
Design and Optimization of QoS-based Medium

Access Control Protocols for Next-Generation

Wireless LANs

Dionysios Skordoulis

School of Engineering and Design

Brunel University

A thesis submitted for the degree of

Doctor of Philosophy

February 2013

I dedicate this thesis to the memory of my mother

Carol Constance Kemp (1945 – 2004).

From my earliest days, she taught me to believe in myself and to
strive for the highest goals. I owe every bit of my existence to her.

i

Acknowledgements

I am indebted to many individuals for their care and support given
to me during my doctoral studies. First and foremost, I would like
to express my deep gratitude to my PhD supervisor Dr. Qiang Ni,
who has provided me with constant encouragement, insightful advice,
and invaluable suggestions. This work would not have been possible
without him and his tremendous willingness to anticipate.

I am also grateful to Brunel University, the School’s Department of
Electronic & Computer Engineering (ECE), and the Engineering &
Physical Sciences Research Council (EPSRC) for trusting me and pro-
viding me with financial support during the years of my doctoral
study.

My special thanks should also go to my father, sister, relatives (es-
pecially to my aunt and cousins) and friends since they always have
loved me, believed in me, and encouraged me throughout my stud-
ies. Last but not least, a final acknowledgement goes to my future
beloved wife Ioanna and her family for their support, understanding,
and encouragement.

ii

Abstract

In recent years, there have been tremendous advances in wireless
& mobile communications, including wireless radio techniques, net-
working protocols, and mobile devices. It is expected that different
broadband wireless access technologies, e.g., WiFi (IEEE 802.11) and
WiMAX (IEEE 802.16) will coexist in the future. In the meantime,
multimedia applications have experienced an explosive growth with
increasing user demands. Nowadays, people expect to receive high-
speed video, audio, voice and web services even when being mobile.
The key question that needs to be answered, then, is how do we en-
sure that users always have the “best” network performance with the
“lowest” costs in such complicated situations?

The latest IEEE 802.11n standards attains rates of more than 100
Mbps by introducing innovative enhancements at the PHY and MAC
layer, e.g. MIMO and Frame Aggregation, respectively. However,
in this thesis we demonstrate that frame aggregation’s performance
adheres due to the EDCA scheduler’s priority mechanism and con-
sequently resulting in the network’s poor overall performance. Short
waiting times for high priority flows into the aggregation queue re-
solves to poor channel utilization. A Delayed Channel Access al-
gorithm was designed to intentionally postpone the channel access
procedure so that the number of packets in a formed frame can be
increased and so will the network’s overall performance. However,
in some cases, the DCA algorithm has a negative impact on the ap-
plications that utilize the TCP protocol, especially the when small
TCP window sizes are engaged. So, the TCP process starts to refrain
from sending data due to delayed acknowledgements and the overall
throughput drops.

In this thesis, we address the above issues by firstly demonstrating
the potential performance benefits of frame aggregation over the next-
generation wireless networks. The efficiency and behaviour of frame
aggregation within a single queue, are mathematically analysed with
the aid of a M/G[a,b]/1/K model. Results show that a trade-off choice

iii

has to be taken into account over minimizing the waiting time or max-
imizing utilization. We also point out that there isn’t an optimum
batch collection rule which can be assumed as generally valid but in-
dividual cases have to be considered separately. Secondly, we demon-
strate through extensive simulations that by introducing a method,
the DCA algorithm, which dynamically determines and adapts batch
collections based upon the traffic’s characteristics, QoS requirements
and server’s maximum capacity, also improves efficiency. Thirdly, it
is important to understand the behaviour of the TCP flows over the
WLAN and the influence that DCA has over the degrading perfor-
mance of the TCP protocol. We investigate the cause of the problem
and provide the foundations of designing and implementing possi-
ble solutions. Fourthly, we introduce two innovative proposals, one
amendment and one extension to the original DCA algorithm, called
Adaptive DCA and Selective DCA, respectively. Both solutions have
been implemented in OPNET and extensive simulation runs over a
wide set of scenarios show their effectiveness over the network’s overall
performance, each in its own way.

iv

Supporting Publications

Journal and Magazines

1. D. Skordoulis, Q. Ni, H. Chen, A. Stephens, C. Liu, and A. Jamalipour,
“IEEE 802.11n MAC Frame Aggregation Mechanisms for Next-Generation
High-Throughput WLANs,” Wireless Communications, IEEE, vol. 15, no.
1, pp. 40–47, 2008. 1

Conference Papers

1. D. Skordoulis, Q. Ni, and C. Zarakovitis, “A Selective Delayed Chan-
nel Access (SDCA) for the High-Throughput IEEE 802.11n,” in Wireless
Communications and Networking Conference, 2009. WCNC 2009. IEEE.
IEEE, 2009, pp. 1–6.

2. D. Skordoulis, Q. Ni, G. Min, and K. Borg, “Adaptive Delayed Channel
Access for IEEE 802.11n WLANs,” in Circuits and Systems for Communi-
cations, 2008. ICCSC 2008. 4th IEEE International Conference on. IEEE,
2008, pp. 167–171.

3. D. Skordoulis, Q. Ni, U. Ali, and M. Hadjinicolaou, “Analysis of Con-
catenation and Packing Mechanisms in IEEE 802.11n,” in Proceedings of
the 6th Annual Postgraduate Symposium on the Convergence of Telecom-
munications, Networking and Broadcasting (PGNET07), 2007.

Posters

1. D. Skordoulis, Q. Ni and C. Zarakovitis, “Various Delay Channel Access
algorithms for the IEEE 802.11n”, Brunel University’s Graduate School
Research Student Poster Conference, 6-7 May 2009 2

1This article was cited over 100 times at Google Scholar in 2012
2Awarded with the “Best Poster Award” (ranked in Top-6)

v

Contents

Contents vi

List of Figures ix

List of Tables xi

List of Symbols xiii

List of Acronyms xvii

1 Introduction 1
1.1 Working Towards High-Throughput WLAN 2
1.2 Motivations . 3
1.3 Major Contributions . 5

1.3.1 Mitigating Overhead Further for Very High-Speed WLANs 5
1.3.2 Restoring Fairness in QoS Networks 6
1.3.3 Buffer Sizing for TCP Flows 6

1.4 Thesis Outline . 7

2 IEEE 802.11n 8
2.1 Throughput Limits of IEEE 802.11 8
2.2 Frame Aggregation Mechanisms 14

2.2.1 Aggregated MAC Service Data Unit 15
2.2.2 Aggregated MAC Protocol Data Unit 16
2.2.3 Two-Level Aggregation . 18

2.3 High-Throughput Model in OPNET 19
2.3.1 PHY & MAC Interaction and Interfaces 21
2.3.2 MAC Process Model Design 22
2.3.3 PHY Process Model Design 26

2.4 Performance Evaluation . 27
2.4.1 Point-to-Point HT Goodput Test 27
2.4.2 Point-to-Point Legacy STA with HT AP 29

vi

2.4.3 Point-to-Point Legacy and HT Co-existence 30
2.4.4 Frame Aggregation Evaluation 31

2.5 Summary . 36

3 Frame Aggregation as a M/G[a,b]/1/K Queue 37
3.1 Model Description . 39
3.2 Substitute Service Time Distribution Functions 42
3.3 Performance Measures . 43
3.4 Numerical Examples . 45
3.5 Summary . 50

4 IEEE 802.11n and QoS in Conjunction 51
4.1 IEEE 802.11e and EDCA . 51
4.2 An Analytical Model for EDCA 54

4.2.1 Saturation Throughput . 57
4.2.2 Saturation Delay . 58

4.3 Numerical Results Using MATLAB 59
4.4 Simulations Using OPNET . 63

4.4.1 Residential Scenario . 64
4.4.2 Large Enterprise Scenario 65
4.4.3 Hot Spot Scenario . 65

4.5 Summary . 68

5 Delayed Channel Access and the TCP Problem 69
5.1 A Description of the DCA . 70
5.2 The DCA Algorithm . 72
5.3 Performance Evaluation of DCA 75
5.4 TCP Problem with DCA . 79
5.5 A Brief Understanding of the TCP 81
5.6 Cause of the TCP Problem . 86
5.7 TCP Problem Over the Other Scenarios 93
5.8 Summary . 96

