
Cuarto Congreso Colombiano de Computación 4CCC
Sociedad Colombiana de Computación S(Co)2
Universidad Autónoma de Bucaramanga UNAB
c© 2009 Los Autores. Todos los Derechos Reservados.

Exploiting Different Levels of Parallelism in the Biological
Sequence Comparison Problem

Friman Sánchez Castaño
Technical University of
Catalonia, Computer

Architecture Department.
Barcelona, Spain

fsanchez@ac.upc.edu

Alex Ramirez
Technical University of

Catalonia and Barcelona
Supercomputing Center-CNS

Barcelona, Spain
alex.ramirez@bsc.es

Mateo Valero Cortés
Technical University of

Catalonia and Barcelona
Supercomputing Center-CNS

Barcelona, Spain
mateo.valero@bsc.es

ABSTRACT
In the last years the fast growth of bioinformatics field has

atracted the attention of computer scientists. At the same
time, de exponential growth of databases that contains biolog-
ical information (such as protein and DNA data) demands
great efforts to improve the performance of computational
platforms. In this work, we investigate how bioinformatics
applications benefit from parallel architectures that combine
different alternatives to exploit coarse- and fine-grain paral-
lelism. As a case of analysis, we study the performance be-
havior of the Ssearch application that implements the Smith-
Waterman algorithm (SW), which is a dynamic programing
approach that explores the similarity between a pair of se-
quences. The inherent large parallelism of the application
makes it ideal for architectures supporting multiple dimen-
sions of parallelism (thread-level parallelism, TLP; data-level
parallelism, DLP; instruction-level parallelism, ILP). We
study how this algorithm can take advantage of different par-
allel machines like the SGI Altix, IBM Power6, IBM Cell BE
and MareNostrum machines. Our study includes a qualita-
tive analysis of the parallelization opportunities and also the
quantification of the performance in terms of speedup and
execution time. These measures are collected taking into ac-
count the specific characteristics of each architecture. As
an example, our results show that a share memory multi-
processor architecture (SMP) like the PowerPC 970MP of
Marenostrum machine can surpasses a heterogeneous multi-
processor machine like the current IBM Cell BE.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiprocessors; D.2.8
[Metrics]: [complexity measures, performance measures];
J.3 [Life and Medical Sciences]: Biology and genetics.

General Terms
Algorithms,Measurement,Performance

Keywords
Parallel Architectures, Multiprocessor Architectures, Bioin-
formatics Applications, Sequence Comparison.

1. INTRODUCTION
Bioinformatics is a very multidisciplinary field including com-
ponents of mathematics, biology, chemistry, computer sci-
ences, software engineering, processor architecture, hard-
ware design, etc. Currently, bioinformatics is considered
as one of the fields of computing technology with fastest
growth and development [5]. Additionaly, the vast amount
of biological data that has become available since the early
1990s has made necessary to create specialized databases
to store, organize and index data [7] [4] [2] [1], and also
has led the advance in research and development of spe-
cialized tools to view and analyse this biological informa-
tion. Because of that, computational biology and its related
components in database systems, visualization and analysis
tools has become an emerging workload that requires high-
performance computing systems. This emerging importance
is also reflected in research and development of several al-
gorithmic methodologies to process biology data efficiently.
However, due to the immense quantity of information, per-
forming even a simple analysis on genome-scale data quickly
turns into a computationally difficult and time consuming
problem.

Bioinformatics allow researchers to process the massive bio-
logical data (e.g., nucleic acid and protein sequences, struc-
tures, functions, pathways and interactions) and identify in-
formation of interest. Bioinformatics is a very diverse field
that that include different kind of tasks performed on bio-
logical data. Some of these tasks are: alignment and com-
parison of biology sequences, phylogenetic analysis, multiple
sequence alignment, sequences profiling searching, genome-
level alignment, sequence assembly, protein structure pre-
diction, protein docking and so on. However, regarding the
variety of existing tasks, the most commun is the compar-
ison and alignment of biological sequences (DNA, proteins,
RNA), which is basically the problem of finding an approx-
imate pattern matching between two or more sequences.
Molecular biologists usually compare sequences to find sim-
ilarities between them in order to define whether one se-
quence is similar to another. Generally, such comparisons
involve aligning sections of the two sequences in a way that
exposes the similarities between them. For example, con-
sider the sequences A=csttpggg with eight residues (sym-

bols) and B=csdtnglawgg with eleven residues. One possible
alignment could be:

A = c s - t t p g - - - g g

| | | | |

B = c s d t - n g l a w g g

In the above alignment, we say that b3 = d is inserted into
the first sequence or it is deleted from the second one, de-
pending on the point of view. Also, a5 = p is substituted
by b5 = n or b5 by a5. Consecutive dashes in the sequences
represent a gap, for example, there is a gap of length one
between a2 and a3 and a gap of length three between a6

and a7 in the first sequence. In order to compare se-
quences a similarity score between the individual residues
must be established. Biologists have defined substitution
scoring functions that assign a similarity score between all
possible pairs of residues. In the case of proteins, these
functions quantify whether the substitution of one residue
for another is likely to conserve the chemical and physical
properties of the protein or is more likely to disrupt essen-
cial structural and functional features of the protein. For
these reasons, the definition and evaluation of these score
functions is an important scientific discussion in the biol-
ogy community. Numerous approaches have been used to
create such quantifications, referred to as substitution score
matrix. Some of these matrices are PAM, PAM100, BLO-
SUM45, BLOSUM62, etc [10] [14] [13]. An interesting dis-
cussion about the characteristics of these matrices can be
found in [17]. As an example, figure 1 shows the BLOSUM62
amino acid subsitution score matrix.

