
Performance and Area Evaluations of

Processor-based Benchmarks on FPGA Devices

by

Jiunn-Tyng, Kao

A Doctoral Thesis submitted in partial fulfilment of the requirement for Master of Philosophy of

Loughborough University

January 2014

© Jiunn-Tyng, Kao, 2014

2

Abstract

The computing system on SoCs is being long-term research since the FPGA technology has emerged due to its

personality of re-programmable fabric, reconfigurable computing, and fast development time to market. During

the last decade, uni-processor in a SoC is no longer to deal with the high growing market for complex

applications such as Mobile Phones’ audio and video encoding, image and network processing. Due to the

number of transistors on a silicon wafer is increasing, the recent FPGAs or embedded systems are advancing

toward multi-processor-based design to meet tremendous performance and benefit this kind of systems are

possible. Therefore, is an upcoming age of the MPSoC. In addition, most of the embedded processors are soft-

cores, because they are flexible and reconfigurable for specific software functions and easy to build

homogenous multi-processor systems for parallel programming. Moreover, behavioural synthesis tools are

becoming a lot more powerful and enable to create datapath of logic units from high-level algorithms such as C

to HDL and available for partitioning a HW/SW concurrent methodology.

A range of embedded processors is able to implement on a FPGA-based prototyping to integrate the CPUs on a

programmable device. This research is, firstly represent different types of computer architectures in modern

embedded processors that are followed in different type of software applications (eg. Multi-threading

Operations or Complex Functions) on FPGA-based SoCs; and secondly investigate their capability by executing

a wide-range of multimedia software codes (Integer-algometric only) in different models of the processor-

systems (uni-processor or multi-processor or Co-design), and finally compare those results in terms of the

benchmarks and resource utilizations within FPGAs. All the examined programs were written in standard C and

executed in a variety numbers of soft-core processors or hardware units to obtain the execution times. However,

the number of processors and their customizable configuration or hardware datapath being generated are limited

by a target FPGA resource, and designers need to understand the FPGA-based tradeoffs that have been

considered - Speed versus Area.

For this experimental purpose, I defined benchmarks into DLP / HLS catalogues, which are "data" and

"function" intensive respectively. The programs of DLP will be executed in LEON3 MP and LE1 CMP multi-

processor systems and the programs of HLS in the LegUp Co-design system on target FPGAs. In preliminary,

the performance of the soft-core processors will be examined by executing all the benchmarks. The whole story

of this thesis work centres on the issue of the execute times or the speed-up and area breakdown on FPGA

devices in terms of different programs.

Keywords:

Soft-core, Multi-core, Co-design, Electronic-system-level, High-level-synthsis, Thread-level-parallelism, Data-

level-parallelism, Symmetric-multi-processor, RISC, VLIW, LEON3

3

Acknowledgements

This research was supported by the research group of Electronic Systems Design, School of Electronic and

Electrical Engineering, Loughborough University, UK. I first would like to thank my supervisor and this

research leader, Dr Vassilios Chouliaras. Secondly, I would like to thank my lab colleagues; David Stevens for

the rearrange of Lempel-Ziv-Welch compression C code. He is a master of C programming language and Linux

Ubuntu operating system and always opens for an answer; and Mark Milward for simulations of the LE1 CMP

benchmarks. He is an expert in FPGA and SoC design. His help and advice have greatly helped my

experimental analysis and philosophy.

4

TABLE OF CONTENTS

Abstract……………….…………….…………………...…………..……..…..2

Acknowledgments……………….…………….…………………...…………..…….......................................….3

Table of Contents……………….……….…………………...…………..……..….4

Table of Abbreviations……………….……….…………………...…………..…….......................................….8

List of Figures……………….……….…………………...…………..……..…13

List of Tables……………….……….…………………...…………..……..…16

1 Introduction……………….…………….…………………...…………..……......................................…17

1.1 Motivation……………………………………….………............…………………..........................……..17

1.2 Aims and Objectives of this Research…...18

1.3 Objectives of the Research and Goals…...19

1.4 Organization of the Thesis…..22

2 Background Research and State of the Art …...24

2.1 Introduction………………………………………………………….......................……..............………..24

2.2 Types of Parallelism.…………………………...…27

 2.2.1 Instruction-Level-Parallelism (ILP)…...27

 2.2.2 Data-Level-Parallelism (DLP)……………………………………………………............……………28

 2.2.3 Thread-Level-Parallelism (TLP)……………………………………………....................…………….28

2.3 State-of-the-Art in Electronic-System-Level (ESL) Design ……………………………………………....29

 2.3.1 Hardware/Software (HW/SW) Co-designs…...30

2.4 FPGA Devices Overview……………………………………………………………………………..…....31

 2.4.1 FPGA Fundamental Structures..31

 2.4.2 Advanced FPGA Features……………………………………………………………………………...33

2.5 Embedded Processors on FPGAs……………………………………………………………..…................34

 2.5.1 Hard and Soft Processors…..36

 2.5.2 Memory Architectures of the Multi-core Processor Systems…...37

5

2.6 Summary…………………………………………………………..……….....................................………38

3 Background of Methodologies and Implementations..………40

3.1 Introduction…..40

3.2 Implementations of Data-Level-Parallelism (DLP)..…........................40

3.3 Implementations of High-Level-Synthesis (HLS)…………………………………..…..............................41

3.4 Design-Space-Exploration (DSE) on FPGA-Based..44

 3.4.1 Xilinx and Altera Resource Usage Conversion…...44

 3.4.2 DSE of Multi-core Processor System…..46

 3.4.3 DSE of Co-design System...46

3.5 Summary…………………………………………………...47

4 Evaluation in Single-core of Soft Embedded Processors…...48

4.1 Introduction…...48

4.2 Background of LEON3, LE1, and Tiger-MIPS Processors…..…………48

 4.2.1 The LEON3 Processor…………………………………………..…….49

 4.2.2 The LE1 Processor……………………………………………………......................................………52

 4.2.3 The Tiger-MIPS Processor…..54

4.3 The Software (SW) Flow….. ..55

 4.3.1 Experimental Implementations.. ..55

4.4 Benchmark Collections….. .55

 4.4.1 Data-intensive Programs……………………………………………........…………………………….56

 4.4.2 Function-intensive Programs…...56

 4.4.3 Other Programs…..57

4.5 Evaluations of Speed&Area in Single-core of Soft-processors…..58

4.6 Summary…..63

5 Evaluation in Data-level-parallelism of LEON3 MP and LE1 CMP on FPGA-based

SMPs……………….............….......…………………………..………………64

6

5.1 Introduction…..64

5.2 LEON3 and LE1 Multi-core Processor Methods….. ..64

 5.2.1 RISC vs VLIW…..65

 5.2.2 Symmetric-Multi-Processors (SMPs) with Data-Level-Parallelism (DLP)….......................................66

 5.2.3 LEON3 MP and IPs Configuration…..67

 5.2.4 LE1 CMP and Configurability.. .68

5.3 The Parallel-SW Flow...69

 5.3.1 LEON3 CPUs Identification…...70

 5.3.2 LE1 Contexts Indentify…...70

 5.3.3 Structures LEON3 MP & LE1 CMP and System Clock on the FPGA.......................................…......70

5.4 Benchmarks of Data-Level-Parallelism (DLP)…...72

 5.4.1 Convolution-Matrix (CM)…... ..72

 5.4.2 Lempel-Ziv-Welch (LZW)…..73

5.5 Evaluation and Comparison of LEON3MP and LE1 CMP…..75

 5.5.1 Analysis of Performance and Area...75

 5.5.2 Distribution of Block RAMs on the FPGA..77

 5.5.3 Synchronized Confliction and Speed&Area Tradeoffs...…...78

5.6 Summary………………………………......................................…………………….........................……80

6 Evaluation in High-level-synthesis of LegUp Co-design System on FPGA-based

Processor...81

6.1 Introduction………………………………………...………........………81

6.2 LegUp Co-design System and Program Profiling...81

 6.2.1 The Call-graph Profiler (Kcachegrind)………….……………………...…….82

6.3 LegUp Architecture and Designed Flows……………………………….………………………...........….83

 6.3.1 The Hardware (HW) Flow..84

 6.3.2 The Hardware/Software (Hybrid) Flow…..86

7

6.4 Benchmarks of High-Level-Synthesis (HLS)…...87

 6.4.1 Microprocessor.……………………………………...…87

 6.4.2 Double Precision Floating-point Arithmetic...87

 6.4.3 Media Processing.…………………………….......................................…..…88

 6.4.4 Security.………………………………………………...……89

6.5 Experimental Methodology and Results…...89

 6.5.1 Analysis of Profiling Data...90

 6.5.2 Analysis of Speed and Resource Utilization.......................………………………................…………91

 6.5.3 Distribution of DSPs and Block RAMs on FPGAs...91

 6.5.4 Speed&Area Tradeoffs in LegUp System on FPGAs...93

6.6 Summary…………………………………………………………………...96

7 Overall Outline and Conclusion.. ...97

7.1 Conclusion of LEON3, LE1, and Tiger-MIPS Soft-cores..97

7.2 Conclusion of DLP in LEON3 MP and LE1 CMP...98

7.3 Conclusion of HLS in LegUp Co-designs...99

References…..100

Appendix…..108

Appendix I Benchmark Collections - SW Flow..108

 I.1 SW flow in LEON3, LE1, and Tiger-MIPS Processors…...108

Appendix II DLP Benchmarks - Parallel-SW Flow…..109

 II.1 Parallel-SW flow in LEON3 MP and LE1 CMP…………………………………………………….…109

Appendix III HLS Benchmarks - HW, Hybrids, and SW Flows…………………..…................................…111

 III.1 Called-graphs of Profiling for Benchmarks by Kcachegrind…...111

 III.2 Top Most Called-functions for Benchmarks...…...120

 III.3 HW, Hybrids, and SW Flows in LegUp…...121

8

TABLE OF ABBREVIATIONS

Abbreviation Expansion

ADD Addition

ADPCM Adaptive Differential Pulse Code Modulation

AES Advanced Encryption Standard

AHB Advanced High-performance Bus

ALAP As Late As Possible

ALM Adaptive Logic Module

ALU Arithmetic Logic Unit

ALUT Adaptive LUT

AMBA Advanced Microcontroller Bus Architecture

ANSI American National Standards Institute

APB Advanced Peripheral Bus

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

BCC Bare-C Cross-compiler system

BITOP Bitwise Operation

c-step control step

CAD Computer Aided Design

CLB Configurable Logic Block

CM Convolution Matrix

CM60x60 Convolution Matrix with 60x60 output data

CMOS Complementary Metal Oxide Semiconductor

CMP Chip Multi Processor

CPU Central Processing Unit

CPUID CPU Identification

D-cache Data Cache

D-RAM Data RAM

DCT Discrete Cosine Transform

DDR SDRAM Double Data Rate SDRAM

DE2 Development and Education 2

DE4 Development and Education 4

9

DFADD Double Precision Floating-Point Addition

DFDIV Double-precision Floating-Point Division

DFG Data Flow Graph

DFMUL Double-precision Floating-Point Multiplication

DFSIN Double-Precision Floating-Point Numbers of Sine function

DFT Discrete Fourier Transform

DIV Divider

DLL Delay Locked Loop

DLP Data Level Parallelism

DSE Design Space Exploration

DSP Digital Signal Processing

DSU Debug Support Unit

EDA Electronic Design Automation

ESL Electronic System Level

FF Flip-Flop

FFT Fast Fourier Transform

FIFO First In First Out

FIR Finite Impulse Response

Fmax Maximum Frequency

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FSL Fast Simplex Link

FU Functional Unit

GB Gigabyte

GCC GNU Compiler Collection

GDS Global Positioning System

GPR General Purpose Register

GPS Global Positioning System

GRLIB Gaisler Research Library

GSM Global System for Mobile

GUI Graphical User Interface

HDL Hardware-Description-Language

HI Multiply and Divide Register Higher Result

HLS Electronic System Level

HP Hewlett Packard

10

HW Hardware

I-cache Instruction Cache

I-RAM Instruction RAM

IALU Integer-ALU

IC Integrated Circuit

IFE Instruction Fetch Engine

ILP Instruction Level Parallelism

IMULT Integer-MULT

IP Intellectual Property

IR Integer Register

IRQ Interrupt Controller Register

IU Integer Unit

JAL Jump and Link

JPEG Joint Photographic Experts Group

JTAG Joint Test Action Group

KB Kilobyte

LAB Logic Array Block

LAT Latency

LC Logic Cell

LE Logic Element

LLVM Low Level Virtual Machine

LMB Local Memory Bus

LO Multiply and Divide Register Lower Result

LP Linear Program

LPC Linear Predictive Coding

LRR Least Recently Replaced

LRU Least Recently Used

LSU Load Store Unit

LUT Look Up Table

LZW Lempel Ziv Welch

LZW45K Lempel Ziv Welch with size of 45KB input data

MAC Media Access Control

MB Megabyte

MHz Megahertz

MIG Memory Interface Generator

11

MIMD Multiple Instruction Multiple Data

MIPS Microprocessor without Interlocked Pipeline Stages

MISD Multiple Instruction Single Data

MMU Memory Management Unit

MP Multi Processor

MP3 MPEG-1 Audio Layer-3

MPEG Moving Picture Experts Group

MPSoC Multi-processor System on Chip

ms millisecond

MUL Multiplier

MUX Multiplexer

NISC No Instruction Set Computer

NOP No Operation

NRE Non Recurring Engineering

ns nanosecond

OPB On-chip Peripheral Bus

PAR Place and Route

PB Petabyte

PC Program Counter

PDA Personal Digital Assistant

PDF Portable Document Format

PIC Peripheral Interface Controller

PLB Processor Local Bus

PLL Phase Locked Loop

PROC Processor

ps picosecond

RAM Random Access Memory

RAMB RAM Block

RC Resource Constraint

REG Register

REM Reminder

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SDC System of Difference Constraint

SDRAM Synchronous Dynamic RAM

12

SHA Secure Hash Algorithm

SHARC Super Harvard Architecture Single Chip Computer

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SMP Symmetric Multi-Processor

SoC System on a Chip

SOPC System on a Programmable Chip

SPARC Scalable Processor Architecture

SPMD Single Program Multiple Data

SRA Square Root Approximate

SRAM Static Random Access Memory

SUB Subtraction

SVT Single Vector Trapping

SW Software

TB Terabyte

TC Timing Constraint

TLP Thread Level Parallelism

UART Universal Asynchronous Receiver/Transmitter

UMA Uniform Memory Access

VCO Voltage Controlled Oscillator

VEX VLIW Example

VHDL VHSIC (Very-High-Speed-IC) HDL

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

XML Extensible Markup Language

µC Microcontroller

µP Microprocessor

µs microsecond

µs microsecond

13

LIST OF FIGURES

Figure 1.1: The fundamental design-flow of this thesis work...…21

Figure 2.1: ASIC&FPGA devices Design flows…...26

Figure 2.2: A five-stage instruction pipeline….. .27

Figure 2.3: Data-parallelism of SIMD and SPMD…..28

Figure 2.4: Task-parallelism of MIMD…... ..29

Figure 2.5: The ESL design flow and abstraction levels...29

Figure 2.6: The HW/SW Co-design system..30

Figure 2.7: FPGA fundamental structures…...32

Figure 2.8: FPGA advanced structures…..33

Figure 2.9: The routing delays and maximum frequency within FPGAs...34

Figure 2.10: Embedded processor-systems…... ..35

Figure 2.11: The structure of shared / distributed memory of the multi-core processor systems….....................38

Figure 2.12: The time-line of the computer technology…..39

Figure 3.1: Pseudo codes for an 3-core of SPMD multi-processor system …...41

Figure 3.2: The HLS design flow... .42

Figure 3.3: ASAP and ALAP scheduling..43

Figure 3.4: A Virtex-5 LUT-FF Pairs...44

Figure 3.5: A Stratix III ALMs...45

Figure 4.1: LEON3 processor core block diagram..49

Figure 4.2: LEON3 CPU core IU datapath...51

Figure 4.3: IALU/IMULT and IALU LAT/IMULT LAT for the LE1 core...52

Figure 4.4: LE1 CPU core schematic..53

Figure 4.5: MIPS CPU core schematic…...54

Figure 4.6: Comparison in execution times at Low-end Benchmarks…..58

14

Figure 4.7: Comparison in execution times at Mid-end Benchmarks…...59

Figure 4.8: Comparison in execution times at High-end Benchmarks…..60

Figure 4.9: Comparison in execution times at Very High-end Benchmarks…………………................….……60

Figure 4.10: The speed and area results of LEON3&LE1&MIPS SW flow..…61

Figure 5.1: Example of RISC and VLIW instructions…..65

Figure 5.2: SMPs with DLP….. ..66

Figure 5.3: LEON3 multi-core with GRLIB IP for the SoC…………………………………….............………67

Figure 5.4: Two-way multiprocessors consisting of two instances of a 4-wide, single-cluster LE1 core, the

common data memory and the thread control unit…... ..69

Figure 5.5: LEON configuration register (%ASR17)…...70

Figure 5.6: LEON3 MP blocks diagram...71

Figure 5.7: LE1 CMP blocks diagram...71

Figure 5.8: An example of convolution matrix...72

Figure 5.9: Example of C code that an MxM input through the NxN kernel of the CM73

Figure 5.10: Example of C code which splits global input array over each active CPU for the LZW.................74

Figure 5.11: Speed-up results of CM60x60............................……..75

Figure 5.12: Speed-up results of LZW45K....................................….……..76

Figure 5.13: The overall performance and area results in LEON3 MP and LE1 CMP…....................................76

Figure 5.14: The total number of block RAMs in LEON3 MP and LE1 CMP…..78

Figure 5.15: LEON3 MP & LE1 CMP Program speed-up vs Area cost...…79

Figure 5.16: LEON3 MP & LE1 CMP Speed&Area Efficiency…..80

Figure 6.1: LegUp's FPGA target system..…82

Figure 6.2: Fragment of the call-graph.………………………………………………….....................................83

Figure 6.3: The signal port of LegUp in Verilog hardware…...84

Figure 6.4: LegUp HW/SW Co-design flows...86

Figure 6.5: Kcachegrind visualization………………………………………………………...............................90

15

Figure 6.6: Embedded multiplier 9x9-bit elements distribution. …..……...92

Figure 6.7: Total memory bits distribution…...93

Figure 6.8: The overall performance and area results of LegUp...…94

Figure 6.9: The percentage of Speed and Area tradeoffs distribution…..95

Figure 6.10: The LegUp area and speed efficiency…...95

Figure III.1: The called-graphs DFADD...111

Figure III.2: The called-graphs DFDIV...………………………………………………......................……….112

Figure III.3: The called-graphs DFMUL...…………………………………………………….....................….112

Figure III.4: The called-graphs DFSIN...113

Figure III.5: The called-graphs ADPCM...…………………………………................................…………….113

Figure III.6: The called-graphs GSM...……………………………………......................................………….114

Figure III.7: The called-graphs JPEG...……………………………………..............................……………….115

Figure III.8: The called-graphs MOTION...116

Figure III.9: The called-graphs AES... ..116

Figure III.10: The called-graphs BLOWFISH...………………………………………........................……….117

Figure III.11: The called-graphs SHA...………………………………………………….........................…….117

Figure III.12: The called-graphs CM60x60...…...118

Figure III.13: The called-graphs LZW45K...……………………………………………….........................….119

Figure III.A: The percentage distributions of algorithmic types in HLS benchmarks..121

Figure III.B: The percentage distributions of C control flows in HLS benchmarks...122

Figure III.C: The execution times and resource distribution results on ALTERA CYCLONE II FPGAs.........124

16

LIST OF TABLES

Table 2.1: Flynn’s Taxonomy.………………………………………..………..27

Table 2.2: Embedded hard-cores on FPGAs…...36

Table 2.3: Embedded soft-cores on FPGAs…………….……………………………….............................……36

Table 4.1: Outline of the DLP benchmark suits…………………………………………………………………56

Table 4.2: Outline of the CHStone HLS benchmark suits………………………………………………………56

Table 4.3: Outline of the other benchmarks……………………………………………………………………..57

Table 4.4: The Speed&Area Efficiency of LEON3&LE1&MIPS SW flow…..62

Table II.A: Benchmarks of LEON3, LE1, and Tiger-MIPS single-cores…...108

Table 5.1: LEON3 blocks configurability…...67

Table 5.2: LE1 microarchitectural configurability………………………………………….......................…….68

Table II.A: LEON3 MPs and LE1 CMPs simulated execution cycles and times (at 60MHZ and 50MHZ)......109

Table II.B: LEON3 MPs and LE1 CMPs RAMS & DSPS breakdown on XILINX VIRTEX 6 ML605

FPGA... ...109

Table II.C: LEON3 MPs and LE1 CMPs total area and RAMBs breakdown on XILINX VIRTEX 6 ML605

FPGA... ...110

Table II.D: The results of speed-up versus area cost and Speed&Area Efficiency of LEON3&LE1

SMP.. ..110

Table III.A: The top-four function-called in HLS benchmarks……………………………………….………..120

Table III.B: Characterizations of HLS programs..…121

Table III.C: Control flows and test-data length of HLS benchmarks...122

Table III.D: Synthesis results for HLS benchmarks on ALTERA CYCLONE II FPGAs.................................123

Table III.E: The results of speed-up versus resource cost and Speed&Area Efficiency of LegUp....................125

17

Chapter 1

Introduction

1.1 Motivation

In historical computing, the computer processor was based on vacuum tubes and started the design of stored-

program (Memory-Control-FUs) to form the fundamental of computer architectures known as von Neumann

(1947) [1]. The vacuum tube was replaced by much smaller and reliable transistor in the 1950s. By the 1960s,

electronic processing elements began to appear based on semiconductor devices as such many transistors in a

chip to form an Integrated-Circuit (IC) and thus led to the generation of the microprocessor [2]. In accordance

with Moore’s Law, the number of transistors on the same chip area nearly doubles every two years [3].

Following this trend for half a century, the silicon chips have become inexpensively and a lot more complicated

designing and very elated computing problems can ever be solved. Over the decades, semiconductor devices are

able to accommodate the whole system (CPUs, system-bus, peripherals and internal memory) to form an

embedded system, known as System-on-a-Chip (SoC). SoCs are widely used in portable devices such as PDAs,

digital cameras, GPS units, MP3 players, and smart phones; larger systems such as air traffic control and missile

systems [4]. Embedded processors are CPUs typically used in an embedded system. These processors are

usually smaller silicon space compared, sustain lower performance, and need much less power compared to the

server or desktop CPUs. Smart phones are the perfect example of an embedded system. The embedded

processor is typically as an Application-Specific-Integrated-Circuit (ASIC) hard-core which built into a

"floorplan" of a fixed IC or a soft-core that described by the Hardware-Description-Languages (HDLs) for a

customized configuration then synthesize into a programmable fabric logic such as Field-Programmable-Gate-

Array (FPGA) devices. During the last decade, multi-processor systems became available in computers and in

Multi-Processor System-on-Chip (MPSoC) devices to achieve higher computing performance; and they continue

to grow in further on the market [5]. At the present time, electronic products have become much more

competitive and the product life cycle much shorter [6]; therefore engineers attempt to search a cheaper, easier

and faster way to develop new chips. Reusable designs such as Intellectual-Property (IP) cores are instrumental

when designing a new chip. While the post-fabrication of the chips has been greatly improved, the numbers of

the transistors that can be fitted in the same area on a die chip are increased. In addition, the overall energy

consumption of the chips has been reduced due to the dynamic power decrease when transistor becomes smaller

and leakage current problem has also been solved by Triple-oxide approach [7, 8]. However, Moore’s Law will

not be sustained forever as physical limitations cause problems such as heat dissipation. Moreover, it is

expensive to design and fabricate a much more powerful processor on a single chip. Other factors such as, the

18

clock rates of embedded CPUs are increased slowly up to Gigahertz and now parallelism in multiple cores will

be via for prospect development in the future. Thence, research trends have been moved on "Multi-core

Processor" rather than the single-core architecture. Each of the cores executes its own instruction stream

concurrently to speed up the program execution for parallelism computing, such as the "Thread-Level-

Parallelism (TLP)". By using a large number of presenting manufactured processors to gain a better

performance is a valid design avenue. FPGAs contain tens of thousands reprogrammable logic elements are this

kind of device that possible to implement such MPSoC systems on a programmable chip. Another method is the

use of the "Electronic-System-Level (ESL)". This design flow typically composes a complex part such as a

mixture of Hardware-and-Software (HW/SW) synergism which is widely utilized in the modern SoC systems

[9]. As field-programmable logic turned out and gate-level interconnection of the hardware circuits may

configure by HDLs, software programs are able to generate in the hardware circuit. Meanwhile, the compiler-

based language of RTL algorithm synthesis has greatly improved and become matured during the last decade, C

programs has been enabled to convert to HDLs to generate hardware units easily. To follow these perspective,

electronic designers can implement software in high-level objectives and shift HW/SW boundaries to make the

tradeoffs to achieve desired performance [10]. However, a versatile system-level toolchain is indispensable for

the "HW/SW Co-design", such as partitioning theme needs to be deceived in which part of the system is better to

be implemented in hardware or software piece and each component maybe represents in different description

language to its corresponding portion [11].

1.2 Aims and Objectives of this Research

This thesis effort evaluates the performance and area of embedded processors on modern developed FPGA

boards. The embedded "processor-systems" within the FPGA are able to various architectural patterns so as to

satisfy distinct digital processing requirements, which are classified into three levels of single-core, multi-core

processor and Co-design that corresponds to different computing methodologies. The objectives of the

following illustrations and experiments are to present the efficient resolutions for divergent computational

methodologies in embedded processors on FPGA devices.