6 Adaptive DCA 97
6.1 Rethinking of DCA . 98
6.2 TCP Window Sizes . 99
6.3 Set σ Equal to Receiver Window 100
6.4 Adapting σ Towards TCP Flight Size 102
6.5 Design of Adaptive DCA . 105
6.6 Performance Evaluation of Adaptive DCA 110
6.7 Summary . 114

vii

7 Selective DCA 115
7.1 UDP & TCP Usage Over Large Networks 116
7.2 TCP-Aware DCA . 117
7.3 Design of Selective DCA . 120
7.4 Test-Bed for Packet Analyser . 123
7.5 Performance Evaluation of SDCA with OPNET 126
7.6 Summary . 129

8 Conclusions 130
8.1 Research Outcomes . 130
8.2 Future Research Directions . 133

A Usage Models 136
A.1 Model 1 - Residential . 136
A.2 Model 4 - Large Enterprise . 138
A.3 Model 6 - Hot Spot . 140
A.4 Model 17 - Point-to-Point High Throughput Goodput Test 141
A.5 Model 18 - Point-to-Point Legacy Throughput Test 142
A.6 Model 19 - Point-to-Point Legacy Sharing Throughput Test 143

B Source Codes of Packet Analyser and Parser 145
B.1 Packet Analyser . 145
B.2 Parser . 152

References 158

viii

List of Figures

2.1 The DCF basic operation . 9
2.2 Theoretical Throughput Limits for IEEE 802.11a 13
2.3 The A-MSDU structure . 16
2.4 The A-MPDU structure . 17
2.5 The two-level aggregation method 18
2.6 OPNET node model for IEEE 802.11n 22
2.7 The STD for the MAC process . 24
2.8 Transmission process flow [5] . 25
2.9 The STD for the PHY process . 26
2.10 Scenario 17 - Layout & General Parameters 28
2.11 Scenario 18 - Layout & Channel Parameters 29
2.12 Scenario 19 - Layout & Channel Parameters 30
2.13 Throughput vs. increased offered load by varying the packet size . 32
2.14 Throughput vs. increased offered load by varying the packet arrival

interval (packet size = 1 KB) . 33
2.15 Throughput vs. increased MSDU size 35

3.1 The basic M/G[a,b]/1/K queueing model 39
3.2 Waiting time behaviour . 46
3.3 Influence of service process . 47
3.4 Threshold dimensioning aspects 48
3.5 Server Utilization . 49
3.6 Blocking probability . 50

4.1 An example of EDCA operation 52
4.2 The state transition diagram for ACi 56
4.3 EDCA performance measurements as non-QoS STAs increase . . . 61
4.4 EDCA performance measurements as QoS STAs increasing 61
4.5 QoS STAs get more greedy . 62

5.1 An illustration of the channel access delay 71
5.2 Spatial distribution in OPNET for custom Scenario 2 76

ix

5.3 An illustration of a typical TCP connection 82
5.4 Goodput for Scenario 2 of TCP for various TCP window sizes with

and w/o DCA . 87
5.5 Maximal delay for Scenario 2 of TCP for various TCP window

sizes with and w/o DCA . 87
5.6 Layout of the single TCP flow scenario 88
5.7 OPNET results for single TCP flow scenario 89
5.8 TCP and DCA behaviour . 93

6.1 Goodput for TCP traffic vs rwnd for Scenario 2 with set σ 101
6.2 An example of DCA with adaptive σ 103
6.3 Goodput for TCP traffic vs rwnd for Scenario 2 with adaptive σ . 105
6.4 The flowchart of the original DCA algorithm 107
6.5 The flowchart of the proposed Adaptive DCA algorithm 108
6.6 Simple example of Adaptive DCA over time 109
6.7 Goodput for TCP traffic vs rwnd for Scenario 2 with ADCA . . . 111

7.1 Flowchart of TCP-Aware DCA 117
7.2 Goodput for low and high rwnd using TCP-Aware DCA 119
7.3 Average Delay for low and high rwnd using TCP-Aware DCA . . 119
7.4 Encapsulation Process . 122
7.5 A schematic of the test-bed set-up 123

8.1 Goodput for low and high rwnd using various DCA enhancements 133
8.2 Average Delay for low and high rwnd using various DCA enhance-

ments . 133

A.1 Spatial distribution in OPNET for Usage Model 1 137
A.2 Spatial distribution in OPNET for Usage Model 4 138
A.3 Spatial distribution in OPNET for Usage Model 6 140
A.4 Spatial distribution in OPNET for Usage Model 17 141
A.5 Spatial distribution in OPNET for Usage Model 18 143
A.6 Spatial distribution in OPNET for Usage Model 19 144

x

List of Tables

2.1 Timing Parameters of IEEE 802.11a 12
2.2 Existing IEEE 802.11 and HT model features 23
2.3 Test HT with Scenario 17 - Numerical Results 28
2.4 Test HT with Scenario 18 - Numerical Results 29
2.5 Test HT with Scenario 19 - Numerical Results 30

4.1 EDCA parameters for each AC 53
4.2 Detailed simulation results of 802.11n for Scenario 1 64
4.3 Detailed simulation results of 802.11n for Scenario 4 66
4.4 Detailed simulation results of 802.11n for Scenario 6 67

5.1 DCA algorithm’s parameters . 72
5.2 DCA state variables . 73
5.3 Role and configuration for each STA for custom Scenario 2 76
5.4 Numerical results for Scenario 2 w/o DCA 77
5.5 Numerical results for Scenario 2 with DCA 77
5.6 Numerical results for Scenario 1 with and w/o DCA 78
5.7 Numerical results for Scenario 4 with and w/o DCA 78
5.8 Numerical results for Scenario 6 with and w/o DCA 79
5.9 Numerical results for Scenario 2 for various TCP window sizes with

and w/o DCA . 80
5.10 TCP configuration for OPNET simulations 85
5.11 Configuration of the single TCP flow scenario 88
5.12 Triggering trend for different TCP buffer sizes 91
5.13 DCA results with large and small rwnd for Scenario 1 94
5.14 DCA results with large and small rwnd for Scenario 4 94
5.15 DCA results with large and small rwnd for Scenario 6 95

6.1 Respective σ values for each Receiver Window (rwnd) 101
6.2 Triggering trend for TCP buffer size 65,535 bytes 110
6.3 Numerical results for Scenario 2 with ADCA for low and high TCP

window sizes . 112

xi

6.4 ADCA results with large and small rwnd for Scenario 1 112
6.5 ADCA results with large and small rwnd for Scenario 4 113
6.6 ADCA results with large and small rwnd for Scenario 6 113

7.1 Test-bed traffic generation parameters 124
7.2 Ad-hoc test-bed results for inter-packet arrival expectancy 125
7.3 SDCA results with large and small rwnd for Scenario 2 127
7.4 SDCA results with large and small rwnd for Scenario 1 127
7.5 SDCA results with large and small rwnd for Scenario 4 128
7.6 SDCA results with large and small rwnd for Scenario 6 128

A.1 Role and configuration for each STA for Usage Model 1 137
A.2 Role and configuration for each STA for Usage Model 4 139
A.3 Role and configuration for each STA for Usage Model 6 141
A.4 Role and configuration for each STA for Usage Model 17 142
A.5 Role and configuration for each STA for Usage Model 18 142
A.6 Role and configuration for each STA for Usage Model 19 143

xii

List of Symbols

ACi access category with index i.
B(t) service time distribution function.
D deterministic distribution.
Di the saturation delay for the priority i class.
E(B) mean service time.
E(I) expected server’s ”idle” period.
E(Lq) mean queue length.
E(O) expected server’s ”busy” period.
E(S) mean number of packets in the server.
E(SA) mean number of packets per start.
E(W) mean waiting time.
E(X) expected value of r.v. X.
FS-to-FS Interval the time (in µs) to transmit one data frame with

ACK.
FrameRate the number of frames per second that can be

transmitted across.
G general distribution of the service times.
H2 hyperexponential distribution.
I channel idle period in slot time.
IAT stands for inter-arrival time but within this text it

is used to denote a DCA condition (t−TL < TB).
K size of capacity queue (waiting space).
KB Kilobyte (1 KB is equivalent to 1 000 bytes).
Li,retry the retry limit for the priority i class.
Lpacket MSDU length in bytes (octets).
Lpad the PPDU pad bit field (size in bits).
Ltail the PPDU tail bit field (size in bits).
M exponential distribution of the interarrival times.
Mb/s Megabit per second (1 Mb is equivalent to 1 000

000 bits).
N total number of ACs.

xiii

NMSDU the number of packets from upper layer that are
still in the aggregation buffer.

