classical” protocol semantics in the form of a grammar
based language (that specifies terminal symbols and so on), which are applied to map items
between the adapted protocols. As already mentioned in Section 4.1.2, it provides a set
of data processing operations, which are formulated as mapping functions. In general, a
mapping function affords the complex assignment of incoming to outgoing data:

Mapping Function : dataOut <= fMap (dataIn1, ... , dataInk)

As shown before, the processed data is always encapsulated by data packages. Thereby,
the identified packages of the adapted interfaces result in two sets: the outgoing - and the
incoming packages. With respect to these two groups we refine our mapping functions :

Mapping Function : POut <= fMap (Pin1, ... , Pink)

On the left side of Figure 5.31 we provide a graphical representation that visualizes this
definition of the mapping function. Afterwards, we customize this graphical template to
illustrate the different processing operations. As presented in Section 4.1.2 the mapping
function fMap allows us to model four basic data processing operations:

1) Assign constant values

2) Shuffle incoming data

3) Guarded data assignment & Boolean equations

4) Complex data processing including a data processing library → FSM

The first processing operation assigns constant values to an outgoing package. The second
one supports the arbitrary mapping of incoming data bits to outgoing data bits (shuffle
data). Furthermore, our mapping allows guarded assignments and the application of boolean
equations on incoming data bits. To also handle complex behavior, the designer can model
linear bounded automata to process incoming bits.

With respect to the processing operations 1) – 3), fMap represents a“classical”mathematical
function, for example, a boolean function. Because of the application of state machines in
4), fMap can also consist of automata functions.

To express the IFD-Mapping, we developed the IFD-Mapping Language. This language is
based on a context-free grammar [146] (Type-2 in the Chomsky hierarchy). In Section A.3
we depict the complete grammar in an EBNF notation. The IFD-Mapping Language defines
the syntax of valid IFD-Mapping instances that the system architect can specify.

Afterwards, we explain the four presented mapping operations by representative examples
of the IFD-Mapping Language. A complete documentation and explanation of the grammar
and the IFD-Mapping Language is presented in [34].

130

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

IFD-Mapping : Data - and Constant Assignment, Boolean Equations

In Chapter 7 we depict a real IFD-Mapping created by the IFS-Editor. However, in the
following examples we refer to a simple scenario including two task interfaces: we map one
incoming - onto one outgoing data package. Therefore, Figure 5.31 depicts an incoming data
package resulting from a parallel sender, which delivers a burst of 4× 4 bits, and an outgoing
package related to a serial receiver with a capability of 8 sequential data bits.

serial receiver

ID

OD

ID ID ID

ID ID ID ID

ID ID ID ID

ID ID ID ID

4

3

2

1

OD OD OD OD OD OD OD

1 2 3 4 5 6 7 8

pa
ra

lle
l s

en
de

r

a

4

3

2

1

1 2 3 4

b c d e '1' '1'
1 2 3 4 5 6 7 8

Pin

Pout[1:4] <= Pin[1][1:4];
Pout[5] <= Pin[2][1];
Pout[7:8] <= {'1', '1'};

1 2 3 4

Mapping Function:
Pout <= fMap (Pin1, …, Pinx)

Pout

Pin

Pout

d h l p

c g k o

b f j n

a e i m

Figure 5.31: IFD-Mapping: Assignment of data bits

An exemplary mapping function for the assignment of incoming to outgoing bits is depicted
on the right side of Figure 5.31. For a better readability we use an abbreviated form of the
package identifiers: we write “Pout” instead of “OP 1” and Pin instead of “IP 1”:

1) Pout[5] <= Pin[2][1];

2) Pout[1:4] <= Pin[1][1:4];

The package identifiers denote the incoming and outgoing data packages. As the packages
are nothing more than two-dimensional matrices (remember the internal representation as
protocol matrix), the notation of the IFD-Mapping Language was motivated by MatLab1.
For this reason, we specify a subset of the protocol matrix in the form of squared brackets.
The first bracket refers to the column (state) of a package. Thereby, we can address a single
column (Pout[5]) or an interval of columns (Pout[1:4]). When a package covers multiple
signals (ProtocolPins), the row can be selected similar to the column by a second squared
bracket. The intersection of the specified row - and column interval defines the selected bits
(protocol matrix nodes) of the data package.

Mapping function 1) maps a single bit of Pin (column 2, row 1) to Pout (column 5, row 1). If
there is no row specified explicitly, as given in Pout[5], the vertical range is automatically set
to “all rows”. Therefore, in our example Pout[5] is equal to Pout[5][1]. Mapping function 2)
assigns four bits. A more elegant notation to assign the five bits of 1) and 2) is based on
the concatenation (“+”) of bits: Pout[1:5] <= Pin[1][1:4] + Pin[2][1].

1MatLabr is a programming language for the scientific computation, specialized on linear algebra.

131

5 The Detailed Interface Synthesis Design Flow

d h l p

c g k o

b f j n

a e i m

4

3

2

1

1 2 3 4 5 6 7 8

Pout

Pin

Pout[6] <= Pin[4][1] & ~Pin[3][2] | Pin[2][3];

a b c d e f g h
1 2 3 4 5 6 7 8

'1' '0' '0' '1'

'1' '0' '1' '1'

4

3

2

1

1 2 3 4

Pout[1:4][2:3] <= { {'1', '0', '1', '1'}, {'1', '0', '0', '1'} };

Pout

Pin

1 2 3 4

(m j g)

Figure 5.32: IFD-Mapping: Boolean equations and constants

In mapping function 3) we assign two constant values to the last two bits of the outgoing
data package Pout:

3) Pout[7:8] <= {’1’, ’1’}; //≡ (Pout[7] <= ’1’; Pout[8] ⇐ ’1’);

Instead of assigning individual constants, we can specify two-dimensional constant arrays,
which comprise comma separated constants encapsulated by braces, as visualized on the left
side of Figure 5.32. Mapping function 4), which derives from this figure, assigns constant
values to the columns 1 – 4 of the rows 2 – 3:

4) Pout[1:4][2:3] ⇐ {{’1’,’0’,’1’,’1’}, {’1’,’0’,’0’,’1’} };

5) Pout[6][1] <= Pin[4][1] & ˜Pin[3][2] | Pin[2][3];

An example for the application of boolean equations is given in mapping function 5), depicted
on the right side of Figure 5.32. The sixth bit of Pout results from the boolean equation
Pout[6] = (p ∧ k ∨ f). We define the boolean operators as follows: & ≡ and, ˜≡ not, | ≡ or.

IFD-Mapping : Guarded Assignments and State Machines

To model complex behavior we support the definition of guarded assignments (conditional
assignments) and state machines. To express conditions, we provide if-then-else statements
comparable to common programming languages. Guarded assignments allow us to dynami-
cally process incoming data in dependency of (other) incoming data :

6) if (Pin[1:2] == {’0’,’1’}) {
Pout[1:4] <= Pin[1:4];

} else {
Pout[1:4] <= Pin[4:1];

}

In mapping function 6) we assign the values of Pin[1:4] to Pout[1:4] if the first two bits of Pin

are equal to {’0’,’1’}, if not, we reverse the order. As we can deduce from the term Pin[4:1],
we are allowed to specify intervals also in the inverse direction.

132

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

By a combination of guarded assignments and variables that are used as state variables, we
can define state machines. An exemplary state machine that extends the guarded assign-
ment, given in mapping function 6), is defined by the mapping functions 7) and 8):

7) bit stateVariable = ’1’;

8) if ((Pin[1:2] == {’0’,’1’}) && (stateVariable != ’1’)) {
Pout[1:4] <= Pin[1:4];
stateVariable = ’1’;

} else {
Pout[1:4] <= Pin[4:1];
stateVariable = ’0’;

}

The presented state machine applies a bit variable to distinguish between two states and
comprises a set of Moore outputs. As we use linear bounded automata, we can buffer values,
which means to store packages in predefined variables [146]. In the succeeding IFB synthesis
steps, we transform the mapping functions into PSMs, which represent the SH-Modes.

IFD-Mapping : Package Instances

To handle packages of a differing capacity, we support package instances. Figure 5.33 depicts
a scenario where a large incoming package is mapped to two outgoing package instances. We
already discussed package instances in Section 5.2.4, when we introduced the super-frames.
As presented in mapping function 9), a package instance is characterized by an integer value,
encapsulated in parentheses. The first instance of Pout, for example, is written as Pout(1).
When only one instance is needed, we can leave out the package declaration.

9) Pout[1:8](1) <= Pin[1][1:4] + Pin[2][1:4]; Pout[1:8](2) <= Pin[3][1:4] + Pin[4][1:4];

7

i

4

3

2

1

1 2 3 4

j k l m n o p

8

Pout (2)

Pin

Pout[1:8](1) <= Pin[1][1:4] + Pin[2][1:4];
Pout[1:8](2) <= Pin[3][1:4] + Pin[4][1:4];

a b c d e f g h

1 2 3 4 5 6 7 8

Pout (1)

Super-FramePout

d h l p

c g k o

b f j n

a e i m

Figure 5.33: IFD-Mapping: Mapping multiple package instances of a super-frame

133

5 The Detailed Interface Synthesis Design Flow

Syntax - and Semantic Analysis of the IFD-Mapping

To check the correctness of the defined mapping functions, the IFD-Mapping provides both
a syntax - and a semantic analysis. Therefore, the IFS-Editor disposes of a graphical user
interface for the entry and the analysis of the mapping functions. We developed a compiler
frontend that implements the analysis as part of the IFB model synthesis. The related
compiler backend is part of the code generation in the second IFB synthesis phase.

We specified the grammar of the IFD-Mapping Language in such a way that it can be
processed by JavaCC (Java Compiler Compiler) [153]. Based on a predefined grammar, this
tool creates a lexical analyzer and a parser to verify the lexical correctness and the syntax of
the IFD-Mapping, respectively. To construct a derivation tree for the semantic analysis and
the usage in the code generation, we utilize the tool JJTree [153], in addition to JavaCC.

When the IFD-Mapping has passed the lexical and the syntax check successfully, we ensure
the correctness of the following aspects within the semantic analysis:

• The use of correct assignment operators (<= for packages, := for variables)

• The data types of assigned expressions have to match

• Variables have to be defined before they are used

• The dimensions of assigned packages and constant arrays have to match

• The direction of the assigned packages has to be input to output

• Boolean operators may be applied only to bit-values

Another condition for a valid IFD-Mapping is a conflict-free mapping of the data packages.
Conflict-free means that there exists no mapping function which either violates the causality
of the I - P - O execution cycle or leads to a deadlock in the data processing.

Causality of Data Packages

The CU assures the proper execution of the communication cycle according to Figure 4.16.
In order to create an executable CU, it is essential that all mapping functions respect the
causality of the mapped packages, which means that all incoming packages are read before
the outgoing package is created. To evaluate the causality, we utilize the package graph.

We construct the package graph from the given PSMs in combination with the IFD-Mapping
as presented in Figure 5.34. Sequences of bits, which are mapped from an incoming to an
outgoing data package, are abstracted as packages (dotted boxes on the left). These packages
present the nodes of the package graph (on the right side). The edges of the package graph
result from the given transitions of the state graph in combination with edges that arise
from the mapping functions between the created packages.

S0
Pin[1]

Pout[1] <= Pin[1];

Pout[8] <= Pin[8];

Si
Pin[8]

Sk
Pout[1]

Sn
Pout[8]Pin Pout

Pin Pout

Pout <= Pin

Figure 5.34: Construction of the package graph

134

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

Pin Pout Pout Pin

Pout <= Pin

Figure 5.35: Causality in the package praph

The mapping functions respect the causality if the related package graph is cycle-free. On
the left side of Figure 5.35 we can see a valid mapping function, whereas we can observe a
violation of the causality on the right. In contrast to a valid mapping function, an invalid
mapping function adds a backward edge to the graph that results in a cycle.

We can utilize the depth-first-search (DFS) algorithm to analyze the package graph for
cycles [82]. This is an efficient way with a complexity of Θ(V+E), where V represents the
number of nodes and E stands for the number of edges in the package graph.

Deadlocks

In the case we process the data packages of multiple component interfaces inside the IFB,
invalid mapping functions lead to deadlocks during the execution of the protocol translation.
With the help of the package graph that we create from the affected PSMs and the IFD-
Mapping, we can identify deadlocks as a special case of a causality violation. Therefore, the
IFD-Mapping is deadlock-free if the package graph is cycle-free.

Figure 5.36 illustrates an exemplary package graph that was created from two interfaces and
two mapping functions. The upper two packages origin from the first PSM, the lower two
packages from the second one. We map Pin1 to Pout2 and Pin2 to Pout1. As the package
graph is free of cycles, the related IFD-Mapping is deadlock-free. If we switch the sequence
of Pin1 and Pout1 in the first PSM, the resulting package graph comprises a cycle (see
Figure 5.37). Independent of the structuring of the package graph, there exists a backwards
edge which indicates the deadlock.

After the designer entered a valid IFD-Mapping (the syntax - and sematic analysis passed
successfully), we employ the IFD-Mapping and the created PSMs to construct the IFB model.

Pin1 Pout1

Pout2 Pin2

Pin1 Pin2Pout2 Pout1

Figure 5.36: Example for a valid IFD-Mapping

Pin1Pout1

Pout2 Pin2

Pin1 Pin2Pout2Pout1

Figure 5.37: Example for an invalid IFD-Mapping that leads to a deadlock

135

5 The Detailed Interface Synthesis Design Flow

5.2.7 IFD Optimization and Creation of the Protocol Frames

Before we create the IFB model, we adopt the information provided by the IFD-Mapping
to optimize the PSMs related to the PH-Modes. The aim of the optimization is to minimize
the amount of data that we have to transmit between PH and SH. This can be done by
reducing the available data packages with respect to the mapped data bits.

For this reason, the synthesis algorithm marks the protocol matrix nodes which are related to
the mapped data bits as “required” (unmapped PMNs are denoted as “don’t care”) and reruns
the package detection to shrink the existing packages. Therefore, we extended the package
detection algorithm to ignore data bits which are marked as “don’t care”. As presented in
Figure 5.38, an existing package can thereby resolve into multiple sub-packages.

The optimization of the data packages inside the PSMs provides the following advantages
for the IFB synthesis:

Optimize traffic: The optimized data packages guarantee a minimum traffic inside the IFB,
as we do not have to transfer redundant values (via the PH-Switch into the memory).
This is especially important as the IFB internal memory bus, which is realized inside
the PH-Switch, represents the bottleneck of the IFB architecture.

Bus allocation: The fragmentation of a package into sub-packages can involve the division
of the belonging frame into several frames which cover less states, each. This affects
the memory bus arbiter in the CU, which schedules the memory access (memory bus
allocation) of the frames. In priority based systems, a greater number of small frames
shortens the average waiting time (= starting time - arrival time) for the “execution”
of a frame, as we may not preempt the ongoing transmission of a frame.

Memory consumption: We synthesize the IFB internal memory as a dedicated memory
for each processed data word. Therefore, optimized packages guarantee a minimized
memory consumption including a minimum memory interface.

When the optimization is finished, we replace the original WSMs with the optimized PSMs.
Thereon, we apply the package - and the frame detection, which delivers the final packages
and frames. We utilize this information, including the updated IFDs and the interpreted
IFD-Mapping, as input for the IFB model synthesis. In case the designer wants to create
an RTR-IFB, he additionally has to specify the related RCU in the Synthesis Wizard.

Frame 3Frame 2

States1 2 3 4 5 6 7 8

1

2

3

4

ID ID

ID

OC OC OC

IC

OD

OD

OD

OD OD

IC

IC OD OD

IC

IC OC

OC

OC

ODOC

P
ro

to
co

lP
in

s

Frame 1

OD

OC

OC

ID

OC

9

IDID

ID

OD OD

OD OD

ID

Mapped Data Bit

Shrinked Sub-PackagesFormer Package
Ignored
Data Bit

Figure 5.38: Optimized protocol matrix consisting of sub-packages

136

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

5.2.8 Assembly of the IFB Model (Intermediate Representation)

The class diagram in Figure 5.39 delivers a structural overview of the data model that
we assembled in the preceding synthesis steps. It points out the major classes and their
correlations as we can find them in the data structure of the implementation.

IFD-Mapping

ProtocolPackage

MappingEquation

MappingFunction

IF-Stmt

Declaration

Assignment

TreeNodes

MappedProtocolPackage

1

-has

0..*

TreeNode
1

*

ParseTree

1
-consists of*

1

-has Reference to

0..*

1

-has0..*

1
-has1

1 0..*
-has

1..*

-parent

1

MappedObjects

1

-has

0..*

1

-consists of

1

«bind»

IFD

-knows

Protocol

ProtocolMatrix

ProtocolMatrixNode

ProtocolMapInterface

1-has 0..1 -has 0..1

1

-has

0..1

1

-consist of 0..*

1

-has 1

MappingFile

-links

1

1

IFDMappingParser 1

«bind»
«bind»

ProtocolPackageFrame

1

-belongs to 1

1 0..*

1..*
1

ProtocolPackageFactory 1

EIFD

1
1

1

1

1

0..*

1

-has

-has

-has

-has

-provides

TPD

RCU

Figure 5.39: Input of the IFB model synthesis as class diagram

137

5 The Detailed Interface Synthesis Design Flow

We divide the class diagram into five domains, which are represented by colors:

green : Synthesis input, selected from the System Architecture
blue : IFD-Mapping (with a focus on the compiler frontend)

yellow : Protocol matrix, protocol packages and frames
orange : Interpreted mapping functions (as a special part of the IFD-Mapping)

grey : Derivation tree, constructed from the IFD-Mapping

The green classes (IFDs, TPD, RCU) constitute the synthesis input that has been selected
from the System Architecture. The class IFD represents those interface descriptions which
belong to the selected component interfaces. It references the classes Interface, Protocol,
and ProtocolMap. Remember that we replaced the original protocol descriptions (WSM) in
the IFDs by the optimized PSMs in the preceding optimization step.

IFD-Mapping is a central class that provides a link to the mapping file (MappingFile). This
is necessary to export the IFB model, which is stored in the form of its inputs. In contrast
to the other IFS components that are stored in the IFS-Format (XML), the IFD-Mapping
remains an ASCII file, which can be easily modified and reused by a designer. The class
IFDMappingParser represents the mentioned compiler frontend, developed to analyze and
evaluate the IFD-Mapping.

The classes in the lower right corner model the interpreted mapping functions. Technically,
each MappingFunction is constructed by a number of MappingEquations, which can either be
refined to an Assignment or an IF-Statement. Each MappingFunction is associated to that
outgoing ProtocolPackage which is defined by this function. In order to optimize the data
packages (preceding optimization step), each MappingEquation references its MappedObjects,
which are exactly one outgoing and a set of incoming ProtocolPackages.

The packages that result from the adapted IFDs are instances of the class ProtocolPackage,
which refines the class ProtocolMatrix that consists of ProtocolMatrixNodes and belongs to
one of the given protocols. At this point, we leave out the basic blocks to simplify the
class diagram. To create packages and frames, the IFD-Mapping provides algorithms that
process the protocol matrices, here represented by the class ProtocolPackageFactory. Next
to the packages, the IFD-Mapping knows all frames. One ProtocolPackageFrame consists of
ProtocolPackages, whereas each ProtocolPackage belongs to exactly one frame.

The reduced packages are modeled by the class MappedProtocolPackages. Each sub-package
references its original package and the related MappingEquations. The MappingEquations,
in turn, are associated to dedicated tree nodes of the derivation tree, which results from the
interpretation of the mapping functions. The derivation tree is defined by the composite
design pattern [118] that allows us to model a tree structure consisting of TreeNodes. In
order to simplify the diagram, we left out the different roles that a particular TreeNode can
adopt. The possible roles are defined by the grammar of the IFD-Mapping Language, for
example, an non-terminal symbol like an assignment or a terminal symbol like a package
identifier. The root node of the derivation tree (ParseTree) is assigned to the IFD-Mapping.

For the succeeding synthesis steps we require an extended form of the IFD, the so called
EIFD (Extended IFD). An EIFD can additionally refer to a subtree of the derivation tree
in order to attach the data processing information specified in the IFD-Mapping to the
AutomataOutputs of a PSM. Based on the additional information, we construct the specific
data processing behavior of the SH-Modes within the IFB code generation process.

138

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

The EIFDs as Building Blocks of the IFB Model

Based on the presented data structure, we create the building blocks of the IFB model, called
EIFDs. An EIFD is an adequate basic unit for the succeeding code generation (2nd synthesis
step), as it allows the modeling of structure and behavior (see IFD definition in Section 2.1.4).
With the help of the EIFDs we are able to model parallel and sequential behavior that can be
translated into software (program code) or hardware (hardware design). In this way, we can
create either a software or a hardware implementation of the IFB based on the intermediate
representation.

An EIFD points to subtrees of the derivation tree inside of AutomataOutputs. As we cannot
export the referred subtree based on the techniques available in the IFS implementation, an
EIFD provides no (complete) representation in XML. This was another reason to store an
IFB in the form of its inputs instead of the resulting intermediate representation.

We utilize three different EIFD codings [35] to increase the expressiveness of the EIFDs. As
depicted in Figure 5.40, there exist the EIFD versions I - P -M, I - x - x, and x -P - x. An “x”
stands for a not available (null) element in this EIFD.

I - P -M : The EIFDs of this category provide the full information (topology & behavior).
The updated IFDs that we selected from the System Architecture are a representative
of this class. Based on the given information, we can create an interface and a behavior
that is linked to this interface. In Figure 5.41 we underlined all components that are
modeled by such an EIFD with a red line.

In the case of VHDL, which is the target language we create in the succeeding code
generation, we transform the interfaces I into entity descriptions and component decla-
rations. The protocol P (e. g., the optimized PSM) is translated into a state machine
inside the architecture description. Based on the protocol map M we map specific
signals of the state machine to the related ones of the entity.

I - x - x : An EIFD that comprises only the interface information I can be used to create
structural descriptions. In hardware, we can synthesize the component interfaces in
hierarchical designs. The pendant in software is to create a method signature.

x - P - x : This class of the EIFDs provides only ProtocolPins and is required to specify
internal signals. In this way, we can model local variables/signals that we use, for
example, to interconnect hardware components on the same hierarchy level.

We introduce the different EIFDs to assemble the intermediate IFB representation. Depend-
ing on the coding and the position inside the IFB model, the code generator knows how to
process (generate the target code of) an EIFD.

IFD / EIFD I P

Interface Signals
ProtocolMap
Local Signals

MPI

Figure 5.40: The three available EIFDs coding styles

139

5 The Detailed Interface Synthesis Design Flow

IFB

PH SHCU

PH-Switch PH-Modes

EIFDEIFD

EIFD

EIFD

SH-Switch SH-Modes

EIFDEIFD

EIFD

EIFD

EIFD Ctrl

EIFD EIFD

EIFD

Modified task-IFDs Synthesized from IFD-Mapping

EIFD : Created from IFDs
EIFD : Created from IFD-Mapping
EIFD : Created from IFDs and IFD-Mapping

EIFD

MemoryScB

EIFD

Structural Description:
Behavioral Description:
Dedicated Components:

EIFD: I-x-x, x-P-x
EIFD: I-P-M
EIFD: I-x-x

Figure 5.41: The IFB intermediate structure as EIFD-tree

Assembling the EIFDs to the IFB Macro-Structure

Before we explain the creation of the EIFDs in the EIFD Factory, we present an overview
which EIFDs are required and how they are assembled to the intermediate representation.
We construct the IFB model according to the IFB Macro-Structure by composing EIFDs to
the tree structure given in Figure 5.41, which depicts the non-reconfigurable IFB model.

The tree nodes IFB, PH, SH, and CU are structural elements that define the component
hierarchy of the IFB. For this reason we utilize I - x - x and x - P - x coded EIFDs to model
these components, including their interfaces and interconnections. The PH- and SH-Modes,
the Memory (-interface), and the Ctrl (arbitration of the memory bus, CU) are modeled
by I - P -M coded EIFDs, which support the creation of behavior in the form of a state
machine in addition to the interfaces. To model the components PH-Switch, SH-Switch, and
Scoreboard (ScB), we utilize I - x - x coded EIFDs to define their interfaces. The behavior of
these complex components, which cannot be expressed properly as FSMs, depends extremely
on the target language and the available HW or SW paradigms. For this reason, the code
generation in the succeeding synthesis step has to create the behavior of these components
directly based on the IFDs and the IFD-Mapping (see class diagram in Figure 5.39).

To construct the EIFDs which represent the PH-Modes, we extend the modified task-IFDs.
Furthermore, we personalize the EIFDs that model the PH, the PH-Switch, the Memory,
and the IFB (blue EIFDs) with the help of the task-IFDs. To create the SH-Modes and the
SH-Switch (red EIFDs), we refer to the IFD-Mapping. The EIFDs representing the SH and
the complete CU (green EIFDs) depend on both kinds of information.

In the case of the RTR-IFB model, the EIFDs of the PH-Modes and the SH-Modes are
placed on the top level of the tree next to the IFB node. Accordingly, the interfaces and
interconnections of the PH, the PH-Switch, and the IFB have to be adapted, which is
done by a modification of the related EIFDs in the EIFD Factory. The reason to place
the reconfigurable modes on the top level results from the presented mapping of the IFB
components to the hardware execution platform (see Figure 4.20).

140

5.2 Synthesis Phase – Design Step 1 : IFB Model Synthesis

The EIFD Factory

To assemble the IFB model, the EIFD Factory creates all necessary EIFDs. At this point
we deliver only the most interesting aspects of the construction algorithm:

IFB, PH, SH, CU : To model the hierarchical component structure of the IFB, we require
only I - x - x and x - P - x coded EIFDs. A created interface has to comprise all signals
which are routed through the related component.

PH-Modes : The created PSMs, which model the external I/O, provide the basis for the PH-
Mode EIFDs. We have to add the internal communication to the memory bus, which
is specified by the protocol frames (see Section 5.2.4 and A.6). Therefore, we integrate
the identified frames into the PSMs, as presented in Figure 5.42 for an incoming frame.
Thereby, we have to add three states for each frame – two states to request the memory
bus in the PH-Switch (Init, IRQ), and one state to release the bus (IRQ).

Additionally, each state inside the frame is augmented by two more states (Rdy, Ack)
for the fully interlocked handshake with the memory interface. Currently, we do not
permit burst transmissions. To compensate for the additional time consumed by the
memory I/O, we correct the affected timed transitions by subtracting this time (here:
5 clock cycles, see Section 6.2). Furthermore, we add one state that starts the related
timer for each timed transition that comprises a TimerOrDeadline.

Chain of states up to
the first data read /

write state Si

Chain of states
without read / write.

S

Including all
states of one
basic block

Basic Block

Si-1

Si

Init FrameID <= fID

DA = 0

DR <= 1

Ack

Rdy

Data <= Data1Task1

IRQ IRQ <= 1

DA = 1

DR <= 0

S
tore d ata

S
i+1 -S

i+ h-2

Si+h-1

DR <= 1

Ack

Rdy

Data <= DatanTask1

DA = 1

DR <= 0

IRQ IRQ <= 0

frame width = h states

Si+h

ModeRun = 1

ModeRun = 0

Request Busin

Establish Busin
communication

Release Busin
communication

Incoming data frame

Read data from
Task1 and write
it into the Data
Reader via the
internal Busin.

DA = 0

tcorrected = torig- 5·CLK

tcorrected = torig- 5·CLK

S

Figure 5.42: PH-Mode synthesis – Construction of a data frame (incoming data)

141

5 The Detailed Interface Synthesis Design Flow

ModeRun = 1

ModeComplete <= 0

Pout[1:4] <= Pin[4:1];
stateVariable = ’0’;

Reset = 1

ModeRun = 0

Mode
Complete

<= 1

1
Modify S2

Modify S1Done

Idle

Modify S3

else
1

Pin[1:2] == {’0’,’1’}) &&
stateVariable != ’1’

Pout[1:4] <= Pin[1:4];
stateVariable = ’1’;

bit stateVariable = ’1’;
if ((Pin[1:2] == {’0’,’1’}) &&

(stateVariable != ’1’)) {
Pout[1:4] <= Pin[1:4];
stateVariable = ’1’;

} else {
Pout[1:4] <= Pin[4:1];
stateVariable = ’0’;

}

Figure 5.43: SH-Mode synthesis – Creation of the state machines for the data processing

SH-Modes : To create an SH-Mode we generate a PSM from the related mapping function.
Thereby, we transform the available assignments into AutomataOutputs inside of the
modify-states. Each output references a dedicated subtree within the derivation tree in
order to specify the related assignment. In the case of conditional mapping functions
or state machines we create additional states to implement the modeled branches.