First of all, before considering any speed-up implementations, there is always at least one general-purpose

processor in the system, hence the Single-core Processor performance ought to be reviewed. The evaluated uni-

processor for the following adhering experiments is LEON3, LE1, and Tiger-MIPS soft-cores respectively. To

do this, all adopted benchmark suits are being executed in those processors and synthesized on FPGAs to

compare their performance and area. Secondly, for Multi-core Processor designs, I introduce Symmetric Multi-

Processor (SMP) systems of LEON3 Multi-Processor (MP) and LE1 Chip-Multi-Processor (CMP), which

"parallel computing" codes can be applied and improved by a number of these processors. In the other hand, it

also can be implemented in a HW/SW platform by assigning a function to accelerate in the hardware. Thirdly,

"function complexity" codes such as CHStone (a collection of programs see page 56 and 87) are being profiled

and executed in the LegUp HW/SW Co-design system. Finally, to compare and conclude those two benchmarks

manipulations (Data and Function levels) that performs in different processor-systems (Multi-core and Co-

19

design) in terms of their execution times (Speed) and FPGA logic blocks cost (Area). Thus, lead to the art of the

Speed&Area Tradeoffs.

The LEON3 and LE1 soft-cores are chosen because they are multi-processor available to be connected and open

source; the LEON3 SoC platform provides a rich reusable IP library for designs [12]; and LE1 is a new

development soft processor in our research department and highly paramertisable architectural [13]. LegUp

framework is chosen for the Co-design (with a Tiger-MIPS soft-core [14]) because the tool is new development

of C to HDLs and also open source codes; and gives a large amount of American-National-Standards-Institute

(ANSI) C programs. For the software applications of this thesis, I concern only about Integer Arithmetic

programs. For mapping onto this software on the processors, the examined benchmarks are arranged for data

and function intensive programs. Convolution-Matrix (CM) and Lempel-Ziv-Welch (LZW) are widely used in

image format; both of them are "data-intensive" algorithms in digital processing. CHStone are selected from

wide-range applications in region of arithmetic, media processing, security and microprocessor [15]; they are

"function-intensive" algorithms in digital processing. For Speed&Area tradeoffs burden, I formulate a proper

solution of automated Design-Space-Exploration (DSE) for the FPGA-based MPSoC design and verify the

subject.

1.3 Objectives of the Research and Goals

The objectives of the necessary research to achieve the stated aims are as follows:

 Define the types of parallel computing

This describes different types of parallelism (Flynn’s Taxonomy) for multi-core processor systems.

 Overview of the ESL design

This describes Behavioural / ESL design process that leads to HW/SW flows for Co-design systems.

 Overview of FPGA silicon devices

This describes the fundamental FPGA structures and states the advantage / disadvantage comparing to

ASIC devices. Moreover, make reliable resource predictions on FPGAs.

 Overview of the embedded processors on FPGAs

State the popular used of hard/soft processors and presented their specifications (eg. architectures, bus /

FUs support, and LUTs utilization) including of available FPGA boards to be targeted at different

vendors.

 Define the different embedded processor-systems on FPGAs

There are Homogeneous: multi-core architecture of all general-purpose processors, Co-design: a

general-purpose processor with a hardware accelerator, and Heterogeneous: multi-core architecture of a

mixture type (hard/soft) of cores.

20

The goal of the experimental work consists following:

 Research of computing methodologies

This describes the methodologies of Data-Level-Parallelism (DLP) for data-intensive algorithms and

High-Level-Synthesis (HLS) for function-intensive algorithms. They are sub-modus of TLP / ESL

design and central motivations of this thesis work.

 Design Space Exploration on FPGAs

State the formulations on FPGA platforms associated that area increasing corresponding to input

applications with program speed-up of Speed&Area tradeoffs and an equation for converting

Altera&Xilinx logic cells for the purpose of comparing resource utilizations between the two vendors.

After these definitions of this thesis work, the following experiment is presented:

 Classify soft-core processors

This describes the configurations of LEON3, LE1, and Tiger-MIPS cores for the following experiments

in this study. Homogeneous LEON3 and LE1 multi-core systems will be built for data-intensive

programs. A fixed configuration Tiger-MIPS core comes with LegUp-system, which forms a general-

purpose processor in that system.

 Benchmark programs

List all the benchmark suits in this thesis study. More detail of DLP and HLS programs will be

described in each chapter of different implementations.

 Benchmarks of all programs in SW flow and resource utilization of single-core

This experiment will run all the C codes in each processor and provide the average execution times in

each of them, thus the speed of each soft-core is obtained. As resource information is recorded from the

synthesis results, these will evaluate Speed&Area Efficiency from DSE equations.

 Benchmarks of DLP in Parallel-SW flow and resource utilization in LEON3 and LE1

This experiment will run the CM / LZW programs (DLP) in LEON3 and LE1 multi-core processor

systems. Hence, speed-up ration by the number of processors in each system are obtained. As resource

information in each system is recorded from the synthesis results, these will evaluate Speed&Area

Efficiency from DSE equations.

 Benchmarks of HLS in HW&Hybrid flows and resource utilization in LegUp Systems

Using the code profiling tool to identify the most called functions to the CHStone programs (HLS)

programs; and execute HW / Hybrid flows according to results of profiled in LegUp systems. As

resource information in these systems is recorded from synthesis results, these will evaluate

Speed&Area Efficiency of SW/HW/Hybrid systems from DSE equations.

21

The logical schedule of this thesis is represented in Fig 1.1.

Figure 1.1 The fundamental design-flow of this thesis work.

22

1.4 Organization of the Thesis

The research presented in this thesis is organized in six chapters:

Chapter 2: This chapter a) outlines the history and breakthrough of the computer technology for this thesis

work demands, b) compares the advantages and disadvantages of ASIC&FPGA design flows; c) defines parallel

computing architectures, d) introduces abstraction-levels in ESL design e) presents physical structure of FPGA

devices and configurable, f) List currently popular hard and soft-core embedded processors on FPGAs, their

architectural characterizations, and resource usages lead to change maximum frequency, g) state architectures of

multi-core processor system and memory types on FPGA design.

Chapter 3: This chapter introduces detail of the computing methodologies: DLP and HLS. For the DLP flow,

how a program executing a separated data in multi-core processor is introduced. These state the art of the data-

intensive computing for the SMPs method in chapter 5. For the HLS process, such as Scheduling, Allocation,

and Binding operations from behavioural to RTL descriptions in Co-design are introduced. These establish the

art of the function-intensive computing for the LegUp-system in chapter 6. Moreover, I present an approach to

measure properties of the processors on FPGA-based by using consequence equations. This terminology defines

the Speed&Area Efficiency estimation across each methodology of all design flows in chapter 4, 5, and 6

respectively.

Chapter 4: This chapter introduces soft-core processors: LEON3, LE1, and Tiger-MIPS theirs configurable

parameters, computer architectures, bus support, and hierarchic memory components for essential design

implementations. To determine the default LEON3 and LE1 cores in this research used, a large number of C

source codes are introduced in the following experimental course. These programs will execute in those single-

core processors respectively of the SW flow to obtain the average execution times to examine the performance

of each processor. The Speed&Area Efficiency of the area breakdown on silicon against the mean execution

times in each of the processors will be represented. FPGA Platform: Altera Stratix IV EP4 (Tiger-MIPS) and

Xilinx Virtex-6 LX240T (LEON3&LE1). Both of the Altera&Xilinx FPGAs are 40-nm process.

Chapter 5: This chapter introduces the comparisons of Instruction-Level-Parallelisms (ILP) in LEON3 (32-bit)

and LE1 (32*2-bit) cores respectively and configurability in multi-core processor system of LEON3 MP and

LE1 CMP. The numbers of LEON3 and LE1 cores are arranged for SMP systems. The numbers of experimental

cores are from 1 up to 6. Method of reading processor ID from each LEON3 or LE1 cores is introduced. This

allowed a single program to be written with a dataset splitting across each available processor that recognized by

a unique CPU identification. A parallel method of the Single-Program-Multiple-Data (SPMD) process of CM

and LZW applications that developed for this study is introduced. They will be executed in both systems of the

Parallel-SW flow and results of the execution times and area. The Speed&Area Efficiency of the programs

speeds up by the number of the cores in those two SMP systems will be presented and discussed. FPGA

Platform: Xilinx Virtex-6 LX240T (40-nm process).

23

Chapter 6: This chapter represents an HLS tool: LegUp and illustrates its architectural components, the Tiger-

MIPS processor can be augmented with a hardware accelerator. CHStone benchmark collections are provided

well example codes for hardware generations in HW/SW Co-design. Initially, profiling codes using

Kcachegrind tool to decide which function of the programs to be accelerated in the Hybrid system. The non-

profiled codes will execute in HW (LegUp-HW) flow; and the most and the second called functions in Hybrid1

and Hybrid2 (LegUp-Hybrid) respectively. The Speed&Area Efficiency of HW&Hybrid1&Hybrid2&SW flows

in LegUp-systems will be presented and discussed. FPGA Platform: Altera Cyclone II Family (90-nm process).

Chapter 7: In this chapter, I summarize the characterizations of LEON3, LE1, and Tiger-MIPS soft processor

configuration on FPGA-based and the performance evaluation of each uni-processor in chapter 4 and lead to

compare their advantage and disadvantage in terms of computing results. Moreover, to summarize the

Speed&Area Efficiency of the DLP / HLS process in chapter 5 and 6 respectively. Moreover, CM and LZW

programs can be implemented in both of the methodologies will be a good example to be compared and

discussed this affair. Furthermore, state any remarks or further works for the following computational flows that

will promote to enhance the processor-system designed for FPGA-based.

24

Chapter 2

Background Research and State of the Art

2.1 Introduction

Computer technology has risen in the world around the 1950s. In the beginning, machine code (assembly

language) was the only means of programming a computer. When ICs were introduced in the 1960s to form the

earliest microprocessors, C programming started to be developed to translate high-level (human) language to

machine instructions. Computer architectures were defined by Michael J. Flynn in 1966 [16]. There are different

types of parallel computing architectures: Bit-Level, Instruction-Level, Data-Level and Thread-Level paralleling.

The "Bit-Level" were then implemented by doubling the word size of instruction sets during 1970s until 1985

when VLSI microprocessors were developed. "Instruction-Level" is basically the instruction pipelining

organizations of the CPUs, some of them such as Superscalar and Very-Long-Instruction-Word (VLIW)

architectures (were invented by J. Fisher in 1983) [17] have parallel instruction sets to achieve very high

performance. However, Bit-level and Instruction-level implementations of the microprocessors are "internal

parallelism" which usually fixed by the manufacturers; and Data-level and Task-level implementations are

"programming parallelism" that typical customizing by software engineers.

There are two main types of semiconductor devices for ASIC and FPGA platforms. ASIC devices are integrated

circuit designed for particular applications, rather than intended for general-purpose. Historically, an ASIC

commercial Intel 4004 4-bit microprocessor was first introduced in 1971 by Federico Faggin [18]. FPGAs

(general-purpose logic) are ICs designed to be reconfigured by a customer after standard mass-production.

FPGAs are configured to accommodate any digital function and results attractive performance than ASICs for

some specified applications. FPGAs contain programmable logic components, called Configurable-Logic-

Blocks (CLBs) that are fundamental building blocks to be configurable interconnected together. It appeared in

the mid-1980s [19] and the first commercial FPGA devices – XC2064 was released by Xilinx Inc. in 1985 [20].

The XC2064 had only 64 CLBs with 3-input LUTs [21]; after that, FPGA device engineering continued to grow

during the mid-1990s; meanwhile, telecommunications for data processing and dedicated applications

developed rapidly. Around the same time, HLS started to be researched and became commercially available by

Synopsys (an EDA company) as Behavioural Compiler in 1994 [22]. Since the speed and size capacity of

FPGAs had been greatly succeeded, the reusable IP cores and platform-based design started to rise in the late

1990s [23]. During the 2000s, there had been shifted for the fast ESL algorithm modelling that facilitate

25

synthesis, verification, and debugging of complex FPGA and SoC [22]. The algorithmic compilers (C to RTL)

for HLS toolsets were released in 2004 [24].

The FPGA or SoC implementations usually include a number of embedded processors (hard or soft-core), DSP

building blocks, and other IPs. Processors in embedded system come in three main categories: Microprocessors

(µP), Microcontrollers (µC), and Digital-Signal-Processors (DSP). Microprocessors (32~64-bits) are standard

processors without the memory and peripherals. Microcontrollers (8~32-bits) have built-in memory, peripherals,

and many other components. Digital signal processors (8~64-bits) are specially designed for processing

complete-intensive applications such as audio in speech signal processing and video in digital image processing.

The wide ranges of the common architectures in embedded processors are µPs: x86, ARM, Blackfin, MIPS,

PowerPC, and SPARC; DSPs: SHARC and SigmaDSP; µCs: AVR and PIC.

In contrast to FPGAs, ASICs demonstrate superiority in terms of speed and smaller chip sizes, are ideal for high

volume applications; usually have longer pipeline depths (eg. The Krait processor has 11-stage pipeline [25])

and able to be clocked at higher frequencies. At the present time, the high-end hard (ASIC) processors have

optional 1, 2, 4 cores of 32-bit ARMv7 Cortex-A9 processors with 8-stage pipeline that maximum clock rate is

around 1.2 GHz, optimized Level 1 and up to 1MB Level 2 Caches [26]. The advantages of FPGA soft-core

processors comparing to ASIC hard-core within SoCs are customizable components (multi-processor support,

buses, peripherals, internal memory, and controllers for above), obsolescence mitigation (open HDL codes for

the reconfiguration), and hardware acceleration (hardware and software implementations and tradeoffs).

However, for advanced embedded processor designs, the design toolchains are more numerous if the designers

intend to make a hardware and software platform (eg. Co-design systems); or a specific variable type of IP cores

in a platform (eg. heterogeneous multi-core systems), yet technical programming and compilers are far more

complicated to be solved. Most of FPGA manufacturers embed a physical core (hard) and a reconfigurable

fabric core (soft) into the FPGA silicon. To the popular FPGAs, hard processors such that the Power PC

405/440 cores embed on the Xilinx Virtex 4/5 families and ARM Cortex-A9 embed on the most of Altera

FPGAs and Xilinx Zynq-7000 SoC [27]; soft processors such as the Microblaze core is synthesisable on the

Xilinx families and Nios I/II or Cortex-M1 on the Altera families. Many companies, such as Gaisler Aeroflex

supports embedded soft-cores (LEON3/4) and targeting to most FPGA vendors. Unlike hard-cores, soft-cores

offer a wide range of flexible components, and re-programmable, and FPGA device compatibility. For example,

the Microblaze processor has multiple options for FPUs, MMU, and configurable caches to name a few; and the

clock frequency is around 168 ~ 342MHz [28], depending on the FPGA silicon platforms. In general, the

operating frequencies of FPGA soft-cores are much slower compared to ASIC hard-cores. More detail of ASIC

and FPGA processors in embedded systems are presented in later in this chapter.

Designs of ASIC&FPGA are generally implemented in a HDL such as Verilog (1986) [29] or VHDL (1987) [30]

HDLs appeared to describe the functionality (RTL models of digital logic). Standard-cell ASIC designs are able

to perform complex arithmetic faster than FPGA implementations along with lower power consumption and

smaller chip size. However ASICs are expensive to make due to high Non-Recurring-Engineering (NRE) and

their design logic cannot be easily altered once the devices are fabricated. On the contrary, FPGAs by using

26

state of the art silicon cells are programmable and allow for reconfiguration and reduced time to market.

Furthermore, FPGA vendors provide whole silicon IP ecosystems and developing environments. The

comparison of ASIC&FPGA Design flows have shown in Fig 2.1; FPGAs has shorter design time due to a

sophisticated enumeration of the software for synthesis, timing analysis, and Place-and-Route (PAR). In ASIC

design flow, such as Design for Testability to assure high reliability [31] and gate-level simulation in the process

within the lowest level of abstraction are essential then the domain will be exceedingly slow and complex. ASIC

design tools such as Computer-Aided-Design (CAD) system which is much more complex than general FPGA

design tools. In addition, there is a time to wait for the chip manufactures and cannot be changed after

submission to fabricate. However, the disadvantages of FPGAs are lower performance, larger sizes used, and

more power consumption than ASICs. In summary, FPGAs cost less for small and medium volume target

applications (eg. automotives and wireless communications); and when electronic devices come to high density

designs for consumer appliances (eg. game consoles, smart phones, desktops and workstations), ASIC devices

are cheaper in overall.

Figure 2.1 ASIC&FPGA devices Design flows.

27

2.2 Types of Parallelism

There are many types of parallelism for computing architectures. They are typically classified into four

categories, Single-Instruction-Single-Data (SISD), Single-Instruction-Multiple-Data (SIMD), Multiple-

Instruction-Single-Data (MISD), and Multiple-Instruction-Multiple-Data (MIMD), also known as "Flynn's

Taxonomy" proposed by Michael J. Flynn [32, 33], shown in Table 2.1. The SIMD process is often used DSP

resources to be the hardware to execute parallel data streams; the MISD is un-usually model and rarely used.

The MIMD is the most common type in parallel programming by using many processors and SPMD and VLIW

are other types of MIMD.

 Single Instruction Multiple Instruction

Single Data
SISD

1 CPU - 1 program/data

MISD

1 CPU - 1 program/data

Multiple Data

SIMD

1 CPU - 1 program/distributed data

shared/distrusted memory

MIMD

Multiple CPUs – tasks/distributed data

Multiple CPUs – 1 program/distributed data

shared/distrusted memory

Table 2.1 Flynn’s Taxonomy.

2.2.1 Instruction-Level-Parallelism (ILP)

Instruction sets are implemented in multi-stages in a processor. The overlapped instructions of an N-stage

pipeline can be scheduled by N different instruction streams on N clock cycles. A simple Reduced-Instruction-

Set-Computing (RISC) processor typically has 5-stage pipeline, I-Fetch, I-Decode, Execute, Memory-Access,

and Writeback has shown in Fig 2.2. The longer instruction sets to be paralleled is called Very-Long-

Instruction-Word (VLIW), for this action, the hardware resource (ALUs and MULs) are highly required because

that multiple operations (eg. addition, multiplication, and loads) often execute at the same time. The VLIW

implementation is a type of the ILP that said to multiple instructions being executed concurrently per clock

cycle rather than a single set.

Figure 2.2 A 5-stage instruction pipeline.

28

2.2.2 Data-Level-Parallelism (DLP)

A multi-core processor system performs the same task on distributed data segments across multiple processors

simultaneously, which is Data-Level-Parallelism (DLP), also called "data-parallelism". SIMD processors are

the majority type of DLP and a vector machine (Datapath) is widely added to support a main CPU to manipulate

massive-parallel arithmetic. There is another way of data parallelism: Single-Program-Multiple-Data (SPMD),

disturbing databases are implemented in a multi-core processor system and associated separated data are

assigned by a conditional statement across each core. SPMD machines are usually utilized to manage large

amount of data streams in parallel processing CPUs. The DLP process is widely used in SMPs, the figures and

pseudo codes are shown in Fig 2.3.

Figure 2.3 Data-parallelsim of SIMD and SPMD.

2.2.3 Thread-Level-Parallelism (TLP)

Thread-Level-Parallelism (TLP) is the most powerful and common model for parallel computing. It is another

form of parallelism, comparing to DLP, a program parallelized by functions (or threads) that processes the

different task across each core in a multi-processor system simultaneously and each processor executes

disturbing process as its instruction is responding (eg. MIMD), which is also called "task-parallelism". Unlike

SIMD, the MIMD system is asynchronous paralleling. The associated tasks are also assigned by a conditional

statement across each processor, as shown in Fig 2.4. To the memory system, MIMD architectures can be

greatly improved in distributed memory. Moreover, the SPMD method is a special case of MIMD, and

sometimes people named it as TLP process; however, we normally call it "DLP" instead of TLP across whole

sections in this thesis work.

29

Figure 2.4 Task-parallelism of MIMD.

2.3 State-of-the-Art in Electronic-System-Level (ESL) Design

Electronic-System-Level (ESL) methodologies are implemented in complex systems for SoC or FPGA designs

by using high-level language descriptions to control low-level rather than alone with the traditional RTL

approach. This allows designers to optimize performance and area by converting high-level computing functions

into hardware circuits; and therefore fast the time to market. The digital designs in five abstraction levels are

from high to low: 1) System-level (Structures / Modules), 2) Algorithmic-level (Equations / Behavioural), 3)

Register-Transfer-Level (RTL), 4) Gate-level (Netlist), and 5) Layout-level (GDSII). The top-to-down ESL

design process is shown in Fig 2.5.

Figure 2.5 The ESL design flow and abstrcation levels.

30

At higher levels description, software such as C/C++, and Matlab to describe Functional-Level (micro-

architecture) of the architecture components (eg. memories, processors, ALUs and buses) for an entire electronic

system; and SystemC (2000) [34] or VHDL to describe Architecture-Level (logic) of functional blocks; and

Verilog to describe Implementation-Level (circuit) of gates and wires. In ESL synthesis process, the high-level

codes define the structure of the system (behavioural synthesis) and transform un-timed or partially timed

functional modules into timed (logic synthesis) RTL implementations which are directly used to create a gate-

level description.

Many ESL designs are implemented with HW/SW complementary methodologies for custom tradeoffs which a

part of C to HDL are compiled and synthesis to generate hardware dataflow; and the rest of the C code is

compiled to assembly language as usual in the software. These designs are such as NISC technology (C to

Verilog) [35], SPARK (C to VHDL) [36], and LegUp (C to Verilog) [37] toolsets. They are referred to "High-

Level-Synthesis (HLS)" frameworks and optimize the HW/SW implementations. However, the design process is

the lack of a unified HW/SW representations that invites to the difficulties of modelling, validation, and

refinement in the entire system. Generally speaking, the most common modelling language currently used for

ESL design is SystemC that is easier to communicate through different abstractions.

2.3.1 Hardware/Software (HW/SW) Co-designs

In Co-design systems, hardware accelerators are separate units from the main processor, which to perform

complex computations functions in the hardware. The hardware devices often have outstanding execution

timing than the software. The chosen functions that most time spent in the program to perform into RTL

hardware datapath to increase the total performance.

Figure 2.6 The HW/SW Co-design system.

31

To this computing methodology, the accelerator and a general-purpose processor running the hardware and

software portions of the same programs concurrency and their contingents are able to partitioning; and the

systems are able to connect multiple accelerators execute in parallel to enhance the performance, a global cache

is typically implemented to slave of connected bus and shared data between accelerators and the processor, as

shown in Fig 2.6.

However, in this thesis work, I regard to the dual-component of a hardware accelerator / a general-purpose CPU

only. Specific examples of hardware accelerators are video card or graphic card in a desktop computer. For the

embedded system, HW/SW implementation controls are widely used in ESL / HLS designs and built on many

FPGAs or SoC chips.

2.4 FPGA Devices Overview

Previously, I have introduced the fundamental pieces of FPGAs, which are CLBs. The logic blocks wired each

other in many different ways to form complex combinational FUs. The modern FPGAs combine hard or soft-

core microprocessors, interconnections with the number of CLBs, and related IPs to form a “Programmable

SoC”. Nowadays, "Xilinx" and "Altera" are FPGA manufacture leaders and "Lattice" is the third ranked in the

world market. To the present high-end FPGA boards, 28 nm layout technology has been utilized on the latest

FPGAs version such as Xilinx Virtex-7 and Altera Stratix V with bandwidth up to 2,784 and 28.05 Gb/s

respectively; and both of them contain more than 2 million CLBs of equivalent gates [38, 39] that can be fitted

to fulfil complex computing and reusable for the designs.

2.4.1 FPGA Fundamental Structures

Imaging a FPGA is a large "memory chip” and software engineers can write some programs to be stored to

control it, and let it become a computer. The FPGA hardware architecture consists of a number of, memory

blocks, CLBs, DSP units, routing matrix, and I/O pads. The majority hardware device of FPGAs is based on the

Static-Memory (SRAM) fabricated in CMOS technology and configuration bitstream can be stored. Since, it is a

"volatile" memory type; the data in the gates may lose when the power is switch-off.

There are two types of memory within FPGAs: distributed and block memory. The "distributed memory" is

implemented by a number of registers, also named as "CLBs". A number of logic cells form in a CLB. CLBs are

the fundamental building blocks of FPGAs that permanently sketch to the hardware target board and depending

on different manufactures within different families. The "block memory" is a solid SRAM memory block

located on the FPGA floorplan. Furthermore, typically an external FLASH memory for AES encryption stored.

32

The name of Altera CLBs is different, called Logic-Array-Blocks (LABs). A FPGA CLB/LAB contains a

number of logic blocks, is called Logic-Cell (LC) in the Xilinx vendor or Logic-Element (LE) in the Altera.

LC/LE usages determine the resource cost of a system. The example of the FPGA hierarchical structure has

shown in Fig 2.7, based on the Xilinx vendors. A numbers of an N-input Look-Up-Table (LUT) and D-type

Flip-Flops (FFs) to construct a "Slice"; and two slices to form a "CLB". For Xilinx Virtex-5/6, a slice consists

of 4 LUTs and 4 FFs (1-bit registers). In earlier Xilinx devices, a slice includes only two 4-input LUTs for a

combinational logic and two FFs. However, the number of the input for a LUT; and the number of LUTs and

FFs per slice can be increased to obtain higher performance. In high-end FPGAs of Virtex-6 families, the 6-

input LUT has been manufactured; and four 6-input LUTs and FFs have been formed in the slice [40].

