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Abstract 

The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its 

personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During 

the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex 

applications such as Mobile Phones’ audio and video encoding, image and network processing. Due to the 

number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing 

toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are 

possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-

cores, because they are flexible and reconfigurable for specific software functions and easy to build 

homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are 

becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C 

to HDL and available for partitioning a HW/SW concurrent methodology.  

A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a 

programmable device. This research is, firstly represent different types of computer architectures in modern 

embedded processors that are followed in different type of software applications (eg. Multi-threading 

Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing 

a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-

systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the 

benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and 

executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However, 

the number of processors and their customizable configuration or hardware datapath being generated are limited 

by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been 

considered - Speed versus Area. 

For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and 

"function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-

processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary, 

the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story 

of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA 

devices in terms of different programs. 

Keywords:  

Soft-core, Multi-core, Co-design, Electronic-system-level, High-level-synthsis, Thread-level-parallelism, Data-

level-parallelism, Symmetric-multi-processor, RISC, VLIW, LEON3    
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Chapter 1 

 

Introduction 

 

1.1 Motivation 
 

In historical computing, the computer processor was based on vacuum tubes and started the design of stored-

program (Memory-Control-FUs) to form the fundamental of computer architectures known as von Neumann 

(1947) [1]. The vacuum tube was replaced by much smaller and reliable transistor in the 1950s. By the 1960s, 

electronic processing elements began to appear based on semiconductor devices as such many transistors in a 

chip to form an Integrated-Circuit (IC) and thus led to the generation of the microprocessor [2]. In accordance 

with Moore’s Law, the number of transistors on the same chip area nearly doubles every two years [3]. 

Following this trend for half a century, the silicon chips have become inexpensively and a lot more complicated 

designing and very elated computing problems can ever be solved. Over the decades, semiconductor devices are 

able to accommodate the whole system (CPUs, system-bus, peripherals and internal memory) to form an 

embedded system, known as System-on-a-Chip (SoC). SoCs are widely used in portable devices such as PDAs, 

digital cameras, GPS units, MP3 players, and smart phones; larger systems such as air traffic control and missile 

systems [4]. Embedded processors are CPUs typically used in an embedded system. These processors are 

usually smaller silicon space compared, sustain lower performance, and need much less power compared to the 

server or desktop CPUs. Smart phones are the perfect example of an embedded system. The embedded 

processor is typically as an Application-Specific-Integrated-Circuit (ASIC) hard-core which built into a 

"floorplan" of a fixed IC or a soft-core that described by the Hardware-Description-Languages (HDLs) for a 

customized configuration then synthesize into a programmable fabric logic such as Field-Programmable-Gate-

Array (FPGA) devices. During the last decade, multi-processor systems became available in computers and in 

Multi-Processor System-on-Chip (MPSoC) devices to achieve higher computing performance; and they continue 

to grow in further on the market [5]. At the present time, electronic products have become much more 

competitive and the product life cycle much shorter [6]; therefore engineers attempt to search a cheaper, easier 

and faster way to develop new chips. Reusable designs such as Intellectual-Property (IP) cores are instrumental 

when designing a new chip. While the post-fabrication of the chips has been greatly improved, the numbers of 

the transistors that can be fitted in the same area on a die chip are increased. In addition, the overall energy 

consumption of the chips has been reduced due to the dynamic power decrease when transistor becomes smaller 

and leakage current problem has also been solved by Triple-oxide approach [7, 8]. However, Moore’s Law will 

not be sustained forever as physical limitations cause problems such as heat dissipation. Moreover, it is 

expensive to design and fabricate a much more powerful processor on a single chip. Other factors such as, the 
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clock rates of embedded CPUs are increased slowly up to Gigahertz and now parallelism in multiple cores will 

be via for prospect development in the future. Thence, research trends have been moved on "Multi-core 

Processor" rather than the single-core architecture. Each of the cores executes its own instruction stream 

concurrently to speed up the program execution for parallelism computing, such as the "Thread-Level-

Parallelism (TLP)". By using a large number of presenting manufactured processors to gain a better 

performance is a valid design avenue. FPGAs contain tens of thousands reprogrammable logic elements are this 

kind of device that possible to implement such MPSoC systems on a programmable chip. Another method is the 

use of the "Electronic-System-Level (ESL)". This design flow typically composes a complex part such as a 

mixture of Hardware-and-Software (HW/SW) synergism which is widely utilized in the modern SoC systems 

[9]. As field-programmable logic turned out and gate-level interconnection of the hardware circuits may 

configure by HDLs, software programs are able to generate in the hardware circuit. Meanwhile, the compiler-

based language of RTL algorithm synthesis has greatly improved and become matured during the last decade, C 

programs has been enabled to convert to HDLs to generate hardware units easily. To follow these perspective, 

electronic designers can implement software in high-level objectives and shift HW/SW boundaries to make the 

tradeoffs to achieve desired performance [10]. However, a versatile system-level toolchain is indispensable for 

the "HW/SW Co-design", such as partitioning theme needs to be deceived in which part of the system is better to 

be implemented in hardware or software piece and each component maybe represents in different description 

language to its corresponding portion [11]. 

 

 

1.2 Aims and Objectives of this Research 
 

This thesis effort evaluates the performance and area of embedded processors on modern developed FPGA 

boards. The embedded "processor-systems" within the FPGA are able to various architectural patterns so as to 

satisfy distinct digital processing requirements, which are classified into three levels of single-core, multi-core 

processor and Co-design that corresponds to different computing methodologies. The objectives of the 

following illustrations and experiments are to present the efficient resolutions for divergent computational 

methodologies in embedded processors on FPGA devices.  

 

First of all, before considering any speed-up implementations, there is always at least one general-purpose 

processor in the system, hence the Single-core Processor performance ought to be reviewed. The evaluated uni-

processor for the following adhering experiments is LEON3, LE1, and Tiger-MIPS soft-cores respectively. To 

do this, all adopted benchmark suits are being executed in those processors and synthesized on FPGAs to 

compare their performance and area. Secondly, for Multi-core Processor designs, I introduce Symmetric Multi-

Processor (SMP) systems of LEON3 Multi-Processor (MP) and LE1 Chip-Multi-Processor (CMP), which 

"parallel computing" codes can be applied and improved by a number of these processors. In the other hand, it 

also can be implemented in a HW/SW platform by assigning a function to accelerate in the hardware. Thirdly, 

"function complexity" codes such as CHStone (a collection of programs see page 56 and 87) are being profiled 

and executed in the LegUp HW/SW Co-design system. Finally, to compare and conclude those two benchmarks 

manipulations (Data and Function levels) that performs in different processor-systems (Multi-core and Co-
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design) in terms of their execution times (Speed) and FPGA logic blocks cost (Area). Thus, lead to the art of the 

Speed&Area Tradeoffs.  

 

The LEON3 and LE1 soft-cores are chosen because they are multi-processor available to be connected and open 

source; the LEON3 SoC platform provides a rich reusable IP library for designs [12]; and LE1 is a new 

development soft processor in our research department and highly paramertisable architectural [13]. LegUp 

framework is chosen for the Co-design (with a Tiger-MIPS soft-core [14]) because the tool is new development 

of C to HDLs and also open source codes; and gives a large amount of American-National-Standards-Institute 

(ANSI) C programs. For the software applications of this thesis, I concern only about Integer Arithmetic 

programs. For mapping onto this software on the processors, the examined benchmarks are arranged for data 

and function intensive programs. Convolution-Matrix (CM) and Lempel-Ziv-Welch (LZW) are widely used in 

image format; both of them are "data-intensive" algorithms in digital processing. CHStone are selected from 

wide-range applications in region of arithmetic, media processing, security and microprocessor [15]; they are 

"function-intensive" algorithms in digital processing. For Speed&Area tradeoffs burden, I formulate a proper 

solution of automated Design-Space-Exploration (DSE) for the FPGA-based MPSoC design and verify the 

subject.  

 

1.3 Objectives of the Research and Goals 
 

The objectives of the necessary research to achieve the stated aims are as follows:  

 

 Define the types of parallel computing 

This describes different types of parallelism (Flynn’s Taxonomy) for multi-core processor systems.  

 

 Overview of the ESL design 

This describes Behavioural / ESL design process that leads to HW/SW flows for Co-design systems. 

 

 Overview of FPGA silicon devices  

This describes the fundamental FPGA structures and states the advantage / disadvantage comparing to 

ASIC devices. Moreover, make reliable resource predictions on FPGAs. 

 

 Overview of the embedded processors on FPGAs 

State the popular used of hard/soft processors and presented their specifications (eg. architectures, bus / 

FUs support, and LUTs utilization) including of available FPGA boards to be targeted at different 

vendors. 

 

 Define the different embedded processor-systems on FPGAs 

There are Homogeneous: multi-core architecture of all general-purpose processors, Co-design: a 

general-purpose processor with a hardware accelerator, and Heterogeneous: multi-core architecture of a 

mixture type (hard/soft) of cores.      
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The goal of the experimental work consists following: 

 

 Research of computing methodologies   

This describes the methodologies of Data-Level-Parallelism (DLP) for data-intensive algorithms and 

High-Level-Synthesis (HLS) for function-intensive algorithms. They are sub-modus of TLP / ESL 

design and central motivations of this thesis work. 

  

 Design Space Exploration on FPGAs  

State the formulations on FPGA platforms associated that area increasing corresponding to input 

applications with program speed-up of Speed&Area tradeoffs and an equation for converting 

Altera&Xilinx logic cells for the purpose of comparing resource utilizations between the two vendors. 

 

After these definitions of this thesis work, the following experiment is presented: 

 

 Classify soft-core processors 

This describes the configurations of LEON3, LE1, and Tiger-MIPS cores for the following experiments 

in this study. Homogeneous LEON3 and LE1 multi-core systems will be built for data-intensive 

programs. A fixed configuration Tiger-MIPS core comes with LegUp-system, which forms a general-

purpose processor in that system.  

 

 Benchmark programs 

List all the benchmark suits in this thesis study. More detail of DLP and HLS programs will be 

described in each chapter of different implementations. 

 

 Benchmarks of all programs in SW flow and resource utilization of single-core  

This experiment will run all the C codes in each processor and provide the average execution times in 

each of them, thus the speed of each soft-core is obtained. As resource information is recorded from the 

synthesis results, these will evaluate Speed&Area Efficiency from DSE equations. 

 

 Benchmarks of DLP in Parallel-SW flow and resource utilization in LEON3 and LE1 

This experiment will run the CM / LZW programs (DLP) in LEON3 and LE1 multi-core processor 

systems. Hence, speed-up ration by the number of processors in each system are obtained. As resource 

information in each system is recorded from the synthesis results, these will evaluate Speed&Area 

Efficiency from DSE equations.  

 

 Benchmarks of HLS in HW&Hybrid flows and resource utilization in LegUp Systems 

Using the code profiling tool to identify the most called functions to the CHStone programs (HLS) 

programs; and execute HW / Hybrid flows according to results of profiled in LegUp systems. As 

resource information in these systems is recorded from synthesis results, these will evaluate 

Speed&Area Efficiency of SW/HW/Hybrid systems from DSE equations.  
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The logical schedule of this thesis is represented in Fig 1.1.   

 

 

 

Figure 1.1 The fundamental design-flow of this thesis work. 

 

 



22 

_________________________________________________ 

 

 

1.4 Organization of the Thesis 
 

The research presented in this thesis is organized in six chapters: 

 

Chapter 2: This chapter a) outlines the history and breakthrough of the computer technology for this thesis 

work demands, b) compares the advantages and disadvantages of ASIC&FPGA design flows; c) defines parallel 

computing architectures, d) introduces abstraction-levels in ESL design e) presents physical structure of FPGA 

devices and configurable, f) List currently popular hard and soft-core embedded processors on FPGAs, their 

architectural characterizations, and resource usages lead to change maximum frequency, g) state architectures of 

multi-core processor system and memory types on FPGA design.  

  

Chapter 3: This chapter introduces detail of the computing methodologies: DLP and HLS. For the DLP flow, 

how a program executing a separated data in multi-core processor is introduced. These state the art of the data-

intensive computing for the SMPs method in chapter 5. For the HLS process, such as Scheduling, Allocation, 

and Binding operations from behavioural to RTL descriptions in Co-design are introduced. These establish the 

art of the function-intensive computing for the LegUp-system in chapter 6. Moreover, I present an approach to 

measure properties of the processors on FPGA-based by using consequence equations. This terminology defines 

the Speed&Area Efficiency estimation across each methodology of all design flows in chapter 4, 5, and 6 

respectively.  

 

Chapter 4: This chapter introduces soft-core processors: LEON3, LE1, and Tiger-MIPS theirs configurable 

parameters, computer architectures, bus support, and hierarchic memory components for essential design 

implementations. To determine the default LEON3 and LE1 cores in this research used, a large number of C 

source codes are introduced in the following experimental course. These programs will execute in those single-

core processors respectively of the SW flow to obtain the average execution times to examine the performance 

of each processor. The Speed&Area Efficiency of the area breakdown on silicon against the mean execution 

times in each of the processors will be represented. FPGA Platform: Altera Stratix IV EP4 (Tiger-MIPS) and 

Xilinx Virtex-6 LX240T (LEON3&LE1). Both of the Altera&Xilinx FPGAs are 40-nm process. 

 

Chapter 5: This chapter introduces the comparisons of Instruction-Level-Parallelisms (ILP) in LEON3 (32-bit) 

and LE1 (32*2-bit) cores respectively and configurability in multi-core processor system of LEON3 MP and 

LE1 CMP. The numbers of LEON3 and LE1 cores are arranged for SMP systems. The numbers of experimental 

cores are from 1 up to 6. Method of reading processor ID from each LEON3 or LE1 cores is introduced. This 

allowed a single program to be written with a dataset splitting across each available processor that recognized by 

a unique CPU identification. A parallel method of the Single-Program-Multiple-Data (SPMD) process of CM 

and LZW applications that developed for this study is introduced. They will be executed in both systems of the  

Parallel-SW flow and results of the execution times and area. The Speed&Area Efficiency of the programs 

speeds up by the number of the cores in those two SMP systems will be presented and discussed. FPGA 

Platform: Xilinx Virtex-6 LX240T (40-nm process).  
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Chapter 6: This chapter represents an HLS tool: LegUp and illustrates its architectural components, the Tiger-

MIPS processor can be augmented with a hardware accelerator. CHStone benchmark collections are provided 

well example codes for hardware generations in HW/SW Co-design. Initially, profiling codes using 

Kcachegrind tool to decide which function of the programs to be accelerated in the Hybrid system. The non-

profiled codes will execute in HW (LegUp-HW) flow; and the most and the second called functions in Hybrid1 

and Hybrid2 (LegUp-Hybrid) respectively. The Speed&Area Efficiency of HW&Hybrid1&Hybrid2&SW flows 

in LegUp-systems will be presented and discussed. FPGA Platform: Altera Cyclone II Family (90-nm process). 

 

Chapter 7: In this chapter, I summarize the characterizations of LEON3, LE1, and Tiger-MIPS soft processor 

configuration on FPGA-based and the performance evaluation of each uni-processor in chapter 4 and lead to 

compare their advantage and disadvantage in terms of computing results. Moreover, to summarize the 

Speed&Area Efficiency of the DLP / HLS process in chapter 5 and 6 respectively. Moreover, CM and LZW 

programs can be implemented in both of the methodologies will be a good example to be compared and 

discussed this affair. Furthermore, state any remarks or further works for the following computational flows that 

will promote to enhance the processor-system designed for FPGA-based. 
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Chapter 2 

 

Background Research and State of the Art  

 

2.1 Introduction 

 

Computer technology has risen in the world around the 1950s. In the beginning, machine code (assembly 

language) was the only means of programming a computer. When ICs were introduced in the 1960s to form the 

earliest microprocessors, C programming started to be developed to translate high-level (human) language to 

machine instructions. Computer architectures were defined by Michael J. Flynn in 1966 [16]. There are different 

types of parallel computing architectures: Bit-Level, Instruction-Level, Data-Level and Thread-Level paralleling. 

The "Bit-Level" were then implemented by doubling the word size of instruction sets during 1970s until 1985 

when VLSI microprocessors were developed. "Instruction-Level" is basically the instruction pipelining 

organizations of the CPUs, some of them such as Superscalar and Very-Long-Instruction-Word (VLIW) 

architectures (were invented by J. Fisher in 1983) [17] have parallel instruction sets to achieve very high 

performance. However, Bit-level and Instruction-level implementations of the microprocessors are "internal 

parallelism" which usually fixed by the manufacturers; and Data-level and Task-level implementations are 

"programming parallelism" that  typical customizing by software engineers.  

 

There are two main types of semiconductor devices for ASIC and FPGA platforms. ASIC devices are integrated 

circuit designed for particular applications, rather than intended for general-purpose. Historically, an ASIC 

commercial Intel 4004 4-bit microprocessor was first introduced in 1971 by Federico Faggin [18]. FPGAs 

(general-purpose logic) are ICs designed to be reconfigured by a customer after standard mass-production. 

FPGAs are configured to accommodate any digital function and results attractive performance than ASICs for 

some specified applications. FPGAs contain programmable logic components, called Configurable-Logic-

Blocks (CLBs) that are fundamental building blocks to be configurable interconnected together. It appeared in 

the mid-1980s [19] and the first commercial FPGA devices – XC2064 was released by Xilinx Inc. in 1985 [20]. 

The XC2064 had only 64 CLBs with 3-input LUTs [21]; after that, FPGA device engineering continued to grow 

during the mid-1990s; meanwhile, telecommunications for data processing and dedicated applications 

developed rapidly. Around the same time, HLS started to be researched and became commercially available by 

Synopsys (an EDA company) as Behavioural Compiler in 1994 [22]. Since the speed and size capacity of 

FPGAs had been greatly succeeded, the reusable IP cores and platform-based design started to rise in the late 

1990s [23]. During the 2000s, there had been shifted for the fast ESL algorithm modelling that facilitate 
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synthesis, verification, and debugging of complex FPGA and SoC [22]. The algorithmic compilers (C to RTL) 

for HLS toolsets were released in 2004 [24].  

The FPGA or SoC implementations usually include a number of embedded processors (hard or soft-core), DSP 

building blocks, and other IPs. Processors in embedded system come in three main categories: Microprocessors 

(µP), Microcontrollers (µC), and Digital-Signal-Processors (DSP). Microprocessors (32~64-bits) are standard 

processors without the memory and peripherals. Microcontrollers (8~32-bits) have built-in memory, peripherals, 

and many other components. Digital signal processors (8~64-bits) are specially designed for processing 

complete-intensive applications such as audio in speech signal processing and video in digital image processing. 

The wide ranges of the common architectures in embedded processors are µPs: x86, ARM, Blackfin, MIPS, 

PowerPC, and SPARC; DSPs: SHARC and SigmaDSP; µCs: AVR and PIC.  

 

In contrast to FPGAs, ASICs demonstrate superiority in terms of speed and smaller chip sizes, are ideal for high 

volume applications; usually have longer pipeline depths (eg. The Krait processor has 11-stage pipeline [25]) 

and able to be clocked at higher frequencies. At the present time, the high-end hard (ASIC) processors have 

optional 1, 2, 4 cores of 32-bit ARMv7 Cortex-A9 processors with 8-stage pipeline that maximum clock rate is 

around 1.2 GHz, optimized Level 1 and up to 1MB Level 2 Caches [26]. The advantages of FPGA soft-core 

processors comparing to ASIC hard-core within SoCs are customizable components (multi-processor support, 

buses, peripherals, internal memory, and controllers for above), obsolescence mitigation (open HDL codes for 

the reconfiguration), and hardware acceleration (hardware and software implementations and tradeoffs). 

However, for advanced embedded processor designs, the design toolchains are more numerous if the designers 

intend to make a hardware and software platform (eg. Co-design systems); or a specific variable type of IP cores 

in a platform (eg. heterogeneous multi-core systems), yet technical programming and compilers are far more 

complicated to be solved. Most of FPGA manufacturers embed a physical core (hard) and a reconfigurable 

fabric core (soft) into the FPGA silicon. To the popular FPGAs, hard processors such that the Power PC 

405/440 cores embed on the Xilinx Virtex 4/5 families and ARM Cortex-A9 embed on the most of Altera 

FPGAs and Xilinx Zynq-7000 SoC [27]; soft processors such as the Microblaze core is synthesisable on the 

Xilinx families and Nios I/II or Cortex-M1 on the Altera families. Many companies, such as Gaisler Aeroflex 

supports embedded soft-cores (LEON3/4) and targeting to most FPGA vendors. Unlike hard-cores, soft-cores 

offer a wide range of flexible components, and re-programmable, and FPGA device compatibility. For example, 

the Microblaze processor has multiple options for FPUs, MMU, and configurable caches to name a few; and the 

clock frequency is around 168 ~ 342MHz [28], depending on the FPGA silicon platforms. In general, the 

operating frequencies of FPGA soft-cores are much slower compared to ASIC hard-cores. More detail of ASIC 

and FPGA processors in embedded systems are presented in later in this chapter. 