Researchers have proposed several methods for alignment of
two biological sequences. However, the dynamic program-
ming (DP) is probably the most important programming
method in sequences alignment [30] and many researchers
have proposed different algorithms based on DP to quan-
tify the similarity of a pair of sequences [23] [31] [32] [12].
Between these alternatives, the most important sequence-
search algorithm is that of Smith-Waterman (SW) [32], which
is generally considered to be the most sensitive. Sensitivity
is a measure of how well a method can detect the actual
similarity between two sequences. Nevertheless, the compu-
tationally intensive task involved in the algorithm is a very
restrictive factor that prevents the use of these proposals.
The time complexity of this algorithm is O(mn), where m

and n are the lengths of the two sequences respectively.

On the other hand, many heuristic strategies have been pro-
posed and developed to speedup the execution of the search
and alignment tasks, such as FASTA [25], BLAST [6] and
ClustalW [15]. These methods reduce the running time by
several factors compared with the SW algorithm. However,
this reduction is obtained at the expense of sensitivity, and
due to this loss of sensitivity some related sequences can not
be detected in a search.

For these reasons, in order to perform both sensitive and
fast searches in biological databases, researchers have stud-
ied and proposed several strategies to produce a fast im-
plementation of the SW algorithm under different computa-
tional platforms such as special purpose hardware, specific

Figure 1: Score associated with the replacement of
one amino acid with another in the Blosum62 Sub-
stitution score matrix

purpose coprocessors, general purpose multiprocessors and
general purpose uniprocessors.

This paper anaylises the implementation of the SW algo-
rithm on diverse parallel architectures that combine multiple
dimensions of parallelism (TLP, DLP and ILP). We study
how the SW algorithm can take advantage of different paral-
lel machines like the SGI Altix, IBM Power6, IBM Cell BE
and MareNostrum machines. Our study includes a qualita-
tive analysis of the parallelization opportunities and also the
quantification of the performance in terms of speedup.

This paper is organized as follows: Section 2 details some
aspects of the Smith-Waterman algorithm as a solution for
the sequence comparison problem. Section 3 presents a brief
description of the multiprocessor architectures we use in this
work. Next, section 4 analyses several parallel alternatives of
implementing the SW algorithm on the described architec-
tures. Then, section 5 describes the experimental methodol-
ogy used in this work. Sections 6 presents the experimental
results and the performance analysis. Section 7 discusses
the related work and finally, section 8 summarizes the paper
and describes some future work directions.

2. THE SMITH-WATERMAN ALGORITHM
AS A SOLUTION FOR SEQUENCE COM-
PARISON PROBLEM

The SW is a sequence comparison algorithm developed by
T.F. Smith and M.S. Waterman [32]. It implements dy-
namic programming techniques that take two sequences of
any length, and at any location determine an optimal align-
ment between the two sequences. In the process, scores or
weights are assigned to each character-to-character compar-
ison: positive for exact matches/substitutions, negative for
insertions/deletions. In weight matrices, scores are added
together and the highest scoring alignment is reported. A
short description of the algorithm follows.

2.1 The Smith-Waterman Algorithm
Given a query sequence A of length m, a query sequence
B of length n, a substitution score matrix S, a gap-open
penalty q and a gap extension penalty r, the optimal lo-
cal alignment score T can be computed using the following

Figure 2: Data-dependency graph in the execution
of Smith-Waterman algorithm.

recursive equations:

ei,j = max{ei,j−1, hi−1,j − q} − r (1)
fi,j = max{fi−1,j , hi,j−1 − q} − r (2)
hi,j = max{hi−1,j−1 + S[A[i], B[i]], fi,j , ei,j , 0} (3)
T = max{hi,j} (4)

Where, ei,j and fi,j are the maximum local-alignment score
involving the first i symbols of A and the first j symbols of
B, and ending with a gap in sequence B or A, respectively.
And hi,j represents the overall-maximum local-alignment
score involving the first i symbols of A and the first j sym-
bols of B. The recursion should be calculated with i going
from 1 to m and j from 1 to n, with the initial conditions
ei,j = fi,j = hi,j = 0 for all i = 0 or j = 0. The order of
the computation of the values in the alignment matrix hi,j

is strict, that is, the value of any cell cannot be computed
before the value of all cells to the left and above it has been
computed. Figure 2 shows the data dependencies in the cal-
culation of hi,j . From the figure, it can be observed that the
computation of hi,j is independent across the antidiagonals.
This characteristic has been observed by several researchers
and based on it, they have proposed several special purpose
architectures that exploit this parallelism [9].

As we will see in this work, an efficient way of taking ad-
vantage of the existing parallelism of the algorithm, basi-
cally depends on the two following issues: First, the targeted
computational platform (the machine) where the algorithm
is executed. Second, the efficient implementation of the al-
gorithm on the selected computing platform. As a starting
point of our study, we use an efficient implementation of the
SW algorithm which is available in the Ssearch [24] appli-
cation. We modify the application in order to obtain the
different versions of the SW algorithm that are used in this
work.

An important characteristic of the sequence comparison is
the intrinsic embarrasing parallelism of the SW algorithm,

as shown in figure 2. However, this is not the only source
of parallelism of the sequence comparison problem. Another
important factor is the scenario of execution in which it is re-
quired to perform sequence comparison. Usually, biologists
require to perform the comparison of some query sequences
against several databases that store hundreds of thousands
of sequences. Before doing a detailed description of these
scenarios, we introduce some discussion about the typical
databases used by biologist.

2.2 DNA and Protein Sequence Databases
When the nucleotide sequence of a gene or an entire genome
has been determined it is often deposited in larges pub-
lic sequence databases. The three most important pub-
lic nucleotide databases are GenBank [7], EMBL [2] and
DDBJ [1]. GenBank is handled by the National Center
for Biotechnology Information (NCBI) in the United States.
The EMBL is handled by the European Bioinformatics In-
stitute (EBI) that makes part of the European Molecular
Biology Laboratories (EMBL). The DDBJ database is han-
dled by the DNA Data Bank of Japan. These databases are
organized in a specific way and they can be accessed and
downloaded freely from the webpages of the institutes.