Figure 5.43 illustrates the state machine that we would synthesize from the mapping
function presented in Section 5.2.6. The states Idle, Done, and Modify S1, including
the signals ModeRun and ModeComplete result from a PSM template that we use to
construct an SH-Mode. The synthesis algorithm completes the scenario specific parts
of the SH-Mode template: because of the binary condition in our example we create the
two states Modify S2 and Modify S3. The transition condition related to the transition
to state Modify S2 results from the if-condition in the mapping function, the other
condition represents the else case. The outputs of the state machine are composed as
Moore outputs, which reference the dedicated subtree of the derivation tree (red).

PH-Switch, SH-Switch, Scoreboard : These components comprise a complex behavior that
cannot be expressed (efficiently) using IFDs. Furthermore, the implementation of these
components varies quite a lot depending on the target language. Thus, we model only
their interfaces here, using I - x - x coded EIFDs. The generation of the components’
behavior has to be implemented directly within the code generator.

Memory : The internal memory of the IFB is synthesized as a dedicated memory. Therefore,
it depends on the package information that we derive from the IFDs. Our synthesis
algorithm generates one PSM for the incoming - and one for the outgoing memory.
The two state machines implement the memory interface that communicates with the
PH-Modes and stores (recalls) the identified data words in (from) dedicated registers.
In our case (VHDL), the succeeding code generation creates an additional register-file
that represents the data structure of the identified packages as a library.

Ctrl : Based on the identified frames we create the memory bus arbiters (Ctrlin and Ctrlout)
inside the CU. The construction depends on the strategy that the bus arbiter has to
perform to schedule the memory bus access. In our case, we implement a priority
based scheduler, which is explained in the following chapter.

It is the task of the code generation to create an executable version of the IFB based on the
presented intermediate representation. Therefore, the code generation step has to processes
the generated EIFD-tree as the second step of the synthesis phase.

142

5.3 Synthesis Phase – Design Step 2 : IFB Code Generation

5.3 Synthesis Phase – Design Step 2 : IFB Code Generation

The IFB model synthesis is followed by a completely automated code generation step that
translates the intermediate representation into a dedicated target language using classical
compiler techniques. An automation of the code generation is profitable for multiple reasons:

• When the target platform comprises specific resources, it makes sense to create the
target code in dependency of the available components.

• When performed automatically, the coding is faster and less error prone. Furthermore,
automation facilitates enforcing compliance with design rules and coding styles and
therefore simplifies the reusability and maintainability of the created code.

• Furthermore, automated testing and verification allows us to increase the code quality
and is essential during the development of safety critical systems.

To create the IFB target code, the code generator evaluates the generated intermediate
representation in combination with the given IFDs and the IFD-Mapping as depicted in
Figure 5.44. We developed a specific compiler backend [35, 1] to generate the VHDL code
of the IFB as part of the Interface Synthesis Design Flow. It applies the well known code
generation technique frame processing [178], based on the IFB Hardware Template, which
defines a precise construction plan of the IFB device on the RT (circuit) and the algorithm
(FSM) level. We explain the IFB Hardware Template in detail in the next chapter.

SYSTEM ARCHITECTURE
SELECT
INPUT &

DIRECTORY

CODEGEN
WIZARD

CODEGEN
WIZARD

CREATE
CODE

GENERATE IFB TARGET LANGUAGE CODE

IFB TARGET CODE

IFB-DESCRIPTION

FRAME PROCESSING PLUGIN

SELECT IFB TO CODE & TARGET DIRECTORY

VHDL GEN
TRANSLATE ABSTRACT

IFB-DESCRIPTION
INTO TARGET LANGUAGE

IMPLEMENTS
IFB-HW-TEMPLATE

IFB
VHDL

SYSTEM

BOARD

CHIP

TASKIFB

STEP III – SYNTHESIS PHASE

VHDL FACTORY
GENERATION OF
VHDL PATTERN

Figure 5.44: Interface Synthesis Design Flow: the IFB code generation phase

143

5 The Detailed Interface Synthesis Design Flow

5.3.1 Frame Processing

Figure 5.45 illustrates a structural model of the frame processing technique, which comprises
a meta model and a set of code frames. A code frame is composed of a set of parameterizable
slots. In turn, each slot comprehends one or multiple frame instances and a number of code
fragments (e. g., Type, Name, etc.).

Frame processing uses the meta model as a kind of “top-level frame” that instantiates and
parameterizes the required frames. Furthermore, the meta model assembles the completed
frames to a tree-like data structure. In this way, we create a frame hierarchy, which represents
the dedicated target code. We generate the final code by exporting the created frames.

Metamodel

Generator

Target Code

Code FrameCode FrameCode FrameCode FrameCode Frame

1) Create &
Instantiate

3) Generate

2) Instantiate &
Parametrize 2)

 In
st

an
tia

te
 &

Pa
ra

m
et

riz
e

4) Create Target Code

Figure 5.45: The code generation technique frame processing

VHDL is a component based language that facilitates the mapping of particular VHDL
constructs to frames. Therefore, frame processing is an adequate code generation technique
to create the IFB target code. We utilize the frames to create the particular elements of
the IFB Hardware Template in the form of VHDL pattern as presented in the next chapter.
Therefore, we adapted the frame processing model as presented afterwards.

5.3.2 Adapted Frame Processing Model

Figure 5.45 depicts the adapted model of the frame processing, which is integrated in the
CodeGenWizard as part of the IFS-Editor. Thereby, we implement the meta model by
means of the module VHDLGen and create the frames with the so called VHDLFactory.

VHDL Gen
Macrostructure

Codegen
Wizard

IFB IP
VHDL Code

Code FrameCode FrameCode FrameCode FrameCode Frame

1) Create &
Instantiate

3) Generate

2) Instantiate &
Parametrize

2)
 In

st
an

tia
te

 &
P

ar
am

et
riz

e

4) Create Code

VHDL Factory

Figure 5.46: Adapted model of the frame processing for the IFB code generation

144

5.3 Synthesis Phase – Design Step 2 : IFB Code Generation

VHDLGen

As meta model we apply the IFB Macro-Structure which already has been used to construct
the IFB intermediate representation. To create the target code, VHDL Gen traverses the
IFB model by a recursive descend and uses the VHDLFactory to translate the abstract
EIFDs into VHDL. Starting point of the recursive descend is the top-level IFB node.

On one hand, our meta-model considers the component hierarchy as presented in the IFB
Macro-Structure; on the other hand, it handles the internal structure of a VHDL file, for
example, the composition of the respective entity - and architecture descriptions.

Furthermore, VHDL Gen organizes the generated VHDL code fragments with the help of a
code-list. After the code generation is completed, we create the target code by exporting
the code-list in the form of VHDL files.

VHDLFactory

The generation of the actual VHDL code is performed by instantiating frames inside the
VHDL Factory. Each frame consists of slots, which comprehend further frames and code
fragments. Thereby, each code fragment represents a parameterized snippet of VHDL code.
During the initialization, the snippets receive their final specification.

A simple example that points out this procedure refers to the identifier of a VHDL entity.
The related sippet comprises the identifier as a parameter (here: entity Name), which is
replaced during the frame initialization by the respective value of the IFB model.

entity entity_Name is
port(...);

end [entity_Name];

entity_Name = MyEntity

parameterize code fragment

entity MyEntity is
port(...);

end [MyEntity];

In the following section we provide an overview of the top level code pattern (frames) that we
generate in order to assemble the VHDL entities and architectures. Some VHDL examples
are given in A.4. A detailed description of the code generation is presented in [1, 35].

5.3.3 Overview of the Generated VHDL Code Pattern

Entity : With the help of this frame we create the “interfaces” for all VHDL files

Architecture : This complex pattern creates the different forms of VHDL behavior :

- Behavioral VHDL descriptions : In this case we create concurrent assignments and
processes including the definition of local signals and the synthesis of the modeled
reference signals (TimerOrDeadlines, Clocks, and GlobalDates).

1) State machines (PH-Modes, SH-Modes, Memory (-Interface), Ctrl)
2) Dedicated RTL circuits (PH-Switch, SH-Switch, Scoreboard)

- Structural VHDL descriptions : Here, we create the behavior by composing existent
components to a component hierarchy. Therefore, we have to declare, instantiate, and
map the required components.

1) Components (IFB, PH, SH, CU)

Library : To provide complex data types that represent the internal memory, we create a
register file that consists of packages which are modeled as records of std logic vectors.

145

5 The Detailed Interface Synthesis Design Flow

5.3.4 The Three levels of IFS Code Generation

As presented in Figure 5.47, we can use the implemented code generator also to create the
VHDL code related to a chip or even the complete System Architecture. This is possible
as the complete system is composed of components which provide an IFD. Similar to the
EIFDs that we utilize in the case of an IFB, our compiler is able to process IFDs, which
simply lack the association to the derivation tree. This is not yet critical, as we require
the associations only to create the SH-Modes. Thus, the VHDL Factory can construct the
VHDL descriptions of architecture - and communication components without modifications.

In order to create the target code for these components (except of the IFB), we apply the
System Architecture as meta model and provide the modeled communication system to the
code generator. We distinguish between three levels of VHDL code generation:

I) GenerateIFB()

This version delivers the target code of an IFB in the form of an IFB-IP as presented
in the previous section. The created IFB code is a set of hierarchical VHDL files.

II) GenerateExecutables()

GenerateExecutables() iterates through the available chips. Thereby, it creates the
target code for these chips based on the contained tasks, media, and IFBs. In Chapter 3
(Related Work) we introduced this specific bunch of code as “Configware”.

III) GenerateSystem()

GenerateSystem() iterates through the System Architecture by a recursive descend. It
creates the hierarchical target code of the complete system, including all architecture -
and communication components. The resulting code can be utilized for a simulation of
the system. As the communication components are modeled as black box, we can only
synthesize their interface behavior. For a complete simulation, the designer would have
to add the internal component functionality by hand, as the automated generation of
this functionality is out of the scope of the IFS methodology.

The code generator produces synthesizable VHDL code from the synthesizable VHDL subset
[223, 175, 173] that is ready to be integrated into a VHDL based design flow [74, 50].

S

BB

CC

SYSTEM

BOARD

CHIP

TASKTMIFB I

M

MMEDIUM

MEDIUM

MEDIUM

I. GenerateIFB()

II. GenerateExecutables()

III. G
en

erateS
ystem

()

Figure 5.47: The three levels of the IFB code generation

146

5.4 Code Integration Phase

5.4 Code Integration Phase

The generated IFB target code can be seen as an IP. In contrast to the IFB intermediate
representation, which we regard as a flexible IP which can be stored in a design data base, it
is the primary intention of the IFB target code to be integrated into an existing design. As
we create an IFB for a specific scenario with respect to the applied language, the challenge
of integrating an IFB depends on the utilized tools and design-flows (see Figure 5.48).

In hardware, we use EDA tools to create an executable hardware design, in the case of an
FPGA, for example, a circuit or a configuration bitstream. This process depends mainly
on the available target technology. In software, we employ compilers to generate the object
code in the form of an executable binary file. This final processing of the design (e.g., the
low level synthesis in the case of HW) is independent of the IFB synthesis. Therefore, the
integration process, which can bee seen as a concluding design step, is located outside of the
Interface Synthesis Design Flow.

An example for the integration of the hardware RTR-IFB is the Part-Y tool, developed in our
research group [92, 91]. This tool is specialized in the partial design flow for Xilinx devices.
With the help of the tool, we can combine the RTR-IFB with the VHDL files of the tasks
and create the partial bitstreams (=Configware) to configure the FPGA. Thereby, Part-Y
provides a single UML class diagram as backend that is used to visualize the characteristics
of the reconfigurable system. The tool allows to navigate on the design under development
and thus provides a sophisticated means to integrate the IFB VHDL files into the design.

INTEGRATE IFB TARGET CODE INTO DESIGN

STEP IV – INTEGRATION PHASE

TASKS
&

MEDIA

IP-
DATA
BASE

IFB
TARGET CODE

IP IMPLEMENTATIONS

EXECUTABLE DESIGN

HARDWARE: EDA TOOL
(E.G. XILINX ISE FOR XILINX FPGAS)

PLUGIN

SOFTWARE: COMPILER

APPLY COMMERCIAL TOOLS

- CREATE FINAL HARDWARE DESIGN
 (CONFIGURATION FILE, CIRCUIT, ...)
- DEPENDING ON TARGET TECHNOLOGY

- CREATE OBJECT CODE
 (EXECUTABLE / BINARY FILE)
- DEPENDING ON EXECUTION PLATFORM

Figure 5.48: Interface Synthesis Design Flow: the IFB code integration phase

147

5 The Detailed Interface Synthesis Design Flow

5.5 Extension of the Interface Synthesis Design Flow

5.5.1 Creation of a Globally Optimized Communication Infrastructure

In this section we introduce an extension of the presented Interface Synthesis Design Flow.
The idea is to automatically compute the optimum allocation and placement of IFBs with
the aim to construct an optimized communication infrastructure. The presented approach
supports the designer by creating all IFBs of a non-reconfigurable system automatically
within one iteration through the Interface Synthesis Design Flow, producing a minimum of
implementation - and communication costs. The details of this optimization approach have
been published in [11, 37].

Optimized Distribution of IFBs

The optimization approach copes with a System Architecture that comprises a fixed binding
of tasks to chips and a static communication structure, which is physically restricted to a
given set of interconnections. The assignment of mapping functions to IFBs as well as
the allocation and binding of the IFBs to chips, next to the reservation of the necessary
interconnections characterizes our design space. The communication graph, depicted in
Figure 4.13 visualizes this design space. As we will see, the location of an IFB in the System
Architecture highly determines the number of required interconnections.

Obviously the communication costs between and the implementation costs for the IFBs vary
depending on the allocation and the binding. Therefore, it is our goal to compute an optimal
allocation and binding (⇔ placement) of IFBs and mapping functions. To achieve this goal,
we define cost functions for the communication and the implementation of an IFB.

Cost Functions for Clustering

The definition of cost functions, for example, with the help of Integer Linear Programming,
as well as a detailed overview about partitioning concepts and algorithms are presented in
[232]. The total costs of the System Architecture CSysArch are defined as the sum of all
communication and implementation costs, which have to be minimized:

CSysArch = CTasks + CStaticIO +
k∑

i=1

C(IFBi) (5.1)

k stands for the number of allocated IFBs. As static part of the system, the costs arising
from the implementation of tasks (CTasks) and from fixed direct interconnections (CStaticIO)
are negligible for the optimization. Therefore, we do not care for these items.

Only the costs resulting from the IFBs are variable: On one hand, an IFB requires resources
in terms of CLBs or memory for its implementation (implementation costs, CImpl). On the
other hand, an IFB reserves interconnections for establishing the communication between
the connected tasks (interconnection costs, CInterconnect).

C(IFBi) = CImpl(IFBi) + CInterconnect(IFBi) (5.2)

n = number of mapping functions bound to IFBi (5.3)

148

5.5 Extension of the Interface Synthesis Design Flow

The implementation costs CImpl are defined as follows:

CImpl(IFBi) = (1 + n · IFBMappingCosts) · IFBBody

+
#PH-Modes∑

x=1

C(PH-Modex) +
#SH-Modes∑

x=1

C(SH-Modesx)
(5.4)

Equation 5.4 consists of three items: the costs for the PH-Modes, those for the SH-Modes,
and a term that estimates the overhead of the IFB skeleton. The 3rd term comprises a fixed
overhead and one that increases linearly with the number of processed mapping functions.

The communication costs CInterconnect are defined as follows:

CInterconnect(IFBi) =
n∑

m=1

interconnectionsm · lenghtm (5.5)

As we get by with primitive electrical interconnections, the communication costs arise from
the product of the required interconnections with their length, which is defined as the number
of passed edges through the architecture graph. With the aid of the given equations the IFB
costs can be estimated precisely.

Definition of Optimization Strategies

Due to the huge amount of available logic, the communication resources became more and
more the critical aspect of SoC-design. Especially the off-chip communication across the
System Architecture has to be minimized. Therefore, the reduction of the interconnection
costs is one main goal for the distribution of IFBs. However, a minimization of the inter-
connection costs leads to an increased number of IFBs resulting in higher implementation
costs. Depending on the given System Architecture and the current design aim, different
strategies can be approached as presented in Figure 5.49:

2. Minimal Implementation Costs

1. Minimal Interconnection Costs

Interconnection Costs

3. Upper bound for number of IFBs

4. Upper bound for size of IFBs

Im
pl

em
en

ta
tio

n
C

os
ts

(1 IFB)

(6 IFB)

(4 IFB)

(3 IFB)
(2 IFB)

P

P0 = {0,0}

Line of equal costs

p

(5 IFB)

 5. Achieve a
balancing criteria

r = c

Figure 5.49: Goals for the distribution of IFBs

149

5 The Detailed Interface Synthesis Design Flow

1. Minimal interconnection costs
In this strategy, we allocate one IFB for each mapping function and bind it to that
chip, which produces a minimum of interconnection costs by implementing this IFB.
This is the chip with the highest communication effort with respect to the adapted
task set. The disadvantage of this strategy are high implementation costs.

2. Minimal implementation costs
The number of IFBs is reduced to a minimum by maximizing the number of mapping
functions per IFB. This strategy increases the utilization of the particular IFBs whereas
the implementation costs are reduced to a minimum. As disadvantage, this strategy
leads to high interconnection costs.

3. Upper bound for number of IFBs
This strategy optimizes the interconnection costs in respect to a given upper bound
for the number of IFBs.

4. Upper bound for implementation costs
This strategy decreases the local implementation costs per chip regarding an upper
bound for the size of an IFB.

5. Achieve a balancing criteria
A balancing criteria can be useful to avoid extremal values for implementation - or
interconnection costs. An example for this goal could be the average utilization of
IFBs (load balancing) or a balanced traffic on the communication links.

Each cross in Figure 5.49 represents a pareto optimal solution for a fixed number of IFBs.
The absolute value |−→p | defines the costs of point P including the sum of all IFB costs.
Thus, the circular arc defines the line of equal costs c according to equation (5.1). The
optimization strategies can be integrated into the cost function by adding quantifiers to the
implementation- and interconnection terms in equation (5.2). In that case the total costs
becomes a weighted sum, which allows us to prefer different strategies.

Solving the Optimization Problem

The problem of distributing a number of IFBs over the System Architecture and deciding
which mapping function to implement in which IFB can be seen as a partitional clustering
problem. To handle this problem, we developed a bottom up partitional clustering algorithm
that uses heuristics to examine only a small number of partitions. The result is a number of
disjoint clusters without a hierarchy, where each cluster represents one IFB. The clustered
patterns are mapping functions which are implemented inside the IFBs.

First of all, the optimization algorithm constructs an initial distribution that satisfies the
strategy“minimal interconnection costs”. Afterwards, the clustering algorithm migrates and
merges mapping functions and IFBs in order to fulfill the selected optimization strategy.
Thereby, the clustering algorithm tries to reduce the implementation costs by migrating
mapping equations from one IFB to another until the selected IFB has no mappings assigned.
The empty IFBs are then removed from the system. A lower number of IFBs results in
decreased implementation costs and increased interconnection costs. If the selected strategy
is satisfied, or no further reduction of the number of IFBs is possible, the clustering algorithm
stops. The precise algorithm is explained in [11] and [37].

150

5.6 Summary

5.6 Summary

This chapter highlighted the three design phases of the Interface Synthesis Design Flow in
detail : the modeling phase, the synthesis phase, and the integration phase. To evaluate our
methodology and give a proof of concept, we implemented the Interface Synthesis Design
Flow as an EDA tool, the IFS-Editor.

In addition, we presented an extension of the Interface Synthesis Design Flow that tackles
the generation of a globally optimized communication infrastructure resulting in minimum
communication - and implementation costs.

Modeling Phase

After having presented our modeling concept in the previous chapter, we now introduced
our UML2.0 profile. It supports the modeling of the structural and the behavioral aspects of
the IFS System Architecture in an intuitive and abstract way. To define the UML 2.0 profile,
we extended the UML 2.0 meta model. We transferred the profile to the CASE tool Fujaba
and implemented the model transformation according to our modeling concept. Thanks to
the UML2.0 profile, we are now able to provide an integrated design flow that accomplishes
the complete design process, from high level UML down to synthesizable VHDL.

Synthesis Phase

Every time we have to interconnect incompatible interfaces in the System Architecture we
generate an IFB. The automated IFB generation is a central topic of the synthesis phase
that we divide into the construction of a language independent intermediate representation
(IFB model) and the generation of the final IFB target code. To construct the IFB model,
we preprocess the selected input (IFDs, TPD) from the System Architecture and define the
IFB internal data processing (IFD-Mapping). Afterwards, we assemble the hierarchical data
structure of the IFB model composed of EIFDs, created by the EIFD-Factory.

As this thesis focusses on communication synthesis, we explained the protocol synthesis
in greater detail. The presented approach constructs the protocol state machines (PSM)
that are required for the implementation of the PH-Modes from the given waveform state
machines (WSM). To describe the protocol synthesis algorithm, we introduced the abstract
data types basic block, protocol matrix, package, and frame including their construction and
their meaning for the synthesis algorithm.

The second major aspect referred to the definition of the IFB internal data processing. We
developed the IFD-Mapping Language for the definition of data processing operations in the
form of mapping functions that support the assignment of constants, the mapping of incom-
ing to outgoing data bits, the application of boolean functions and guarded assignments,
and the use of linear bounded automata for the processing of data. For the integration of
the IFD-Mapping into the IFS-Editor, we implemented a syntax and a semantic check,
including a test for the package causality and deadlocks.

With the help of the IFD-Mapping we optimize our interface models (shrink data packages)
for further processing. The EIFD Factory instantiates and personalizes all EIFDs which are
required to compose the structural and behavioral aspects of the IFB model based on the
IFD-Mapping. These EIFDs are then assembled to the hierarchical IFB model in the form
of an EIFD-tree in consistency to the IFB Macro-Structure.

151

5 The Detailed Interface Synthesis Design Flow

The succeeding code generation, the second design step of the synthesis phase, translates the
IFB model into a target language, in our case, into VHDL. In order to implement the related
compiler backend we adapted the well known code generation technique frame processing.
The two main elements are VHDL Gen, which realizes the iteration of the meta model and
the assembly of the code fragments, and VHDL Factory that provides the particular frames,
which create the actual VHDL code by instantiating code snippets.

Next to the target code generation of an IFB-IP, the developed code generator supports
the creation of Configware, which is the information required to configure a chip and the
generation of complete systems, which can be used for simulation purposes.

Integration Phase

After explaining the central Interface Synthesis Design Flow, we provided an insight into
the concluding integration phase. Due to the high dependability to the applied tools and
target languages, the integration phase has been attached to the Interface Synthesis Design
Flow as an optional and user specific process. One example for the integration of the IFB
VHDL code is Part-Y, an EDA tool for the partial runtime reconfiguration with a focus on
FPGAs that is developed in our working group.

Extension of the Interface Synthesis Design Flow

Finally, we presented an extension of the Interface Synthesis Design Flow. The idea is to
automatically compute the optimum allocation and placement of IFBs in order to create a
globally optimized communication infrastructure. Thereby, the presented approach supports
the designer to create all IFBs of a non-reconfigurable system within one iteration through
the Interface Synthesis Design Flow, producing a minimum of implementation - and inter-
connection costs. To solve this challenge, we defined cost functions for the implementation
of an IFB and the communication in relation to the System Architecture. With the help
of a bottom up partitional clustering algorithm we try to satisfy one of the five different
optimization strategies from which the user can select.

152

CHAPTER 6

The Interface Block (IFB)

In this chapter we introduce the IFB Hardware Template. We developed the schematic as a
detailed construction plan of the IFB hardware version, which facilitates the creation of IFB
implementations in the form of hardware description languages, like VHDL. As mentioned
in the previous chapter, we applied the IFB Hardware Template to implement the VHDL
code generator within the Interface Synthesis Design Flow.

Next to the code generation, the IFB Hardware Template provides the basis for a cycle
accurate analysis of the IFB, which is essential for a schedulability analysis of the adapted
protocols. In this chapter, we explain how to evaluate the IFB description in order to derive
the information that is required as input for standard scheduling approaches.

Finally, we introduce two orthogonal optimization approaches, which allow us either to
minimize the latency of the protocol adaptation or to optimize the required resources (chip
area) for the hardware implementation.

6.1 IFB Hardware Template

As presented in Figure 6.1 and 6.2, we modeled the IFB Hardware Template in the form of
a schematic on the RT - and the Algorithm level (see Figure 3.2). Thereby, we transferred
the abstract System Architecture consistently into an efficient clock-synchronous hardware
circuit. Therefore, each component is provided with a clock (CLK) and a reset (Reset) signal.
Asynchronous communication can be handled only by synchronizing it to the IFB clock.

The IFB Hardware Template represents the component hierarchy with the help of graphically
nested objects. The available state machines (PH-Modes, SH-Modes, SH-Recon-Modes,
DataReader, DataWriter, Ctrlin, Ctrlout, and the Reconfiguration Unit) are specified as
automata graphs on the algorithm level. The nodes inside these graphs represent the states;
the edges stand for the transitions. A text, depicted close to a state, represents its Moore
output, while the annotations next to the transitions define the transition conditions.

The composition of the other elements (CU, PH-Switch, SH-Switch, and Scoreboard) is
given as an RTL design, consisting of gates, registers, and lookup tables (LUT).

153

6 The Interface Block (IFB)

PH_IFB_IF
PH

P
H

_S
H

_I
F

PH_CU_IF

CU_PH_IF
CU

C
U

_I
FB

_I
F

Ctrlin
Bus Arbiter

IRQout

FrameProcessed

Clk
Reset

PHMode

Run
Bus-
Grantin

Reconfiguration

PHMode

Enable

IRQin

ReconStart
= 1

DisableModes <= 0
ExchangeModules <= 0

ReconComplete <= 1
HaltModes <= 0

ReconStart = 0

ModulesExchanged = 1 ModulesExchanged = 0

ReconStart

ReconTasks

ReconComplete
ExchangeModules
ModulesExchanged

FrameSent

DRdyin

DAckin

Datain

FrameIDin

DReqout

DAckout

Dataout

FrameIDout

PH_Switch

TpdClocks

PH
_S

w
itc

h_
IF

PH_Switch_IF

Task1Taskt . . .

. . .

IFB

IF
B

_I
F

Bus-
Grantin

PHMode

Enable
Frame
IDt

Bus-
Grantout

Clk ResetTpdClocksTask1Taskt

PH_Switch_Modet_IF

. . .

PHModet
(e.g. sender)

PH_Switch_Modet_IF

Reset = 1

Si-1

Chain of states up to
the first data read /

write state Si

Start

Si+hS

ModeRun = 0

Chain of states
without read / write.

SS

S S

S

ModeRun = 0

Including all
States of one
Basic Block

I/OI/O

Basic BlockBasic Block

Basic Block

Transmission of a Frame

Req

Init FrameID <= fID

DA = 1
DR <= 1

Ack

Si Data1Taskt<= Data

IRQ IRQ <= 1

DA = 0
DR <= 0

S
tore data

S
i+1 -S

i+h-2

Si+h-1

Ack

IRQ IRQ <= 0

Frame Width = h states

First bit of FrameID is R/W
R: Read data from Task

ModeRun = 1

Establish Busout

communication

Req

DA = 1
DR <= 1

DatanTaskt<= Data

DR <= 0

Read data from
the Data Writer
via the internal
Busout and write
it to Taskt.

TpdClocksTask1 Clk ResetData Frame
ID IRQt

Mode-
Runt

DR DA

PHMode1
(e.g. receiver)

PH_Switch_Mode1_IF

Reset = 1 Chain of states up to
the first data read /

write state Si

Start

S

Chain of states
without read / write.

SS

S S

S

Including all
States of one
Basic Block

I/OI/O

Basic BlockBasic Block

Basic Block

IRQ Frame
ID1

FrameReady
FrameReceived

. . .

Frame
IDt

Frame
ID1

IRQ Bus-
Grantout

Clk Reset

. . .&. . . &
ID(0)

. . .
&&

IRQ

ID(0)
. . .

IRQ1 IRQt

IRQ
IRQt

PH_Switch_Mode1_IF

TpdClocksTask1 Clk ResetData Frame
ID IRQt

Mode-
Runt

DR DA

&

1

&

&

Incoming data bus

outgoing data bus

. . .

. . .