 

Designs of ASIC&FPGA are generally implemented in a HDL such as Verilog (1986) [29] or VHDL (1987) [30] 

HDLs appeared to describe the functionality (RTL models of digital logic). Standard-cell ASIC designs are able 

to perform complex arithmetic faster than FPGA implementations along with lower power consumption and 

smaller chip size. However ASICs are expensive to make due to high Non-Recurring-Engineering (NRE) and 

their design logic cannot be easily altered once the devices are fabricated. On the contrary, FPGAs by using 
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state of the art silicon cells are programmable and allow for reconfiguration and reduced time to market. 

Furthermore, FPGA vendors provide whole silicon IP ecosystems and developing environments. The 

comparison of ASIC&FPGA Design flows have shown in Fig 2.1; FPGAs has shorter design time due to a 

sophisticated enumeration of the software for synthesis, timing analysis, and Place-and-Route (PAR). In ASIC 

design flow, such as Design for Testability to assure high reliability [31] and gate-level simulation in the process 

within the lowest level of abstraction are essential then the domain will be exceedingly slow and complex. ASIC 

design tools such as Computer-Aided-Design (CAD) system which is much more complex than general FPGA 

design tools. In addition, there is a time to wait for the chip manufactures and cannot be changed after 

submission to fabricate. However, the disadvantages of FPGAs are lower performance, larger sizes used, and 

more power consumption than ASICs. In summary, FPGAs cost less for small and medium volume target 

applications (eg. automotives and wireless communications); and when electronic devices come to high density 

designs for consumer appliances (eg. game consoles, smart phones, desktops and workstations), ASIC devices 

are cheaper in overall.   

 

 

Figure 2.1 ASIC&FPGA devices Design flows. 
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2.2 Types of Parallelism 

 

There are many types of parallelism for computing architectures. They are typically classified into four 

categories, Single-Instruction-Single-Data (SISD), Single-Instruction-Multiple-Data (SIMD), Multiple-

Instruction-Single-Data (MISD), and Multiple-Instruction-Multiple-Data (MIMD), also known as "Flynn's 

Taxonomy" proposed by Michael J. Flynn [32, 33], shown in Table 2.1. The SIMD process is often used DSP 

resources to be the hardware to execute parallel data streams; the MISD is un-usually model and rarely used. 

The MIMD is the most common type in parallel programming by using many processors and SPMD and VLIW 

are other types of MIMD. 

 

 Single Instruction Multiple Instruction 

Single Data 
SISD 

1 CPU - 1 program/data 

 

MISD 

1 CPU - 1 program/data 

 

Multiple Data 

SIMD 

1 CPU - 1 program/distributed data 

shared/distrusted memory 

 

MIMD 

Multiple CPUs – tasks/distributed data 

Multiple CPUs – 1 program/distributed data 

shared/distrusted memory 

  

Table 2.1 Flynn’s Taxonomy. 

 

2.2.1 Instruction-Level-Parallelism (ILP) 
 

Instruction sets are implemented in multi-stages in a processor. The overlapped instructions of an N-stage 

pipeline can be scheduled by N different instruction streams on N clock cycles. A simple Reduced-Instruction-

Set-Computing (RISC) processor typically has 5-stage pipeline, I-Fetch, I-Decode, Execute, Memory-Access, 

and Writeback has shown in Fig 2.2. The longer instruction sets to be paralleled is called Very-Long-

Instruction-Word (VLIW), for this action, the hardware resource (ALUs and MULs) are highly required because 

that multiple operations (eg. addition, multiplication, and loads) often execute at the same time. The VLIW 

implementation is a type of the ILP that said to multiple instructions being executed concurrently per clock 

cycle rather than a single set.  

 

 

Figure 2.2 A 5-stage instruction pipeline. 



28 

_________________________________________________ 

 

 

2.2.2 Data-Level-Parallelism (DLP) 
 

A multi-core processor system performs the same task on distributed data segments across multiple processors 

simultaneously, which is Data-Level-Parallelism (DLP), also called "data-parallelism". SIMD processors are 

the majority type of DLP and a vector machine (Datapath) is widely added to support a main CPU to manipulate 

massive-parallel arithmetic. There is another way of data parallelism: Single-Program-Multiple-Data (SPMD), 

disturbing databases are implemented in a multi-core processor system and associated separated data are 

assigned by a conditional statement across each core. SPMD machines are usually utilized to manage large 

amount of data streams in parallel processing CPUs. The DLP process is widely used in SMPs, the figures and 

pseudo codes are shown in Fig 2.3. 

 

 

  

 

Figure 2.3 Data-parallelsim of SIMD and SPMD. 

 

 

2.2.3 Thread-Level-Parallelism (TLP) 
 

Thread-Level-Parallelism (TLP) is the most powerful and common model for parallel computing. It is another 

form of parallelism, comparing to DLP, a program parallelized by functions (or threads) that processes the 

different task across each core in a multi-processor system simultaneously and each processor executes 

disturbing process as its instruction is responding (eg. MIMD), which is also called "task-parallelism". Unlike 

SIMD, the MIMD system is asynchronous paralleling. The associated tasks are also assigned by a conditional 

statement across each processor, as shown in Fig 2.4. To the memory system, MIMD architectures can be 

greatly improved in distributed memory. Moreover, the SPMD method is a special case of MIMD, and 

sometimes people named it as TLP process; however, we normally call it "DLP" instead of TLP across whole 

sections in this thesis work.    
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Figure 2.4 Task-parallelism of MIMD. 

 

 

2.3 State-of-the-Art in Electronic-System-Level (ESL) Design 
 

Electronic-System-Level (ESL) methodologies are implemented in complex systems for SoC or FPGA designs 

by using high-level language descriptions to control low-level rather than alone with the traditional RTL 

approach. This allows designers to optimize performance and area by converting high-level computing functions 

into hardware circuits; and therefore fast the time to market. The digital designs in five abstraction levels are 

from high to low: 1) System-level (Structures / Modules), 2) Algorithmic-level (Equations / Behavioural), 3) 

Register-Transfer-Level (RTL), 4) Gate-level (Netlist), and 5) Layout-level (GDSII). The top-to-down ESL 

design process is shown in Fig 2.5.  

 

 

 

Figure 2.5 The ESL design flow and abstrcation levels. 
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At higher levels description, software such as C/C++, and Matlab to describe Functional-Level (micro-

architecture) of the architecture components (eg. memories, processors, ALUs and buses) for an entire electronic 

system; and SystemC (2000) [34] or VHDL to describe Architecture-Level (logic) of functional blocks; and 

Verilog to describe Implementation-Level (circuit) of gates and wires. In ESL synthesis process, the high-level 

codes define the structure of the system (behavioural synthesis) and transform un-timed or partially timed 

functional modules into timed (logic synthesis) RTL implementations which are directly used to create a gate-

level description.  

Many ESL designs are implemented with HW/SW complementary methodologies for custom tradeoffs which a 

part of C to HDL are compiled and synthesis to generate hardware dataflow; and the rest of the C code is 

compiled to assembly language as usual in the software. These designs are such as NISC technology (C to 

Verilog) [35], SPARK (C to VHDL) [36], and LegUp (C to Verilog) [37] toolsets. They are referred to "High-

Level-Synthesis (HLS)" frameworks and optimize the HW/SW implementations. However, the design process is 

the lack of a unified HW/SW representations that invites to the difficulties of modelling, validation, and 

refinement in the entire system. Generally speaking, the most common modelling language currently used for 

ESL design is SystemC that is easier to communicate through different abstractions. 

 

2.3.1 Hardware/Software (HW/SW) Co-designs  
 

In Co-design systems, hardware accelerators are separate units from the main processor, which to perform 

complex computations functions in the hardware. The hardware devices often have outstanding execution 

timing than the software. The chosen functions that most time spent in the program to perform into RTL 

hardware datapath to increase the total performance.  

 

 

 

Figure 2.6 The HW/SW Co-design system. 
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To this computing methodology, the accelerator and a general-purpose processor running the hardware and 

software portions of the same programs concurrency and their contingents are able to partitioning; and the 

systems are able to connect multiple accelerators execute in parallel to enhance the performance, a global cache 

is typically implemented to slave of connected bus and shared data between accelerators and the processor, as 

shown in Fig 2.6.  

 

However, in this thesis work, I regard to the dual-component of a hardware accelerator / a general-purpose CPU 

only. Specific examples of hardware accelerators are video card or graphic card in a desktop computer. For the 

embedded system, HW/SW implementation controls are widely used in ESL / HLS designs and built on many 

FPGAs or SoC chips. 

 

 

2.4 FPGA Devices Overview 
 

Previously, I have introduced the fundamental pieces of FPGAs, which are CLBs. The logic blocks wired each 

other in many different ways to form complex combinational FUs. The modern FPGAs combine hard or soft-

core microprocessors, interconnections with the number of CLBs, and related IPs to form a “Programmable 

SoC”. Nowadays, "Xilinx" and "Altera" are FPGA manufacture leaders and "Lattice" is the third ranked in the 

world market. To the present high-end FPGA boards, 28 nm layout technology has been utilized on the latest 

FPGAs version such as Xilinx Virtex-7 and Altera Stratix V with bandwidth up to 2,784 and 28.05 Gb/s 

respectively; and both of them contain more than 2 million CLBs of equivalent gates [38, 39] that can be fitted 

to fulfil complex computing and reusable for the designs.   

 

 

2.4.1 FPGA Fundamental Structures 
 

Imaging a FPGA is a large "memory chip” and software engineers can write some programs to be stored to 

control it, and let it become a computer. The FPGA hardware architecture consists of a number of, memory 

blocks, CLBs, DSP units, routing matrix, and I/O pads. The majority hardware device of FPGAs is based on the 

Static-Memory (SRAM) fabricated in CMOS technology and configuration bitstream can be stored. Since, it is a 

"volatile" memory type; the data in the gates may lose when the power is switch-off.  

 

There are two types of memory within FPGAs: distributed and block memory. The "distributed memory" is 

implemented by a number of registers, also named as "CLBs". A number of logic cells form in a CLB. CLBs are 

the fundamental building blocks of FPGAs that permanently sketch to the hardware target board and depending 

on different manufactures within different families. The "block memory" is a solid SRAM memory block 

located on the FPGA floorplan. Furthermore, typically an external FLASH memory for AES encryption stored.  
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The name of Altera CLBs is different, called Logic-Array-Blocks (LABs). A FPGA CLB/LAB contains a 

number of logic blocks, is called Logic-Cell (LC) in the Xilinx vendor or Logic-Element (LE) in the Altera. 

LC/LE usages determine the resource cost of a system. The example of the FPGA hierarchical structure has 

shown in Fig 2.7, based on the Xilinx vendors. A numbers of an N-input Look-Up-Table (LUT) and D-type 

Flip-Flops (FFs) to construct a "Slice"; and two slices to form a "CLB". For Xilinx Virtex-5/6, a slice consists 

of 4 LUTs and 4 FFs (1-bit registers). In earlier Xilinx devices, a slice includes only two 4-input LUTs for a 

combinational logic and two FFs. However, the number of the input for a LUT; and the number of LUTs and 

FFs per slice can be increased to obtain higher performance. In high-end FPGAs of Virtex-6 families, the 6-

input LUT has been manufactured; and four 6-input LUTs and FFs have been formed in the slice [40].  

 

  

 

Figure 2.7 FPGA fundamental stuctures. 

 

Moreover, DSP blocks are very dense and special FUs for multiplication arithmetic. Since multiplicand 

implementations in the LC/LE resource are expensive, use the DSP functionalities efficiently can preserve 

several hundreds of the logic cells; especially in video / audio data processing applications.  

Generally, CLB keeps the same distance each other for the routing and numbers of interconnecting wires are the 

same in all channels. For Place-and-Route (PAR) synthesis, the routing signals are vertical and horizontal 

parried with switch boxes at interconnections. An I/O block contains input / output registers, MUXs, and clock 

signals. FPGA I/O blocks are surrounding the array of CLBs and interface to external components. FPGA 

clocking resources are clock generation and clock distribution. The clock generator is typically controlled by an 

analog circuit: Phase-Locked-Loop (PLL) with the Voltage-Controlled-Oscillator (VCO) or digital circuit: 

Delay-Lock-Loop (DLL) to generate a desired clock phase or frequency. The clock network distributes in global 

clock lines, regional clocks, and IO clocks. The details of the FPGA clocking resource is not in this research. 
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2.4.2 Advanced FPGA Features 
 

To the higher level view of the FPGA structures, the number of CLBs are reconfigured and interconnected to 

comprise more compound functionality and several fixed IPs (floorplan) on the silicon, as shown in Fig 2.8. 

Many vendors develop hard / soft processors or special IPs to realize a customizable processor-system. The 

advanced FPGA components offer the flexible designed products to meet right requirements, faster time to 

market, and performance / resource tradeoffs. Moreover, a group of I/O blocks to frame an I/O bank. The I/O 

bank architecture plays a key role when FPGAs interface other external components. The detail of the FPGA 

I/O standard is not in this research. 

 

 

 

Figure 2.8 FPGA advanced stuctures. 

 

Each size of the soft processors / IPs breakdown of FPGA fabric is ordinary pre-estimated to avoid out of 

resource utilization. As a general rule, the higher resource usage results, the longer routing distance and timing 

delays between CLBs, and the harder to process the design (synthesis and PAR); these will slower the maximum 
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system clock. It can be solved by placing registers along the datapath to balance delays between registers, 

however, it will may increase the size of the design still and most of the soft IP cores design tool do not provide 

this technique. In Fig 2.9, it is shown that the longest wiring (routing) delay determines the maximum 

frequency on an FPGA.  

 

 

Figure 2.9 The routing delays and maximum frequency within FPGAs. 

 

In general, for FPGA resource estimation, it is recommended to overestimate the total resource usage may be 

mapped onto FPGA boards. Typically said < 50% FPGA utilization of the initial estimation, because the 

prototyping will may change and some diagnostics logic may will be added in further. Moreover, each CLB may 

difficult to wire together in the PAR and degrade the execution time of the programs when devices are too full 

of the logic cells, and said < 75% FPGA utilization of the final design [41]. 

 

 

2.5 Embedded Processors on FPGAs 
 

There are two types of the embedded processors on the FPGA-based designs: hard and soft cores. To compare 

soft vs hard-core on FPGA devices, the advantage of the soft-processors are utilized standard mass-produced, 

the lower FPGA devices cost, and the numbers of cores are customizable. However, the disadvantages are lower 

processor performance, higher power consumption, and larger area, because in the most part that there are 

breakdown most of the LC/LE resource (eg. MicroBlaze occupies around 1,200-5,000 LUTs on Xilinx FPGAs 

and PowerPC is a fixed gate-level IP) within the FPGA.  

 

Through the embedded processors modern today, there are increasing interest for the "more than one core" 

system designs in one chip die in order to accomplish superior performance. There are three sorts of 

combinations to attain more than one core system: "Multi-core Processor (Homogeneous)", "Co-design 

Processor (Hardware/Software)", and "Multi-core Processor (Heterogeneous)". The ideal example of those 

architectures and prototypes are represented in Fig 2.10.  
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Figure 2.10 Embedded processor-systems. 

 

To increase computational purposes by the hardware accelerator to perform function-complex programming 

(HLS), the Co-design system is appropriate to be used. The most common system of the multi-core processor is 

homogeneous; the processors are from the same manufactured and easily to be constructed. Homogeneous 

multi-processor system are favourable to be utilized in "data-parallelism". The most progressive system is the 

heterogeneous multi-processor, because each of the processors can match different applications to that core is 

best suited to be executed; thereupon to meet ultimate performance [42]. Heterogeneous multi-core processor 

are facilitated in "task-parallelism". However, they are hardly to be built up, due to very complex design tools of 

the software compatibility of the mixture IP components. To this thesis work, I only concern the homogeneous 

case in the study. 
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2.5.1 Hard and Soft Processors 
 

The hard-core also refers to ASIC processors, such as Power PC 440 and ARM Cortex-A9 are embed "physical" 

core and dedicated part of the integrated circuit (floorplan) into the FPGA silicon. The popular fabricated hard-

core CPUs on FPGAs are presented in Table 2.2. 

 

Processor Developer Architecture Bits 
Pipeline 

Stages 

L1/L2 

Cache( KB) 
MMU FPU 

Clock 

rate/MHz 
Area/𝐦𝐦𝟐 

PowerPC 

440 
AMCC Power 

Architecture 
32 7 32/256 ˇ ˇ 667 6.0 

PowerPC 

460 
AMCC Power 

Architecture 
32 7 32/256 ˇ ˇ 600~1000 1.23 

Cortex-A7 ARM ARMv7-A 32 8 8~64/1000 ˇ ˇ >1000 0.45 

Cortex-A9 ARM ARMv7-A 32 8 ?/8000 ˇ ˇ 830 1.5 

4KEc MIPS MIPS32 32 5 
Instruction/ 

Data 8/8 ˇ ˇ 233 2.5 

4Kc MIPS MIPS32 32 5 
Instruction/ 

Data 8/8 ˇ ˇ 190 3.42 

 

Table 2.2 Embedded hard-cores on FPGAs [43 - 46]. 

 

 

The soft-core also refers to FPGA processors, such as MicroBlaze, NIOS II, and LEON3/4 are built in 

“reconfigurable" and "synthesizable" cores then fit into the FPGA logic "fabric". They are frequently open-

source / proprietary with IUs, and optional MMU and FPUs [47]. In Table 2.3, outline the well known 

manufactures soft-core CPUs suitable on the FPGAs. 

 

Processor Developer Architecture Bits 
Bus 

Support 

Pipeline 

Stages 
MUL FPU Cache MMU 

Area 

(LUTs) 

MicroBlaze Xilinx MicroBlaze 32 
PLB, OPB, 

FSL, LMB, 
3, 5 opt opt ˇ opt 

1,200-

5,000 

PicoBlaze Xilinx PicoBlaze 8  no ˟ ˟ ˟ ˟ 190 

Nios II/f Altera Nios II 32 Avalon 6 ˇ opt ˇ ˇ 1,800 

LEON2 ESA SPARC-V8 32 AMBA2 5 ˇ ext ˇ ˇ 5,000 

LEON3/4 
Aeroflex 

Gaisler 
SPARC-V8 32 AMBA2 7 ˇ ˇ ˇ ˇ 

3,500-

6,000 

LatticeMico32 Lattice LatticeMico32 32 Wishbone 6 opt ˟ ˇ ˟ ~2,400 

Cortex-M1 ARM ARMv6 32 AMBA2 3 ˇ ˟ ˟ ˟ 2,600 

 

Table 2.3 Embedded soft-cores on FPGAs [48 - 51]. 
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Soft-cores are usually implemented with a HDL such as VHDL and Verilog. The benefit of using soft IPs 

includes configurability to optimize for suitability targeted applications, high-level of reusable design, reduced 

obsolescence risk, and simplified design modifications [52]. The probable configurability of soft-processors to 

be implemented in the following guidelines: 

 Instruction Architectures 

 Register Windows / Clusters with Functional Units 

 Instruction and Data Caches Support 

 Memory Mapping I/O (Virtual Memory) 

 Memory Type or Size and Peripheral Bus 

 Hardware Accelerator / Coprocessor to Perform RTL 

 Branch Predictions 

 

These parametrizable features in soft-cores are instantiated custom executed FUs (eg. IU & FPU with ALUs) 

[53]. However, different manufactured soft-processors may have different customizable and specifications that 

depends on the design purpose of the processors. 

 

 

2.5.2 Memory Architectures of the Multi-core Processor Systems 
 

The memory architectures in the processor-system is organized in a hierarchy system. There are two types of 

management: "caches" and "banks". The cache system is a block of temporary memory in the microprocessor 

that the access time is faster than the main memory, but slower than registers in the CPU. Since the 1980s, 

performance of the processors has been highly grown and the memories could not follow the CPU clocking 

speed [54], due to the data was likely to be used again, and it should have a small storage block that closed to 

the CPU; thus the data transfer time would be quicker and the performance had been improved. Some processor-

systems have several memory divisions in a local RAM that is called memory bank. It is a uniform slot for 

storage in that memory and determined by a memory controller to be accessed.  

 

In multi-core processor system, each core typically connects together with a system bus or crossbar switches 

with a main memory. There is two types of physical memory to be accessed: shared-memory and distributed-

memory, as shown in Fig 2.11. Uniform-Memory-Access (UMA) shared-memory machine is the most popular 

way to form a Symmetric-Multi-Processor (SMP) system. The earliest SMP machine was introduced by 

Burroughs’ MIMD D825 processor in 1962 [55]. In an embedded system, a Synchronous-Dynamic-Random-

Access-Memory (SDRAM) is widely used to form the main memory in the processor-systems, because it 

synchronized with the system bus, advanced generations are DDR SDRAM and the DDR2 and DDR3. In a 

shared-memory system, multiple cores where are connected with the bus interface and all cores can access a 

common memory symmetrically via load&store operations. In distributed-memory, each CPU employs a local 

memory and communicates through a network. 