Ndbps number of data bits per symbol (function of PHY
rate).

Ni,retry the r.v. representing the total number of retries
for the priority i class.

PB blocking probability.
Rx receiver of the station or node.
Si the normalized saturation throughput for the pri-

ority i class.
TB the inter-arrival time of the traffic burst under re-

view.
TF the arrival time of the first packet from upper layer

in the current aggregation buffer.
TH the time to transmit the MAC & PHY headers

plus any pads or tails.
TL the arrival time of the last packet from upper

layer.
Tc collision period in slot time.
To the time of the sender’s time-out.
Ts successful transmission period in slot time.
Tx transmitter of the station or node.
TACK time (in µs) to transmit an acknowledgement.
TCA the channel-access starting time for an aggregate.
TE(Lpacket) the time to transmit the average payload.
TE(Lpacket∗) the time to transmit the payload of the longest

frame that has collide.
TTX the transmission starting time for an aggregate.
Tpreamble time (in µs) to transmit a PLCP preamble.
Tsignal time (in µs) to transmit a Signal Field.
Tslot the duration of a time slot set by the physical layer

encoding method in-use.
Tsymbol time (in µs) to transmit a Service Field (define

symbol clock and code).
TACKTimeout

time (in µs) to receive an ACK.
TxT ime time (in ms) to transmit one data frame.
Wi,j the current contention window size of ACi in stage

j.
X2 chi-square distribution.
Xi the r.v. representing the total number of slots

when the counter freezes for the priority i class.

xiv

Xi the r.v. representing the total number of backoff
slots for the priority i class.

δ the time of the propagation delay.
σincr the increment value of σ each time it decreases or

increases.
σmax the maximum value that σ can be assigned to.
σmin the minimum value that σ can be assigned to.
a threshold of the server starting rule.
b server capacity.
b(i, t) a random process representing the value of the

backoff counter at time t.
bi,j,l the stationary distribution of the Markov chain.
cB coefficient of variation of service time.
cX coefficient of variation of r.v. X.
i index of the priority class.
j backoff stage.
l backoff delay in time slots.
ni number of STAs in a given priority class i.
pb the probability that the channel is busy.
pi the probability that at a ACi a transmitted frame

collides and the correlated STA senses the medium
busy.

ps the probability that a successful transmission oc-
curs in a slot time.

ps,i the probability that a successful transmission oc-
curs in a slot time for the priority i class.

pt,i the probability that a station in the ACi priority
class transmits during a generic slot time.

s(i, t) a random process representing the backoff stage j.
t timer.
γ a ratio of the inter-arrival time to the channel ac-

cess delay.
λ average(mean) arrival rate.
µs microsecond is an SI unit of time equal to one

millionth of a second.
µ average(mean) service rate.
φ an oscillator factor that controls consecutive σ

triggers.
ψ an oscillator factor that controls consecutive IAT

triggers.
ρ server utilization factor.

xv

σ the maximum number of packets in the aggrega-
tion buffer before aggregation is triggered.

τ the maximal waiting time for a packet in the ag-
gregation buffer.

xvi

List of Acronyms

A-MPDU Aggregated MAC Protocol Data Unit.
A-MSDU Aggregated MAC Service Data Unit.
AC Access Category.
ACK Acknowledgement.
ADCA Adaptive DCA.
AIFS Arbitrary Inter-Frame Space.
AIFSN AIFS-number.
AP Access Point.

BAR Block Acknowledgement Request.
BDP Bandwidth-Delay Product.
BE Best Effort.
BER Bit-Error-Rate.
BK Background.
BlockAck Block Acknowledgement.

CCA Clear Channel Assessment.
CFB Controlled Frame-Bursting.
CPR Constant Packet Rate.
CRC Cyclic Redundancy Check.
CSMA/CA Carrier Sense Multiple Access with Collision avoidance.
CTS Clear To Send.
CW Contention Window.
cwnd Congestion Window.

D-ITG Distributed Internet Traffic Generator.
d.f. distribution function.
DA Destination Address.
DCA Delayed Channel Access.
DCF Distributed Coordination Function.
DES Discrete Event Simulation.
DIFS DCF Inter-Frame Space.

xvii

EDCA Enhanced Distributed Channel Access.
ETSI European Telecommunications Standards Institute.

FIFO First-In-First-Out.
FIN Finalize.
FSM Finite State Machine.
FTP File Transfer Protocol.

HCCA HCF Controlled Channel Access.
HCF Hybrid Coordination Function.
HDTV High-Definition television.
HT High Throughput.
HTSG High-Throughput Study Group.

i.i.d. independent identically distributed.
IANA Internet Assigned Numbers Authority.
IBSS Independent Basic Service Set.
ICI Interface Control Information.
IDT Inter-Departure Time.
IEEE Institute of Electrical and Electronics Engineers.
IETF Internet Engineering Task Force.
IF Internet File.
IFS Inter-Frame Space.
IP Internet Protocol.

KP Kernel Procedure.

L.S.T. Laplace-Stieltjes transform.
LLC Logical Link Control.
LoS Line of Sight.

MAC Media Access Control.
MCS Modulation and Coding Scheme.
MIMO Multiple-Input / Multiple-Output.
MMPP Markov-Modulated Poisson Process.
MPDU MAC Protocol Data Unit.
MS Microsoft.
MSDU MAC Service Data Unit.
MSS Maximum Segment Size.
MTU Maximum Transmission Unit.

NP Non-deterministic Polynomial-time.

OFDM Orthogonal Frequency Division Multiplexing.

xviii

OL Offered Load.
OPNET Optimized Network Engineering Tool.
OS Operating System.
OSI Open Systems Interconnection.

P2P peer-to-peer.
PASTA Poisson Arrivals See Time Averages.
PCF Point Coordination Function.
PHY Physical.
PLCP Physical Layer Convergence Protocol.
PLR Packet Loss Rate.
PPDU PLCP Protocol Data Unit.
PSDU PHY Service Data Unit.
PSMP Power Save Multi-Poll.

QAM Quadrature Amplitude Modulation.
QoS Quality of Service.

r.v. random variable.
RA Receiver Address.
RD Reverse Direction.
RF Radio Frequency.
RTO Retransmission Time-Out.
RTS Request To Send.
RTT Round Trip Time.
rwnd Receiver Window.

SA Sender Address.
SAP Service Access Point.
SDCA Selective DCA.
SDTV Standard-Definition television.
SIFS Short Inter-Frame Space.
SISO Single-Input / Single-Output.
SNR Signal-to-Noise Ration.
ssthresh slow start threshold.
STA station.
STD State Transition Diagram.
SVM Support Vector Machine.
SYN Synchronize.

TA Transmitter Address.
TCP Transmission Control Protocol.

xix

TGn Task Group N.
TID Traffic Identifier.
ToS Type of Service.
TSPEC Traffic Specification.
TTL Theoretical Throughput Limit.
TUL Throughput Upper Limit.
TXNAV Transmitter Network Allocation Vector.
TXOP Transmission Opportunity.

UDP User Datagram Protocol.
UP User Priority.

VI Video.
VO Voice.
VoIP Voice over IP.
VPR Variable Packet Rate.

WG Working Group.
WLAN Wireless Local Area Network.
WWW World Wide Web.

ZF Zero Forcing.

xx

Chapter 1

Introduction

Over the last decade, the use of wireless and mobile devices has expanded rapidly.