Figure 2.7 FPGA fundamental stuctures.

Moreover, DSP blocks are very dense and special FUs for multiplication arithmetic. Since multiplicand

implementations in the LC/LE resource are expensive, use the DSP functionalities efficiently can preserve

several hundreds of the logic cells; especially in video / audio data processing applications.

Generally, CLB keeps the same distance each other for the routing and numbers of interconnecting wires are the

same in all channels. For Place-and-Route (PAR) synthesis, the routing signals are vertical and horizontal

parried with switch boxes at interconnections. An I/O block contains input / output registers, MUXs, and clock

signals. FPGA I/O blocks are surrounding the array of CLBs and interface to external components. FPGA

clocking resources are clock generation and clock distribution. The clock generator is typically controlled by an

analog circuit: Phase-Locked-Loop (PLL) with the Voltage-Controlled-Oscillator (VCO) or digital circuit:

Delay-Lock-Loop (DLL) to generate a desired clock phase or frequency. The clock network distributes in global

clock lines, regional clocks, and IO clocks. The details of the FPGA clocking resource is not in this research.

33

2.4.2 Advanced FPGA Features

To the higher level view of the FPGA structures, the number of CLBs are reconfigured and interconnected to

comprise more compound functionality and several fixed IPs (floorplan) on the silicon, as shown in Fig 2.8.

Many vendors develop hard / soft processors or special IPs to realize a customizable processor-system. The

advanced FPGA components offer the flexible designed products to meet right requirements, faster time to

market, and performance / resource tradeoffs. Moreover, a group of I/O blocks to frame an I/O bank. The I/O

bank architecture plays a key role when FPGAs interface other external components. The detail of the FPGA

I/O standard is not in this research.

Figure 2.8 FPGA advanced stuctures.

Each size of the soft processors / IPs breakdown of FPGA fabric is ordinary pre-estimated to avoid out of

resource utilization. As a general rule, the higher resource usage results, the longer routing distance and timing

delays between CLBs, and the harder to process the design (synthesis and PAR); these will slower the maximum

34

system clock. It can be solved by placing registers along the datapath to balance delays between registers,

however, it will may increase the size of the design still and most of the soft IP cores design tool do not provide

this technique. In Fig 2.9, it is shown that the longest wiring (routing) delay determines the maximum

frequency on an FPGA.

Figure 2.9 The routing delays and maximum frequency within FPGAs.

In general, for FPGA resource estimation, it is recommended to overestimate the total resource usage may be

mapped onto FPGA boards. Typically said < 50% FPGA utilization of the initial estimation, because the

prototyping will may change and some diagnostics logic may will be added in further. Moreover, each CLB may

difficult to wire together in the PAR and degrade the execution time of the programs when devices are too full

of the logic cells, and said < 75% FPGA utilization of the final design [41].

2.5 Embedded Processors on FPGAs

There are two types of the embedded processors on the FPGA-based designs: hard and soft cores. To compare

soft vs hard-core on FPGA devices, the advantage of the soft-processors are utilized standard mass-produced,

the lower FPGA devices cost, and the numbers of cores are customizable. However, the disadvantages are lower

processor performance, higher power consumption, and larger area, because in the most part that there are

breakdown most of the LC/LE resource (eg. MicroBlaze occupies around 1,200-5,000 LUTs on Xilinx FPGAs

and PowerPC is a fixed gate-level IP) within the FPGA.

Through the embedded processors modern today, there are increasing interest for the "more than one core"

system designs in one chip die in order to accomplish superior performance. There are three sorts of

combinations to attain more than one core system: "Multi-core Processor (Homogeneous)", "Co-design

Processor (Hardware/Software)", and "Multi-core Processor (Heterogeneous)". The ideal example of those

architectures and prototypes are represented in Fig 2.10.

35

Figure 2.10 Embedded processor-systems.

To increase computational purposes by the hardware accelerator to perform function-complex programming

(HLS), the Co-design system is appropriate to be used. The most common system of the multi-core processor is

homogeneous; the processors are from the same manufactured and easily to be constructed. Homogeneous

multi-processor system are favourable to be utilized in "data-parallelism". The most progressive system is the

heterogeneous multi-processor, because each of the processors can match different applications to that core is

best suited to be executed; thereupon to meet ultimate performance [42]. Heterogeneous multi-core processor

are facilitated in "task-parallelism". However, they are hardly to be built up, due to very complex design tools of

the software compatibility of the mixture IP components. To this thesis work, I only concern the homogeneous

case in the study.

36

2.5.1 Hard and Soft Processors

The hard-core also refers to ASIC processors, such as Power PC 440 and ARM Cortex-A9 are embed "physical"

core and dedicated part of the integrated circuit (floorplan) into the FPGA silicon. The popular fabricated hard-

core CPUs on FPGAs are presented in Table 2.2.

Processor Developer Architecture Bits
Pipeline

Stages

L1/L2

Cache(KB)
MMU FPU

Clock

rate/MHz
Area/𝐦𝐦𝟐

PowerPC

440
AMCC Power

Architecture
32 7 32/256 ˇ ˇ 667 6.0

PowerPC

460
AMCC Power

Architecture
32 7 32/256 ˇ ˇ 600~1000 1.23

Cortex-A7 ARM ARMv7-A 32 8 8~64/1000 ˇ ˇ >1000 0.45

Cortex-A9 ARM ARMv7-A 32 8 ?/8000 ˇ ˇ 830 1.5

4KEc MIPS MIPS32 32 5
Instruction/

Data 8/8 ˇ ˇ 233 2.5

4Kc MIPS MIPS32 32 5
Instruction/

Data 8/8 ˇ ˇ 190 3.42

Table 2.2 Embedded hard-cores on FPGAs [43 - 46].

The soft-core also refers to FPGA processors, such as MicroBlaze, NIOS II, and LEON3/4 are built in

“reconfigurable" and "synthesizable" cores then fit into the FPGA logic "fabric". They are frequently open-

source / proprietary with IUs, and optional MMU and FPUs [47]. In Table 2.3, outline the well known

manufactures soft-core CPUs suitable on the FPGAs.

Processor Developer Architecture Bits
Bus

Support

Pipeline

Stages
MUL FPU Cache MMU

Area

(LUTs)

MicroBlaze Xilinx MicroBlaze 32
PLB, OPB,

FSL, LMB,
3, 5 opt opt ˇ opt

1,200-

5,000

PicoBlaze Xilinx PicoBlaze 8 no ˟ ˟ ˟ ˟ 190

Nios II/f Altera Nios II 32 Avalon 6 ˇ opt ˇ ˇ 1,800

LEON2 ESA SPARC-V8 32 AMBA2 5 ˇ ext ˇ ˇ 5,000

LEON3/4
Aeroflex

Gaisler
SPARC-V8 32 AMBA2 7 ˇ ˇ ˇ ˇ

3,500-

6,000

LatticeMico32 Lattice LatticeMico32 32 Wishbone 6 opt ˟ ˇ ˟ ~2,400

Cortex-M1 ARM ARMv6 32 AMBA2 3 ˇ ˟ ˟ ˟ 2,600

Table 2.3 Embedded soft-cores on FPGAs [48 - 51].

37

Soft-cores are usually implemented with a HDL such as VHDL and Verilog. The benefit of using soft IPs

includes configurability to optimize for suitability targeted applications, high-level of reusable design, reduced

obsolescence risk, and simplified design modifications [52]. The probable configurability of soft-processors to

be implemented in the following guidelines:

 Instruction Architectures

 Register Windows / Clusters with Functional Units

 Instruction and Data Caches Support

 Memory Mapping I/O (Virtual Memory)

 Memory Type or Size and Peripheral Bus

 Hardware Accelerator / Coprocessor to Perform RTL

 Branch Predictions

These parametrizable features in soft-cores are instantiated custom executed FUs (eg. IU & FPU with ALUs)

[53]. However, different manufactured soft-processors may have different customizable and specifications that

depends on the design purpose of the processors.

2.5.2 Memory Architectures of the Multi-core Processor Systems

The memory architectures in the processor-system is organized in a hierarchy system. There are two types of

management: "caches" and "banks". The cache system is a block of temporary memory in the microprocessor

that the access time is faster than the main memory, but slower than registers in the CPU. Since the 1980s,

performance of the processors has been highly grown and the memories could not follow the CPU clocking

speed [54], due to the data was likely to be used again, and it should have a small storage block that closed to

the CPU; thus the data transfer time would be quicker and the performance had been improved. Some processor-

systems have several memory divisions in a local RAM that is called memory bank. It is a uniform slot for

storage in that memory and determined by a memory controller to be accessed.

In multi-core processor system, each core typically connects together with a system bus or crossbar switches

with a main memory. There is two types of physical memory to be accessed: shared-memory and distributed-

memory, as shown in Fig 2.11. Uniform-Memory-Access (UMA) shared-memory machine is the most popular

way to form a Symmetric-Multi-Processor (SMP) system. The earliest SMP machine was introduced by

Burroughs’ MIMD D825 processor in 1962 [55]. In an embedded system, a Synchronous-Dynamic-Random-

Access-Memory (SDRAM) is widely used to form the main memory in the processor-systems, because it

synchronized with the system bus, advanced generations are DDR SDRAM and the DDR2 and DDR3. In a

shared-memory system, multiple cores where are connected with the bus interface and all cores can access a

common memory symmetrically via load&store operations. In distributed-memory, each CPU employs a local

memory and communicates through a network.

38

The advantages of shared-memory are easier to implement in a single address space and equal speed of the data

flow between each processor when programs to be loaded and stored. However, the disadvantage is adding more

cores, which can significantly increase traffic of the data access between each processor and the main memory

that is called "data synchronization confliction" or "data overhand". This phenomenon usually occurs in

load&store instructions of the CPUs in a single main memory system. The advantages of the distributed-

memory can access its own memory immediately and employ a large number of processors in the system will

not cause data overhand. However, the disadvantage is difficult to implement with data communication between

processors. In this study case, we consider shared-memory rather than distributed.

Figure 2.11 The stucture of shared / distributed memory of the multi-core processor systems.

2.6 Summary

This introduction chapter briefly describes the history of computing technology that summarized in a milestone

of Fig 2.12 with many significant breakthroughs and important emerged for embedded technologies. DLP

programming of the SPMD implementation and domain of HLS designs from high-level algorithms to RTL

synthesis that will be used in this study are illustrated. Furthermore, outlines the many advantages /

disadvantages of FPGAs compared to ASICs and hard / soft processors in the example. In addition, the

fundamental building blocks such as CLBs / memory blocks / DSPs and reconfigurable IPs alike soft-cores

(logic cells) / hard cores (floorplan) on FPGAs are introduced. Moreover, the possible multi-processor systems

that can be established are "homogenous multi-core processor" system to develop a data-parallelism solution or

"Co-design processor" system to specialize a hardware accelerator to solve complexity function issues. These

two computing methodologies generalize the aspirations of this thesis and their designed system may on

different FPGA vendors. However, to evaluate their Speed&Area tradeoffs, a scheme definition and formulation

are essential. More detail of them will be discussed in the next chapter.

39

Figure 2.12 The time-line of the computer technology.

40

Chapter 3

Background of Methodologies and Implementations

3.1 Introduction

This chapter describes the details of DLP / HLS computing methodologies in the domain of the fulfilments of

the computational subjects. To follow up the embedded processor-system structures, we should begin to look at

different implementations that are working up for the specific purpose of the methodologies. The "DLP

methodology" is for multi-processing that was originated to analysis of scientific research in massive numerical

information and a classical solution by supercomputers of multi-core processor architectures. However, the

"HLS methodology" is for creating digital hardware by high-level programming, which software engineers

intended to validate and verify the hardware circuits based on software implementations; and lead to HW/SW

Co-design architectures. Applications for embedded systems in DLP&HLS methodologies are video / image /

audio / lossless compression of multimedia processing.

3.2 Implementations of Data-Level-Parallelism (DLP)

The data-intensive processing is a type of parallel computing that approach a huge amounts of data. This class

of computing processing requiring multi-core general-purpose processors that divides a collection data into

multiple segments across different computing nodes (cores) independently uses the same executable program in

parallel [56]. The greater the aggregated data distribution, the larger number of cores, the more speed-ups are

benefited.

Applications of this computational process are usually called "Database" or "Big Data", typically TBs or PBs in

size from the memory. Such applications for workstations or servers are World Wide Web search-engines,

biological systems, and weather forecast. However, the size of embedded SoC or FPGA applications are relative

small, they are purely data compression or encoding algorithmic (eg. Huffman coding, Convolution, Sampling,

and Lempel-Ziv) are typically < 1MB in size. For this algorithm proposal, I apply the SPMD (also see the

definition on page 27) implementation of the DLP methodology. SPMD machines are widely implemented in

distributed and also shared memory.

41

Figure 3.1 Pseudo C codes for an 3-core of SPMD multi-processor system.

An example of SPMD processing that is executing programs in a 3 multi-core processor system (CPUs 1, 2, and

3) as shown in Fig 3.1. The program representing a pseudocode that operates the arbitrary algorithm with a for

loop in separated elements of the array Num_Data concurrency in each processors. The "lower_limit" and

"upper_limit" are the ranges in the number of data [Num_Data] and makes to each CPU of its own copy. Now,

each CPU executes array [Num_Data] for its own value of the limit by reading the Processor ID (CPUID) in a if

else statement, they operate in different parts of array simultaneously, thereby distributing the data among

themselves. In this experimental case study, assuming that all spit-data are fully parallelizable and the fraction

of the programs are directly proportional to the number of the cores; thus, the speed-up of a program does not

affected by the "Amdahl’s Law". Additionally, configurations of each core are the same micro-architects such

that the same resource models and performance.

3.3 Implementations of High-Level-Synthesis (HLS)

The HLS methodology is designed for function-intensive processing, because of the process often synthesizes

the specified "function" in C to the hardware. This class of computing processing requires HW/SW compounds

of acceleration units and general-purpose processors on a SoC or FPGA platform that the software is well for

features and flexibility, while hardware is good for performance (also see the definition on page 30).

Those applications are algorithm complexity by function-levels in mixtures of digital compression or encode /

decode algorithmic for multimedia software codes, such as JPEG (including decode, Huffman coding, and DCT)

and ADPCM (including encoding and decoding).

if CPUID = "1"

 lower_limit := 0

 upper_limit := Num_Data/3

else if CPUID = "2"

 lower_limit := Num_Data/3

 upper_limit := 2(Num_Data)/3

else CPUID = "3"

 lower_limit := 2(Num_Data)/3

 upper_limit := Num_Data/3

for i from lower_limit to upper_limit by 0

 array [Num_Data]

42

HLS process (see Fig 2.5) automatically translates a behavioural description (set of operations and data

dependencies) at the algorithmic level of to a structural description (FUs, memory elements, MUXs, and buses)

at the RTL level under constraints. Behavioural descriptions are usually expressed using HDLs such as Verilog;

an input specification is transferred by a compiler into a formal model that represented with a Data-Flow-Graph

(DFG), where operations for data dependencies are easily identified. There are three main steps in HLS process:

Scheduling, Allocation, and Binding [57], showing in Fig 3.2.

Figure 3.2 The HLS design flow.

The scheduler determines the instants at which the executions of the DFG operations start. The scheduler

optimizes the design execution time or its FUs utilization such that the implementation cost is minimized.

Datapath synthesis allocates operations to functional modules, variable to registers and connects the functional

modules using MUXs. The aim of datapath synthesis is to minimize the amount of registers and MUXs. The

results of scheduling and datapath synthesis are a structural description at the RTL level. This description is

finally translated to gate-level using logic synthesis.

 Scheduling

Behavioral description does not include any information about resource and timing requirements and to

provide such information, scheduling algorithms are employed. The basic idea of scheduling is to

43

distribute the algorithm operations such as additions and multiplications across DFG in such way that

the given Resource-Constraints (RC) or Timing-Constraints (TC) is met. The fundamental concepts of

un-constrained scheduling are As-Soon-As-Possible (ASAP), each operation scheduled into the earliest

possible control step, and As-Late-As-Possible (ALAP), each operation scheduled into the latest

possible control step that showing in Fig 3.3. In HLS, duration of FUs express in multiple of the system

clock period that is called a control-step (c-step) for the scheduling length.

 Allocation

For datapath synthesis, generating structural datapath realization from scheduled DFG are the last steps

of allocation. The allocation chooses FUs and registers or busses from the component library selecting

by HLS tool the one that best matches the design constraints, depending on the synthesis tradeoffs.

 Binding

For datapath synthesis, generating structural datapath realization from scheduled DFG are the last steps

of binding. Binding assigns operations to FUs, variable to registers, and data transfer to bus instance.

Optimization with the aim of the cost of registers and connecting FUs such that the cost of interconnect

like number of MUXs can be minimized (MUXs are expensive to implement in FPGAs using LUTs).

Register binding more demanding because the set of values must be assigned to the minimal number of

registers.

Figure 3.3 ASAP and ALAP scheduling.

Generally, ALAP scheduling produces less hardware and more execution time than ASAP scheduling. For

constrained scheduling, one wish to synthesize a design subject to silicon area constraint (fixed number of FUs)

and time constraint (fixed number of c-steps). RC scheduling is aiming to operate to c-steps such that the

execution time is minimised for a given number of FUs. This requires optimal utilization of available hardware

resources. Moreover, TC scheduling is real-time applications require system functions to be executed in a fixed,

pre-defined time and the aim of synthesis is to minimise the number of FUs.

44

In this thesis work, a variety of powerful scheduling tool has been explored and created by J. Cong and Z. Zhang,

System-of-Difference-Constraints (SDC). The advantage of SDC-based scheduler is a versatile scheduling style

in different types of constraints including resource, timing, frequency, and latency under a mathematical Linear-

Program (LP) formulation framework [58]. This scheduling algorithm is promising to be used in LegUp design

tools.

3.4 Design-Space-Exploration (DSE) on FPGA-Based

Any embedded processor-system may only to be designed on a FPGA vendor. However, to evaluate and

compare its resource-level on different vendors are critical. I formulate an equation to represent the resource

usages comparison between Xilinx and Altera that being used in this thesis work. The Design-Space-

Exploration (DSE) solutions of the area increased by programs speed-up for the global FPGA-based MPSoC

design are introduced. Moreover, many factors such as the number of ALUs / MULs, memory size, bus

structures, and versions of the design or synthesis tools will effectively result different area breakdown on

silicon and the execution times.

3.4.1 Xilinx and Altera Resource Usage Conversion

Generally, the geographical features and interconnectivity types of Xilinx&Altera FPGAs are not the same. Also,

the LC/LE structures between Xilinx and Altera are rarely the same, so basically it's difficult to compare these

two objectives. However, there is a common regulation, it is usual to compare the number of LUTs and not the

number of registers between different FPGA vendors. For the Xilinx Virtex-5/6 devices, a LUT can be

configured as one 6-input LUT with one output, and with a register (some of them to be two 5-input LUTs with

separated outputs) [59] is called "LUT Flip-Flop Pairs". The common figure is generalized in Fig 3.4. The carry

logic (a Full-adder) is utilized to compute the programming arithmetic and the selection bit “S” is connected

through the MUXs to be programmable. Note: 1 CLB = 4 LUT-FF Pairs.

Figure 3.4 A Virtex-5 LUT-FF Pairs [60].

45

For the Altera Stratix III/IV series, the portion is called "Adaptive-Logic-Module (ALM)" and that is more area

effect than a LUT-FF Pairs of the Xilinx resource. It consists of an 8-input combinational logic, two registers,

and two adders, as shown in Fig 3.5. The all-in-one combinational cell is divided between two Adaptive-LUTs

(ALUTs) and consisting of a various combination (two independent 4-input LUTs or a 5-input and a 3-input

LUTs) [60]. Note: 1 ALM = 2.5 LEs and 1 LAB = 10 ALMs.

Figure 3.5 A Stratix III ALMs [60].

By advance, according to benchmark comparison results of the logic efficiency between Xilinx LUT-FF Pairs &

Altera ALMs in normalized relative capacity (65nm post-fabricated chips), and the routing connectivity of the

Altera LABs have greater efficiency than Xilinx CLBs in a given building block; on average, the Stratix III

logic density is "1.8 times" advantage over the Virtex-5 [61]. In addition, device architectures of Virtex-6 and

Stratix IV (45nm) are not changing, comparing the older version. To follow up this generalization, the equation

to be represented the number of logic resource from synthesis data between Xilinx&Altera FPGAs, which are

possible and prevailed:

 Stratix IV DATA ALMs x 1.8 = Estimated in Virtex-6 DATA LUT-FF pairs (3.1

46

3.4.2 DSE of Multi-core Processor System

In this evaluation case, LEON3 and LE1 homogenous multi-core processor systems are for the MPSoC platform.

Assume that each of the cores is equal in size (at the same configurations); thus the number of resource

utilizations is directly proportional to the number of cores have increased. The targeted platform is the Xilinx

Virtex-6 FPGA. The following equations below are used of DSE evaluations in this platform:

 Program Speed-up =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑈𝑛𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 (3.2

 Area Cost =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜 𝑒𝑠𝑠𝑜𝑟𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
 (3.3

 Speed&Area Efficiency =
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑆𝑝𝑒𝑒𝑑 −𝑢𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑜𝑠𝑡
 (3.4

The "Program Speed-up" represents to less time spent with the number of processors have increased (Parallel-

SW), the "Area Cost" associated with the single-core area with the multi-core area, and the "Speed&Area

Efficiency" is associated the area cost with the program speed-up of the design.

3.4.3 DSE of Co-design System

In this evaluation case, the LegUp Co-design (Accelerators / Tiger-MIPS processor) system is for the MPSoC

platform. Where the area depends on input applications (algorithm types and size of codes) and how many

functions are accelerating (size of HW/SW partitioned in the hardware). The targeted platforms are Altera

Cyclone II FPGAs. The following equations below are used of DSE evaluations in this platform:

 Program Speed-up =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑆𝑊

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐻𝑊/𝐻𝑦𝑏𝑟𝑖𝑑𝑠
 (3.5

 Area Cost =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐻𝑊/𝐻𝑦𝑏𝑟𝑖𝑑𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑆𝑊
 (3.6

 Speed&Area Efficiency =
𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝑆𝑝𝑒𝑒𝑑 −𝑢𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑜𝑠𝑡
 (3.7

47

The "Program Speed-up" represents to less time spent of the function accelerated (HW or Hybrid) with the time

spent in the single-core (SW), the "Area Cost" associated with the single-core area with the HW or Hybrids area,

and the "Speed&Area Efficiency" is associated the area cost with the program speed-up of the design.

3.5 Summary

This chapter introduces DLP&HLS methodologies, implementations, and available applications. To summarize

these architectures, SPMD is a form of DLP methodology using multi-core processor systems that across each

core to handle massive-data implementations. A software technique of reading CPUIDs from each processor to

run each data segment is introduced. HLS process is part of ESL design, which focuses on High-level to RTL-

level synthesis for generating a piece of hardware on silicon to increase performance. The main streams of HLS

are scheduling, allocation, and binding. Moreover, the LC/LE conversion of Xilinx&Altera that have been

presented in order to estimate resource cost between them. Furthermore, to evaluate the Speed&Area Efficiency

of FPGA-based MPSoCs, I have introduced a series of equations in multi-core processors and Co-design

systems. However, it is not yet to start the evaluation of DLP / HLS designs. To the next chapter, the SW flow

benchmarks of LEON3 / LE1 / Tiger-MIPS single-core processors for each of these designs will be evaluated

elementary.

48

Chapter 4

Evaluation in Single-core of Soft Embedded

Processors

4.1 Introduction

These embedded experimental approaches are "SW" flows that run the entire C-based programs to the general-

purpose µPs. LEON3 and LE1 cores are DLP implementations in homogenous multi-core processors and the

Tiger-MIPS core is HLS implementations in LegUp Co-design system. Firstly, I represent the configurations of

LEON3, LE1, and Tiger-MIPS respectively. Secondly, I execute a wide-range of digital multimedia codes in

each processor so as to collect a large volume of benchmark suites. Thirdly, I average those benchmark results;

and therefore to evaluate the performance of each processor. To evaluate the area on FPGA-based, LEON3 and

LE1 cores are being synthesized on the Xilinx Virtex-6; however the Tiger-MIPS core of the LegUp-system can

only be synthesized on Altera FPGAs and on the Altera Stratix IV in this proposal.

4.2 Background of LEON3, LE1, and Tiger-MIPS Processors

LEON and MIPS processors are RISC architectures that instruction formats are fixed (typically 32-bit in

embedded µPs), and the LE1 processor is a VLIW architecture, which the instruction length is variable (64-bit

in this case study). More details about difference between RISC and VIW architectures are discussed in Section

5.2.1.

To summary these uni-processors trait, the LEON3 processor is highly configurable, especially for cache-system

and on-chip debug units, and available to be synthesized on most of manufactured FPGA boards; a LE1 VLIW

processor is highly internal configurable to perform complexity computing and able to be synthesized on Xilinx

Virtex families; both of these processors are established to minimal configuration to save FPGA resource; the

Tiger-MIPS processor is a fixed soft-core by the LegUp designers that only able to be synthesized on the Altera

Development-and-Education DE2 (Cyclone II) or DE4 board (Stratix IV) [62, 63] at present.