 



38 

_________________________________________________ 

 

 

The advantages of shared-memory are easier to implement in a single address space and equal speed of the data 

flow between each processor when programs to be loaded and stored. However, the disadvantage is adding more 

cores, which can significantly increase traffic of the data access between each processor and the main memory 

that is called "data synchronization confliction" or "data overhand". This phenomenon usually occurs in 

load&store instructions of the CPUs in a single main memory system. The advantages of the distributed-

memory can access its own memory immediately and employ a large number of processors in the system will 

not cause data overhand. However, the disadvantage is difficult to implement with data communication between 

processors. In this study case, we consider shared-memory rather than distributed. 
 

 

 

Figure 2.11 The stucture of shared / distributed memory of the multi-core processor systems.  

 

2.6 Summary 
 

This introduction chapter briefly describes the history of computing technology that summarized in a milestone 

of Fig 2.12 with many significant breakthroughs and important emerged for embedded technologies. DLP 

programming of the SPMD implementation and domain of HLS designs from high-level algorithms to RTL 

synthesis that will be used in this study are illustrated. Furthermore, outlines the many advantages / 

disadvantages of FPGAs compared to ASICs and hard / soft processors in the example. In addition, the 

fundamental building blocks such as CLBs / memory blocks / DSPs and reconfigurable IPs alike soft-cores 

(logic cells) / hard cores (floorplan) on FPGAs are introduced. Moreover, the possible multi-processor systems 

that can be established are "homogenous multi-core processor" system to develop a data-parallelism solution or 

"Co-design processor" system to specialize a hardware accelerator to solve complexity function issues. These 

two computing methodologies generalize the aspirations of this thesis and their designed system may on 

different FPGA vendors. However, to evaluate their Speed&Area tradeoffs, a scheme definition and formulation 

are essential. More detail of them will be discussed in the next chapter. 
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Figure 2.12 The time-line of the computer technology. 
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Chapter 3 

 

Background of Methodologies and Implementations 

 

3.1 Introduction 
 

This chapter describes the details of DLP / HLS computing methodologies in the domain of the fulfilments of 

the computational subjects. To follow up the embedded processor-system structures, we should begin to look at 

different implementations that are working up for the specific purpose of the methodologies. The "DLP 

methodology" is for multi-processing that was originated to analysis of scientific research in massive numerical 

information and a classical solution by supercomputers of multi-core processor architectures. However, the 

"HLS methodology" is for creating digital hardware by high-level programming, which software engineers 

intended to validate and verify the hardware circuits based on software implementations; and lead to HW/SW 

Co-design architectures. Applications for embedded systems in DLP&HLS methodologies are video / image / 

audio / lossless compression of multimedia processing. 

 

3.2 Implementations of Data-Level-Parallelism (DLP) 
 

The data-intensive processing is a type of parallel computing that approach a huge amounts of data. This class 

of computing processing requiring multi-core general-purpose processors that divides a collection data into 

multiple segments across different computing nodes (cores) independently uses the same executable program in 

parallel [56]. The greater the aggregated data distribution, the larger number of cores, the more speed-ups are 

benefited.  

 

Applications of this computational process are usually called "Database" or "Big Data", typically TBs or PBs in 

size from the memory. Such applications for workstations or servers are World Wide Web search-engines, 

biological systems, and weather forecast. However, the size of embedded SoC or FPGA applications are relative 

small, they are purely data compression or encoding algorithmic (eg. Huffman coding, Convolution, Sampling, 

and Lempel-Ziv) are typically < 1MB in size. For this algorithm proposal, I apply the SPMD (also see the 

definition on page 27) implementation of the DLP methodology. SPMD machines are widely implemented in 

distributed and also shared memory.  
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Figure 3.1 Pseudo C codes for an 3-core of SPMD multi-processor system. 

 

 

An example of SPMD processing that is executing programs in a 3 multi-core processor system (CPUs 1, 2, and 

3) as shown in Fig 3.1. The program representing a pseudocode that operates the arbitrary algorithm with a for 

loop in separated elements of the array Num_Data concurrency in each processors. The "lower_limit" and 

"upper_limit" are the ranges in the number of data [Num_Data] and makes to each CPU of its own copy. Now, 

each CPU executes array [Num_Data] for its own value of the limit by reading the Processor ID (CPUID) in a if 

else statement, they operate in different parts of array simultaneously, thereby distributing the data among 

themselves. In this experimental case study, assuming that all spit-data are fully parallelizable and the fraction 

of the programs are directly proportional to the number of the cores; thus, the speed-up of a program does not 

affected by the "Amdahl’s Law". Additionally, configurations of each core are the same micro-architects such 

that the same resource models and performance. 

 

 

3.3 Implementations of High-Level-Synthesis (HLS) 
 

The HLS methodology is designed for function-intensive processing, because of the process often synthesizes 

the specified "function" in C to the hardware. This class of computing processing requires HW/SW compounds 

of acceleration units and general-purpose processors on a SoC or FPGA platform that the software is well for 

features and flexibility, while hardware is good for performance (also see the definition on page 30).  

 

Those applications are algorithm complexity by function-levels in mixtures of digital compression or encode / 

decode algorithmic for multimedia software codes, such as JPEG (including decode, Huffman coding, and DCT) 

and ADPCM (including encoding and decoding).  

 

 

if CPUID = "1" 

   lower_limit := 0 

   upper_limit := Num_Data/3 

 

else if CPUID = "2" 

   lower_limit := Num_Data/3 

   upper_limit := 2(Num_Data)/3 

 

else CPUID = "3" 

   lower_limit := 2(Num_Data)/3 

   upper_limit := Num_Data/3 

 

for i from lower_limit to upper_limit by 0 

   array [Num_Data] 
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HLS process (see Fig 2.5) automatically translates a behavioural description (set of operations and data 

dependencies) at the algorithmic level of to a structural description (FUs, memory elements, MUXs, and buses) 

at the RTL level under constraints. Behavioural descriptions are usually expressed using HDLs such as Verilog; 

an input specification is transferred by a compiler into a formal model that represented with a Data-Flow-Graph 

(DFG), where operations for data dependencies are easily identified. There are three main steps in HLS process: 

Scheduling, Allocation, and Binding [57], showing in Fig 3.2.  

 

  

 

Figure 3.2 The HLS design flow. 

 

The scheduler determines the instants at which the executions of the DFG operations start. The scheduler 

optimizes the design execution time or its FUs utilization such that the implementation cost is minimized. 

Datapath synthesis allocates operations to functional modules, variable to registers and connects the functional 

modules using MUXs. The aim of datapath synthesis is to minimize the amount of registers and MUXs. The 

results of scheduling and datapath synthesis are a structural description at the RTL level. This description is 

finally translated to gate-level using logic synthesis. 

 

 Scheduling 

Behavioral description does not include any information about resource and timing requirements and to 

provide such information, scheduling algorithms are employed. The basic idea of scheduling is to 
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distribute the algorithm operations such as additions and multiplications across DFG in such way that 

the given Resource-Constraints (RC) or Timing-Constraints (TC) is met. The fundamental concepts of 

un-constrained scheduling are As-Soon-As-Possible (ASAP), each operation scheduled into the earliest 

possible control step, and As-Late-As-Possible (ALAP), each operation scheduled into the latest 

possible control step that showing in Fig 3.3. In HLS, duration of FUs express in multiple of the system 

clock period that is called a control-step (c-step) for the scheduling length.  

 

 Allocation 

For datapath synthesis, generating structural datapath realization from scheduled DFG are the last steps 

of allocation. The allocation chooses FUs and registers or busses from the component library selecting 

by HLS tool the one that best matches the design constraints, depending on the synthesis tradeoffs.  

 

 Binding 

For datapath synthesis, generating structural datapath realization from scheduled DFG are the last steps 

of binding. Binding assigns operations to FUs, variable to registers, and data transfer to bus instance. 

Optimization with the aim of the cost of registers and connecting FUs such that the cost of interconnect 

like number of MUXs can be minimized (MUXs are expensive to implement in FPGAs using LUTs). 

Register binding more demanding because the set of values must be assigned to the minimal number of 

registers.  

 

  

 

Figure 3.3 ASAP and ALAP scheduling. 

 

Generally, ALAP scheduling produces less hardware and more execution time than ASAP scheduling. For 

constrained scheduling, one wish to synthesize a design subject to silicon area constraint (fixed number of FUs) 

and time constraint (fixed number of c-steps). RC scheduling is aiming to operate to c-steps such that the 

execution time is minimised for a given number of FUs. This requires optimal utilization of available hardware 

resources. Moreover, TC scheduling is real-time applications require system functions to be executed in a fixed, 

pre-defined time and the aim of synthesis is to minimise the number of FUs.  
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In this thesis work, a variety of powerful scheduling tool has been explored and created by J. Cong and Z. Zhang, 

System-of-Difference-Constraints (SDC). The advantage of SDC-based scheduler is a versatile scheduling style 

in different types of constraints including resource, timing, frequency, and latency under a mathematical Linear-

Program (LP) formulation framework [58]. This scheduling algorithm is promising to be used in LegUp design 

tools. 

 

 

3.4 Design-Space-Exploration (DSE) on FPGA-Based 
 

Any embedded processor-system may only to be designed on a FPGA vendor. However, to evaluate and 

compare its resource-level on different vendors are critical. I formulate an equation to represent the resource 

usages comparison between Xilinx and Altera that being used in this thesis work. The Design-Space-

Exploration (DSE) solutions of the area increased by programs speed-up for the global FPGA-based MPSoC 

design are introduced. Moreover, many factors such as the number of ALUs / MULs, memory size, bus 

structures, and versions of the design or synthesis tools will effectively result different area breakdown on 

silicon and the execution times.  

 

3.4.1 Xilinx and Altera Resource Usage Conversion 
  

Generally, the geographical features and interconnectivity types of Xilinx&Altera FPGAs are not the same. Also, 

the LC/LE structures between Xilinx and Altera are rarely the same, so basically it's difficult to compare these 

two objectives. However, there is a common regulation, it is usual to compare the number of LUTs and not the 

number of registers between different FPGA vendors. For the Xilinx Virtex-5/6 devices, a LUT can be 

configured as one 6-input LUT with one output, and with a register (some of them to be two 5-input LUTs with 

separated outputs) [59] is called "LUT Flip-Flop Pairs". The common figure is generalized in Fig 3.4. The carry 

logic (a Full-adder) is utilized to compute the programming arithmetic and the selection bit “S” is connected 

through the MUXs to be programmable. Note: 1 CLB = 4 LUT-FF Pairs.  

 

  

Figure 3.4 A Virtex-5 LUT-FF Pairs [60]. 
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For the Altera Stratix III/IV series, the portion is called "Adaptive-Logic-Module (ALM)" and that is more area 

effect than a LUT-FF Pairs of the Xilinx resource. It consists of an 8-input combinational logic, two registers, 

and two adders, as shown in Fig 3.5. The all-in-one combinational cell is divided between two Adaptive-LUTs 

(ALUTs) and consisting of a various combination (two independent 4-input LUTs or a 5-input and a 3-input 

LUTs) [60]. Note: 1 ALM = 2.5 LEs and 1 LAB = 10 ALMs.  

 

 

  

 

Figure 3.5 A Stratix III ALMs [60]. 

 

By advance, according to benchmark comparison results of the logic efficiency between Xilinx LUT-FF Pairs & 

Altera ALMs in normalized relative capacity (65nm post-fabricated chips), and the routing connectivity of the 

Altera LABs have greater efficiency than Xilinx CLBs in a given building block; on average, the Stratix III 

logic density is "1.8 times" advantage over the Virtex-5 [61]. In addition, device architectures of Virtex-6 and 

Stratix IV (45nm) are not changing, comparing the older version. To follow up this generalization, the equation 

to be represented the number of logic resource from synthesis data between Xilinx&Altera FPGAs, which are 

possible and prevailed: 

 

 

                              Stratix IV DATA ALMs x 1.8 = Estimated in Virtex-6 DATA LUT-FF pairs                        (3.1 
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3.4.2 DSE of Multi-core Processor System 
 

In this evaluation case, LEON3 and LE1 homogenous multi-core processor systems are for the MPSoC platform. 

Assume that each of the cores is equal in size (at the same configurations); thus the number of resource 

utilizations is directly proportional to the number of cores have increased. The targeted platform is the Xilinx 

Virtex-6 FPGA. The following equations below are used of DSE evaluations in this platform: 

  

 

                                  Program Speed-up = 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑇𝑖𝑚𝑒  𝑜𝑓  𝑈𝑛𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑇𝑖𝑚𝑒  𝑜𝑓  𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
                                              (3.2 

 

                                                     Area Cost = 
𝐴𝑟𝑒𝑎  𝑜𝑓  𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜 𝑒𝑠𝑠𝑜𝑟𝑠

𝐴𝑟𝑒𝑎  𝑜𝑓  𝑈𝑛𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
                                                             (3.3 

 

                                                  Speed&Area Efficiency = 
𝑃𝑟𝑜𝑔𝑟𝑎𝑚  𝑆𝑝𝑒𝑒𝑑 −𝑢𝑝

𝐴𝑟𝑒𝑎  𝑜𝑓  𝐶𝑜𝑠𝑡
                                                 (3.4 

 

 

The "Program Speed-up" represents to less time spent with the number of processors have increased (Parallel-

SW), the "Area Cost" associated with the single-core area with the multi-core area, and the "Speed&Area 

Efficiency" is associated the area cost with the program speed-up of the design.    

 

 

3.4.3 DSE of Co-design System 
 

In this evaluation case, the LegUp Co-design (Accelerators / Tiger-MIPS processor) system is for the MPSoC 

platform. Where the area depends on input applications (algorithm types and size of codes) and how many 

functions are accelerating (size of HW/SW partitioned in the hardware). The targeted platforms are Altera 

Cyclone II FPGAs. The following equations below are used of DSE evaluations in this platform: 

 

 

                                   Program Speed-up = 
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑇𝑖𝑚𝑒  𝑜𝑓  𝑆𝑊

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑇𝑖𝑚𝑒  𝑜𝑓  𝐻𝑊/𝐻𝑦𝑏𝑟𝑖𝑑𝑠  
                                                  (3.5 

 

                                                     Area Cost = 
𝐴𝑟𝑒𝑎  𝑜𝑓  𝐻𝑊/𝐻𝑦𝑏𝑟𝑖𝑑𝑠

𝐴𝑟𝑒𝑎  𝑜𝑓  𝑆𝑊
                                                                 (3.6 

 

                                                  Speed&Area Efficiency = 
𝑃𝑟𝑜𝑔𝑟𝑎𝑚  𝑆𝑝𝑒𝑒𝑑 −𝑢𝑝

𝐴𝑟𝑒𝑎  𝑜𝑓  𝐶𝑜𝑠𝑡
                                                 (3.7 
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The "Program Speed-up" represents to less time spent of the function accelerated (HW or Hybrid) with the time 

spent in the single-core (SW), the "Area Cost" associated with the single-core area with the HW or Hybrids area, 

and the "Speed&Area Efficiency" is associated the area cost with the program speed-up of the design. 

 

 

3.5 Summary 
 

This chapter introduces DLP&HLS methodologies, implementations, and available applications. To summarize 

these architectures, SPMD is a form of DLP methodology using multi-core processor systems that across each 

core to handle massive-data implementations. A software technique of reading CPUIDs from each processor to 

run each data segment is introduced. HLS process is part of ESL design, which focuses on High-level to RTL-

level synthesis for generating a piece of hardware on silicon to increase performance. The main streams of HLS 

are scheduling, allocation, and binding. Moreover, the LC/LE conversion of Xilinx&Altera that have been 

presented in order to estimate resource cost between them. Furthermore, to evaluate the Speed&Area Efficiency 

of FPGA-based MPSoCs, I have introduced a series of equations in multi-core processors and Co-design 

systems. However, it is not yet to start the evaluation of DLP / HLS designs. To the next chapter, the SW flow 

benchmarks of LEON3 / LE1 / Tiger-MIPS single-core processors for each of these designs will be evaluated 

elementary.  
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Chapter 4 

 

Evaluation in Single-core of Soft Embedded 

Processors 

 

4.1 Introduction 
 

These embedded experimental approaches are "SW" flows that run the entire C-based programs to the general-

purpose µPs. LEON3 and LE1 cores are DLP implementations in homogenous multi-core processors and the 

Tiger-MIPS core is HLS implementations in LegUp Co-design system. Firstly, I represent the configurations of 

LEON3, LE1, and Tiger-MIPS respectively. Secondly, I execute a wide-range of digital multimedia codes in 

each processor so as to collect a large volume of benchmark suites. Thirdly, I average those benchmark results; 

and therefore to evaluate the performance of each processor. To evaluate the area on FPGA-based, LEON3 and 

LE1 cores are being synthesized on the Xilinx Virtex-6; however the Tiger-MIPS core of the LegUp-system can 

only be synthesized on Altera FPGAs and on the Altera Stratix IV in this proposal.  

 

4.2 Background of LEON3, LE1, and Tiger-MIPS Processors 
 

LEON and MIPS processors are RISC architectures that instruction formats are fixed (typically 32-bit in 

embedded µPs), and the LE1 processor is a VLIW architecture, which the instruction length is variable (64-bit 

in this case study). More details about difference between RISC and VIW architectures are discussed in Section 

5.2.1.  

 

To summary these uni-processors trait, the LEON3 processor is highly configurable, especially for cache-system 

and on-chip debug units, and available to be synthesized on most of manufactured FPGA boards; a LE1 VLIW 

processor is highly internal configurable to perform complexity computing and able to be synthesized on Xilinx 

Virtex families; both of these processors are established to minimal configuration to save FPGA resource; the 

Tiger-MIPS processor is a fixed soft-core by the LegUp designers that only able to be synthesized on the Altera 

Development-and-Education DE2 (Cyclone II) or DE4 board (Stratix IV) [62, 63] at present.  
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4.2.1 The LEON3 Processor 
 

The LEON3 soft-core is a 32-bit RISC highly configurable through "VHDL" model, compliant with the IEEE-

I754 SPARC V8 architecture in embedded systems. The configurable LEON3 core is located in Gaisler-

Research-Library (GRLIB). GRLIB is a collection of reusable IP cores, which is based on the AMBA 

AHB/APB on-chip buses. Each of the IP components has a particular vendor that specified by a VHDL package 

in each library [50], and can be easily created by "Xconfig" GUI tool. Fig 4.1 shows that a LEON3 core and its 

important configurability and available interface. The main LEON3 core functionalities are following:  

 

 FPUs and Coprocessor 

 Number of Register Windows 

 Instruction and Data Caches 

 Local I&D RAM 

 MMU 

 DSU  

 AMBA Interface  

 Multi-processor Support (LEON3 MP) 

 

 

 

 

Figure 4.1 LEON3 processor core block diagram [64]. 
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The LEON3 core is able to interface for the FPUs and custom Coprocessors, these two cases are not used in this 

study. The 3-port register file has (2 read, 1 write) ports with separated address and data bus, which includes the 

register windows. It is a group of general purpose "r" registers. The IU contains total r registers of 8 global plus 

circular stack from 2 to 32 sets of 16 registers [65, 66]. Multiplier and Divider (MUL/DIV) operations are 

supported by SPARC integer multiply and divide instructions. For instance, to perform a 32x32-bit integer 

multiplication, will result 64-bit and 64 divide by 32 bits, result a 32-bit; and 2-cycle latency is the lowest for 

the best performance. Static branch prediction reduces the penalty for branches exceed by instruction that 

changes the condition codes, normally improves the performance with 10 - 20% on most control-type software. 

Single-Vector-Trapping (SVT) is also from SPARC V8 architecture to reduce code size for embedded 

applications. 

 

The LEON3 core is interfaced to the AMBA AHB bus master to load/store data to/from the cache system. Both 

of Instruction and Data (I&D) caches are configured to implement a "direct-map" cache or a "multi-set" cache 

with set associativity 2 - 4, the set size is the range of 1 - 256 KB, divided into cache lines with 16 or 32 KB 

data; for multi-set caches, four replacement polices options can be selected: Least-Recently-Used (LRU), Least-

Recently-Replaced (LRR), Random, and Direct. The set size of both local I&D RAMs are configured up to 

256KB. Memory-Management-Unit (MMU) of the LEON3 core is the full SPARC V8 MMU specification 

(mapping between multiple 32-bit virtual address spaces and 36-bit physical memory), however MMU is not 

used in this study. Debug-Support-Unit (DSU) is implemented to interface for the LEON3 core of debug mode 

and provide up to four watchpoint registers; behaves as an AHB slave accessed by the AHB CPUs master, and 

also AHB trace buffer can monitor and store executed or read out instructions for debug interface. Moreover, 

multi-processor methods are feasible on the LEON3 SoC template [64].  