In, Out
or InOut

Tristate

Disable
Modes

Ctrlout
Bus Arbiter

PhM1_ PhMt_

PHMode

Run

DebugOut
DebugIn

PhCu_

IFB_

IFB_

RCU_

Original naming from task / medium

&

&&

&

1

&&

ID(0)

&

ID(0)

&

ID(0)

&

ID(0)

Tristate

Halt
Modes

&

Modes
Halted

Halt
Modes

ModesHalted =1

BusGrantin<= 0
ModeRunin(0)<=0
ModeRunin(t)<=0
storedFrameID <= “0...0“

Schedule
Frame

Grant
Bus_1

Grant
Bus_m

Release
Bus

Assign
Frame

FrameReady(Frame1) =1
AND IRQin(n) = 1

AND FrameID(n) = 1
BusGrantin<= 1
ModeRunin(n)<=1
storedFrameID
<= FrameID(n)

IRQin(n)
 = 0

1

FrameID(n)
= “0...0“

BusGrantin<= 0
ModeRunin(0)<=0
ModeRunin(n)<=0

BusGrantin<= 1
ModeRunin(n)<=1
storedFrameID
<= FrameID(n)

BusGrantin<=0
ModeRunin(0)<=0
ModeRunin(n)<=0
FrameReceived
<=storedFrameID

FrameID(n)
= “0...0“

IRQin(n) = 0

1

BusGrantout<= 0
ModeRunout(0)<=0
ModeRunout(t)<=0
storedFrameID <= “0...0“

Schedule
Frame

Grant
Bus_1

Grant
Bus_m

Release
Bus

Assign
Frame

BusGrantout<= 1
ModeRunout(n)<=1
storedFrameID
<= FrameID(n)

IRQout(n)
 = 0

1

FrameID(n)
= “0...0“

BusGrantout<= 0
ModeRunout(0)<=0
ModeRunout(n)<=0

BusGrantout<= 1
ModeRunout(n)<=1
storedFrameID
<= FrameID(n)

BusGrantout<= 0
ModeRunout(0)<=0
ModeRunout(n)<=0
FrameSent
<=storedFrameID

FrameID(n)
= “0...0“

IRQout(n) = 0

1

C
lk

R
es

et

C
lk

R
es

et

C
lk

R
es

et Clk
Reset

Si-1

Si

Init FrameID <= fID

DA = 0

DR <= 1

Ack

Rdy

Data <= Data1Task1

IRQ IRQ <= 1

DA = 1
DR <= 0

S
tore d ata

S
i+1 -S

i+h-2

Si+h-1

DR <= 1

Ack

Rdy

Data <= DatanTask1

DA = 1
DR <= 0

IRQ IRQ <= 0

Frame Width = h states

First bit of FrameID is R/W
R: Read data from Task

Si+h

ModeRun = 1

ModeRun = 0

Establish Busin

communication

Release Busin

communication

ModeRun = 0 Transmission of a Frame

Read data from
Task1 and write
it to the Data
Reader via the
internal Busin.

Release Busin

communication

DA = 0DA = 0

tcorrected = torig- 5·CLK

tcorrected = torig- 5·CLK

tcorrected = torig- 5·CLK

tcorrected = torig- 5·CLK

Deactivate
Modes

Reconfigure
Modes

Activate
Modes

Idle

LUT:
f(ReconTasks)

ReconSHModes

DisableModes <= 0
ExchangeModules <= 0
ReconComplete <= 0
HaltModes <= 1

C
lk

R
eset

LUT:
f(ReconTasks)

ReconPHModes

& PHModeEnable

DisableModes <= 1
ExchangeModules <= 0
ReconComplete <= 0
HaltModes <= 0

DisableModes <= 1
ExchangeModules <= 1

ReconComplete <= 0
HaltModes <= 0

DisableModes <= 0
ExchangeModules <= 0

ReconComplete <= 0
HaltModes <= 0

Reset = 1

Reset = 1

ReconPHModes

=1

ReconTasks
HaltModes
ModesHalted

HaltModes
ModesHalted

SHModeEnable

Odd FrameIDs Even FrameIDs

Frames
. . .

Frames
. . .

n = {1...t} | FrameX PHnn = {1...t} | FrameX PHn

InFrames

OutFrames

FrameIDWidht

FrameID-
Widht

FrameReady(Framem) =1
AND IRQin(n) = 1
AND FrameID(n) = m

FrameProcessed(Frame1) =1
AND IRQout(n) = 1

AND FrameID(n) = 1

Reset = 1
FrameProcessed(Framem) =1
AND IRQout(n) = 1
AND FrameID(n) = m

Figure 6.1: IFB Hardware Template (left side)154

6.1 IFB Hardware Template

SHMode

Run

S
H

_P
H

_I
FDRdyin

P
H

_S
H

_I
F

DAckin

Datain

FrameIDin

DReqout

DAckout

Dataout

FrameIDout

i1-1

0

P I
nC

om
pl

et
e 1

&

. .
 .

. .
 .

ik-1

0

P I
nC

om
pl

et
e k

 LUT: f(FrameID) PacketinIDs

k-1

0

SH
M

od
eC

om
pl

et
e

. . .

P
in

 {P
in
1,

 ..
.,

P
in
k

| P
ou

t=
 f(

P
in
)}

Pin

Pin

Pin

Pin

ClkReset

0 1 1 0 0

0 0 1 1 0
eq.

DR

DA
eq.

Fully Interlocked HS

IFBCtrl
Scoreboard

InFrames

OutFrames
Packagesin

Packagesout

SHMode

Enable

SHModeEnable

SHMode1

ModeRun = 1

ModeComplete <= 0

OutReg(...) <=
InReg &…& InReg

M
odifications

S
2 …

 S
n-1

Reset = 1

ModeRun = 0

Mode
Complete

<= 1

1

„One state delay
for OutReg“

SHReconMode1

SHModeComplete

IFB-Template

PinSelect1

&

PhSh_

ShCu_IFB_ SHMode

Complete

. .
 .

. .
 .

1

PinSelectk

1

. .
 .

1

1

. .
 .

SH_Switch

SHModek

SHModeRun

ShRMk_ ShMk_

PInSelectk

Clk
Reset

ihmor@upb.de,
Tel.: 05251/60-6493

© Dipl.-Inf. Stefan Ihmor
Design of Parallel and
Distributed Embedded Systems

Heinz Nixdorf Institut

Universität Paderborn
Fürstenallee 11
33102 Paderborn

Data Writer

DReqout= 1 AND

Reset = 1

FrameID = 1

DAckout<= 1
DReqout= 0

DAckout<= 0

DReqout= 1

DAckout<= 1

DAckout<= 0

DReqout
= 0

. . .

FmS1

Ack

Req

W
rite D

ata

F
m S

2 -F
m S

n-1

FmSn

Ack

F1S1

Ack

Req

F1Sn

Ack

FrameID = m

W
rite D

ata

F
1 S

2 -F
1 S

n-1

{FxS1 ... FxSn }
are states of frame Fx

DReqout= 1 AND

Register

Read data of state
FxSy from register

and write to DataOut.
Each data word has
one related register.

Data Reader

DRdyin= 1 AND

Reset = 1

FrameID = 1

DAckin<= 1
DRdyin= 0

DAckin<= 0

DRdyin= 1

DAckin<= 1

DAckin<= 0

DRdyin
= 0

. . .

FmS1

Ack

Req

R
ead D

ata

F
m S

2 -F
m S

n-1

FmSn

Ack

F1S1

Ack

Req

F1Sn

Ack

FrameID = m

R
ead D

ata

F
1 S

2 -F
1 S

n-1

DRdyin= 1 AND

Register

Read data of state
FxSy from DataIn

and write to register.
Each data word has
one related register.

SH

Memory_IF Memory_IFMemory_IF Memory_IF

SH_CU_IF

CU_SH_IF

SHModek_InRegsSHMode1_InRegs

SHMode1_OutRegs
SHMode1_InRegs SHModek_OutRegs

SHModek_InRegs

SHModeInRegs SHModeOutRegs

SHMode1_OutRegs SHModek_OutRegs

SH_Switch_IF

ReconTasks

SHReconModek

1

Reset = 1

ReconTasks = “00...01“

PInSelectk<= “IDmask1“

Dispatch
over Recon-

TaskID

Modify S1

Mask

ShRMk_
ShMk_

SH_Mode1_IF

SH_Switch_Mode1_IF

SH_Recon_Mode1_IF SH_Modek_IF

SH_Switch_Modek_IF

SH_Recon_Modek_IF

1

PInSelect1

ModeComplete <= 0

ModeRun = 1

„Write modified data
from InReg OutReg“

OutReg(...) <=
InReg &…& InReg

Modify Sn

M
odifications

S
2 …

 S
n-1

Done

ModeComplete <= 1

Modify S1

Mask

Modify Sn

M
odifications

S
2 …

 S
n-1 M

od
eR

un
 =

 0
an

d
R

ec
on

Ta
sk

ID
 =

t

ModeComplete <= 0

M
od

eR
un

 =
 0

an
d

R
ec

on
Ta

sk
ID

 =
 1ModeRun = 1

PInSelectk<= “IDmaskt“
ModeComplete <= 0

OutReg(...) <=
 InReg &…& InReg

. . .

Modify Sn

Modify S1Done

Idle

„Write modified data
from InReg OutReg“

Modification States Sx
- only one single state for
 1. constants
 2. boolean functions
 3. resort data
- cycle free state chain for
 1. FSMs

Deterministic
Reconfiguration
- mask reconfigured
 packages: PInSelect
- serve remaining
 1. Sending PHM

 2. Receiving PHM

SHModeComplete
SHModeRun

Clk
Reset

SHMode1_OutRegs

Pin

Select1
Pin

Selectk
Recon
Tasks

C
lk

R
eset

Clk
Reset

 # Reconfig.-
 Scenarios:
<n : single tasks
<2n: multiple “

Reconfigurable IFBs
- PInSelect is a constant value for each
 SHMode that activates the required Pin

 for this SHMode in the Scoreboard (CU)

{FxS1 ... FxSn }
are states of frame Fx

DataIn

DataIn

DataOut

DataOut

SHModeEnable
ReconTasks

ReconTasks = “10...00“

R

R

 LUT: f(FrameID) PacketoutIDs

&
Framet
Processed

. . .

&

P1 . . .

Frame1
Processed

PoutProcessedk-1

DelayedHaltModes

FDC

S

R

S

R

FDCE

Frame1
Ready

Framet
Ready

Dispatch
over

FrameID

Dispatch
over

FrameID

For each of the k IFD mapping equations exists
exactly one SHMode.

„For each SHMode exists one PinComplete-Register.
When all bits of one of these registers are set to ’1'
and the according SHModeComplete-Bit in the
SHModeComplete-Register is zero, the connected
SHMode starts executing the modification. Each bit
of a PinComplete-Register represents exactly one
incoming data package Pin of the related mapping
equation. A package Pin is part of a frame and can
occur in multiple PinComplete-Registers (DCE-FF).

The SHModeComplete-Regsister (DCE-FF) stores
the current processing state for all SHModes. If the
modification process is finished, a ’1’ is written in
the according bit (S: Set) of the SHModeComplete-
Register. Thus, the related PinComplete-Register is
reset to prevent a cyclic modification. When the
transmission of Pout is finished, the according bit of
the SHModeComplete-Register is reset (R).

The FrameXReady-Signal is equals ’1', if all Pin’s
that are part of the incoming frame were processed
(read) by all related SHModes. Then, this frame may
be received again. Related to the usage in the
mapping equations, a particular Pin can be part of
several PinComplete-Registers.

The FrameXProcessed-Signal is equals ’1', if all
Pout’s that are part of the outgoing frame were
created by the related SHMode. Then, this frame
may be sent.

For reconfiguration, the number of packages in the
scoreboard is variable. PinSelect allows to mask
out a number of unused incoming packets Pin

during runtime. A Pin is enabled by PinSelect = ’0’.
If a Pin is unused, its PinComplete-Register value
will remain at ’0’. Therfore, PinSelect = ’1’ can mask
out this Pin with a ’1’ neutral to the AND.

Include
Pout’s of
FrameX

PoutProcessed0

Pp Pp+1 Px

Include
Pin’s of
FrameX

1 1

FrameIDs Taskt

SHModes Taskt

. . .
1

. . .
P1 . . .

Pp Pp+1 Px

T1 Tt

ReconTasks

1

&
. .

 .

T

Q

QSET

CLR

D

CE

FDCE

Q

QSET

CLR

D

CE

. .
 .

ShM1_PinReceived0

ShMk_PinReceivedi-1

ShMk_PinReceived0

ShM1_PinReceivedi-1

t: # PH-Modes =
Tasks (if each Task has
one interface connected)

k: # SH-Modes =
Outgoing DataPackages

i: # Incoming DataPackages

iX: # Incoming DataPackages
of SH-ModeX

m: # Data Frames

Indices:

1

PHModes of
Task1 halted

FrameID1 of Task1

FrameIDX of Task1

SHMode1 of Task1

SHModeY of Task1

SHModes of
Task1 halted

Task1 halted

Taskt halted

When all
signals = '0'

Task halted
1

Figure 6.2: IFB Hardware Template (right side) 155

6 The Interface Block (IFB)

6.1.1 Protocol Handler

In the following section we discuss the particular modules of the IFB Hardware Template.
On the bottom of Figure 6.1 we find the PH including the PH-Modes and the PH-Switch.

PH-Modes

The composition of the PH-Modes has already been dealt with when we introduced the
EIFD-Factory (see Section 5.2.8, Figure 5.42). Each PH-Mode comprises a synthesized
PSM that has been optimized, and provided with the frame structure and the handshaking
states for the IFB internal communication. All signals, which are required by a PH-Mode
are routed to the PH-Switch. To save resources, we used only one data bus to exchange
incoming and outgoing data with the internal memory. As we mentioned before, this design
is sufficient for simplex communication based on pure frames (see Section 5.2.4). In the case
of duplex communication, all signals related to the data bus (Data, DA, DR), and the memory
bus arbitration signals (FrameID, IRQ, ModeRun) would have to be doubled.

PH-Switch

The PH-Switch is a dedicated circuit that implements a memory bus for the bus access of
the PH-Modes, which is connected to the memory interface. To establish the connection
to the memory bus, the PH-Switch applies tri-state buffers in combination with a selection
logic that is controlled by the coincidence of the BusGrant and the ModeRun signals.

In the case of an RTR-IFB, the PH-Switch comprises an additional tri-state bank, which
represents the bus macros that are required to reconfigure the PH-Modes (see Section 3.3.1).
The tri-states are controlled by the PhModeEnable signals coming from the Reconfiguration
Unit in the CU.

6.1.2 Sequence Handler

Similar to the PH, we developed the SH including the SH-Switch, the SH-Modes and SH-
Recon-Modes, as well as the DataReader and the DataWriter (the IFB internal memory).
The SH is depicted on the bottom of Figure 6.2.

SH-Modes & SH-Recon-Modes

The synthesis of the SH-Modes has been already handled in Section 5.2.8. Each SH-Mode
comprises a state machine that implements the related mapping function. In Figure 5.43 we
illustrated an exemplary SH-Mode which realizes a FSM based mapping function.

When a SH-Mode is inactive, it remains in its idle state. The ShModeRun signal, which is
managed by the scoreboard, starts the processing procedure. After the processing is finished,
the SH-Mode activates the related ShModeComplete signal to notify the scoreboard.

In the case of the RTR-IFB, we create an additional SH-Recon-Mode for each SH-Mode. In
Section 4.4.1, we presented the modeling of reconfiguration behavior (see Figure 4.19) and the
construction of SH-Recon-Modes for dedicated reconfiguration scenarios (see Figure 4.18).

The IFB transfers the incoming data from the internal memory to the SH-Modes (and the
SH-Recon-Modes) and the processed data back again via the SH-Switch.

156

6.1 IFB Hardware Template

SH-Switch

In the presented IFB Hardware Template we assume a fully parallel access of all SH-Modes
to the internal memory. Therefore, an explicit memory interface, as it is available for the
PH-Modes, is not required. Depending on the kind of memory (for example, if we would
employ a Block RAM), we would have to add a memory interface into the SH-Switch that
sequentializes the memory access of the SH-Modes. Similar to the PH-Switch, the SH-Switch
comprises a tri-state bank, which is added in the case of an RTR-IFB.

IFB Internal Memory : Data Reader & DataWriter

The DataWriter realizes the outgoing IFB internal memory as visualized in Figure 6.3. On
one hand, the memory is connected to the incoming memory bus (left Memory_IF); on the
other hand, it is interlinked with the SH-Modes via the SH-Switch (right Memory_IF). The
DataReader is implemented in a similar manner to the DataWriter.

Data Writer

DReqout= 1 AND

Reset = 1

FrameID = 1

DAckout<= 1
DReqout= 0

DAckout<= 0

DReqout= 1

DAckout<= 1

DAckout<= 0

DReqout
= 0

. . .

FmS1

Ack

Req

W
rite D

ata

F
m S

2 -F
m S

n-1

FmSn

Ack

F1S1

Ack

Req

F1Sn

Ack

FrameID = m

W
rite D

ata

F
1 S

2 -F
1 S

n-1

{FxS1 ... FxSn }
are states of frame Fx

DReqout= 1 AND

Register

Read data of state
FxSy from register

and write to DataOut.
Each data word has
one related register.

Memory_IF Memory_IF

SHModeOutRegs

SH
M

od
e1

_
O

ut
R

eg
s

SH
M

od
ek

_
O

ut
R

eg
s

DataOut

DataOut

Dispatch
over

FrameID

D
R

eq
ou

t

D
A

ck
ou

t

D
at

a o
ut

Fr
am

eI
D

ou
t

C
lk

R
es

et

Figure 6.3: The DataWriter realizes the outgoing IFB internal memory

157

6 The Interface Block (IFB)

The DataWriter implements a dedicated memory. Therefore, each data word has it own
register where it is stored. Depending on the currently transmitted frame (FrameID), the
dedicated memory interface knows exactly which data words have to be read or written. Not
to lose data, the memory interface uses a fully interlocked handshake. For this reason we
inserted the additional I/O states inside the frames during the synthesis of the PH-Modes.

6.1.3 Control Unit

To recapitulate, the CU handles three different roles: The arbitration of the memory bus, the
memory management, and the control of the reconfiguration process. Therefore, it comprises
the components Ctrlin, Ctrlout, the scoreboard, and the Reconfiguration Unit.

Ctrlin and Ctrlout – The Memory Bus Arbiters

We implemented the memory bus arbitration in the form of two parallel highest-priority-first
schedulers inside the CU. Due to the use of pure frames, we can implement the schedulers
independent of each other. In the case of duplex communication, the two schedulers would
have to operate interlocked, as incoming and outgoing frames could overlap (mixed frames).

As presented in Figure 6.4, Ctrlin comprises one GrantBus state for each incoming frame
(Ctrlout one for each outgoing frame). When a valid FrameID and the related IRQ are set,
the arbiter goes to the respective GrantBus state to establish the bus connection inside
the PH-Switch. Because of the transition’s evaluation sequence in the implementation, the
scheduler works as a highest priority first scheduler. When the transmission of the current
frame finishes properly, the IRQ signal is reset by the PH-Mode and the arbiter goes to the
AssignFrame state, where it notifies the scoreboard to register the last transmitted packages.
Otherwise, in the case of a transmission error, the FrameID returns to zero ("0...0") in
addition to a reset IRQ signal, which forces the arbiter to abort the current transmission.
This is done in the state ReleaseBus. In Section A.6, we explain the function of the control
signals IRQ and FrameID in detail.

Ctrlin
Bus Arbiter

BusGrantin<= 0
ModeRunin(0)<=0
ModeRunin(t)<=0
storedFrameID <= “0...0“

Schedule
Frame

Grant
Bus_1

Grant
Bus_m

Release
Bus

Assign
Frame

FrameReady(Frame1) =1
AND IRQin(n) = 1

AND FrameID(n) = 1
BusGrantin<= 1
ModeRunin(n)<=1
storedFrameID
<= FrameID(n)

IRQin(n)
 = 0

1

FrameID(n)
= “0...0“

BusGrantin<= 0
ModeRunin(0)<=0
ModeRunin(n)<=0

BusGrantin<= 1
ModeRunin(n)<=1
storedFrameID
<= FrameID(n)

BusGrantin<=0
ModeRunin(0)<=0
ModeRunin(n)<=0
FrameReceived
<=storedFrameID

FrameID(n)
= “0...0“

IRQin(n) = 0

1

Reset = 1

Odd FrameIDs

Frames
. . .

n = {1...t} | FrameX PHn

FrameReady(Framem) =1
AND IRQin(n) = 1
AND FrameID(n) = m

Figure 6.4: The memory bus arbitration implemented as scheduler

158

6.1 IFB Hardware Template

i1-1

0

P I
nC

om
pl

et
e 1

&

. .
 .

. .
 .

ik-1

0

P I
nC

om
pl

et
e k

 LUT: f(FrameID) PacketinIDs

k-1

0

SH
M

od
eC

om
pl

et
e

. . .

FrameProcessed

P
in

 {P
in
1,

 ..
.,

P
in
k

| P
ou

t=
 f(

P
in
)}

Pin

Pin

Pin

Pin

FrameSent

IFBCtrl
Scoreboard

FrameReady
FrameReceived

InFrames

OutFrames
Packagesin

Packagesout

PinSelect1

&

. .
 .

. .
 .

1

PinSelectk

1

. .
 .

1

1

. .
 .

HaltModes
ModesHalted

R

R

 LUT: f(FrameID) PacketoutIDs

&
Framet
Processed

. . .

&

P1 . . .

Frame1
Processed

PoutProcessedk-1

DelayedHaltModes

FDC

S

R

S

R

FDCE

Frame1
Ready

Framet
Ready

Include
Pout’s of
FrameX

PoutProcessed0

Pp Pp+1 Px

Include
Pin’s of
FrameX

1 1

FrameIDs Taskt

SHModes Taskt

. . .
1

. . .
P1 . . .

Pp Pp+1 Px

T1 Tt

ReconTasks

1

&

. .
 .

T

Q

QSET

CLR

D

CE

FDCE

Q

QSET

CLR

D

CE

. .
 .

ShM1_PinReceived0

ShMk_PinReceivedi-1

ShMk_PinReceived0

ShM1_PinReceivedi-1

1

PHModes of
Task1 halted

FrameID1 of Task1

FrameIDX of Task1

SHMode1 of Task1

SHModeY of Task1

SHModes of
Task1 halted

Task1 halted

Taskt halted

When all
signals = '0'

Task halted
1

SHModeRunSHModeComplete P i
nS

el
ec

t 1

R
ec

on
Ta

sk
s

Fr
am

eI
D

t

Fr
am

eI
D

1

P i
nS

el
ec

t k

Figure 6.5: The memory management unit, implemented as a scoreboard

IFBCtrl (Scoreboard) – The Memory Management Unit

The scoreboard manages the internal memory to abide the causality within the pipelined
I - P - O process. Therefore, it organizes the status of incoming and outgoing data words in
combination with Ctrlin and Ctrlout. The scoreboards knows which data words are currently
present and if they may be overwritten (after they have been processed), and provides this
information to Ctrlin and Ctrlout.

To implement this function, there exists a PinComplete register for each SH-Mode. Each bit
of a PinComplete register represents exactly one incoming data package Pin of the related
mapping function. Depending on the mapping functions, a particular package can occur in
multiple PinComplete registers, which are realized by Data - Clock - Enable flip flops (DCE-
FF). A bit in the PinComplete register is set when the related package has been received
(see Ctrlin). When all bits of a PinComplete register are set to ’1’ and the according
ShModeComplete-Bit in the ShModeComplete register is equal to zero, the related SH-Mode
is started by setting the related ShModeRun signal to ’1’ (see SH-Modes). After the SH-Mode
has finished processing, the PinComplete register is reset.

The ShModeComplete register (DCE-FF) stores the execution status of all SH-Modes. If the
data processing of a SH-Mode is finished, the according bit of the ShModeComplete register
is set. At the same moment the related PinComplete register is reset to prevent a cyclic data
processing. When the transmission of an outgoing package Pout is finished, the according
bit of the ShModeComplete register is reset, which is triggered by Ctrlout.

The FrameXReady signal is set to ’1’, if all incoming packages that belong to an incoming
frame were completely processed by all related SH-Modes. Then, this frame may be received
again, i. e., the data word can be overwritten in the DataReader. Depending on the mapping
functions a particular package can be part of several PinComplete registers.

The FrameXProcessed signal is set to ’1’ if all outgoing packages that belong an outgoing
frame were completely generated by the related SH-Modes. Then, this frame can be sent.

159

6 The Interface Block (IFB)

The scoreboard of the RTR-IFB comprises two additional features. First, the number of
processed data packages has to be flexible to be able to serve various tasks. Since the CU is
not reconfigured, our RTR-IBF design supports a maximum number of adapted interfaces,
including a limited number of packages per mapping function. The upper limits have to be
specified a-priori at design time. When a mapping function requires less than the maximum
number of packages, the missing ones are masked out (at runtime) by the SH-Modes with
the help of the PinSelect signals. A Pin is enabled by setting PinSelect to ’0’. The same
technique is used by the SH-Recon-Modes to disable packages which are temporarily not
available because of the reconfiguration of the related tasks. Secondly, the scoreboard must
be able to detect if all reconfigured modes are halted. The affected PH-Modes are idle when
their FrameID is equal to "0...0"; the SH-Modes when the related ModeRun signal is zero.
We located the dedicated circuitry (gate logic) on the left side the scoreboard.

Reconfiguration Controller

The Reconfiguration Unit organizes the IFB internal reconfiguration. Therefore, we create
this unit only for the RTR-IFB. It is the job of the reconfiguration controller to halt and to
disconnect the PH-Modes and the SH-Modes that are going to be reconfigured. Therefore,
the RU interacts with the RCU, the scoreboard, the memory bus arbiters, and the switches.
In Section A.5 we introduce a template for the RCU (see Figure A.3) and describe the
communication with the RU. The RU implements the reconfiguration flow as presented in
Section 4.4.1. After the RU detects the ReconStart signal in the idle state, it stalls the
affected PH-Modes by masking out their IRQ signal (state HaltModes). When both the
transmission of all frames inside the affected PH-Modes, and the depending execution of
the SH-Modes has finished, the scoreboard activates the ModesHalted signal and the RU
cuts off the modes inside the DeactivateModes state. To decode the affected modes we
integrated two LUTs in the CU. Then, the CU goes directly to ReconfigureModes where
it notifies the RCU to perform the reconfiguration. After this is finished the RU reactivates
the replaced modes in state ActivateModes and goes back to the idle state.

Reconfiguration
ReconStart

= 1

DisableModes <= 0
ExchangeModules <= 0

ReconComplete <= 1
HaltModes <= 0

ReconStart = 0

ModulesExchanged = 1 ModulesExchanged = 0

Halt
Modes

ModesHalted =1

Deactivate
Modes

Reconfigure
Modes

Activate
Modes

Idle

DisableModes <= 0
ExchangeModules <= 0
ReconComplete <= 0
HaltModes <= 1

DisableModes <= 1
ExchangeModules <= 0
ReconComplete <= 0
HaltModes <= 0

DisableModes <= 1
ExchangeModules <= 1

ReconComplete <= 0
HaltModes <= 0

DisableModes <= 0
ExchangeModules <= 0

ReconComplete <= 0
HaltModes <= 0

Reset = 1

Figure 6.6: The Reconfiguration Unit

160

6.2 Cycle Accurate Analysis of an IFB

6.2 Cycle Accurate Analysis of an IFB

After explaining the IFB Hardware Template we can now refine the I - P - O process that we
introduced in Section 4.3.1. Table 6.1 presents the minimum sequence of actions to process
one data bit including the internal fully interlocked handshake protocol. The detailed I - P - O
process is relevant for the timing analysis and the optimization approaches.