Similarly, potential protein coding regions in the DNA se-
quences are also traslated and collected in protein databases
which also include proteins identified by other methods. Swis-
sProt [4] is a public protein database handled by the Swiss
Institute of Bioinformatics and the EBI. As an example of
the size, the last release (release 56.6) of this database of
16-Dec-08 contains 405506 sequences, comprising 146166984
amino acids (residues).

2.3 Scenarios of Execution and Levels of Par-
allelism of the SW algorithm

Usually, biologists require to perform the comparison of some
query sequences against several databases of sequences. To
perform the sequence comparison in this scenario, the Smith-
Waterman algorithm of the Ssearch application works as fig-
ure 3 shows. Here, the parallelism exists at different levels.
First, a coarse-grain parallelism exists because queries can
be compared independently against each database. Even
for each database it is posible to compare concurrently the
query against the sequences held in the database. This
coarse-grain parallelism can be exploited by using threaded
architectures, massively parallel manchines, specific parallel
hardware or multicore architectures.

On the other hand, fine-grain parallelism can be exploited
in each sequence-to-sequence comparison using the SW al-
gorithm. Here, the basic goal is the computation of a score
matrix (part 2 of figure 3). The computation of this ma-
trix contains a data dependency in an antidiagonal fashion
as was explained in section 2.1. This parallelism can be ex-
ploited by using machines with Single Instruction Multiple
Data units (SIMD units), systolic arrays, specific hardware
or even multicore architectures with SIMD capabilites like
the IBM Cell processor.

The pseudocode shown in listing 1 is a very brief descrip-
tion of the way the sequence comparison is performed in
the mentioned scenario by the Ssearch application, that is,

Figure 3: Scenarios of SW execution on the Ssearch
application and type of parallelism

the comparison between the query sequences and the differ-
ent databases. Here, we can distinguish three different for

loops; the first one takes each query of the total number_of
_query_seqs, extracts some information of this (pointer to
memory, length of the query, etc). Then, the second for

loop opens each database of the total number_of_dbs. Af-
ter this, the third for loop accesses each sequence of the
database previously opened, and also, extract some infor-
mation of this sequence (db_seq that is the pointer to se-
quence of a database, length of the sequence, etc). Finally,
with all these information of a query and a database se-
quence, the SW algorithm is performed by the function
perform_SW_between(), which is the algorithm described by
the equations of the section 2.1, and depicted in figures 2 and
3. After the SW algorithm is done, the results of these com-
parisons are used to prepare the output of the execution.
The output depends on the parameters defined by the user,
that commonly requires a list of the most similar sequences
of the databases to the query sequences, the score of each
comparison is also reported and sometime the alignment be-
tween the sequences, (as described in section 1).

As we can see in figure 3 and in the pseudocode of listing 1,
there are various oportunities to extract coarse- and fine-
grain parallelism in this scenario of execution of the appli-
cation. From the point of view of performance, an efficient
alternative depends on taking into account the existing dif-
ferences between the targeted architecture. For example,
the thread implementation for Altix machine differs from
the IBM Cell BE implementation due to the different pro-
gramming model that the latter architecture allows. In the
next section, we describe different thread implementations
of the Ssearch application depending on the target machine.

Listing 1: Brief Example of the Typical code in Se-
quence Comparison problem

. . .
/∗ number o f query seqs : Number o f query sequences

to compare aga in s t a l l t he databases ∗/
/∗ number of dbs : Number o f databases used in

the comparison ∗/
/∗ number o f seq s in db : Number o f sequences

s tored in a SPEci f ic database ∗/
/∗ query seq : Pointer to a query sequence ∗/
/∗ que ry l eng t h : Length o f a query sequences ∗/
/∗ database : Pointer to a database o f sequences ∗/
/∗ db seq : Pointer to a sequence from a db ∗/
/∗ db l eng t h : Length o f database sequence ∗/

main{
. . .
/∗ Fi r s t Loop (e x t e rna l loop) ∗/
for (i ==0; i<number of query seqs) {

. . .
query seq =g e t p o i n t e r t o t h e qu e r y s e q (i) ;
query l ength = ge t l e n g t h o f (query seq) ;
. . .
/∗ Second Loop (i n t e r n a l loop) ∗/
for (j==0; j< number of dbs) {

. . .
database= ge t po i n t e r t o t h e db (j) ;
. . .
/∗ Third Loop (a more i n t e r n a l loop) ∗/
for (k=0; k<number o f s eqs in db (database)) {

. . .
db seq= g e t p o i n t e r t o t h e s e q (k , database) ;
db length = ge t l e n g t h o f (k , db seq) ;

s c o r e=perform SW between(query seq ,
query length ,
db seq , db length) ;

p r o c e s s r e s u l t (s co r e) ;
}

}
}

}

3. ARCHITECTURES DESCRIPTION
In order to analyse how the SW algorithm takes advantage
of different levels of parallelism, we select a broad spectrum
of modern parallel architectures that are able to exploit dif-
ferent levels of parallelism. Most of them can exploit ILP,
DLP and TLP concurrently. This section describes these ar-
chitectures paying special attention to the capability of each
one to extract the mentioned levels of parallelism, which im-
pact positivelly the performance of the SW algorithm.