 

The LEON3 IU is 7-stage pipeline with Harvard architecture, shown in Fig 4.2. This shows the structure of the 

internal pipeline stages in the core. I-cache is fetched at Instruction-Fetch if that is enabling and there is an 

instruction in the cache; instructions are decoded at Instruction-Decode and the CALL / Branch target address 

are executed; operands are read from the register files at Register-Access; executes operations such as ALUs,  

shifts, and MUL/DIVs; D-cache is fetched or written at Memory-Access; interrupts are through at Exception; 

and any results of operands or caches operations are written back to register files.  
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Figure 4.2 LEON3 CPU core IU datapath [64]. 

 

For a single-core of LEON3 configuration: 8 register windows of default setting, enabling MUL/DIV 

instructions and 2-cycles latency of 32 x 32 pipelined hardware MULs, no FPU since only IU value are 

calculated, 16KB I&D-cache / 32 Byte per line of the "Direct-mapped" associativity, 64KB I-RAM and 256KB 

D-RAM, there is no need MMU of virtual memory in this study, 4KB instruction / AHB trace buffer and 2 IU 

watchpoints of the DSU, one pipelined load delay to obtain best performance, static branch prediction, and 

SVT is enabled. For information about AMBA bus configurations and how to use the GRMON debug of the 

terminal on the computer screen will be shown in Section 5.2.3 of LEON3 MP configurability. 
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4.2.2 The LE1 Processor 
 

The LE1 (32-bit for 1-width) VLIW [67] is highly parametrizable in both architectural and micro-architectural 

views and "VHDL" model implementation. It presents many architectural parameters to the programmer to fully 

customise the hardware being produced. The main microarchitectural parameters of the LE1 core are following: 

 

 ISSUE_WIDTH 

 CLUSTERS 

 IALUs 

 IMULTs 

 IALU_LAT 

 IMULT_LAT 

 IRAM_SIZE 

 DRAM_SIZE 

 LSU CHANNELS 

 DRAM_BANKS 

 LE1_PROCs (LE1 CMP) 

 

 

Figure 4.3 IALU/IMULT and IALU LAT/IMULT LAT for the LE1 core [67]. 

 

The architectural width (ISSUE_WIDTH) of the LE1 processor can be optimized in a number of RISC 

instructions. There are up to CLUSTERS (group of ALUs, MULTs, and Register Files) clusters, each with its 

own register set, Integer (SCore) and Floating Point (FPCore) datapaths.  

 

The configuration of the SCore is dependent on the Integer-ALUs (IALUs) and Integer-MULTs (IMULTs) 

parameters which define the number of FUs available for executing integer based arithmetic operations. The 

latencies of the IALUs and IMULTs are depicted in Fig 4.3. These values are modifiable, lower latencies and 

more FUs result in extra complexity within the silicon and thus a higher number of 32-bit result busses to the 

Score bypass logic to have the results from the SCore available at an earlier time. This ultimately proves to be 

the critical path in the processor. The LE1_PROCs is configuration of the number of contexts for multi-

processor methods. 
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Figure 4.4 LE1 CPU core schematic [68]. 

 

The LE1 has a 7-stage pipeline (ignoring the FPCore stage), shown in Fig 4.4. This shows the internal structure 

and a breakdown of the internal pipeline stages of the LE1. The Pipe Control block depicts the primary control 

mechanism which schedules the full flow of instruction fetch and decode to data execution. It is responsible for 

initialising internal registers and memory sections through a debug mechanism from a host machine as well as 

maintaining the control space of the LE1 through a collection of state machines which schedule the overall 

system LE1 execution. As well as the Pipe Control, the CPU is composed of an Instruction-Fetch-Engine (IFE), 

Load-Store-Unit (LSU) and the main execution core (LE1 CORE). The IFE maintains the I-cache and associated 

state machine. Each long instruction word can be up to two times ISSUE_WIDTH operations wide due to the 

inclusion of 32-bit immediate for large integers and addresses which results in the IFE controlling interlocks to 

retrieve all required instructions when they span more than one I-RAM location. The banked, shared memory is 

accessed from the LE1 CORE through the LSU. The numbers of channels (LSU CHANNELS) to the memory 

along with the banking system (D-RAM BANKS) of the memory are both modifiable within the LE1 

configurations. Finally, the LE1 CORE includes the main execution data paths of the CPU.  
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For a single-core of LE1 configuration: 2 ISSUE WIDTH, 2 CLUSTERS, 2 IALUs, 2 IMULTs, 64 KB 

IRAM_SIZE, 256 KB DRAM_SIZE, 2 LSUs, and 2 DRAM_BANKS respectively. 

 

 

4.2.3 The Tiger-MIPS Processor 
 

The Tiger-MIPS processor is a RISC 32-bit "fixed-core" based on the original MIPS (Microprocessor-without-

Interlocked-Pipeline-Stages) 32 architecture that through "Verilog" HDL and designed by Ben Roberts and 

Gregory Chadwick to be used with Altera’s Avalon bus [69]; selected for HLS LegUp-system, documentation, 

and mature development ecosystem [63].  

 

The MIPS processor has a 5-stage pipeline based on the common RISC subset that shown in Fig 4.5, and are 

very similar with LEON; however, Decode / Register Fetch are at the same stage and without the Exception 

stage. A typical MIPS core has 32-bit GPRs for Integer-Registers (IRs): Register r0 always holds 0 and r1 is 

assembler temporary, r31 is usually used for Jump-and-Link (JAL) instructions, HI (Higher result) and LO 

(Lower result) registers to access the results of integer MUL/DIVs, and multiply-accumulate operations, and a 

Program-Counter (PC) Register. Most MIPS cores have caches, but they are not implemented in the same 

configuration, with write-back or write through I&D-caches [70].  

 

 

Figure 4.5 MIPS CPU core datapath [71]. 

 

To the default Tiger-MIPS core, 32 32-bit Integer GPRs, and the number of blocks in caches are 29 = 512 lines 

(bytes) = 16KB for I&D-caches size of the "Direct-mapped" associativity is included.  
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4.3 The Software (SW) Flow 
 

The compiler transforms C source code into the "computer assembly language" that often forms a binary also 

known "object code" to be executable. Different computer architectures have different computer languages;  

therefore compilers for different processors are typically unique.  

 

There are identical compilers for these three processors: Kernels for SPARC V8 are used with LEON3, Aeroflex 

Gaisler provides Bare-C Cross (BCC) compiler system, also known as the "SPARC-GCC" compiler. It consists 

of the GNU GCC C/C++ compiler and the Newlib standalone C-library [72]. Hewlett-Packard (HP) provides 

VLIW-Example (VEX) Toolchain, which contains compilation-simulator to target VLIW processors [73]. The 

VEX assembler takes as input the textual assembly output from the compiler, flattens the code, resolves branch / 

jump targets and produces two output files, the instruction binary and the initialized data section. The front-end 

of Clang compiler is C/C++ to generate the software binary for the soft processor. However, alternative 

compilers may affect application computational speed of the model simulations as well as the optimization flags 

used during compilation.  

 

4.3.1 Experimental Implementations 
 

For the stimulations of the LEON3, the following C programs were tested on the target FPGA board by the 

LEON3 GRMON debug monitor. Assigning a function of "clock()" to the end of the programs, it would return a 

time spent of the "main()" in microseconds (µs). For the LE1 stimulations, INSIZZLE is a cycle-accurate 

simulator and returns the clock cycle count, calling the single data memory block and the results displayed in the 

final simulator C-source files [68]. For the Tiger-MIPS stimulations, the SPIM simulator, the counter variable 

gave the total number of cycles for a complete execution and returned the total time spent on the programs in 

picoseconds (ps). For the FPGA synthesis of LEON3 and LE1 cores, I used LEON3 / GRLIB IP Library design 

tool and LE1 Toolchain to target the Virtex-6 LX240T (ML605) FPGA (see Section 5.2.3 and 5.2.4); and the 

Tiger-MIPS core, I used LegUp-3.0 and Quartus II 12.0 to target the Stratix IV EP4 FPGA and the clock period 

constraint would set to the default value of "5 ns" on Stratix IV series.  

 

4.4 Benchmark Collections 
 

This section represented the overall benchmark suits that execute in LEON3&LE1&Tiger-MIPS processors to 

this experimental work. These benchmark collections were chosen from a wide-range of C-based algorithms and 

would be used in the following case studies of performance evaluations in this chapter and further in chapter 5 

and 6. The following codes were separated into three divisions of "data-intensive", "function-intensive", and 

"other" programs. However, the LE1 processor does not support "SoftFloat" functions and "little endian"; 

therefore, I compared all programs and without "double-precision FPU algorithmic" and the "Motion" codes. 

Furthermore, all of the assembled programs were optimized to the highest performance level to reduce the cost 

of compilation. 
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4.4.1 Data-intensive Programs 
 

These C/C++ programs include two examples of the DLP methodology by CM and LZW. They are data-

intensive processing of large data volumes and suitable for multi-core processor systems. CM is a popular 

program in video / image processing and LZW is a universal lossless data compression algorithm that widely 

used in PDF files in Adobe Acrobat. The detail of software implementations for CM and LZW is presented in 

Section 5.4, and simplified description of programs is listed in Table 4.1. 

 

Program Design Description Source 

CM60x60 Convolution Matrix with 60x60 output data  

LZW45K Lempel Ziv Welch with size of 45KB input data LZ78 [74] 

 

Table 4.1 Outline of the DLP benchmark suits. 

 

4.4.2 Function-intensive Programs 
 

The following C/C++ CHStone programs are for the HLS methodology and represented in Table 4.2. They are 

function-intensive processing and available from LegUp example directory that facilitates C to HDL for Co-

design partitions. However, these programs are "not" suitable for parallel computing in multi-core processor 

implementations. It consists of 12 programs which are included four arithmetic programs, four media 

applications, three cryptography programs, and one processor. More details of software implementations for 

CHStone is presented in Section 6.4. The simplified information for each program is as follows below:  

 

Program Design Description Source 

MIPS Simplified MIPS processor CHStone group 

DFADD Double-precision floating-point addition SoftFloat [75] 

DFDIV Double-precision floating-point division SoftFloat [75] 

DFMUL Double-precision floating-point multiplication SoftFloat [75] 

DFSIN Sine function for double-precision floating-point numbers CHStone group, SoftFloat [75] 

ADPCM Adaptive differential pulse code modulation decoder and encoder SNU [76] 

GSM 
Linear predictive coding analysis of global system for mobile 

communications 
MediaBench [77] 

JPEG JPEG image decompression 
The Portable VideoResearch 

Group, CHStone group [78] 

MOTION Motion vector decoding of the MPEG-2 MediaBench [77] 

AES Advanced encryption standard AILab [79] 

BLOWFISH Data encryption standard MiBench [80] 

SHA Secure hash algorithm MiBench[80] 

Table 4.2 Outline of the CHStone HLS benchmark suits. 
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4.4.3 Other Programs 
 

The following several C/C++ small test programs, which given by LegUp example C source codes are 

represented in Table 4.3. However, larger volume applications such as follows: The "OGG" is the largest codes 

of this section that contains format only. "Containers" may include streams encoded with multiple codes of 

video and audio data and can be in various formats (eg. MPEG-4 and MP3). The "FFT" is a well known 

algorithm to compute the DFT rapidly in audio parts. The "FIR" is a moving average filter that widely used in 

signal processing. The information about each program is as follows below:  

 

Program Design Description Source 

ARRAY Multi-dimensional arrays LegUp [37] 

DHRYSTONE Tests a system's integer performance, and no operating system call LegUp [37] 

DIVCONST Test division algorithms LegUp [37] 

FFT Fixed point 16-bit input-output in place Fast Fourier Transform LegUp [37] 

FIR Finite-Impulse-Response (FIR) filter stream with 32 inputs  LegUp [37] 

FUNCTION POINTER Demonstrate a function pointer LegUp [37] 

FUNCTIONS Testing multiple functions LegUp [37] 

HIERARCHY TEST Testing addition algorithms in functions LegUp [37] 

LLIST Testing a linked list node struct with pointers LegUp [37] 

LOADSTORE Print out “Hello world” LegUp [37] 

LOOP Simple loop with an array LegUp [37] 

LOOPBUG Test Double-precision floating-point addition in for loop LegUp [37] 

MALLOC 
Allocate a block of size bytes of memory and return a pointer to the 

beginning of the block 
LegUp [37] 

MEMORY ACCESS TEST Performs read/write memory accesses from/to local and global memory LegUp [37] 

MEMSET 
Testing the conversion of llvm.memset and llvm.memcpy 

intrinsics into aligned calls of our own functions 
LegUp [37] 

OGG 
Is designed to provide for efficient streaming and manipulation of high 

quality digital multimedia. 
LegUp [37] 

SELECT Testing ? : statement LegUp [37] 

SHIFT Left-shifting an integer by more than 32 bits LegUp [37] 

SIGNDDIV Testing division operands for sign numbers  LegUp [37] 

STRUCT 
Testing structs with nested arrays and structs. Functionality includes 

loads, stores, global and zero initialization. 
LegUp [37] 

UNALIGNED Testing unaligned memory access. LegUp [37] 

SWITCHES Testing switch-case statement LegUp [37] 

SRA Algorithm of square-root approximate to integer LegUp [37] 

TIGER SRA 
Algorithm of square-root approximate to integer using function to define 

equations. 
LegUp [37] 

Table 4.3 Outline of the other benchmarks. 

 

http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Digital_multimedia
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4.5 Evaluations of Speed&Area in Single-core of Soft-processors 
 

The total of "33" benchmarks were executed in each of examining processors. The executed cycle counts as 

well as the execution times from each µPs were displayed in Table I.A, Appendix I; and area breakdown and 

comparisons of LEON3&LE1 processors on the Virtex-6 LX240T (ML605) FPGA and the Tiger-MIPS 

processor on the Stratix IV EP4 FPGA would be discussed afterwards.  

 

 
 

Figure 4.6 Comparsion in execution times at Low-end Benchmarks.  
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The system frequency on FPGAs of the LEON3, LE1, and Tiger-MIPS cores were clocking at 75, 75, and 74.26 

MHz respectively to obtain the duplicated performance. The 33 benchmark results were separated into four 

execution time domains in order to observe them in a histogram distinctly. There were the first benchmark 

group of under 800 µs at Lower-end Benchmarks (Fig 4.6), the second of 800 ~ 8,000 µs at Mid-end 

Benchmarks (Fig 4.7), the third of 8,000 ~ 120,000 µs at High-end Benchmarks (Fig 4.8), and the fourth of over 

120,000 µs at Very High-end Benchmarks (Fig 4.9) correspond to their own time periods.  

 

 

Figure 4.7 Comparsion in execution times at Mid-end Benchmarks.  

 

As the results shown, at Lower-end Benchmarks for basic C algorithms, the Tiger-MIPS processor was powerful 

all around, comparing with LEON3&LE1. In addition, the LEON3 appeared to be much disadvantaged at 

MUL/DIV operations such as DIV_CONST, and SIGNEDDIV benchmarks; and main memory access through 

load/store from local to global memory such as the MEMORY_ACCESS_TEST. Besides, it seemed to be a little 

disadvantaged at the pointer syntax of the memory location such as FUNCTION_POINTER and LLIST; the shift 

operation and "switch-case" statement such as SHIFT and SWITCHES. However, it was well at addition 

operations such as ARRAY, HIERARCHY_TEST, and LOOPBUG and more advantageous at dealing with data 

movement between registers or local memories than Tiger-MIPS&LE1 processors, such as MEMSET and LOOP. 

Moreover, the performance of the "structure" statement in the LE1 processor apparent to be fine, comparing 

with LEON3&Tiger-MIPS, such as STRUCT. 
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Figure 4.8 Comparsion in execution times at High-end Benchmarks.  

 

 

 

Figure 4.9 Comparsion in execution times at Very High-end Benchmarks.  
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At Mid-end and High-end Benchmarks for larger codes (see page 121, Figure III.A, the percentage of 

algorithmic types of benchmarks), the lacking performance at MUL/DIV operations of the LEON3 processor 

have also shown on ADPCM, GSM, FFT, and CM60x60 benchmarks. The same aspect were also being 

discovered on CM60x60 results of DLP implementations (see Section 5.5.1). Moreover, for the LZW45 

benchmark, although the LEON3 has greater performance of movivg data in registers for the C string functions 

(see page 73), however there was many execution times penalty in data accessing from the main memory than 

the Tiger-MIPS. 

 

  

 

Figure 4.10 The sPEED and area results of LEON3&LE1&MIPS SW flow. 

 

By the LEON3 and LE1 (Xilinx); and the Tiger-MIPS (Altera) processors were breakdown on different FPGA 

vendors, I applied the resource usage conversion between Xilinx&Altera of the Equation 3.1. It was important 

that running benchmarks on the "Altera DE4" rather than DE2 boards, because that Xilinx Virtex-6 and Stratix 

IV are the same scale of fabrication process and logic density, therefore it was more precise converting area 

between them (also see page 45). The Tiger-MIPS processor estimated area breakdown of the number of "LUT-

FF Pairs" on the Xilinx Virtex-6 FPGA was calculated out. Corresponding to the cell transformations (see page 

45), Altera: 1 ALM = 2 ALUTs and there was 14,135 ALUTs, hence the number of ALMs was 7,068 on the 

Stratix IV FPGA and 12,722 LUT-FF Pairs on the Xilinx Virtex-6.  

 

Additionally, the average of aggregate execution times in benchmarks gathering was also computed. The wide-

spread of the Speed and Area results in the SW flow of LEON3, LE1, and Tiger-MIPS processors were plotted 

in Fig 4.10 (Note: Speed - averaging the execution times between Mid and High-end benchmarks). The left 

0

5,000

10,000

15,000

20,000

25,000

Area (LUT-FF Pairs) Average Execution Times/us

E
x
ec

u
ti

o
n

 T
im

es
&

N
u

m
b

er
 o

f
L

U
T

-F
F

 P
a

ir
s



62 

_________________________________________________ 

 

 

vertical axis have shown geometric mean execution times (10 times of a millisecond) and the right axis shown 

the area (number of LUT-FF Pairs on Xilinx vendors). 

 

To evaluate the Speed&Area issue between LEON3&LE1&MIPS processors on FPGA-based, I made use of the 

DSE formulas that have advocated in Section 3.4.1 and 3.4.2. Whereas, the equations of the "Program Speed-

up" was represented as Average Execution Times of LE1 or Tiger-MIPS divided by Average Execution Times 

of LEON3; the "Area Cost" was represented as the number of LUT-FF Pairs of LE1 or Tiger-MIPS on Xilinx 

divided by the number of LUT-FF Pairs of the LEON3 on Xilinx; the "Speed&Area Efficiency" was represented 

as Program Speed-up of LE1 or Tiger-MIPS divided by Area Cost of the LEON3. While, the LEON3 was the 

baseline processor to be compared to LE1&Tiger-MIPS; and their program speed-up, area cost, and the 

Speed&Area Efficiency were always 1. I expressed all the experimental values in two decimal places. The total 

evaluations have shown in Table 4.4. 

 

 LEON3 LE1 Tiger-MIPS 

Average Execution Times/µs 79,017 73,833 35,736 

Area (Number of LUT-FF Pairs) 15,728 24,454 ~12,722 

Program Speed-Up  1 1.04 2.52 

Area Cost 1 1.55 0.81 

Speed&Area Efficiency 1 0.67 3.11 

 

Table 4.4 The Speed&Area Efficiency of LEON3&LE1&MIPS SW flow.  

 

 

For the evaluations of LEON3&LE1&MIPS processors: along with the LE1 core, although the execution time 

were merely 4% increased, the core has led to the highest area penalty 155% of a LEON3 core, and the 

Speed&Area Efficiency of the LE1 core has had much deceased (0.67). As far as concerned with the Tiger-

MIPS core, the average benchmarks have increased twice and half as much 252% and was almost 19% resource 

usage reduced, and the Speed&Area Efficiency of Tiger-MIPS core has been increased (3.11).  

To evaluate the "speed" results, it was probably due to the Tiger-MIPS core has had shorter instruction pipeline 

depths (5-stage), comparing to LEON3 and LE1 (7-stage). In other words, the longer instruction pipeline of 

CPUs, the longer clock cycle needed to complete a sequential pipelining, and the longer time needed to compute 

a program. However, increasing CPU instruction a depth would allow higher frequencies for the designs, which 

mean LEON3 and LE1 processors are ideally enable to be clocked at faster rates. Moreover, the LE1 processor 

has double instructions implementations within the CPU to form as a superscalar architecture which allows 

double independent instructions to be executed in parallel per cycle. In this process, CPU hardware would have 

to check the available resource (register, memory, and FUs) for multiple instructions running simultaneously. 