The advantages that these systems possess, such as interoperability, mobility,

flexibility and cost effective, have gained a huge support across enterprises, homes,

and service providers. Mobile wireless connectivity has changed our lifestyles

dramatically. It allows people to transmit information over the “air” no matter

how the protocols are designed, what data they want to share, or where their

devices are physically located. The preliminary inspiration for wireless access

was initiative for Mobile Internet and it seems that this has changed our lives

almost as much as the advent of the Internet and World Wide Web (WWW)

itself. Three major factors have had a great input to this evolution: allocation of

unlicensed frequency bands, cheaper wireless components and standardization.

The most popular wireless networks are the Wireless Local Area Networks

(WLANs). Examples of such networks can be found not only in major corpora-

tions but also in universities, hospitals, airports, libraries, hotels, residences and

even in local shops. WLANs are considered as a viable communication system

and excellent complement to wired ones, studies so that users have the habit to

use wireless network even for heavy bandwidth applications, such as streaming

or file sharing, despite the presence of a high-speed wired fibre-optic links. Evi-

dently, the convenience of a wireless solution outweighs the limited bandwidth of

an Institute of Electrical and Electronics Engineers (IEEE) 802.11 network. How-

ever, many unresolved issues still exist and part of the problem is the increasing

end-user’s prospects along with the volatile demands from new higher data rate

1

1. INTRODUCTION

applications, such as High-Definition television (HDTV), video teleconferencing,

multimedia streaming, VoIP, file transfer, and on-line gaming. Hence, a lot of

research is being carried out that aims to provide higher data rates, improved

security and most importantly for real-time systems, better Quality of Service

(QoS).

1.1 Working Towards High-Throughput WLAN

In June 1997, a standard for WLAN connectivity, known as IEEE 802.11 [6], was

emerged by IEEE. At the same time, other notable developers of industrial stan-

dards had approached alternative solutions, such as HiperLAN [7] by European

Telecommunications Standards Institute (ETSI). However, IEEE’s proposition

was and still remains to be considered as a universal leading standard. The

legacy IEEE 802.11 standard specifies the Media Access Control (MAC) sub-

layer and features various original modulation techniques for the Physical (PHY)

layer. Since it was first introduced, numerous changes (referred as amendments)

have been applied to the original IEEE 802.11 with the scope to offer capabilities

of higher throughputs and QoS support.

Meanwhile, the IEEE 802.11 Working Group was seeking alternative methods

to increase data rates because upcoming multimedia and real-time applications

begun to require higher throughputs [8]. In July 2002, the IEEE 802.11 standard

Working Group (WG) established the High-Throughput Study Group (HTSG)

with the aim to achieve promising higher data rate solutions by means of existing

PHY and MAC mechanisms [8, 9]. Their first interest was to achieve a MAC

data throughput over 100 Mb/s using the IEEE 802.11a standard [10]. However,

their objective proved to be infeasible as the estimated throughput bounds well

below the theoretical maximum link rate because of the existing PHY and MAC

overhead [11]. In September 2003, the HTSG set off the IEEE 802.11n (‘n’ stands

for next-generation) resolution in order to compose an High Throughput (HT)

extension of the current WLAN standard that will increase transmission rate and

reduce severe overhead. The main goal of IEEE 802.11 Task Group N (TGn) was

to define an amendment that would have maximum data throughput of at least

100 Mb/s, as measured at the MAC data Service Access Point (SAP), and at the

2

1. INTRODUCTION

same time to allow coexistence with legacy devices.

Some of the proposed features are innovative extensions of the IEEE 802.11e

[12], an amendment that includes efficient MAC improvements which they can

also increase throughput but its objective is to provide QoS. After numerous

ballots and excessive delays, in 2007, the consortium presented an advanced HT

amendment, known as IEEE 802.11n standard [13]. The specifications offer sig-

nificant increase in the maximum net data rate from 54 Mb/s to 600 Mb/s1.

Some of the most popular enhancements introduced by the new standard are

Multiple-Input / Multiple-Output (MIMO) and Frame Aggregation.

1.2 Motivations

A major dilemma while researching new proposals is how new ideas can be co-

alesced with previous and current standards. Moreover, additional factors need

to be taken in mind, such as user requirements, service capabilities, physical

infrastructure, available bandwidth, financial resources, etc. For example, nowa-

days, real-time applications such as Voice over IP (VoIP) and video broadcasting

have become widely popular but also have strict performance constraints (delay

boundaries). However, older MAC schemes seemed adequate to resolve these is-

sues since there were only designed for supporting simple, non-detrimental and

insensitive traffic with several flaws, such as wasting channel resources and having

difficulties to calculate transmission times [14]. Consequently, new mechanisms

that provide acceptable levels of QoS using differentiation and prioritisation had

to be defined, resulting into the emerged IEEE 802.11e amendment [12].

For the purpose of QoS within WLANs, the amendment proposes Hybrid Co-

ordination Function (HCF). The function offers two separate methods for channel

access, the HCF Controlled Channel Access (HCCA) and the Enhanced Dis-

tributed Channel Access (EDCA) for synchronous and asynchronous data trans-

mission, respectively. So, a decentralized type of wireless network (e.g. ad hoc),

manages distributed channel access manner with differentiated services by let-

ting the associated applications to set the required level of QoS importance for

1acquired only under certain conditions and with all the optional features set active

3

1. INTRODUCTION

their offered traffic. These can be defined with specific tags known as User Pri-

oritys (UPs) and are included within the forwarded packet’s header elements.

Primitively speaking, the higher the UP assigned to a packet, the greater the

delay-constraints from the originated application. During the priority selection

process, the packets are mapped to separate Access Categorys (ACs) with their

own queue buffer and a unique set of parameters that control the average waiting

period in their queue buffers. The main point is that higher priority categories

are capable of acquiring more bandwidth than the lower priority categories when

they are competing against each other and since channel access is “expensive” this

can cause starvation to lower ACs. Although this situation can induce unfairness

to the lower ACs, this is the most adequate mechanism for the higher ACs to

attain channel access within the delay-constraints appointed from the originated

application.

As we mentioned earlier, IEEE 802.11n specification document builds upon

these probabilistic priority mechanisms along with other MAC enhancements.

Nevertheless, the maximal ideal throughput is bounded by a maximum relative

MAC data rate that is just over half of the average peak PHY rate. From the

bottom layer perspective, this behaviour is mainly caused because of the packet’s

supplemented overhead, which is the additional required information preceding

the transmission of each payload. This deficiency can be tackled or treated with

a method known as frame aggregation. There are two main types of aggregation

proposed in the IEEE 802.11n standard and both follow the same principle that

of: all packets contained in the same transmission buffer and destined to the same

receiver can be concatenated within a single frame. However, in the interest to

increase the aggregated size, there is a need of packets to be piled in the stack.

But, as the waiting period is decreasing, so are the number of packets that trail the

first arrived packet, consequently the aggregate size is small. In most cases, frame

aggregation adheres due to the EDCA scheduler’s priority mechanism, resulting

in the network’s poor overall performance. There is a trade-off of choice that

has to be taken into account when we want to improve network performance,

minimizing the waiting time or maximizing utilization, thus efficiency.

In general, real-time video and audio streaming applications are designed to be

more persistent to occasional lost packets, thus User Datagram Protocol (UDP)

4

1. INTRODUCTION

is a more suitable and flexible protocol suite to use. But, in order to support

UDP-based real-time applications over the Internet, it is necessary to provide

bandwidth to the UDP applications within the network so that their performance

will not be seriously affected during periods of congestion. UDP flows do not

typically back off when they encounter congestion, but aggressively use up more

bandwidth than Transmission Control Protocol (TCP) flows. On the other hand,

TCP flows emphasize reliability over reduced latency, thus are extensively utilized

by heavy duty applications, such as peer-to-peer (P2P), WWW, File Transfer

Protocol (FTP), etc. Nevertheless, the TCP protocol imposes many issues in

conjunction with the properties of the wireless medium [15, 16, 17] and IEEE

802.11e’s probabilistic prioritization mechanism [18].

Our aim in this thesis is to address these key challenges and act accordingly.

