214 research outputs found

    Wi-Fi QoS improvements for industrial automation

    Get PDF
    Digitalization caused a considerable increase in the use of industrial automation applications. Industrial automation applications use real-time traffic with strict requirements of connection of tens of devices, high-reliability, determinism, low-latency, and synchronization. The current solutions meeting these requirements are wired technologies. However, there is a need for wireless technologies for mobility,less complexity, and quick deployment. There are many studies on cellular technologies for industrial automation scenarios with strict reliability and latency requirements, but not many developments for wireless communications over unlicensed bands. Wireless Fidelity (Wi-Fi) is a commonly used and preferred technology in factory automation since it is supported by many applications and operates on a license free-band. However, there is still room for improving Wi-Fi systems performance for low-latency and high-reliable communication requirements in industrial automation use cases. There are various limitations in the current Wi-Fi system restraining the deployment for time-critical operations. For meeting the strict timing requirements of low delay and jitter in industrial automation applications, Quality of Service (QoS)in Wi-Fi needs to be improved. In this thesis, a new access category in Medium Access Control (MAC) layer for industrial automation applications is proposed.The performance improvement is analyzed with simulations, and a jitter definition for a Wi-Fi system is studied. Then, a fixed Modulation and Coding (MCS) link adaptation method and bounded delay is implemented for time-critical traffic in the simulation cases to observe performance changes. Finally, it is shown that the new access category with no backoff time can decrease the delay and jitter of time-critical applications. The improvements in Wi-Fi QoS are shown in comparison with the current standard, and additional enhancements about using a fixed modulation and coding scheme and implementation of a bounded delay are also analyzed in this thesi

    Increasing throughput in IEEE 802.11 by optimal selection of backoff parameters

    Get PDF
    Engineering and Physical Sciences Research Council. Grant Number: EP/G012628/

    Throughput comparison between the new HEW 802.11ax standard and 802.11n/ac standards in selected distance windows

    Get PDF
    Ā Abstractā€” The 802.11ax standard final specification is expected in 2019, however first parameters are just released. The target of the new standard is four times improvement of the average throughput within the given area. This standard is dedicated for usage in dense environment such as stadiums, means of municipal communication, conference halls and others. The main target is to support many users at the same time with the single access point.Ā  The question arises if the new standard will have higher throughput then previous ones in the single user mode. The author calculated the maximal theoretical throughput of the 802.11ax standard and compared the results with the throughput of older 802.11 standards such as 802.11n and 802.11ac. The new he-wifi-network example included in the ns-3.27 release of the NS-3 simulator was used to simulate the throughput between the access point and the user terminal. The results indicate that in some conditions the 802.11ac standard has higher throughput than the new 802.11ax standard.

    Cooperative positioning studies based on WLANs

    Get PDF
    Location information and location-based service have gained importance in recent years because, based on their concept, a new business market has been opened which encompass emergency services, security, monitoring, tracking, logistics, etc. Nowadays, the most developed positioning systems, namely the Global Navigation Satellite Systems (GNSS), are meant for outdoor use. In order to integrate outdoor and indoor localization in the same mobile application, several lines of research have been created for the purpose of investigating the possibility of wireless network technologies and of overcoming the challenges faced by GNSS in performing localization and navigation in indoor environments. The benefit in using wireless networks is that they provide a minimally invasive solution which is based on software algorithms that can be implemented and executed in the Mobile Station (MS) or in a Location Server connected to the network. This thesis focuses on the development of localization approaches based on Received Signal Strength (RSS) and applied in WLANs. Such approaches demonstrated in recent research advances that RSS-based localization algorithms are the simplest existing approaches due to the fact that the RSSs are most accessible existing measurements. RSS measurements can be used with two main algorithms, which are addressed in this thesis: Fingerprinting method (FP) and Pathloss method (PL). These two methods can be applied in both cooperative and non-cooperative algorithms. Such algorithms are evaluated here in terms of Root Mean Square Error (RMSE) for both simulated and real-field data

    Radio Frequency Fingerprinting Techniques through Preamble Modification in IEEE 802.11b