3.1 SGI Altix architecture
SGI Altix is a shared memory machine, with a Non-uniform
Memory Access (cc-NUMA) architecture with 64 dual core
Montecito(IA-64) processors. Each one of the 128 cores
works at 1,6 GHz, with a 8MB L3 cache and 533 MHz
Bus, and the system has a total 512 GB RAM. Each pro-
cessor core maintains context for two threads of execution
(hardware multithreading). This architecture also includes
advanced microarchitetural mechanisms for exploiting ILP
like predication, speculation, branch prediction, register re-
naming, etc. Each 128-bit instruction word contains three
instructions, and it can fetch up to two instruction words
per cycle from the L1 cache. Then, processor can execute
up to six instructions per cycle. There are thirty functional
execution units organized in eleven groups.

3.2 Power6 Architecture
The Power6 is a two-way simultaneous multithreaded (SMT)
dual-core processor, where each core has two integer units,
two binary FP units, one decimal floating-point unit and
one SIMD unit. Each core has a L1 cache of 128 KB (64 for
KB data + 64 KB for instructions) and a 4 MB semi-shared
L2 cache, where the cache is assigned a specific core, but
the other has access to it. The two cores share a 32 MB
L3 cache which is off die. An interesting observation is that
Power6 architecture is an in-order design (Previous Power5
machine was an out-of-order execution.) The machine we
use in this work is a IBM Bladecenter JS22, which combines
four 4.0 GHz Power6 cores. So it is possible to to use the
machine as a eight SMT processor.

As mentioned, each Power6 core includes an AltiVec SIMD
unit. This Altivec unit contains seven distincts execution
subunits: two load subunits, one store subunit, one simple
arithmetic subunit (XS), one vector FP unit (VFP), one
complex unit (XC) and one vector permutation unit (VP).
However, despit the number of SIMD units, the instruction
issue of the core is done by group of 6 instruction and each
group can have up to two SIMD instruction. The execution
latencies of the SIMD units are: eight cycles for VFP, three
cycles for XS, seven cycles for XC and four cycles for VP
operations.

3.3 Marenostrum Architecture
MareNostrum [3] is a large parallel computer built with
10240 IBM PowerPC 970MP processors at 2.3 GHz (2560
JS21 blades). Each 970MP processor is a dual core PowerPC
RISC. Each core is equipped with 64 KB instruction/32 KB
data L1 cache and a a 1 MB L2 memory. Each node of
Marenostrum has two 970MP, then, each node can sustain
up to four threads running concurrently.

The 970MP core includes advanced microarchitetural mech-
anisms for exploiting ILP like branch prediction for up to
two branches per cycle, out-of-order issue of up to 10 op-
erations into 10 execution pipelines, register renaming. It
can fetch up to eight instruction per cycle, and contain 10
execution pipelines: Two load/store units, two fixed-point
units, two floating-point units, one branch units, one Con-
dition register operation unit, one vector permute unit, one
vector arithmetic/logic unit (for SIMD operations).

The execution latencies of the SIMD units are: eight cycles
for VFP, three cycles for XS, seven cycles for XC and four
cycles for VP operations. VPU execution pipelines: Vector
simple fixed: 1-stage execution, Vector complex fixed: 4-
stage execution, Vector floating point: 7-stage execution,
VPERM: 1-stage execution. It is important to remark that
in our experiments, we only use one node of Marenostrum,
that is, we use up to 4 thread working simultaneosly. Then,
when we refer to ”Marenostrum” we mean one node of it.

3.4 Cell BE Architecture
Cell BE architecture [18] includes a general purpose pro-
cessor (PowerPC Processing Unit PPU) with in-order exe-
cution, connected to 8 128-bit SIMD cores called Synergis-
tic Processing Elements (SPEs). Each SPE has a 256KB
scratch pad memory called Local Storage (LS). The nine
cores are connected through the Element Interconnect Bus

(EIB) which is a circular bus made of two channels in op-
posite directions each. It is also connected to the L2 cache
and the memory controller.

The PowerPC processor is a two-way simultaneous multi-
threaded core which includes one Altivec SIMD support and
acts as a master for the eight SPEs. The PPE works with
conventional operating systems, while the SPEs are RISC
processing units that can be seen as accelerators and exe-
cute a SIMD ISA with 128 128-bit SIMD registers, but they
can not run an operating system. The PPE contains a 32
KB instruction and a 32 KB data L1 cache and a 512 KB L2
cache. An SPE can operate on 16 8-bit integers, 8 16-bit in-
tegers, 4 32-bit integers, or 4 single precision floating-point
numbers in a single cycle, It is important to remark that
SPEs cannot directly access system memory. The 64-bit vir-
tual memory addresses formed by the SPE must be passed
from the SPE to the SPE memory flow controller (MFC) to
set up a DMA operation within the system address space.

Our experiments run on a IBM BladeCenter QS22 system
that includes two Cell BE. As a result, it is possible to have
up to four thread running on PPEs and up to sixteen SPEs
can be used concurrently. The machine run at 3.2 GHz.

4. PARALLEL STRATEGIES AND IMPLE-
MENTATION ON DIFFERENT MACHINES

Taking into account the parallel characteristics of the appli-
cation that have been described in sections 2.1 and 2.3, and
the computing platforms where the application runs, it is
possible to define several parallel strategies for implementing
the algorithm. This section describes several implementa-
tions that extract the coarse-grain parallelism using multiple
threads (TLP), where each thread works on a specific pro-
cessing unit of determined computing machine; also, some
implementations extract the fine-grain parallelism making
use of SIMD capabilities of the different machines. Here,
the main idea is to extract parallelism as figure 3 (part 2
and 3) shows. That is, the antidiagonal parelellism.

There are several ways of implementing a parallel version
of Ssearch. From the point of view of performance, an effi-
cient alternative depends on taking into account the existing
differences between the targeted architecture. For example,
the thread implementation for a share memory machine (like
the Altix machine) differs from the distributed memory ma-
chine (like the IBM Cell BE processor) implementation due
to the different programming model that the latter architec-
ture allows. In the next section, we describe different thread
implementations of the Ssearch application depending on the
target machine.