1.3 Major Contributions

1.3.1 Mitigating Overhead Further for Very High-Speed

WLANs

The new IEEE 802.11n standard provides enough capacity to service immense

offered loads. Nevertheless, the PHY enhancements are not sufficient to guaran-

tee significant throughput performance. The principle of Frame Aggregation is to

form larger frames for transmission by collecting multiple packets inside an aggre-

gate buffer [1, 4]. Currently, when a frame arrives in the transmission queue, the

Carrier Sense Multiple Access with Collision avoidance (CSMA/CA) scheduling

mechanism directs the station (STA) when to access the wireless medium. There

are four (4) ACs defined in EDCA where they have different priorities in order to

differentiate services for separate applications. Therefore, a higher priority flow

acquires more bandwidth than a lower priority one but the former tends to have

smaller aggregate sizes due to shorter waiting time. To understand the impact

of this behaviour, we first develop an analytical model for the aggregate buffer

queue. Mathematical analysis show that for networks with small load rates, we

need to intentionally defer the channel access procedure in order to introduce

additional packets in the aggregate buffer. We therefore adapt the basic charac-

5

1. INTRODUCTION

teristics of Delayed Channel Access (DCA) [19] and extend it further in order to

provide support for both UDP and TCP protocols. Results also suggest that DCA

based algorithms are a promising MAC technique for very high-speed WLANs.

1.3.2 Restoring Fairness in QoS Networks

The QoS support in EDCA is provided by the introduction of prioritization via

distinguishing the traffic flows into ACs. Consequently, there are distinct sets of

contending entities with relative priority in medium access per AC. The main idea

is to use four (4) coupled CSMA/CA queue mechanisms one for each AC that

behaves as a single enhanced Distributed Coordination Function (DCF) contend-

ing entity, and all to contend simultaneously to access the same wireless medium.

However, each AC is parametrised with different set of values, so higher priority

traffic has certain parameters to allow it to gain access to the channel earlier and

more often than the lower priority traffic. We use Model Analysis to describe

the magnitude of impact that high ACs have over lower ACs. Nevertheless, this

unfair behaviour is apparent and important for applications to meet the QoS

requirements. But with emerging technologies, high priority applications have

become more demanding and acquire further channel resources. Through exten-

sive simulation runs, we demonstrate that DCA and its extensions can provide

great fairness over lower ACs by deferring the transmission for all flows, includ-

ing high ACs. Results show that for all contenting entities great improvement

over the channel utilization and the total throughput while still obeying all QoS

requirements.

1.3.3 Buffer Sizing for TCP Flows

During the DCA research, we observe that there can be a close interference be-

tween DCA, and with the MAC layer in general, and the queue size assigned

to the TCP Window buffer. Surprisingly, this buffering issue has received lit-

tle attention in the 802.11 literature, probably because it is only recently that

high-throughput wireless networks have become main research subjects for the

industry and the academia. The classical rule of thumb is to provision buffers to

be equal to the Bandwidth-Delay Product (BDP), which is defined as the band-

6

1. INTRODUCTION

width of the link multiplied by the average delay of the flows utilising this link

[20]. However, Operating Systems (OSs) and firmware specifications set as max-

imum TCP Window to much lower values and the unstable conditions that take

place in a WLAN, such as channel contention, link quality and random nature of

the channel access scheduling operation, makes it difficult to determine the size of

a TCP Window at a certain point. So, we first consider an adapting sizing algo-

rithm that is based on certain measurements of the current and previous packet

traffic, and feedback from DCA’s triggering mechanism. Our second approach

is to classify flows based on duration, number and size of packets per flow, and

inter-packet arrival time. In addition, with the aid of a cognitive agent, the pro-

posed extension will be able to determine the type of transportation protocol that

these flows use. We design and implement two distinct enhancements for DCA,

known as Adaptive DCA and Selective DCA. Each has a different operational

approach but the end objective is the same. The effectiveness of these algorithms

is demonstrated via extensive simulations and experimental measurements.

1.4 Thesis Outline

This thesis is organised as follows. In Chapter 2, we describe and evaluate the

proposed MAC enhancement of the Frame Aggregation method but firstly we

indicate the throughput limitations of the archetype IEEE 802.11 standard. In

Chapter 3, we portray Frame Aggregation as an M/G[a,b]/1/K queueing model,

then we review the model definition and present numerical results for various

classes of service processes, different service starting or batch collection rules un-

der various load conditions. In Chapter 4, we discuss and demonstrate the luck of

performance improvement of IEEE 802.11n in conjunction with QoS prioritization

mechanisms. In Chapter 5, we review the motivation, design and effectiveness

of DCA, Also, we investigate and explain the negative behaviour of DCA with

TCP traffic flows. In Chapter 6 and Chapter 7, we describe and evaluate two

distinct enhancements for DCA, known as Adaptive DCA and Selective DCA, re-

spectively. The thesis concludes in Chapter 8 and discusses some ideas for future

work.

7

Chapter 2

IEEE 802.11n

Some of TGn’s initial draft proposals, eventually led to today’s standard [13],

introduced as main techniques for the PHY the utilization of MIMO antennas

with Orthogonal Frequency Division Multiplexing (OFDM), plus various channel

binding schemes, and for the MAC the use of frame aggregation with multiple

protection schemes, designed to allow coexistence of ‘n’ with “legacy” devices.

Within this chapter, we describe and evaluate the proposed MAC enhancement of

the Frame Aggregation method but firstly we indicate the throughput limitations

of the archetype IEEE 802.11 standard.

2.1 Throughput Limits of IEEE 802.11

To understand the inefficiency of 802.11 over higher data rates, we must briefly

describe the legacy DCF. The MAC architecture is based on the logical coordi-

nation functions that determine who and when to access the wireless medium

at any time. It supports fragmentation and encryption and acts as an interface

between the Logical Link Control (LLC) sub-layer and the PHY layer. In the

legacy 802.11 standard, there are two types of access schemes: the mandatory

DCF, which is based on the CSMA/CA mechanism; and the optional Point Co-

ordination Function (PCF), which is based on a poll-and-response mechanism.

The former method, the one that interest us, operates with a First-In-First-Out

(FIFO) transmission queue that is in situ for receiving and buffering incoming

8

2. IEEE 802.11N

data from the higher layers. The basic operation of DCF is illustrated in Fig-

ure 2.1.

Figure 2.1: The DCF basic operation

Following a frame, also known as a MAC Service Data Unit (MSDU), arriving

from the LLC at the head of the transmission queue, the DCF operation instructs

the MAC to wait for a global defined interframe interval called DCF Inter-Frame

Space (DIFS) before any other actions can be taken. In addition within the

QoS amendment there is a set of intervals known as Arbitrary Inter-Frame Space

(AIFS). If the PHY reports back to the MAC that the wireless channel is busy,

the STA’s MAC halts until the medium becomes free. On the other hand, if the

medium remains idle during DIFS deference, the STA enters a back-off procedure

where a slot is selected from a random back-off counter within a Contention

Window (CW). Next, the counter starts a decrement process while the channel

remains idle for each slot interval. When the counter reaches zero, the STA

obtains an affirmation to send the information through the wireless link.

Now, each WLAN point that receives a data frame, utilizes an error check-

ing processes to detect any presence of received errors. If no errors are found,

it sends back an Acknowledgement (ACK) frame after a specified Short Inter-

Frame Space (SIFS) to verify that the information was successfully received. If

the sending STA does not receive an ACK after SIFS, it will assume that the

communication was broken or interfered, and it will start a new DCF process

9

2. IEEE 802.11N

for retransmission. Should there be a case of collision, then the MAC extends

its CW, selects a new slot, and repeats the previous steps. Finally, there is an

optional mechanism known as Request To Send (RTS)/Clear To Send (CTS) that

intends to resolve the so-called hidden and exposed node scenarios that usually

occur in ad-hoc networks. With RTS/CTS, after a STA is granted access to trans-

mit, it first sends an RTS frame and then holds back for the CTS response from

the receiver. Obviously, this situation can be disadvantageous if the actual data

frame size is small because the RTS/CTS exchange produces further overhead

and consequently reduces the effective throughput. For reasons of simplicity, the

RTS/CTS method is omitted on the following examples.