49

4.2.1 The LEON3 Processor

The LEON3 soft-core is a 32-bit RISC highly configurable through "VHDL" model, compliant with the IEEE-

I754 SPARC V8 architecture in embedded systems. The configurable LEON3 core is located in Gaisler-

Research-Library (GRLIB). GRLIB is a collection of reusable IP cores, which is based on the AMBA

AHB/APB on-chip buses. Each of the IP components has a particular vendor that specified by a VHDL package

in each library [50], and can be easily created by "Xconfig" GUI tool. Fig 4.1 shows that a LEON3 core and its

important configurability and available interface. The main LEON3 core functionalities are following:

 FPUs and Coprocessor

 Number of Register Windows

 Instruction and Data Caches

 Local I&D RAM

 MMU

 DSU

 AMBA Interface

 Multi-processor Support (LEON3 MP)

Figure 4.1 LEON3 processor core block diagram [64].

50

The LEON3 core is able to interface for the FPUs and custom Coprocessors, these two cases are not used in this

study. The 3-port register file has (2 read, 1 write) ports with separated address and data bus, which includes the

register windows. It is a group of general purpose "r" registers. The IU contains total r registers of 8 global plus

circular stack from 2 to 32 sets of 16 registers [65, 66]. Multiplier and Divider (MUL/DIV) operations are

supported by SPARC integer multiply and divide instructions. For instance, to perform a 32x32-bit integer

multiplication, will result 64-bit and 64 divide by 32 bits, result a 32-bit; and 2-cycle latency is the lowest for

the best performance. Static branch prediction reduces the penalty for branches exceed by instruction that

changes the condition codes, normally improves the performance with 10 - 20% on most control-type software.

Single-Vector-Trapping (SVT) is also from SPARC V8 architecture to reduce code size for embedded

applications.

The LEON3 core is interfaced to the AMBA AHB bus master to load/store data to/from the cache system. Both

of Instruction and Data (I&D) caches are configured to implement a "direct-map" cache or a "multi-set" cache

with set associativity 2 - 4, the set size is the range of 1 - 256 KB, divided into cache lines with 16 or 32 KB

data; for multi-set caches, four replacement polices options can be selected: Least-Recently-Used (LRU), Least-

Recently-Replaced (LRR), Random, and Direct. The set size of both local I&D RAMs are configured up to

256KB. Memory-Management-Unit (MMU) of the LEON3 core is the full SPARC V8 MMU specification

(mapping between multiple 32-bit virtual address spaces and 36-bit physical memory), however MMU is not

used in this study. Debug-Support-Unit (DSU) is implemented to interface for the LEON3 core of debug mode

and provide up to four watchpoint registers; behaves as an AHB slave accessed by the AHB CPUs master, and

also AHB trace buffer can monitor and store executed or read out instructions for debug interface. Moreover,

multi-processor methods are feasible on the LEON3 SoC template [64].

The LEON3 IU is 7-stage pipeline with Harvard architecture, shown in Fig 4.2. This shows the structure of the

internal pipeline stages in the core. I-cache is fetched at Instruction-Fetch if that is enabling and there is an

instruction in the cache; instructions are decoded at Instruction-Decode and the CALL / Branch target address

are executed; operands are read from the register files at Register-Access; executes operations such as ALUs,

shifts, and MUL/DIVs; D-cache is fetched or written at Memory-Access; interrupts are through at Exception;

and any results of operands or caches operations are written back to register files.

51

Figure 4.2 LEON3 CPU core IU datapath [64].

For a single-core of LEON3 configuration: 8 register windows of default setting, enabling MUL/DIV

instructions and 2-cycles latency of 32 x 32 pipelined hardware MULs, no FPU since only IU value are

calculated, 16KB I&D-cache / 32 Byte per line of the "Direct-mapped" associativity, 64KB I-RAM and 256KB

D-RAM, there is no need MMU of virtual memory in this study, 4KB instruction / AHB trace buffer and 2 IU

watchpoints of the DSU, one pipelined load delay to obtain best performance, static branch prediction, and

SVT is enabled. For information about AMBA bus configurations and how to use the GRMON debug of the

terminal on the computer screen will be shown in Section 5.2.3 of LEON3 MP configurability.

52

4.2.2 The LE1 Processor

The LE1 (32-bit for 1-width) VLIW [67] is highly parametrizable in both architectural and micro-architectural

views and "VHDL" model implementation. It presents many architectural parameters to the programmer to fully

customise the hardware being produced. The main microarchitectural parameters of the LE1 core are following:

 ISSUE_WIDTH

 CLUSTERS

 IALUs

 IMULTs

 IALU_LAT

 IMULT_LAT

 IRAM_SIZE

 DRAM_SIZE

 LSU CHANNELS

 DRAM_BANKS

 LE1_PROCs (LE1 CMP)

Figure 4.3 IALU/IMULT and IALU LAT/IMULT LAT for the LE1 core [67].

The architectural width (ISSUE_WIDTH) of the LE1 processor can be optimized in a number of RISC

instructions. There are up to CLUSTERS (group of ALUs, MULTs, and Register Files) clusters, each with its

own register set, Integer (SCore) and Floating Point (FPCore) datapaths.

The configuration of the SCore is dependent on the Integer-ALUs (IALUs) and Integer-MULTs (IMULTs)

parameters which define the number of FUs available for executing integer based arithmetic operations. The

latencies of the IALUs and IMULTs are depicted in Fig 4.3. These values are modifiable, lower latencies and

more FUs result in extra complexity within the silicon and thus a higher number of 32-bit result busses to the

Score bypass logic to have the results from the SCore available at an earlier time. This ultimately proves to be

the critical path in the processor. The LE1_PROCs is configuration of the number of contexts for multi-

processor methods.

53

Figure 4.4 LE1 CPU core schematic [68].

The LE1 has a 7-stage pipeline (ignoring the FPCore stage), shown in Fig 4.4. This shows the internal structure

and a breakdown of the internal pipeline stages of the LE1. The Pipe Control block depicts the primary control

mechanism which schedules the full flow of instruction fetch and decode to data execution. It is responsible for

initialising internal registers and memory sections through a debug mechanism from a host machine as well as

maintaining the control space of the LE1 through a collection of state machines which schedule the overall

system LE1 execution. As well as the Pipe Control, the CPU is composed of an Instruction-Fetch-Engine (IFE),

Load-Store-Unit (LSU) and the main execution core (LE1 CORE). The IFE maintains the I-cache and associated

state machine. Each long instruction word can be up to two times ISSUE_WIDTH operations wide due to the

inclusion of 32-bit immediate for large integers and addresses which results in the IFE controlling interlocks to

retrieve all required instructions when they span more than one I-RAM location. The banked, shared memory is

accessed from the LE1 CORE through the LSU. The numbers of channels (LSU CHANNELS) to the memory

along with the banking system (D-RAM BANKS) of the memory are both modifiable within the LE1

configurations. Finally, the LE1 CORE includes the main execution data paths of the CPU.

54

For a single-core of LE1 configuration: 2 ISSUE WIDTH, 2 CLUSTERS, 2 IALUs, 2 IMULTs, 64 KB

IRAM_SIZE, 256 KB DRAM_SIZE, 2 LSUs, and 2 DRAM_BANKS respectively.

4.2.3 The Tiger-MIPS Processor

The Tiger-MIPS processor is a RISC 32-bit "fixed-core" based on the original MIPS (Microprocessor-without-

Interlocked-Pipeline-Stages) 32 architecture that through "Verilog" HDL and designed by Ben Roberts and

Gregory Chadwick to be used with Altera’s Avalon bus [69]; selected for HLS LegUp-system, documentation,

and mature development ecosystem [63].

The MIPS processor has a 5-stage pipeline based on the common RISC subset that shown in Fig 4.5, and are

very similar with LEON; however, Decode / Register Fetch are at the same stage and without the Exception

stage. A typical MIPS core has 32-bit GPRs for Integer-Registers (IRs): Register r0 always holds 0 and r1 is

assembler temporary, r31 is usually used for Jump-and-Link (JAL) instructions, HI (Higher result) and LO

(Lower result) registers to access the results of integer MUL/DIVs, and multiply-accumulate operations, and a

Program-Counter (PC) Register. Most MIPS cores have caches, but they are not implemented in the same

configuration, with write-back or write through I&D-caches [70].

Figure 4.5 MIPS CPU core datapath [71].

To the default Tiger-MIPS core, 32 32-bit Integer GPRs, and the number of blocks in caches are 29 = 512 lines

(bytes) = 16KB for I&D-caches size of the "Direct-mapped" associativity is included.

55

4.3 The Software (SW) Flow

The compiler transforms C source code into the "computer assembly language" that often forms a binary also

known "object code" to be executable. Different computer architectures have different computer languages;

therefore compilers for different processors are typically unique.

There are identical compilers for these three processors: Kernels for SPARC V8 are used with LEON3, Aeroflex

Gaisler provides Bare-C Cross (BCC) compiler system, also known as the "SPARC-GCC" compiler. It consists

of the GNU GCC C/C++ compiler and the Newlib standalone C-library [72]. Hewlett-Packard (HP) provides

VLIW-Example (VEX) Toolchain, which contains compilation-simulator to target VLIW processors [73]. The

VEX assembler takes as input the textual assembly output from the compiler, flattens the code, resolves branch /

jump targets and produces two output files, the instruction binary and the initialized data section. The front-end

of Clang compiler is C/C++ to generate the software binary for the soft processor. However, alternative

compilers may affect application computational speed of the model simulations as well as the optimization flags

used during compilation.

4.3.1 Experimental Implementations

For the stimulations of the LEON3, the following C programs were tested on the target FPGA board by the

LEON3 GRMON debug monitor. Assigning a function of "clock()" to the end of the programs, it would return a

time spent of the "main()" in microseconds (µs). For the LE1 stimulations, INSIZZLE is a cycle-accurate

simulator and returns the clock cycle count, calling the single data memory block and the results displayed in the

final simulator C-source files [68]. For the Tiger-MIPS stimulations, the SPIM simulator, the counter variable

gave the total number of cycles for a complete execution and returned the total time spent on the programs in

picoseconds (ps). For the FPGA synthesis of LEON3 and LE1 cores, I used LEON3 / GRLIB IP Library design

tool and LE1 Toolchain to target the Virtex-6 LX240T (ML605) FPGA (see Section 5.2.3 and 5.2.4); and the

Tiger-MIPS core, I used LegUp-3.0 and Quartus II 12.0 to target the Stratix IV EP4 FPGA and the clock period

constraint would set to the default value of "5 ns" on Stratix IV series.

4.4 Benchmark Collections

This section represented the overall benchmark suits that execute in LEON3&LE1&Tiger-MIPS processors to

this experimental work. These benchmark collections were chosen from a wide-range of C-based algorithms and

would be used in the following case studies of performance evaluations in this chapter and further in chapter 5

and 6. The following codes were separated into three divisions of "data-intensive", "function-intensive", and

"other" programs. However, the LE1 processor does not support "SoftFloat" functions and "little endian";

therefore, I compared all programs and without "double-precision FPU algorithmic" and the "Motion" codes.

Furthermore, all of the assembled programs were optimized to the highest performance level to reduce the cost

of compilation.

56

4.4.1 Data-intensive Programs

These C/C++ programs include two examples of the DLP methodology by CM and LZW. They are data-

intensive processing of large data volumes and suitable for multi-core processor systems. CM is a popular

program in video / image processing and LZW is a universal lossless data compression algorithm that widely

used in PDF files in Adobe Acrobat. The detail of software implementations for CM and LZW is presented in

Section 5.4, and simplified description of programs is listed in Table 4.1.

Program Design Description Source

CM60x60 Convolution Matrix with 60x60 output data

LZW45K Lempel Ziv Welch with size of 45KB input data LZ78 [74]

Table 4.1 Outline of the DLP benchmark suits.

4.4.2 Function-intensive Programs

The following C/C++ CHStone programs are for the HLS methodology and represented in Table 4.2. They are

function-intensive processing and available from LegUp example directory that facilitates C to HDL for Co-

design partitions. However, these programs are "not" suitable for parallel computing in multi-core processor

implementations. It consists of 12 programs which are included four arithmetic programs, four media

applications, three cryptography programs, and one processor. More details of software implementations for

CHStone is presented in Section 6.4. The simplified information for each program is as follows below:

Program Design Description Source

MIPS Simplified MIPS processor CHStone group

DFADD Double-precision floating-point addition SoftFloat [75]

DFDIV Double-precision floating-point division SoftFloat [75]

DFMUL Double-precision floating-point multiplication SoftFloat [75]

DFSIN Sine function for double-precision floating-point numbers CHStone group, SoftFloat [75]

ADPCM Adaptive differential pulse code modulation decoder and encoder SNU [76]

GSM
Linear predictive coding analysis of global system for mobile

communications
MediaBench [77]

JPEG JPEG image decompression
The Portable VideoResearch

Group, CHStone group [78]

MOTION Motion vector decoding of the MPEG-2 MediaBench [77]

AES Advanced encryption standard AILab [79]

BLOWFISH Data encryption standard MiBench [80]

SHA Secure hash algorithm MiBench[80]

Table 4.2 Outline of the CHStone HLS benchmark suits.

57

4.4.3 Other Programs

The following several C/C++ small test programs, which given by LegUp example C source codes are

represented in Table 4.3. However, larger volume applications such as follows: The "OGG" is the largest codes

of this section that contains format only. "Containers" may include streams encoded with multiple codes of

video and audio data and can be in various formats (eg. MPEG-4 and MP3). The "FFT" is a well known

algorithm to compute the DFT rapidly in audio parts. The "FIR" is a moving average filter that widely used in

signal processing. The information about each program is as follows below:

Program Design Description Source

ARRAY Multi-dimensional arrays LegUp [37]

DHRYSTONE Tests a system's integer performance, and no operating system call LegUp [37]

DIVCONST Test division algorithms LegUp [37]

FFT Fixed point 16-bit input-output in place Fast Fourier Transform LegUp [37]

FIR Finite-Impulse-Response (FIR) filter stream with 32 inputs LegUp [37]

FUNCTION POINTER Demonstrate a function pointer LegUp [37]

FUNCTIONS Testing multiple functions LegUp [37]

HIERARCHY TEST Testing addition algorithms in functions LegUp [37]

LLIST Testing a linked list node struct with pointers LegUp [37]

LOADSTORE Print out “Hello world” LegUp [37]

LOOP Simple loop with an array LegUp [37]

LOOPBUG Test Double-precision floating-point addition in for loop LegUp [37]

MALLOC
Allocate a block of size bytes of memory and return a pointer to the

beginning of the block
LegUp [37]

MEMORY ACCESS TEST Performs read/write memory accesses from/to local and global memory LegUp [37]

MEMSET
Testing the conversion of llvm.memset and llvm.memcpy

intrinsics into aligned calls of our own functions
LegUp [37]

OGG
Is designed to provide for efficient streaming and manipulation of high

quality digital multimedia.
LegUp [37]

SELECT Testing ? : statement LegUp [37]

SHIFT Left-shifting an integer by more than 32 bits LegUp [37]

SIGNDDIV Testing division operands for sign numbers LegUp [37]

STRUCT
Testing structs with nested arrays and structs. Functionality includes

loads, stores, global and zero initialization.
LegUp [37]

UNALIGNED Testing unaligned memory access. LegUp [37]

SWITCHES Testing switch-case statement LegUp [37]

SRA Algorithm of square-root approximate to integer LegUp [37]

TIGER SRA
Algorithm of square-root approximate to integer using function to define

equations.
LegUp [37]

Table 4.3 Outline of the other benchmarks.

http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Digital_multimedia

58

4.5 Evaluations of Speed&Area in Single-core of Soft-processors

The total of "33" benchmarks were executed in each of examining processors. The executed cycle counts as

well as the execution times from each µPs were displayed in Table I.A, Appendix I; and area breakdown and

comparisons of LEON3&LE1 processors on the Virtex-6 LX240T (ML605) FPGA and the Tiger-MIPS

processor on the Stratix IV EP4 FPGA would be discussed afterwards.

Figure 4.6 Comparsion in execution times at Low-end Benchmarks.

0

10

20

30

40

50

60

LEON3 LE1 MIPS-Tiger

E
x
ec

u
ti

o
n

 T
im

es
/µ

s

59

The system frequency on FPGAs of the LEON3, LE1, and Tiger-MIPS cores were clocking at 75, 75, and 74.26

MHz respectively to obtain the duplicated performance. The 33 benchmark results were separated into four

execution time domains in order to observe them in a histogram distinctly. There were the first benchmark

group of under 800 µs at Lower-end Benchmarks (Fig 4.6), the second of 800 ~ 8,000 µs at Mid-end

Benchmarks (Fig 4.7), the third of 8,000 ~ 120,000 µs at High-end Benchmarks (Fig 4.8), and the fourth of over

120,000 µs at Very High-end Benchmarks (Fig 4.9) correspond to their own time periods.

Figure 4.7 Comparsion in execution times at Mid-end Benchmarks.

As the results shown, at Lower-end Benchmarks for basic C algorithms, the Tiger-MIPS processor was powerful

all around, comparing with LEON3&LE1. In addition, the LEON3 appeared to be much disadvantaged at

MUL/DIV operations such as DIV_CONST, and SIGNEDDIV benchmarks; and main memory access through

load/store from local to global memory such as the MEMORY_ACCESS_TEST. Besides, it seemed to be a little

disadvantaged at the pointer syntax of the memory location such as FUNCTION_POINTER and LLIST; the shift

operation and "switch-case" statement such as SHIFT and SWITCHES. However, it was well at addition

operations such as ARRAY, HIERARCHY_TEST, and LOOPBUG and more advantageous at dealing with data

movement between registers or local memories than Tiger-MIPS&LE1 processors, such as MEMSET and LOOP.

Moreover, the performance of the "structure" statement in the LE1 processor apparent to be fine, comparing

with LEON3&Tiger-MIPS, such as STRUCT.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

LEON3

LE1

MIPS-Tiger

E
x
ec

u
ti

o
n

T
im

es
/µ

s

60

Figure 4.8 Comparsion in execution times at High-end Benchmarks.

Figure 4.9 Comparsion in execution times at Very High-end Benchmarks.

0

10,000

20,000

30,000

40,000

50,000

60,000

LEON3

LE1

MIPS-Tiger

E
x
ec

u
ti

o
n

 T
im

es
/µ

s

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

LEON3

LE1

MIPS-Tiger

E
x
ec

u
ti

o
n

T
im

es
/µ

s

61

At Mid-end and High-end Benchmarks for larger codes (see page 121, Figure III.A, the percentage of

algorithmic types of benchmarks), the lacking performance at MUL/DIV operations of the LEON3 processor

have also shown on ADPCM, GSM, FFT, and CM60x60 benchmarks. The same aspect were also being

discovered on CM60x60 results of DLP implementations (see Section 5.5.1). Moreover, for the LZW45

benchmark, although the LEON3 has greater performance of movivg data in registers for the C string functions

(see page 73), however there was many execution times penalty in data accessing from the main memory than

the Tiger-MIPS.

Figure 4.10 The sPEED and area results of LEON3&LE1&MIPS SW flow.

By the LEON3 and LE1 (Xilinx); and the Tiger-MIPS (Altera) processors were breakdown on different FPGA

vendors, I applied the resource usage conversion between Xilinx&Altera of the Equation 3.1. It was important

that running benchmarks on the "Altera DE4" rather than DE2 boards, because that Xilinx Virtex-6 and Stratix

IV are the same scale of fabrication process and logic density, therefore it was more precise converting area

between them (also see page 45). The Tiger-MIPS processor estimated area breakdown of the number of "LUT-

FF Pairs" on the Xilinx Virtex-6 FPGA was calculated out. Corresponding to the cell transformations (see page

45), Altera: 1 ALM = 2 ALUTs and there was 14,135 ALUTs, hence the number of ALMs was 7,068 on the

Stratix IV FPGA and 12,722 LUT-FF Pairs on the Xilinx Virtex-6.

Additionally, the average of aggregate execution times in benchmarks gathering was also computed. The wide-

spread of the Speed and Area results in the SW flow of LEON3, LE1, and Tiger-MIPS processors were plotted

in Fig 4.10 (Note: Speed - averaging the execution times between Mid and High-end benchmarks). The left

0

5,000

10,000

15,000

20,000

25,000

Area (LUT-FF Pairs) Average Execution Times/us

E
x
ec

u
ti

o
n

 T
im

es
&

N
u

m
b

er
 o

f
L

U
T

-F
F

 P
a

ir
s

62

vertical axis have shown geometric mean execution times (10 times of a millisecond) and the right axis shown

the area (number of LUT-FF Pairs on Xilinx vendors).

To evaluate the Speed&Area issue between LEON3&LE1&MIPS processors on FPGA-based, I made use of the

DSE formulas that have advocated in Section 3.4.1 and 3.4.2. Whereas, the equations of the "Program Speed-

up" was represented as Average Execution Times of LE1 or Tiger-MIPS divided by Average Execution Times

of LEON3; the "Area Cost" was represented as the number of LUT-FF Pairs of LE1 or Tiger-MIPS on Xilinx

divided by the number of LUT-FF Pairs of the LEON3 on Xilinx; the "Speed&Area Efficiency" was represented

as Program Speed-up of LE1 or Tiger-MIPS divided by Area Cost of the LEON3. While, the LEON3 was the

baseline processor to be compared to LE1&Tiger-MIPS; and their program speed-up, area cost, and the

Speed&Area Efficiency were always 1. I expressed all the experimental values in two decimal places. The total

evaluations have shown in Table 4.4.

 LEON3 LE1 Tiger-MIPS

Average Execution Times/µs 79,017 73,833 35,736

Area (Number of LUT-FF Pairs) 15,728 24,454 ~12,722

Program Speed-Up 1 1.04 2.52

Area Cost 1 1.55 0.81

Speed&Area Efficiency 1 0.67 3.11

Table 4.4 The Speed&Area Efficiency of LEON3&LE1&MIPS SW flow.

For the evaluations of LEON3&LE1&MIPS processors: along with the LE1 core, although the execution time

were merely 4% increased, the core has led to the highest area penalty 155% of a LEON3 core, and the

Speed&Area Efficiency of the LE1 core has had much deceased (0.67). As far as concerned with the Tiger-

MIPS core, the average benchmarks have increased twice and half as much 252% and was almost 19% resource

usage reduced, and the Speed&Area Efficiency of Tiger-MIPS core has been increased (3.11).

To evaluate the "speed" results, it was probably due to the Tiger-MIPS core has had shorter instruction pipeline

depths (5-stage), comparing to LEON3 and LE1 (7-stage). In other words, the longer instruction pipeline of

CPUs, the longer clock cycle needed to complete a sequential pipelining, and the longer time needed to compute

a program. However, increasing CPU instruction a depth would allow higher frequencies for the designs, which

mean LEON3 and LE1 processors are ideally enable to be clocked at faster rates. Moreover, the LE1 processor

has double instructions implementations within the CPU to form as a superscalar architecture which allows

double independent instructions to be executed in parallel per cycle. In this process, CPU hardware would have

to check the available resource (register, memory, and FUs) for multiple instructions running simultaneously.

However, the speed-up of a superscalar CPU would not be directly proportional to the numbers of the

instruction throughput. The average benchmark result was disappointed and approximately or exactly a little bit

63

better than the LEON3 core. It was due to parallel executions of superscalar pipelined would have limited by

resource conflicts and data dependencies (also see Section 5.2.1). These could be improved by increasing the

numbers of IALU&IMULTs and CLUSTERs within LE1 microarchitectural parameters.

To evaluate the "area" results, the size of a LEON3 core was very close to the Tiger-MIPS. It was however with

debug units and some communication ports which more configurations than the Tiger-MIPS. A LE1 core

(nearly the Tiger-MIPS core size and 80% size of a LEON3) needed to be operated with a service MicroBlaze

SoC (11,880 LUT-FF Pairs). Moreover, increasing the number of CLUSTERs to meet higher ISSUE_WIDTH

or increasing the number of IALU&IMULT to lower the latency, would have increased the resource

significantly.

4.6 Summary

This chapter demonstrates a wide-range of ANSI C-based programs running in different configuration of

LEON3, LE1, and Tiger-MIPS soft processors and they are synthesized on different target FPGAs. Fortunately,

a formula for converting the FPGA resource between Altera ALMs and Xilinx LUT-FF Pairs that provides

Xilinx&Altera device logic comparison approximately. The LEON3 processor is the baseline comparison for

another two of the "Speed&Area Efficiency". To summarize the results, it shows that the Tiger-MIPS processor

has the fastest execution time and the smallest area cost; and has won the whole tradeoffs than LEON3 and LE1

processors. However, it does not mean that LEON3 and LE1 processors are worse than the Tiger-MIPS at entire

prerequisite. The merits of the LEON3 and LE1 cores such that are highly configurable in customization.

Moreover, the design tools are able to support multi-core processor system for parallel computing and very

flexible on target FPGA boards. To the next chapter, I will examine and compare the Parallel-SW flow

benchmarks in the case of the DLP methodology on LEON3&LE1 multi-core processor systems.