However, the speed-up of a superscalar CPU would not be directly proportional to the numbers of the 

instruction throughput. The average benchmark result was disappointed and approximately or exactly a little bit 
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better than the LEON3 core. It was due to parallel executions of superscalar pipelined would have limited by 

resource conflicts and data dependencies (also see Section 5.2.1). These could be improved by increasing the 

numbers of IALU&IMULTs and CLUSTERs within LE1 microarchitectural parameters.  

To evaluate the "area" results, the size of a LEON3 core was very close to the Tiger-MIPS. It was however with 

debug units and some communication ports which more configurations than the Tiger-MIPS. A LE1 core 

(nearly the Tiger-MIPS core size and 80% size of a LEON3) needed to be operated with a service MicroBlaze 

SoC (11,880 LUT-FF Pairs). Moreover, increasing the number of CLUSTERs to meet higher ISSUE_WIDTH 

or increasing the number of IALU&IMULT to lower the latency, would have increased the resource 

significantly. 

 

4.6 Summary 
 

This chapter demonstrates a wide-range of ANSI C-based programs running in different configuration of 

LEON3, LE1, and Tiger-MIPS soft processors and they are synthesized on different target FPGAs. Fortunately, 

a formula for converting the FPGA resource between Altera ALMs and Xilinx LUT-FF Pairs that provides 

Xilinx&Altera device logic comparison approximately. The LEON3 processor is the baseline comparison for 

another two of the "Speed&Area Efficiency". To summarize the results, it shows that the Tiger-MIPS processor 

has the fastest execution time and the smallest area cost; and has won the whole tradeoffs than LEON3 and LE1 

processors. However, it does not mean that LEON3 and LE1 processors are worse than the Tiger-MIPS at entire 

prerequisite. The merits of the LEON3 and LE1 cores such that are highly configurable in customization. 

Moreover, the design tools are able to support multi-core processor system for parallel computing and very 

flexible on target FPGA boards. To the next chapter, I will examine and compare the Parallel-SW flow 

benchmarks in the case of the DLP methodology on LEON3&LE1 multi-core processor systems.   
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Chapter 5 

 

Evaluation in Data-level-parallelism of LEON3 MP 

and LE1 CMP on FPGA-based SMPs 

 

5.1 Introduction 
 

A number of homogenous multi-core processors can be implemented on the FPGA-based platform and perform 

a parallelism computation. This chapter presents the "Parallel-SW" flows of CM image processing convolution 

and LZW compression / decompression algorithm executing in LEON3 MP and LE1 CMP system of the DLP 

methodology (also see the description in Section 3.2). In contrast with the single-core, the multi-core system 

provides higher performance at lower frequency in such parallel programming within FPGAs. In addition, for 

the set up of the number of CPUs in this study, the available processors in the system varied from 1 up to 6 that 

synthesized on the Virtex-6 LX240T (ML605) that contains 150,720 LUTs-Flip Flop pairs and maximum block 

RAMs of 3,600 KB that can be fitted and reused for the designs [81]. Furthermore, it is necessary to evaluate 

and compare the Speed&Area tradeoffs of these SMPs onto the same FPGA device.  

 

 

5.2 LEON3 and LE1 Multi-core Processor Methods 
 

The conventional RISC instruction in which a single-core is an example of SISD stream and in multi-core 

system can realize MIMD process. However, a VLIW processor with longer instructions (ILP implementations) 

in which a uni-processor and connect multiple cores in a system for parallel programming (TLP or DLP) is also 

an example of MIMD stream (also see page 27). In these processor-system implementations, computing types 

are all identical to SPMD which is the sub-type of the DLP process for multiple core systems of LEON3 (RISC) 

and LE1 (VLIW) processors.  

 

The SMP system is the most popular framework of the multi-core processors for parallel computing that can be 

classified into task or data level parallelism. For the novel comparison, LEON3 and LE1 soft-cores have very 

similar instruction pipeline depths. However, a LE1 core designed has the advantage of ILP optimizations and 

highly paramertisable architectural FUs, such as ALU / MUL units to meet the critical computation for the 

performance, and the LEON3 MP has the advantage of wealthy reusable IPs (GRLIB IP library) suitable for 

complex MPSoC designs and a versatile cache-system to be implemented. 
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5.2.1   RISC vs VLIW 
 

RISC instructions are simple operations based on load/store architectures (register-to-memory), and it is the only 

operation that affects the memory. Arithmetic operations between registers (register-to-register) and requires a 

number of GPRs then to execute in ALU / MUL units. VLIW operations, which concerned with multiple issued 

of RISCs, a powerful compiler is needed to schedule instruction packets in parallel and decide when they are 

compiled [82], therefore, the numbers of GPRs and FUs of VLIWs are larger in order to satisfy multiple 

operations that speed up programs. An ideal case of VLIW operations without any resource and data or control 

dependency conflicts compared with RISCs as shown in Fig 5.1, "double semicolon" means the clock cycle and 

multiple instructions are executed concurrently. The blank slots (group of four bytes) are ALU / Branch or NOP 

instructions.  

 

  

 

Figure 5.1 Example of RISC and VLIW instructions. 
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5.2.2 Symmetric-Multi-Processors (SMPs) with Data-Level-Parallelism (DLP) 
 

The diagram of the SMP system is shown in Fig 5.2, a number of homogenous cores are connected by a system 

bus or crossbar switches, peripherals, and where all processors access a common memory symmetrically (also 

see page 37). Processors are identified by a unique ID and ready for software implementations. However, 

accessing to the main memory through a shared bus does not fully scale with the number of processors and 

result "data overhand" (also see page 38).  

 

 

 

 

Figure 5.2 SMPs with DLP. 

 

Typically, the disadvantage of data synchronization effect can be lowered by employing local caches in each 

processor to consistency load/store data from the core; thus to speed-up data access from the main memory and 

also reduce the bus traffic of the SMP system when the program in parallelism. That is known as the "Cache 

Coherence" implementation. Moreover, to generalize, there are three main factors affected the scalability of 

SMPs: cache coherency pipelining, time spend in spin lock (number of cycles) by programming, and memory 

accessed conflict. Most of the SMP computers typically have ten or fewer cores. For embedded processor-

systems designed, the best performance of the number of processors in the UMA SMP is limited to 8 cores [83, 

84]. 
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5.2.3 LEON3 MP and IPs Configuration 
 

To minimize the LEON3 MP System suitable for this design, many of the IPs (eg. Ethernet MAC consumes 

more than 10,000 LUTs) were disabled to save FPGA resources. Each LEON3 core configuration of the LEON3 

MP is the same as in the single-core benchmarks (Section 4.2.1). For the local memory configuration, the I-

RAM size is 64KB and D-RAM is 256, 128, 64, 64, 64, and 32KB respectively from 1 to 6 cores, in order to 

align the shared D-RAM of the LE1 CMP. To summarize the LEON3 MP components, Table 5.1 shows the key 

features of LEON3 configurable blocks that are important in this MPSoC platform. 

 

Functionality 

Blocks 

Description 

IU Full SPARC V8 integer unit, 7 stages pipeline interfaced with I&D caches sub-system, including MUL/DIV 

instructions, and the numbers of register windows is configurable. 

 Cache System Various setting for separated I&D caches with 1-4 sets, 1-256kbyte/set, 16 or 32 bytes per line (Total cache size = 

sets*set size). The D caches uses write-though policy interfaced with AMBA/AHB bus and also perform bus-

snooping. 

 

On-chip DSU It is a type of non-intrusive debugger to target FPGA.  

 

Interrupt Interrupt interface (up to 15 asynchronous interrupts). 

 

AMBA ARM AMBA-2.0 standard, separated with AHB and APB bus, CPUs execute load /store data to/from the caches. 

 

LEON3 Cores Number of LEON3 cores. Up to 16 cores (masters) can be build. 

 

Table 5.1 LEON3 blocks CONFIGURABILITY [64]. 

 

  

 

Figure 5.3 LEON3 multi-core with GRLIB IP for the SoC [85]. 
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The gray colour items show the disabled IPs in the LEON3 FPGA template, as showing in Fig 5.3, based on the 

Advanced-Microcontroller-Bus-Architecture (AMBA) on-chip buses, a bridge link between Advanced-High 

performance-Bus (AHB) and Advanced-Peripheral-Bus (APB). The Xilinx MIG DDR2 is the global memory 

controller of the system, and it is the same for the LE1 CMP on the FPGA.  

 

For AMBA-2.0 configuration, all the LEON3 processors and many of the IPs such as JTAG Debug Link and 

PCI are master connected to AHB bus. The round-robin policy is supported; and JTAG interfaced for the 

GRMON debug monitor that is connected to the AHB. In addition, an APB bus is slave to the master AHB bus, 

and interconnects to the APB, Timers and 8 bytes (FIFOs) for UART console in order to return fast printout 

results on the terminal of the computer screen. The interrupt controller is designed to be used in LEON3 multi-

processor systems and explained in Section 5.3.1. 

 

5.2.4 LE1 CMP and Configurability 
 

Table 5.2 presents the parameters of the LE1 which are important for this experiment and more information 

about frontal definitions of the single-core (see page 51 - 54). The LE1 CMP customizations are available in 

order to exploit TLP (named "DLP" instead in this case study) while being able to closely match the 

performance and area requirements of target applications and architectures. As well as the LEON3 core, LE1 

CPU configurations of its CMP are organized to previous setup in Section 4.2.2. 

 

Architectural 

Parameter 

Description 

ISSUE WIDTH Architectural width (VLIW) of the processor. This is the number of RISC operations (syllables) dispatched 

every on clock. 

 CLUSTERS Number of clusters of the LE1 CPU. The LE1 is a multi-cluster architecture with each cluster having its own set 

of architectural registers and execution resources. 

 IALUs Number of integer ALUs per processor. 

 

IMULTs Number of integer multipliers per processor. 

 

I-RAM SIZE Size of closely-coupled instruction (code) RAMs. The application code is loaded in this memory prior to 

execution. 

 D-RAM SIZE Size of closely-coupled data RAMs. The Initialised data segment is loaded in this memory prior to execution. 

Serves as the stack area for all active hardware threads. 

 D-RAM BANKS Number of banks of the Data RAM. Accesses to disjoint banks incur no cycle penalty. 

 

LSU CHANNELS Number of channels to the Data RAM per processor. 

 

LE1 PROCS Number of LE1 contexts (cores) in the multi-processor 

(CMP) configuration. 

 

Table 5.2 LE1 microarchitectural configurability [68].  
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A shared-memory CMP (2-core), as shown in Fig 5.4, can be instantiated. These are achieved by altering the 

LE1 PROCs parameter shown in Table 5.2, populate multiple contexts of the LE1 CORE and are enabled to fit 

up to 6 cores into the target FPGA device. The figure depicts a dual-LE1 system with separate instruction RAM 

and a common, banked D-RAM. The instantiated local I-RAM and a global D-RAM size were established to 

64KB and 256KB respectively. In this study, I will investigate TLP by altering the number of instances of the 

LE1. Both of these parameters are modified within a top level XML machine model and used throughout the 

LE1 tool flow to specify these micro-architectural configurations. 

 

 

 

Figure 5.4 Two-way multi-processor consisting of two instances of a 4-wide, single-cluster LE1 core, the common data 

memory and the thread control unit [69]. 

 

5.3  The Parallel-SW Flow 

 

The ideals of the Parallel-SW flow in this experimental used are defined in Section 3.2 (see page 40). For this 

DLP methodology, both of the LEON3 MP and LE1 CMP are determined to SPMD multiprocessing. Each 

executed segments of the program is acquainted with the value of "CPUID" by each processor. In addition, the 

overall system clock of the Parallel-SW flow within FPGA is significant impact on the performance, since 

processors of the multi-core would occupy large numbers of the FPGA fabric and all soft-core design tools on 

FPGAs are automatically RAR the fabric each other. Therefore, it may cause the longer wiring delay and slow 

down the maximum frequency. 
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5.3.1 LEON3 CPUs Identification  
 

In the multi-core processor system, there is a unique identity for each processor. The processor configuration 

register (%ASR17) supplies a unique index for each LEON3 core and also provides various other configuration 

options. This register can be accessed from application through an inline assembly instruction, which is read and 

masked to retrieve its unique CPUID. Initially, CPU0 is active only, this is then required to start all other 

processors in the system. This is achieved by writing to the Interrupt-Controller-Register (IRQ) to enable other 

processors. An example of this code is also shown in Fig 5.5. To implement this method, the stack pointer also 

needs to be modified for multiple program executing in a multi-core system by creating an 1MB stack offset in 

terms of the number of CPUs [MemorySize - (CPUID * - 1M)]. This allows each processor a 1MB stack to 

perform computation. Another aspect which required implementing was fixed using the CPUID to only setup 

global memory if CPUID = 0. 

 

 

 

Figure 5.5 LEON configuration register (%ASR17) [65]. 

 

5.3.2 LE1 Contexts Indentify 
 

Similar to the LEON3 MP, the LE1 CMP includes a custom instruction which can be called from the application 

level to return internal registers within the system. In this study the custom instruction returns a unique identifier 

of the current LE1 context (core). This is used to allow each available context to execute a common instruction 

RAM and use its unique identifier to perform certain tasks which are specified by the application being run. 

 

5.3.3 Structures of LEON3 MP & LE1 CMP and System Clock on the FPGA 
 

The LEON3 MP is a substantial multi-core processor system and interfaced with a 32-bit AMBA AHB /APB 

bus. The AMBA clock is synchronized with the system clock. An AHB/APB bridge is used to connect two 

buses clocked by synchronous clocks with the same frequency ratio and the rest of the configuration IPs. Fig 5.6 

shows the block diagram of the LEON3 MP. The options of the system clock frequency of the LEON3 MP in 

the Xconfig GUI design tool are 60, 75, 80, 100, and 120MHz. 
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Figure 5.6 LEON3 MP blocks diagram. 

 

However, the LE1 CMP (Fig 5.7) works as a coprocessor with the main CPU (MicroBlaze soft-core). The main 

processor is utilized to instruct the sub-processors to execute the actual computing instructions which the 

programmed are desired. The secondary PLB of the LE1 CMP is interfaced with the primary PLB of the 

MicroBlaze processor with a PLBV46 bridge [86]. The clock frequency ratio between primary PLB and 

secondary PLB of the LE1 CMP system are 2:1. Thereby, in this experimental implementation, the MicroBlaze 

is clocking at 100MHz and the LE1 cores are at 50MHz. To obtain the approximate performance comparison 

with the LEON3 MP by selecting the processor clock at 60MHz in Xconfig tool.  

 

  

 

Figure 5.7 LE1 CMP blocks diagram. 
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5.4 Benchmarks of Data-Level-Parallelism (DLP) 
 

Two applications were created to exploit the multi-core processor systems which are CM and LZW multimedia 

programs. The SPMD processing was chosen where each CPU/Contexts execute the same process in separate 

data items. Both of the LEON3 MP and LE1 CMP systems being targeted are bare-bone, they have no operating 

systems / task managers performing housekeeping. However, CPUs / Contexts have the ability to retrieve a 

unique identifier which was used to target specific data sections. Moreover, both of the programs were compiled 

to the best performance level to reduce code size and execution time. 

 

5.4.1 Convolution-Matrix (CM) 
 

In this DLP example, I introduced a method for image processing. Among the frequently algorithms domain, the 

convolution matrix is the most common way to make an image processing filter work. For a 2-D convolution 

example, it has a 3x3 image of filter and a 5x5 image of the input [87], as shown in Fig 5.8. Take a 3x3 block of 

source pixels (Kernel) and turn it into a single output pixel by multiplying each of its corresponded matrix 

elements and finally sum them up. Consequently, the rest of the 3x3 output pixels were achieved by the kernel 

scanning from left to right (rows) and top to bottom (columns).  

 

 

 

Figure 5.8 An example of convolution matrix. 

 

 

To create the standard C properly for this destination pixel, I fixed a kernel size of N x N pixels (N = kernel 

width) and a variable rectangular M x M input image (M = input width) to obtain an (M-2) x (M-2) output image, 

as shown in Fig 5.9. In this study case, I performed a convolution of 3x3 kernel (multiplied the corresponding 

value of each of them from left to right and top to bottom) at a single item in an input by doubling “for" loops in 

a function called "compute". The first loop across the “x” dimension (rows) and the second loop across the “y” 

dimension (columns) to do the multiplicand; then added them together eventually. In the "main()", the same 

computational method to generate an output by calling the "compute" function to perform other two “for" loops 
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through the rows and columns of the output pixels. An input pixels set of 62x62 was applied and across the 3x3 

kernel and resulted a 60x60 output pixels.  

 

This method of parallelising the data to be processed is crude and requires the number of processes computing 

the algorithm to be a factor of the total size. However, in terms of multi-processing this method performs fine 

without any methods of mutual exclusions or conditional variables which will require extra libraries or operating 

systems which in terms of impose an overhead in execution time. The output pixels of this case were factored by 

the numbers of cores of 1 – 6 cores, results the whole data set being executed with no overlaps. Simply separate 

data segments by dividing the "for" loop of "y" columns for each processor and execute each segment that 

recognized by the CPUID (also see Fig 3.1).  

 

/* main programs */ 

int main(void) 

for (x = 1; x < M - 1; x++){ /* loop through (output) rows */  

    for (y = 1; y < M - 1; y++) { /* loop through (output) columns*/ 

        compute;   

    } 

} 

 

 /* compute function */ 

int compute(x, y) 

 for (x = 1; x < N; x++){ /* loop through (kernel) rows */ 

    for (y = 1; y < N; y++) { /* loop through (kernel) columns*/ 

        Sum the 3 x 3 kernel array and result to a single pixel;   

    } 

} 

 

Figure 5.9 Example of C code that an MxM input through the NxN kernel of the CM. 

 

5.4.2 Lempel-Ziv-Welch (LZW) 
 

The LZW [88] compression algorithm was chosen as an application which could be easily split over all 

available CPU/Contexts. The efficiency of compression when splitting the LZW algorithm across multiple 

threads is studied in [89]. However, it was not a study to concern the compression technique. An 

implementation of the LZW algorithm was developed in C where all data items required for performing the 

compression (such as dictionary and the size) are stored in volatile memory on the stack and within registers. 

The LZW programs contain many C string functions such as strlen(), strcpy(), strcat(), strncat(), and strcmp() to 

initialize and encode/decode the dictionary characters. A global input and output data section were generated for 

the separate CPU/Contexts to read and write. Each CPU/Contexts compressed a contiguous data area which was 

dependent on the number of other active CPU/Contexts in any given system and its output was stored in the 
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global data of confirmation that the algorithm executed correctly. All data items were statically defined at 

compile time so that there was no issue with memory within the stack for each core being overwritten. 

 

/* global variables */ 

 char *input ;  /* global input */ 

 int size ; /* size of data set */ 

 int numCPU; /* CPUs in system */ 

 short *compr ; /* global compressed output */ 

 char *output ; /* global output */ 

 

 /* local variables */ 

 int cpuid ; /* CPU identifier */ 

 int start = (CPUID * (size / numCPU)) ; 

 int end = ((CPUID + 1) * ( size / numCPU)) ; 

 

 /* call compressing function */ 

 compress (input, start, end, compr) ; 

 /* call  decompressing  function */ 

 decompress (compr,  start, end, output) ; 

 

Figure 5.10 Example of C code which splits global input array over each active CPU for the LZW. 

 

This sectioning of the data was done using a process shown in Fig 5.10. This figure shows both system wide 

variables as well as those local to each processor. Using the current unique ID (CPUID), the size of the input 

data section (size) and the number of processors in the system (numCPU) the start and end variables are 

calculated. These are then passed to the compress function along with pointers to the global input and output 

arrays. Using these passed variables each processor compresses the data from *(input + start) to *(input + end) 

and places the result in the compr array. A decompression of the data was then performed and placed results in 

the global output array. Validation of the process was performed by comparing the input and output arrays. 

Using only compression the resulting would be different in each configuration, this is the result of the 

compression algorithm and how the dictionary was produced during execution. 

As well as the CM data organization, an input data set of 45KB was produced and kept constant across all 

execution run. This size was chosen as the numbers of cores used in this study (1 – 6) are all factors with no 

overlaps. Both compression and decompression were checked running on both single process and multiple 

process modes. The output of compression on the input test data was saved and used to compare the results from 

running in both systems to confirm correct execution was performed in all cases. 
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5.5 Evaluation and Comparison of LEON3 MP and LE1 CMP 

Those applications introduced previously was executed in both of multi-core processor systems. The numbers of 

CPU/Contexts available in the system were altered from 1 up to 6 (the numbers of instructions were altered 

from 1 up to 12). The results ("2" benchmarks) of execution cycles and execution times of Convolution-Matrix 

60x60 input dataset (CM60x60) and Lempel-Ziv-Welch size of 45KB input data (LZW45K); and resource 

breakdown of LEON3 MP & LE1 CMP along with the percentage on the whole Xilinx-Virtex 6 ML605 FPGA 

fabric (150,720 LUT-FF Pairs and 14,976KB Total Block RAMs) were reported.  