From Figure 2.1, we can clearly comprehend the consequences of that hefty

overhead on the system throughput. The figure exemplifies the required proce-

dure that each single packet traverses from the time it arrives at the MAC until it

is successfully received by the receiver, with different headers and tails added over

different sub-layers on the original payload. Note that [6] states that all Physi-

cal Layer Convergence Protocol (PLCP) preambles and PLCP headers shall be

transmitted using the basic link rate, which is much less than the rate used for

data transmission and most of the time the minimal rate. A complete transmis-

sion cycle of a simple DCF consists of DIFS deferral, back off, data transmission,

SIFS deferral, ACK transmission, and propagation delay, so to transmit a data

packet, a large overhead is accumulated. Also, we assume that the transmission

would be successful with the first attempt and no re-transmissions are needed,

something that would exponentially affect the existing overhead.

Be aware that the overhead shown does not correspond to real time lengths, as

payload varies, but it shows the additional time that is required to have a success-

ful transmission. So, the higher the packet rate meaning the number of packets

that are injected to the MAC per second the higher the relative overhead the

system introduces. This assumption can be easily demonstrated through a simple

numerical analysis. The calculation methodology follows the recommendations

given in [11, 21, 22] for an IEEE 802.11a OFDM network since the TGn’s proposal

follows the same modulation but on higher rates. For the sake of completeness,

we present the four-step methodology that derives the Theoretical Throughput

Limit (TTL), also known as Throughput Upper Limit (TUL).

10

2. IEEE 802.11N

For simplification, the TTL is calculated from constant-size data frames trans-

mitted over a single unidirectional data path when the system is in the best case

scenario. In a best case scenario, we assume that at any transmission cycle the

channel is idle with negligible Bit-Error-Rate (BER), there are no losses from col-

lisions or packet overflow over the receiver’s side, and that there is only one STA

that continually transmits frames which accordingly are received successfully and

acknowledged by the receiver. Also, we do not consider fragmentation, RTS/CTS

control and management frame overhead, such as beacons and association frames.

The TTL calculation methodology is based on four sequential steps:

1. Calculate TxT ime – the time in microseconds to transmit one data frame,

including frame preamble, frame header, and Radio Frequency (RF) mod-

ulation parameter fields.

TxT ime = Tpreamble + Tsignal + Tsymbol ∗

⌈
Lpad + (Lpayload ∗ 8) + Ltail

Ndbps

⌉

where Tpreamble, Tsignal, Tsymbol, Lpad, Lpacket, Ltail and Ndbps, represent the

time (in µs) to transmit a PLCP preamble, a signal field, a service field

(define symbol clock and code), the length of the PLCP Protocol Data

Unit (PPDU) pad bit field, the packet’s size in octets, the PPDU tail bit

field and the number of data bits per symbol, respectively.

2. Calculate FS-to-FS Interval – the time in microseconds to transmit one

data frame, with acknowledgement (TACK), including SIFS, DIFS and back-

off time. For backoff time, the average backoff, B̄O, in the best case is used,

where the medium is available at first attempt and the number of backoff

slots is selected from [1 . . . CWmin].

FS-to-FS Interval = TxT ime+ SIFS + TACK +DIFS + B̄O

where B̄O = (CWmin/2) ∗ Slot Time.

11

2. IEEE 802.11N

3. Calculate FrameRate – the number of frames per second that can be trans-

mitted across the air interface.

Frame Rate = FS-to-FS Interval−1 ∗ 106

4. Derive TTL in Mb/s – this value represents an upper boundary on 802.11

network performance at the MSDU level.

TTL = Frame Rate ∗ (Lpayload ∗ 8) ∗ 10−6

The default timing parameters of the IEEE 802.11a necessary for the calcula-

tion of the TTL are listed in Table 2.1. Note that since the maximum bandwidth

that the 802.11a can support is bounded to 54 Mb/s, in order to test higher

PHY rates, we use a scaling factor over both basic and control rates. Figure 2.2

shows the impact of the PHY and MAC overheads have over the maximum ideal

throughput that the network provides over various payload’s sizes or link rates.

Parameter Value Parameter Value

Tpreamble 16 µs Lpad 16 bits
Tsignal 4 µs Lpayload variable
Tsymbol 4 µs Ltail 6 bits
TACK @ 24 Mb/s 28 µs Ndbps @ 54 Mb/s 216 dbps
SIFS 16 µs DIFS 32 µs
CWmin 15 Slot Time 9 µs

Table 2.1: Timing Parameters of IEEE 802.11a

Figure 2.2a shows the TTL for various payload sizes, starting from 0 bytes

up to the maximal permitted MSDU size of 2, 304 bytes. When the payload size

takes its highest value, the achieved MAC Throughput is bounded at around

36.12 Mb/s, well below the offered raw PHY data rate of 54 Mb/s. Relatively,

over the same link data rate the throughput performance degrades further as the

packet length reduces. Previous research has shown that on average, Internet

flows embody MSDU packets with sizes less than 200 bytes. Therefore, it is

essential to introduce a method the wireless medium can be utilized efficiently by

12

2. IEEE 802.11N

using larger frame sizes. Figure 2.2b illustrates the TTL graphs for four different

payload sizes: 256, 512, 1, 024 and 2, 304 bytes, while the PHY data rate is

increased to extremely high values. From the shape of the curves we can deduce

that the graphs for 256, 512 and 1, 024 bytes of MSDU length sizes are bounded

to below 11 Mb/s, 23 Mb/s and 46 Mb/s, respectively, with no potentials to

increase further. Conjointly, when we circulate larger MSDUs, the maximum

TTL that is actualized at the fringe of our simulation is 99 Mb/s, just below

TGn’s main goal of 100 Mb/s but then again a raw data rate to the region of

1, 080 Mb/s is unrealistic in today’s wireless networks.

(a) Throughput vs. Payload Size (b) Throughput vs. PHY Date Rate

Figure 2.2: Theoretical Throughput Limits for IEEE 802.11a

In conclusion, the above analysis has shown that the maximum ideal MAC

throughput is bound well below the offered peak raw PHY rate, even if that

increases to infinity. The reason behind this limitation is the excessive overhead

that is needed when a single packet is transmitted and since this information can

not be omitted, it is essential to adopt alternative innovative techniques in order

to reach a target of higher than 100 Mb/s for the MAC throughput. An effective

resolution is to reduce the frequency of the overhead by frame concatenation or

aggregation, in other words join multiple packets together and transmit them as

a single data frame. Various methods of aggregation have been proposed, but

all of them follow a similar logic [13, 23, 24, 25, 26, 27, 28]. The are two main

types of aggregation established by TGn and these are described in detail in the

following section.

13

2. IEEE 802.11N

2.2 Frame Aggregation Mechanisms

The legacy IEEE 802.11 WLAN efficiency is severely compromised as the data

rate increases since the throughput is increasingly dominated by the overheads

for high data rates, as shown above. Therefore, reducing MAC overheads and

pursuing higher data rates are both necessary for designing and implementing

HT WLANs. Frame aggregation is one of the various MAC enhancements that

can maximize goodput and at the same time increase efficiency. Data aggrega-

tion was first introduced in the QoS amendment of the standard, IEEE 802.11e

[12], and was carried out through a process known as Controlled Frame-Bursting

(CFB) [29, 30, 31, 32, 33, 34, 35, 36, 37]. A station gaining the channel trans-

mits the frames available in its buffer successively provided that the duration of

transmission does not exceed a certain threshold, referred to as the Transmis-

sion Opportunity (TXOP) limit. Each frame is acknowledged by an ACK after

a SIFS interval. The next frame is then transmitted immediately upon receiv-

ing this ACK. If the transmission of any frame fails the burst is terminated and

the station contends again for the channel to retransmit the failed frame. Such

schemes benefit from amortizing the control overhead over multiple data packets.

Frame aggregation for a HT is specified in [13] and is one of the various MAC

enhancements that maximizes goodput and increases efficiency. There are two

main ways to perform frame aggregation, known as Aggregated MAC Service

Data Unit (A-MSDU) and Aggregated MAC Protocol Data Unit (A-MPDU).