64

Chapter 5

Evaluation in Data-level-parallelism of LEON3 MP

and LE1 CMP on FPGA-based SMPs

5.1 Introduction

A number of homogenous multi-core processors can be implemented on the FPGA-based platform and perform

a parallelism computation. This chapter presents the "Parallel-SW" flows of CM image processing convolution

and LZW compression / decompression algorithm executing in LEON3 MP and LE1 CMP system of the DLP

methodology (also see the description in Section 3.2). In contrast with the single-core, the multi-core system

provides higher performance at lower frequency in such parallel programming within FPGAs. In addition, for

the set up of the number of CPUs in this study, the available processors in the system varied from 1 up to 6 that

synthesized on the Virtex-6 LX240T (ML605) that contains 150,720 LUTs-Flip Flop pairs and maximum block

RAMs of 3,600 KB that can be fitted and reused for the designs [81]. Furthermore, it is necessary to evaluate

and compare the Speed&Area tradeoffs of these SMPs onto the same FPGA device.

5.2 LEON3 and LE1 Multi-core Processor Methods

The conventional RISC instruction in which a single-core is an example of SISD stream and in multi-core

system can realize MIMD process. However, a VLIW processor with longer instructions (ILP implementations)

in which a uni-processor and connect multiple cores in a system for parallel programming (TLP or DLP) is also

an example of MIMD stream (also see page 27). In these processor-system implementations, computing types

are all identical to SPMD which is the sub-type of the DLP process for multiple core systems of LEON3 (RISC)

and LE1 (VLIW) processors.

The SMP system is the most popular framework of the multi-core processors for parallel computing that can be

classified into task or data level parallelism. For the novel comparison, LEON3 and LE1 soft-cores have very

similar instruction pipeline depths. However, a LE1 core designed has the advantage of ILP optimizations and

highly paramertisable architectural FUs, such as ALU / MUL units to meet the critical computation for the

performance, and the LEON3 MP has the advantage of wealthy reusable IPs (GRLIB IP library) suitable for

complex MPSoC designs and a versatile cache-system to be implemented.

65

5.2.1 RISC vs VLIW

RISC instructions are simple operations based on load/store architectures (register-to-memory), and it is the only

operation that affects the memory. Arithmetic operations between registers (register-to-register) and requires a

number of GPRs then to execute in ALU / MUL units. VLIW operations, which concerned with multiple issued

of RISCs, a powerful compiler is needed to schedule instruction packets in parallel and decide when they are

compiled [82], therefore, the numbers of GPRs and FUs of VLIWs are larger in order to satisfy multiple

operations that speed up programs. An ideal case of VLIW operations without any resource and data or control

dependency conflicts compared with RISCs as shown in Fig 5.1, "double semicolon" means the clock cycle and

multiple instructions are executed concurrently. The blank slots (group of four bytes) are ALU / Branch or NOP

instructions.

Figure 5.1 Example of RISC and VLIW instructions.

66

5.2.2 Symmetric-Multi-Processors (SMPs) with Data-Level-Parallelism (DLP)

The diagram of the SMP system is shown in Fig 5.2, a number of homogenous cores are connected by a system

bus or crossbar switches, peripherals, and where all processors access a common memory symmetrically (also

see page 37). Processors are identified by a unique ID and ready for software implementations. However,

accessing to the main memory through a shared bus does not fully scale with the number of processors and

result "data overhand" (also see page 38).

Figure 5.2 SMPs with DLP.

Typically, the disadvantage of data synchronization effect can be lowered by employing local caches in each

processor to consistency load/store data from the core; thus to speed-up data access from the main memory and

also reduce the bus traffic of the SMP system when the program in parallelism. That is known as the "Cache

Coherence" implementation. Moreover, to generalize, there are three main factors affected the scalability of

SMPs: cache coherency pipelining, time spend in spin lock (number of cycles) by programming, and memory

accessed conflict. Most of the SMP computers typically have ten or fewer cores. For embedded processor-

systems designed, the best performance of the number of processors in the UMA SMP is limited to 8 cores [83,

84].

67

5.2.3 LEON3 MP and IPs Configuration

To minimize the LEON3 MP System suitable for this design, many of the IPs (eg. Ethernet MAC consumes

more than 10,000 LUTs) were disabled to save FPGA resources. Each LEON3 core configuration of the LEON3

MP is the same as in the single-core benchmarks (Section 4.2.1). For the local memory configuration, the I-

RAM size is 64KB and D-RAM is 256, 128, 64, 64, 64, and 32KB respectively from 1 to 6 cores, in order to

align the shared D-RAM of the LE1 CMP. To summarize the LEON3 MP components, Table 5.1 shows the key

features of LEON3 configurable blocks that are important in this MPSoC platform.

Functionality

Blocks

Description

IU Full SPARC V8 integer unit, 7 stages pipeline interfaced with I&D caches sub-system, including MUL/DIV

instructions, and the numbers of register windows is configurable.

 Cache System Various setting for separated I&D caches with 1-4 sets, 1-256kbyte/set, 16 or 32 bytes per line (Total cache size =

sets*set size). The D caches uses write-though policy interfaced with AMBA/AHB bus and also perform bus-

snooping.

On-chip DSU It is a type of non-intrusive debugger to target FPGA.

Interrupt Interrupt interface (up to 15 asynchronous interrupts).

AMBA ARM AMBA-2.0 standard, separated with AHB and APB bus, CPUs execute load /store data to/from the caches.

LEON3 Cores Number of LEON3 cores. Up to 16 cores (masters) can be build.

Table 5.1 LEON3 blocks CONFIGURABILITY [64].

Figure 5.3 LEON3 multi-core with GRLIB IP for the SoC [85].

68

The gray colour items show the disabled IPs in the LEON3 FPGA template, as showing in Fig 5.3, based on the

Advanced-Microcontroller-Bus-Architecture (AMBA) on-chip buses, a bridge link between Advanced-High

performance-Bus (AHB) and Advanced-Peripheral-Bus (APB). The Xilinx MIG DDR2 is the global memory

controller of the system, and it is the same for the LE1 CMP on the FPGA.

For AMBA-2.0 configuration, all the LEON3 processors and many of the IPs such as JTAG Debug Link and

PCI are master connected to AHB bus. The round-robin policy is supported; and JTAG interfaced for the

GRMON debug monitor that is connected to the AHB. In addition, an APB bus is slave to the master AHB bus,

and interconnects to the APB, Timers and 8 bytes (FIFOs) for UART console in order to return fast printout

results on the terminal of the computer screen. The interrupt controller is designed to be used in LEON3 multi-

processor systems and explained in Section 5.3.1.

5.2.4 LE1 CMP and Configurability

Table 5.2 presents the parameters of the LE1 which are important for this experiment and more information

about frontal definitions of the single-core (see page 51 - 54). The LE1 CMP customizations are available in

order to exploit TLP (named "DLP" instead in this case study) while being able to closely match the

performance and area requirements of target applications and architectures. As well as the LEON3 core, LE1

CPU configurations of its CMP are organized to previous setup in Section 4.2.2.

Architectural

Parameter

Description

ISSUE WIDTH Architectural width (VLIW) of the processor. This is the number of RISC operations (syllables) dispatched

every on clock.

 CLUSTERS Number of clusters of the LE1 CPU. The LE1 is a multi-cluster architecture with each cluster having its own set

of architectural registers and execution resources.

 IALUs Number of integer ALUs per processor.

IMULTs Number of integer multipliers per processor.

I-RAM SIZE Size of closely-coupled instruction (code) RAMs. The application code is loaded in this memory prior to

execution.

 D-RAM SIZE Size of closely-coupled data RAMs. The Initialised data segment is loaded in this memory prior to execution.

Serves as the stack area for all active hardware threads.

 D-RAM BANKS Number of banks of the Data RAM. Accesses to disjoint banks incur no cycle penalty.

LSU CHANNELS Number of channels to the Data RAM per processor.

LE1 PROCS Number of LE1 contexts (cores) in the multi-processor

(CMP) configuration.

Table 5.2 LE1 microarchitectural configurability [68].

69

A shared-memory CMP (2-core), as shown in Fig 5.4, can be instantiated. These are achieved by altering the

LE1 PROCs parameter shown in Table 5.2, populate multiple contexts of the LE1 CORE and are enabled to fit

up to 6 cores into the target FPGA device. The figure depicts a dual-LE1 system with separate instruction RAM

and a common, banked D-RAM. The instantiated local I-RAM and a global D-RAM size were established to

64KB and 256KB respectively. In this study, I will investigate TLP by altering the number of instances of the

LE1. Both of these parameters are modified within a top level XML machine model and used throughout the

LE1 tool flow to specify these micro-architectural configurations.

Figure 5.4 Two-way multi-processor consisting of two instances of a 4-wide, single-cluster LE1 core, the common data

memory and the thread control unit [69].

5.3 The Parallel-SW Flow

The ideals of the Parallel-SW flow in this experimental used are defined in Section 3.2 (see page 40). For this

DLP methodology, both of the LEON3 MP and LE1 CMP are determined to SPMD multiprocessing. Each

executed segments of the program is acquainted with the value of "CPUID" by each processor. In addition, the

overall system clock of the Parallel-SW flow within FPGA is significant impact on the performance, since

processors of the multi-core would occupy large numbers of the FPGA fabric and all soft-core design tools on

FPGAs are automatically RAR the fabric each other. Therefore, it may cause the longer wiring delay and slow

down the maximum frequency.

70

5.3.1 LEON3 CPUs Identification

In the multi-core processor system, there is a unique identity for each processor. The processor configuration

register (%ASR17) supplies a unique index for each LEON3 core and also provides various other configuration

options. This register can be accessed from application through an inline assembly instruction, which is read and

masked to retrieve its unique CPUID. Initially, CPU0 is active only, this is then required to start all other

processors in the system. This is achieved by writing to the Interrupt-Controller-Register (IRQ) to enable other

processors. An example of this code is also shown in Fig 5.5. To implement this method, the stack pointer also

needs to be modified for multiple program executing in a multi-core system by creating an 1MB stack offset in

terms of the number of CPUs [MemorySize - (CPUID * - 1M)]. This allows each processor a 1MB stack to

perform computation. Another aspect which required implementing was fixed using the CPUID to only setup

global memory if CPUID = 0.

Figure 5.5 LEON configuration register (%ASR17) [65].

5.3.2 LE1 Contexts Indentify

Similar to the LEON3 MP, the LE1 CMP includes a custom instruction which can be called from the application

level to return internal registers within the system. In this study the custom instruction returns a unique identifier

of the current LE1 context (core). This is used to allow each available context to execute a common instruction

RAM and use its unique identifier to perform certain tasks which are specified by the application being run.

5.3.3 Structures of LEON3 MP & LE1 CMP and System Clock on the FPGA

The LEON3 MP is a substantial multi-core processor system and interfaced with a 32-bit AMBA AHB /APB

bus. The AMBA clock is synchronized with the system clock. An AHB/APB bridge is used to connect two

buses clocked by synchronous clocks with the same frequency ratio and the rest of the configuration IPs. Fig 5.6

shows the block diagram of the LEON3 MP. The options of the system clock frequency of the LEON3 MP in

the Xconfig GUI design tool are 60, 75, 80, 100, and 120MHz.

71

Figure 5.6 LEON3 MP blocks diagram.

However, the LE1 CMP (Fig 5.7) works as a coprocessor with the main CPU (MicroBlaze soft-core). The main

processor is utilized to instruct the sub-processors to execute the actual computing instructions which the

programmed are desired. The secondary PLB of the LE1 CMP is interfaced with the primary PLB of the

MicroBlaze processor with a PLBV46 bridge [86]. The clock frequency ratio between primary PLB and

secondary PLB of the LE1 CMP system are 2:1. Thereby, in this experimental implementation, the MicroBlaze

is clocking at 100MHz and the LE1 cores are at 50MHz. To obtain the approximate performance comparison

with the LEON3 MP by selecting the processor clock at 60MHz in Xconfig tool.

Figure 5.7 LE1 CMP blocks diagram.

72

5.4 Benchmarks of Data-Level-Parallelism (DLP)

Two applications were created to exploit the multi-core processor systems which are CM and LZW multimedia

programs. The SPMD processing was chosen where each CPU/Contexts execute the same process in separate

data items. Both of the LEON3 MP and LE1 CMP systems being targeted are bare-bone, they have no operating

systems / task managers performing housekeeping. However, CPUs / Contexts have the ability to retrieve a

unique identifier which was used to target specific data sections. Moreover, both of the programs were compiled

to the best performance level to reduce code size and execution time.

5.4.1 Convolution-Matrix (CM)

In this DLP example, I introduced a method for image processing. Among the frequently algorithms domain, the

convolution matrix is the most common way to make an image processing filter work. For a 2-D convolution

example, it has a 3x3 image of filter and a 5x5 image of the input [87], as shown in Fig 5.8. Take a 3x3 block of

source pixels (Kernel) and turn it into a single output pixel by multiplying each of its corresponded matrix

elements and finally sum them up. Consequently, the rest of the 3x3 output pixels were achieved by the kernel

scanning from left to right (rows) and top to bottom (columns).

Figure 5.8 An example of convolution matrix.

To create the standard C properly for this destination pixel, I fixed a kernel size of N x N pixels (N = kernel

width) and a variable rectangular M x M input image (M = input width) to obtain an (M-2) x (M-2) output image,

as shown in Fig 5.9. In this study case, I performed a convolution of 3x3 kernel (multiplied the corresponding

value of each of them from left to right and top to bottom) at a single item in an input by doubling “for" loops in

a function called "compute". The first loop across the “x” dimension (rows) and the second loop across the “y”

dimension (columns) to do the multiplicand; then added them together eventually. In the "main()", the same

computational method to generate an output by calling the "compute" function to perform other two “for" loops

73

through the rows and columns of the output pixels. An input pixels set of 62x62 was applied and across the 3x3

kernel and resulted a 60x60 output pixels.

This method of parallelising the data to be processed is crude and requires the number of processes computing

the algorithm to be a factor of the total size. However, in terms of multi-processing this method performs fine

without any methods of mutual exclusions or conditional variables which will require extra libraries or operating

systems which in terms of impose an overhead in execution time. The output pixels of this case were factored by

the numbers of cores of 1 – 6 cores, results the whole data set being executed with no overlaps. Simply separate

data segments by dividing the "for" loop of "y" columns for each processor and execute each segment that

recognized by the CPUID (also see Fig 3.1).

/* main programs */

int main(void)

for (x = 1; x < M - 1; x++){ /* loop through (output) rows */

 for (y = 1; y < M - 1; y++) { /* loop through (output) columns*/

 compute;

 }

}

 /* compute function */

int compute(x, y)

 for (x = 1; x < N; x++){ /* loop through (kernel) rows */

 for (y = 1; y < N; y++) { /* loop through (kernel) columns*/

 Sum the 3 x 3 kernel array and result to a single pixel;

 }

}

Figure 5.9 Example of C code that an MxM input through the NxN kernel of the CM.

5.4.2 Lempel-Ziv-Welch (LZW)

The LZW [88] compression algorithm was chosen as an application which could be easily split over all

available CPU/Contexts. The efficiency of compression when splitting the LZW algorithm across multiple

threads is studied in [89]. However, it was not a study to concern the compression technique. An

implementation of the LZW algorithm was developed in C where all data items required for performing the

compression (such as dictionary and the size) are stored in volatile memory on the stack and within registers.

The LZW programs contain many C string functions such as strlen(), strcpy(), strcat(), strncat(), and strcmp() to

initialize and encode/decode the dictionary characters. A global input and output data section were generated for

the separate CPU/Contexts to read and write. Each CPU/Contexts compressed a contiguous data area which was

dependent on the number of other active CPU/Contexts in any given system and its output was stored in the

74

global data of confirmation that the algorithm executed correctly. All data items were statically defined at

compile time so that there was no issue with memory within the stack for each core being overwritten.

/* global variables */

 char *input ; /* global input */

 int size ; /* size of data set */

 int numCPU; /* CPUs in system */

 short *compr ; /* global compressed output */

 char *output ; /* global output */

 /* local variables */

 int cpuid ; /* CPU identifier */

 int start = (CPUID * (size / numCPU)) ;

 int end = ((CPUID + 1) * (size / numCPU)) ;

 /* call compressing function */

 compress (input, start, end, compr) ;

 /* call decompressing function */

 decompress (compr, start, end, output) ;

Figure 5.10 Example of C code which splits global input array over each active CPU for the LZW.

This sectioning of the data was done using a process shown in Fig 5.10. This figure shows both system wide

variables as well as those local to each processor. Using the current unique ID (CPUID), the size of the input

data section (size) and the number of processors in the system (numCPU) the start and end variables are

calculated. These are then passed to the compress function along with pointers to the global input and output

arrays. Using these passed variables each processor compresses the data from *(input + start) to *(input + end)

and places the result in the compr array. A decompression of the data was then performed and placed results in

the global output array. Validation of the process was performed by comparing the input and output arrays.

Using only compression the resulting would be different in each configuration, this is the result of the

compression algorithm and how the dictionary was produced during execution.

As well as the CM data organization, an input data set of 45KB was produced and kept constant across all

execution run. This size was chosen as the numbers of cores used in this study (1 – 6) are all factors with no

overlaps. Both compression and decompression were checked running on both single process and multiple

process modes. The output of compression on the input test data was saved and used to compare the results from

running in both systems to confirm correct execution was performed in all cases.

75

5.5 Evaluation and Comparison of LEON3 MP and LE1 CMP

Those applications introduced previously was executed in both of multi-core processor systems. The numbers of

CPU/Contexts available in the system were altered from 1 up to 6 (the numbers of instructions were altered

from 1 up to 12). The results ("2" benchmarks) of execution cycles and execution times of Convolution-Matrix

60x60 input dataset (CM60x60) and Lempel-Ziv-Welch size of 45KB input data (LZW45K); and resource

breakdown of LEON3 MP & LE1 CMP along with the percentage on the whole Xilinx-Virtex 6 ML605 FPGA

fabric (150,720 LUT-FF Pairs and 14,976KB Total Block RAMs) were reported.

5.5.1 Analysis of Performance and Area

The total results of Parallel-SW flow in the LEON3 MP and the LE1 CMP were presented in Appendix II. The

executed cycles and execution times of the CM60x60 and LZW45K from the LEON3 MP and the LE1 CMP

were displayed in Table II.A. As well as the execution times, the total resource distributions of the whole

FPGA in terms of "LUT-FF Pairs (Area)" and "Block RAMs" have shown in Table II.C. However, to produce a

fair benchmark comparison of this case study, instruction-levels were the base units, the line results in execution

times of CM60x60 and LZW45K decreased when the number of 32-bit instruction sets (issue widths) increased

in those SMPs as represented in Fig 5.11 and Fig 5.12. As the result presented, execution times of the CM60x60

in both SMPs were very linearly decreased in the same path when the number of issue widths increased and the

LE1 CMP was a little better than the LEON3 MP; however, execution times of the LZW45K were not reduced in

the same path, the LEON3 MP was approximately 3 times faster than the LE1 CMP along with the number of

instruction sets increased.

Figure 5.11 Speed-up results of CM60x60.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1 2 3 4 5 6 7 8 9 10 11 12

LEON3: 60x60 Execution Times/µs LE1: 60x60 Execution Times/µs

Numbers of 32-bit Instructions

E
x
ec

u
ti

o
n

 T
im

es
/µ

s

76

Figure 5.12 Speed-up results of LZW45K.

Figure 5.13 The overall performance and area results in LEON3 MP and LE1 CMP.

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

1 2 3 4 5 6 7 8 9 10 11 12

LEON3: LZW45K Execution Times/µs LE1: LZW45K Execution Times/µs

Numbers of 32-bit Instructions

E
x
ec

u
ti

o
n

 T
im

es
/µ

s

77

To summarize the average analysis, the wide-spread of the Speed and Area results of the Parallel-SW flow in

LEON3 MP & LE1 CMP were plotted in Fig 5.13. In this case of soft-cores evaluations on the FPGA, I

concerned only about LUTs and block RAMs for the area. Since, resource utilization on DSP48E1 could be

ignored; both of SMPs were less 4% breakdown on DSP units (see Table II.B). As the result following by the

number of the instructions (comparing the range of 2 - 6 issue widths); in terms of resource utilizations (LUT-

FF Pairs), the average FPGA fabric usage of the LEON3 MP was approximately to the LE1 CMP along with the

number of issue widths increased; in terms of program speed-up by the number of the instructions/CPUs, it

presented that average execution times of the LEON3 MP were averagely 3.03 times faster than the LE1 CMP

along with the number of issue widths increased.

Moreover, the number of resource utilizations might affect the system clocking on the FPGA. The maximum

frequency of the 6-core LE1 CMP was limited to 50 MHz, due to larger resource of the LE1 CMP breakdown

on the FPGA, in order to satisfy a longer connection of PAR, and to meet longer timing. In fact, at the same

lower frequency (50MHz), the LEON3 MP execution times might be much slower. However, the LEON3 MP

was able to clock at a maximum of 80 MHz (smaller area led to shorter timing delay) and average execution

times would have been much faster than the LE1 CMP at 50MHz on the Xilinx-Virtex 6 ML605 board.

5.5.2 Distribution of Block RAMs on the FPGA

The resource distributions of RAMB36/18E1 were displayed in Table II.B. Both of the LEON3 MP and LE1

CMP have sub-memory system to decrease the time to access memory, but in different architectures. Each

LEON3 core has had the separated instruction and data caches (cache coherency) and all the LE1 processors

shared a D-RAM memory bank (paralleled memory accesses).

To implement the cache memory in the LEON3 MP, the size of the caches was critical impact of the overall

performance; the smaller the cache blocks, the poor execution times it would be acquired, owing to using fewer

cache size could reduce the number of data valid / invalidations in the cache line. However, there was the

maximum optimization of the total cache size to maintain the best performance (16KB of I&D-cache

respectively in this case study). Multi-bank memory system could significantly reduce the probability of

conflicts in LE1 CMP. However, these issues were not in this experimental research.

78

Figure 5.14 The total number of block RAMs in LEON3 MP and LE1 CMP.

At theoretical fulfilment, increasing the memory cache / bank sets, several hundred RAMs will be consumed.

The actual number of RAMBs breakdown on the FPGA for both SMP systems has shown in Fig 5.14. The basic

block RAMs on Virtex-6 FPGAs can be configured as a number of 36KB block RAMs. Each 36KB block RAM

(numbers of 416) contains two independently 18KB block RAMs (numbers of 832) [90].

For the observation of memory resource, there has been found that in the figure, showing larger numbers of

RAMB18E1 have been used by the cache-system in the LEON3 MP and were increased by adding more cores.

However, the number of RAMB36E1 have been significantly decreased at the 3-core and continuously

increased up to 6-core. Moreover, both RAMB36/18E1 have increased constantly in the LE1 CMP; on the other

hand, the LE1 system was not implemented any caches at all and has had fewer numbers of RAMB18E1

utilizations. For this speculation, perhaps, the cache elements of soft-processors were likely to be implemented

on small blocks of RAMB18E1; and local RAMs were chiefly on large blocks of RAMB36E1 and a little

amount on RAMB18E1 within Xilinx Virtex-6 FPGAs.

5.5.3 Synchronized Confliction and Speed&Area Tradeoffs

Both of the SMPs have shown the potential disadvantage in contention when multiple core access memory

concurrently (data synchronization confliction). The result has shown that as more CPU/Contexts were added,

the execution time decreased, this decrease levels off eventually due to memory and bus bandwidths conflicts.

These circumstances happened as the program speed-up in multi-core processor system, restricting the

parallelism could be achieved that the time needed for the sequential fraction of the program.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6

LEON3 RAMB36E1 LEON3 RAMB18E1 LE1 RAMB36E1 LE1 RAMB18E1

N
u

m
b

er
o

f
R

A
M

B
s

Numbers of CPU/Contexts

79

Figure 5.15 LEON3 MP & LE1 CMP Program speed-up vs Area cost.

To investigate the speed-up against the number of processors and area in the these systems, I employed the DSE

Equation 3.2 - 3.4. The results of program speed-up versus area penalty (the number of LUT-FF Paris) as the

number of processors increased and the Speed&Area Efficiency for both of SMP systems were displayed in

Table II.D, and the histograms have shown in Fig 5.15 and Fig 5.16.

As the result represented, the CM60x60 speed-up of LEON3&LE1 SMPs were not very linear, especially for the

LE1 CMP, the LE1 CMP speed-up ration was dropped more significantly than the LEON3 MP when the

number of the cores have increased. However, the LZW45K speed-up ration of the LEON3 MP was very linear;

in contrast, the LE1 CMP was dropped constantly upon 2-core. In overall, the LEON3 MP system was less

effect on data synchronization conflict than LE1 CMP, and program speed-up of the LEON3 MP was always

more beneficial than LE1 CMP. Morever, unite with the area cost to the Speed&Area Efficiency, the results of

LEON3&LE1 SMPs have shown better tradeoffs when the number of processors increased, and LEON3 MP

was advantageous then the LE1 CMP.

-3

-2

-1

0

1

2

3

4

5

6

2 3 4 5 6

LEON3 CM60x60 Speed-up

LE1 CM60x60 Speed-up

LEON3 LZW45K Speed-up

LE1 LZW45K Speed-up

LEON3 Area cost

LE1 Area cost

S
p

ee
d

-u
p

A
re

a
 c

o
st

Numbers of CPU/Contexts

80

Figure 5.16 LEON3 MP & LE1 CMP Speed&Area Efficiency.

5.6 Summary

Through the "data-intensive" benchmark shown, the LEON3 MP is faster than LE1 CMP in

compression&decompression codes and slower in image processing, due to weakness in MUL operations.