4.1 Shared Memory Implementations
One TLP alternative is shown in figure 4. Here, a master
thread is in charge of taking each database sequence and
put it into a work queue (buffer). It will be called a task
to process. Each task in the buffer contains all the infor-
mation about the database sequence that will be compared
against the query. There is a worker thread that processes
the tasks of a buffer, makes the comparison of the sequences
and every time a comparison finishes, the worker returns
the score to the buffer. When the worker thread finishes the

processing of all the tasks of a buffer, it tries to own another
buffer that is already filled by the master and repeats the
process until all the buffers have been processed (when all
the database sequences are processed). To avoid unneces-
sary stalls of the workers, this implementation needs twice
buffers than worker threads. The master is also in charge
of processing the resulting scores, taking into account, the
input parameter given by the user.

Figure 4: Thread implementation for a share mem-
ory machine (like Altix, Power6 and Marenostrum
machines)

Figure 5: Alternative 1, for a thread implementation
on a distributed memory machine (like the IBM Cell
BE multiprocessor)

Figure 6: Alternative 2, for a thread implementation
on a distributed memory machine (like the IBM Cell
BE multiprocessor)

We use this approach for the shared memory machines (that
is, SGI Altix, Power6 and MareNostrum architectures). Ad-
ditionally, for Power6 and Marenostrum we combine the ex-
ploitation of this coarse-grain parallelism with the SIMD
approach to extract fine-grain DLP. Then, we use a version
of the SW algorithm that performs the sequence-to-sequence
comparison taking advantage of the Altivec SIMD extension
of PowerPC architecture that works with 128-bit wide reg-
isters. This is done calculating temporal vector of scores of
cells parallel to the antidiagonals, as it is shown in figure 3
(part 3). In the computation of the matrix, some temporal
results have to be stored in memory because they will be
used in the computation of a vector in the next row.

4.2 Distributed Memory Implementations
Multiprocessor architectures on a single chip, like Cell BE,
combine the capabilities of extracting coarse-grain paral-
lelism, with the capability of extracting fine-grain paral-
lelism using SIMD architecture accross the hetereogenous
processing units that are part of it. Due to the diverse opor-
tunities that Cell BE architecture offers to the programers,
it is important to consider how the algorithm can be imple-
mented and which characteristics of the Cell BE are more
relevant in terms of performance. Here, we study 2 different
implementations of the SW algorithm on Cell BE. Porting
the SW implementation of Ssearch to Cell BE ISA has rel-
evant details that impact the performance. Some relevant
issues are related to the fact that each SPE has its own LS
memory to be shared by data and instructions, the synchro-
nization between PPU and SPEs, the length of the sequences
to compare. Some of these aspects are analysed in the next
sections.

4.2.1 Parallel Ssearch on Cell BE, version 1
In our first approach, to extract TLP, we implement the
mechanism described in figure 5, where a master thread per-
forms basically the same work described in section 4.1.

A helper thread takes tasks from a buffer and sends them to
a specific SPE that performs the comparison, which is the
heaviest part of the application. There is only one helper
thread feeding all the SPEs that perform comparsions. This
helper is responsible for interacting with the SPEs. This in-
teraction includes synchronization, sending parameters and
receiving results, etc. The helper thread sends tasks to the
SPEs in a round robin fashion. When all the SPEs are work-
ing, the helper waits for the finalization of one to asign more
tasks to it. When a SPE has finished a comparison, it sends
the result of the computation to the helper thread that up-
date this value into the correspondent entry in the buffer.
The advantage of this scheme is that there are only two
threads working in the PPE and there can be many SPEs
working in parallel on independent data (independent se-
quences of a database).

4.2.2 Parallel Ssearch on Cell BE, version 2
Another parallel alternative is shown in figure 6. In this case,
all the available SPEs perform the comparison between the
query and a single sequence of a database. In this case, the
computation of each matrix is distributed between the SPEs,
that is, each SPE is responsible for computing several rows of
the matrix. For example, when 8 SPEs are used, SPE0 com-
putes row 0, row 8, row 16, etc; SPE1 computes row 1, row
9, row 17, and so on. There are some possible advantages of
this alternative and the following issues are important: bet-
ter bandwidth utilization and scalability than the previous
approach. Improved bandwidth utilization can be achieved
since not all the temporal results are written to main mem-
ory (the SPEs exchange data in a streaming fashion). This
approach is more scalable with increasing sequence sizes be-
cause each SPE is holding smaller pieces of data in its local
memory as compared to version 1 above. This alternative,
however, requires additional synchronization between SPEs
that can potentially degrade the performance. This alterna-
tive will be very efficient when very large and few sequences
are compared. Although this alternative is discussed here,
it is important to remark that currently we are working on

having a final version of code for this implementation. For
this reason, there is not evaluation results for this alternative
yet.

Table 1 summarizes the studied SW implementations of the
Ssearch application, the machines used and some description
of the capability to extract coarse- and fine-grain parallelism
of each machine.

5. EXPERIMENTAL METHODOLOGY
As a starting point of our study, we execute all the SW
implementations and take results accross different number
of processing units. We discuss these results in terms of
execution time and reached speedups.

