471 research outputs found

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Cracking assessment in concrete structures by distributed optical fiber

    Get PDF
    In this paper, a method to obtain crack initiation, location and width in concrete structures subjected to bending and instrumented with an optical backscattered reflectometer (OBR) system is proposed. Continuous strain data with high spatial resolution and accuracy are the main advantages of the OBR system. These characteristics make this structural health monitoring technique a useful tool in early damage detection in important structural problems. In the specific case of reinforced concrete structures, which exhibit cracks even in-service loading, the possibility to obtain strain data with high spatial resolution is a main issue. In this way, this information is of paramount importance concerning the durability and long performance and management of concrete structures. The proposed method is based on the results of a test up to failure carried out on a reinforced concrete slab. Using test data and different crack modeling criteria in concrete structures, simple nonlinear finite element models were elaborated to validate its use in the localization and appraisal of the crack width in the testing slab.Peer ReviewedPostprint (author’s final draft

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Get PDF
    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring

    Evaluation of corrosion expansion of reinforced concrete specimen using fiber optical Brillouin sensing technique

    Get PDF
    This paper investigated the evaluation of the concrete damage degree due to steel bar corrosion for reinforced concrete structures. Brillouin optical fiber time domain analysis (BOTDA) sensors were developed to monitor the steel bar corrosion expansion strain. Electrochemical accelerating experimental results showed the sensors could be used for early detection and the lifelong monitoring. The damage factor was proposed to quantitatively evaluate the concrete damage degree before initial cracking and during the development of cracks. Finite element analysis was performed on concrete specimens to map the monitoring results with the damage factor, which supported the capability of the damage factor

    Feasibility of Distributed Fiber Optic Sensor for Corrosion Monitoring of Steel Bars in Reinforced Concrete

    Get PDF
    This study investigates the feasibility of distributed fiber optic sensor for corrosion monitoring of steel bars embedded in concrete. Two sensor installation methods are compared: (1) attaching the sensor along the bar and (2) winding the sensor on the bar. For the second method, optical fibers were winded spirally on steel bars with different spacings: 0 mm, 2 mm, 5 mm, and 10 mm. Steel bar pull-out testing was conducted to evaluate the effect of presence of distributed sensor on the bond strength of steel—concrete interface. Electrochemical testing was carried out to assess the influence of the installation methods on the corrosion resistance of the reinforced concrete. Winding the optical fiber on steel bars with a 10-mm spacing does not affect the bond strength and corrosion resistance and allows real-time corrosion monitoring. The distributed sensor data can be used to estimate the corrosion induced steel loss and predict concrete cracking

    Development of optical fibre distributed sensing for the structural health monitoring of bridges and large scale structures