However, the speed-up efficiency of the LE1 CMP is lower than the LEON3 MP, due to the virtue of the

LEON3 MP cache coherence activity. In summary of the average Speed&Area in these SMP systems on the

same FPGA, results present that the LEON3 MP was superior in speed and also area tradeoffs. The LE1 CMP is

however required more logic gates within the FPGA silicon, and lower the whole system clock; and thus will

benefit from implementing it on a larger FPGA board that contains more logic cells to exert its "speed"

superiority. Moreover, the number of memories banked in the LE1 CMP shall increase to reduce the data

overhead effect than higher the speed-up efficiency. To the next chapter, I will examine and compare HW/SW

flows benchmarks in the case of HLS methodology on the LegUp accelerator / Tiger-MIPS processor Co-design

system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 3 4 5 6

LEON3 Speed&Area Efficiency LE1 Speed&Area Efficiency

Numbers of CPU/Contexts

81

Chapter 6

Evaluation in High-level-synthesis of LegUp Co-

design System on FPGA-based Processor

6.1 Introduction

This chapter presents "HW/SW" flows of the CHStone benchmark suits executing in LegUp accelerator / Tiger-

MIPS processor system of the HLS methodology (also see the description in Section 3.3). In general, the

hardware design is a lot more difficult to write complex code in HDL and become harder to debug, thus the

process time consuming for many applications. On the other hand, software design is always matured and easier

to be debugged by analysis tools. The LegUp Co-design system allows researchers to compile selected C

segments (the most functions called) to Verilog and synthesized to the hardware accelerator and rest of the

segments are executed in the Tiger-MIPS soft processor on the FPGA-based platform. The software profiling is

usually implemented by the designer to understand the statistics of the codes, such as time spent in each

subroutine before the HW/SW partitioning implementations. The goal of the following experiments is to

evaluate the Speed&Area tradeoffs in LegUp Co-design systems, and compare tradeoffs between HW, Hybrid,

and SW flows on the FPGAs.

6.2 LegUp Co-design System and Program Profiling

The main LegUp flow consist of running a C program in the Tiger-MIPS processor through a software binary

executable (and also provides self-profiling); a portion of the program was being selected by the profiling data

and generating the hardware accelerator then scheduling the instructions into a number of c-steps for the DFG

through HLS operations of the compiler and; finally the accelerator / processor system is executed and

synthesized on the FPGA [14].

In the structures of LegUp, the Tiger-MIPS processor connects to a custom hardware accelerator through the

Altera Avalon on-chip bus that is generated by Altera SOPC Builder on the FPGA system [91], as shown in Fig

6.1. An on-chip data caches with "write-through" policy are supported to the DDR2 SDRAM off-chip memory

via a "memory controller" using to the accelerator / processor memory-shared system. In order to maintain data

coherency, all global variables that are not constants stored

82

in main memory [92]. Each hardware accelerator has its own local memory which is stored constant variables

and not shared with accelerator / processor system. This allows one cycle memory access in the local RAM.

Figure 6.1 LegUp's FPGA target system [14].

6.2.1 The Call-graph Profiler (Kcachegrind)

The data of code profiling is represented in two different formats. There are flat and call-graph profiling. The

flat profile consists of a list of execution times of a program in decreasing order. However, a call graph that

represents calling relationships between subroutines. An example of call graph profile listing is shown in Fig 6.2.

The entry is as "EXAMPLE" that has "Caller" routines as its parent; "Callees" are as its children [93].

Although the original LegUp-system offers a self-profiling tool of "LEAP" (flat profile), I intended to use

another code-analyst profiler instead in order to inspect call-graphs directly, and it is called "Kcachegrind". The

Kcachegrind is a code profiler by using runtime instrumentation, part of Valgrind and displays the call-graph by

browsing the performance results. The profiling data is generated by cachegrind and calltree. The tool uses the

processor emulation of Valgrind to run the executable then catches memory accesses for the trace; and the

program does not need to recompiled [94].

83

Figure 6.2 Fragment of the call-graph.

6.3 LegUp Architecture and Designed Flows

The LegUp Co-design systems have two different synthesis flows: 1) HW (Hardware Accelerators): Synthesizes

the whole *.c files into the hardware accelerator. 2) Hybrid (HW/SW) System: Compile selected C functions

into hardware accelerators while executing the remaining segments in the soft-processor (via front-end of the

Clang). For C-to-Hardware compiler, back-end of the Clang is the "Low-Level-Virtual-Machine (LLVM)"

compiler [95] for generating the hardware. To all design flows, I use Quartus II version 10.1 service pack 1

(10.1sp1) to target the "Altera DE2" (Cyclone II) in this section study.

Every test program in LegUp has a main function which serves as a "Testbench" with an if else statement #

RESULT: PASS or FAIL in the end to check the test case passed. LegUp-2.0 tools support Integer types,

Functions, Arrays, Structs, Global Variables, Pointer Arithmetic, and Bitwise. However, there are some

software techniques, such as "Dynamic Memory", "FPUs" and "Recursion" is unsupported [92]. Both of

systems are able to simulate in the ModelSim Stimulator to verify the output and synthesized onto an Altera

FPGA. At the beginning, the global setting for targeting Altera FPGA family the designer wish to synthesis and

clock period constraints:

 FAMILY

Choose a target FPGA. The synthesized circuits have been verified in hardware using the Altera DE2

(Cyclone II FPGAs) or the Altera DE4 (Stratix IV FPGAs).

 LEGUP_SDC_PERIOD

15ns for the Cyclone II or 5 ns for the Stratix IV.

84

6.3.1 The Hardware (HW) Flow

In LegUp hardware accelerators (LegUp-HW), each C function conforms to a Verilog "module". For examples,

in a module, inputs of two parameters in the function are provided by a 32-bit (Data) integer "a" and a 32-bit

(Address Size) pointer "b". The "signal ports" that synthesized on the circuits are represented in Fig 6.3. The

start / reset signals to set to "1" by the initial state of the state machine. The "finish" signal is kept "0" during

loops until the last state when "waitrequest" is "1", then 32-bit value of "return_val" is output. The hierarchical

of the modules is followed on the call-graph of the C functions. The memory controller is to share data between

these modules. Each module communicates its sub-module through "MUXs" to reach the memory controller.

However, MUXs area breakdown on the FPGA is large, and LegUp uses the "Bipartite weighted matching" for

the binding solution to minimize the number of interconnections that sharing an FU [14, 96].

Figure 6.3 The signal port of LegUp in Verilog hardware [92].

Clang compiles the C source into LLVM byte code files (*.bc) and LLVM-compiler reads the legup.tcl file that

contains a number of "parameters" then produces the Verilog files (*.v). The following parameters control

LegUp synthesis operation. The outlines of the important parameters in LegUp to be customized are guided:

 SDC_ALAP

Enable As-Late-As-Possible (ALAP) scheduling instead of As-Soon-As-Possible (ASAP).

85

 SDC_NO_CHAINING

Disable chaining of operation in clock cycle. This will perform the maximum amount of pipelining.

The SDC_PERIOD parameter is useless when this is set.

 MUL to DSP

Enable the binding restricts multiplier to only the number of DSP units available on the target FPGA in

the experimental study.

 SHARE_DIV

If set to 1, the divider will be shared with any required mux width.

 SHARE_REM

If set to 1, the remainder will be shared with any required mux width.

 MAX_SIZE

The maximum chain size to be considered, setting to 0 to disable pattern sharing and shares only

dividers and remainders.

 SHARE_ADD

If set to 1, the addition will be shared with 2-to-1 muxing.

 SHARE_SUB

If set to 1, the subtraction will be shared with 2-to-1 muxing.

 SHARE_BITOPS

If set to 1, the bit-wise operation will be shared with 2-to-1 muxing.

 SHARE_SHIFT

If set to 1, the shift will be shared with 2-to-1 muxing.

For the "scheduling", LegUp performs ASAP (see the definition on page 42) scheduler with operator chaining

and pipeline FUs and targets a 66 MHz clock period constraint on the Altera DE2 which assigns each operation

into the earliest possible c-step. For the "allocation", LLVM instructions hold the unique names of each FUs /

registers and generate RTL modules from the scheduled DFG. For the "binding", binding operations can be set

to force to generate the RTL data structure to DSP (Embedded MULs on the Cyclone II) units on the FPGA.

The following parameters in pattern sharing for FUs are enabled by values of SHARE_DIV, SHARE_REM,

MAX_SIZE, SHARE_ADD, SHARE_SUB, SHARE_BITOPS, and SHARE_SHIFT, which are set to "1" and

MAX_SIZE is set to "10" [92], with those settings, LegUp will achieve the maximum binding for the best

result.

86

6.3.2 The Hardware/Software (Hybrid) Flow

The LegUp HW/SW (LegUp-Hybrid) implementation is a Co-design system, where implementing the most

intensive computing functions into the hardware accelerator and executing the rest of the program in the Tiger-

MIPS soft processor; and the number of functions that input to the hardware are customizable and lead to

HW/SW partitioning. Once the profiling data was listed in the Kcachegrind tool, and named manually the

accelerated function in the "config.tcl" file. The LegUp design flow with other CodeProfiler (Kcachegrind) is

shown in Fig 6.4.

Figure 6.4 LegUp HW/SW Co-design flows.

87

The processes are divided into HW and SW flows. The SW flow generates a "wrapper" file according to the

"config.tcl" file, replacing the wrapper function for the HW portion from the original C function; the "wrapper

function" allows accelerator / processor communication without affecting the rest of the software; finally the

rest of C program generates the SW binary and also creates "tcl scripts" which control the Altera SOPC Builder.

At the same time, the HW flow generates the accelerator by compiling the indicated functions to synthesize

RTL data into hardware (the same HLS process in Section 6.3.1) as well as creating a top-level Avalon

interface to communicate with the soft-processor and the D-caches. Once both SW and HW flows are complete,

the tcl script will run the SOPC Builder to put on the accelerator to the system. In the end, ModelSim simulates

the accelerator / processor system to display total execution cycles and times. To specify a function to be

accelerated in LegUp-Hybrid flow of the config.tcl file:

 SET_ACCELERATOR_FUNCTION "NAME"

To place the name of the C function to accelerate in the config.tcl file for Hybrid-systems.

6.4 Benchmarks of High-Level-Synthesis (HLS)

The input data ("Test data vectors") of the CHStone benchmarks are either "Integer" or "Hexadecimal" values

(pointer arithmetic for address space), which all declared in "array" elements of the C standard. All programs

were "un-optimized", in order to maintain best average results (Some of them were even upper in non-

optimization benchmarks). The important information about those programs is following below sections:

6.4.1 Microprocessor

 MIPS

This is a simplified MIPS processor which has 32 registers and 30 instructions in a switch-case

statement. A program produced by CHStone is served as a test vector of one input / output data in 8

array elements.

6.4.2 Double Precision Floating-point Arithmetic

The following programs are implemented with IEC/IEEE-standard double-precision floating-point addition

package using 64-bit integer numbers. The C source file is part of the SoftFloat and all operations are performed

according to this package, Release 2b [75]. There are DFADD, DFMUL, DFDIV, and DFSIN benchmarks:

 DFADD

This is a C program of "Addition / Subtraction" arithmetic for 64-bit double-precision floating-point as

a test vector of two input data and one output in 46 array elements. Two sub-functions

(add/subFloatSign) have been called and there are a number of the control statements such as if and

goto in the loop.

88

 DFMUL

This is a C program of "Multiplication" arithmetic for 64-bit double-precision floating-point as a test

vector of two input data and one output in 20 array elements. One sub-function (float64_mul) has been

called and there are a number of the control statements such as if in the loop.

 DFDIV

This is a C program of "Division" arithmetic for 64-bit double-precision floating-point as a test vector

of two input data and one output in 22 array elements. One sub-function (float64_div) has been called

and there are a number of the control statements such as if in the loop.

 DFSIN

This is a C program of "Sine" arithmetic for 64-bit double-precision floating-point as a test vector of

two input data and one output in 36 array elements. One sub-function (float64_sin) has been called and

do-while statement enclose a float64_div and a float64_add in the loop.

6.4.3 Media Processing

The following programs are relative to audio / image / video signal processing. There are ADPCM, GSM, JPEG,

and MOTION benchmarks:

 ADPCM

This is a C program of "Audio" signal processing in telecommunication for the Adaptive-Differential-

Pulse-Code-Modulation (ADPCM), which varies the size of the quantization in G.722 CCITT standard

(7 kHz wideband audio code operating at 48, 56 and 64 kbit/s) [97]. There are two main sub-functions

(encode and decode). Test Vectors: test data input / compression for encoding and result for decoding

in 100 array elements.

 GSM

This is another C program of "Audio" signal processing for the Linear-Predictive-Coding (LPC) widely

used in speech analysis techniques at low bit rate under the (Global-System-for-Mobile-Commutations)

GSM that is a communication protocol for mobile phones. There is a main sub-function of

Gsm_LPC_Analysis. Test Vectors: test word input / output data in 160 array elements in a for loop.

 JPEG

This is a C program of "Image" signal processing for the Joint-Photographic-Experts-Group (JPEG)

widely method in lossy compression algorithm based on the Discrete-Consine-Transform (DCT) for

digital photography. The most important sub-function is (decode_block) that composed of three main

parts: Decode Huffman, Inverse Quantization, and Inverse DCT. Important information: Image Height

= 59, Image Width = 90, and Sampling Factor 4:1:1. Test Vectors: 7506 array elements.

89

 MOTION

This is another C program of "Video" signal processing for MOTION vector decoding motion

estimation process used in picture reference in MPEG-2 standard. There are two main sub-functions

(Initialize Buffer and motion_vectors). Test Vectors: test buffer frame input / output in 2048 array

elements.

6.4.4 Security

The following programs are relative to encryption is the process of encoding codes for protective data that

hackers cannot read it, but the authorized ones can. There are AES, BLOWFISH, and SHA benchmarks:

 AES

This is C program of "cryptography" processing for the Advanced-Encryption-Standard (AES) and has

been worldwide used in both hardware and software. The methodology of the algorithm is "Symmetric-

Key-Algorithm" for both encrypting and decrypting the data. There are two main sub-functions

(encrypt and decrypt). Test Vectors: test input data: Statements and Keys are all in 16 array elements

respectively; and expect output data for encrypt and decrypt are hexadecimal in 16 array elements.

There are a number of the control statements such as a switch-case in the loop.

 BLOWFISH

This is another C program of "cryptography" processing for Data-Encryption-Standard (DES) in

"Symmetric-Block-Cipher" implementation. The program has only the encryption algorithm. There is

one main sub-function (BF_encrypt). Test Vectors: test keys of input / output in 5200 array elements.

 SHA

This is another C program of "cryptography" processing for Secure-Hash-Algorithm (SHA) of

cryptographic hash functions. In hash function process, the input data can be encoded to a message

digest. There is one main sub-function (sha_transform) to do the transform. Test Vectors: test input in

2*8192 in 2-Dimensional array elements and expected output in 5 array elements.

6.5 Experimental Methodology and Results

This section work aims to analyze the standard "C" code profiling of CHStone Suits HLS and CM60x60 /

LZW45K DLP programs (total of "14" benchmarks) by Kcachegrind tools; and programs were executed in

LegUp Co-design systems. For the experimental platform, I expected to continue to use the Altera DE4 board to

obtain the benchmarks; regrettably, LegUp-3.0 Hybrid flows were not compatible with the DE4. Therefore, the

DE2 maturely collaborates with LegUp-2.0 was selected for this case study (Note: the SW flow performance on

the DE2 should have been one third of the DE4, due to the clock period constraints).

90

The results were represented as the execution cycles / times and resource distribution of each program in

following of "LegUp-HW" (whole programs to the accelerator), "Hybrid1" (the most functions called to

accelerator), and "Hybrid2" (the second most functions called to the accelerator) that synthesized on Altera

Cyclone II FPGAs fabric (the number of LEs, Memory-bits, Embedded MULs, and clock frequency on the

feasible FPGA) were reported. These results compared against the baseline system of the "MIPS-SW" (same as

the Tiger-MIPS SW flow in chapter 4, but was synthesized on the Altera DE2) benchmarks.

Moreover, some of the benchmarks were not able to acquire, there were MIPS: Hybrid flows, due to there are

only the "main" function in the program; CM60x60: Hybrid1 flow, due to there is a technical problem of LegUp

wrapper function generation; and LZW45K: Execution time of HW flow, due to the generating accelerator on the

memory blocks are out of the FPGA resource.

6.5.1 Analysis of Profiling Data

The visualization of profiling data was represented in Fig 6.5. The "Total Instruction Fetch Cost" corresponds to

the CPU execution time which has shown on the bottom of the figure. The "Incl" column is the inclusive cost,

represented as time spent in percentage of the function (the blue bar); the "Self" is the function called itself; the

"Called" is the number of the called by that function; and also the "Function" is the function name. The

"Location" tab, the function location of the C files in the host computer can be viewed.

Figure 6.5 The Kcachegrind visualization.

The called-graphs of each program have been profiled by Kcachegrind tools, which were represented in Fig

III.1 – III.11, Appendix III. The top most called functions in the “main()” by whole time spent in each

program have shown as well. The top-four most called functions were displayed in Table III.A and the chosen

two functions to be accelerated to the LegUp-Hybrid system has shown in green colour ticks.

91

6.5.2 Analysis of Speed and Resource Utilization

Each of the programs was entirely executed in the LegUp-HW. Besides, programs being profiled and identified

most function calls earlier on, were executed in the LegUp-Hybrid. The results of all designed flows have shown

in Table III.B, outline the characterization of each program, such as the representative data type, the number of

lines, the number of functions, variables, and the number of operations. The results of Fmax, LEs, Devices,

REGs, # bits, MULs, and Times for all benchmarks in terms of LegUp-HW, Hybrid1, Hybrid2, and SW flows on

the Altera Cyclone II FPGAs were displayed in Table III.D. "Fmax" revealed the maximum frequency (MHz)

of the overall system, "LEs" revealed the area breakdown within the FPGA expressing in the number of logic

elements, "Devices" revealed the given suggested Cyclone II FPGAs, "REGs" revealed the number of registers

used on the FPGA, "# bits" revealed the number of memory-bits used on the FPGA, "MULs" revealed the

number of embedded multipliers used on the FPGA (9x9-bit), and "Times" revealed the total execution times

(µs) in running the whole program. Finally, Fig III.C represented that the execution times and area results of all

designed flows with the number of line / variables in the figure.

In presentation of figures, the data has shown that the LegUp-HW flow were the best performance of the

benchmarks with the smallest area breakdown (some of large codes, such as DFSIN and JPEG have higher LEs

usage than MIPS-SW). Furthermore, there has been found that the HW area breakdown on the number LEs are

slightly dependent on the number of the "lines" and "variables" for most of the CHStone benchmarks. This

implied that the FPGA resource estimation was able to calculate by these two factors. The average generated

LEs per line / variables were 19 and 67; and the mean value would give an approximate LEs utilization of the

LegUp accelerator generation within Cyclone II FPGAs.

6.5.3 Distribution of DSPs and Block RAMs on FPGAs

DSP features on FPGAs can be used as coprocessors especially for multiplications computation; and

significantly increase the performance then reduce the total LEs cost (Area), PAR congestions, and power

consumptions for lower system costs (see page 32). Cyclone II FPGAs offer up to 300 9x9-bit embedded

multipliers that are ideal for low-cost DSP blocks. Each embedded multiplier is configured as one 18x18-bit

multiplier or two 9x9-bit multipliers [98]. In LegUp-2.0 synthesis result, it represents 9x9-bit multipliers only.

The numbers of 9x9-bit embedded multipliers in terms of LegUp-HW, Hybrid1, Hybrid2, and MIPS-SW flows

for each program have shown in Fig 6.6. The dashed line data shows that the actual number of MUL/DIV

operations from Table III.B in each program. For the observation of the figure, the multiplier utilizations of

HW implementations in most of the codes were much higher than SW implementations. This was because the

MUL/DIV operations bounded on the embedded MULs in the accelerator. Paying attention that DFDIV,

DFMUL, and DFSIN have used the most amount of MULs resource; it was how and what they have saved

significant numbers of LEs, hence speed-up the program prominently. In the same manner, the LZW45K has

used the number of MULs more than its actual number of MUL/DIV operations and would have saved a lot of

LEs then raised the execution time considerably. Unfortunately, I have not obtained its benchmark of LegUp-

HW due to the failing synthesis of the system. Moreover, other codes such as GSM and JPEG have used a part

92

of MULs and remaining of them were implemented either on LEs or block RAMs; these would have certainly

increased area significantly.

Figure 6.6 Embedded multiplier 9x9-bit elements distribution.

Other important features within FPGAs are embedded memory blocks. Cyclone II devices offer up to 1.1 Mbits

of on-chip embedded memory through a fundamental M4K (4,608 bits) blocks. The RAM block is configured to

provide various memory functions as single-port RAMs, dual-port RAMs, FIFO buffers, and ROMs, which are

ideal using as program storage memory in embedded processors [99]. In LegUp-2.0 synthesis result, it

represents the number of memory-bits.

Fig 6.7 has shown that the number of memory-bits usage in all designed flows of each program. The dashed line

data shows that the number of test data vectors from Table III.C for each program, the block RAMs breakdown

by the local memory of accelerators was very dependent on the size of input test data (constant declarations).

During this observation, the LegUp-HW flow required much less memory-bits than the MIPS-SW alone. This

was because the Tiger-MIPS processor contains cache memories (16KB of I&D-caches) as well as FIFOs, other

peripherals, on-chip data caches, and the memory controller; which consume more memory-bits than the local

accelerator RAM. Beyond that, the memory-bits consumption of JPEG, BLOWFISH, and SHA was very large,

due to huge numbers of integer values were stored in many of "array" elements for encode / decode arithmetic,

then required a lot of block RAMs on FPGAs. In the same way, the memory-bits usage of the CM60x60 was

quite numerable, due to the large number of 2-D matrix values were stored in arrays of multiplication arithmetic.

Moreover, the number of memory-bits in the LZW45K was significantly large, due to out of the memory

resource bounds with the FPGA synthesis, and did not fit on any suitable Cyclone II boards.

0

20

40

60

80

100

120

140

Embedded Multipliers (LegUp-HW) Embedded Multipliers (LegUp-Hybrid1)

Embedded Multipliers (LegUp-Hybrid2) Embedded Multipliers (MIPS-SW)

Number of Muliplications&Divisions

N
u

m
b

er
o
f

9
x

9
-b

it
s

 M
u

lt
ip

li
er

s

93

Figure 6.7 Total memory bits distribution.

6.5.4 Speed&Area Tradeoffs in LegUp System on FPGAs

To conclude, the results of average Speed and Area of LegUp-HW, Hybrid1, Hybrid2, and MIPS-SW flows

have shown in Fig 6.8 (Note: the benchmarks of MIPS, CM60x60, and LZW45K were not included, due to their

results were not intact). The left vertical axis represented geometric mean execution time as well as the area

(average number of LEs). Again, in terms of speed-up, the average execution times were significantly decreased

when more computations were implemented in the hardware accelerator. Thus, the more codes implemented in

the hardware accelerator, and the more speed-up obtained. In terms of area, the average results have shown that

HW implementations taking considerably less area than Hybrid implementations, due to the Tiger-MIPS

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

Memory-bits (LegUp-HW) Memory-bits (LegUp-Hybrid1)

Memory-bits (LegUp-Hybrid2) Memory-bits (MIPS-SW)

Number of Test Data x100

N
u

m
b

er
 o

f
to

ta
l

m
e
m

o
ry

 b
it

s
1605,384

94

processor was not included in the system; and a few more area than SW implementations. In Hybrid

implementations, speed and area results were inversely proportional each other.

Moreover, large size codes could remained more area of the LegUp-HW than the MIPS-SW. To this

experimental deduction, 682 lines or 191 variables of the designated codes would have probably reached the

boundary of this circumstance.

Figure 6.8 The overall performance and area results of LegUp.

To survey the speed-up versus the area cost of LegUp-HW and Hybrid1/2 flows, once again I implanted DSE

equations from Equation 3.5 - 3.7. Meanwhile, the MIPS-SW flow was the baseline against the comparison.

The results of program speed-up versus area penalty (the number of LEs) in terms of LegUp-HW and

Hybrid1/2 flows of each program, which displayed in Table III.E and the histograms, were plotted in Fig 6.9.

As these results represented, DFADD, DFDIV, DFMUL, and DFSIN benchmarks in HW implementations have

been extraordinary program speed-up. For this inference, it was owing to parentless SoftFloat arithmetic and

most of them were implemented to DSP resource. Moreover, the speed-up of LegUp-HW was also briefly

dependent on the percentages of the control statements in C programs, as showing in Figure III.B. Alone "if"

and "goto" statements in a program were deeply affected on increasing performance by LegUp HLS

implementations. However, codes with many "for" loops such as ADPCM, JPEG, AES, BLOWFISH, SHA, and

CM60x60, which have appeared speed-up faintness.

0

5,000

10,000

15,000

20,000

25,000

30,000

Average LEs Average Exeution Times/µs

N
u

m
er

o
f

L
E

s
&

 E
x

eu
ti

o
n

 T
im

es

95

Figure 6.9 The percentage of Speed and Area tradeoffs distribution.

Figure 6.10 The LegUp speed and area efficency.

0

10

20

30

40

50

60

70

80

Speed-up/LegUp-HW Speed-up/LegUp-Hybrid1 Speed-up/LegUp-Hybrid2

Area Cost/LegUp-HW Area Cost/LegUp-Hybrid1 Area Cost/LegUp-Hybrid2

S
p

ee
d

-u
p

A
re

a
C

o
st

883 4,424 3173,738

0

20

40

60

80

100

120

140

160

Speed&Area Efficiency/LegUp-HW Speed&Area Efficiency/LegUp-Hybrid1

Speed&Area Efficiency/LegUp-Hybrid2

S
p

ee
d

&
A

re
a

T
ra

d
eo

ff
s

7,651 843 14,373296

96

Moreover, the CM60x60 and LZW45K programs were available to implement in the LegUp Co-design system.