In the sequence comparison problem, the length of sequences
is an important factor that compromise the performance.
We perform an evaluation of the SW algorithm implemen-
tations with two sets of sequences with different length that
lead to two scenarios: First, when comparisons are per-
formed between sequences with a relatively short length,
that is, sequence lengths < 2500 symbols. Second, when
comparisons are performed between longer sequences (length
size > 4000). This issue is especially important for the appli-
cation implementation on the IBM Cell BE machine because
due to the fact that the 256KB local memory space of each
SPE should be shared between data and program. For this
reason, we distinguish the following two different scenarios
of the SW execution:

• Comparing Short Sequences: Following the process ex-
plained in figure 3 (part 3), when implementing the
SW algorithm on Cell BE, every time a vector an-
tidiagonal is computed, some temporal results have to
be stored because they will be used in the computa-
tion of a vector in the next row. When the query and
database sequences are short enough, all the tempo-
ral values of a row can be kept in the Local memory
of the SPE, which helps to reduce significatively the
amount of DMAs operations from LS to main memory
and viceversa. We say that a sequence is short when its
lenght is < 2500 symbols. With this limit, we ensure
that data and program fit in the LS without having to
send them to memory via DMA.

• Comparing Long Sequences: When sequences are longer,
the process requires that temporal computations (the
border between rows in figure 3) have to be stored
back in memory instead of using the local store mem-
ory (LS). This is because the amount of data (that
depends on the sequence lengths) could not always fit
entirely into the LS. As a result, not only the traf-
fic gets increased between memory and the LS, but
also the processing of data has to wait for the DMA
transfers completion. However, the impact of this lim-
itation can be diminished by using multi-buffering to
overlap the SPE processing with DMA transfers of the
next data. The important decision here is the choice
of appropriate block sizes of data to be computed and
transferred using DMA.

For the Ssearch inputs, we use several protein query se-
quences against the SwissProt database [4]. These queries
represent a range of well characterized protein families used
in other works to evaluate different alignment approaches [26].
The SwissProt database contains around 405506 sequence
entries. We used the blosum62 amino-acid substitution score
matrix [13]. The applications are implemented in C. For Cell
BE, the code segments running on the PPE side were com-
piled with ppu-gcc 4.1.1 with -O3 -maltivec options. The
code in the SPE side was compiled using SPE-gcc with -O3
option. For the rest of the platforms we use the gcc compiler
4.2.1 with -O3 optimization level.

6. EXPERIMENTAL RESULTS AND PER-
FORMANCE ANALYSIS

This section discusses the results of the performed experi-
ments. We have looked mostly at parallel execution issues
due to the parallelism exiting in the SW algorithm.

6.1 Execution Time on Different Architectures
Figures 7 and 8 show results when comparing short and
long sequences respectively. As expected, scalar version of
Ssearch, (that is, the version that runs on the Altix machine)
is less efficient than the remaining alternatives. Although
this version is an implementation of the SW algorithm that
exploit TLP, it also can benefit from the ability of the proces-
sor to exploit ILP. However, these two levels of parallelism
are not enough for the SW algorithm.

An interesting observation comes from the comparison of
the execution of Power6 and PowerPC 979MP of Marenos-
trum machine. Both machines can exploit TLP and fine-
grain DLP using SIMD execution, however, the results show
that Marenostrum surpasses Power6; for example, using two
worker threads in Marenostrum and four worker threads in
Power6 machine the application requires the same time to
be executed. Although the Power6 is a very especialized
architecture and its operation frequence is greater than the
PowerPC 970MP, Power6 is an in-order machine while Pow-
erPC 970MP is an out-of-order one, that is, the latter can
combine the capabilities to exploit TLP and DLP with ILP
also. Additionally, as explained in section 3, the execution
latencies for SIMD units in Power6 are longer than the la-
tencies in the PowerPC 970MP.

On the other hand, Cell version delivers a greater perfor-
mance than Power6 machines, but less than Marenostrum.
This is an interesting result because it shows that the Pow-
erPC 970MP architecture can overcome SPEs of Cell. As an
example, for short sequence comparisons, when two worker
threads are used in Marenostrum, it is 18% faster than the
Cell-opt1 version with two SPEs; while the same PowerPC
970MP is only 16% slower than Cell with three SPEs. Ad-
ditionally, using four worker threads in Marenostrum has
equal performance than using Cell with seven SPEs. Similar
behavior is presented when longer sequences are compared.

6.2 Speedup
Figures 9 and 10 show the results of speedup for the eval-
uated architectures (for short and long sequences respec-
tively). The X axis means number of worker threads for
Altix, Marenostrum, and Power6 architectures. It means

Table 1: Evaluated SW implementations
Name Machine Strategy Coarse-grain parallelism Fine-grain parallelism

(maximun number of threads)

altix-scalar SGI Altix Figure 4 1 master + 16 workers ILP in the Itanium

superscalar machine

Marenostrum- MareNostrum, Figure 4 1 master + 4 workers DLP with Altivec

1 node SIMD extension

Power6 Power6 machine Figure 4 1 master + 8 workers DLP with Altivec

SIMD extension

Cell-opt1 PPU + n SPEs Figure 5 1 master + 1 helper DLP with SIMD Cell ISA

+ 16 workers

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 [
s
]

Number of Worker Threads or SPEs

cell-opt1
altix-scalar

Marenostrum
Power6

Figure 7: Execution Time for short sequences

number of SPEs for Cell BE. The Y axis means the speedup
for each architecture. As can be seen, the scalar implemen-
tation of the algorithm (in the Altix machine) can reach a
speedup very near to the ideal speedup, (however, remem-
ber that the execution time was the worst among all the
architectures). This is due to the fact that the scalar algo-
rithm (which only exploit ILP) is too slow, and most of the
time is wasted in the basic kernel of the algorithm, making
that not other issues of the execution become relevants like
communication, waits of the threads, etc.