Clock cycle Phase Action Related Component
1 1 Set FrameId PH-Mode (in)
2 1 Set IRQ PH-Mode (in)
3 1 Grant incoming memory bus access CTRLIn

4 2 Receive data PH-Mode (in)
5 2 Set DR (data ready) PH-Mode (in)
6 2 Transfer data into memory Data Reader
7 2 Set DA (data acknowledge) Data Reader
8 2 Reset DR PH-Mode (in)
9 2 Reset DA Data Reader
10 3 Reset IRQ PH-Mode (in)
11 3 AssignFrame /ReleaseBus CTRLin

12 3 Update PInComplete registers Scoreboard
13 4 Process data (minimum sequence) SH-Mode
14 4 Set ShModeComplete signal SH-Mode
15 4 Set ShModeComplete register Scoreboard
16 5 Set FrameId PH-Mode (out)
17 5 Set IRQ PH-Mode (out)
18 5 Grant outgoing memory bus access CTRLout

19 6 Set DR (data request) PH-Mode (out)
20 6 Put data on internal bus Data Writer
21 6 Set DA (data acknowledge) Data Writer
22 6 Transmit data PH-Mode (out)
23 6 Reset DR PH-Mode (out)
24 6 Reset DA Data Writer
25 7 Reset IRQ PH-Mode (out)
26 7 AssignFrame / ReleaseBus CTRLout

27 7 Reset ShModeComplete register Scoreboard

Table 6.1: Refined I - P - O sequence

The refined I - P - O sequence is a cycle accurate representation of the IFB internal data
processing procedure. We cluster the 27 operations into seven consecutive phases:

• Phase 1 & Phase 5 : Establish (incoming/outgoing) memory bus connection

• Phase 3 & Phase 7 : Release (incoming/outgoing) memory bus connection

• Phase 2 : Receive data

• Phase 4 : Process data

• Phase 6 : Transmit data

161

6 The Interface Block (IFB)

IPO pipeline Phase Operation IFB component Clock cycles
1) Establish PH, Ctrl 3

I 2) Receive Data PH, SH 6 · α
3) Release PH, Ctrl, Scoreboard 3

P 4) Process SH, Score. 2 + γ

5) Establish PH, Ctrl 3
O 6) Transmit Data PH, SH 6 · β

7) Release PH, Ctrl, Scoreboard 3

α : Number of successive incoming data bits
β : Number of successive outgoing data bits
γ : States required for the protocol transformation

Table 6.2: I - P - O clock cycles, required to process multiple data bits

Table 6.2 depicts the cycle accurate clock cycles required to transform α successive input bits
into β successive output bits with the help of γ processing operations. Thereby, we define
γ as the maximum number of sequential modification states in the related SH-Mode. As
presented in Table 6.1 it takes three clock cycles to establish and to release the memory bus
connection when the memory bus is idle. The timing analysis, presented in the succeeding
section, has to assure that this condition is always met in order to avoid resource conflicts,
which could invalidate the deadline conform data processing. Based on the fully interlocked
handshake, it takes six clock cycles to transfer a bit between a PH-Mode and the memory.

6.3 Timing Analysis

The IFB is a transparent protocol converter. Therefore, its operation must not disturb or
delay the communication between timed protocols. In order to fulfill this condition, the
IFB internal data processing speed (clock rate) has to be fast enough to serve the particular
protocols. In the following section, we formalize this aspect and present a feasibility analysis,
which determines the minimum IFB clock rate for the processing of a given protocol. A
successful feasibility test for all adapted protocols is a necessary criteria for the protocol
adaption in real-time.

When multiple interfaces are connected to an IFB, the feasibility of the particular protocols
is not sufficient to guarantee the proper execution of multiple timed protocols. Therefore,
we developed a schedulability analysis which guarantees the deadline conform execution of
the adapted real-time protocols.

6.3.1 Feasibility Analysis

From the viewpoint of the task, the pipelined protocol adaptation, performed by the IFB, is
comparable to a pipelined processor architecture, that requires several internal operations
(clocks cycles) to process an instruction word inside one of its stages. The instruction fetch
process, for example, is controlled by a micro programm that comprises several states.

Our feasibility test is successful when the platform delivers a clock that is fast enough to
trigger the IFB. Afterwards, we explain how to determine the respective IFB clock rate.

162

6.3 Timing Analysis

In Section 2.2.2 we introduced the term Cycles-Per-Bit (CPB) that defines the maximum
number of clock-cycles which are required to process one bit inside the IFB. To perform the
protocol adaptation for a given protocol frequency fprot, the selected IFB clock frequency
fIFB that triggers the synchronous IFB has to fulfill:

fIFB > CPB · fprot

In general fprot = 1
tprot

, where tprot is the shortest time interval of the adapted protocol. In
synchronous protocols, fprot is usually defined as: fprot = clock rate [Hz].

The cycle accurate analysis of the IFB Hardware Template indicates that we require a
minimum of 27 clock cycles to process a particular bit, which is a non-satisfying result, since
the IFB clock has to be at least 27 times faster than the one of the demanded protocol.

However, we did not yet consider the pipelined I - P -O processing. With the help of the
previously introduced phases we can determine a realistic CPB value. This value is derived
from the most time consuming operation of the I - P - O pipeline – the handling of the first
data bit inside a frame, which implies the establishment of the memory bus connection:

fIFB > (3 + 6) · fprot ⇒ CPB = 9 (Including the “establish bus” states)

As we can see in Table 6.2, the phases 2) and 6) require exactly 6 states (clock cycles) to read
or write a bit. Additionally, we have to establish the memory bus connection for the first bit
(phase 1) and 5)), which requires 3 clock cycles. Therefore, CPB = 9 for the pipelined IFB
version. The 3 clock cycles required to release the bus (phase 3) and 7)) can be neglected,
as they account for the following control state. If we can integrate the establishment of the
memory bus connection into two existing control states of the synthesized PSM right before
the frame, the CPB value decreases to 6. At the same time, a CPB value of 6 is also the
minimum possible value, as long as we insist on the fully interlocked memory I/O.

fIFB > 6 · fprot ⇒ CPB = 6 (Optimum I - P -O pipeline)

I - P -O Pipeline Clock Rate

In accordance to Table 6.2, we define the I - P -O pipeline clock rate as fIFB divided by the
maximum number of states in one of the I - P - O pipeline stages (#S: number of states) :

fIPO = min(fI , fP , fO) =
fIFB

max(#SI ,#SP ,#SO)

=
fIFB

max(6 + 6α , 2 + γ , 6 + 6β)
=

fIFB

2 + max(4 + 6α , γ , 4 + 6β)

For a very large number of processed data bits (here we assume : 1 kBit) and a restricted
number of sequential modification states (here : 5), the pipeline clock converges to:

fIPO1024 =
fIFB

2 + max(4 + 6 · 1024 , 5 , 4 + 6 · 1024)
≈

fIFB

6 · 1024
=

fprot

max(#SI ,#SO)

As we could expect, the I - P - O pipeline clock rate of the optimum IFB (CPB = 6) converges
to the protocol’s clock rate divided by the maximum number of successively transmitted bits.

163

6 The Interface Block (IFB)

6.3.2 Schedulability Analysis

If we adopt only one sending and one receiving interface, a successful feasibility analysis is
also a valid schedulability test, as the executed components run parallel and do not share
any resources. Otherwise, we require an additional schedulability analysis to assure that a
valid schedule for the memory bus arbitration exists.

Our idea for the schedulability analysis is to evaluate the protocol descriptions of the adapted
interfaces in order to process the input for a standard scheduling approach. Therefore, we
reduce each protocol to a representative worst case basic block BB′ that we interpret as a task
with the attributes deadline, period, and execution time. To construct a static schedule for
this task set, we utilize the standard scheduling policy cyclic scheduling, which is applicable
for non-preemptive tasks. The successful construction of a schedule passes also for a valid
schedulability test. A detailed explanation of the presented schedulability analysis approach
has been published in [25].

To compute the worst case basic block BB′, we developed a worst case execution time
(WCET) analysis. Thereby, we make use of the fact that a PH-Mode operates continuously
and parallel to the other PH-Modes. The first aspect means that there is exactly one
basic block executed at each point of time. The second one indicates that all PH-Modes
are independent of each other and thus can be handled separately. To apply our WCET
analysis, we make the following assumptions:

1. There exists a successful feasibility test for each protocol

2. Neither a task nor a PH-Mode stalls the protocol execution

3. A valid IFD-Mapping has been entered (no deadlocks etc.)

4. The protocol must not possess dead states

5. The transmission of a frame cannot be interrupted ⇔ Frames are non-preemptive

6. Deadlines and periods have been modeled by the designer

7. The protocol must not possess more that one infinite loop (constant ones are flattened)

The scheduling of incoming and outgoing frames can be handled separately, since our sched-
ulers are working independently. Therefore, the scheduling of incoming frames is equivalent
to the scheduling of the outgoing frames. As depicted in Figure 6.7 we define the real-time
specific parameters: deadline, period, and execution time to compute the BB′ [70]:

Period : tP ⇔ Frequency : fP = 1
tP

Deadline : tD
Execution time : tex

The frequency fP defines the period of the cyclic execution of a BB. It has to be specified for
each basic block. We model fP by a timed self transition (timerOrDeadline). The relative
deadline tD represents the maximum time until the transmission (execution) of a frame has
to be completed. We model tD as a timerOrDeadline that spans the related frame. The
execution time tex specifies the time to transmit a frame. It does not have to be modeled
explicitly as we can compute its value by the frameWidth divided by the clock rate fIFB :

tex =
frameWidth

fIFB
=

#Sestablish + #Sdata/handshake + #Srelease

fIFB
=

6 ·#Sdata + 6
fIFB

164

6.3 Timing Analysis

C C

tD = deadlineBasicBlock

tex = execution time

DD
Frame

tP = period

establish

release

Figure 6.7: Definition of the real-time attributes period, deadline and execution time

Afterwards, we present the developed algorithm for the WCET analysis. It systematically
reduces the given protocol to construct the BB′ by applying graph operations on the basic
block CFG (for the construction of the CFG see Section 5.2.2).

WCET Analysis Algorithm

As mentioned previously, one condition to apply our approach is that all inner loops are
restricted. In that case, we can flatten all loops by unrolling the covered basic blocks. As
you can see in Example Code 6.1 in line two, we perform the loop unrolling as the first
operation of the protocol reduction procedure (see Section 5.2.1). Afterwards, we reduce
the flattened protocol by merging sequential and parallel basic blocks until we obtain a single
BB. This BB is the requested BB′, which is returned by the method get WCET BB().

Example-Code 6.1: Protocol reduction pseudo code

01 public BasicBlock reduceProtocol (Protocol p) {

02 flattenLoops(p);

03 while(p.numberOfBBs > 1) {

04 mergeSequentialBBs(p);

05 mergePrallelBBs(p);

06 }

07 return p.getWCETBB ();

08 }

Figure 6.9 depicts how to merge a set of sequential basic blocks. Thereby, BB′ has to
comprise the worst case for each attribute. The following equations present the merging
functions for sequential basic blocks, implemented in mergeSequentialBBs(p) :

Sequential BB : t′ex =
k∑

i=1

texi t′D =
k−1∑
i=1

texi + tDk f ′P = maxi(fPi)

To compute the worst case execution time t′ex, we sum up the sequential execution times
of the frames inside the succeeding basic blocks. As the resulting BB′ is non-preemptive
and our deadlines are specified as relative deadlines, we first sum up k − 1 execution times
plus the last deadline to obtain t′D. Thereby, the worst case period f ′P in a sequence of
frames depends on the maximum available period. In this way, BB′ provides the worst case
properties of the frames inside the substituted basic blocks.

Figure 6.9 illustrates how to substitute a set of parallel basic blocks. The substituted at-
tributes are computed by the following equations, implemented in mergeParallelBBs(p) :

165

6 The Interface Block (IFB)

D
Frame

establish

releaseD
Frame

establish

release D
Frame

establish

release D
Frame’

establish

release

Figure 6.8: Reduction of serial frames

D
Frame

establish

release D
Frame

establish

release
D

Frame

establish

release

D
Frame

establish

release

D
Frame

establish

release D
Frame

establish

releaseD
Frame’

establish

release

Figure 6.9: Reduction of parallel frames

Parallel BB : t′ex = maxi(texi) t′D = mini(tDi) f ′P =
k∑

i=1

fPi

For the worst case execution time t′ex we select the maximum value of the parallel basic
blocks. In contrast, we have to take the minimum deadline to obtain t′D. To be able to
compute all substituted BBs within the specified periods, we sum up the given periods to
f ′P . We could apply weighted sums and thus make a more accurate WCET estimation, if
we would possess the probability distribution for the execution of the alternative BBs.

If all parameters were properly specified by the designer, the algorithm delivers the WCET
BB′ for each protocol. We treat these BB′ as a periodic and non-preemptive task set that
can be scheduled, for example, by the cyclic scheduling policy. When a scheduling can be
constructed, the task set can be scheduled, which means, the protocols can be executed
deadline conform. Otherwise, the feasibility cannot be proved although it might be possible.
If any of the parameters deadline or period is missing, we cannot perform the schedulability
analysis. In this case, the schedulers could implement priority based strategies like “Highest
Priority First” or “First Come First Serve”, which are not yet real-time capable.

Example of the WCET Analysis

Figure 6.9 demonstrates an example for the WCET algorithm. The exemplary protocol
comprises three BBs. In the first and the third step we substitute sequential basic blocks.
Thereby, we have to merge the sequential frames inside a basic block in the first iteration of
mergeSequentialBBs(p), before we can substitute complete basic blocks. In step two and
step four the algorithm substitutes the parallel BBs, whereas there are no more parallel BBs
to merge in step four. Then the exit condition is fulfilled and the algorithm terminates.

166

6.3 Timing Analysis

C C

C C
BasicBlock

BasicBlock

C

C C

establish

Frame release

D

establish

Frame release

D

establish

Frame release
D

establish

Frame release

D

tD=11s

BasicBlock

tD=6s

tD=5s tD=3s

C C

C C
BasicBlock

BasicBlock

C C

establish

Frame release

D

establish

Frame release

D

establish

Frame release
D

tD=11s

BasicBlock

tD=6s

tD=8s

C C C C

establish

Frame release

D

establish

Frame release

D

tD=11s BasicBlock tD=6s

C C

establish

Frame release

D

tD=17s

1

2

3

4 BasicBlock

BasicBlock

Merge serial frames

Merge parallel frames

Merge serial frames

fP=3/s

fP=2/s

fP=4/s

tex=6

tex=2 tex=1

tex=4

tex=3

tex=4

tex=6

tex=4

fP=3/s

fP=2/s

fP=4/s

fP=6/stex=6fP=3/s

tex=10fP=3/s

Figure 6.10: Exemplary reduction of a protocol

167

6 The Interface Block (IFB)

6.4 IFB Optimization

In this chapter, we present two optimizing approaches for the hardware design of the IFB.
The first one reduces the latency caused by the IFB. The second approach focusses on the
reconfigured execution of an IFB, based on the micro reconfiguration technique. Thereby, we
utilize caching strategies to optimize the required chip area. However, as both optimization
approaches exclude each other, we cannot apply them simultaneously. The details of the
IFB optimization have been published in [5, 1, 26].

6.4.1 Data Flow (Latency) Optimization

The data flow optimization takes advantage of the pipelined IFB execution. Therefore, it
is our goal to maximize the I - P -O parallelization, which can be achieved by starting the
three stages of the I - P -O pipeline as soon as possible. To explain the developed pipeline
optimization, let us recapitulate the standard I - P -O pipeline. As shown earlier, the protocol
adaptation is executed repeatedly in the form of communication cycles (see Section 4.4.1).
To guarantee a correct scheduling of the I - P -O pipeline stages within the communication
cycle, the CU follows the causality conditions, defined in Section 4.3.1.

The minimum scenario for the standard I - P - O pipeline (called simple schedule) consists of
one input - and one output frame. In Figure 6.11 we illustrate two communication cycles of
the simple schedule in the form of a Gantt diagram. Further cycles are generated analogous.
The input frame is mapped to input stage I, the protocol transformation to processing stage
P, and the output frame to output stage O. The numbers (e.g. in I1) characterize the iteration
of the communication cycle. In the standard I - P - O pipeline, the earliest moment to receive
I2 is after P1 has been completed. Otherwise, I2 would overwrite currently processed data
in the internal memory. Similarly, P2 may be started only after O1 and I2 have finished.

In the simple schedule, both input and output stages comprise exactly one frame. Therefore,
it is not possible in this scenario to optimize the latency by advancing the execution of a
stage as the execution of a frame may not be interrupted. However, if an outgoing frame is
a super-frame, including multiple package instances, an effective optimization is possible.

 Input Processing Output

I P O
R
e
g

R
e
g

I1 P1 O1

I2 P2 O2

time

Causality Conditions:
1) IX after PX-1

2) PX after max(IX, OX-1)
3) OX after PX

(x denotes the comm. cycle)

t1 t3t2

x=1

x=2

Figure 6.11: Two communication cycles (simple schedule) depicted as Gantt diagram

168

6.4 IFB Optimization

Pin

IFD-Mapping

4

3

2

1

abcdefgh

12345678

Super-
Frame

f b d

i c a

k e g

l j h

ijkl

9101112

Pout(1)Pout(2)Pout(3)

PP 1 (Partition Point)PP 2PP 3

Figure 6.12: Advanced execution of the processing - and the output stage

Instead of receiving complete incoming frames, which might also be super-frames, we start
processing the incoming data when all information related to the first (second, ...) package
instance of the outgoing super-frame has been received and stored inside the internal memory.
By analyzing the protocol description and the scenario based IFD-Mapping, we can identify
all points in time when an advanced stage execution is possible.

Sub-Frames and Partition Points

We call these moments “partition points”, as they divide the incoming frames into partitions,
the so called sub-frames. As we can see in Figure 6.12, we insert a partition point PPn into the
incoming frame whenever the information for the package instance Pout(n) of the outgoing
super-frame is ready for its transformation. Thereby, we insert the partition point PPn in
such a way that it is scheduled at the earliest in combination with PPn−1 (for n > 1). This
means we delay the processing of a package – although its required input is completely
available – until the data of the preceding package instances has been completely received.
For this reason, our optimization technique is only reasonable when the information related
to the first instances is located “not too far” at the end of the incoming frame.

We do not alter the transformation sequence as the output sequence is fixed, anyway. In our
hardware architecture, the data processing works fully parallel and takes only a few clock
cycles (modify states). Therefore, we can achieve a gain by reorganizing the data processing
sequence, which requires an additional control, only if complex data processing operations
in the form of large state machines have to be executed.

The partition points and the sub-frames are relevant for the optimization approaches pre-
sented in the next passages: the frame-based and the sub-frame-based schedule.

169

6 The Interface Block (IFB)

Frame-based Schedule

The frame-based schedule retains the given frame structure, including the request - and the
release operations. To mark the particular sub-frames inside a frame, we assign sub-frame
IDs as presented in Figure 6.14 on the left side. For the automated evaluation within the
IFB synthesis, we have to integrate the sub-frame IDs as an additional information into the
protocol description.

Figure 6.13 depicts the frame-based schedule that results from the combination of the simple
schedule and the previously discussed IFD-Mapping. In accordance to the three partition
points, the incoming frame I1 has been divided into the sub-frames I1.1, I1.2, and I1.3.
The same is true for P1 and O1. In this way, we obtain a maximization of the I - P -O
parallelization by subdividing the pipeline stages into the smallest reasonable sections.

Similar to the simple schedule, we execute the input stage non-preemptive. The processing
stage assembles the outgoing package instance Pout(n) when the succeeding sub-frame ID,
identified by PPn+1, becomes valid. This means, the incoming frame advanced to the next
partition and the information required to process Pout(n) is now available. Due to the stall
effect, there might be even more package instances ready to be processed. After the process-
ing stage PX.Y finished the transformation of these packages, the corresponding output stage
OX.Y is allowed to transmit the completed packages. We are allowed to stall the transmission
of particular package instances inside a super-frame as they belong to self-containing BBs.
The transmission of a BB itself may not be preempted.

To implement the frame-based schedule, which means to handle sub-frames and sub-frame
IDs in the IFB, we have to provide additional signals to transmit and control states to
handle this information. One solution could be to insert a sub-frame ID signal (PH to
Ctrlin) and to extend the ShModeRun (CU to SH) as well as the FrameProcessed signals
(scoreboard to Ctrlout). With the help of the additional information, the SH-Modes can
be enabled to process super-frames stepwise. Similarly, we can extend the PH-Modes to
separately transmit outgoing package instances of a super-frame. Another way that goes
without modifying the CU is a direct coupling of the PH-Modes and the SH-Modes with the
help of a bypass that forwards the information related to the sub-frame IDs.

I1.1

P1.1

timet1 t2

I1.2 I1.3

P1.2 P1.3

O1.1 O1.2 O1.3

I2.1

P2.1

I2.2 I2.3

P2.2 P2.3

O2.1 O2.2 O2.3

t3

Conditions:
1) IX.1 after PX-1.L & IX.Y after IX.Y-1

2) PX.1 after OX-1.L & PX.Y after IX.Y

3) OX.Y after PX.Y

Legend: StageX.Y

- X : communication cycle
- Y : sub-frame ID
- L : last sub-frame ID

Figure 6.13: Latency optimization approach I) – The frame-based schedule

170

6.4 IFB Optimization

Partition
C

Release

Partition
B

Partition
A

Request

Simple Schedule

Release

Request

Sub-frame-based Schedule

A
Sub-frame

ID 1

B
Sub-frame

ID 2

C
Sub-frame

ID 3 Frame C

Release

Frame B

Frame A

Request

Release

Request

Release

Request

Frame-based Schedule

Figure 6.14: Integration of the optimization approach into the control unit

Sub-frame-based Schedule

In contrast to the frame-based schedule, the sub-frame-based schedule modifies the original
frame structure. As depicted on the right side of Figure 6.14, it divides the incoming frame
into one self-contained frame for each partition, which is labeled with the sub-frame ID.
To receive a frame, the incoming memory bus has to be requested for the transmission of
each created (sub-) frame. Due to the fact that we permit the interruption of an ongoing
transmission, this strategy cannot be applied for timed protocols in general.

The detailed scheduling conditions for the sub-frame-based schedule are given in Figure 6.15.
As an advantage of this approach, the input stage IX.Y does not have to wait until the last
processing stage PX−1.L of the previous communication cycle has finished. Due to the
division into separate frames, it has already started when max(IX−1.L, PX−1.Y) has been
computed. Therefore, the pipeline stages are even more interlocked than in the frame-based
approach.

I1.1

P1.1

time

I1.2 I1.3

P1.2 P1.3

O1.1 O1.2 O1.3

I2.1

P2.1

I2.2 I2.3

P2.2 P2.3

O2.1 O2.2 O2.3

t4t1 t2 t3 t5 t6

Conditions:
1) IX.1 after max(IX-1.L, PX-1.1) &
 IX.Y after max(IX.Y-1, PX-1.Y) | y >1
2) PX.Y after max(IX.Y, OX-1.Y)
3) OX.1 after max(OX-1.L, PX.1) &
 OX.Y after max(OX.Y-1, PX.Y) | y >1

Legend: StageX.Y

- X : communication cycle
- Y : sub-frame ID
- L : last sub-frame ID

Figure 6.15: Latency optimization approach II) – The sub-frame-based schedule

171

6 The Interface Block (IFB)

To implement the sub-frame-based schedule, the IFB Macro-Structure does not have to be
modified. The only effort is the generation of the new frame structure based on the iden-
tified sub-frames in a preprocessing step. However, this optimization generates additional
overheads: each generated frame includes the states which are required to request and to
release the internal memory bus. In the following section, we compare the two optimization
approaches and show how far the additional overheads reduce the achievable yield.

Results

To evaluate the optimization approaches, we have performed a cycle accurate simulation of
multiple communication cycles. This means an ASAP (as soon as possible) scheduling of
the 27 I - P - O process steps according to the presented schedule conditions. The detailed
schedules are given in [1, 26]. As the results depend on the scenario based IFD-Mapping,
the simulation has to be performed for each scenario to obtain the dedicated schedules.

To compare the performance of the three approaches we refer to the optimum scenario for
this purpose, the trivial forwarding of data. Therefore, we assume a serial incoming and a
serial outgoing frame of the same size, whereas the data is ordered in such a way that the
first received bit is also transmitted first. At the top of Table 6.16 we depicted the simulation
results for an 8-bit data word, below for 1 kBit. The tables deliver the necessary clock cycles
that are required for the execution of two communication cycles when the incoming protocol
frame is consecutively divided into one, two, four, and eight sub-frames.

The simple schedule adds up to 166 clock cycles for the 8-bit and to 18.455 clock cycles
for the 1024-bit word. This is equal to the results of the two optimization approaches in
case of one sub-frame. Including multiple sub-frames, the frame-based schedule performs
always better than the sub-frame-based or the simple schedule. In general, we can say: the
smaller the sub-frames, the higher the achieved optimization. However, the sub-frame-based
schedule improves continuously only until the sub-frame size becomes less than three bits.
Below this critical point, the overhead for the additional request and release states exceeds
the achieved yield. In this case, the sub-frame-based schedule becomes even worse than
the simple schedule. Despite the fact that the frame-based scheduling performs better than
the sub-frame-based approach, it requires modifications of the IFB architecture, while the
sub-frame-based schedule gets along with a preprocessing step that subdivides the frames.

16 / 23 Studienarbeit Behler, Juni 2005

©
H

ei
nz

 N
ix

do
rf

In
st

itu
te

, U
ni

ve
rs

ity
 o

f P
ad

er
bo

rn

HEINZ NIXDORF INSTITUTE
University Paderborn
Design of Parallel Systems
Prof. Dr. rer. nat. Franz J. Rammig

Ergebnisse

205
(123,5%)

199
(119,9%)

151
(91,0%)166Sub-frame-based Schedule

118
(71,1%)

124
(74,7%)

139
(83,7%)166Frame-based Schedule

---166Simple Schedule

8x1 Bit4x2 Bits2x4 Bits8 BitsApproach

13.150
(71,3%)

13.878
(75,2%)

15.391
(83,4%)18.455Sub-frame-based Schedule

13.060
(70,8%)

13.840
(75,0%)

15.377
(83,3%)18.455Frame-based Schedule

---18.455Simple Schedule

8x128 Bits4x256 Bits2x512 Bits1024 BitsApproach

Figure 6.16: A qualitative evaluation of the optimization approaches

172

6.4 IFB Optimization

6.4.2 Area Optimization

The second optimization approach minimizes the required chip area of the IFB in order to
decrease the IFB implementation costs. Thereby, we make use of the property that each
stage of the I - P - O pipeline implies an idle-time where it can be replaced by another stage.
Exchangeable stages can share the same execution resources, which provides us with the
potential to minimize the required chip area. We use caching to optimize the displacement
of I - P - O stages, which highly determines the efficiency of our approach.

To replace the I - P -O stages – implemented as PH-Modes and SH-Modes – we demand a
reconfigurable execution platform. In order to exchange I - P -O stages at runtime, we exploit
the micro reconfiguration, which leads to a reconfigured IFB execution (see Section 4.4). The
details about the area optimization have been published in [5, 1, 26].

The Runtime Reconfigurable I - P -O Pipeline

As presented in Section 4.3.1 the I - P -O scheme involves a three staged pipeline. In order to
consider the hardware reconfiguration aspect, we subdivide each stage into a reconfiguration
step (LX : load stage X) and an execution step (EX : execute stage X). Thus, we enhance the
three basic I - P - O stages to a total number of six stages as depicted in Figure 6.17. The load
step is optional, as there is no need to load stages which are already present on the execution
platform. Therefore, the runtime reconfigurable I - P -O pipeline provides bypasses which
are able to skip needless load stages. The registers, which are located between the I - P - O
stages, represent the IFB internal memory. Similar to common pipeline architectures, the
I - P - O pipeline knows three kinds of pipeline conflicts:

1. Structural Conflicts : All PH-Modes have to apply for the same memory bus interface
to exchange data with the internal memory. Therefore, input and output stages are
mutual exclusive. This means, a maximum of one input and one output stage can be
executed simultaneously although several of them might be present on the FPGA.

2. Control Conflicts : The macro reconfiguration, used to reconfigure a task, represents a
control conflict. As effect of this conflict, the pipeline is stalled for the affected stages.

3. Data Conflicts : External delays in the protocol execution are treated as data conflicts.

These conflicts arise in the standard pipeline as well as in the reconfigurable I - P - O pipeline.
However, the reconfigurable pipeline can imply additional control conflicts, for example, a
reserved reconfiguration port that interrupts the micro reconfiguration of the I - P -O stages.
All these conflicts have to be avoided to assure a deadline conform protocol adaptation.

(LI) EI (LP) EP (LO) EO

EI EP EO
R
e
g

R
e
g

LI LOLP

I P O
R
e
g

R
e
g

Figure 6.17: The reconfigured IFB execution pipeline

173

6 The Interface Block (IFB)

Execution Platform of the Runtime Reconfigurable I - P -O Pipeline

To execute the runtime reconfigurable I - P - O pipeline we require a runtime environment
which supports runtime reconfiguration (see Section 4.4). As presented in Figure 6.18, we
use a slotted FPGA architecture, which provides one fixed slot (here depicted on the right
side) and a number of reconfigurable slots (here : Slot 1 ... Slot 6). The reconfigurable
slots turn into the I - P - O pipeline stages by means of reconfiguration. Due to the spatial
execution capabilities of the FPGA, we can process n stages (PH-Modes and SH-Modes)
truly parallel, where n is the number of available slots.