For the Speed&Area results of HLS implementations comparing to DLP implementations in Section 5.5.3, there

has been shown that the CM60x60 speed-up were significantly better in the HLS of LegUp-HW flows (18.78)

compared to the best benchmark in the DLP of the 6-core LE1 CMP (4.91), and the area was reduced very much

(0.12); the LZW45K speed-up of the LegUp-Hybrid1 (5.43) flow was very close to the benchmark at the 6-core

of LEON3&LE1 Parallel-flows and the LegUp-Hybrid2 (2.54) flow was between at 2 and 3-core of

LEON3&LE1 Parallel-flow. However, the area increased were (1.03 in the LegUp-Hybrid1 and 1.54 in the

LegUp-Hybrid2) relative smaller, which around the 2-core of LEON3&LE1 Parallel-flow.

The percentage of the Speed&Area Efficiency for each program in accordance with LegUp-HW and Hybrid1/2

flows are represented in Fig 6.10, as shown that the HW implementation was extremely advantage than Hybrids

and SW implementations. For the Speed&Area Efficiency comparisons of CM60x60 and LZW45K programs

between HLS and DLP implementations, the HLS process outcomes overwhelming efficiency than the best

benchmarks of the DLP process, such as the CM60x60 LegUp-HW flow (162) compared to the 6-core of the

LEON3 MP (1.96). Moreover, the efficiency of the LegUp-Hybrid1 flow in the LZW45K (5.25) was remained

upper than any of the Parallel-SW flows and the LegUp-Hybrid2 flow (1.65) was very close to 3-core of

LEON3&LE1 SMPs.

6.6 Summary

CHStone programs consist of many sub-functions that called by one another. It is an advantageous case study

that suitable for "function-intensive" transformation using LegUp HLS tools. By using the Kcachegrind

stimulator of code profiling, software designers can view the call-graphs behaviour and easily choose which

functions to be accelerated in the hardware. As results of the Speed&Area evaluations of LegUp Co-design

systems, it shows that the HW design flow is the superior tradeoffs, and followed by Hybrid1, Hybrid2, and SW

flows. In addition, the analysis of LegUp-system affected by input applications, "the number of DSP usages"

and "control-flows" of the codes that dominate the speed-up in accelerators; "the number of lines" and

"variables" in a C code that dominate the area cost in accelerators; and "the size of input test data" in the code

dominates the number of block RAMs breakdown on FPGAs. Moreover, the DLP programs executing in the

HLS methodology also behaves excellent performance and area tradeoffs, but the input data volume are limited

by the RAM resource of the FPGA.

97

Chapter 7

Overall Outline and Conclusion

7.1 Conclusion of LEON3, LE1, and Tiger-MIPS Soft-cores

To chapter 4, I represent the performance of LEON3, LE1, and Tiger-MIPS processors while running a wide-

range of C standard benchmarks (fixed-point operations only). To briefly depict the Speed&Area comparisons

them within FPGAs (LEON3 is the baseline), the Tiger-MIPS processor has the superior execution times of 2.52,

smaller area of 0.81; and the LE1 has execution times of 1.04, larger area of 1.55 times. To conclude the

Efficiency ranking are Tiger-MIPS (3.11), LEON3 (1) and LE1 (0.67) in this experimental work.

Although the Tiger-MIPS processor triumphs the comprehensive tradeoffs, however the core is un-configurable

and designed to operate on a specific Co-design platform (LegUp), and also possible targeted FPGAs are narrow

(only on Altera Cyclone II or Starix IV). Moreover, there is no any commercial or research toolchain for MIPS

multi-core processor support for MPSoC platform up to present. Unlike LEON3 and LE1 processors, the cores

are highly configurable, multi-processor supported, and available to be targeted to many popular FPGA

prototyping boards. Moreover, the LEON3 designed template is an excellent platform for complex SoC design

as the GRLIB IP library incorporating LEON3/4 processors and many IP cores. Moreover, the LE1 is a VLIW

type, which has double increased instruction throughput than RISCs of LEON3&Tiger-MIPS, however the

performance results are not very exceptional, while the larger area is required due to the large number of

registers / FUs usage and also the core needs a MicroBlaze to be on the system that consumes considerable area.

However, the advantage of the LE1 processor is the number of execution resource for reducing the latency of

the core that is optimizable to increase the performance, but the area will increase.

Through the benchmark analysis, the performance of each processor is affected by different algorithm types (see

the outline on page 59), the software engineer can rewrite or optimize the C codes to best fit the excellent

performance of each processor. In addition, the longer pipeline depths of a CPU will result longer program

execution times and also designers need to keep the system frequency low on the FPGA-based to save power

computation. The following key sentence outlines the conclusion for an ideal soft-core embedded processor on

FPGA-based:

 As many as compatible and reusable IP cores and targeted FPGAs (LEON3)

 Simpler instruction pipeline stages (MIPS)

98

7.2 Conclusion of DLP in LEON3 MP and LE1 CMP

To chapter 5, the case study for DLP implementations of CM60x60 and LZW45K benchmarks running in

LEON3 and LE1 SMP systems on the Xilinx Virtex-6 LX240T. To summarize the overall results, all the data

programs are very linearly speed-up in terms of the number of instruction/cores increase, and the LEON3 is yet

better in moving data between CPU registers. To follow up the results, FPGA engineers can select the right

number of the cores for the required performance within a FPGA. The Speed&Area Efficiency of LEON3 MP is

slightly greater than the LE1 CMP when the number of cores increase. Moreover, by comparing the program

speed-up along with the number of issue widths increasing, the performance of CM benchmarks in both systems

are very close to each other and the LZW benchmarks of the LEON3 MP system are continuously 3 times better

than the LE1 CMP from low to high numbers of cores; and resource utilizations within an FPGA are pretty

linear increasing and very similar each other. Therefore, the Efficiency implemented by the instruction-level

(ILP) of the LEON3 MP is approximately 3 times greater than the LE1 CMP. To be concluded, the LEON3 MP

is however the best tradeoffs and choice of these multi-core processor implementations.

To the local memories, the result shows that a 16KB I&D-cache system of the LEON3 MP is better to deal with

"data synchronization confliction" than 2 parallel memory banks of LE1 CMP. However, using caches will

consume some block RAMs. In addition, I do not have data results in the other parameter setting of memory

banks; therefore these cannot be directly concluded the "cache-system" is a beneficial implementation than the

"banked-system".

Furthermore, a VLIW processor needs more logic unit for instruction decoding, thus more registers and FUs are

required, the longer gate delay, and it will limit the system clock period. Moreover, the FPGA resources could

be used to make more effective implementations by the parallelism of instruction-levels (eg. 4-width solution

rather than 4 processors with single-width, thus the area would be considered only by decode units increasing

and not the whole cores). The following key sentence outlines the conclusion for an ideal soft-core SMP system

within a certain FPGA-based:

 SPARC RISC processors have superior benchmarks than VEX VLIW processors (LEON3)

 Implementing I&D caches for the system to reduce the data synchronization (LEON3)

 VLIW processors on FPGA resource may be saved by implementing longer instruction widths

rather than increasing the number of the cores to make speed-up (LE1)

99

7.3 Conclusion of HLS in LegUp Co-designs

To chapter 6, the case study for HLS implementations of CHStone programs running in LegUp Co-design

system on the Altera DE2. To summarize the Speed&Area Efficiency, the HW flow has extremely speed-up

with lowest area cost, then Hybrid1/2, and MIPS-SW flow. To follow the results, FPGA engineers can select the

right size of the FPGA chip for each program of its performance. Furthermore, it shows that the HW efficiency

of the CM60x60 is significantly better than the best result of the DLP implementation; and Hybrid1/2 flows of

the LZW45K are 2.5 times better than the 6-core (Hybrid1) and very close to the 3-core (Hybrid2) of DLP

benchmarks respectively.

To be concluded, typically, the more pieces of programs accelerating to the hardware, the more execution times

being seed-up, the more LEs resource can be preserved, and the best to implement the MUL/DIV operations to

DSP units. The data-intensive programs can also be implemented in LegUp HLS tools. However, the LegUp

architectures intend to store the constant variables in the local memory; thus the designers have to take care of

the input / output sizes within the codes, otherwise, it will lead to a large amount of the block RAMs breakdown

on the FPGA.

To compare HLS / DLP implementations, the HLS process (C to HDLs) generates the precise C codes to

hardware circuits and representatively multiplications implemented on DSP resource, it does not use too many

FPGA area (LUTs), and also speed-up considerably, hence results very high tradeoffs. In contrast, the DLP

process is however lower performance implemented by multiple general-purpose processors and consumes

many of LUT-FF Paris (soft µPs typically breakdown on conventional fabric and not on DSP resource).

However, large programs with multiple *.c files linked by “Makefiles” are difficult to be implemented in

HW/SW Co-design systems; general-purpose processors are more advantageous to handle such complex

programs, and also keep constant variables in the main memory. The following key sentence outlines the

conclusion for an ideal Co-design system within a certain FPGA-based:

 The design tool needs to be versatile and powerful for verification

 Execute as many functions as possible to hardware to obtain high performance

 Multiplication applications are ideal to implement on DSP resource

100

References

[1] John von Neumann, “First Draft of a Report on the EDVAC”, Between the United States Army Ordnance

Department and the University of Pennsylvania, Moore School of Electrical Engineering University of

Pennsylvania, 30-06-1945.

[2] The Brith of Transistors and ICs, 16 Brief History of Microprocessors, http://www-

scm.tees.ac.uk/users/a.clements/History/History.htm, Retrieved December 30, 2012.

[3] Michael Kanellos, “Moore’s Law to roll on for another decade”, Staff Writer, CNET News, February 10,

2003, http://news.cnet.com/2100-1001-984051.html, Retrieved December 30, 2012.

[4] Applications of Embedded Systems, http://www.vectorindia.org/applications_of_embedded_systems.html,

Retrieved December 30, 2012.

[5] Taho Dorta, Jaime Jiménez, José Luis Martín, Unai Bidarte, and Armando Astarloa, “Overview of FPGA-

Based Multiprocessor Systems”, Department of Electronics and Telecommunications, University of the Basque

Country, UPV/EHU Bilbao, Spain , International Conference on Reconfigurable Computing and FPGAs 2009,

pp. 273.

[6] Rajeev Solomon, Peter Sandborn, and Michael Pecht, “Electronic Part Life Cycle Concepts and

Obsolescence Forecasting”, IEEE Trans. on Components and Packaging Technologies, Dec. 2000, pp. 707-717.

[7] “Power Consumption at 40 and 45nm”, Xilinx, WP298 (v1.0) April 13, 2009.

[8] “Power Consumption in 65 nm FPGAs”, Xilinx, White Paper: Virtex-5 FPGAs, WP246 (v1.2) February 1,

2007.

[9] SOCcentral: ESL Design, http://www.soccentral.com/results.asp?CatID=484, Retrieved December 30, 2012.

[10] Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor Stefanov, Daniel D. Gajski, Fellow, and

J ürgen Teich, MEMBERS IEEE, “Electronic System-Level Synthesis Methodologies”, pp. 1, IEEE

TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

[11] GIOVANNI DE MICHELI, FELLOW, IEEE, AND RAJESH K. GUPTA, MEMBERS IEEE,

“Hardware/Software Co-Design”, PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997, pp. 357.

[12] LEON3 Processor, EROFLEX GAISLER, http://gaisler.com/index.php/products/processors/leon3,

Retrieved December 30, 2012.

http://www-scm.tees.ac.uk/users/a.clements/History/History.htm
http://www-scm.tees.ac.uk/users/a.clements/History/History.htm
http://news.cnet.com/2100-1001-984051.html
http://www.vectorindia.org/applications_of_embedded_systems.html
http://www.soccentral.com/results.asp?CatID=484
http://gaisler.com/index.php/products/processors/leon3

101

[13] D. Stevens and V. Chouliaras, “Le1: A parameterizable vliw chipmultiprocessor with hardware pthreads

support,” in VLSI (ISVLSI), 2010 IEEE Computer SoCiety Annual Symposium on, july 2010, pp. 122 –126.

[14] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason Anderson, Stephen

Brown, and Tomasz Czajkowski, LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator

Systems, 1ECE Department, University of Toronto, Toronto, ON, Canada Altera Toronto Technology Centre,

Toronto, ON, Canada (2011), pp. 2.

[15] CHStone, A Suite of Benchmark Programs for C-Based High-Level Synthsis, http://www.ertl.jp/chstone/,

Retrieved December 30, 2012.

[16] Bharat Bhushan Agarwal and Sumit Prakash Tayal, Chapter 1: Fundamental of computer Architecture,

“Computer Architecture and Parallel Processing”, pp. 22, published by: University Science press, 113 Golden

House, Daryaganj, New Delhi-110002, Copyright 2009 by Laxmi Publications Pvt. Ltd. All rights reserved.

[17] Joseph A. Fisher, “Very Long Instruction Word Architecture and the EL1-512”, Proceedings of the 10th

annual international symposium on Computer architecture, International Symposium on Computer

Architecture, New York, NY, USA: ACM. pp. 140–150, ISBN: 0-89791-101-6, Volume 11 Issue 3, June 1983.

[18] History in the Computing Curriculum, 1970 to 1979, http://www.hofstra.edu/pdf/CompHist_9812tla6.PDF,

Retrieved 30-12-2012.

[19] Daniel Nenni, A Brief History of Field Programmable Devices (FPGAs), Published on 26-08-2012,

http://www.semiwiki.com/forum/content/1596-brief-history-field-programmable-devices-fpgas.html, Retrieved

30-12-2012.

[20] Steve Brachmann, eHow Contributor, Introduction to Xilinx,

http://www.ehow.com/about_5390865_introduction-xilinx.html, Retrieved 31-12-2012.

[21] EE Times: Clive Maxfield, Xilinx unveil revolutionary 65nm FPGA architecture: the Virtex-5 family,

http://www.eetimes.com/electronics-products/fpga-pld-products/4084228/Xilinx-unveil-revolutionary-65nm-

FPGA-architecture-the-Virtex-5-family, Retrieved 31-12-2012.

[22] Grant Martin, Gary Smith, “High-Level Synthesis: Past, Present, and Future”, High-Level Synthesis,

Copublished by the IEEE CS and the IEEE CASS, IEEE Design & Test of Computers, July/August 2009, pp. 20

- 22.

[23] Henry Chang, L.R. Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, Lee Todd, “Surviving the SoC

Revolution: A Guide to Platform-Based Design”, Kluwer Academic Publishers, Springer, 1999.

http://www.ertl.jp/chstone/
http://www.hofstra.edu/pdf/CompHist_9812tla6.PDF
http://www.semiwiki.com/forum/content/1596-brief-history-field-programmable-devices-fpgas.html
http://www.ehow.com/about_5390865_introduction-xilinx.html
http://www.eetimes.com/electronics-products/fpga-pld-products/4084228/Xilinx-unveil-revolutionary-65nm-FPGA-architecture-the-Virtex-5-family
http://www.eetimes.com/electronics-products/fpga-pld-products/4084228/Xilinx-unveil-revolutionary-65nm-FPGA-architecture-the-Virtex-5-family

102

[24] EE Times: Richard Goering, High-level synthesis rollouts enable ESL, 31-5-2004,

http://www.eetimes.com/electronics-news/4154974/High-level-synthesis-rollouts-enable-ESL, Retrieved 16-01-

2013.

[25] Qualcomm’s New Snapdragon S4: MSM8960 & Krait Architecture Explored, ANANDTECH,

http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture, Retrieved

30-12-2012.

[26] ARM Corp., Cortex-A9 Processor, http://www.arm.com/products/processors/cortex-a/cortex-a9.php,

Retrieved 30-12-2012.

[27] Xilinx Inc., Automotive-grade XA Zynq-7000 All Programmable SoCs,

http://www.xilinx.com/products/silicon-devices/soc/xa-zynq-7000/index.htm, Retrieved 31-12-2012.

[28] Xilinx Inc., MicroBlaze Soft Processor Core, http://www.xilinx.com/tools/microblaze.htm, Retrieved 31-

12-2012.

[29] SILOS Verilog Simulator, SILVACO, http://www.silvaco.com/products/verilogSimulation/silos.html,

Retrieved 30-12-2012.

[30] A Brief History of VHDL, Vhdl Designers Guide, KnowHow, DOULOS,

http://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/, Retrieved 30-12-2012.

[31] Keshava Iyengar Satish, “Tutorial on Design For Testability (DFT): An ASIC Design Philosophy for

Testability from Chips to Systems”, VLSI Technology, Inc. 1109 Mckay Drive, M / S 43, San Jose, CA 9513, 0-

7803-1375-5/93, © 1993 IEEE, pp. 130 - 139.

[32] Flynn, Michael, "Some Computer Organizations and Their Effectiveness", IEEE Trans. Computer: C-21,

No.9, and September 1972, pp. 948 - 960.

[33] Ralph Duncan, Control Data Corporation, “A Survey of Parallel Computer Architectures”, IEEE Computer:

5–16, February 1990, pp. 5 - 16.

[34] Dr. Heinz-Josef Schlebusch, Director R&D, Synopsys System Level Design, “SystemC based Hardware

Synthesis Becomes Reality”, System C at Euromicro DSD, Maastricht, The Netherlands, 1089-6503/00, © 2000

IEEE, pp. 1.

[35] NISC Technology & Toolset, http://www.ics.uci.edu/~nisc/, Retrieved 16-01-2013.

http://www.eetimes.com/electronics-news/4154974/High-level-synthesis-rollouts-enable-ESL
http://www.anandtech.com/show/4940/qualcomm-new-snapdragon-s4-msm8960-krait-architecture
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.xilinx.com/products/silicon-devices/soc/xa-zynq-7000/index.htm
http://www.xilinx.com/tools/microblaze.htm
http://www.silvaco.com/products/verilogSimulation/silos.html
http://www.doulos.com/knowhow/vhdl_designers_guide/a_brief_history_of_vhdl/
http://www.ics.uci.edu/~nisc/

103

[36] SPARK: A Parallelizing Approach the High-Level Synthesis of Digital Circuits,

http://mesl.ucsd.edu/spark/, Retrieved 16-01-2013.

[37] LegUp, http://legup.eecg.utoronto.ca/, Retrieved 16-01-2013.

[38] Xilinx Inc., All Programmable FPGAs, http://www.xilinx.com/products/silicon-devices/fpga/index.htm,

Retrieved 31-12-2012.

[39] Altera Corp., Altera Stratix V FPGAs: Built for Bandwidth, http://www.altera.com/devices/fpga/stratix-

fpgas/stratix-v/stxv-index.jsp, Retrieved 31-12-2012.

[40] Product Specification, Virtex-6 Family Overview, Xilinx, DS150 (v2.4) January 19, 2012.

[41] Doug Amos, Austin Lesea, Rene Richter, Chapter 1: Introduction: the challenge of system verification,

“FPGA-BASED PROTOTYPING METHODOLOGY MANUAL: Best practices in Design-for-Prototyping”, pp.

22, 100-108, Published by Synopsys, Inc., Mountain View ,CA, USA, Copyright 2011 Synopsys, Inc., Portions

Copyright 2009-2011 Xilinx, Inc., Portions Copyright 2011 ARM Limited.

[42] Abeer Hyari, “A Comparative Study on Heterogeneous and Homogeneous Multiprocessors”, University of

Jordan, Department of Computer Engineering, Submission date: 2-DEC-2009.

[43] Appliced Micro Circuits Corporation, Computing Products, Product Selector Guide,

http://www.apm.com/products/embedded/, Retrieved 18-01-2013.

[44] IBM PowerPC 440 Embeded Core, Printed in the United States of America November 2006, TGD01473-

USEN-02.

[45] ARM Corp., Processors, http://www.arm.com/products/processors/, Retrieved 18-01-2013.

[46] MIPS TECHNOLOGIES, Processor Cores, http://www.mips.com/products/processor-cores/classic/,

Retrieved 18-01-2013.

[47] Soft CPU Cores for FPGA, 1-Core Technologies, http://www.1-core.com/library/digital/soft-cpu-cores/,

Retrieved 18-01-2013.

[48] Xilinx Inc., Products, http://www.xilinx.com/products/, Retrieved 18-01-2013.

[49] Altera, Corp., SoCs/Processers, Nios II, http://www.altera.com/devices/processor/nios2/ni2-index.html,

Retrieved 18-01-2013.

http://mesl.ucsd.edu/spark/
http://legup.eecg.utoronto.ca/
http://www.xilinx.com/products/silicon-devices/fpga/index.htm
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-v/stxv-index.jsp
http://www.apm.com/products/embedded/
http://www.arm.com/products/processors/
http://www.mips.com/products/processor-cores/classic/
http://www.1-core.com/library/digital/soft-cpu-cores/
http://www.xilinx.com/products/
http://www.altera.com/devices/processor/nios2/ni2-index.html

104

[50] Leon3 Processor, EROFLEX GAISLER,

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53, Retrieved 18-01-

2013.

[51] LATTICE SEMICONDUCTOR, Lattice IP Cores, LatticeMico32,

http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/index.cfm, Retrieved 18-01-2013.

[52] EE Times: FPGA Soft Processor Design Considerarion, RC Cofer and Ben Harding,

http://www.eetimes.com/design/programmable-logic/4014791/FPGA-Soft-Processor-Design Considerations,

Retrieved 18-01-2013.

[53] Petar Borisov Minev, Valentina Stoianova Kukenska, Technical University of Gabrovo,

“IMPLEMENTATION OF SOFT-CORE PROCESSORS IN FPGAs”, International Scientifc conference 23 –

24 November 2007, pp. 1, GABROVO.

[54] Carlos Carvalho, “The Gap between and Memory Speeds”, Departamento de Informática, Universidade do

Minho 4710 - 057 Braga, Portugal, ICCA’02, pp. 27 - 34.

[55] Gregory V. Wilson, “The History of the Development of Parallel Computing”,

http://ei.cs.vt.edu/~history/Parallel.html, Retrieved 26-01-2013.

[56] Lars S. Nyland, Jan F. Prins, Allen Goldberg, and Peter H. Mills, IEEE Transactions on Software

Engineering, “A Design Methodology for Data-Parallel Applications”, Vol. 26, No. 4, April 2000, pp. 293 -

314.

[57] Daniel D. Gajski, Loganath Ramachandran, "Introduction to High-Level Synthesis," IEEE Design and Test

of Computers, vol. 11, no. 4, pp. 44-54, Oct. 1994, doi:10.1109/54.329454.

[58] Jason Cong and Zhiru Zhang, “An Efficient and Versatile Scheduling Algorithm Based on SDC

Formulation”, Computer Science Department, University of California, Los Angeles, USA, June 24 – 28, 2006,

ACM 1-59593-381-6/06/0007, pp. 433 - 438.

[59] Xilinx Inc., Virtex-6 Family Overview, DS150 (v2.4) January 19, 2012.

[60] Altera, Corp., Stratix III Device Family Architecture, http://www.altera.com/devices/fpga/stratix-

fpgas/stratix-iii/overview/architecture/performance/st3-alm-structure.html, Retrieved 19-04-2013.

[61] Altera, Corp., White Paper, Stratix III FPGAs vs. Xilinx Virtex-5 Devices: Architecture and Performance

Comparison.

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=13&Itemid=53
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/index.cfm
http://www.eetimes.com/design/programmable-logic/4014791/FPGA-Soft-Processor-Design%20Considerations
http://ei.cs.vt.edu/~history/Parallel.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-iii/overview/architecture/performance/st3-alm-structure.html
http://www.altera.com/devices/fpga/stratix-fpgas/stratix-iii/overview/architecture/performance/st3-alm-structure.html

105

[62] M. Aldham, J.H. Anderson, S. Brown, A. Canis, "Low-Cost Hardware Profiling of Run-Time and Energy

in FPGA Embedded Processors," IEEE International Conference on Application-specific Systems, Architectures

and Processors (ASAP), Santa Monica, CA, September 2011, pp. 61 - 68.

[63] Altera, Corp., San Jose, CA. Cyclone II Device Family Data Sheet, 2011.

[64] Chapter 63: LEON3 - High-performance SPARC V8 32-bit Processor GRLIB IP Core User’s Manual

Version 1.1.0 - B4113, pp. 666 - 680, Janaury 2012,Copyright Aeroflex Gaisler, 2012.

[65] Chapter 77: REGFILE_3P 3-port RAM generator (2 read, 1 write), GRLIB IP Core User’s Manual Version

1.1.0 - B4113, pp. 819, Janaury 2012,Copyright Aeroflex Gaisler, 2012.

[66] “The SPARC Architecture Manual Version 8”, Revision SAVO80SI9308, SPARC International Inc., 535

Middlefield Road, Suite 210 Menlo Park, CA94025, 415-321-8692.

[67] D. Stevens and V. Chouliaras, “Le1: A parameterizable vliw chip multiprocessor with hardware pthreads

support,” in VLSI (ISVLSI), 2010 IEEE Computer SoCiety Annual Symposium on, july 2010, pp. 122 –126.

[68] D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, and S. Hu*, Senior Member, IEEE,

"BioThreads: A novel VLIW-based Chip-Multi-Processor for accelerating biomedical image processing

applications", June 2012, pp. 257 - 268.