Another important observation is related to the speedup
that the Power6 and Marenostrum machines reach. Both
machines can take advantages of the SIMD approach to ex-
ploit fine-grain DLP. The speedup is almost lineal when less
than 4 worker threads are used. After this, the behavior is
not lineal. The same observation is done for the Cell version
of the application. Here, we can see that the Cell machine
can exploit both fine- and coarse-grain parallelism in a very
efficient way when using no more than 7 or 8 workers (in
this case, X axis represents the number of workers SPEs
as we explained in sections 4.2.1). After that, for short se-
quences the speedup does not increase linearly when more
SPEs are used. However the contrary behavior is observed
when long sequences are compared. Additional experiments
have shown that when short sequences are compared and
many processing units are used, the buffers are consumed
faster and the master thread spends a significant percentage
of time reading the sequences of the database, becoming the
bottleneck of the application. That is, reading the database

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 [
s
]

Number of Worker Threads or SPEs (Long Sequences)

cell-opt1
altix-scalar

Marenostrum
Power6

Figure 8: Execution Time for long sequences

becomes critical. On the other hand, each worker thread is
spending most of the time performing computation.

7. RELATED WORK
A wide range of proposals aimed at reducing the execution
time of the SW algorithm targeting parallel machines with
multiple processing units, has been developed and evalu-
ated. There are basically, two parallel strategies to perform
sequence comparison on large databases. The first strategy
involves the use of several processors that cooperate between
them to compute each comparison [8] [20] [16] [33]. This
is a way to exploit fine-grain parallelism among processing
units. The other strategy consists in distributing the whole
database between the available processors and then, each
processor performs comparisons independently [11] [22]. The
first solution requires that communication between proces-
sors is fast enough to perform all the computation coopeara-
tivelly. Additionally, the synchronization between processor
plays an important roll to obtain significant performance.
The second solution uses the processing units of a parallel
machine in such a way that each processor performs its com-
parisons independently. This solution does not require very
fast communication mechanisms between processors. Also,
the synchornization between them is not very relevant. Here,
the most important issue is the capacity of each processor

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
u
p

Number of Worker Threads or SPEs

cell-opt1
altix-scalar

Marenostrum
Power6

Figure 9: Speedup for short sequences

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p
e
e
d
u
p

Number of Worker Threads or SPEs

cell opt1
altix scalar

Marenostrum
Power6

Figure 10: Speedup for long sequences

to perform computations efficiently. The load balancing is
another important aspect in order to assign approximately
the same amount of work to each processor.

On the other hand, there are evaluations of the SW al-
gorithm that combine superscalar processing and Single-
Instruction Multiple-Data processing on augmented general
purpose processors [26, 29] to exploit fine-grained parallelism
in the sequence alignment problem. However, due to the
permanent and almost exponential growth of the amount of
biological data, it is clear that this solution alone does not
satisfy the performance demands imposed by this field.

Combining the SIMD approach inside a processing unit,
with multiple processing nodes to distribute the work is an
alternative that combines the advantages of the mentioned
strategies. Some modern multi-processor architectures on a
single chip, e.g, the Cell BE [18], CUDA [27], Power6 [19];
combine the parallelism benefits of multiprocessor systems,
with the higher speed interconnects of the systems on a chip
and the lower power consumption. However, some of these
alternatives have not been studied in depth as a solution for

the sequence alignment problem and in general, for bioin-
formatics applications. Sachdeva et. al [28] present some
results on the viability of Cell BE for bioinformatics appli-
cations, all performing sequence alignment. In this case,
the authors describe the use of several SPEs for a pair-
wise alignment of only 8 sequence pairs that fit entirely in
the LS, however the analysis does not include more com-
plex scenarios where large databases and long sequences are
compared. Svetlin [21] describes a SW implementation on
the last-generation Graphics Processing Units (GPU) G80
of Nvidia, but again, the main goal of the work is the map-
ping of the algorithm on the architecture of the mentioned
GPU.

8. CONCLUSIONS AND FUTURE WORK
In this paper we studied the performance behavior of SW
algorithm, which is one of the most well-known sequences
comparison algorithm, on different computational platforms.
We have observed that due to the embarrasing parallelism
of the algorithm and the possible scenarios of use, it requires
parallel architectures that can exploit both coarse- and fine-
grain parallelism efficiently and even also ILP.

We see that Cell BE architecture is very efficient exploiting
the first two mentioned level of parallelism that the applica-
tion needs. However, with a deeper performance analysis, we
realized that one of the main reasons for performance degra-
dation when Cell BE is used, is the limited performance that
the PPE delivers. The results shows that even though the
SPEs are very efficient accelerators for sequences compari-
son problem, the modest characteristics of the PPE leads as
a consequence that the threads working in this part of the
Cell BE, cannot execute their tasks as fast as SPEs needs.
In the SW implementation on Cell, the part of the code that
runs in PPE is basically a scalar code which could benefit
from the ability of a processor that can exploit ILP more ef-
ficiently than the current PPE. Results for PowerPC 970MP
architecture of Marenosturm manchine show that combining
the benefits of exploiting TLP, DLP and ILP is needed to
speedup the SW algorithm. On the other hand, a machine
like Altix which can only extract TLP and ILP is not enough
to satisfy the challenges that sequence comparison problem
represents.

However, additional experiments are being performed in or-
der to investigate which algorithmic and architectural im-
provements can be carried out to increase the speedup even
more. Also, we are investigating other possibles scenarios
where sequence comparison is requiered and how these sce-
narios present challenges to these architectures. Also, our
current and future work involves the usage of architecture
simulation techniques in order to evaluate possible solutions
to the identified limitations of the Cell BE architecture. Our
final goal is to use this research as guidance for the archi-
tecture design of future multi-core systems targeting bioin-
formatics applications. We also intend to widen our study
to other applications of the same bioinformatic field. This
work is one step towards the definition of a future multi-core
architecture incorporating domain specific bio-accelerators.
We believe that multi-core architectures able to exploit mul-
tiple dimensions of parallelism are a valid option that will
play an important role in the future of bioinformatics.

