353 research outputs found

    M-VIA on the PowerPC architecture

    Get PDF
    One of the basic principles of cluster communication is to have the smallest cost in the time consumed on delivering messages between nodes. The Virtual Interface Architecture (VIA) is a communication protocol for system area networks (SAN) that bypasses much of the overhead of traditional network protocol stacks and provides more direct access to the network interface controller (NIC). The aim of our research was to investigate if VIA would perform well on PowerPC processors which have a different architecture than the previous processors used with VIA. For that reason, VIA was implemented on PowerPC and new driver support was added. The results indicate that VIA performs better than TCP/IP on large message sizes but not on small message sizes

    Selection of a new hardware and software platform for railway interlocking

    Get PDF
    The interlocking system is one of the main actors for safe railway transportation. In most cases, the whole system is supplied by a single vendor. The recent regulations from the European Union direct for an “open” architecture to invite new game changers and reduce life-cycle costs. The objective of the thesis is to propose an alternative platform that could replace a legacy interlocking system. In the thesis, various commercial off-the-shelf hardware and software products are studied which could be assembled to compose an alternative interlocking platform. The platform must be open enough to adapt to any changes in the constituent elements and abide by the proposed baselines of new standardization initiatives, such as ERTMS, EULYNX, and RCA. In this thesis, a comparative study is performed between these products based on hardware capacity, architecture, communication protocols, programming tools, security, railway certifications, life-cycle issues, etc

    Software caching techniques and hardware optimizations for on-chip local memories

    Get PDF
    Despite the fact that the most viable L1 memories in processors are caches, on-chip local memories have been a great topic of consideration lately. Local memories are an interesting design option due to their many benefits: less area occupancy, reduced energy consumption and fast and constant access time. These benefits are especially interesting for the design of modern multicore processors since power and latency are important assets in computer architecture today. Also, local memories do not generate coherency traffic which is important for the scalability of the multicore systems. Unfortunately, local memories have not been well accepted in modern processors yet, mainly due to their poor programmability. Systems with on-chip local memories do not have hardware support for transparent data transfers between local and global memories, and thus ease of programming is one of the main impediments for the broad acceptance of those systems. This thesis addresses software and hardware optimizations regarding the programmability, and the usage of the on-chip local memories in the context of both single-core and multicore systems. Software optimizations are related to the software caching techniques. Software cache is a robust approach to provide the user with a transparent view of the memory architecture; but this software approach can suffer from poor performance. In this thesis, we start optimizing traditional software cache by proposing a hierarchical, hybrid software-cache architecture. Afterwards, we develop few optimizations in order to speedup our hybrid software cache as much as possible. As the result of the software optimizations we obtain that our hybrid software cache performs from 4 to 10 times faster than traditional software cache on a set of NAS parallel benchmarks. We do not stop with software caching. We cover some other aspects of the architectures with on-chip local memories, such as the quality of the generated code and its correspondence with the quality of the buffer management in local memories, in order to improve performance of these architectures. Therefore, we run our research till we reach the limit in software and start proposing optimizations on the hardware level. Two hardware proposals are presented in this thesis. One is about relaxing alignment constraints imposed in the architectures with on-chip local memories and the other proposal is about accelerating the management of local memories by providing hardware support for the majority of actions performed in our software cache.Malgrat les memòries cau encara son el component basic pel disseny del subsistema de memòria, les memòries locals han esdevingut una alternativa degut a les seves característiques pel que fa a l’ocupació d’àrea, el seu consum energètic i el seu rendiment amb un temps d’accés ràpid i constant. Aquestes característiques son d’especial interès quan les properes arquitectures multi-nucli estan limitades pel consum de potencia i la latència del subsistema de memòria.Les memòries locals pateixen de limitacions respecte la complexitat en la seva programació, fet que dificulta la seva introducció en arquitectures multi-nucli, tot i els avantatges esmentats anteriorment. Aquesta tesi presenta un seguit de solucions basades en programari i maquinari específicament dissenyat per resoldre aquestes limitacions.Les optimitzacions del programari estan basades amb tècniques d'emmagatzematge de memòria cau suportades per llibreries especifiques. La memòria cau per programari és un sòlid mètode per proporcionar a l'usuari una visió transparent de l'arquitectura, però aquest enfocament pot patir d'un rendiment deficient. En aquesta tesi, es proposa una estructura jeràrquica i híbrida. Posteriorment, desenvolupem optimitzacions per tal d'accelerar l’execució del programari que suporta el disseny de la memòria cau. Com a resultat de les optimitzacions realitzades, obtenim que el nostre disseny híbrid es comporta de 4 a 10 vegades més ràpid que una implementació tradicional de memòria cau sobre un conjunt d’aplicacions de referencia, com son els “NAS parallel benchmarks”.El treball de tesi inclou altres aspectes de les arquitectures amb memòries locals, com ara la qualitat del codi generat i la seva correspondència amb la qualitat de la gestió de memòria intermèdia en les memòries locals, per tal de millorar el rendiment d'aquestes arquitectures. La tesi desenvolupa propostes basades estrictament en el disseny de nou maquinari per tal de millorar el rendiment de les memòries locals quan ja no es possible realitzar mes optimitzacions en el programari. En particular, la tesi presenta dues propostes de maquinari: una relaxa les restriccions imposades per les memòries locals respecte l’alineament de dades, l’altra introdueix maquinari específic per accelerar les operacions mes usuals sobre les memòries locals