The main distinction between MSDU and MAC Protocol Data Unit (MPDU) is

that the former corresponds to the information that is imported to or exported

from the upper part of the MAC sub-layer, from or to the higher layers, respec-

tively, while the later relates to the information that is exchanged from or to the

physical link by MAC’s lower part; assuming that we are referencing to the Open

Systems Interconnection (OSI) Model [38]. Aggregate exchange sequences are

made possible with a protocol that acknowledges multiple MPDUs with a single

Block Acknowledgement (BlockAck) in response to a Block Acknowledgement

Request (BAR) [39, 40].

14

2. IEEE 802.11N

2.2.1 Aggregated MAC Service Data Unit

The principle of the A-MSDU is to allow multiple MSDUs being sent to the same

receiver, concatenated in a single MPDU. This definitely improves the efficiency

of the MAC layer, specifically on small packets over congested networks, which

is the most persistent and prevalent case [41, 42, 43]. This supporting function

for A-MSDU within the IEEE 802.11n is mandatory at the receiver. However,

the transmitter is free to choose the use of an A-MSDU on the Traffic Specifi-

cation (TSPEC). In order for an A-MSDU to be formed, a layer at the top of

the MAC receives and buffers multiple packets (MSDUs). The A-MSDU is com-

pleted either when the size of the waiting packets reaches the maximal A-MSDU

threshold or the maximal delay of the oldest packet reaches a pre-assigned value.

Its maximum length can be either 3, 839 or 7, 935 bytes, this is 256 bytes shorter

than the maximum PHY PHY Service Data Unit (PSDU) length (4, 095 or 8, 191

bytes respectively), as predicted space is allocated for future status or control

information. The size can be found in the HT Capabilities Element that is ad-

vertised from an HT STA in order to declare its HT status. The maximal delay

can be set for 1 µs or an independent value for every AC.

There are also certain constraints when constructing an A-MSDU: a) all MS-

DUs must have the same Traffic Identifier (TID) value, b) the A-MSDU’s lifetime

should be corresponding to the maximum lifetime of its constituent elements, and

c) the Destination Address (DA) and Sender Address (SA) parameter values in

the subframe header must match to the same Receiver Address (RA) and Trans-

mitter Address (TA) in the MAC header. Thus, broadcasting or multicasting is

not allowed.

Figure 2.3 describes a simple structure of a carrier MPDU which contains an

A-MSDU. Each subframe consists of a subframe header followed by the packet

arrived from the LLC and [0 . . . 3] bytes of padding. The padding size depends

on the rule that each subframe, except for the last one, should be a multiple of

four bytes, so the end-receiver can approximate the beginning of the next sub-

frame. A major drawback of using A-MSDU is under error-prone channels. By

compressing all MSDUs into a single MPDU with a single sequence number, for

any subframes that are corrupted, the entire A-MSDU will have to be retrans-

15

2. IEEE 802.11N

Figure 2.3: The A-MSDU structure

mitted. This situation could easily lead to poor utilization of the channel in

case of transmission errors and has been addressed at [35, 26] where additional

frame structures or optimum frame sizes have been proposed. This will definitely

improve performance under noisy channels.

2.2.2 Aggregated MAC Protocol Data Unit

The concept of A-MPDU aggregation is to join multiple MPDU subframes with

a single leading PHY header. A key difference from A-MSDU aggregation is that

A-MPDU functions after the MAC header encapsulation process. Consequently,

A-MSDU’s restriction of aggregating frames with matching TIDs is not a factor

with A-MPDUs. However, all the MPDUs within an A-MPDU must be addressed

to the same RA. Also, there is no waiting/holding time to form an A-MPDU so

the amount of MPDUs to be aggregated is totally dependant on the number of

packets already in the transmission queue. The maximum length that an A-

MPDU can obtain, in other words the maximum length of the PSDU that may

be received, is 65, 535 bytes but it can be further constrained according to the

STA’s capabilities found in the HT Capabilities element. The utmost number of

subframes that can be held is 64 since a BlockAck bitmap field is 128 bytes in

16

2. IEEE 802.11N

length where each frame is mapped using two bytes. Note that these two bytes

are required to acknowledge up to 16 fragments but since A-MPDU does not

allow fragmentation these extra bits are excessive. As a result, a new variant has

been implemented, known as Compressed Block ACK [44] with bitmap field of

eight bytes long. Finally, each subframe’s size is limited to 4, 095 bytes as the

length of a PPDU can not exceed 5.46 ms time limit; this can be derived from

the maximum length divided by the lowest PHY rate which is 6 Mb/s and is the

highest duration of an MPDU in IEEE 802.11a.

Figure 2.4: The A-MPDU structure

A basic illustration of the A-MPDU structure can be seen in Figure 2.4. A

set of fields, known as delimiter are inserted before each MPDU and padding bits

varied from [0 . . . 3] are positioned afterwards, at the tail of the frame. The basic

operation of the delimiter header is to define the MPDU’s position and length

inside the aggregated frame. It is noted that the Cyclic Redundancy Check

(CRC) field in the delimiter verifies the authenticity of the 16 preceding bits.

The padding bytes are added such that each MPDU is a multiple of four bytes

in length, which can assist subframe delineation at the receiver’s side. In other

words, the MPDU delimiters and padding bytes determine the structure of the

17

2. IEEE 802.11N

A-MPDU. Now, once the A-MPDU is received a de-aggregation process initiates.

First it checks the MPDU delimiter for any errors based on the CRC’s value. If

it is correct, the MPDU is extracted and it continues with the next subframe

till it reaches the end of the PSDU. Otherwise, it checks every four bytes until

it locates a valid delimiter or the end of the PSDU. Delimiter’s signature has a

unique pattern in order to assist the de-aggregation process while scanning for

delimiters.

2.2.3 Two-Level Aggregation

Figure 2.5: The two-level aggregation method

A two-level frame aggregation comprises a blend of A-MSDU and A-MPDU

over two stages. In Figure 2.5 we illustrate how this new scheme can be achieved.

The basic operation is explained as follows. In the first stage, if any MSDUs that

are buffered in the A-MSDU provisional storage area have the same TID and DA

then these data units can be compacted into a single A-MSDU. If the TIDs are

different, all these aberrant frames can move over the second stage where they will

18

2. IEEE 802.11N

be packed together with any A-MSDUs derived from the first stage or other single

MSDUs by using A-MPDU aggregation. However, it has to be mentioned that

given that for an A-MPDU data frame the maximum MPDU length is limited

to 4, 095 bytes, then any A-MSDUs or MSDUs with lengths larger than this

threshold cannot be transmitted. Conjointly, any fragments from an A-MSDU

or MSDUs cannot be included in an A-MPDU either. In the next section we are

going to evaluate how this synthesis is more efficient in most of the cases than

A-MPDU and A-MSDU aggregation operating alone.

2.3 High-Throughput Model in OPNET

A gradually more established technique for network performance analysis is Sim-

ulation Modelling. Researchers need to demonstrate and verify that their study

is accurate. So, they form simulations through specified models and compare the

output figures with their hypothesis. There are two types of analysis that they

can perform: analytical modelling [45, 46] and computer simulation (or computa-

tional model) [47, 48]. Analytical modelling comprises of mathematical analysis,

in other words representing a network design as a set of equations, variables and

functions. The main drawback is the over simplistic view of the whole distributed

system and the lack of ability to simulate the dynamic nature of a network. The

investigation of a complex structure needs a discrete event simulation applica-

tion, which can process the time that would be associated with real events in a

real-life situation. Sometimes the set of equations that need to be solved may

be Non-deterministic Polynomial-time (NP)-complete, certain classes of problems

are not solvable in realistic time therefore approximations are usually taken. The

computer simulation option uses a computer program, a valuable study tool over

today’s networks with complex architectures and topologies, this attempts to

simulate an abstract model of a particular system that is too complicated for an-

alytical solutions [49] [50]. Simulation allows the evaluation of network protocols

under varying network conditions. Studying protocols, both individually and as

they interact with other protocols, under a wide range of conditions is critical to

explore and understand the behaviour and characteristics of these protocols.

Test-beds and laboratory experiments are also important approaches to net-

19

2. IEEE 802.11N

work research. Since they use real code, experiments run in test-beds or labs

automatically capture important details that might be missed in a simulation.