As mentioned in Section 4.4.1, we need the fixed slot to implement the IFB skeleton which
comprises the non-reconfigurable parts of the IFB. It offers, for example, the docking ports
to exchange PH-Modes and SH-Modes, serves as intermediate data storage between the
different stages, and establishes the connection to the adapted tasks.

In contrast to the pipeline architecture of general purpose processors, which is composed
of static hardware, the stages of our pipeline are built on demand and thus are not static,
neither in place nor in functionality. This is what we define as a multi-functional pipeline
stage. We consider each slot of our runtime environment as one possibility to place a stage
of the I - P - O pipeline. Whenever a currently not present stage is requested during runtime,
we download the required stage on demand. After a stage finishes processing, it remains idle
until it is replaced by another stage or it is reactivated for the succeeding communication
cycle. As usual for pipelining, we consider all processing steps of equal duration, resulting
from the most time-consuming stage. Therefore, the shortest period of time required for the
stage execution or the reconfiguration appoints the overall stage execution time.

We derive the scenario specific pipeline stages from the I - P -O graph (see Figure 4.16). If
all stages can be loaded completely onto the FPGA, dynamic reconfiguration gets obsolete.
Therefore, we address only those scenarios, where the number of stages is greater or equal
than the number of available slots (#stages > #slots). Such a scenario occurs when an
IFB, resulting from a large task graph, does either not fit into the FPGA due to limited
resources, or it originates in a stage utilization that is too low according to our demands.

The area optimization approach is a trade-off between the number of engaged slots and the
resulting computation time of the runtime reconfigurable I - P -O pipeline. The maximum
number of slots (# slots = # stages) guarantees the shortest computation times, while the
minimum number (# slots = 1) leads to a sequential execution of all stages. In this case,
the computation time calculates from the sum of the particular stage execution times.

I1

A
dapted Tasks

P1 O2I2O1

Slot1 Slot2 Slot3 Slot4 Slot5 Slot6

P2

Fixed

Mem

Mem

Figure 6.18: RTR pipeline architecture providing multi-functional pipeline stages

174

6.4 IFB Optimization

Caching of Runtime Reconfigurable Pipeline Stages

If we treat the slots of our runtime architecture as the cache lines of a fully associative cache
and the stages as the cached elements, we can apply caching theory to minimize the number
of stage reconfigurations. This is possible, because we can skip the loading of a stage that is
still present on the FPGA. In this way, we optimize the displacement of the I - P -O stages.
The more slots are idle, the better is the attainable caching effect. Thereby, it does not
make sense to apply caching to the one-slot solution, which is never idle, or to the two-slot
solution, where one slot is executing while the other one is reloading the succeeding stage.
For the rest of this section, we assume the I - P -O stages to be homogenous, i. e., the stages
consume the same area and require the same computation - and reconfiguration time.

To create an efficient schedule for the pipeline stages, we evaluate the scenario based I - P - O
graph (see Figure 4.16) in combination with the causality conditions (see Section 4.3.1).
As presented in Section A.1, the I - P - O graph defines the repeated execution of the static
communication cycle, which consists of the I - P - O nodes. Therefore, we know the precise
occurrence of each node in advance. For this reason, we can apply the optimum caching
strategy (replace the element that is required last), which allows us to compute an optimal
schedule for the pipeline stages.

The traversing of the I - P - O graph offers a specific degree of freedom, depending on the
available I-P-O nodes. However, with the help of the I - P -O progress line (see Figure 4.16),
we know at all times which nodes inside the communication cycle might be executed next.
Independent from the particular schedule, the causality of the I - P - O scheme must not be
violated. To initialize the cache we use a first-fit algorithm that downloads the first stages.

The developed caching strategy is defined as follows: If the stage, which is related to the
next executed node of the I - P - O graph, is not present on the FPGA, it has to be loaded
into a free slot (cache initialization) or, if no free slot is available, it replaces an idle stage.
To ensure that always the last required stage is replaced (optimum caching strategy), we
define the following replacement policies:

1) If no stage is idle, the replacement is stalled.

2) Otherwise, we replace the idle stages by the following sequence:

2.1) If there exists exactly one idle stage, we replace this stage.
2.2) In case of several idle stages, we replace those stages which depend on the down-

loaded one. Thereby, we select the node with the greatest distance to the I - P -O
progress line. The distance is defined as number of intermediate edges.

2.3) If no dependent idle stage exists, we choose that one (from all idle stages) with
the greatest distance to the I - P -O progress line.

Example

We tested our replacement strategy for several random scenarios. In Figure 6.19, we dis-
play three iterations of the communication cycle, related to the I - P -O graph depicted in
Figure 4.16. As we can see, the example reveals a considerable potential for optimization.

The diagram shows the consecutive allocation of the six slots. After the initialization phase,
i. e. the downloading of the first six stages onto the FPGA, we start the execution. In
the first iteration, we need six steps to process all communication requests. Slot 1 and 2
are reconfigured. In the second iteration, we process I2 first, as the stage is still present

175

6 The Interface Block (IFB)

on the FPGA. In the meantime we reload I1, which allows us to process seamlessly. The
example continues like this for the succeeding communication cycles. It demonstrates that
we can execute two input -, three processing - and three outputs stages inside six slots with
a constant performance of three pipeline clock cycles per communication cycle.

LP2

EO1

EI2LI2

EI1

EI2

EO1

EP2

EP3

EO3

LI1

LI2

LP1 EP1

LO1

LP2

LO2

LP3

LO3

1

Slot1

Slot2

Slot3

Slot4

Slot5

Slot6 EO2

2 3 4 5 6 7 8 9

EI2

EP2

EO3

LI2

LP2

LO2

LP3

LO3

Slot1

Slot2

Slot3

Slot4

Slot5

Slot6

EI1LI1

EP1

EO1

EO2

EI2

EP2

EP3

EO2

LP1

EO3

LO1

10 11 12 13

EP3

EO3

LO2

LP3

LO3

Slot1

Slot2

Slot3

Slot4

Slot5

Slot6

EI1LI1

EP1

EO1

EO2

EP3

EO2

LP1

EO3

LO1

EP3

EI1

EP1

EP3

EO3

EP2

LO2 EO2

Figure 6.19: Reconfigured execution of an exemplary I - P - O graph

176

6.4 IFB Optimization

Timing Estimations

In the previous example we have obtained the timing information by a simulation of the
I - P - O pipeline. It is even more valuable to dispose of an analytic method to determine the
timing. Unfortunately, we cannot compute the best case computation time for the runtime
reconfigurable pipeline with the help of an equation. However, we can estimate the worst
case computation time TWCCT .

The computation time is given by Tcomp = TRTR + TEx , whereas the execution time TEx

is the processing time required to compute all nodes of an I - P - O graph consecutively.
Therefore, TEx = tEx · #nodes, which is constant for a given I - P - O graph. TRTR is the
time needed for the reconfiguration. It depends on the ratio #nodes/#slots. Each slot that
does not initially fit into the device has to be reconfigured, which takes the reconfiguration
time TRTR = max {0,#nodes −#slots} · tRTR for one iteration. In the worst case we have
to replace a stage, which is a succeeding node inside the communication cycle. In the next
step, this stage has to be reloaded to the device. If this procedure continues for all pipeline
stages, we obtain a multiplication of the reconfiguration time by the number of succeeding
pipeline stages. In the case of the I - P -O pipeline, the factor is three. Therefore, the worst
case computation time TWCCT is defined as follows:

TWCCT = #nodes · tEx + 3 ·max {0,#nodes −#slots} · tRTR

TWCCT defines the upper bound for Tcomp of one communication cycle without pipelining.
Using the I - P -O pipeline in combination with the optimum caching strategy enormously
reduces the effective computation. This is in our example (tEx = 1/fIPO)

TWCCT = 8 · 1
fIPO

+ 3 ·max {0, 8− 6} · tRTR =
8

fIPO
+ 6 · tRTR =

14
fIPO

whereas tRTR = 1/fIPO , which is true when the pipeline clock rate is dominated by the
reconfiguration time. Remember, the simulation required three pipeline clock cycles after
the initialization to complete one communication cycle. Therefore, the optimized value
(3

fIPO
) is 4,67 times better than the estimated worst case computation time.

Pipeline Utilization

Next to the required pipeline clock cycles, the utilization of the slots is an important metric
of our runtime reconfigurable pipeline. With the help of our simulations we can determine
the pipeline utilization U by the following equation (PCC = pipeline clock cycles) :

U =
∑

PCC # active Slots

Slots ·# PCC

We simulated 10 communication cycles of different communication scenarios on our slotted
architecture with 1 to 10 slots. Figure 6.20 depicts the required pipeline clock cycles (top)
and the pipeline utilization (bottom) of our standard example, including 2 input and 3 output
stages based on multi-slot and single-slot reconfiguration. Single-slot means that only one
slot is reconfigurable whereas in multi-slot devices multiple slots can be reconfigured at the
same time. The diagram is divided into three areas: The one - and the two-slot solution
(area 1) deliver an equal result for both variants, since a maximum of one slot is reconfigured
at the same time. In the two-slot solution this results from an alternating execution of the
slots due to dependencies (causality conditions) between the I - P - O stages.

177

6 The Interface Block (IFB)

Available Slots

S
lo

t U
til

iz
at

io
n

Pi
pe

lin
e

C
lo

ck
 C

yc
le

s

IPO-Schedule: 2 Input - 3 Output stages, 10 Cycles, 1-10 Slots

 1y 2y 3y

 Pareto
optimum

slots ≥
stages

Figure 6.20: Required pipeline clock cycles and slot utilization

For #slots > #stages (3), the two solutions converge towards each other. The remaining
difference results from the unequal pipeline initialization phase. In the area in-between
(2), the two reconfiguration variants differ from each other. This is due to the fact that
especially the single-slot reconfigurable devices suffer from an increasing cache-miss rate,
which results from the reduction of the available slots. Form and size of the “eye-opening”
depend on the respective communication scenario. The diagram allows us to find pareto
optimal solutions like the schedules based on four slots. Figure 6.21 depicts these schedules,
which have been automatically generated by a scheduler implemented in the IFS-Editor.
The slot utilization and the required pipeline clock cycles differ remarkably between single -
and multi-slot solution. This is the result of the compact schedule for the multi-slot device,
while the single-slot schedule is protracted by the continuous stage reconfigurations.

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LI 2 EI 2

LO 3 EO 3

LP 5 EP 5

LO 4 EO 4

LP 4 EP 4

LO 5 EO 5

EI 1

LI 1

LI 2

EI 1

LP 3 EP 3

LP 4 EP 4

EI 2

LO 3 EO 3

LO 4

LP 5 EP 5

LO 5 EO 5

EO 4

LI 1 EI 1

LI 2 EI 2

LP 3 EP 3

LO 3 EO 3

LP 5 EP 5

LO 4 EO 4

LP 4 EP 4 LO 5 EO 5

1 2 3 4 5 6 7 8 9 10 11 12

LP 3 EP 3

LP 4 EP 4

LO 3 EO 3

LO 4

LP 5 EP 5

LO 5 EO 5

EO 4

LP 3 EP 3LI 1 EI 1

LI 2 EI 2

Multi-Slot Reconfigurable Device

Single-Slot Reconfigurable Device

Pipeline
Clock Cycles

Slots

Slots

1

2

3

4

1 2 3

n

Communication
Cycle n

1 3

2

Figure 6.21: Multi-slot vs. single-slot reconfiguration given four slots
178

6.5 Summary

6.5 Summary

In this chapter we focussed on the hardware implementation of the IFB. Therefore, we
introduced the IFB Hardware Template which specifies the implementation details of the
IFB. This enabled us to perform a precise analysis of the timing and the required resources,
which resulted in two orthogonal optimization approaches: one to optimize the latency, the
other to minimize the chip area. A feasibility - and a schedulability analysis guarantee the
deadline conform execution of real-time protocols.

The IFB Hardware Template

First of all, we presented the IFB Hardware Template, a schematic on the RT - and the
algorithm level, applicable as template for IFB hardware implementations. The RT elements
model the structure and the dedicated logic parts, whereas the algorithm parts model the
behavior in the form of automata graphs. We discussed the PH including the PH-Modes and
the PH-Switch as well as the SH with the SH-Modes, the SH-ReconModes, the SH-Switch,
and the IFB internal memory. To provide a fully parallel memory access to the SH-Modes,
we synthesize the internal memory in the form of dedicated registers. The switches handle
the memory bus access and provide the bus macros for the reconfiguration of the PH-Modes
and SH-Modes.

Furthermore, we discussed the detailed functionality of the CU including the memory bus
arbiters, the memory management unit (scoreboard) and the Reconfiguration Unit. With the
help of the bus arbiters, we implement the scheduling strategy for the memory bus access
of the PH-Modes. The scoreboard ensures that the stage execution follows the causality
conditions of the pipelined I - P - O processing.

In the case of the RTR-IFB, the Reconfiguration Unit copes with the replacement of the af-
fected PH-Modes and SH-Modes. Therefore, it halts and deactivates the reconfigured modes
in cooperation with the external reconfiguration control unit. When the reconfiguration is
finished, the Reconfiguration Unit reactivates the exchanged modes again.

Timing Analysis

To perform a precise timing analysis of the IFB, we presented a cycle accurate evaluation
of the I - P - O pipeline. To process a particular bit, the IFB requires 27 clock cycles that we
divided into seven phases. These phases determine the precise clock cycles to establish and
to release the memory bus, as well as to receive and to transmit a data bit.

The succeeding timing analysis comprises a feasibility - and a schedulability analysis. The
feasibility test is a necessary condition to process data in real-time. Depending on the
given protocols, the IFB requires six or nine clock cycles to process a particular bit (CPB).
Furthermore, we delivered an equation to estimate the clock rate of the I - P - O pipeline.

When multiple interfaces are adapted by the IFB, an additional schedulability analysis has to
be performed that determines if all protocols can be processed deadline conform. Therefore,
we compute a worst case basic bock BB′ for each adapted protocol, which comprises the
attributes deadline, period, and execution time. To process BB′, we developed a WCET
analysis utilizing a graph based protocol reduction. We interpret the computed worst case
basic blocks as a non-preemptive task set which can be scheduled with the help of a standard
scheduling approach. One appropriate schedulability policy is the cyclic scheduling.

179

6 The Interface Block (IFB)

Afterwards, we presented two optimization approaches, based on the IFB Hardware Tem-
plate. The first approach optimizes the IFB internal latency; the second one focusses on the
minimization of the required chip area. As both approaches make different assumptions,
they cannot be combined.

Latency Optimization

To reduce the latency, we improve the IFB internal data flow. The idea is to maximize the
I - P - O parallelization by advancing the execution of the I - P - O stages. Thus, we do not
have to wait until complete packages have been received, as we can start processing, when
the information for the first outgoing package is available. For this reason, we analyze the
IFD-Mapping in combination with the given protocols. Wherever an advanced execution
is possible, we annotate the protocol of the sending interface with division points which
partition the incoming frames into consecutive sub-frames.

The frame-based scheduling approach generates sub-frame IDs from the division points,
which allow the advanced start of the related processing stage and the advanced transmission
of completed outgoing packages. In contrast, the sub-frame-based scheduling creates small
self-containing frames from the sub-frames that can be processed separately. On one hand,
the frame-based schedule provides better optimization results; on the other hand, it requires
an extension of the IFB architecture. The sub-frame-based schedule, which can even worsen
the latency for sub-frames including less than three data bits due to the introduced overhead,
goes with a simple preprocessing of the frame structure.

Area Optimization

Finally, we presented our area optimization approach. We defined the runtime reconfigurable
I - P - O pipeline that is executed on a slotted FPGA architecture. The slots are utilized as
multi-functional pipeline stages, which can hold any of the I - P - O pipeline stages.

To minimize the stage displacement, we apply caching theory. Due to the static structure of
the I - P - O graph, which defines the repeated execution of the fixed communication cycle,
we know the precise occurrence of each I - P -O stage in advance. Thereore, we can apply
the optimum caching strategy. The fewer slots are provided, the higher is the cache miss
rate, which leads to an increased reconfiguration of slots.

For the analytic evaluation of the runtime reconfigurable I - P -O pipeline we defined equa-
tions to estimate the worst case computation time and the pipeline utilization. We presented
simulation results for our default I - P -O example which demonstrate the efficiency of the
combination of pipelining and caching in comparison to the worst case computation time.
Furthermore, we illustrated the required pipeline clock cycles and the slot utilization for a
different number of slots with respect to single-slot and multi-slot reconfigurable devices and
explained the characteristics of the presented diagrams and stage schedules.

180

CHAPTER 7

Results

To conclude this work, we give a brief insight into the IFS-Editor. Therefore, we offer
characteristic values and show some interesting screen-shots of our EDA tool. Afterwards,
we present the results of a case-study in which the IFB adapts RFID to I2C. Finally, we
compare some relevant characteristics of our approach with related work.

7.1 The IFS Design Environment: IFS-Editor

The IFS-Editor has been implemented in Java. It took us four years to complete this
EDA tool, comprising about 120.000 lines of code (LOC). Basis for the implementation is
the Model-View-Controller concept which proposes a strict separation of the data model
(package IFDS, which stands for interface data structure, and package XMLElementAPI),
the view (package Editor), and the control (package Synthesis and CodeGen).

As presented in Figure 7.1, the tool supports the component based modeling of the System
Architecture in order to describe the communication infrastructure of distributed embedded
systems. Furthermore, it provides the connection to the CASE tool Fujaba, including the
model transformation, required to transfer the UML models into the IFS-Data-Structure.

To perform the two IFB synthesis steps the, IFS-Editor offers the Synthesis Wizard and the
CodeGen Wizard, which handle the user interaction and encapsulate the developed synthesis
algorithms. The Synthesis Wizard creates the target language neutral IFB model, whereas
the CodeGen Wizard generates the final IFB target code – in our case VHDL.

We have implemented a protocol visualization that illustrates the modeled protocols in the
form of waveform diagrams. To depict PSMs, the tool can also visualize transition conditions.
This allows us to examine the generated PSMs of the PH-Modes and the SH-Modes.

Figure 7.2 visualizes the IFD-Mapping Editor. The designer enters the IFD-Mapping in the
text field at the top. The protocol-visualization has been extended to depict also incoming
and outgoing packages to facilitate the mapping process. The result of the syntax - and the
semantic check are printed in the tab next to the protocol visualization (Console).

181

7 Results

Figure 7.1: IFS-Editor – Component based System Architecture view

Figure 7.2: IFS-Editor – The IFD-Mapping Editor

182

7.2 Case-Study : Adaptation of RFID to I2C

7.2 Case-Study : Adaptation of RFID to I2C

Our case-study is a toy-train scenario including several incompatible interfaces. The recog-
nition and identification of the trains is realized by means of the RFID technology. We use
an IFB as central interface adapter module to convert the RFID protocol (RS232) into the
I2C bus system of the train controller. The case-study has been presented in [28, 73].

A micro controller evaluates the RFID transponder signals and sends 5 bytes in the form of
five RS232 packages at a baud rate of 9600 baud/s without parity bits via its TTL interface.
The Inter-Integrated-Circuit-Bus (IIC = I2C) is a defacto standard for integrated circuits.
It is a bidirectional master-slave data bus consisting of two signals (SCL: serial clock line
and SDA: serial data line).

To evaluate the quality of an automatically generated IFB, we compare the generated VHDL
code with a hand-coded version. Therefore, with the help of the IFS-Editor, we modeled
the interfaces of the RFID controller and the I2C bus, including the interface topology and
the related protocol descriptions. To ensure the electrical compatibility, we applied specific
transducers for the voltage adaptation.

Quantitative Evaluation

Afterwards, we present some interesting characteristics of the generated VHDL code and
the low-level synthesis. The design consists of two PH-Modes (one for the interaction with
the RFID controller and one for the I2C bus) and two SH-Modes for the conversion of the
RS 232 into the I2C protocol. The generated VHDL code includes 16 VHDL files comprising
a total number of 7626 LOC (lines of code). The low level synthesis for the Spartan 2 200e
FPGA using Xilinx ISE delivered the results presented in Figure 7.3. As we can see, the
placed and routed IFB requires only a small number of the available resources provided by
the low-end device Spartan 2 200e.

Device Utilization Summary
Logic Utilization
Total Number Slice Registers

Logic Distribution

Total Number 4 input LUTs

Total equivalent gate count for design

 Numbers used as Flip Flops
 Numbers used as Latches
 Number of 4 input LUTs

 Number of occupied Slices
 Number of Slices contaning only related logic
 Number of Slices contaning unrelated logic

 Number used as logic
 Number used as route-thru
 Number of bonded IOBs
 IOB Latches
 Number of GCLKs
 Number of GCLKIOBs

 Additional JTAG gate count for IOBs

Used Available Utilization Note(s)
472 4,704 10%
467

5
746 4,704 15%

425
425

0
425
425

2,352 18%
100%

0%
775 4,704 16%

4 142 2%

1 4 25%
25%41

8,938
240

1

746
29

Figure 7.3: Low level synthesis results generated with Xilinx ISE

183

7 Results

Figure 7.4: The RFID – I2C design, illustrated by the Xilinx FPGA Editor

Similar to the controller design in Section 4.4.4, we illustrate the RFID – I2C design with the
help of the Xilinx FPGA Editor (see Figure 7.4) and the Xilinx Floorplanner (see Figure 7.5).
As we can see, only a few number of well placed resources have been allocated. Thereby,
the placement has been mainly determined by the interconnections to the external I/Os.

Figure 7.5: The RFID – I2C design, illustrated by the Xilinx Floorplanner

184

7.3 Comparison With Other Approaches

7.3 Comparison With Other Approaches

Our Interface Synthesis approach is unique in its field of application. Therefore, we cannot
directly compare the Interface Synthesis methodology and the Interface Block with exist-
ing approaches. However, we can draw a conclusion by referring to some relevant related
domains: protocol adaptation, reconfiguration, IP integration, and EDA tools.

The most domain specific interface synthesis approaches are highly specialized and thus
deliver highly optimized results. In contrast, the IFS methodology has been developed to
cover a wide range of protocols. Therefore, it cannot always deliver such efficient results
as the domain specific approaches. However, it is the only EDA tool that copes with the
runtime reconfiguration of adapted tasks.

With respect to the protocol adaption aspect, the IFB is a rather complex protocol adapter
module. Therefore, it does not really make sense to apply it for“trivial”protocol adaptations
like a serial-to-parallel conversion, which can be handled by a simple shift register. However,
the IFB supports the adaptation of multiple real-time interfaces including complex data
processing operations in contrast to most approaches, which allow only the forwarding of
information without an active modification. The IFB was not primarily designed to process
streaming protocols, but to cope with several different kinds of communication, like network
traffic, or the interaction of embedded IPs. However, due to the pipelined I - P - O processing,
the IFB offers a short latency, which also allows the processing of streamed data.

The IFS approach applies runtime reconfiguration to support the transparent exchange of
tasks at runtime. All other approaches have to inform the unaffected tasks about the ongoing
reconfiguration to avoid communication gaps. In our Interface Synthesis approach we hide
these reconfiguration based problems completely from the system designer. Furthermore, we
utilize micro reconfiguration in combination with caching to minimize the reconfiguration
effort, which is a well studied problem. However, our approach models communication cycles
as I - P - O graph, which allows us to implement an optimum online caching strategy.

From the viewpoint of IP integration, the Interface Synthesis methodology is specialized on
the IPQ format, compliant to VSIA’s VCT standard. Highly specialized tools which provide
support for the IP integration, like Xilinx ISE, create additional interface IPs to interconnect
IPs. Therefore, these tools provide an automated user support for the personalization of
the interface IP. However, these tools are usually restricted to specific architectures and
IPs. Xilinx ISE, for example, can only adapt Xilinx specific IPs to the proprietary OPB
bus. This is also true for other FPGA vendors, like Altera with relation to their SoC bus
called “Avalon”. Our approach handles all IPs as black boxes and goes without a protocol
semantics to maximize the diversity and therefore, the field of application.

Our EDA tool provides the complete functionality from the abstract modeling in UML 2.0 to
the code generation of the IFB. Only few academic approaches prove the related methodology
by an integrated design flow of this complexity. To improve the usability of the IFS-
Editor, we concentrate on a high reusability of the created models and a maximum degree of
automatization. The implementation (Java code) is a well organized object oriented design,
partially documented and can be extended after a short period of vocational adjustment.

185

7 Results

186

CHAPTER 8

Conclusion and Outlook

8.1 Conclusion

In this thesis, we focused on the communication-based design of runtime reconfigurable
embedded systems. As presented in Figure 8.1, we developed an integrated design flow,
called Interface Synthesis Design Flow, that consolidates interface synthesis techniques with
reconfigurable computing concepts. We implemented the developed concepts in the form of
an EDA tool, the IFS-Editor. Thereby, our main objective was the automated generation
of an interface adapter module, called Interface Block, that interconnects tasks and media
comprising incompatible interfaces.

INTEGRATION

Reconfigurable
Computing Concepts

Interface Synthesis
Techniques

Interface Adapter

consolidate

generate

DESIGN
PHASES

MODELING

SYNTHESIS

Micro- and Macro
Runtime Reconfiguration

I-P-O based
Interface Adapter Module

Interface Block

Integrated
Design
Flow

Concept :
Interface
Synthesis

Design
Flow

Impelemented
EDA-Tool :
IFS-EDITOR

Figure 8.1: The resulting integrated design flow

187

8 Conclusion and Outlook

Interface Synthesis Design Flow

The Interface Synthesis Design Flow is an integrated design flow, comprising three consec-
utive design phases: modeling, synthesis, and integration. The modeling phase provides
an adequate way for the model-based design of real-time communication in embedded sys-
tems. We apply the created models as input for the synthesis phase, which is specialized on
generating our reconfigurable interface adapter module, the IFB. The created IFB can be
integrated into an existing design within the optional integration phase.

Central part of the modeling phase is our modeling concept, involving XML, Java, and UML.
Based on an XML scheme, we defined the IFS System Architecture, a system-level model
for the specification of communication infrastructures in complex communication scenarios.
The System Architecture is a hierarchical structure composed of architectural components
(system, board, chip) and interacting communication components (task, medium). We offer
a UML based modeling of the System Architecture to provide a standardized and intuitive
graphical user interface. Therefore, we developed a UML 2.0 profile that we transferred to
the CASE tool Fujaba. To close the tool chain, we implemented a model transformation of
the dedicated UML 2.0 models into the data structure of the IFS-Editor.

The System Architecture defines the static input for the automated IFB synthesis in the
form of interface descriptions (IFD) and target platform descriptions (TPD). Additionally,
the designer has to provide an IFD-Mapping in the beginning of the synthesis phase, which
specifies the scenario based data processing inside the IFB. In this way, we avoid defining a
global data semantics for IFDs and earn a maximum degree of freedom in interconnecting
heterogeneous components, which is especially relevant for the IP based design.

The modeling phase is followed by an automated IFB synthesis comprising two synthe-
sis steps: The first one results in a target language independent IFB model. The second
step comprises a code generation, which generates the final IFB implementation in a dedi-
cated target language. To construct the IFB model, we preprocess the selected input (IFD,
TPD) from the System Architecture. This implies the protocol synthesis that transforms
the given behavior descriptions in the form of waveform state machines into protocol state
machines. The PSMs implement the complementary behavior of the adapted component
interfaces. We derive the available protocol packages from these automata as input for the
scenario based IFD-Mapping. The designer can specify the protocol adaptation based on
four basic data processing operations. Therefore, we developed the IFD-Mapping-Language
including a syntax - and sematic analysis to evaluate the correctness of the entered IFD-
Mapping. Afterwards, we optimize the PSMs based on the IFD-Mapping to construct the
IFB model. The IFB model is a hierarchical structure conform to the System Architecture,
assembled from EIFDs which have been created by the EIFD Factory. It is also referred
to as the intermediate representation of the IFB and is taken as input for the code gener-
ation. We developed an adequate VHDL code generator (compiler backend) based on the
frame processing technique. The code generator produces synthesizable VHDL code for an
individual IFB (IFB-IP), a chip (ConfigWare), or the complete system (system simulation).

Standardized tools for the low-level hardware synthesis, for example Xilinx ISE, or compiler
like the GNU C-compiler (gcc), are supposed to be used to create the final configuration
bit-streams or the executable files within the concluding integration phase.