 

5.5.1 Analysis of Performance and Area 
 

The total results of Parallel-SW flow in the LEON3 MP and the LE1 CMP were presented in Appendix II. The 

executed cycles and execution times of the CM60x60 and LZW45K from the LEON3 MP and the LE1 CMP 

were displayed in Table II.A. As well as the execution times, the total resource distributions of the whole 

FPGA in terms of "LUT-FF Pairs (Area)" and "Block RAMs" have shown in Table II.C. However, to produce a 

fair benchmark comparison of this case study, instruction-levels were the base units, the line results in execution 

times of CM60x60 and LZW45K decreased when the number of 32-bit instruction sets (issue widths) increased 

in those SMPs as represented in Fig 5.11 and Fig 5.12. As the result presented, execution times of the CM60x60 

in both SMPs were very linearly decreased in the same path when the number of issue widths increased and the 

LE1 CMP was a little better than the LEON3 MP; however, execution times of the LZW45K were not reduced in 

the same path, the LEON3 MP was approximately 3 times faster than the LE1 CMP along with the number of 

instruction sets increased.  

 

  

 

Figure 5.11 Speed-up results of CM60x60. 
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Figure 5.12 Speed-up results of LZW45K. 

 

 

 

 

Figure 5.13 The overall performance and area results in LEON3 MP and LE1 CMP. 
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To summarize the average analysis, the wide-spread of the Speed and Area results of the Parallel-SW flow in  

LEON3 MP & LE1 CMP were plotted in Fig 5.13. In this case of soft-cores evaluations on the FPGA, I 

concerned only about LUTs and block RAMs for the area. Since, resource utilization on DSP48E1 could be 

ignored; both of SMPs were less 4% breakdown on DSP units (see Table II.B). As the result following by the 

number of the instructions (comparing the range of 2 - 6 issue widths); in terms of resource utilizations (LUT-

FF Pairs), the average FPGA fabric usage of the LEON3 MP was approximately to the LE1 CMP along with the 

number of issue widths increased; in terms of program speed-up by the number of the instructions/CPUs, it 

presented that average execution times of the LEON3 MP were averagely 3.03 times faster than the LE1 CMP 

along with the number of issue widths increased.  

 

Moreover, the number of resource utilizations might affect the system clocking on the FPGA. The maximum 

frequency of the 6-core LE1 CMP was limited to 50 MHz, due to larger resource of the LE1 CMP breakdown 

on the FPGA, in order to satisfy a longer connection of PAR, and to meet longer timing. In fact, at the same 

lower frequency (50MHz), the LEON3 MP execution times might be much slower. However, the LEON3 MP 

was able to clock at a maximum of 80 MHz (smaller area led to shorter timing delay) and average execution 

times would have been much faster than the LE1 CMP at 50MHz on the Xilinx-Virtex 6 ML605 board.  

 

5.5.2 Distribution of Block RAMs on the FPGA 
 

The resource distributions of RAMB36/18E1 were displayed in Table II.B. Both of the LEON3 MP and LE1 

CMP have sub-memory system to decrease the time to access memory, but in different architectures. Each 

LEON3 core has had the separated instruction and data caches (cache coherency) and all the LE1 processors 

shared a D-RAM memory bank (paralleled memory accesses).  

 

To implement the cache memory in the LEON3 MP, the size of the caches was critical impact of the overall 

performance; the smaller the cache blocks, the poor execution times it would be acquired, owing to using fewer 

cache size could reduce the number of data valid / invalidations in the cache line. However, there was the 

maximum optimization of the total cache size to maintain the best performance (16KB of I&D-cache 

respectively in this case study). Multi-bank memory system could significantly reduce the probability of 

conflicts in LE1 CMP. However, these issues were not in this experimental research.  
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Figure 5.14 The total number of block RAMs in LEON3 MP and LE1 CMP. 

 

 

At theoretical fulfilment, increasing the memory cache / bank sets, several hundred RAMs will be consumed. 

The actual number of RAMBs breakdown on the FPGA for both SMP systems has shown in Fig 5.14. The basic 

block RAMs on Virtex-6 FPGAs can be configured as a number of 36KB block RAMs. Each 36KB block RAM 

(numbers of 416) contains two independently 18KB block RAMs (numbers of 832) [90].  

 

For the observation of memory resource, there has been found that in the figure, showing larger numbers of 

RAMB18E1 have been used by the cache-system in the LEON3 MP and were increased by adding more cores. 

However, the number of RAMB36E1 have been significantly decreased at the 3-core and continuously 

increased up to 6-core. Moreover, both RAMB36/18E1 have increased constantly in the LE1 CMP; on the other 

hand, the LE1 system was not implemented any caches at all and has had fewer numbers of RAMB18E1 

utilizations. For this speculation, perhaps, the cache elements of soft-processors were likely to be implemented 

on small blocks of RAMB18E1; and local RAMs were chiefly on large blocks of RAMB36E1 and a little 

amount on RAMB18E1 within Xilinx Virtex-6 FPGAs. 

 

5.5.3 Synchronized Confliction and Speed&Area Tradeoffs 
 

Both of the SMPs have shown the potential disadvantage in contention when multiple core access memory 

concurrently (data synchronization confliction). The result has shown that as more CPU/Contexts were added, 

the execution time decreased, this decrease levels off eventually due to memory and bus bandwidths conflicts. 

These circumstances happened as the program speed-up in multi-core processor system, restricting the 

parallelism could be achieved that the time needed for the sequential fraction of the program. 
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Figure 5.15 LEON3 MP & LE1 CMP Program speed-up vs Area cost.  

 

 

To investigate the speed-up against the number of processors and area in the these systems, I employed the DSE 

Equation 3.2 - 3.4. The results of program speed-up versus area penalty (the number of LUT-FF Paris) as the 

number of processors increased and the Speed&Area Efficiency for both of SMP systems were displayed in 

Table II.D, and the histograms have shown in Fig 5.15 and Fig 5.16.  

 

As the result represented, the CM60x60 speed-up of LEON3&LE1 SMPs were not very linear, especially for the 

LE1 CMP, the LE1 CMP speed-up ration was dropped more significantly than the LEON3 MP when the 

number of the cores have increased. However, the LZW45K speed-up ration of the LEON3 MP was very linear; 

in contrast, the LE1 CMP was dropped constantly upon 2-core. In overall, the LEON3 MP system was less 

effect on data synchronization conflict than LE1 CMP, and program speed-up of the LEON3 MP was always 

more beneficial than LE1 CMP. Morever, unite with the area cost to the Speed&Area Efficiency, the results of 

LEON3&LE1 SMPs have shown better tradeoffs when the number of processors increased, and LEON3 MP 

was advantageous then the LE1 CMP. 
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Figure 5.16 LEON3 MP & LE1 CMP Speed&Area Efficiency. 

 

 

 

5.6 Summary 
 

Through the "data-intensive" benchmark shown, the LEON3 MP is faster than LE1 CMP in 

compression&decompression codes and slower in image processing, due to weakness in MUL operations. 

However, the speed-up efficiency of the LE1 CMP is lower than the LEON3 MP, due to the virtue of the 

LEON3 MP cache coherence activity. In summary of the average Speed&Area in these SMP systems on the 

same FPGA, results present that the LEON3 MP was superior in speed and also area tradeoffs. The LE1 CMP is 

however required more logic gates within the FPGA silicon, and lower the whole system clock; and thus will 

benefit from implementing it on a larger FPGA board that contains more logic cells to exert its "speed" 

superiority. Moreover, the number of memories banked in the LE1 CMP shall increase to reduce the data 

overhead effect than higher the speed-up efficiency. To the next chapter, I will examine and compare HW/SW 

flows benchmarks in the case of HLS methodology on the LegUp accelerator / Tiger-MIPS processor Co-design 

system. 
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Chapter 6 

 

Evaluation in High-level-synthesis of LegUp Co-

design System on FPGA-based Processor 

 

6.1 Introduction 
 

This chapter presents "HW/SW" flows of the CHStone benchmark suits executing in LegUp accelerator / Tiger-

MIPS processor system of the HLS methodology (also see the description in Section 3.3). In general, the 

hardware design is a lot more difficult to write complex code in HDL and become harder to debug, thus the 

process time consuming for many applications. On the other hand, software design is always matured and easier 

to be debugged by analysis tools. The LegUp Co-design system allows researchers to compile selected C 

segments (the most functions called) to Verilog and synthesized to the hardware accelerator and rest of the 

segments are executed in the Tiger-MIPS soft processor on the FPGA-based platform. The software profiling is 

usually implemented by the designer to understand the statistics of the codes, such as time spent in each 

subroutine before the HW/SW partitioning implementations. The goal of the following experiments is to 

evaluate the Speed&Area tradeoffs in LegUp Co-design systems, and compare tradeoffs between HW, Hybrid, 

and SW flows on the FPGAs. 

 

 

6.2 LegUp Co-design System and Program Profiling 
 

The main LegUp flow consist of running a C program in the Tiger-MIPS processor through a software binary 

executable (and also provides self-profiling); a portion of the program was being selected by the profiling data 

and generating the hardware accelerator then scheduling the instructions into a number of c-steps for the DFG 

through HLS operations of the compiler and; finally the accelerator / processor system is executed and 

synthesized on the FPGA [14].  

 

In the structures of LegUp, the Tiger-MIPS processor connects to a custom hardware accelerator through the 

Altera Avalon on-chip bus that is generated by Altera SOPC Builder on the FPGA system [91], as shown in Fig 

6.1. An on-chip data caches with "write-through" policy are supported to the DDR2 SDRAM off-chip memory 

via a "memory controller" using to the accelerator / processor memory-shared system. In order to maintain data 

coherency, all global variables that are not constants stored
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in main memory [92]. Each hardware accelerator has its own local memory which is stored constant variables 

and not shared with accelerator / processor system. This allows one cycle memory access in the local RAM. 

 

 

  

 

Figure 6.1 LegUp's FPGA target system [14]. 

 

 

 

6.2.1 The Call-graph Profiler (Kcachegrind) 
 

The data of code profiling is represented in two different formats. There are flat and call-graph profiling. The 

flat profile consists of a list of execution times of a program in decreasing order. However, a call graph that 

represents calling relationships between subroutines. An example of call graph profile listing is shown in Fig 6.2. 

The entry is as "EXAMPLE" that has "Caller" routines as its parent; "Callees" are as its children [93].  

 

Although the original LegUp-system offers a self-profiling tool of "LEAP" (flat profile), I intended to use 

another code-analyst profiler instead in order to inspect call-graphs directly, and it is called "Kcachegrind". The 

Kcachegrind is a code profiler by using runtime instrumentation, part of Valgrind and displays the call-graph by 

browsing the performance results. The profiling data is generated by cachegrind and calltree. The tool uses the 

processor emulation of Valgrind to run the executable then catches memory accesses for the trace; and the 

program does not need to recompiled [94].  
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Figure 6.2 Fragment of the call-graph. 

 

 

6.3 LegUp Architecture and Designed Flows 
 

The LegUp Co-design systems have two different synthesis flows: 1) HW (Hardware Accelerators): Synthesizes 

the whole *.c files into the hardware accelerator. 2) Hybrid (HW/SW) System: Compile selected C functions 

into hardware accelerators while executing the remaining segments in the soft-processor (via front-end of the 

Clang). For C-to-Hardware compiler, back-end of the Clang is the "Low-Level-Virtual-Machine (LLVM)" 

compiler [95] for generating the hardware. To all design flows, I use Quartus II version 10.1 service pack 1 

(10.1sp1) to target the "Altera DE2" (Cyclone II) in this section study.  

 

Every test program in LegUp has a main function which serves as a "Testbench" with an if else statement # 

RESULT: PASS or FAIL in the end to check the test case passed. LegUp-2.0 tools support Integer types, 

Functions, Arrays, Structs, Global Variables, Pointer Arithmetic, and Bitwise. However, there are some 

software techniques, such as "Dynamic Memory", "FPUs" and "Recursion" is unsupported [92]. Both of 

systems are able to simulate in the ModelSim Stimulator to verify the output and synthesized onto an Altera 

FPGA. At the beginning, the global setting for targeting Altera FPGA family the designer wish to synthesis and 

clock period constraints: 

 

 FAMILY  

Choose a target FPGA. The synthesized circuits have been verified in hardware using the Altera DE2 

(Cyclone II FPGAs) or the Altera DE4 (Stratix IV FPGAs). 

 

 LEGUP_SDC_PERIOD 

15ns for the Cyclone II or 5 ns for the Stratix IV. 
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6.3.1 The Hardware (HW) Flow 
 

In LegUp hardware accelerators (LegUp-HW), each C function conforms to a Verilog "module". For examples, 

in a module, inputs of two parameters in the function are provided by a 32-bit (Data) integer "a" and a 32-bit 

(Address Size) pointer "b". The "signal ports" that synthesized on the circuits are represented in Fig 6.3. The 

start / reset signals to set to "1" by the initial state of the state machine. The "finish" signal is kept "0" during 

loops until the last state when "waitrequest" is "1", then 32-bit value of "return_val" is output. The hierarchical 

of the modules is followed on the call-graph of the C functions. The memory controller is to share data between 

these modules. Each module communicates its sub-module through "MUXs" to reach the memory controller. 

However, MUXs area breakdown on the FPGA is large, and LegUp uses the "Bipartite weighted matching" for 

the binding solution to minimize the number of interconnections that sharing an FU [14, 96]. 

 

  

 

Figure 6.3 The signal port of LegUp in Verilog hardware [92]. 

 

 

Clang compiles the C source into LLVM byte code files (*.bc) and LLVM-compiler reads the legup.tcl file that 

contains a number of "parameters" then produces the Verilog files (*.v). The following parameters control 

LegUp synthesis operation. The outlines of the important parameters in LegUp to be customized are guided: 

 

 SDC_ALAP 

Enable As-Late-As-Possible (ALAP) scheduling instead of As-Soon-As-Possible (ASAP). 
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 SDC_NO_CHAINING 

Disable chaining of operation in clock cycle. This will perform the maximum amount of pipelining. 

The SDC_PERIOD parameter is useless when this is set. 

 

 MUL to DSP 

Enable the binding restricts multiplier to only the number of DSP units available on the target FPGA in 

the experimental study. 

 

 SHARE_DIV 

If set to 1, the divider will be shared with any required mux width.  

 

 SHARE_REM 

If set to 1, the remainder will be shared with any required mux width. 

 

 MAX_SIZE  

The maximum chain size to be considered, setting to 0 to disable pattern sharing and shares only 

dividers and remainders. 

 

 SHARE_ADD 

If set to 1, the addition will be shared with 2-to-1 muxing.  

  

 SHARE_SUB 

If set to 1, the subtraction will be shared with 2-to-1 muxing.  

 

 SHARE_BITOPS 

If set to 1, the bit-wise operation will be shared with 2-to-1 muxing.  

 

 SHARE_SHIFT 

If set to 1, the shift will be shared with 2-to-1 muxing.  

 

For the "scheduling", LegUp performs ASAP (see the definition on page 42) scheduler with operator chaining 

and pipeline FUs and targets a 66 MHz clock period constraint on the Altera DE2 which assigns each operation 

into the earliest possible c-step. For the "allocation", LLVM instructions hold the unique names of each FUs / 

registers and generate RTL modules from the scheduled DFG. For the "binding", binding operations can be set 

to force to generate the RTL data structure to DSP (Embedded MULs on the Cyclone II) units on the FPGA. 

The following parameters in pattern sharing for FUs are enabled by values of SHARE_DIV, SHARE_REM, 

MAX_SIZE, SHARE_ADD, SHARE_SUB, SHARE_BITOPS, and SHARE_SHIFT, which are set to "1" and 

MAX_SIZE is set  to "10" [92], with those settings, LegUp will achieve the maximum binding for the best 

result.  
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6.3.2 The Hardware/Software (Hybrid) Flow 
 

The LegUp HW/SW (LegUp-Hybrid) implementation is a Co-design system, where implementing the most 

intensive computing functions into the hardware accelerator and executing the rest of the program in the Tiger-

MIPS soft processor; and the number of functions that input to the hardware are customizable and lead to 

HW/SW partitioning. Once the profiling data was listed in the Kcachegrind tool, and named manually the 

accelerated function in the "config.tcl" file. The LegUp design flow with other CodeProfiler (Kcachegrind) is 

shown in Fig 6.4.  

 

 

 

                                     

Figure 6.4 LegUp HW/SW Co-design flows. 
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The processes are divided into HW and SW flows. The SW flow generates a "wrapper" file according to the 

"config.tcl" file, replacing the wrapper function for the HW portion from the original C function; the "wrapper 

function" allows accelerator / processor communication without affecting the rest of the software; finally the 

rest of C program generates the SW binary and also creates "tcl scripts" which control the Altera SOPC Builder. 

At the same time, the HW flow generates the accelerator by compiling the indicated functions to synthesize 

RTL data into hardware (the same HLS process in Section 6.3.1) as well as creating a top-level Avalon 

interface to communicate with the soft-processor and the D-caches. Once both SW and HW flows are complete, 

the tcl script will run the SOPC Builder to put on the accelerator to the system. In the end, ModelSim simulates 

the accelerator / processor system to display total execution cycles and times. To specify a function to be 

accelerated in LegUp-Hybrid flow of the config.tcl file: 

 

 SET_ACCELERATOR_FUNCTION "NAME" 

To place the name of the C function to accelerate in the config.tcl file for Hybrid-systems.  

            

6.4  Benchmarks of High-Level-Synthesis (HLS)  
 

The input data ("Test data vectors") of the CHStone benchmarks are either "Integer" or "Hexadecimal" values 

(pointer arithmetic for address space), which all declared in "array" elements of the C standard. All programs 

were "un-optimized", in order to maintain best average results (Some of them were even upper in non-

optimization benchmarks). The important information about those programs is following below sections:  

 

6.4.1 Microprocessor 
 

 MIPS 

This is a simplified MIPS processor which has 32 registers and 30 instructions in a switch-case 

statement. A program produced by CHStone is served as a test vector of one input / output data in 8 

array elements. 

 

6.4.2 Double Precision Floating-point Arithmetic 
 

The following programs are implemented with IEC/IEEE-standard double-precision floating-point addition 

package using 64-bit integer numbers. The C source file is part of the SoftFloat and all operations are performed 

according to this package, Release 2b [75]. There are DFADD, DFMUL, DFDIV, and DFSIN benchmarks:  

 

 DFADD 

This is a C program of "Addition / Subtraction" arithmetic for 64-bit double-precision floating-point as 

a test vector of two input data and one output in 46 array elements. Two sub-functions 

(add/subFloatSign) have been called and there are a number of the control statements such as if and 

goto in the loop. 
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 DFMUL 

This is a C program of "Multiplication" arithmetic for 64-bit double-precision floating-point as a test 

vector of two input data and one output in 20 array elements. One sub-function (float64_mul) has been 

called and there are a number of the control statements such as if in the loop. 

 

 DFDIV 

This is a C program of "Division" arithmetic for 64-bit double-precision floating-point as a test vector 

of two input data and one output in 22 array elements. One sub-function (float64_div) has been called 

and there are a number of the control statements such as if in the loop. 

 

 DFSIN 

This is a C program of "Sine" arithmetic for 64-bit double-precision floating-point as a test vector of 

two input data and one output in 36 array elements. One sub-function (float64_sin) has been called and 

do-while statement enclose a float64_div and a float64_add in the loop. 

 

6.4.3 Media Processing 
 

The following programs are relative to audio / image / video signal processing. There are ADPCM, GSM, JPEG, 

and MOTION benchmarks: 

 

 ADPCM 

This is a C program of "Audio" signal processing in telecommunication for the Adaptive-Differential-

Pulse-Code-Modulation (ADPCM), which varies the size of the quantization in G.722 CCITT standard 

(7 kHz wideband audio code operating at 48, 56 and 64 kbit/s) [97]. There are two main sub-functions 

(encode and decode). Test Vectors: test data input / compression for encoding and result for decoding 

in 100 array elements.  

 

 GSM 

This is another C program of "Audio" signal processing for the Linear-Predictive-Coding (LPC) widely 

used in speech analysis techniques at low bit rate under the (Global-System-for-Mobile-Commutations) 

GSM that is a communication protocol for mobile phones. There is a main sub-function of 

Gsm_LPC_Analysis. Test Vectors: test word input / output data in 160 array elements in a for loop. 