    Get PDF
    Wireless local area networks are particularly vulnerable to cyber attacks due to their contested transmission medium. Access point spoofing, route poisoning, and cryptographic attacks are some of the many mature threats faced by wireless networks. Recent work investigates physical-layer features such as received signal strength or radio frequency fingerprinting to identify and localize malicious devices. This thesis demonstrates a novel and complementary approach to exploiting physical-layer differences among wireless devices that is more energy efficient and invariant with respect to the environment than traditional fingerprinting techniques. Specifically, this methodology exploits subtle design differences among different transceiver hardware types. A software defined radio captures packets with standard-length IEEE 802.11b preambles, manipulates the recorded preambles by shortening their length, then replays the altered packets toward the transceivers under test. Wireless transceivers vary in their ability to receive packets with preambles shorter than the standard. By analyzing differences in packet reception with respect to preamble length, this methodology distinguishes amongst eight transceiver types from three manufacturers. All tests to successfully enumerate the transceivers achieve accuracy rates greater than 99%, while transmitting less than 60 test packets. This research extends previous work illustrating RF fingerprinting techniques through IEEE 802.15.4 wireless protocols. The results demonstrate that preamble manipulation is effective for multi-factor device authentication, network intrusion detection, and remote transceiver type fingerprinting in IEEE 802.11b

    An RF-Isolated Real-Time Multipath Testbed for Performance Analysis of WLANs

    Get PDF
    Real-time performance evaluation of wireless local area networks (WLANs) is an extremely challenging topic. The major drawback of real-time performance analysis in actual network installations is a lack of repeatability due to uncontrollable interference and propagation complexities. These are caused by unpredictable variations in the interference scenarios and statistical behavior of the wireless propagation channel. This underscores the need for a Radio Frequency (RF) test platform that provides isolation from interfering sources while simulating a real-time wireless channel, thereby creating a realistic and controllable radio propagation test environment. Such an RF-isolated testbed is necessary to enable an empirical yet repeatable evaluation of the effects of the wireless channel on WLAN performance. In this thesis, a testbed is developed that enables real-time laboratory performance evaluation of WLANs. This testbed utilizes an RF-isolated test system, AzimuthĆ¢ā€žĀ¢ Systems 801W, for isolation from external interfering sources such as cordless phones and microwave ovens and a real-time multipath channel simulator, Elektrobit PROPSimĆ¢ā€žĀ¢ C8, for wireless channel emulation. A software protocol analyzer, WildPackets Airopeek NX, is used to capture data packets in the testbed from which statistical data characterizing performance such as data rate and Received Signal Strength (RSS) are collected. The relationship between the wireless channel and WLAN performance, under controlled propagation and interference conditions, is analyzed using this RF-isolated multipath testbed. Average throughput and instantaneous throughput variation of IEEE 802.11b and 802.11g WLANs operating in four different channels - a constant channel and IEEE 802.11 Task Group n (TGn) Channel Models A, B, and C - are examined. Practical models describing the average throughput as a function of the average received power and throughput variation as a function of the average throughput under different propagation conditions are presented. Comprehensive throughput models that incorporate throughput variation are proposed for the four channels using Weibull and Gaussian probability distributions. These models provide a means for realistic simulation of throughput for a specific channel at an average received power. Also proposed is a metric to describe the normalized throughput capacity of WLANs for comparative performance evaluation

    Modelling of the Wireless Propagation Characteristics inside Aircraft

    Get PDF
    Advances in wireless communications technology and more sophisticated portable devices have led to a drastic increase in wireless services and applications. This advancement was made possible through hardware improvements which allow more functions to be implemented in smaller sized devices. The demand for more wireless services has pushed the industry and the research community to increase the communication data rates, connectivity, and availability. The increase in the user base has also brought a decrease in the cost of the services. Although wireless access is becoming available in all public places around the world, this is still not the case for the air passengers who are cut off from wireless services during the duration of the flight. Deployment of wireless technology inside aircraft is still a hot issue due to uncertainties related to interference. Yet, the European Commission has prepared the legal framework for wireless connectivity inside aircraft in April 2008 (Commission, 2008). Aircraft manufacturers will benefit from this technology by exploiting wireless networks to reduce the cable complexity, hence the weight of the aircraft, and by providing new in-flight services, such as online passenger meal selection, service request and video on demand. On the other hand, provisioning of wireless service during flight would profit passengers, since they gain seamless access to common wireless services, such as phone, Internet, and multimedia communications.peer-reviewe