As first approach in the interface synthesis/reconfiguration domain, we present an integrated
high level synthesis design flow from UML 2.0 down to synthesizable VHDL.

188

8.1 Conclusion

Interface Block

The IFB is a runtime reconfigurable protocol adapter module which affords the deterministic
and transparent reconfiguration of tasks at runtime due to the synergy of interface synthesis
concepts and reconfiguration techniques. To interconnect multiple tasks and media, which
we treat as black boxes, the IFB is a self-contained and transparent protocol adapter. This is
of particular importance for the adaptation of protected IPs, where the interface description
is the only information available. We support signal based communication as well as memory
mapped I/O. Depending on the code generation, we can implement the IFB in hardware or
software. In general, the IFB Macro-Structure allows us the handling of synchronous and
asynchronous communication. However, the presented IFB Hardware Template specifies a
clock synchronous hardware realization of the IFB.

The IFB Macro-Structure defines the structure and the functionality of the IFB and its main
components: the protocol handler (PH), the sequence handler (SH), and the control unit
(CU). The PH consists of the PH-Modes, which act as stubs and perform the interaction
with the component interfaces. They pack and unpack the adapted information and provide
it to the SH. Dedicated SH-Modes are responsible for the protocol conversion according to
the IFD-Mapping. With the help of the CU, we manage the pipelined protocol translation
comprising the stages Input - Processing - Output and the IFB internal reconfiguration.

To guarantee a deterministic runtime reconfiguration of tasks and therewith a predictable be-
havior of the remaining system, the RTR-IFB comprehends a Reconfiguration Unit. There-
fore, whenever a connected task is exchanged, the affected PH- and SH-Modes are reconfig-
ured as well, and a predefined behavior, specialized on different scenarios, is executed during
the reconfiguration process to avoid communication gaps. In combination with a reconfig-
uration control unit, the IFB provides a basis technology to compose embedded systems
supporting the deterministic (macro -) reconfiguration of tasks at runtime.

Starting from the modular IFB Macro-Structure we developed the IFB Hardware Template,
a schematic on the RT and the algorithm level, which defines a precise construction pattern
for hardware implementations of the runtime reconfigurable IFB. Furthermore, the schematic
allows us to perform a cycle-accurate evaluation of the IFB. Based on this information, we
accomplished a precise feasibility and schedulability analysis, utilizing a worst case execution
time analysis to evaluate the adapted protocols. In addition, we explained how to determine
the clock-cycles-per-bit value and the I - P - O pipeline clock rate.

Furthermore, we presented two optimization approaches for the IFB. The first approach
maximizes the I - P - O parallelization by advancing the stage execution in order to minimize
the IFB latency. Thus, we can start the processing and the succeeding transmission of com-
pleted data packages although the related input stage did not finish yet. We demonstrated
that we can effectively reduce the latency in this way. The second approach utilizes micro
reconfiguration to minimize the required chip area for the RTR-IFB implementation. As
runtime environment for the reconfigurable I - P - O pipeline, we specified a slotted FPGA
architecture that provides several slots which act as multi functional pipeline stages. In
combination with the optimum caching strategy, we were able to increase the slot utilization
and reduce the number of I - P - O stage reconfigurations.

As we have seen, the IFB is a powerful and flexible protocol adapter, comprising a high
potential for optimization. The realization of the IFB Macro-Structure by the IFB Hardware
Template leads to a resource efficient and real-time capable hardware implementation.

189

8 Conclusion and Outlook

EDA Tool: IFS-Editor

To evaluate our Interface Synthesis methodology, we developed the IFS-Editor. This EDA
tool implements the Interface Synthesis Design Flow and provides therewith the complete
functionality to generate static and runtime reconfigurable IFBs. The three design phases
modeling, synthesis, and code generation have been implemented as functional entities that
are closely linked. Interactive wizards guide the designer through the synthesis and the code
generation phases. In this way, we provide a maximum degree of automatization for the
generation of an IFB.

Designated fields of application for the Interface Synthesis methodology and the generated
Interface Blocks are the reconfigurable computing domain, the rapid system prototyping of
heterogenous and distributed embedded systems, and the IP-based System-on-Chip design.

A collection of my publications and the advised Studien - and Diplomarbeiten are given
afterwards in two separate bibliographies. As one highlight, we composed two books from
most relevant publications, published in the“Wissenschaftliche Schriftenreihe: Eingebettete,
Selbstorganisierende Systeme” [7, 1].

8.2 Outlook

Within the scope of this thesis, we developed the Interface Synthesis Design Flow that
has been implemented by our EDA tool, the IFS-Editor. Furthermore, we presented the
hardware realization of the Interface Block, including efficient optimization approaches and
analysis techniques. In the following, we introduce some interesting challenges concerning
future work wiht the capability to improve the presented work.

One way to increase the usability and the acceptance of the IFS methodology by the industry
would be to create a well tested data base of relevant IPs. It would also help to turn the
IFS-Editor into a foolproof and highly optimized EDA tool, which demands the integration
of additional check methods and optimization approaches. Furthermore, it would be helpful
to improve the available functionality by extending additional service methods, for example
the code generation for different languages.

A first step to improve the IFS-Editor would be to implement the presented theoretical
concepts for the analysis and the optimization of the Interface Synthesis Design Flow and
the IFB, which have not yet been integrated. Beyond this, it makes sense to develop further
concepts to perfect our methodology and to fine tune the IFB architecture.

An important aspect that we are already working on is the method based communication
[27]. There, the major challenge is to handle abstract data types and method signatures.
The extended IFS methodology will be able to adapt methods with incompatible parameters
(types and identifiers), which still differentiates us from approaches like CORBA. Therefore,
we have to extend our definition of hardware/software interfaces, which is not restricted to
memory mapped I/O anymore.

Another goal is to apply the IFB as a flexible interface adapter in dynamic distributed
embedded systems. To perform a fully automated interface adaption in such a system
online, we are researching domain specific ontologies, that utilize our mapping functions to
express the mapping of incompatible function classes within a classification scheme.

190

APPENDIX A

Extensions to the Interface Synthesis

A.1 Communication Cycles

To append one communication cycle to another, we insert the necessary edges from the
output nodes to the input nodes. Therefore, we create an outgoing edge for each output
node to the input nodes of the next communication cycle that deliver the required input to
process the output for the current node.

I1

P1 P2 P3

I2

I1

P1 P2 P3

I2

O1 O3O2

Communication
Cycle 1

Communication
Cycle 2

O1 O2 O3

Figure A.1: Two succeeding communication cycles

191

A Extensions to the Interface Synthesis

A.2 Generating Basic Blocks

A basic block begins in the first state, after a branching state, or in a merging state and
has the maximum size. Figure A.2 depicts an example for the identification of basic blocks.
In step 1 we start with BB1. That covers only the first state. We enlarge BB1 in step 2
until we reach the first branch, where we create BB2 and BB3. In step 3 we enlarge BB2

to its maximum size. Afterwards, BB3 is processed. Thereby, we notice in step 5 that BB2

contains the merging state S4. Therefore, BB2 is split into BB2 and BB4. The states S6

and S9 remain uncovered as dead states.

BB4

BB3

BB2

BB1
 S1 S2 S3

 S6 S7 S8

 S4

 S9

 S5

BB1
 S1 S2 S3

 S6 S7 S8

 S4

 S9

 S5

BB3

BB2BB1
 S1 S2 S3

 S6 S7 S8

 S4

 S9

 S5

BB3

BB2BB1
 S1 S2 S3

 S6 S7 S8

 S4

 S9

 S5

BB3

BB2BB1
 S1 S2 S3

 S6 S7 S8

 S4

 S9

 S5

Step 1

Step 2

Step 3

Step 4

Step 5

dead statedead state

Figure A.2: Example for the generation of basic blocks

192

A.3 Grammar of the IFD-Mapping Language

A.3 Grammar of the IFD-Mapping Language

This section delivers the complete grammar of the IFD-Mapping language. The grammar
defines the syntax of valid IFD-Mapping instances and is specified in the EBNF style.

MappingFunction = {ImportDeclaration} {MappingDeclaration};
ImportDeclaration = ’import’ Identifier;
Identifier = Letter {Letter | Digit};
Letter = ’A’ | ’B’ | ’C’ | · · · | ’Z’ | ’a’ | ’b’ | ’c’ | · · · | ’z’;
Digit = ’0’ | ’1’ | ’3’ | · · · | ’9’;
MappingDeclaration = VariableDeclarator ’;’ | Statement;
VariableDeclarator = VariableType Identifier [’=’ ConditionalOrExpression];
VariableType = (’boolean’ | ’int’ | ’bit’) [’[]’] [’[]’];
Assignment = PackageOrVariable AssignmentOperator

ConditionalOrExpression;
AssignmentOperator = ’<=’ | ’=’;
ConditionalOrExpression = ConditionalAndExpression {’||’ ConditionalAndExpression};
ConditionalAndExpression = InclusiveOrExpression {’&&’ InclusiveOrExpression};
InclusiveOrExpression = ExclusiveOrExpression {’|’ ExclusiveOrExpression};
ExclusiveOrExpression = AndExpression {’∧’ AndExpression};
AndExpression = EqualityExpression {’&’ EqualityExpression};
EqualityExpression = AdditiveExpression {(’==’ ’ !=’) AdditiveExpression};
AdditiveExpression = UnaryExpression {’+’ UnaryExpression};
UnaryExpression = ’˜’ UnaryExpression | ’ !’ UnaryExpression |

| PrimaryExpression;
PrimaryExpression = PackageOrVariable | Literal | ConstantArray |

| ’{’ ConstantArray {’,’ ConstantArray} ’}’ |
| ’(’ ConditionalOrExpression ’)’;

PackageOrVariable = ProtocolPackage [’(’ IntegerLiteral ’)’]
[ProtocolPackageSuffix] | Identifier;

ProtocolPackage = (’IP ’ | ’OP ’) IntegerLiteral;
ProtocolPackageSuffix = ’[’ IntInterval ’]’ [’[’ IntInterval ’]’];
Literal = IntegerLiteral | BooleanLiteral | BitLiteral;
ConstantArray = ’{’ Literal {’,’ Literal} ’}’;
IntInterval = IntegerLiteral [’:’ IntegerLiteral];
IntegerLiteral = (Digit - ’0’) {Digit};
BooleanLiteral = ’true’ | ’false’;
BitLiteral = ”’(’1’ | ’0’)”’;
Statement = Block | IfStatement | Assignment ’;’ ;
Block = ’{’ {MappingDeclaration}’ }’;
BlockStatement = VariableDeclarator ’;’ | Statement;
IfStatement = ’if’ ’(’ConditionalOrExpression’)’ Statement

[’else’ Statement];

193

A Extensions to the Interface Synthesis

A.4 VHDL Examples for the Created IFB Target Code

The developed code generator creates VHDL code from the synthesizable VHDL subset. In
Example-Code A.1 (register file) and A.2 (SH-Mode) we present two VHDL descriptions
that have been created automatically with the help of the IFS-Editor.

Register File

The register file (Example-Code A.1) defines the abstract data structure of the internal
memory (Data Writer and Data Reader). In the presented example, the incoming memory
(datareadermem) comprises one frame (frame_1), which provides one package (IP_1_SP0),
including four parallel bits (vec0, ..., vec6). The illustrated data structure is derived from
a parallel sender that provides eight bits in parallel. Four of these bits have been considered
in the IFD-Mapping, therefore, the related package was reduced to four bits.

The outgoing memory (datawritermem) also provides one frame (frame_2). As the given
IFB writes to a serial receiver, the frame consists of one package (OP_1_SP0), providing a
four-bit serial data word (vec0). We can apply this register file as a VHDL library that
allows an abstract notation of the internal data types.

Example-Code A.1: Generated VHDL Register File

01 library IEEE;

02 use IEEE.STD_LOGIC_1164.all;

03

04 package RegFile is

05

06 type OP_1_SP0 is record

07 vec0 : std_logic_Vector (3 downto 0);

08 end record;

09

10 type frame_2 is record

11 p2 : OP_1_SP0;

12 end record;

13

14 type datawritermem is record

15 f2 : frame_2;

16 end record;

17

18 type IP_1_SP0 is record

19 vec0 : std_logic;

20 vec1 : std_logic;

21 vec2 : std_logic;

22 vec3 : std_logic;

26 end record;

27

28 type frame_1 is record

29 p1 : IP_1_SP0;

30 end record;

31

32 type datareadermem is record

33 f1 : frame_1;

34 end record;

35

36 end package RegFile;

194

A.4 VHDL Examples for the Created IFB Target Code

Entity and Architecture Description of a SH-Mode

Example-Code A.2 presents the generated VHDL code of a SH-Mode, which realizes a map-
ping function that assigns incoming to outgoing data. The VHDL code comprises exactly one
entity and one architecture description. Therefore, it is unnecessary to add a configuration
for the explicit mapping of entity and architecture, as it is already given implicitly.

The entity description comprises a clock - (ShM1_IFB_Clk) and a reset (ShM1_IFB_Reset)
signal, which are required for the synchronous design. Furthermore, it provides the control
signals, which are routed to the CU (ModeRun, ModeComplete, and PInComplete). We add
a prefix (here : ShM1_Sw_ that stands for “SH-Mode 1 to Switch”) in front of each identifier,
as signal names have to be unique. The data signals to the internal memory are written as
complex data type (here : op_1_sp1, which stands for“outgoing package 1 – sub-package 1”1).
The definition of complex data types has been presented in Example-Code A.1.

The architecture description starts with the declaration of the local signals, which originate
from the ProtocolPins inside the IFDs. Based on the ProtocolMap we map the local signals
to the related entity signals. As shown in the example, the ProtcolPin identifiers can be
equal to the entity signal names2. For this reason, we extend each local signal identifier with
the prefix “_loc”.

Furthermore, we define an abstract data type (StateType), which specifies the required
states of the synthesized state machine. In the given example, it comprises three states: Idle
and Done, which are default states given by the IFB Hardware Template, and the assignment
state Assignment_OP_1_SP1_StateID_3. In this state, we assign the incoming data word
to the outgoing data word . We divide the generated state machines into three processes
(SH_Mode_1_TransitionAndOutput, SH_Mode_1_FF_Out, and SH_Mode_1_Synchronize):

SH_Mode_X_TransitionAndOutput : Within this process, we implement the state transition
function and the output function (Moore output). Thereby, we include only those
outputs, which are defined for all states. Typical signals, which are handled by this
process, are the IFB internal control signals. The outputs that represent assignments
to registers are usually not specified for every state, otherwise they could be replaced
by combinational logic. Therefore, we implement all register assignments in an extra
process, called SH_Mode_X_FF_Out.

SH_Mode_X_FF_Out : In dependency of the process SH_Mode_X_TransitionAndOutput, we
define“incomplete”assignments to signals and registers here. The low level synthesis in
the integration phase synthesizes registers in the form of Data -Clock -Enable flip flops
(DCE-FF), based on this process. Thereby the conditions inside the if-statements
(here : if (CS = Assignment_OP_1_SP1_StateID_3) then) are transformed into the
combinatorial enable logic of the DCE-FF.

SH_Mode_X_Synchronize : The synchronize process is responsible for the stepping of the
current state (CS) to the next state (NS). The resulting design is a synchronous circuit
that performs its state transition at the rising edge of the clock signal (ShM1_IFB_Clk).

1The sub-packages result from the optimization step after the IFD-Mapping has been entered.
2The IFS-Editor provides the functionality to automatically create the ProtocolPins and the ProtocolMap

based on an interface description. Thereby, the algorithm copies the signal identifiers of the interface to
the created ProtocolPins

195

A Extensions to the Interface Synthesis

Example-Code A.2: Generated SH-Mode in VHDL

001 Library IEEE ,IFB;

002 use IEEE.STD_LOGIC_1164.all;

003 use IFB.RegFile.all;

004 -- +--/-- Handler

005 -- |

006 -- +--------+-------+

007 -- | Handler_Mode |

008 -- | +--------+ |

010 -- | | FSM | |

011 -- | +--------+ |

012 -- +----------------+

013

014 Entity SH_Mode_1 is

015 Port(

016 --

017 -- IFSInterface: ShM1_Internal_Clock_And_Reset --

018 --

019 ShM1_IFB_Clk : in std_logic;

020 ShM1_IFB_Reset : in std_logic;

021 --

022 -- IFSInterface: ShM1_SH_Mode_1 --

023 --

024 ShM1_Sw_ModeRun : in std_logic;

025 ShM1_Sw_ModeComplete : out std_logic;

026 ShM1_Sw_PInSelect : out std_logic;

027 ShM1_p24 : out op_1_sp0;

028 ShM1_p31 : in ip_1_sp0

029);

030 end SH_Mode_1;

031

032 Architecture SH_Mode_1_Behavior of SH_Mode_1 is

033 --

034 -- Definition of Local Signals --

035 --

036 signal ShM1_Sw_ModeRun_loc : std_logic;

037 signal ShM1_Sw_ModeComplete_loc : std_logic;

038 signal ShM1_Sw_PInSelect_loc : std_logic;

039 signal ShM1_p24_loc : op_1_sp0;

040 signal ShM1_p31_loc : ip_1_sp0;

041

042 --

043 -- Declaration of State_Type Definition --

044 --

045 type StateType is (

046 Idle , -- Idle State of SH-Mode

047 Done , -- Final State of SH-Mode

048 Assignment_OP_1_SP1_StateID_3 -- Assign OP_1_SP1

049);

050 signal CS, NS : StateType;

051

052 begin

053 --

054 -- Mapping: Entity <=> Local Signals (Prot -Map) --

055 --

056 ShM1_Sw_ModeRun_loc <= ShM1_Sw_ModeRun;

057 ShM1_Sw_ModeComplete <= ShM1_Sw_ModeComplete_loc;

196

A.4 VHDL Examples for the Created IFB Target Code

058 ShM1_Sw_PInSelect <= ShM1_Sw_PInSelect_loc;

059 ShM1_p24 <= ShM1_p24_loc;

060 ShM1_p31_loc <= ShM1_p31;

061

062 --

063 -- FSM Processes --

064 --

065 SH_Mode_1_TransitionAndOutput: process (CS, ShM1_Sw_ModeRun_loc)

066 begin

067 case CS is

068 when Idle =>

069 ShM1_Sw_ModeComplete_loc <= ’0’;

070 ShM1_Sw_PInSelect_loc <= ’0’;

071 if (ShM1_Sw_ModeRun_loc = ’1’) then

072 NS <= Assignment_OP_1_SP1_StateID_3;

073 else

074 NS <= Idle;

075 end if;

076

077 when Done =>

078 ShM1_Sw_ModeComplete_loc <= ’1’;

079 ShM1_Sw_PInSelect_loc <= ’0’;

080 if (ShM1_Sw_ModeRun_loc = ’0’) then

081 NS <= Idle;

082 else

083 NS <= Done;

084 end if;

085

086 when Assignment_OP_1_SP1_StateID_3 =>

087 ShM1_Sw_ModeComplete_loc <= ’0’;

088 ShM1_Sw_PInSelect_loc <= ’0’;

089 NS <= Done;

090 end case;

091 end process;

092

093 SH_Mode_1_FF_Out: process (CS, ShM1_IFB_Clk , ShM1_IFB_Reset)

094 begin

095 if (ShM1_IFB_Reset = ’1’) then

096 ShM1_p24_loc.vec0 <= "0000";

097 elsif (ShM1_IFB_Clk ’event and ShM1_IFB_Clk = ’1’) then

098 if (CS = Assignment_OP_1_SP1_StateID_3) then

099 ShM1_p24_loc.vec0 <= ShM1_p21_loc.vec0 & ShM1_p21_loc.vec1

100 & ShM1_p21_loc.vec2 & ShM1_p21_loc.vec3;

101 end if;

102 end if;

103 end process;

104

105 SH_Mode_1_Synchronize: process (ShM1_IFB_Clk , ShM1_IFB_Reset)

106 begin

107 if (ShM1_IFB_Reset = ’1’) then

108 CS <= Idle;

109 elsif (ShM1_IFB_Clk ’event and ShM1_IFB_Clk = ’1’) then

110 CS <= NS; -- Advance Current State

111 end if;

112 end process;

113

114 end SH_Mode_1_Behavior;

197

A Extensions to the Interface Synthesis

A.5 Template of the Reconfiguration Control Unit

Figure 6.5 depicts our template for the Reconfiguration Control Unit. The design provides
the interface and the behavior (yellow states) to interact with the Reconfiguration Unit. To
implement a complex behavior, like self reconfiguration, the design has to be extended by
this functionality (blue states).

The necessary signals to interact with the Reconfiguration Unit inside the Interface Block
are ReconStart, ReconComplete, ExchangeModules, ModulesExchanged, and ReconTask.
To determine which tasks are reconfigured, the RCU provides the ReconTask bus (one signal
per task). The signals, which are related to the reconfigured tasks, are set to ’1’. After the
ReconTask signal has been set, the IFB is notified to start the reconfiguration by setting
the signal ReconStart. When the IFB halted all affected modes, it responses by setting the
ExchangeModules signal. Now, the RCU can reconfigure all tasks in combination with the
affected IFB components (PH-Modes and SH-Modes). After this process has been finished,
the RCU rises the ModulesExchanged signal. Then, the IFB reactivates the reconfigured
modes and completes the reconfiguration process by activating the ReconComplete signal.

Reconfiguration Control Unit
(SWITCH TASK RECONFIGURE PH- & SH-MODES)

RCU_IFB_IF
ReconStart
ReconComplete

ReconTasks

Idle

SetID

Recon
Start

Recon-
figure

ReconStart = 1
ModulesExchanged = 0

ReconTasks <= “0011“
2y = 0: keep Tasky running
2y = 1: reconfigure Tasky

ExchangeModules = 1

 ReconfigureTask()

1

Reconfigure
Tasks, PHModes

& SHModes

Recon-
figure

ExchangeModules
ModulesExchanged

ReconStart = 1
ModulesExchanged = 1

ReconComplete = 1

ReconStart = 0
ModulesExchanged = 0

Recon
Finish1

. .
 .

Reset = 1

#Tasks

Figure A.3: Template of the Reconfiguration Control Unit

198

A.6 Validity Period of Control Signals inside Protocol Frames

A.6 Validity Period of Control Signals inside Protocol Frames

Figure A.4 illustrates the validity period of the control signals IRQ and FrameID. As we can
see, the FrameID is set one state in advance to the IRQ to guarantee a stable FrameID signal
when IRQ is set to ’1’. At the end of the frame, the IRQ is reset to ’0’, one state before
the FrameID is invalidated ("0...0"). We implemented this effect to detect if a frame has
been successfully processed, or if a timing violation forced the termination of the ongoing
frame transmission.

A timing violation is modeled in the form of a transition that provides a TimerOrDeadline,
which leads from a data state inside to a state outside of the current frame. When a
deadline expires, the related transition fires and therefore, we do not pass the IRQ state
(IRQ = ’0’ and FrameID 6= "0...0"). In this way, the CU determines whether a frame
has been successfully sent or not (see Section 6.1.3).

releaseestablish

D D CC

FrameID valid

control

IRQ valid

data

receive / transmit

control

IRQ IRQID

frame
structure

Figure A.4: Validity period of the control signals inside a protocol frame

199

A Extensions to the Interface Synthesis

200

Own Previous Work

[1] Christian Behler, Gilles Bertrand Gnokam Defo, Michel Camel Kouamo Sime, Tobias
Loke, Wolfram Hardt (Hrsg.), and Stefan Ihmor (Hrsg.). Schnittstellensynthese : Model-
lierung – Optimierung – Codegenerierung, volume 2 of Wissenschaftliche Schriftenreihe:
Eingebettete, Selbstorganisierende Systeme. TUDpress, Bergstr.70, 01069 Dresden, Ger-
many, May 2006.

[2] Wolfram Hardt, Markus Visarius, and Stefan Ihmor. Rapid Prototyping of Real-Time
Interfaces. In Field Programmable Logic (FPL) - Poster Session, Belfast, Northern
Ireland, UK, October 2001.

[3] Stefan Ihmor. Entwurf von Echtzeitschnittstellen am Beispiel interagierender Roboter.
Master’s thesis, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Novem-
ber 2001.

[4] Stefan Ihmor, Nilson Bastos Jr., Rafael Cardoso Klein, Markus Visarius, and Wolfram
Hardt. Rapid Prototyping of Realtime Communication – A Case Study: Interacting
Robots. In Proceedings of the 14th IEEE International Workshop on Rapid System
Prototyping (RSP’03), pages 186–192, San Diego, CA, June 2003. IEEE Computer
Society.

[5] Stefan Ihmor and Florian Dittmann. Optimizing Interface Implementation Costs Using
Runtime Reconfigurable Systems. In Toomas Plaks, editor, Engineering of Recon-
figurable Systems and Algorithms (ERSA’05), pages 85–91, Monte Carlo Resort, Las
Vegas, Nevada, USA, 2005.

[6] Stefan Ihmor, Marcel Flade, and Wolfram Hardt. Integrating Error Processing Into Au-
tomated Communication Synthesis. Technical Report Technical Report, Heinz Nixdorf
Institute, University Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany, January
2004.

[7] Stefan Ihmor, Marcel Flade, and Wolfram Hardt (Hrsg.). Rekonfigurierbare
Schnittstellen, volume 1 of Wissenschaftliche Schriftenreihe: Eingebettete, Selbstorga-
nisierende Systeme. TUDpress, Bergstr.70, 01069 Dresden, Germany, June 2005.

[8] Stefan Ihmor and Wolfram Hardt. Runtime Reconfigurable Interfaces - The RTR-IFB
Approach. In Proceedings of the 11th Reconfigurable Architectures Workshop (RAW’04),
Santa Fe, USA, April 2004. IEEE Computer Society.

201

Own Previous Work

[9] Stefan Ihmor and Wolfram Hardt. Runtime Reconfigurable Interfaces - The RTR-IFB
Approach. International Journal of Embedded Systems (IJES), Inderscience Publisher,
Issue 5/6(Article 1), 2005.

[10] Stefan Ihmor, Michel Camel Kouamo Sime, and Wolfram Hardt. A UML2.0 Profile
for Model-Based Design of Real-Time Interfaces in Embedded Systems. Technical Re-
port Technical Report, Heinz Nixdorf Institute, University Paderborn, Fuerstenallee 11,
33102 Paderborn, Germany, March 2005.

[11] Stefan Ihmor, Tobias Loke, and Wolfram Hardt. Synthesis of Communication Structures
and Protocols in Distributed Embedded Systems. In RSP, 16th International Workshop
on Rapid System Prototyping, Montreal, Canada, 2005. IEEE Computer Society Press.

[12] Stefan Ihmor, Markus Visarius, and Wolfram Hardt. A Consistent Design Methodology
for Configurable HW/SW-Interfaces in Embedded Systems. In Proc. of the IFIP 17th
World Computer Congress - TC10 Stream on Distributed and Parallel Embedded Sys-
tems: Design and Analysis of Distributed Embedded Systems (DIPES), pages 237–246,
Montreal, Canada, August 2002. Kluwer Academic Publishers.

[13] Stefan Ihmor, Markus Visarius, and Wolfram Hardt. A Design Methodology for
Application-specific Real-Time Interfaces. In Proceedings of 2002 IEEE International
Conference on Computer Design (ICCD), IEEE International Conference on Computer
Design, Freiburg, Germany, September 2002.

[14] Stefan Ihmor, Markus Visarius, and Wolfram Hardt. Modeling of Configurable
HW/SW-Interfaces. In Rolf Drechsler, editor, Proc. of the 6. GI/ITG/GMM-Workshop
Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltun-
gen und Systemen, pages 51–60, Bremen, Germany, February 2003. Shaker Verlag.

[15] André Meisel, Markus Visarius, Wolfram Hardt, and Stefan Ihmor. Self-Reconfiguration
of Communication Interfaces. In Proceedings of the 15th IEEE International Workshop
on Rapid System Prototyping, pages 144–150, Geneva, Switzerland, June 2004. IEEE
Computer Society.

[16] Martin Schaaf, Markus Visarius, Ralph Bergmann, Rainer Maximini, Marco Spinelli,
Johannes Lessmann, Wolfram Hardt, Stefan Ihmor, Wolfgang Thronicke, Jasmin Franz,
Carsten Tautz, and Ralph Traphöner. IPCHL - A Description Language for Semantic
IP Characterization. In Eugenio Villar and Jean P. Mermet, editors, Best of FDL’02,
System Specification & Design Languages, September 2002.

[17] Markus Visarius, Wolfram Hardt, Stefan Ihmor, and Johannes Lessmann. IPQ Format:
Concepts and Implementation. In Proc. of the International Workshop of the MEDEA+
Project A-511 ToolIP, Madrid, Spain, January 2002.