 

 JPEG 

This is a C program of "Image" signal processing for the Joint-Photographic-Experts-Group (JPEG) 

widely method in lossy compression algorithm based on the Discrete-Consine-Transform (DCT) for 

digital photography. The most important sub-function is (decode_block) that composed of three main 

parts: Decode Huffman, Inverse Quantization, and Inverse DCT. Important information: Image Height 

= 59, Image Width = 90, and Sampling Factor 4:1:1. Test Vectors: 7506 array elements. 
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 MOTION 

This is another C program of "Video" signal processing for MOTION vector decoding motion 

estimation process used in picture reference in MPEG-2 standard. There are two main sub-functions 

(Initialize Buffer and motion_vectors). Test Vectors: test buffer frame input / output in 2048 array 

elements.  

 

6.4.4 Security 
 

The following programs are relative to encryption is the process of encoding codes for protective data that 

hackers cannot read it, but the authorized ones can. There are AES, BLOWFISH, and SHA benchmarks: 

 

 AES 

This is C program of "cryptography" processing for the Advanced-Encryption-Standard (AES) and has 

been worldwide used in both hardware and software. The methodology of the algorithm is "Symmetric-

Key-Algorithm" for both encrypting and decrypting the data. There are two main sub-functions 

(encrypt and decrypt). Test Vectors: test input data: Statements and Keys are all in 16 array elements 

respectively; and expect output data for encrypt and decrypt are hexadecimal in 16 array elements. 

There are a number of the control statements such as a switch-case in the loop. 

 

 BLOWFISH 

This is another C program of "cryptography" processing for Data-Encryption-Standard (DES) in 

"Symmetric-Block-Cipher" implementation. The program has only the encryption algorithm. There is 

one main sub-function (BF_encrypt). Test Vectors: test keys of input / output in 5200 array elements. 

 

 SHA 

This is another C program of "cryptography" processing for Secure-Hash-Algorithm (SHA) of 

cryptographic hash functions. In hash function process, the input data can be encoded to a message 

digest. There is one main sub-function (sha_transform) to do the transform. Test Vectors: test input in 

2*8192 in 2-Dimensional array elements and expected output in 5 array elements. 

 

 

6.5 Experimental Methodology and Results 
 

This section work aims to analyze the standard "C" code profiling of CHStone Suits HLS and CM60x60 / 

LZW45K DLP programs (total of "14" benchmarks) by Kcachegrind tools; and programs were executed in 

LegUp Co-design systems. For the experimental platform, I expected to continue to use the Altera DE4 board to 

obtain the benchmarks; regrettably, LegUp-3.0 Hybrid flows were not compatible with the DE4. Therefore, the 

DE2 maturely collaborates with LegUp-2.0 was selected for this case study (Note: the SW flow performance on 

the DE2 should have been one third of the DE4, due to the clock period constraints).  
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The results were represented as the execution cycles / times and resource distribution of each program in 

following of "LegUp-HW" (whole programs to the accelerator), "Hybrid1" (the most functions called to 

accelerator), and "Hybrid2" (the second most functions called to the accelerator) that synthesized on Altera 

Cyclone II FPGAs fabric (the number of LEs, Memory-bits, Embedded MULs, and clock frequency on the 

feasible FPGA) were reported. These results compared against the baseline system of the "MIPS-SW" (same as 

the Tiger-MIPS SW flow in chapter 4, but was synthesized on the Altera DE2) benchmarks.  

 

Moreover, some of the benchmarks were not able to acquire, there were MIPS: Hybrid flows, due to there are 

only the "main" function in the program; CM60x60: Hybrid1 flow, due to there is a technical problem of LegUp 

wrapper function generation; and LZW45K: Execution time of HW flow, due to the generating accelerator on the 

memory blocks are out of the FPGA resource. 

 

6.5.1 Analysis of Profiling Data  
 

The visualization of profiling data was represented in Fig 6.5. The "Total Instruction Fetch Cost" corresponds to 

the CPU execution time which has shown on the bottom of the figure. The "Incl" column is the inclusive cost, 

represented as time spent in percentage of the function (the blue bar); the "Self" is the function called itself; the 

"Called" is the number of the called by that function; and also the "Function" is the function name. The 

"Location" tab, the function location of the C files in the host computer can be viewed.  

 

 

 

Figure 6.5 The Kcachegrind visualization. 

 

The called-graphs of each program have been profiled by Kcachegrind tools, which were represented in Fig 

III.1 – III.11, Appendix III. The top most called functions in the “main()” by whole time spent in each 

program have shown as well. The top-four most called functions were displayed in Table III.A and the chosen 

two functions to be accelerated to the LegUp-Hybrid system has shown in green colour ticks.  
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6.5.2 Analysis of Speed and Resource Utilization   
 

Each of the programs was entirely executed in the LegUp-HW. Besides, programs being profiled and identified 

most function calls earlier on, were executed in the LegUp-Hybrid. The results of all designed flows have shown 

in Table III.B, outline the characterization of each program, such as the representative data type, the number of 

lines, the number of functions, variables, and the number of operations. The results of Fmax, LEs, Devices, 

REGs, # bits, MULs, and Times for all benchmarks in terms of LegUp-HW, Hybrid1, Hybrid2, and SW flows on 

the Altera Cyclone II FPGAs were displayed in Table III.D. "Fmax" revealed the maximum frequency (MHz) 

of the overall system, "LEs" revealed the area breakdown within the FPGA expressing in the number of logic 

elements, "Devices" revealed the given suggested Cyclone II FPGAs, "REGs" revealed the number of registers 

used on the FPGA, "# bits" revealed the number of memory-bits used on the FPGA, "MULs" revealed the 

number of embedded multipliers used on the FPGA (9x9-bit), and "Times" revealed the total execution times 

(µs) in running the whole program. Finally, Fig III.C represented that the execution times and area results of all 

designed flows with the number of line / variables in the figure.  

 

In presentation of figures, the data has shown that the LegUp-HW flow were the best performance of the 

benchmarks with the smallest area breakdown (some of large codes, such as DFSIN and JPEG have higher LEs 

usage than MIPS-SW). Furthermore, there has been found that the HW area breakdown on the number LEs are 

slightly dependent on the number of the "lines" and "variables" for most of the CHStone benchmarks. This 

implied that the FPGA resource estimation was able to calculate by these two factors. The average generated 

LEs per line / variables were 19 and 67; and the mean value would give an approximate LEs utilization of the 

LegUp accelerator generation within Cyclone II FPGAs.  

 

6.5.3 Distribution of DSPs and Block RAMs on FPGAs 
 

DSP features on FPGAs can be used as coprocessors especially for multiplications computation; and 

significantly increase the performance then reduce the total LEs cost (Area), PAR congestions, and power 

consumptions for lower system costs (see page 32). Cyclone II FPGAs offer up to 300 9x9-bit embedded 

multipliers that are ideal for low-cost DSP blocks. Each embedded multiplier is configured as one 18x18-bit 

multiplier or two 9x9-bit multipliers [98]. In LegUp-2.0 synthesis result, it represents 9x9-bit multipliers only.  

 

The numbers of 9x9-bit embedded multipliers in terms of LegUp-HW, Hybrid1, Hybrid2, and MIPS-SW flows 

for each program have shown in Fig 6.6. The dashed line data shows that the actual number of MUL/DIV 

operations from Table III.B in each program. For the observation of the figure, the multiplier utilizations of 

HW implementations in most of the codes were much higher than SW implementations. This was because the 

MUL/DIV operations bounded on the embedded MULs in the accelerator. Paying attention that DFDIV, 

DFMUL, and DFSIN have used the most amount of MULs resource; it was how and what they have saved 

significant numbers of LEs, hence speed-up the program prominently. In the same manner, the LZW45K has 

used the number of MULs more than its actual number of MUL/DIV operations and would have saved a lot of 

LEs then raised the execution time considerably. Unfortunately, I have not obtained its benchmark of LegUp-

HW due to the failing synthesis of the system. Moreover, other codes such as GSM and JPEG have used a part 
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of MULs and remaining of them were implemented either on LEs or block RAMs; these would have certainly 

increased area significantly. 

 

 

 

Figure 6.6 Embedded multiplier 9x9-bit elements distribution. 

 

Other important features within FPGAs are embedded memory blocks. Cyclone II devices offer up to 1.1 Mbits 

of on-chip embedded memory through a fundamental M4K (4,608 bits) blocks. The RAM block is configured to 

provide various memory functions as single-port RAMs, dual-port RAMs, FIFO buffers, and ROMs, which are 

ideal using as program storage memory in embedded processors [99]. In LegUp-2.0 synthesis result, it 

represents the number of memory-bits.  

Fig 6.7 has shown that the number of memory-bits usage in all designed flows of each program. The dashed line 

data shows that the number of test data vectors from Table III.C for each program, the block RAMs breakdown 

by the local memory of accelerators was very dependent on the size of input test data (constant declarations). 

During this observation, the LegUp-HW flow required much less memory-bits than the MIPS-SW alone. This 

was because the Tiger-MIPS processor contains cache memories (16KB of I&D-caches) as well as FIFOs, other 

peripherals, on-chip data caches, and the memory controller; which consume more memory-bits than the local 

accelerator RAM. Beyond that, the memory-bits consumption of JPEG, BLOWFISH, and SHA was very large, 

due to huge numbers of integer values were stored in many of "array" elements for encode / decode arithmetic, 

then required a lot of block RAMs on FPGAs. In the same way, the memory-bits usage of the CM60x60 was 

quite numerable, due to the large number of 2-D matrix values were stored in arrays of multiplication arithmetic. 

Moreover, the number of memory-bits in the LZW45K was significantly large, due to out of the memory 

resource bounds with the FPGA synthesis, and did not fit on any suitable Cyclone II boards.  
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Figure 6.7 Total memory bits distribution. 

 

 

6.5.4 Speed&Area Tradeoffs in LegUp System on FPGAs 

 

To conclude, the results of average Speed and Area of LegUp-HW, Hybrid1, Hybrid2, and MIPS-SW flows 

have shown in Fig 6.8 (Note: the benchmarks of MIPS, CM60x60, and LZW45K were not included, due to their 

results were not intact). The left vertical axis represented geometric mean execution time as well as the area 

(average number of LEs). Again, in terms of speed-up, the average execution times were significantly decreased 

when more computations were implemented in the hardware accelerator. Thus, the more codes implemented in 

the hardware accelerator, and the more speed-up obtained. In terms of area, the average results have shown that 

HW implementations taking considerably less area than Hybrid implementations, due to the Tiger-MIPS 
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processor was not included in the system; and a few more area than SW implementations. In Hybrid 

implementations, speed and area results were inversely proportional each other. 

 

Moreover, large size codes could remained more area of the LegUp-HW than the MIPS-SW. To this 

experimental deduction, 682 lines or 191 variables of the designated codes would have probably reached the 

boundary of this circumstance. 

 

  

 

Figure 6.8 The overall performance and area results of LegUp. 

 

 

To survey the speed-up versus the area cost of LegUp-HW and Hybrid1/2 flows, once again I implanted DSE 

equations from Equation 3.5 - 3.7. Meanwhile, the MIPS-SW flow was the baseline against the comparison. 

The results of program speed-up versus area penalty (the number of LEs) in terms of LegUp-HW and 

Hybrid1/2 flows of each program, which displayed in Table III.E and the histograms, were plotted in Fig 6.9.  

As these results represented, DFADD, DFDIV, DFMUL, and DFSIN benchmarks in HW implementations have 

been extraordinary program speed-up. For this inference, it was owing to parentless SoftFloat arithmetic and 

most of them were implemented to DSP resource. Moreover, the speed-up of LegUp-HW was also briefly 

dependent on the percentages of the control statements in C programs, as showing in Figure III.B. Alone "if" 

and "goto" statements in a program were deeply affected on increasing performance by LegUp HLS 

implementations. However, codes with many "for" loops such as ADPCM, JPEG, AES, BLOWFISH, SHA, and 

CM60x60, which have appeared speed-up faintness. 
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Figure 6.9 The percentage of Speed and Area tradeoffs distribution.  

 

 

 

Figure 6.10 The LegUp speed and area efficency.  
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Moreover, the CM60x60 and LZW45K programs were available to implement in the LegUp Co-design system. 

For the Speed&Area results of HLS implementations comparing to DLP implementations in Section 5.5.3, there 

has been shown that the CM60x60 speed-up were significantly better in the HLS of LegUp-HW flows (18.78) 

compared to the best benchmark in the DLP of the 6-core LE1 CMP (4.91), and the area was reduced very much 

(0.12); the LZW45K speed-up of the LegUp-Hybrid1 (5.43) flow was very close to the benchmark at the 6-core 

of LEON3&LE1 Parallel-flows and the LegUp-Hybrid2 (2.54) flow was between at 2 and 3-core of 

LEON3&LE1 Parallel-flow. However, the area increased were (1.03 in the LegUp-Hybrid1 and 1.54 in the 

LegUp-Hybrid2) relative smaller, which around the 2-core of LEON3&LE1 Parallel-flow. 

 

The percentage of the Speed&Area Efficiency for each program in accordance with LegUp-HW and Hybrid1/2 

flows are represented in Fig 6.10, as shown that the HW implementation was extremely advantage than Hybrids 

and SW implementations. For the Speed&Area Efficiency comparisons of CM60x60 and LZW45K programs 

between HLS and DLP implementations, the HLS process outcomes overwhelming efficiency than the best 

benchmarks of the DLP process, such as the CM60x60 LegUp-HW flow (162) compared to the 6-core of the 

LEON3 MP (1.96). Moreover, the efficiency of the LegUp-Hybrid1 flow in the LZW45K (5.25) was remained 

upper than any of the Parallel-SW flows and the LegUp-Hybrid2 flow (1.65) was very close to 3-core of 

LEON3&LE1 SMPs.  

 

6.6 Summary 
 

CHStone programs consist of many sub-functions that called by one another. It is an advantageous case study 

that suitable for "function-intensive" transformation using LegUp HLS tools. By using the Kcachegrind 

stimulator of code profiling, software designers can view the call-graphs behaviour and easily choose which 

functions to be accelerated in the hardware. As results of the Speed&Area evaluations of LegUp Co-design 

systems, it shows that the HW design flow is the superior tradeoffs, and followed by Hybrid1, Hybrid2, and SW 

flows. In addition, the analysis of LegUp-system affected by input applications, "the number of DSP usages" 

and "control-flows" of the codes that dominate the speed-up in accelerators; "the number of lines" and 

"variables" in a C code that dominate the area cost in accelerators; and "the size of input test data" in the code 

dominates the number of block RAMs breakdown on FPGAs. Moreover, the DLP programs executing in the 

HLS methodology also behaves excellent performance and area tradeoffs, but the input data volume are limited 

by the RAM resource of the FPGA.   
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Chapter 7 

 

Overall Outline and Conclusion 

 

7.1 Conclusion of LEON3, LE1, and Tiger-MIPS Soft-cores 
 

To chapter 4, I represent the performance of LEON3, LE1, and Tiger-MIPS processors while running a wide-

range of C standard benchmarks (fixed-point operations only). To briefly depict the Speed&Area comparisons 

them within FPGAs (LEON3 is the baseline), the Tiger-MIPS processor has the superior execution times of 2.52, 

smaller area of 0.81; and the LE1 has execution times of 1.04, larger area of 1.55 times. To conclude the 

Efficiency ranking are Tiger-MIPS (3.11), LEON3 (1) and LE1 (0.67) in this experimental work.  

 

Although the Tiger-MIPS processor triumphs the comprehensive tradeoffs, however the core is un-configurable 

and designed to operate on a specific Co-design platform (LegUp), and also possible targeted FPGAs are narrow 

(only on Altera Cyclone II or Starix IV). Moreover, there is no any commercial or research toolchain for MIPS 

multi-core processor support for MPSoC platform up to present. Unlike LEON3 and LE1 processors, the cores 

are highly configurable, multi-processor supported, and available to be targeted to many popular FPGA 

prototyping boards. Moreover, the LEON3 designed template is an excellent platform for complex SoC design 

as the GRLIB IP library incorporating LEON3/4 processors and many IP cores. Moreover, the LE1 is a VLIW 

type, which has double increased instruction throughput than RISCs of LEON3&Tiger-MIPS, however the 

performance results are not very exceptional, while the larger area is required due to the large number of 

registers / FUs usage and also the core needs a MicroBlaze to be on the system that consumes considerable area. 

However, the advantage of the LE1 processor is the number of execution resource for reducing the latency of 

the core that is optimizable to increase the performance, but the area will increase. 

 

Through the benchmark analysis, the performance of each processor is affected by different algorithm types (see 

the outline on page 59), the software engineer can rewrite or optimize the C codes to best fit the excellent 

performance of each processor. In addition, the longer pipeline depths of a CPU will result longer program 

execution times and also designers need to keep the system frequency low on the FPGA-based to save power 

computation. The following key sentence outlines the conclusion for an ideal soft-core embedded processor on 

FPGA-based: 

 

 As many as compatible and reusable IP cores and targeted FPGAs (LEON3) 

 Simpler instruction pipeline stages (MIPS) 
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7.2 Conclusion of DLP in LEON3 MP and LE1 CMP 

To chapter 5, the case study for DLP implementations of CM60x60 and LZW45K benchmarks running in 

LEON3 and LE1 SMP systems on the Xilinx Virtex-6 LX240T. To summarize the overall results, all the data 

programs are very linearly speed-up in terms of the number of instruction/cores increase, and the LEON3 is yet 

better in moving data between CPU registers. To follow up the results, FPGA engineers can select the right 

number of the cores for the required performance within a FPGA. The Speed&Area Efficiency of LEON3 MP is 

slightly greater than the LE1 CMP when the number of cores increase. Moreover, by comparing the program 

speed-up along with the number of issue widths increasing, the performance of CM benchmarks in both systems 

are very close to each other and the LZW benchmarks of the LEON3 MP system are continuously 3 times better 

than the LE1 CMP from low to high numbers of cores; and resource utilizations within an FPGA are pretty 

linear increasing and very similar each other. Therefore, the Efficiency implemented by the instruction-level 

(ILP) of the LEON3 MP is approximately 3 times greater than the LE1 CMP. To be concluded, the LEON3 MP 

is however the best tradeoffs and choice of these multi-core processor implementations.  

 

To the local memories, the result shows that a 16KB I&D-cache system of the LEON3 MP is better to deal with 

"data synchronization confliction" than 2 parallel memory banks of LE1 CMP. However, using caches will 

consume some block RAMs. In addition, I do not have data results in the other parameter setting of memory 

banks; therefore these cannot be directly concluded the "cache-system" is a beneficial implementation than the 

"banked-system".  

 

Furthermore, a VLIW processor needs more logic unit for instruction decoding, thus more registers and FUs are 

required, the longer gate delay, and it will limit the system clock period. Moreover, the FPGA resources could 

be used to make more effective implementations by the parallelism of instruction-levels (eg. 4-width solution 

rather than 4 processors with single-width, thus the area would be considered only by decode units increasing 

and not the whole cores). The following key sentence outlines the conclusion for an ideal soft-core SMP system 

within a certain FPGA-based: 

 

 SPARC RISC processors have superior benchmarks than VEX VLIW processors (LEON3) 

 Implementing I&D caches for the system to reduce the data synchronization (LEON3) 

 VLIW processors on FPGA resource may be saved by implementing longer instruction widths 

rather than increasing the number of the cores to make speed-up (LE1) 
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7.3 Conclusion of HLS in LegUp Co-designs  
 

To chapter 6, the case study for HLS implementations of CHStone programs running in LegUp Co-design 

system on the Altera DE2. To summarize the Speed&Area Efficiency, the HW flow has extremely speed-up 

with lowest area cost, then Hybrid1/2, and MIPS-SW flow. To follow the results, FPGA engineers can select the 

right size of the FPGA chip for each program of its performance. Furthermore, it shows that the HW efficiency 

of the CM60x60 is significantly better than the best result of the DLP implementation; and Hybrid1/2 flows of 

the LZW45K are 2.5 times better than the 6-core (Hybrid1) and very close to the 3-core (Hybrid2) of DLP 

benchmarks respectively. 

 

To be concluded, typically, the more pieces of programs accelerating to the hardware, the more execution times 

being seed-up, the more LEs resource can be preserved, and the best to implement the MUL/DIV operations to 

DSP units. The data-intensive programs can also be implemented in LegUp HLS tools. However, the LegUp 

architectures intend to store the constant variables in the local memory; thus the designers have to take care of 

the input / output sizes within the codes, otherwise, it will lead to a large amount of the block RAMs breakdown 

on the FPGA.  

 

To compare HLS / DLP implementations, the HLS process (C to HDLs) generates the precise C codes to 

hardware circuits and representatively multiplications implemented on DSP resource, it does not use too many 

FPGA area (LUTs), and also speed-up considerably, hence results very high tradeoffs. In contrast, the DLP 

process is however lower performance implemented by multiple general-purpose processors and consumes 

many of LUT-FF Paris (soft µPs typically breakdown on conventional fabric and not on DSP resource). 