    Queueing analysis for cross-layer design with adaptive modulation and coding

    Get PDF
    PhDWith the development of wireless networks, Quality of Service (QoS) has become one of the most important mechanisms to improve the system performance such as loss, delay and throughput. Cross-layer design is seen as one of the main approaches to achieve QoS provisioned services in contrast to the well-adopted TCP/IP network model. This thesis focuses on the cross-layer design incorporating queueing effects and adaptive modulation and coding (AMC), which operates at both the data-link layer and the physical layer, to obtain the performance analyses on loss, delay and throughput using the matrix geometric method. More specifically, this thesis explores the potential to extend the cross-layer analysis, at the data-link and the physical layer respectively. At the data-link layer, since the traffic types such as voice, video and data are proven to be bursty, and the well-adopted Poisson arrivals fail to capture the burstiness of such traffic types, the bursty traffic models including ON-OFF and aggregated ON-OFF arrivals are introduced in the cross-layer analysis. This thesis investigates the impact of traffic models on performance analysis, identifying the importance of choosing the proper traffic model for cross-layer analysis. At the physical layer, IEEE 802.11ac standard is adopted for the cross-layer analysis. In order to meet the specifications of 802.11ac with higher-order Modulation and Coding Schemes (MCS), wider channel bandwidth and more spatial streams, the Signal-to-Noise Ratio (SNR) thresholds are re-determined for the AMC; in addition, a single user (SU) multiple in multiple out (MIMO) spatial multiplexing system with zero-forcing (ZF) detector is adopted for the cross-layer analysis. Furthermore, this thesis explores the impact of antenna correlations on the system performance. All of the work done in this thesis aims at obtaining more practical performance analysis on the cross-layer design incorporating queueing effects and AMC. The proposed cross-layer analysis is quite general, so that itā€™s ready to be applied to any QoS provisioned networks

    Framework for Content Distribution over Wireless LANs

    Get PDF
    Wireless LAN (also called as Wi-Fi) is dominantly considered as the most pervasive technology for Intent access. Due to the low-cost of chipsets and support for high data rates, Wi-Fi has become a universal solution for ever-increasing application space which includes, video streaming, content delivery, emergency communication, vehicular communication and Internet-of-Things (IoT). Wireless LAN technology is defined by the IEEE 802.11 standard. The 802.11 standard has been amended several times over the last two decades, to incorporate the requirement of future applications. The 802.11 based Wi-Fi networks are infrastructure networks in which devices communicate through an access point. However, in 2010, Wi-Fi Alliance has released a specification to standardize direct communication in Wi-Fi networks. The technology is called Wi-Fi Direct. Wi-Fi Direct after 9 years of its release is still used for very basic services (connectivity, file transfer etc.), despite the potential to support a wide range of applications. The reason behind the limited inception of Wi-Fi Direct is some inherent shortcomings that limit its performance in dense networks. These include the issues related to topology design, such as non-optimal group formation, Group Owner selection problem, clustering in dense networks and coping with device mobility in dynamic networks. Furthermore, Wi-Fi networks also face challenges to meet the growing number of Wi Fi users. The next generation of Wi-Fi networks is characterized as ultra-dense networks where the topology changes frequently which directly affects the network performance. The dynamic nature of such networks challenges the operators to design and make optimum planifications. In this dissertation, we propose solutions to the aforementioned problems. We contributed to the existing Wi-Fi Direct technology by enhancing the group formation process. The proposed group formation scheme is backwards-compatible and incorporates role selection based on the device's capabilities to improve network performance. Optimum clustering scheme using mixed integer programming is proposed to design efficient topologies in fixed dense networks, which improves network throughput and reduces packet loss ratio. A novel architecture using Unmanned Aeriel Vehicles (UAVs) in Wi-Fi Direct networks is proposed for dynamic networks. In ultra-dense, highly dynamic topologies, we propose cognitive networks using machine-learning algorithms to predict the network changes ahead of time and self-configuring the network
    • ā€¦
    corecore