[18] Markus Visarius, Johannes Lessmann, Carsten Amelunxen, Stefan Ihmor, and Wolfram
Hardt. Initial IPQ Toolbox Implementation. TechReport 01, University of Paderborn,
Informatik- und Prozesslabor, Warburger Strasse 100, 33098 Paderborn, Germany, Jan-
uary 2003.

202

Own Previous Work

[19] Markus Visarius, Johannes Lessmann, Stefan Ihmor, and Wolfram Hardt. Definition of
the IP Qualifying Format. TechReport 01, University of Paderborn, Informatik- und
Prozesslabor, Warburger Strasse 100, 33098 Paderborn, Germany, January 2002.

[20] Markus Visarius, Johannes Lessmann, Stefan Ihmor, and Wolfram Hardt. IP Qualifying
Format. In Poster Session of the German Workshop on Entwurfsplattformen komplexer
angewandter Systeme und Schaltungen (EkompaSS), Bonn, Germany, April 2002.

[21] Markus Visarius, Johannes Lessmann, Stefan Ihmor, and Wolfram Hardt. IPQ Format
based Retrieval. In MEDEA+ Design Automation Conference - Demonstration and
Poster Exhibition, Stresa, Italy, October 2002.

[22] Markus Visarius, Johannes Lessmann, Stefan Ihmor, and Wolfram Hardt. Validation
of the Requirements on the IP Qualifying Format. TechReport 01, University of Pader-
born, Informatik- und Prozesslabor, Warburger Strasse 100, 33098 Paderborn, Ger-
many, January 2002.

[23] Markus Visarius, Johannes Lessmann, Stefan Ihmor, Wolfram Hardt, and Wolfgang
Thronicke. Specification of a Toolbox for the IP Qualifying Format. TechReport 01,
University of Paderborn, Informatik- und Prozesslabor, Warburger Strasse 100, 33098
Paderborn, Germany, January 2002.

[24] Markus Visarius, Johannes Lessmann, Frank Kelso, Wolfram Hardt, Carsten
Amelunxen, Andreas Scholand, and Stefan Ihmor. Definition of the IPQ Format with
Respect to Specialized Description Features. TechReport 08, University of Paderborn,
Informatik- und Prozesslabor, Warburger Strasse 100, 33098 Paderborn, Germany, Au-
gust 2002.

203

Own Previous Work

204

Advised Bachelor Thesis and Diploma Thesis

[25] D. Averberg. Synthese von deadline-konformen Protokollkonvertern für heterogene
verteilte Anwendungen. Studienarbeit, Universität Paderborn, Heinz Nixdorf Institut,
Fürstenallee, 33102 Paderborn, Mar. 2005.

[26] C. Behler. Datenflussoptimierung in rekonfigurierbarer Hardware durch Pipelining. Stu-
dienarbeit, Universität Paderborn, Heinz Nixdorf Institut, Fürstenallee, 33102 Pader-
born, May 2005.

[27] C. Behler. Methodenbasierte Schnittstellensynthese basierend auf lokalen Ontologien für
verteilte eingebettete Systeme. Laufende Diplomarbeit, Universität Paderborn, Heinz
Nixdorf Institut, Fürstenallee, 33102 Paderborn, Dec. 2006.

[28] A. Daubner. Evaluierung des IFS-Editors am Beispiel der Protocoladaptierung von
RFID und I2C. Laufende Studienarbeit, Technische Universität Chemnitz, Straße der
Nationen 62 09111 Chemnitz, Sept. 2006.

[29] O. Fick. Visualisierung von Parametern komplexer Schnittstellen für eingebettete Sys-
teme auf Basis von XML. Studienarbeit, Universität Paderborn, Heinz Nixdorf Institut,
Fürstenallee, 33102 Paderborn, June 2003.

[30] O. Fick. Testmustergenerierung mit Hilfe von Wahrscheinlichkeitsverteilungen im Rah-
men des modellbasierten Tests eingebetteter Systeme. Master’s thesis, Universität
Paderborn, Heinz Nixdorf Institut, Fürstenallee, 33102 Paderborn, June 2005.

[31] S. Finke. Schnittstellensynthese für HW/SW-migrierbare Dienste eines Realzeitbe-
triebssystems. Studienarbeit, Universität Paderborn, Heinz Nixdorf Institut, Fürsten-
allee, 33102 Paderborn, Aug. 2006.

[32] M. Flade. Modellbasierte Spezifikation von Schnittstellen im Hardware Entwurf. Stu-
dienarbeit, Technische Universität Chemnitz, Straße der Nationen 62 09111 Chemnitz,
Nov. 2003.

[33] M. Flade. Automatische Adaption von Hardware-Acceleratoren für Verhaltenssimula-
tion. Master’s thesis, Technische Universität Chemnitz, Straße der Nationen 62 09111
Chemnitz, Sept. 2004.

[34] A. Gepting. Szenariobasierte Datentransformation semantikfreier Kommunikationspro-
tokolle für die automatische Synthese in eingebetteten Systemen. Studienarbeit, Uni-
versität Paderborn, Heinz Nixdorf Institut, Fürstenallee, 33102 Paderborn, June 2006.

205

Advised Bachelor Thesis and Diploma Thesis

[35] G. B. Gnokam Defo. VHDL Codegenerierung für rekonfigurierbare Schnittstellen in
eingebetteten Systemen. Studienarbeit, Universität Paderborn, Heinz Nixdorf Institut,
Fürstenallee, 33102 Paderborn, May 2005.

[36] M. C. Kouamo Sime. Modellbasierte Spezifikation von Schnittstellen im Hardware
Entwurf. Master’s thesis, Universität Paderborn, Heinz Nixdorf Institut, Fürstenallee,
33102 Paderborn, Feb. 2005.

[37] T. Loke. Synthese von Kommunikationsstrukturen in verteilten eingebetteten Syste-
men. Studienarbeit, Universität Paderborn, Heinz Nixdorf Institut, Fürstenallee, 33102
Paderborn, Mar. 2005.

[38] J. Twiefel. Sichere internetbasierte echtzeitfähige Robotersteuerung. Studienarbeit,
Universität Paderborn, Heinz Nixdorf Institut, Fürstenallee, 33102 Paderborn, May
2003.

206

Bibliography

[39] S. Abdi, D. Shin, and Daniel D. Gajski. Automatic Communication Refinement for
System Level Design. In DAC, Center for Embedded Computer Systems University of
California Irvine CA 92697 USA, June 2003. Copyright 2003 ACM.

[40] Anat Agarwal. Raw Computation. Scientific American, 281(2):44–47, August 1999.

[41] A. Ahmadinia, J. Ding, C. Bobda, and J. Teich. Design and Implementation of Re-
configurable Multiple Bus on Chip (RMBoC). Technical Report 02-2004, University of
Erlangen-Nuremberg, Department of CS 12, Hardware-Software-Co-Design, November
2004.

[42] Ali Ahmadinia, Christophe Bobda, Dirk Koch, Mateusz Majer, and Jürgen Teich.
Task scheduling for heterogeneous reconfigurable computers. In SBCCI, 2004.

[43] Janaki Akella and Kenneth L. McMillan. Synthesizing Converters Between Finite State
Protocols. In ICCD ’91: Proceedings of the 1991 IEEE International Conference on
Computer Design on VLSI in Computer & Processors, pages 410–413, Washington,
DC, USA, 1991. IEEE Computer Society.

[44] Jeffrey D. Ullman Alfred V. Aho, Ravi Sethi. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 2006.

[45] Virtual Socket Interface Alliance. Architecture Document. Los Gatos, California, 1997.

[46] Virtual Socket Interface Alliance. System Level Design, Model Taxonomy. Los Gatos,
California, 1998.

[47] VSI Alliance. Official VSIA Homepage. http://www.vsi.org/.

[48] Don Anderson. FireWire System Architecture. Addison Wesley, Mindshare Inc., second
edition, 1999.

[49] Automotive Opens System Architecture. Autosar Homepage.
http://www.autosar.org/.

[50] P.J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers, San
Diego, CA, second edition, 2002.

[51] Forschungszentrum Informatik (FZI) at the University of Karlsruhe and Department
of Technical Computer Science University of Tübingen. Spyder - Virtex - X2, User’s
Manual, July 2000.

207

Bibliography

[52] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts. Handel-C Language Reference
Guide. Oxford University Computing Laboratory, August 1996.

[53] John Aynsley and David Long. Draft Standard SystemC Language Reference Manual.
Open SystemC Initiative (OSCI), August 2005.

[54] M. Bedford Taylor and et.al. Evaluation of the Raw Microprocessor: An Exposed-
Wire-Delay Architecture for ILP and Streams. In Proceedings of International Sym-
posium on Computer Architecture. IEEE Computer Society, June 2004.

[55] M. Bednara, Klaus Danne, Markus Deppe, Oliver Oberschelp, Frank Slomka, and Jür-
gen Teich. Design and Implementation of Digital Linear Control Systems on Reconfig-
urable Hardware. EURASIP Journal on Applied Signal Processing, 2003(6):594–602,
2003.

[56] L. Benini and G. De Micheli. Network on Chips: A New SoC Paradigm, 2001.

[57] Gérard Berry. The Esterel v5 Language Primer. Centre de Math´ematiques Ap-
pliqu´ees, Ecole des Mines and INRIA, Sophia-Antipolis, version 5.21 release 2.0 edi-
tion, April 1999.

[58] C. Bobda. Temporal Partitioning and Sequencing of Dataflow Graphs on Recon-
figurable Systems. In International IFIP TC10 Stream on Distributed and Parallel
Embedded Systems (DIPES 2002), pages 185–194, Montreal, Canada, 2002. IFIP.

[59] Christophe Bobda. Synthesis of Dataflow Graphs for Reconfigurable Systems using
Temporal Partitioning and Temporal Placement. PhD thesis, University Paderborn,
Heinz Nixdorf Institute, 2003.

[60] Christophe Bobda and Ali Ahmadinia. Design and Implementation of Digital Linear
Control Systems on Reconfigurable Hardware. IEEE Design & Test of Computers,
Special Issue on Networks on Chip, September 2005.

[61] Christophe Bobda, Ali Ahmadinia, and Rajesh Kurapati. DyNoC : A Communication
Infrastructure for Dynamic Communication on Reconfigurable Devices. In Proceedings
of the International Conference on Field-Programmable Logic and Applications (FPL),
Tempere, Finland, August 2005.

[62] Christophe Bobda, Klaus Danne, Ali Ahmadinia, and Jürgen Teich. A New Approach
for Reconfigurable Massively Parallel Computers. In Proceedings of the International
Conference on Field-Programmable Technology (FPT’03). IEEE, December 2003.

[63] Christophe Bobda, Mateusz Majer, Dirk Koch, Ali Ahmadinia, and Jürgen Teich.
A Dynamic NoC Approach for Communication in Reconfigurable Devices. In Pro-
ceedings of International Conference on Field-Programmable Logic and Applications
(FPL), volume 3203 of Lecture Notes in Computer Science (LNCS), pages 1032–1036,
Antwerp, Belgium, August 2004. Springer.

[64] Borland. Together J, the Together J case tool. http://www.togethersoft.com/.

208

Bibliography

[65] G. Borriello and Randy Katz. Synthesis and Optimization of Interface Transducer
Logic. In Proceedings of the International Conference on Computer-Aided Design,
pages 274–277, November 1987.

[66] Gaetano Borriello. A new interface specification methodology and its application to
transducer synthesis. PhD thesis, University of California, 1988. Chair-Randy H.
Katz.

[67] G. Brebner. A Virtual Hardware Operating System for the Xilinx XC6200. In Int.
Workshop on Field-Programmable Logic and Applications (FPL), 1996.

[68] A. Brinkmann, D. Langen, and U Rückert. A Rapid Prototyping Environment for
Microprocessor based System-on-Chips and its Application to the Development of a
Network Processor. In 10th International Conference on Field Progammable Logic and
Applications (FPL’2000), pages 838–841, Villach, Austria, August 2000.

[69] Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert
Wagner, Lothar Wendehals, and Albert Zündorf. Tool Integration at the Meta-Model
Level within the FUJABA Tool Suite. International Journal on Software Tools for
Technology Transfer (STTT), 6(3):203–218, August 2004.

[70] Giorgio C. Buttazzo. Hard Real Time Computing Systems: Predictable Scheduling
Algorithms and Applications. Kluwer Academic Publishers, Boston [u.a.], 3 edition,
2000.

[71] Srihari Cadambi, Jeffrey Weener, Seth Copen Goldstein, Herman Schmit, and Don-
ald E. Thomas. Managing Pipeline-Reconfigurable FPGAs. In Proceedings of the
1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays,
pages 55–64. ACM Press, 1998.

[72] L. Cai, D. Gajski, P. Kritzinger, and M. Olivares. Top-Down System Level Design
Methodology Using SpecC. In DATE ’02: Proceedings of the conference on Design,
automation and test in Europe. IEEE Press, 2002.

[73] Mirko Caspar, Markus Visarius, and André Meisel. Spezifikation und Entwurf einer
Multi-Port-Schnittstelle. In Proc. of the German Workshop Dresdner Arbeitstagung
Schaltungs- und Systementwurf, pages 59–63, Dresden, Germany, April 2005.

[74] K.C. Chang. Digital Systems Design with VHDL and Synthesis. IEEE Computer
Society, Los Alamitos, CA, 1999.

[75] P. Chou, R. Ortega, and G. Borriello. Synthesis fo the hardware/software interface in
microcontroller-based systems. In ICCAD ’92: Proceedings of the 1992 IEEE/ACM
international conference on Computer-aided design, pages 488–495, Los Alamitos, CA,
USA, 1992. IEEE Computer Society Press.

[76] P. Chou, R. Ortega, and G. Borriello. Interface co-synthesis techniques for embedded
systems. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM international confer-
ence on Computer-aided design, pages 280–287, Washington, DC, USA, 1995. IEEE
Computer Society.

209

Bibliography

[77] P. M. Chu and M. T. Liu. Synthesizing protocol specifications from from service
specification in the FSM model. In Proceedings of Computer Networking Symposium,
pages 173–182, Washington, DC, USA, 1988. IEEE Computer Society.

[78] System C Community. System C Homepage. http://www.systemc.org/.

[79] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems
and software. ACM Computer Surveys, 34(2), 2002.

[80] ASN Consortium. ASN.1 Information Site. http://asn1.elibel.tm.fr/.

[81] Spirit Consortium and Philips Electronics. Official Spirit Homepage,
Structure for Packaging, Integrating and Re-using IP within Tool-flows.
http://spiritconsortium.org/.

[82] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press Cambridge, Massachusetts London, England, 2001.

[83] L. Cristiano, G. Reuber, J. N. Claudionor, C. da Silva Jr. Diógenes, O. Antonio, L. Lu-
ciana, and H. Luciana. JADE: An Embedded Systems Specification, Code Generation
and Optimization. In JADE. LOCOM/DCC/UFMG - Federal University of Minas
Gerais - Brazil, 2000.

[84] W. J. Dally and B. Towles. Route packets, not wires: on-chip interconnection networks.
In Proceedings of the Design Automation Conference, pages 684–689, Las Vegas, NV,
June 2001.

[85] Klaus Danne. Operating Systems for FPGA Based Computers and Their Memory
Management. In ARCS 2004 Organic and Pervasive Computing, Workshop Proceed-
ings, volume P-41 of GI-Edition Lecture Notes in Informatics (LNI), Bonn, March
2004. Köllen Verlag.

[86] Klaus Danne, Christophe Bobda, and Heiko Kalte. Increasing Efficiency by Partial
Hardware Reconfiguration: Case Study of a Multi-Controller System. In Toomas
Plaks, editor, Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms, Las Vegas, Nevada, USA, June 2003.

[87] Klaus Danne, Christophe Bobda, and Heiko Kalte. Run-time Exchange of Mecha-
tronic Controllers Using Partial Hardware Reconfiguration. In Proc. of the Interna-
tional Conference on Field Programmable Logic and Applications (FPL2003), Lisbon,
Portugal, September 2003.

[88] J.-M. Daveau, G. F. Marchioro, C. A. Valderrama, and A. A. Jerraya. VHDL gener-
ation from SDL specifikations. In VHDL. Chapmann & Hall, 1996.

[89] P. Delforge. IP Business Models, IP reuse. In In Proc. of Intellectual Property in
Electronics Conference (IP98), pages 11–16, March 1998.

[90] Design and Reuse. D&R Homepage. http://www.us.design-reuse.com/.

[91] Florian Dittmann and Achim Rettberg. Design of Partially Reconfigurable Systems:
From Abstract Modeling to Practical Realization. In 1st International Workshop on
Reconfigurable Computing Education, Karlsruhe, Germany, 1March 2006.

210

Bibliography

[92] Florian Dittmann, Achim Rettberg, and Fabian Schulte. A Y-Chart Based Tool for
Reconfigurable System Design. In Workshop on Dynamically Reconfigurable Systems
(DRS) 2005, Innsbruck, Austria, 17 March 2005.

[93] R. Dömer. System-level Modeling and Design with the SpecC Language. PhD thesis,
University of Dortmund, Germany, April 2000.

[94] R. Dömer and D. Gajski. Reuse and Protection of Intellectual Property in the SpecC
System. In Asia and South Pacific Design Automation Conference 2000, Yokohama,
Japan, January 2000.

[95] R. Dömer, D. Gajski, and J. Zhu. IP-centric Methodology and Design with the SpecC
Language. In NATO-ASI Workshop on System Level Synthesis for Electronic Design,
Il Ciocco, Lucca, Italy, August 1998.

[96] R. Dömer, D. Gajski, J. Zhu, G. Aggarwal, E. Chang, T. Ishii, J. Kleinsmith, and
J. Zhu. IP-Centric Methodology. In Proceedings of the 1st International Workshop on
Design, Test and Applications, Dubrovnik, Croatia, June 1998.

[97] R. Dömer, D. Gajski, J. Zhu, A. Gerstlauer, and S. Zhao. SpecC: Specification Lan-
guage and Methodology. Kluwer Academic Publishers, Boston, University of California,
Irvine, March 2000.

[98] R. Dömer, A. Gerstlauer, and D. Gajski. SpecC Language Reference Manual. SpecC
Technology Open Consortium, 2002.

[99] Bruce Powel Douglas. Real-time UML: Developing efficient objects for embedded sys-
tems. Addison-Wesley, Reading, Massachusetts [u.a.], first edition, 1998. The Addison-
Wesley object technology series.

[100] Bruce Powel Douglas. Doing hard time : developing real-time systems with UML ob-
jects, frameworks and patterns. Addison-Wesley, Reading, Massachusetts [u.a.], third
edition, 2000. The Addison-Wesley object technology series.

[101] Bruce Powel Douglass. Custom Embedded Communication Protocols. Technical re-
port, I-Logix Inc., 2002.

[102] Bruce Powel Douglass. Dr. Douglass’ Guided Tour Through the Wonderland of Sys-
tems Engineering, UML and Rhapsody. Technical report, I-Logix Inc., 2002.

[103] Bruce Powel Douglass. Rhapsody for Systems Architecture - Better Architecture With
the UML. Technical report, I-Logix Inc., June 2002.

[104] Bruce Powel Douglass. Breakthroughs in Software and Systems Engineering. Technical
report, I-Logix Inc., 2004.

[105] Olivier Dubuisson. ASN.1 - Communication between heterogeneous systems. Morgan
Kaufmann Publishers, September 2000.

[106] On-Chip Bus (OCB) Development Working Group (DWG). Virtual Component In-
terface (VCI) Standard (OCB 2 1.0). Los Gatos, California, 2000.

211

Bibliography

[107] Michael Eisenring and Jürgen Teich. Interfacing Hardware and Software. In FPL
’98: Proceedings of the 8th International Workshop on Field-Programmable Logic and
Applications, From FPGAs to Computing Paradigm, pages 520–524, London, UK,
1998. Springer-Verlag.

[108] Wilfried Elmenreich, Günther Bauer, and Hermann Kopetz. The Time-Triggered
Paradigm. In Proceedings of the Workshop on Time-Triggered and Real-Time Com-
munication, Manno, Switzerland, December 2003.

[109] Rolf Ernst, Jorg Henkel, and Thomas Benner. Hardware-Software Cosynthesis for
Microcontrollers. IEEE Des. Test, 10(4):64–75, August 1993.

[110] G. Estrin, B. Bussel, R. Turn, and J. Bibb. Parallel processing in a restrucurable
computer system. IEEE Transactions on Electronic Computers, 12(5), 1963.

[111] G. Estrin and R. Turn. Automatic assignment of computations in a variable structure
computer system. IEEE Transactions on Electronic Computers, 12(5), 1963.

[112] Virtual Component Exchange. Virtual Component Exchange - VCX facilitates trans-
actions in virtual components (VCs), within an efficient, international and open market
infrastructure. http://www.thevcx.com/, December 2002.

[113] S. Fekete, M. Köhler, and J. Teich. Optimal FPGA Module Placement with Temporal
Precedence Constraints. In Proc. DATE 2001, Design, Automation and Test in Europe,
Munich, Germany, March 2001.

[114] Ltd. Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi. Component Wrapper Language:
A New Language for Interface Specification. Technical report, Fujitsu Laboratories,
9/1 2002.

[115] Ltd. Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi. Component Wrapper Language
Specifications, 9/1 2002.

[116] Ltd. Fujitsu Ltd., Fujitsu Laboratories Ltd. & Hitachi. Component Wrapper Language
User´s Guide, 9/1 2002.

[117] Daniel D. Gajski and R. H. Kuhn. Guest Editor’s Introduction: New VLSI Tools.
IEEE Computer, December 1983.

[118] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns –
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[119] Michael Gasteier and Manfred Glesner. Bus-Based Communication Synthesis on
System-Level. In ISSS ’96: Proceedings of the 9th international symposium on System
synthesis, page 65, Washington, DC, USA, 1996. IEEE Computer Society.

[120] A. Gerstlauer, D. Shin, R. Dömer, and D. Gajski. System-Level Communication Mod-
eling for Network-on-Chip Synthesis. In Asia and South Pacific Design Automation
Conference 2005, Shanghai, China, January 2005.

[121] Andreas Gerstlauer, Rainer Dömer, Junyu Peng, and Daniel D. Gajski. System Design:
A Practical Guide with SpecC. Kluwer Academic Publishers, University of California,
Irvine, 2001.

212

Bibliography

[122] L. Ghanmi, A. Ghrab, M. Hamdoun, B. Missaoui, G. Saucier, and K. Skiba. E-Design
Based on the Reuse Paradigm. In Proceedings of the Design, Automation and Test in
Europe, pages 214–220, Paris, France, March 2002.

[123] Holger Giese, Matthias Tichy, Sven Burmester, Wilhelm Schäfer, and Stephan Flake.
Towards the Compositional Verification of Real-Time UML Designs. In Proc. of the
European Software Engineering Conference (ESEC), Helsinki, Finland, pages 38–47.
ACM Press, September 2003.

[124] Maya B. Gokhale and Paul S. Graham. Reconfigurable Computing. Springer, The
Netherlands, 2005.

[125] Hassan Gomaa. Designing concurrent, distributed, and real-time applications with
UML. Addison-Wesley, Boston [u.a.], 2000. The Addison-Wesley object technology
series.

[126] Prof. Dr. Winfried Görke. Fehlertolerante Rechensysteme. R. Oldenbourg Verlag
GmbH, München, 1989.

[127] M. G. Gouda and Y. T. Yu. Synthesis of communicaiton finite state machines with
guaranteed progress. IEEE Trans. Commun., 32(7):779–788, 1984.

[128] Mentor Graphics and Synopsys. OpenMORE Assessment Program.
http://www.openmore.com/, August 2002.

[129] Björn Griese, Erik Vonnahme, Mario Porrmann, and Ulrich Rückert. Hardware Sup-
port for Dynamic Reconfiguration in Reconfigurable SoC Architectures. In Proceed-
ings of the International Conference on Field Programmable Logic and its Applications
(FPL2004), Antwerp, Belgium, August 2004.

[130] System-Level Design Development Working Group. System-Level Interface Behavioral
Documentation Standard (SLD 1 1.0). Los Gatos, California, 2000.

[131] Virtual Component Transfer Development Working Group. Virtual Component At-
tributes (VCA) With Formats for Profiling, Selection, and Transfer Standard 2.3 (VCT
2 2.3). VSI Alliance, Los Gatos, California, 2001.

[132] Virtual Component Transfer Development Working Group. Virtual Component Trans-
fer Specification 2 (VCT 1 2.1). VSI Alliance, Los Gatos, California, 2001.

[133] P. Gutberlet and W. Rosenstiel. Specification of interface components for synchronous
data paths. In ISSS ’94: Proceedings of the 7th international symposium on High-level
synthesis, pages 134–139, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[134] J. Haase. Design Methodology for IP Providers. In In Proc. of the Design, Automation
and Test in Europe, pages 728–732, March 1999.

[135] M. Hamdoun, A. Ghrab, P. Hernandez, and G. Saucier. IP XML Encapsulation Portal.
In International Workshop on IP-Based SoC Design, December 2001.

213

Bibliography

[136] Wolfram Hardt. Integration von Verzögerungszeit-Invarianz in den Entwurf eingebet-
teter Systeme. Phdthesis, Universität Paderborn, Fachbereich Mathematik und Infor-
matik, Warburger Str. 100, 33098 Paderborn, Deutschland, 2000. Habilitationsschrift.

[137] Wolfram Hardt, André Meisel, and Markus Visarius. Automatische Rekonfigurierung
von Hardware-Schnittstellen. In Proc. of the German Workshops ”Dresdner Arbeitsta-
gung Schaltungs- und Systementwurf” and ”Intellectual Property Prinzipien”, Dresden,
Germany, April 2004.

[138] Wolfram Hardt, Franz Rammig, Carsten Böke, Joachim Stroop, Achim Rettberg,
G. Del Castillo, Bernd Kleinjohann, and Jürgen Teich. IP-based System Design within
the PARADISE Design Environment. Journal of Systems Architecture – the Euromicro
Journal, 2001.

[139] Wolfram Hardt, Franz Rammig, Achim Rettberg, Bernd Kleinjohann, Markus Vis-
arius, and Marc André Wiese. The PARADISE Design Environment - Design En-
vironment for parallel & distributed embedded RT systems. In Design Automation
Conference (DAC) University Booth - Demonstration and Poster Exhibition, Los An-
geles, CA, USA, June 2000.

[140] J. Harkin, T. M. McGinnity, and L. P. Maguire. Modeling and optimizing run-time re-
configuration using evolutionary computation. Transactions on Embedded Computing
Sys., 3(4):661–685, 2004.

[141] Matthew Hause and F.J. Thom. Building Embedded Systems with UML 2.0/SysML.
Technical report, ARTiSAN Software Tools GmbH, 2004.

[142] Matthew Hause, Francis Thom, and Alan Moore. The Systems Modelling Language
(SysML). Technical report, ARTiSAN Software Tools GmbH, 2005.

[143] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.
Network on chip: An architecture for billion transistor era. In Proceeding IEEE
NorChip Conference, 2000.

[144] John L. Hennessy and David A. Patterson. Computer organization and design: The
hardware software interface. Morgan Kaufmann, San Francisco, Calif., 1994. With a
contrib. by James R. Larus.

[145] John L. Hennessy and David A. Patterson. Computer Architecture. Morgan Kaufmann,
San Francisco, California, 2003.

[146] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Formal
Languages, And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[147] Michael Hübner, Michael Ullmann, Lothar Braun, A. Klausmann, and Jürgen Becker.
Scalable Application-Dependent Network on Chip Adaptivity for Dynamical Recon-
figurable Real-Time Systems. In Int. Workshop on Field-Programmable Logic and
Applications (FPL), pages 1037–1041. Springer, 2004.

[148] I-Logix. I-Logix Homepage. http://www.ilogix.com/.

214

Bibliography

[149] I-Logix. Reuse of IP with UML2.0 based Model-Driven Developement. Technical
report, I-Logix Inc., 2004.

[150] Department YM5A IBM Corporation. 32-Bit Device Control Register Bus, Architec-
ture Specifications, Version 2.9, SA-14-2525-00, June 2000.

[151] IEEE and Dennis Brophy. System Verilog Homepage. http://www.systemverilog.org/.

[152] Xilinx Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,
June 2004.

[153] 4.0 JavaCC˙ Java Compiler Compiler (JavaCCTM) - The Java Parser Generator.
https://javacc.dev.java.net/, 2006.