However, large programs with multiple *.c files linked by “Makefiles” are difficult to be implemented in 

HW/SW Co-design systems; general-purpose processors are more advantageous to handle such complex 

programs, and also keep constant variables in the main memory. The following key sentence outlines the 

conclusion for an ideal Co-design system within a certain FPGA-based: 

 

 The design tool needs to be versatile and powerful for verification 

 Execute as many functions as possible to hardware to obtain high performance 

 Multiplication applications are ideal to implement on DSP resource 
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Appendix 

 

Appendix I Benchmark Collections - SW Flow  

 

I.1 SW Flow in LEON3, LE1, and Tiger-MIPS Processors 

 

 

Function name 
LEON3 

CycleCount 

LEON3 (75MHz) 

Execution Time/µs 

LE1 

CycleCount 

LE1(75MHz) 

Execution Time/µs 

MIPS 

CycleCount 

MIPS (74.26MHz) 

Execution Time/µs 

cm62x62 1031175 13749 370019 4933.59 523449  2617.23 

lzw45k 935278425 12470379 1173688753 15649183.37 1059760839  5298785.267 

CHStone/mips 36675 489 47069 627.59 41407  207.02 

CHStone/adpcm 247050 3294 111269 1483.59 163362 816.795 

CHStone/gsm 98700 1316 39353 524.71 37575 187.86 

CHStone/jpeg 3251850 43358 3973077 52974.36 3935361 19676.79 

CHStone/motion 13650 182 - 179.147 30406 152.015 

CHStone/aes 48900 652 49128 655.04 49275 246.36 

CHStone/blowfish 717075 9561 830419 11072.25 910256 4551.265 

CHStone/sha 775725 10343 574712 7662.83 1083598 5417.975 

array 75 1 136 1.81 290 1.435 

dhrystone 27825 371 28190 375.87 24966 124.815 

div_const 975 13 289 3.85 186 0.915 

fft 54000 720 33603 448.04 22603 113 

fir 75 1 4409 58.79 8927 44.62 

function_pointer 150 2 67 0.89 167 0.82 

functions 75 1 69 0.92 110 0.535 

hierarchy_test 75 1 133 1.77 93 0.45 

llist 525 7 138 1.84 315 1.56 

loadstore 0 0 10 0.13 3 0 

loop 75 1 305 4.07 708 3.525 

loopbug 150 2 483 6.44 192 0.945 

malloc 3075 41 2407 32.09 2249 11.23 

memory_access_test 3900 52 1750 23.33 3924 19.605 

memset 75 1 1468 19.57 2346 11.715 

ogg 35370000 471600 38486527 513153.69 56749338 283746.675 

select 0 0 41 0.547 54 0.255 

shift 150 2 68 0.91 111 0.54 

signeddiv 375 5 164 2.19 224 1.105 

struct 1425 19 642 8.56 3759 18.78 

unaligned 0 0 187 2.49 3 0 

switches 75 1 39 0.52 57 0.27 

sra 75 1 42 0.56 90 0.435 

tiger/sra 0 0 135 1.8 3 0 

 

Table I.A Benchmarks of LEON3, LE1, and Tiger-MIPS single-cores. 
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Appendix II DLP Benchmarks - Parallel-SW Flow  

 

 

II.1 Parallel-SW Flow in LEON3 MP and LE1 CMP  

 

 

 

Number 

of CPUs 

Convolution-Matrix 60*60 (CM60x60) Lempel-Ziv-Welch 45KB (LZW45K) 

LEON3 (60MHz) LE1(50MHz) LEON3 (60MHz) LE1 (50MHz) 

CycleCount 
Execution 

Time/µs 
CycleCount 

Execution 

Time/µs 
CycleCount 

Execution 

Time/µs 
CycleCount 

Execution 

Time/µs 

1 1030200 17170 370019 7400 935031720 15583862 1173688753 23473775 

2 526020 8767 196894 3938 467804940 7796749 589744294 11794886 

3 351660 5861 131283 2626 312165240 5202754 399362970 7987259 

4 264180 4403 102708 2054 234231420 3903857 306433205 6128664 

5 214920 3582 86102 1722 187311900 3121865 250415720 5008314 

6 184320 3072 75395 1508 156329280 2605488 212593020 4251860 

 

Table II.A LEON3 MPs and LE1 CMPs simulated execution cycles and times (at 60MHZ and 50MHZ). 

 

 

 

Number of 

CPUs 

LEON3 MP (60MHz) LE1 CMP (50MHz) 

RAMB36 (%) RAMB18 (%) DSP48 (%) RAMB36 (%) RAMB18 (%) DSP48 (%) 

1 76 (18.27) 50 (6.01) 4 (0.52) 101 (24.28) 8 (0.92) 7 (0.91) 

2 86 (20.67) 100 (12.02) 8 (1.04) 117 (28.13) 16 (1.92) 11 (1.43) 

3 32 (7.69) 246 (29.57) 12 (1.56) 133 (31.97) 24 (2.88) 15 (1.95) 

4 42 (10.10) 328 (39.42) 16 (2.08) 149 (35.82) 32 (3.85) 19 (2.47) 

5 52 (12.50) 410 (49.28) 20 (2.60) 165 (39.66) 40 (4.81) 23 (2.99) 

6 62 (14.90) 396 (47.60) 24 (3.13) 181 (43.51) 48 (5.77) 27 (3.52) 

 

Table II.B LEON3 MPs and LE1 CMPs (with SoC) RAMs & DSPs breakdown on XILINX VIRTEX 6 ML605 FPGA. 
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Number of 

CPUs 

LEON3 MP (60MHz) LE1 CMP (50MHz) 

LUT-FF (%) RAMBs (%) LUT-FF (%) RAMBs (%) 

1 15596 (10.35) 126 (10.10) 24454 (16.22) 109 (8.73) 

2 21470 (14.25) 186 (14.90) 33107 (21.97) 133 (10.66) 

3 27507 (18.25) 278 (22.28) 42583 (28.25) 157 (12.58) 

4 33372 (22.14) 370 (29.65) 49460 (32.82) 181 (14.50) 

5 39222 (26.02) 462 (37.02) 58416 (38.76) 205 (16.43) 

6 44838 (29.75) 458 (36.70) 66756 (44.30) 229 (18.35) 

 

Table II.C LEON3 MPS and LE1 CMPs total area and RAMBs breakdown on XILINX VIRTEX 6 ML605 FPGA. 

 

 

 

Number of CPUs 
CM60x60 Speed-up LZW45K Speed-up Average Speed-up Area cost Speed&Area 

LEON3 LE1 LEON3 LE1 LEON3 LE1 LEON3 LE1 LEON3 LE1 

2 1.96 1.88 2.00 1.99 1.98 1.94 1.38 1.35 1.44 1.43 

3 2.93 2.82 3.00 2.94 2.96 2.88 1.76 1.74 1.68 1.65 

4 3.90 3.60 3.99 3.83 3.95 3.72 2.14 2.02 1.84 1.84 

5 4.79 4.30 4.99 4.69 4.89 4.49 2.51 2.39 1.95 1.88 

6 5.59 4.91 5.98 5.52 5.79 5.21 2.87 2.73 2.01 1.91 

 

Table II.D The results of speed-up versus area cost and Speed&Area Efficiency of LEON3&LE1 SMPs.   
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Appendix III HLS Benchmarks  - HW, Hybrids, and SW Flows 

 

III.1 Called-graphs of Profiling for Benchmarks by Kcachegrind 

 

 

 

 

Figure III.1 The called-graphs of DFADD. 
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Figure III.2 The called-graphs of DFDIV. 

 

 

 

 

 

 

 

 

Figure III.3 The called-graphs of DFMUL. 
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Figure III.4 The called-graphs of DFSIN. 

 

 

 

 

Figure III.5 The called-graphs of ADPCM. 
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Figure III.6 The called-graphs of GSM. 
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Figure III.7 The called-graphs of JPEG. 
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Figure III.8 The called-graphs of MOTION. 

 

 

 

 

Figure III.9 The called-graphs of AES. 
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Figure III.10 The called-graphs of BLOWFISH. 

 

 

 

 

 

Figure III.11 The called-graphs of SHA. 
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Figure III.12 The called-graphs of CM60x60. 
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Figure III.13 The called-graphs of LZW45K. 
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III.2 Top Most Called-functions for Benchmarks 

 

 
Function1 

(Incl%) 

Function2 

(Incl%) 

Function3 

(Incl%) 

Function4 

(Incl%) 

DFADD 
float64_add 

(2.98) ˇ 

subFloat64Sigs  

(1.23) ˇ 

addFloat64Sigs  

(1.17) 

roundAndPackFloat64 

(0.38) 

DFDIV 
float64_div 

(3.07) ˇ 

roundAndPackFloat64 

(0.38) 

extractFloat64Exp  

(0.17) ˇ 

extractFloat64Exp 

(0.15) 

DFMUL 
float64_mul 

(1.84) ˇ 

roundAndPackFloat64 

(0.38) 

extractFloat64Exp  

(0.16) ˇ 

extractFloat64Frac 

(0.14) 

DFSIN 
sin 

(57.58) ˇ 

float64_div  

(18.50) ˇ 

float64_mul  

(15.03) 

float64_add 

(14.15) 

ADPCM 
adpcm_main 

(59.04) 

encode  

(31.06) ˇ 

decode  

(27.08) ˇ 

upzero 

(14.97)  

GSM 
Gsm_LPC_Analysis 

(24.1) ˇ 

Autocorrelation 

(19.86) ˇ 

Reflection_coefficients 

 (3.69) 

Quantization_and_coding 

(0.39) 

JPEG 
jpeg2bmp_main 

(97.39) 

jpeg_read  

(87.20) ˇ 

decode_start  

(85.10) ˇ 

decode_block 

(63.67) 

MOTION 
Flush_Buffer  

(16.34) ˇ 

Initialize_Buffer 

(15.91) ˇ 

Fill_Buffer  

(15.82) 

read 

(15.81) 

AES 
aes_main 

(48.42) 

decrypt  

(30.59) ˇ 

AddRoundKey_InversMixColumn 

(20.02) ˇ 

encrypt 

(17.81) 

BLOWFISH 
Blowfish_main 

(89.94) 

BF_encrypt 

(56.70) ˇ 

BF_cfb64_encrypt  

(49.69) ˇ 

BF_set_key 

(27.24) 

SHA 
sha_stream  

(91.43) ˇ 

sha_update 

(91.09) 

sha_transform 

(80.96) ˇ 

Memcpy 

(10.24) 

CM60x60 
compress 

(65.46) ˇ 

inDictInt 

(52.24) 

add2Dictionary 

(23.58) 

decompress 

(13.82) ˇ 

LZW45K 
compress 

(65.46) ˇ 

inDictInt 

(52.24) 

add2Dictionary 

(23.58) 

decompress 

(13.82) ˇ 

 

Table  III.A The top-four function-called in HLS benchmarks. 
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III.3 HW, Hybrids, and SW Flow in LegUp 

 

Programs 

Line of 

the 

Codes 

Function 
Scalar 

Variable 

Array 

Variable 
Add/Sub MUL DIV Comparison Shift Logic 

MIPS 232 1 30 5 17 2 0 12 22 23 

DFADD 494 17 121 4 36 0 0 72 65 129 

DFDIV 419 19 110 4 45 8 2 50 56 65 

DFMUL 363 16 91 4 28 4 0 34 41 55 

DFSIN 789 31 285 3 136 17 2 181 214 310 

ADPCM 547 15 268 26 156 69 2 73 81 24 

GSM 380 12 149 10 250 53 0 109 44 41 

JPEG 1397 31 393 46 1038 148 6 243 293 132 

MOTION 441 13 274 12 844 0 0 444 350 166 

AES 723 11 345 11 510 22 12 48 758 370 

BLOWFISH 1413 6 110 12 280 0 0 15 159 370 

SHA 1286 8 64 6 133 0 3 32 59 87 

CM60x60 47 2 7 2 11 1 0 0 0 0 

LZW45K 153 10 20 8 8 0 0 6 0 4 

 

Table III.B Characterizations of HLS programs. 

 

 

 

Figure III.A The percentage distributions of algorithmic types in HLS benchmarks. 
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Programs if Switch while for goto Test Data Length 

MIPS 4 3 1 3 0 8 

DFADD 52 24 0 25 0 46 

DFDIV 97 0 1 17 30 22 

DFMUL 214 64 27 90 75 20 

DFSIN 351 0 191 6 36 36 

ADPCM 28 10 0 24 0 100 

GSM 6 8 5 5 0 160 

JPEG 3 0 9 20 0 7,506 

MOTION 4 3 1 3 0 2,048 

AES 52 24 0 25 0 16 

BLOWFISH 97 0 1 17 30 5,200 

SHA 214 64 27 90 75 8,192 

CM60x60 0 0 0 6 0 3,844 

LZW45K 6 0 2 4 0 45,000 

 

Table III.C Control flows and test-data length of HLS benchmarks. 

 

 

 

 

Figure III.B The percentage distributions of C control flows in HLS benchmarks. 
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Table III.D Synthesis results for HLS benchmarks on ALTERA CYCLONE II FPGAs. 

 

 

Programs Flows Fmax/MHz LEs (%) Devices REGs (%) # bits (%) MULs (%) Times/µs 

MIPS 

HW 106 3,256 (39) EP2C8T144C6 1555 (19) 4,480 (3) 8 (22) 10.369 

Hybrid1 - - - - - - - 

Hybrid 2 - - - - - - - 

SW 74.26 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 783.062 

DFADD 

HW 139 6,233 (43) EP2C15AF256C6 2980 (21) 17,056 (7) 0 (0) 1.611 

Hybrid1 139 23,976 (47) EP2C50F484C6 11104 (33) 311,449 16 (23) 216.470 

Hybrid 2 139 19,236 (58) EP2C35F484C6 9234 (28) 310,041 (64) 16 (23) 361.927 

SW 74.26 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 6021.711 

DFDIV 

HW 2 13,357 (71) EP2C20F256C6 9432 (50) 13,495 (6) 38 (73) 4.515 

Hybrid1 2 27,461 (54) EP2C50F484C6 15001 (30) 311,120 (52) 54 (31) 200.714 

Hybrid 2 2 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 1109.128 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 3986.587 

DFMUL 

HW 66 3,927 (48) EP2C8T144C6 1989 (24) 12,032 (7) 32 (89) 0.585 

Hybrid1 66 18,037 (54) EP2C35F484C6 8859 (26) 310,041 (64) 48 (69) 171.620 

Hybrid 2 66 12,843 (39) EP2C35F484C6 6296 (19) 301,563 (62) 16 (23) 283.017 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 2587.865 

DFSIN 

HW 2 25,853 (78) EP2C35F484C6 15127 (46) 13,911 (3) 70 (100) 128.869 

Hybrid1 2 46,177 (67) EP2C70F672C6 23023 (34) 311,056 (27) 92 (31) 1117.682 

Hybrid 2 2 29,261 (58) EP2C50F484C6 16710 (33) 311,056 (52) 54 (31) 5079.276 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 40790.120 

ADPCM 

HW 8 17,494 (53) EP2C35F484C6 9764 (29) 27,646 (6) 61 (87) 63.049 

Hybrid1 88 22,969 (69) EP2C35F484C6 10569 (32) 319,449 (66) 26 (37) 1944.456 

Hybrid 2 88 22,185 (67) EP2C35F484C6 8810 (27) 319,449 (66) 32 (46) 2170.890 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 2338.421 

GSM 

HW 88 10,999 (59) EP2C20F256C6 5473 (29) 10,144 (4) 20 (38) 10.719 

Hybrid1 88 25,890 (51) EP2C50F484C6 12234 (24) 309,657 (52)  40 (23) 304.922 

Hybrid 2 88 21,096 (64) EP2C35F484C6 10421 (31) 309,081 (64) 36 (51) 426.667 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 772.363 

JPEG 

HW 8 34,812 (51) EP2C70F672C6 16440 (24) 470,054 (41) 54 (18) 2681.559 

Hybrid1 8 65,043 (95) EP2C70F672C6 28090 (41) 517,527 (45) 56 (19) 23025.867 

Hybrid 2 8 42,642 (62) EP2C70F672C6 19463 (28) 500,445 (43) 50 (17) 27478.458 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 73564.303 

MOTION 

HW 153 4,360 (53) EP2C8T144C6 2180 (26) 33,312 (20) 8 (22) 12.761 

Hybrid1 153 15,886 (48) EP2C35F484C6 7237 (22) 319,385 (66) 20 (29) 305.949 

Hybrid 2 153 15,655 (47) EP2C35F484C6 7404 (22) 319,385 (66) 20 (29) 313.671 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 632.821 

AES 

HW 8 16,135 (49) EP2C35F484C6 7945 (24) 38,632 (8) 0 (0) 31.435 

Hybrid1 8 44,451 (65) EP2C70F672C6 18832 (27) 325,241 (28) 22 (7) 650.839 

Hybrid 2 8 19,389 (38) EP2C50F484C6 8925 (18) 321,867 (54) 22 (13) 704.854 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 1270.939 

BLOWFISH 

HW 215 9,514 (66) EP2C15AF256C6 6077 (42) 150,240 (63) 0 (0) 395.959 

Hybrid1 215 20,725 (41) EP2C50F484C6 10351 (20) 418,329 (70) 16 (9) 8156.948 

Hybrid 2 215 23,396 (46) EP2C50F484C6 11418 (22) 418,393 (70) 16 (9) 9876.354 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 13409.624 

SHA 

HW 8 12,842 (39) EP2C35F484C6 7344 (22) 135,048 (28) 4 (6) 467.753 

Hybrid1 8 27,732 (41) EP2C70F672C6 13574 (20) 436,321 (38) 20 (7) 3345.570 

Hybrid 2 8 17,836 (35) EP2C50F484C6 8869 (17) 435,641 (73) 16 (9) 4588.006 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 16037.925 

CM60x60 

HW 153 1,475 (32) EP2C5T144C6 411 (9) 61,832 (52) 1 (4) 1719.723 

Hybrid1 - - - - - - - 

Hybrid 2 - - - - - - - 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 32296.661 

LZW45K 

HW 215 14,456 - 4075 1,605,384 52 - 

Hybrid1 215 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 5625482.233 

Hybrid 2 215 19,644 (59) EP2C35F484C6 8620 (26) 366,385 (76) 31 (44) 12047403.128 

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 30571490.632 
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Figure III.C The execution times and resource distribution results on ALTERA CYCLONE II FPGAs. 
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Table III.E The results of speed-up versus resource cost and Speed&Area Efficiency of LegUp. 

 

 

 

 

Program Flows Speed-up Area Cost Speed&Area 

MIPS 

HW 75.52 0.26 295.93 

Hybrid1 - - - 

Hybrid 2 - - - 

DFADD 

HW 3737.87 0.49 7651.45 

Hybrid1 27.82 1.88 14.80 

Hybrid 2 16.64 1.51 11.036 

DFDIV 

HW 882.97 1.05 843.43 

Hybrid1 19.86 2.15 9.23 

Hybrid 2 3.59 1.00 3.59 

DFMUL 

HW 4423.70 0.31 14372.80 

Hybrid1 15.08 1.41 10.67 

Hybrid 2 9.14 1.01 9.08 

DFSIN 

HW 316.52 2.03 156.21 

Hybrid1 36.50 3.62 10.08 

Hybrid 2 8.03 2.29 3.50 

ADPCM 

HW 37.09 1.37 27.05 

Hybrid1 1.20 1.80 0.67 

Hybrid 2 1.08 1.74 0.62 

GSM 

HW 72.06 0.86 83.59 

Hybrid1 2.53 2.03 1.25 

Hybrid 2 1.81 1.65 1.09 

JPEG 

HW 27.43 2.73 10.05 

Hybrid1 3.19 5.10 0.63 

Hybrid 2 2.68 3.34 0.80 

MOTION 

HW 49.59 0.34 145.12 

Hybrid1 2.07 1.25 1.66 

Hybrid 2 2.02 1.23 1.64 

AES 

HW 40.43 1.26 31.97 

Hybrid1 1.95 3.48 0.56 

Hybrid 2 1.80 1.52 1.19 

BLOWFISH 

HW 33.87 0.75 45.42 

Hybrid1 1.64 1.62 1.01 

Hybrid 2 1.36 1.83 0.74 

SHA 

HW 34.29 1.01 34.07 

Hybrid1 4.79 2.17 2.21 

Hybrid 2 3.50 1.40 2.50 

CM60x60 

HW 18.78 0.12 162.45 

Hybrid1 - - - 

Hybrid 2 - - - 

LZW45K 

HW - - - 

Hybrid1 5.43 1.03 5.25 

Hybrid 2 2.54 1.54 1.65 