    Get PDF
    Tesi per compendi de publicacionsPremi extraordinari doctorat UPC curs 2017-2018. Àmbit d’Enginyeria Civil i AmbientalIn this doctoral thesis it is proposed to research and assess the performance of the use of distributed optical fiber sensors (DOFS), more specifically the case of the optical backscattered reflectometry (OBR) based system, to the structural health monitoring (SHM) of bridges and large scale structures. This is a relatively recent technology that has demonstrated great promise for monitoring applications in a wide range of fields but due to its novelty, still presents several uncertainties which prevent its use in a more systematic and efficient way in civil engineering infrastructures. This is even more evident and relevant in the case of the application of this sensing technique to concrete structures. In this way, this thesis pretends to continue and further analyse this topic following the initial applications using the OBR system as a possible alternative/complementary monitoring tool in concrete structures. Therefore, in the present thesis, after an initial and thorough literature review on the use of DOFS in civil engineering applications, a set of experiments and analysis is planned and carried out. Firstly, different laboratory experimental campaigns are devised where multiple aspects of the instrumentation of DOFS technology in civil engineering applications are assessed and scrutinized. Consequently, the study of new implementation methods, comparison and performance analysis of different bonding adhesives and spatial resolution is performed through the conduction of load tests in reinforced concrete beam elements instrumented with OBR DOFS technology. Moreover, the long-term reliability of this sensing typology is also assessed through the conduction of a fatigue load test on two additional reinforced concrete beams. Afterwards, the use of the OBR system technology is assessed for the application in two real world structures in Barcelona, Spain. The first application corresponds to a previous monitoring work conducted in a historical masonry building and UNESCO World Heritage Site, which was subjected to rehabilitation works and where the collected data was analysed and interpreted in this thesis. The second real world structure application is an urban prestressed concrete viaduct that was exposed to major renovation actions, which included the widening of its deck and the introduction of new steel elements on the improved pedestrian sidewalks. This second application was conducted through a relatively extended period of time, which spanned from early summer to deep winter and therefore causing subsequent important thermal variations effects implications on the performance of the instrumented OBR system leading to the necessity of its compensation. Finally, taking into account the previous points, several conclusions are obtained related with the proficiency and limitations on the use of this particular type of optical sensing system in concrete structures. The advantages and disadvantages on the use of different types of bonding adhesives, implementation methodologies and spatial resolutions are described. Additionally, the performance of this technology in real world conditions is studied and characterized.En aquesta tesi doctoral es proposa investigar i avaluar la possibilitat d´aplicació de sensors de fibra òptica distribuïda (DOFS), més concretament un sistema del tipus OBR (Optical Backscattered Reflectometry), a la monitorització de la salut estructural (SHM) de ponts i estructures de grans dimensions. Es tracta d'una tecnologia relativament recent que ha demostrat una gran versatilitat i validesa en diferents aplicacions en un ampli ventall de camps, però que, a causa de la seva novetat, encara presenta diverses incerteses que impedeixen el seu ús d'una manera més sistemàtica i eficient en el cas de les infraestructures d'enginyeria civil. Sent això especialment cert i rellevant en el cas de l'aplicació d'aquesta tipologia de detecció en estructures de formigó. D'aquesta manera, aquesta tesi pretén continuar i analitzar aquest tema seguint les aplicacions inicials utilitzant el sistema OBR com una possible eina i de control alternatiu o complementari en estructures de formigó. Per tant, en aquesta tesi, després d'una revisió inicial i exhaustiva de la literatura sobre l'ús de DOFS en aplicacions d'enginyeria civil, es planifiquen i executen un conjunt d'assaigs experimentals i el seu posterior anàlisi. En primer lloc, es desenvolupen diferents campanyes experimentals de laboratori on s'avaluen i examinen múltiples aspectes de la tecnologia DOFS en aplicacions d'enginyeria civil. Com a conseqüència, s´estudien nous mètodes d'implementació, de comparació i anàlisi de rendiment de diferents adhesius de connexió i de resolució espaial mitjançant la realització de proves experimentals en elements a flexió a de formigó armat equipats amb tecnologia OBR DOFS. A més, la fiabilitat a llarg termini d'aquesta tipologia de sensors també s'avalua mitjançant la realització d'un assaig de fatiga en dos bigues de formigó armat addicionals. Posteriorment, l'ús de la tecnologia del sistema OBR s'avalua de cara a la seva aplicació en dues estructures reals a Barcelona, Espanya. La primera aplicació correspon a un treball de seguiment previ dut a terme en un edifici històric de maçoneria i que és Patrimoni de la Humanitat de la UNESCO (l´hospital de Sant Pau), que es va sotmetre a obres de rehabilitació i on es van analitzar i interpretar les dades recollides durant l´execució de les obres. La segona aplicació és un pont de formigó pretensat urbà que va estar exposat a una important intervenció de renovació, que va incloure l'ampliació de la coberta i la introducció de nous elements d'acer a les voreres de vianants. Aquesta segona aplicació es va dur a terme a través d'un període de temps relativament estès, que va des del començament de l'estiu fins a ben entrat l'hivern i, per tant, va provocar variacions tèrmiques importants tant als materials com als propis sensors, que van tenir conseqüències sobre el rendiment del sistema OBR instrumentat i que va comportar la necessitat de la seva compensació. Finalment, tenint en compte els punts anteriors, s'obtenen diverses conclusions relacionades amb la competència i les limitacions sobre l'ús d'aquest tipus particular de sistema de detecció òptica en estructures de formigó. Es descriuen els avantatges i desavantatges sobre l'ús de diferents tipus d'adhesius de connexió, metodologies d'implementació i resolucions espaials. Addicionalment, s'estudia i caracteritza l'acompliment d'aquesta tecnologia en condicions reals i no de laboratori.Award-winningPostprint (published version

    Innovative solutions in bridge construction, rehabilitation, and structural health monitoring

    Get PDF
    This dissertation includes three technical papers that investigate the development of innovative technologies for bridge construction, rehabilitation, and structural health monitoring, respectively, at different stages of the technology transfer process...The research impact is twofold: first is the introduction of promising innovative technologies in development and implementation projects with the direct involvement of forward-thinking industry partners; second is the demonstration of the validity of these technologies on the basis of a rigorous scientific approach --Abstract, page iv

    Brillouin distributed fiber sensors: an overview and applications

    Get PDF
    A review focused on real world applications of Brillouin distributed fiber sensors is presented in this paper. After a brief overview of the theoretical principles, some works to face the two main technical challenges (large dynamic range and higher spatial resolution) are commented. Then an overview of some real and on-field applications is done.This work has been supported by the Spanish TEC2010-20224-C02-02 Project
    corecore