[69] The Tiger "MIPS" Processor, ECAD and Architecture Practical Classes, Computer Laboratory, University

of Cambridge, http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html, Retrieved 19-04-2013.

[70] MIPS Architecture For Programmers Volume I-A: Introduction to the MIPS32 Arcitecture, MIPS

Technologies, Inc., Document Number: MD00082, Revision 3.02, March 21, 2011.

[71] 6.2 A Pipelined Datapath, "Computer Organization & Design the Hardware/Software Interface", Second

Edition 1998 , pp. 450-465, Morgan Kaufmann Publishers, Inc. San Francisco, California, Printed in the USA.

[72] LEON Bare-C Cross Compliation System (BCC), EROFLEX GAISLER,

http://www.gaisler.com/index.php/products?option=com_content&task=view&id=147, Retrieved 25-05-2013.

[73] VEX Toolchain, http://www.hpl.hp.com/downloads/vex/ , Retrieved 16-05-2012.

[74] The LZ78 algorithms, http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html,

Retrieved 25-05-2013.

[75] SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html, Retrieved 25-05-2013.

http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html
http://www.gaisler.com/index.php/products?option=com_content&task=view&id=147
http://www.hpl.hp.com/downloads/vex/
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
http://www.jhauser.us/arithmetic/SoftFloat.html

106

[76] SNU Real-time Benchmarks, http://archi.snu.ac.kr/realtime/benchmark/, Retrieved 15-01-2011.

[77] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: A tool for evaluating and synthesizing

multimedia and communicatons systems," MICRO, 1 - 3 Dec 1997, pp. 330 - 335.

[78] A. C. Hung, "PVRG-JPEG CODE 1.1," Technical Report, Stanford University, 1993.

[79] AILab, http://www-ailab.elcom.nitech.ac.jp/, Retrieved 25-05-2013.

[80] M. R. Guthaus, J. S. Ringenberg, and D. Ernst, "MiBench: A free, commercially representative embedded

benchmark suite," WWC, 2001, pp. 3 - 14.

[81] Virtex-6 FPGAs, Xilinx FPGAs.

[82] John L. Hennessy & David A. Patterson, “Computer Architecture: A Quantitative Approach”, Third

Edition 2003, Morgan Kaufmann Publishers, Printed in the USA.

[83] Thomas Anderson. “The Performance of Spin Lock Alternatives for Shared-Memory

Multiprocessors”, IEEE Transactions on Parallel and Distributed Systems, vol. 1, num. 1, January 1990, pp. 6 -

15.

[84] Mohsan Tanveer, M. Aqeel Iqbal, Farooque Azam,” Using Symmetric Multiprocessor Architectures for

High Performance Computing Environments”, Dept. of SE, Foundation University, Institute of Engineering and

Management Sciences (FUIEMS), Rawalpindi, Pakistan, International Journal of Computer Applications (0975

– 8887) Volume 27– No.9, August 2011, pp 1 - 6.

[85] GRLIB IP Library User’s Manual Version 1.1.0 B4108, June, 2001, Copyright Aeroflex Gaisler, 2010.

[86] LogiCORE IP Processor Local Bus (PLB) v4.6 (v1.05a), Xilinx, DS531 September 21, 2010.

[87] Image Processing Convolutions, http://beej.us/blog/data/convolution-image-processing/, Retrieved 25-05-

2013.

[88] T. A. Welch, “A technique for high-performance data compression,” IEEE Computer, vol. 17, no. 6, pp. 8–

19, 1984.

[89] L. S. Tan, S. P. Lau, and C. E. Tan, “Optimizing lzw text compression algorithm via multithreading
programming,” in Communications (MICC), 2009 IEEE 9th Malaysia International Conference on, dec. 2009,
pp. 592 –596.

[90] Virtex-6 FPGA Memory Resource User Guide, UG363 (v1.7) September 24, 2013.

http://archi.snu.ac.kr/realtime/benchmark/
http://www-ailab.elcom.nitech.ac.jp/
http://beej.us/blog/data/convolution-image-processing/

107

[91] Altera, Corp. Avalon Interface Specification, 2010.

[92] LegUp Documentation, Release 2.0, University of Toronto, December 19, 2011.

[93] Susan L. Graham Peter B. Kessler Marshall K. McKusick, "gprof: a Call Graph Execution Profiler",

Computer Science Division Electrical Engineering and Computer Science Department University of California,

Berkeley Berkeley, California 94720, PSD:18-1, pp. 120 - 126.

[94] Kcachegrind Call Graph Viewer, http://kcachegrind.sourceforge.net/html/Home.html, Retrieved 25-05-

2013.

[95] The LLVM Compiler Infrastructure, http://www.llvm.org/, Retrieved 25-05-2013.

[96] C.Y. Huang, Y.S. Che, Y.L. Lin, and Y.C. Hsu, "Data path allocation based on bipartite weighted

matching", Department of Computer Science, Tsing Hua University, Hsin-Chu, Taiwan 30043, Republic of

China, 1990, pp. 499 - 504.

[97] ITU Recommendation G.722, "7 kHz audio-coding within 64 kbit/s", http://www.itu.int/rec/T-REC-

G.722/e, Retrieved 07-05-2013.

[98] Altera, Corp, 12. Embedded Multipliers in Cyclone II Devices, Cyclone II Device Handbook, Volume 1,

CII51012-1.2, February 2007.

[99] Altera, Corp, 8. Cyclone II Memory Blocks, Cyclone II Device Handbook, Volume 1, CII51008-2.4-1.2,

February 2008.

http://kcachegrind.sourceforge.net/html/Home.html
http://www.llvm.org/
http://www.itu.int/rec/T-REC-G.722/e
http://www.itu.int/rec/T-REC-G.722/e

108

Appendix

Appendix I Benchmark Collections - SW Flow

I.1 SW Flow in LEON3, LE1, and Tiger-MIPS Processors

Function name
LEON3

CycleCount

LEON3 (75MHz)

Execution Time/µs

LE1

CycleCount

LE1(75MHz)

Execution Time/µs

MIPS

CycleCount

MIPS (74.26MHz)

Execution Time/µs

cm62x62 1031175 13749 370019 4933.59 523449 2617.23

lzw45k 935278425 12470379 1173688753 15649183.37 1059760839 5298785.267

CHStone/mips 36675 489 47069 627.59 41407 207.02

CHStone/adpcm 247050 3294 111269 1483.59 163362 816.795

CHStone/gsm 98700 1316 39353 524.71 37575 187.86

CHStone/jpeg 3251850 43358 3973077 52974.36 3935361 19676.79

CHStone/motion 13650 182 - 179.147 30406 152.015

CHStone/aes 48900 652 49128 655.04 49275 246.36

CHStone/blowfish 717075 9561 830419 11072.25 910256 4551.265

CHStone/sha 775725 10343 574712 7662.83 1083598 5417.975

array 75 1 136 1.81 290 1.435

dhrystone 27825 371 28190 375.87 24966 124.815

div_const 975 13 289 3.85 186 0.915

fft 54000 720 33603 448.04 22603 113

fir 75 1 4409 58.79 8927 44.62

function_pointer 150 2 67 0.89 167 0.82

functions 75 1 69 0.92 110 0.535

hierarchy_test 75 1 133 1.77 93 0.45

llist 525 7 138 1.84 315 1.56

loadstore 0 0 10 0.13 3 0

loop 75 1 305 4.07 708 3.525

loopbug 150 2 483 6.44 192 0.945

malloc 3075 41 2407 32.09 2249 11.23

memory_access_test 3900 52 1750 23.33 3924 19.605

memset 75 1 1468 19.57 2346 11.715

ogg 35370000 471600 38486527 513153.69 56749338 283746.675

select 0 0 41 0.547 54 0.255

shift 150 2 68 0.91 111 0.54

signeddiv 375 5 164 2.19 224 1.105

struct 1425 19 642 8.56 3759 18.78

unaligned 0 0 187 2.49 3 0

switches 75 1 39 0.52 57 0.27

sra 75 1 42 0.56 90 0.435

tiger/sra 0 0 135 1.8 3 0

Table I.A Benchmarks of LEON3, LE1, and Tiger-MIPS single-cores.

109

Appendix II DLP Benchmarks - Parallel-SW Flow

II.1 Parallel-SW Flow in LEON3 MP and LE1 CMP

Number

of CPUs

Convolution-Matrix 60*60 (CM60x60) Lempel-Ziv-Welch 45KB (LZW45K)

LEON3 (60MHz) LE1(50MHz) LEON3 (60MHz) LE1 (50MHz)

CycleCount
Execution

Time/µs
CycleCount

Execution

Time/µs
CycleCount

Execution

Time/µs
CycleCount

Execution

Time/µs

1 1030200 17170 370019 7400 935031720 15583862 1173688753 23473775

2 526020 8767 196894 3938 467804940 7796749 589744294 11794886

3 351660 5861 131283 2626 312165240 5202754 399362970 7987259

4 264180 4403 102708 2054 234231420 3903857 306433205 6128664

5 214920 3582 86102 1722 187311900 3121865 250415720 5008314

6 184320 3072 75395 1508 156329280 2605488 212593020 4251860

Table II.A LEON3 MPs and LE1 CMPs simulated execution cycles and times (at 60MHZ and 50MHZ).

Number of

CPUs

LEON3 MP (60MHz) LE1 CMP (50MHz)

RAMB36 (%) RAMB18 (%) DSP48 (%) RAMB36 (%) RAMB18 (%) DSP48 (%)

1 76 (18.27) 50 (6.01) 4 (0.52) 101 (24.28) 8 (0.92) 7 (0.91)

2 86 (20.67) 100 (12.02) 8 (1.04) 117 (28.13) 16 (1.92) 11 (1.43)

3 32 (7.69) 246 (29.57) 12 (1.56) 133 (31.97) 24 (2.88) 15 (1.95)

4 42 (10.10) 328 (39.42) 16 (2.08) 149 (35.82) 32 (3.85) 19 (2.47)

5 52 (12.50) 410 (49.28) 20 (2.60) 165 (39.66) 40 (4.81) 23 (2.99)

6 62 (14.90) 396 (47.60) 24 (3.13) 181 (43.51) 48 (5.77) 27 (3.52)

Table II.B LEON3 MPs and LE1 CMPs (with SoC) RAMs & DSPs breakdown on XILINX VIRTEX 6 ML605 FPGA.

110

Number of

CPUs

LEON3 MP (60MHz) LE1 CMP (50MHz)

LUT-FF (%) RAMBs (%) LUT-FF (%) RAMBs (%)

1 15596 (10.35) 126 (10.10) 24454 (16.22) 109 (8.73)

2 21470 (14.25) 186 (14.90) 33107 (21.97) 133 (10.66)

3 27507 (18.25) 278 (22.28) 42583 (28.25) 157 (12.58)

4 33372 (22.14) 370 (29.65) 49460 (32.82) 181 (14.50)

5 39222 (26.02) 462 (37.02) 58416 (38.76) 205 (16.43)

6 44838 (29.75) 458 (36.70) 66756 (44.30) 229 (18.35)

Table II.C LEON3 MPS and LE1 CMPs total area and RAMBs breakdown on XILINX VIRTEX 6 ML605 FPGA.

Number of CPUs
CM60x60 Speed-up LZW45K Speed-up Average Speed-up Area cost Speed&Area

LEON3 LE1 LEON3 LE1 LEON3 LE1 LEON3 LE1 LEON3 LE1

2 1.96 1.88 2.00 1.99 1.98 1.94 1.38 1.35 1.44 1.43

3 2.93 2.82 3.00 2.94 2.96 2.88 1.76 1.74 1.68 1.65

4 3.90 3.60 3.99 3.83 3.95 3.72 2.14 2.02 1.84 1.84

5 4.79 4.30 4.99 4.69 4.89 4.49 2.51 2.39 1.95 1.88

6 5.59 4.91 5.98 5.52 5.79 5.21 2.87 2.73 2.01 1.91

Table II.D The results of speed-up versus area cost and Speed&Area Efficiency of LEON3&LE1 SMPs.

111

Appendix III HLS Benchmarks - HW, Hybrids, and SW Flows

III.1 Called-graphs of Profiling for Benchmarks by Kcachegrind

Figure III.1 The called-graphs of DFADD.

112

Figure III.2 The called-graphs of DFDIV.

Figure III.3 The called-graphs of DFMUL.

113

Figure III.4 The called-graphs of DFSIN.

Figure III.5 The called-graphs of ADPCM.

114

Figure III.6 The called-graphs of GSM.

115

Figure III.7 The called-graphs of JPEG.

116

Figure III.8 The called-graphs of MOTION.

Figure III.9 The called-graphs of AES.

117

Figure III.10 The called-graphs of BLOWFISH.

Figure III.11 The called-graphs of SHA.

118

Figure III.12 The called-graphs of CM60x60.

119

Figure III.13 The called-graphs of LZW45K.

120

III.2 Top Most Called-functions for Benchmarks

Function1

(Incl%)

Function2

(Incl%)

Function3

(Incl%)

Function4

(Incl%)

DFADD
float64_add

(2.98) ˇ

subFloat64Sigs

(1.23) ˇ

addFloat64Sigs

(1.17)

roundAndPackFloat64

(0.38)

DFDIV
float64_div

(3.07) ˇ

roundAndPackFloat64

(0.38)

extractFloat64Exp

(0.17) ˇ

extractFloat64Exp

(0.15)

DFMUL
float64_mul

(1.84) ˇ

roundAndPackFloat64

(0.38)

extractFloat64Exp

(0.16) ˇ

extractFloat64Frac

(0.14)

DFSIN
sin

(57.58) ˇ

float64_div

(18.50) ˇ

float64_mul

(15.03)

float64_add

(14.15)

ADPCM
adpcm_main

(59.04)

encode

(31.06) ˇ

decode

(27.08) ˇ

upzero

(14.97)

GSM
Gsm_LPC_Analysis

(24.1) ˇ

Autocorrelation

(19.86) ˇ

Reflection_coefficients

 (3.69)

Quantization_and_coding

(0.39)

JPEG
jpeg2bmp_main

(97.39)

jpeg_read

(87.20) ˇ

decode_start

(85.10) ˇ

decode_block

(63.67)

MOTION
Flush_Buffer

(16.34) ˇ

Initialize_Buffer

(15.91) ˇ

Fill_Buffer

(15.82)

read

(15.81)

AES
aes_main

(48.42)

decrypt

(30.59) ˇ

AddRoundKey_InversMixColumn

(20.02) ˇ

encrypt

(17.81)

BLOWFISH
Blowfish_main

(89.94)

BF_encrypt

(56.70) ˇ

BF_cfb64_encrypt

(49.69) ˇ

BF_set_key

(27.24)

SHA
sha_stream

(91.43) ˇ

sha_update

(91.09)

sha_transform

(80.96) ˇ

Memcpy

(10.24)

CM60x60
compress

(65.46) ˇ

inDictInt

(52.24)

add2Dictionary

(23.58)

decompress

(13.82) ˇ

LZW45K
compress

(65.46) ˇ

inDictInt

(52.24)

add2Dictionary

(23.58)

decompress

(13.82) ˇ

Table III.A The top-four function-called in HLS benchmarks.

121

III.3 HW, Hybrids, and SW Flow in LegUp

Programs

Line of

the

Codes

Function
Scalar

Variable

Array

Variable
Add/Sub MUL DIV Comparison Shift Logic

MIPS 232 1 30 5 17 2 0 12 22 23

DFADD 494 17 121 4 36 0 0 72 65 129

DFDIV 419 19 110 4 45 8 2 50 56 65

DFMUL 363 16 91 4 28 4 0 34 41 55

DFSIN 789 31 285 3 136 17 2 181 214 310

ADPCM 547 15 268 26 156 69 2 73 81 24

GSM 380 12 149 10 250 53 0 109 44 41

JPEG 1397 31 393 46 1038 148 6 243 293 132

MOTION 441 13 274 12 844 0 0 444 350 166

AES 723 11 345 11 510 22 12 48 758 370

BLOWFISH 1413 6 110 12 280 0 0 15 159 370

SHA 1286 8 64 6 133 0 3 32 59 87

CM60x60 47 2 7 2 11 1 0 0 0 0

LZW45K 153 10 20 8 8 0 0 6 0 4

Table III.B Characterizations of HLS programs.

Figure III.A The percentage distributions of algorithmic types in HLS benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Logic%

Shift%

Comparison%

DIV%

MUL%

Add/Sub%

122

Programs if Switch while for goto Test Data Length

MIPS 4 3 1 3 0 8

DFADD 52 24 0 25 0 46

DFDIV 97 0 1 17 30 22

DFMUL 214 64 27 90 75 20

DFSIN 351 0 191 6 36 36

ADPCM 28 10 0 24 0 100

GSM 6 8 5 5 0 160

JPEG 3 0 9 20 0 7,506

MOTION 4 3 1 3 0 2,048

AES 52 24 0 25 0 16

BLOWFISH 97 0 1 17 30 5,200

SHA 214 64 27 90 75 8,192

CM60x60 0 0 0 6 0 3,844

LZW45K 6 0 2 4 0 45,000

Table III.C Control flows and test-data length of HLS benchmarks.

Figure III.B The percentage distributions of C control flows in HLS benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

goto%

for%

while%

switch%

if%

123

Table III.D Synthesis results for HLS benchmarks on ALTERA CYCLONE II FPGAs.

Programs Flows Fmax/MHz LEs (%) Devices REGs (%) # bits (%) MULs (%) Times/µs

MIPS

HW 106 3,256 (39) EP2C8T144C6 1555 (19) 4,480 (3) 8 (22) 10.369

Hybrid1 - - - - - - -

Hybrid 2 - - - - - - -

SW 74.26 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 783.062

DFADD

HW 139 6,233 (43) EP2C15AF256C6 2980 (21) 17,056 (7) 0 (0) 1.611

Hybrid1 139 23,976 (47) EP2C50F484C6 11104 (33) 311,449 16 (23) 216.470

Hybrid 2 139 19,236 (58) EP2C35F484C6 9234 (28) 310,041 (64) 16 (23) 361.927

SW 74.26 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 6021.711

DFDIV

HW 2 13,357 (71) EP2C20F256C6 9432 (50) 13,495 (6) 38 (73) 4.515

Hybrid1 2 27,461 (54) EP2C50F484C6 15001 (30) 311,120 (52) 54 (31) 200.714

Hybrid 2 2 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 1109.128

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 3986.587

DFMUL

HW 66 3,927 (48) EP2C8T144C6 1989 (24) 12,032 (7) 32 (89) 0.585

Hybrid1 66 18,037 (54) EP2C35F484C6 8859 (26) 310,041 (64) 48 (69) 171.620

Hybrid 2 66 12,843 (39) EP2C35F484C6 6296 (19) 301,563 (62) 16 (23) 283.017

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 2587.865

DFSIN

HW 2 25,853 (78) EP2C35F484C6 15127 (46) 13,911 (3) 70 (100) 128.869

Hybrid1 2 46,177 (67) EP2C70F672C6 23023 (34) 311,056 (27) 92 (31) 1117.682

Hybrid 2 2 29,261 (58) EP2C50F484C6 16710 (33) 311,056 (52) 54 (31) 5079.276

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 40790.120

ADPCM

HW 8 17,494 (53) EP2C35F484C6 9764 (29) 27,646 (6) 61 (87) 63.049

Hybrid1 88 22,969 (69) EP2C35F484C6 10569 (32) 319,449 (66) 26 (37) 1944.456

Hybrid 2 88 22,185 (67) EP2C35F484C6 8810 (27) 319,449 (66) 32 (46) 2170.890

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 2338.421

GSM

HW 88 10,999 (59) EP2C20F256C6 5473 (29) 10,144 (4) 20 (38) 10.719

Hybrid1 88 25,890 (51) EP2C50F484C6 12234 (24) 309,657 (52) 40 (23) 304.922

Hybrid 2 88 21,096 (64) EP2C35F484C6 10421 (31) 309,081 (64) 36 (51) 426.667

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 772.363

JPEG

HW 8 34,812 (51) EP2C70F672C6 16440 (24) 470,054 (41) 54 (18) 2681.559

Hybrid1 8 65,043 (95) EP2C70F672C6 28090 (41) 517,527 (45) 56 (19) 23025.867

Hybrid 2 8 42,642 (62) EP2C70F672C6 19463 (28) 500,445 (43) 50 (17) 27478.458

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 73564.303

MOTION

HW 153 4,360 (53) EP2C8T144C6 2180 (26) 33,312 (20) 8 (22) 12.761

Hybrid1 153 15,886 (48) EP2C35F484C6 7237 (22) 319,385 (66) 20 (29) 305.949

Hybrid 2 153 15,655 (47) EP2C35F484C6 7404 (22) 319,385 (66) 20 (29) 313.671

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 632.821

AES

HW 8 16,135 (49) EP2C35F484C6 7945 (24) 38,632 (8) 0 (0) 31.435

Hybrid1 8 44,451 (65) EP2C70F672C6 18832 (27) 325,241 (28) 22 (7) 650.839

Hybrid 2 8 19,389 (38) EP2C50F484C6 8925 (18) 321,867 (54) 22 (13) 704.854

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 1270.939

BLOWFISH

HW 215 9,514 (66) EP2C15AF256C6 6077 (42) 150,240 (63) 0 (0) 395.959

Hybrid1 215 20,725 (41) EP2C50F484C6 10351 (20) 418,329 (70) 16 (9) 8156.948

Hybrid 2 215 23,396 (46) EP2C50F484C6 11418 (22) 418,393 (70) 16 (9) 9876.354

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 13409.624

SHA

HW 8 12,842 (39) EP2C35F484C6 7344 (22) 135,048 (28) 4 (6) 467.753

Hybrid1 8 27,732 (41) EP2C70F672C6 13574 (20) 436,321 (38) 20 (7) 3345.570

Hybrid 2 8 17,836 (35) EP2C50F484C6 8869 (17) 435,641 (73) 16 (9) 4588.006

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 16037.925

CM60x60

HW 153 1,475 (32) EP2C5T144C6 411 (9) 61,832 (52) 1 (4) 1719.723

Hybrid1 - - - - - - -

Hybrid 2 - - - - - - -

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 32296.661

LZW45K

HW 215 14,456 - 4075 1,605,384 52 -

Hybrid1 215 13,203 (40) EP2C35F484C6 5975 (18) 301,477 (62) 16 (23) 5625482.233

Hybrid 2 215 19,644 (59) EP2C35F484C6 8620 (26) 366,385 (76) 31 (44) 12047403.128

SW 74.26 12,759 (38) EP2C35F484C6 5974 (18) 301,477 (62) 16 (23) 30571490.632

124

Figure III.C The execution times and resource distribution results on ALTERA CYCLONE II FPGAs.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

Total Logic Elements (LegUp-HW) Total Logic Elements (LegUp-Hybrid1)

Total Logic Elements (LegUp-Hybrid2) Total Logic Elements (MIPS-SW)

Time execution/µs (LegUp-HW) Time execution/µs (LegUp-Hybrid1)

Time execution/µs (LegUp-Hybrids2) Time execution/µs (MIPS-SW)

Lines of the codes x10 Total variable x100

N
u

m
b

er
o

f
L

E
s

a
n

d
 E

x
ec

u
ti

o
n

 T
im

es
/µ

s

LZW-Hybrid1: 5,625,482

Hybrid2:12,047,403

MIPS-SW:305,71,490

125

Table III.E The results of speed-up versus resource cost and Speed&Area Efficiency of LegUp.

Program Flows Speed-up Area Cost Speed&Area

MIPS

HW 75.52 0.26 295.93

Hybrid1 - - -

Hybrid 2 - - -

DFADD

HW 3737.87 0.49 7651.45

Hybrid1 27.82 1.88 14.80

Hybrid 2 16.64 1.51 11.036

DFDIV

HW 882.97 1.05 843.43

Hybrid1 19.86 2.15 9.23

Hybrid 2 3.59 1.00 3.59

DFMUL

HW 4423.70 0.31 14372.80

Hybrid1 15.08 1.41 10.67

Hybrid 2 9.14 1.01 9.08

DFSIN

HW 316.52 2.03 156.21

Hybrid1 36.50 3.62 10.08

Hybrid 2 8.03 2.29 3.50

ADPCM

HW 37.09 1.37 27.05

Hybrid1 1.20 1.80 0.67

Hybrid 2 1.08 1.74 0.62

GSM

HW 72.06 0.86 83.59

Hybrid1 2.53 2.03 1.25

Hybrid 2 1.81 1.65 1.09

JPEG

HW 27.43 2.73 10.05

Hybrid1 3.19 5.10 0.63

Hybrid 2 2.68 3.34 0.80

MOTION

HW 49.59 0.34 145.12

Hybrid1 2.07 1.25 1.66

Hybrid 2 2.02 1.23 1.64

AES

HW 40.43 1.26 31.97

Hybrid1 1.95 3.48 0.56

Hybrid 2 1.80 1.52 1.19

BLOWFISH

HW 33.87 0.75 45.42

Hybrid1 1.64 1.62 1.01

Hybrid 2 1.36 1.83 0.74

SHA

HW 34.29 1.01 34.07

Hybrid1 4.79 2.17 2.21

Hybrid 2 3.50 1.40 2.50

CM60x60

HW 18.78 0.12 162.45

Hybrid1 - - -

Hybrid 2 - - -

LZW45K

HW - - -

Hybrid1 5.43 1.03 5.25

Hybrid 2 2.54 1.54 1.65