9. ACKNOWLEDGEMENTS
This work was sponsored by the European Commission in
the context of the SARC Integrated Project #27648 (FP6),
the HiPEAC Network of Excellence, the FEDER funds un-
der contract TIN2007-60625 and by the Spanish Ministry
of Science. The authors would like to thank the Barcelona
Supercomputing Center (BSC) for supplying the computing
resources for our research.

10. REFERENCES
[1] Dna data bank of japan. http://www.ddbj.nig.ac.jp/.
[2] Embl nucleotide sequence database.

http://www.ebi.ac.uk/embl/.
[3] The marenostrum machine. http://www.bsc.es.
[4] Swissprot, universal protein database.

http://www.expasy.org/sprot/.
[5] Bioinformatics market study for washington

technology center, June 2003.
www.altabiomedical.com.

[6] S. F. Altschul, W. Gish, W. Miller, M. Myers, and
D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215:403–410, 1990.

[7] D. Benson, I. Karsch, D. Lipman, J. Ostell, B. Rapp,
and D. Wheeler. Genbank. Nucleic acids research,
28(1):15–18, 2000.

[8] A. Boukerche, A. C. M. A. de Melo, M. Ayala-Rincon,
and T. M. Santana. Parallel strategies for local
biological sequence alignment in a cluster of
workstations. In IPDPS ’05: Proceedings of the 19th
IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 15.
IEEE Computer Society, 2005.

[9] E. T. Chow, J. C. Peterson, M. S. Waterman,
T. Hunkapiller, and B. A. Zimmermann. A systolic
array processor for biological information signal
processing. In ICS 91: Proceedings of the 5th
international conference on Supercomputing, pages
216–223, 1991.

[10] M. Dayhoff, R. Schwartz, and B. Orcutt. A model of
evolutionary change in proteins. Atlas of Protein
Sequence and structure, 1978.

[11] A. Deshpande, D. Richards, and W. Pearson. A
platform for biological sequence comparison on
parallel computers. Comput. Appl. Biosci., 1991.

[12] O. Gotoh. An improvement algorithm for matching
biological sequences. Journal on Molecular Biology,
162:705–708, 1982.

[13] J. Henikoff, S. Henikoff and S. Pietrokovski. Blocks+:
a non-redundant database of protein alignment blocks
derived from multiple compilations. Bioinformatics,
15, 1999.

[14] S. Henikoff and J. Henikoff. Amino acid substitution
matrices from protein blocks. Proceding in Natural
Academic Science, 89, 1992.

[15] D. Higgins, J. Thompson, T. Gibson, and
J. Thompson. Clustal w: improving the sensitivity of
progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Research,
22:4673–4680, 1994.

[16] R. Hughey. Parallel hardware for sequence comparison
and alignment. Proceedings of Int. Conf. Application
Specific-Array Processors. IEEE Computer Society,
Sep 1996.

[17] B. Huhg, W. David, and J. Alexander. Strategies for
searching sequence databases. BioTechniques, 28(6),

2000.
[18] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

and D. Shippy. Introduction to the cell multiprocessor.
IBM Systems Journal, 49(4/5):589–604, 2005.

[19] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell,
D. Q. Nguyen, B. J. Ronchetti, W. M. Sauer, E. M.
Schwarz, and M. T. Vaden. Ibm power6
microarchitecture. IBM J. Res. Dev., 2007.

[20] W. Liu and B. Schmidt. Parallel design for
computational biology and scientific computing
applications. IEEE International Conference on
Cluster Computing (CLUSTER 03), 2003.

[21] S. A. Manavski and G. Valle. Cuda compatible gpu
cards as efficient hardwarer accelerator for
smith-waterman sequence alignment. BMC
Bioinformatics, 9, 2008.

[22] P. L. Miller, P. M. Nadkarni, and W. R. Pearson.
Comparing machine-independent versus
machine-specific parallelization of a software platform
for biological sequence comparison. Comput. Appl.
Biosci., 1992.

[23] S. Needleman and C. Wunsch. A general method
applicable to the search for similarities in the amino
acid sequence of two proteins. Journal of Molecular
Biology, 48:443–453, 1970.

[24] W. R. Pearson. Searching protein sequence libraries:
comparison of the sensitivity and selectivity of the
smith-waterman and FASTA algorithms. Genomics,
11:635–650, 1991.

[25] W. R. Pearson and D. J. Lipman. Improved tools for
biological sequence comparison. In Proc. Natl. Acad.
Sci (USA)., pages 2444–2448, Apr. 1988.

[26] T. Rognes. Rapid and sensitive methods for protein
sequence comparison and database searching. Phd
Thesis, Institue of Medical Microbiology. University of
Oslo, 2000.

[27] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W. mei W. Hwu. Optimization
principles and application performance evaluation of a
multithreaded gpu using cuda. In PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming.
ACM, 2008.

[28] V. Sachdeva, M. Kistler, E. Speight, Tzeng, and
T.H.K. Exploring the viability of the cell broadband
engine for bioinformatics applications. Proceedings of
the 6th Workshop on High Performance
Computational Biology, pages 1–8, 2007.

[29] F. Sanchez, E. Salami, A. Ramirez, and M. Valero.
Performance analysis of sequence alignment
applications. Proceedings of the IEEE International
Symposium on Workload Characterization. IISWC
2006., 2006.

[30] D. Sankoff. The early introduction of dynamic
programming into computational biology.
Bioinformatics, 16:1:41–47, 2000.

[31] P. Sellers. On the theory and computation of
evolutionary distances. SIAM J. Appl. Match,
26:4:787–793, 1974.

[32] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147:195–197, 1981.

[33] G. Tan, N. Sun, and G. R. Gao. A parallel dynamic
programming algorithm on a multi-core architecture.
In SPAA ’07: Proceedings of the nineteenth annual
ACM symposium on Parallel algorithms and
architectures, 2007.