    Simulating whole supercomputer applications

    Get PDF
    Architecture simulation tools are extremely useful not only to predict the performance of future system designs, but also to analyze and improve the performance of software running on well know architectures. However, since power and complexity issues stopped the progress of single-thread performance, simulation speed no longer scales with technology: systems get larger and faster, but simulators do not get any faster. Detailed simulation of full-scale applications running on large clusters with hundreds or thousands of processors is not feasible. In this paper we present a methodology that allows detailed simulation of large-scale MPI applications running on systems with thousands of processors with low resource cost. Our methodology allows detailed processor simulation, from the memory and cache hierarchy down to the functional units and the pipeline structure. This feature enables software performance analysis beyond what performance counters would allow. In addition, it enables performance prediction targeting non-existent architectures and systems, that is, systems for which no performance data can be used as a reference. For example, detailed analysis of the weather forecasting application WRF reveals that it is highly optimized for cache locality, and is strongly compute bound, with faster functional units having the greatest impact on its performance. Also, analysis of next-generation CMP clusters show that performance may start to decline beyond 8 processors per chip due to shared resource contention, regardless of the benefits of through-memory communication.Postprint (published version

    Cycle-accurate modeling of multicore processors on FPGAs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 169-176).We present a novel modeling methodology which enables the generation of a high-performance, cycle-accurate simulator from a cycle-level specification of the target design. We describe Arete, a full-system multicore processor simulator, developed using our modeling methodology. We provide details on Arete's resource-efficient and high-performance implementation on multiple FPGA platforms, and the architectural experiments performed using it. We present clear evidence that the use of simplified models in architectural studies can lead to wrong conclusions. Through two experiments performed using both cycle-accurate and simplified models, we show that on one hand there are substantial quantitative and qualitative differences in results, and on the other, the results match quite well.by Asif Imtiaz Khan.Ph.D

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi

    Performance and area evaluations of processor-based benchmarks on FPGA devices

    Get PDF
    The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex applications such as Mobile Phones audio and video encoding, image and network processing. Due to the number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-cores, because they are flexible and reconfigurable for specific software functions and easy to build homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C to HDL and available for partitioning a HW/SW concurrent methodology. A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a programmable device. This research is, firstly represent different types of computer architectures in modern embedded processors that are followed in different type of software applications (eg. Multi-threading Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However, the number of processors and their customizable configuration or hardware datapath being generated are limited by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been considered - Speed versus Area. For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and "function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary, the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA devices in terms of different programs

    Exploiting different levels of parallelism in the biological sequence comparison problem

    Get PDF
    In the last years the fast growth of bioinformatics field has atracted the attention of computer scientists. At the same time, de exponential growth of databases that contains biological information (such as protein and DNA data) demands great efforts to improve the performance of computational platforms. In this work, we investigate how bioinformatics applications benefit from parallel architectures that combine different alternatives to exploit coarse- and fine-grain parallelism. As a case of analysis, we study the performance behavior of the Ssearch application that implements the Smith-Waterman algorithm (SW), which is a dynamic programing approach that explores the similarity between a pair of sequences. The inherent large parallelism of the application makes it ideal for architectures supporting multiple dimensions of parallelism (thread-level parallelism, TLP; data-level parallelism, DLP; instruction-level parallelism, ILP). We study how this algorithm can take advantage of different parallel machines like the SGI Altix, IBM Power6, IBM Cell BE and MareNostrum machines. Our study includes a qualitative analysis of the parallelization opportunities and also the quantification of the performance in terms of speedup and execution time. These measures are collected taking into account the specific characteristics of each architecture. As an example, our results show that a share memory multiprocessor architecture (SMP) like the PowerPC 970MP of Marenostrum machine can surpasses a heterogeneous multi- processor machine like the current IBM Cell BE.Peer ReviewedPostprint (published version
    corecore