[154] Y. Kakuda and Y. Wakahara. Component-based synthesis of protocols for unlimited
number of processes. In Proceedings of IEEE COMPSAC’87, pages 721–730. IEEE
Computer Society, 1988.

[155] Yoshiaki Kakuda and Hironori Saito. An Integrated Approach to Design of Proto-
col Specifications Using Protocol Validation and Synthesis. IEEE Trans. Comput.,
40(4):459–467, 1991.

[156] H. Kalte, M. Porrmann, and U. Rückert. Rapid Prototyping System für dynamisch
rekonfigurierbare Hardwarestrukturen. In AES2000, pages 150–157, Karlsruhe, Janu-
ary 2000.

[157] H. Kalte, M. Porrmann, and U. Rückert. A Prototyping Platform for Dynamically
Reconfigurable System on Chip Designs. In Proceedings of the IEEE Workshop Het-
erogeneous reconfigurable Systems on Chip (SoC), 2002.

[158] M. Keating and P. Bricaud. Reuse Methodology Manual for System-On-A-Chip De-
signs. Kluwer Academic Publishers, Boston Dordrecht London, June 1998.

[159] M. Keating and P. Bricaud. Reuse Methodology Manual for System-On-A-Chip De-
signs. Kluwer Academic Publishers, Boston Dordrecht London, second edition edition,
June 1999.

[160] M. Keating, P. Bricaud, and R. J. Rickford. Reuse Methodology Manual for System-
On-A-Chip Designs. Kluwer Academic Publishers, Boston Dordrecht London, third
edition edition, June 2002.

[161] Paul W. King. Formalization of Protocol Engineering Concepts. IEEE Transactions
on Computers, Special Issue On Protocol Engineering, 40(4):387–403, 1991.

[162] Akira Kitajima, Keiichi Yasumoto, Teruo Higashino, and Kenichi Taniguchi. Deriv-
ing Concurrent Synchronus EFSMs from Protocol Specifications in LOTOS. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, E82-A(3):487–494, 1999.

[163] Peter Voigt Knudsen and Jan Madsen. Integrating Protocol Selection with Hard-
ware/Software Codesign. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(8):1077–1095, August 1999.

215

Bibliography

[164] M. Koegst, P. Conradi, D. Garte, and M. Wahl. A Systematic Analysis of Reuse
Strategies for Design of Electronic Circuits. In Proceedings of the Design, Automation
and Test in Europe, pages 292–296, March 1998.

[165] Hermann Kopetz, Michael Holzmann, and Wilfried Elmenreich. A Universal Smart
Transducer Interface: TTP/A. In 3rd IEEE International Symposium on Object-
oriented Real-time distributed Computing (ISORC 2000), March 2000.

[166] Hermann Kopetz and Neeraj Suri. Compositional Design of RT Systems: A Concep-
tual Basis for Specification of Linking Interfaces. 6th IEEE International Symposium
on Object-Oriented Real-Time Computing (ISORC03), May 14 - 16, 2003, Hokkaido,
Japan, May 2003.

[167] Herrmann Kopetz. The Time-Triggered Architecture. In Proceedings of the First
International Symposium on Object-Oriented Real-Time Distributed Computing, pages
22–29, Kyoto, Japan, April 1998.

[168] Herrmann Kopez. Design Principles for Distributed Embedded Applications. Kluwer
Academic Publ., Boston [u.a.], fourth edition, 2001.

[169] J. Lessmann. Integration of Tools for IP based Design with a Generic XML Format
and Web Services. Master’s thesis, University Paderborn, June 2003.

[170] Davin Lim and Mike Peattie. Xilinx Application Note XAPP290: Two Flows for
Partial Reconfiguration: Module Based or Small Bit Manipulations, May 2002.

[171] Roger Lipsett, Carl Schaefer, and Cary Ussery. Hardware Description and Design.
Kluwer Academic Publishers, Boston/Dordrecht/London, first edition, 1989.

[172] Ming T. Liu. Introduction to Special Issue on Protocol Specification. IEEE Transac-
tions on Computers, Special Issue On Protocol Engineering, 40(4):373–375, 1991.

[173] A Mäder. Guide to HDL Coding Styles for Synthesis. Universität Hamburg – Fach-
bereich Informatik, Hambug, Germany, 1999. Arbeitsbereich Technische Grundlagen
der Informatik.

[174] Andreas Mäder. VHDL Kurzbeschreibung. Universität Hamburg – Fachbereich In-
formatik, Hambug, Germany, 2001. Arbeitsbereich Technische Grundlagen der Infor-
matik.

[175] Andreas Mäder. VHDL Kompakt. Universität Hamburg – Fachbereich Informatik,
Hambug, Germany, 2005. Arbeitsbereich Technische Grundlagen der Informatik.

[176] Theodore Marescaux, Andrei Bartic, Diederik Verkest, Serge Vernalde, and Rudy
Lauwereins, editors. Interconnection Networks Enable Fine-Grain Dynamic Multi-
Tasking on FPGAs. IMEC, Springer Verlag, September 2002.

[177] Theodore Marescaux, J-Y. Mignolet, Andrei Bartic, W. Moffat, Dideriek Verkest,
Serge Vernalde, and Rudy Lauwereins. Networks on Chip as Hardware Components
of an OS for Reconfigurable Systems. In Proceedings of 13th International Conference
on Field Programmable Logic and Applications (FPL), Lisbon, Portugal, September
2003.

216

Bibliography

[178] Markus Voelter. Program Generation, A Survey of Techniques and Tools.
http://www.voelter.de/data/presentations/ProgramGeneration.zip, 2002.

[179] Peter Marwedel. Embedded System Design. Kluwer Academic Publishers, The Nether-
lands, 2003.

[180] Stanley Mazor and Patricia Langstraat. A Guide to VHDL. Kluwer Academic Pub-
lishers, Berlin Heidelberg, first edition, 1992.

[181] Spirit Schema Working Group Membership. Spirit-User Guide, 06 2005.

[182] Spirit Schema Working Group Membership. Spirit XML-Schema Documantation, 06
2005.

[183] Philip Merlin and Gregor von Bochmann. On the Construction of Submodule Speci-
fications and Communication Protocols. Technical Report 1, Univ. of Montreal, Dep.
Inform. Oper. Res., New York, NY, USA, 1983.

[184] Sanjiv Narayan and Daniel D. Gajski. Protocol generation for communication chan-
nels. In DAC ’94: Proceedings of the 31st annual conference on Design automation,
pages 547–551, New York, NY, USA, 1994. ACM Press.

[185] Sanjiv Narayan and Daniel D. Gajski. Interfacing incompatible protocols using inter-
face process generation. In DAC ’95: Proceedings of the 32nd ACM/IEEE conference
on Design automation, pages 468–473. ACM Press, 1995.

[186] Scott Niemann. Executable Systems Design with UML 2.0. Technical report, I-Logix
Inc., 2004.

[187] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Designing an Oper-
ating System for a Heterogeneous Reconfigurable SoC. In IPDPS, 2003.

[188] Johnny Öberg, Anshul Kumar, and Ahmed Royal. Grammar-based Hardware Syn-
thesis of Data Communication Protocols. In ISSS ’96: Proceedings of the 9th interna-
tional symposium on System synthesis, page 14, Washington, DC, USA, 1996. IEEE
Computer Society.

[189] Simon Oberthür and Carsten Böke. Flexible Resource Management - A framework
for self-optimizing real-time systems. In Bernd Kleinjohann, Guang R. Gao, Hermann
Kopetz, Lisa Kleinjohann, and Achim Rettberg, editors, Proceedings of IFIP Work-
ing Conference on Distributed and Parallel Embedded Systems (DIPES’04). Kluwer
Academic Publishers, 2004.

[190] Simon Oberthür, Carsten Böke, and Björn Griese. Dynamic Online Reconfiguration
for Customizable and Self-Optimizing Operating Systems. In Proceedings of the 5th
ACM international conference on Embedded software (EMSOFT’2005), pages 335–338,
2005. Jersey City, New Jersey.

[191] Object Management Group (OMG). Common Object Request Broker Architecture:
Core Specification, March 2004.

217

Bibliography

[192] Object Management Group (OMG). Unified Modeling Language, Superstructure Ver-
sion 2.0. http://www.omg.org/docs/ptc/03-08-02.pdf, April 2004.

[193] Mattias O’Nils. Specification, Synthesis and Validation of Hardware/Software Inter-
faces. PhD thesis, Royal Institute of Technology, April 1999.

[194] Frank Oppenheimer, Dongming Zhang, and Wolfgang Nebel. COHSID: ComiX
HW/SW Interface Designer, 2001.

[195] Frank Oppenheimer, Dongming Zhang, and Wolfgang Nebel. Modelling communica-
tion interfaces with comix. In Ada Europe ’01: Proceedings of the 6th Ade-Europe
International Conference Leuven on Reliable Software Technologies, pages 337–348,
London, UK, 2001. Springer-Verlag.

[196] Robert Orfali and Dan Harkey. Client Server Programming with Java and Corba. John
Wiley and Sons, 2nd edition, 2003.

[197] R. Ortega and G. Borriello. Communication Synthesis for Embedded Systems with
Global Considerations. In Proceedings of the Codes/CACHE 1997, Braunschweig,
Germany, pages 24–26, March 1997.

[198] R. Ortega and G. Borriello. Communication Synthesis for Distributed Embedded
Systems. In International Conference on Computer-Aided Design, 1998.

[199] David A. Patterson and John L. Hennessy. Computer Organization & Design. Morgan
Kaufmann, San Francisco, California, 1998.

[200] Robert L. Probert and Kassem Saleh. Synthesis of Communication Protocols: Sur-
vey and Assessment. IEEE Transactions on Computers, Special Issue On Protocol
Engineering, 40(4):468–476, 1991.

[201] C. V. Ramamoorthy, Siyi T. Dong, and Yutaka Usuda. An implementation of an
automated protocol synthesizer (APS) and its application to the X.21 protocol. IEEE
Trans. Softw. Eng., 11(9):886–908, 1985.

[202] Rational. Rose Rational Software Corporation. The Rational Rose case tool.
http://www.rational.com/.

[203] Achim Rettberg, Wolfram Hardt, and Markus Visarius. The PARADISE Design En-
vironment. In Design, Automation and Test in Europe (DATE) University Booth -
Demonstration and Poster Exhibition, Paris, France, March 2000.

[204] A. Reutter, B. Mößner, and W. Rosenstiel. Design of generic components for efficient
reuse in high level designs. In Workshop on System Design Automation, pages 61–67,
March 1998.

[205] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-based design. In
DAC ’97: Proceedings of the 34th annual conference on Design automation, pages
178–183, New York, NY, USA, 1997. ACM Press.

[206] E. A. Rundensteiner and D. D. Gajski. A Design Representation Model for High-
Level-Synthesis. Technical Report 90-27, UCI, September 1990.

218

Bibliography

[207] Kassem Saleh. Synthesis of communications protocols: An annotated bibliography.
SIGCOMM Comput. Commun. Rev., 26(5):40–59, 1996.

[208] Kassem Saleh and Robert L. Probert. Synthesis of Error-Recoverable Protocol Spec-
ifications From Service Specifications. In Proceedings of Second Int. Conf. Comput.
Inform., pages 428–433, May 1990.

[209] Th. Scharnhorst. AUTOSAR Web Contend. Technical report, AUTOSAR GbR,
October 2005.

[210] Th. Scharnhorst, H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh,
P. Heitkämper, J. Leflour, J.-L. Maté, and K. Nishikawa. AUTOSAR – Challenges
and Achievements 2005. Technical Report 1907, AUTOSAR GbR, 2005.

[211] Herman Schmit. Incremental Reconfiguration for Pipelined Applications. In Pro-
ceedings of the 5th IEEE Symposium on FPGA-Based Custom Computing Machines
(FCCM ’97), page 47. IEEE Computer Society, 1997.

[212] Herman Schmit, David Whelihan, Andrew Tsai, Matthew Moe, Benjamin Levine, and
R. Reed Taylor. PipeRench: A Virtualized Programmable Datapath in 0.18 Micron
Technology. In Proceedings of the IEEE Custom Integrated Circuits Conference, pages
63–66, 2002.

[213] S. Schulz. Towards A New System Level Design Language – SLDL. In A. Jerraya and
J. Mermet, editors, System Level Synthesis. Kluwer Academic Publishers, 1999.

[214] A. Seawright and F. Brewer. Clairvoyant: A synthesis system for production-based
specification. IEEE Transactions on VLSI Systems, 2:172–185, June 1994.

[215] R. Seepold. Reuse of IP and Virtual Components. In In Proc. of the Design, Automa-
tion and Test in Europe, March 1999.

[216] Bran Selic. The Real-Time UML Standard: Definition and Application. In 3rd Inter-
national Symposium on Distributed Objects & Applications, 2001.

[217] D. Shin and Daniel D. Gajski. Interface Synthesis from Protocol Specification. Techni-
cal Report CECS-02-13, Department of Information and Computer Science University
of California, Irvine, April 2002.

[218] D. Shin, A. Gerstlauer, R. Dömer, and D. Gajski. Automatic Generation of Commu-
nication Architectures. In International Embedded Systems Symposium, ”From Spec-
ification to Embedded Systems Application”, Manaus, Brazil, August 2005. Springer
Verlag.

[219] Robert Siegmund, K. Bohn, and Dietmar Müller. Specification and Synthesis of Cus-
tomizable Interfaces of Soft IP Cores using VHDL+. In 8th IFIP International Work-
shop on IP Based Synthesis and System Design. Kluwer Academic Publishers, Decem-
ber 1999.

[220] Robert Siegmund and Dietmar Müller. SystemCSV - an extension of SystemC for
mixed multi-level communication modeling and interface-based system design. In

219

Bibliography

DATE ’01: Proceedings of the conference on Design, automation and test in Europe,
pages 26–33, Piscataway, NJ, USA, 2001. IEEE Press.

[221] Robert Siegmund and Dietmar Müller. A Novel Synthesis Technique for Communica-
tion Controller Hardware from declarative Data Communication Protocol Specifica-
tions. In DAC ’02: Proceedings of the 39th conference on Design automation, pages
602–607, New York, NY, USA, 2002. ACM Press.

[222] Robert Siegmund and Dietmar Müller. Automatic Synthesis of Communication Con-
troller Hardware from Protocol Specifications. IEEE Design and Test of Computers,
19(4):84–95, 2002.

[223] Douglas J. Smith. HDL Chip Design. Doone Publications, Madison, AL, USA, seventh
edition, 2000. A Practical Guide For Designing, Synthesizing and Simulating ASICs
and FPGAs using VHDL or Verilog.

[224] James Smith and Giovanni De Micheli. Automated composition of hardware compo-
nents. In DAC ’98: Proceedings of the 35th annual conference on Design automation,
pages 14–19, New York, NY, USA, 1998. ACM Press.

[225] Christoph Steiger, Herbert Walder, Marco Platzner, and Lothar Thiele. Online
Scheduling and Placement of Real-time Tasks to Partially Reconfigurable Devices.
In Proceedings of the 24th International Real-Time Systems Symposium (RTSS’03),
December 2003.

[226] J. Stuyt, N. Moualla, and M. ten Have. CoReUse Standards Book Medea ToolIP.
Philips Semiconductors ReUse Technology Group, Eindhoven, The Netherlands, Sep-
tember 2001.

[227] J. S. Sun and R. W. Brodersen. Design of system interface modules. In Proceedings
of International Conference on Computer Aided Design, pages 478–481, 1992.

[228] Stuart Sutherland, Simon Davidmann, and Peter Flake. SystemVerilog For Design –
A Guide to Using SystemVerilog for Hardware Design and Modeling. Springer, 2004.

[229] Sparx Systems. Enterprise Architecht. http://www.sparxsystems.com.au/.

[230] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Upper Saddle River, USA,
2002.

[231] ISO TC97/SC21. LOTOS – A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour, 1988.

[232] Jürgen Teich. Digitale Hardware/Software-Systeme: Synthese und Optimierung.
Springer-Verlag, Berlin Heidelberg, New York [u.a.], 1997.

[233] ARTiSAN Software Tools. ARTiSAN Homepage, Real-Time Solutions for Systems
and Software Development. http://www.artisansw.com/.

[234] ARTiSAN Software Tools. AUTOSAR and UML – A Natural Fit? Technical report,
ARTiSAN Software Tools GmbH, 2005.

220

Bibliography

[235] ARTiSAN Software Tools. Extending UML to Enable the Definition and Design Real-
time Embedded Systems. Technical report, ARTiSAN Software Tools GmbH, 2005.

[236] Matthias Treydte, André Meisel, and Markus Visarius. Bus Macro Generierung für
rekonfigurierbare Hardwarekomponenten auf VHDL Ebene. In Proc. of the German
Workshop Dresdner Arbeitstagung Schaltungs- und Systementwurf, pages 41–45, Dres-
den, Germany, April 2005.

[237] XILINX Virtex Data Sheet, DS003(1-4), 2002.

[238] Markus Visarius and Wolfram Hardt. The IPQ Format – An Approach to Sup-
port IP based Design. In Proc. of the 7. GI/ITG/GMM-Workshop Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Syste-
men, pages 106–115, Kaiserslautern, Germany, February 2004. Shaker Verlag.

[239] Markus Visarius and Wolfram Hardt. An IPQ Format based Toolbox to Support IP
based Design. it - Information Technology, 04:98–106, April 2005.

[240] Markus Visarius, Wolfram Hardt, Ralph Bergmann, Ivo Vollrath, Martin Schaaf, An-
dreas Vörg, Natividad Mart́ınez Madrid, Ralf Seepold, Martin Radetzki, Wolfgang
Thronicke, Steffen Rülke, Carsten Tautz, Ralph Traphöner, Vasco Jerinic, Dietmar
Müller, and Robert Siegmund. Requirements on the IP Qualifying Format. TechRe-
port 08, University of Paderborn, Informatik- und Prozesslabor, Warburger Strasse
100, 33098 Paderborn, Germany, August 2001.

[241] Markus Visarius, Johannes Lessmann, and Wolfram Hardt. Tool Demonstration on
IPQ Format based Retrieval. In Proc. of the International Workshop of the MEDEA+
Project A-511 ToolIP, Stresa, Italy, October 2002.

[242] Markus Visarius, André Meisel, Markus Scheithauer, and Wolfram Hardt. Dynamic
Reconfiguration of IP based Systems. In Proceedings of the 16th IEEE International
Workshop on Rapid System Prototyping, Montreal, Canada, June 2005. IEEE Com-
puter Society.

[243] Gregor von Bochmann. Construction Approaches to Subsystem Specifications. Tech-
nical report, School of Information Technology and Engineering (SITE) University of
Ottawa, February 2000.

[244] Gregor von Bochmann. Synthesis of Communication Systems. Technical report, School
of Information Technology and Engineering (SITE) University of Ottawa, August 2002.

[245] Gregor von Bochmann and Reinhard Gotzhein. Deriving protocol specifications from
service specifications including parameters. ACM Transactions on Computer Systems,
pages 255–283, 1990.

[246] W3C. Extensible Markup Language (XML) 1.0, January 2002.

[247] H. Walder, C. Steiger, and M. Platzner. Fast Online Task Placement on FPGAs: Free
Space Partitioning and 2D-Hashing. In Proceedings of the 17th International Par-
allel and Distributed Processing Symposium (IPDPS) / Reconfigurable Architectures
Workshop (RAW), page 178. IEEE Computer Society, April 2003.

221

Bibliography

[248] E. Walkup and G. Borriello. Automatic Synthesis of Device Drivers for Hardware/-
Software Co-design. Technical Report Technical Report 94-06-04, Department of Com-
puter Science and Engineering University of Washington, Seattle, Box 352350 Univer-
sity of Washington, Seattle, WA 98195-2350, August 1994.

[249] Jacek Wytrebowicz. Hardware specification generated from Estelle. In Proceedings of
the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing
and Verification XV, pages 435–450, London, UK, 1996. Chapman & Hall, Ltd.

[250] Keiichi Yasumoto, Akira Kitajima, Teruo Higashino, and Kenichi Taniguchi. Hardware
synthesis from protocol specification in LOTOS. In Joint International Conference
on 11th Formal Description Techniques and 18th Protocol Specification, Testing, and
Verification (FORTE/PSTV’98), pages 405–420, 1998.

[251] P. Zafiropulo and et al. Towards analyzing and synthesizing protocols. IEEE Trans-
action on Communications, 28(4):651–661, April 1980.

[252] Y. X. Zhang, K. Takahashi, N. Shiratori, and S. Noguchi. An Interactive Protocol
Synthesis Algorithm Using a Global State Transition Graph. IEEE Trans. Softw.
Eng., 14(3):394–404, 1988.

222

List of Abbreviations

IFS Related Abbreviations

BB Basic Block

CU Control Unit

EIFD Extended IFDs

fMap Mapping Functions

IF Interface

IFB Interface Block

IFD Interface Description

IFD-Format Interface Description Format

IFS Interface Synthesis

I - P -O Input - Processing - Output

PH Protocol Handler

PH-Mode Protocol Handler Mode

PMN Protocol Matrix Node

PP Protocol-Pin

SH Sequence Handler

SH-Mode Sequence Handler Mode

TPD Target-Platform Description

General Abbreviations

ACK Acknowledge

ACL Abstract Communication Layer

ADT Abstract Data Type

ALU Arithmetic-Logic Unit

AMBA Advanced Microprocessor Bus Architecture

API Application Programmer Interface

ASIC Application Specific Integrated Circuit

223

List of Abbreviations

ASN.1 Abstract Syntax Notation One

AVCI Advanced VCIs

BM Bus Macros

BRAM Block RAM

BVCI Basic VCIs

CASE Computer-Aided-Software-Engineering

CBC Cipher-Block Chaining

CFG Control Flow Graph

CLB Complex Logic Block

CNI Communication Network Interface

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

CPB Cycles-Per-Bit

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

CRC Cyclic Redundancy Checksum

CWL Component Wrapper Language

DCR Device Control Register

DLL Dynamic Link Library, Microsoft Windows

DOM Document Object Model

DPRAM Dual Ported Random-Access Memory

DSP Digital Signal Processor

DSR Data Set Ready

DTR Data Terminal Ready

ECB Electronic Codebook

EDA Electronic Design Automation

ES Embedded System

ESD Electronic System Design

ESP Electronic Stability Program

E/E Electric/Electronic

FF Flip-Flop

FFT Fast Fourier Transformation

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

FSM Finite State Machine

Fujaba From UML to Java and back again

FW FireWire, IEEE 1398

224

gcc GNU C-Compiler

GIOP General Inter-ORB Protocol

GND Ground

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Synthesis

HW Hardware

IEEE Institute of Electrical and Electronics Engineers

IIOP Internet Inter-Orb Protocol

IP Intellectual Property

ISO/OSI International Standards Organization /Open Systems Interconnection

LAN Local Area Network

LSI Large Scale Integration

LUT Look-Up Table

MDD Model-Driven Development

MEDL Message Descriptor List

MMIF Memory Mapped Interface

MUX Multiplexer

M-V-C Model – View – Controller

NoC Networks on a Chip

OCB On-Chip Bus

OCB VCI On-Chip Bus Virtual Component Interface

OCM On-Chip Memory

OMG Object Management Group

OPB On-Chip Peripheral Bus

OPB IFIP On-Chip Peripheral Bus Interface IP

OS Operating System

PDC Park Distance Control

PE Processing Element

PLA Programmable Logic Array

PLB Processor Local Bus

PPC Power PC

PU Processing Unit

PVCI Peripheral VCIs

QoS Quality of Service

RAM Random Access Memory

225

List of Abbreviations

RB Reconfiguration Block

RCU Reconfiguration Control Unit

RDY Ready

RTL Register Transfer Level

RTOS Real Time Operating System

RTR-IFB Runtime Reconfigurable IFB

RTS Request to Send

RxD Read Data

SAP Service Access Point

SBIF Signal-Based Interface

SDL Specification and Description Language

SLD System-Level Design

SLIF System-Level Interfaces

SM Switch Matrix

SOAP Simple Object Access Protocol

SoC System-on-Chip

SRAM Static RAM

SW Software

TC Transition Condition

TCP/IP Transmission Control Protocol / Internet Protocol

TMO Time-triggered Message-triggered Object

TPD Target Platform Description

TTA Time Triggered Architecture

TTP Time Triggered Protocol

TxD Transmit Data

UML Unified Modeling Language

USB Universal Serial Bus

VC Virtual Component

VCA Virtual Component Attribute

VCI Virtual Component Interfaces

VCT Virtual Component Transfer

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time

XER XML Encoding Rules

XML Extensible Markup Language

226

	List of Figures
	List of Tables
	Introduction
	Motivation and Challenges
	Aim of the Thesis
	Contribution of the Thesis
	Organization of the Work

	Communication Framework for Embedded Systems
	Framework
	Tasks & Media
	System Composition
	Hardware & Software Interfaces
	Modeling Interfaces
	Scenarios for Interface Adaptation

	System Architecture
	The IFS System Architecture Model
	Modeling the IFB Target-Platform
	Hardware Execution Platform
	Software Execution Platform
	The Hardware/Software Interface

	The Role of Reconfiguration
	Summary

	Background & Related Work
	System-Level Design
	Levels of Abstraction
	Y-Chart and P-Chart
	Intellectual Property and IP-Based Design

	Interface-Aware (System-Level) Design Flows
	Interface and IP Descriptions
	Design Flows

	Reconfigurable Systems
	The FPGA -- A Reconfigurable Hardware Platform
	Communication in Reconfigurable Architectures
	How to Avoid the Communication Gap?

	Dedicated Interface Synthesis Approaches
	Interface Synthesis for Communication APIs (SW/SW)
	Systematic Protocol Construction Approaches (HW/HW)
	Protocol Wrapping/Adaptation Approaches (HW/HW)
	Adaptation of Hardware Software Interfaces (HW/SW)

	Summary
	Interface Synthesis Requirements Specification

	Interface Synthesis Methodology
	Interface Synthesis Design Flow
	Modeling Phase
	Synthesis Phase
	Integration Phase

	IFS Modeling Concept
	The Interface Synthesis Format
	Interaction of XML and Java
	UML2.0 and its Interaction with XML and Java

	Concepts of the Interface Block
	IFB Macro-Structure

	IFB Reconfiguration
	The Runtime Reconfigurable IFB (RTR-IFB)
	Formalization of the FPGA-Placement
	Runtime Self-Reconfiguration Using the RCU
	Example: A Multi-Controller Design

	Fail-Safe Behavior
	Basic Concepts of Error Processing
	Integrating Error Processing into an IFB
	Case-Study: Robot Scenario

	Relation to the ISO/OSI Model
	Prototyping of Real-Time Communication
	Summary

	The Detailed Interface Synthesis Design Flow
	Modeling-Phase
	Modeling the UML2.0 Profile
	Tool Coupling of the IFS-Editor with the CASE tool Fujaba
	Model Transformation from UML2.0 to Java

	Synthesis Phase -- Design Step1: IFB Model Synthesis
	Prepare Synthesis Input
	Basic Blocks
	Protocol Matrix and Protocol Packages
	Protocol Frames
	Protocol Synthesis -- Generation of the Protocol State Machines
	IFD-Mapping
	IFD Optimization and Creation of the Protocol Frames
	Assembly of the IFB Model (Intermediate Representation)

	Synthesis Phase -- Design Step2: IFB Code Generation
	Frame Processing
	Adapted Frame Processing Model
	Overview of the Generated VHDL Code Pattern
	The Three levels of IFS Code Generation

	Code Integration Phase
	Extension of the Interface Synthesis Design Flow
	Creation of a Globally Optimized Communication Infrastructure

	Summary

	The Interface Block (IFB)
	IFB Hardware Template
	Protocol Handler
	Sequence Handler
	Control Unit

	Cycle Accurate Analysis of an IFB
	Timing Analysis
	Feasibility Analysis
	Schedulability Analysis

	IFB Optimization
	Data Flow (Latency) Optimization
	Area Optimization

	Summary

	Results
	The IFS Design Environment: IFS-Editor
	Case-Study: Adaptation of RFID to I2C
	Comparison With Other Approaches

	Conclusion and Outlook
	Conclusion
	Outlook

	Extensions to the Interface Synthesis
	Communication Cycles
	Generating Basic Blocks
	Grammar of the IFD-Mapping Language
	VHDL Examples for the Created IFB Target Code
	Template of the Reconfiguration Control Unit
	Validity Period of Control Signals inside Protocol Frames

	Own Previous Work
	Advised Bachelor Thesis and Diploma Thesis
	Bibliography
	List of Abbreviations