This approach also has drawbacks as these are expensive to build, can be diffi-

cult to reconfigure and share, and have limited flexibility. Note that whatever

approach a researcher follows, for the purpose of a general reassessment he may

also want to compare the derived results of his study with an alternative method.

However, the outputs and results may prove to be dissimilar and not correla-

tive. A comparison study of two popular simulators with a live network test-bed

showed that simulators may not always model the behaviour of a real network

adequately [51].

For the evaluation of our research, the majority of the performance assess-

ments will be conducted with the use of computer simulations using a network

tool known as Optimized Network Engineering Tool (OPNET) Modeler [52]. OP-

NET Modeler is a leading environment for network modelling and simulation,

allowing us to design and study communication networks, devices, protocols, and

applications with unmatched flexibility and scalability. The implementation of

network models using OPNET has been widely used [53, 54, 55, 56, 57, 58] and

consequently presumes an effective approach. During the IEEE 802.11n stan-

dardization process, where the members of the TGn had to narrow numerous

propositions before all consent to a final HT standard, a simulation model was

developed in order to generate results for evaluation and testing purposes [59, 60].

A prototype IEEE 802.11n OPNET model was designed and implemented by

Dmitry Akhmetov and Sergey Shtin of Intel Corporation [61] to fit the purpose.

For the simulations of this research, an extended version of this aforementioned

model was used in order to produce the majority of the results. Surely, the model

had to be altered in order to determine and implement the behaviour of the new

proposed enhancements but even so credit is given to the initial developers.

This section, briefly describes the model’s design characteristics and explains

some of the processes undergone with OPNET’s Modeler. It is unnecessary to

go through each process thoroughly as it contains thousands of instruction lines.

However, it is important to understand how the model is designed as portions of

its structure will be altered to implement our proposed enhancements.

20

2. IEEE 802.11N

2.3.1 PHY & MAC Interaction and Interfaces

The HT model was actually derived from the existing public OPNET model of

IEEE 802.11b. Basically, in OPNET the model, or node as known in network

modelling, characterizes the whole behaviour of a network object. This behaviour

can be defined over one or multiple modules where their underlying functionality

is consented with the process entities. The latter are represented by the Finite

State Machines (FSMs) and the operations performed in each state are described

in code blocks implemented in Proto-C, embedded C or C++. So, everything

can be independently separated from the whole model and if any alterations

are required, these can be done without difficulty or meddling. Usually each

module represents a separate layer of the OSI model but the original 802.11b

node has its MAC and PHY FSMs assembled into a single one. Furthermore, the

model’s Tx and Rx blocks cannot support MIMO functionality, multiple streams

for transmission or reception of packets, as each block has only a single stream

for the standard Single-Input / Single-Output (SISO) operation. For that reason,

even though the new model is based on the existing, quite a few considerations

had to be taken into account during implementation.

An overview of OPNET’s HT proposed model [62] can be seen in Figure 2.6.

Now, the model includes two separate MAC & PHY process layers with each

one performing separate functions, while OSI’s higher layers operation remain

unchanged (see Figure 2.6b). New underlying communication links between these

two processes were established for exchanging information. These links are bi-

directional and may include: pushing MPDU packet streams from one layer to

another, statistic information about the Tx and Rx states and special structures

(in Figure 2.6a are labelled as Tx VECTOR and Rx VECTOR) which contain

information about the length in bits of packets and a number of packets that will

be transmitted or contain training information and reception rate, respectively.

In OPNET, the latter has been implemented through a special data type called

Interface Control Information (ICI) and contain fields for user-defined parameters

to be shared by multiple entities in the network and consecutively these are

referenced in calls to Kernel Procedures from within process models [63]. The

transmission of MPDUs from MAC to PHY and from PHY to MAC is done by a

21

2. IEEE 802.11N

(a) Black-Box overview of the model (b) Model’s structure in OP-
NET

Figure 2.6: OPNET node model for IEEE 802.11n

set of communication data streams for every data rate (up to four Tx/Rx blocks).

From the PHY to MAC process model there are two statistic wires to inform

the latter the Clear Channel Assessment (CCA) status (BUSY/IDLE). The PHY

process model encapsulates preamble and PLCP header transmission/reception

functionality and is also responsible for channel’s state analysis. The PHY is

connected to Tx and Rx blocks by two streams for transmission and reception of

packets and statistic wires are connected to deliver the status of the transmitter

and receiver.

2.3.2 MAC Process Model Design

The existing OPNET 802.11b model provides the most basic MAC layer function-

alities of the IEEE 802.11 standard, except some management frame generation.

So, the model of a IEEE 802.11n compliance MAC process will be built on a base

of an existing model, with some modification and function additions in order to

fulfil the new standard’s specifications and requirements [5]. Note that all this

new features will not disrupt the functionality of the existing 802.11 MAC model,

22

2. IEEE 802.11N

therefore it can still be used for the legacy devices. A list of the most common

existing model’s characteristics and the most important newly added assets can

be viewed in Table 2.2.

Standard Model HT Model

DCF & PCF QoS features (EDCA & HCCA)
DATA+ACK sequences Frame Aggregation
RTS/CTS+DATA/ACK sequences Block ACK sequences
(De)Fragmentation New reassembly and reordering rules
Duplicate filtering New queuing mechanism
AP operation Enhanced AP functionality
STA operation Reverse (bi-directional) data flow
etc. HT frame management support

etc.

Table 2.2: Existing IEEE 802.11 and HT model features

The behaviour of the new MAC layer can be displayed with the MAC’s State

Transition Diagram (STD) (Figure 2.7) taken out from OPNET’s design inter-

face. At first, an important modification for QoS support [64] as defined in IEEE

802.11e [12] was important to implement. The original MAC process model main-

tains one transmission queue for each destination address. However, in order to

provide EDCA of four ACs, four Tx queues for each DA are required. Also, the

queuing process has been slightly changed to the extended model, as every frag-

ment of a fragmented MSDU is stored as a separate frame to allow easy aggregate

content forming. So far, the legacy model performs fragmentation just before the

transmission since it only has to send one frame per transmission. Consequently,

packets arriving in the queuing buffer are not undergoing the fragmentation pro-

cess until the sequencer extracts a single MSDU from queue, performs fragmenta-

tion and places fragments into the fragment buffer ready to be transmitted. But,

in order to operate aggregation this operation needed to get advanced so the

MSDUs can be fragmented before queuing. Besides these major additions to the

model, additional enhancements where introduced in order to express exactly the

specifications of the new standard, such as Power Save Multi-Poll (PSMP) oper-

ation, Reverse Direction (RD) communication links, and protection mechanisms

supporting coexistence with non-HT STAs, features that we don’t elaborate on

23

2. IEEE 802.11N

further as they are unconnected with our research.

Figure 2.7: The STD for the MAC process

The transmission process, an exemplification is given in Figure 2.8, initiates

an action when a “Send Packet” interrupt is received. Then, the transmission

sequencer agent extracts a number of fragments (e.g. MPDUs) from the queue

into the transmission buffer queue. Once the aggregate is formed, it transmits

the bulk as a whole within a single burst. It is important to understand that the

decisions for the scheduling and the choice of the MPDUs to transmit is clearly

taken by the transmission sequencer block, which is responsible for selecting and

aggregating the data from the queues, and also from the processor’s interrupts

because scheduling heuristic is based on time events such as maximum delays,

transmission opportunities, beacon intervals and others.

As part of the evaluation and quality check of the proposed MAC process

model, a test specification document was created. The semantics of that doc-

ument is the basis for a notion of an exhaustive test set. So, if the results of

some hypothesis on the model under test are equivalent to the results in the

specification text, then that test set can be assumed to be a success [65]. The

execution of a simulation under evaluation on a finite subset of its input domain

and the interpretation of the obtained results is known as dynamic test [66]. So,

once all new behaviour was implemented on a new HT model, the initial step of

24

2. IEEE 802.11N

Figure 2.8: Transmission process flow [5]

the testing process sequence was to gather statistics and compare them with the

non-modified model. The creation of the hypothesis of the scenarios, also know as

usage cases, were based on a finite set of all possible states that the model would

be in a real environment, e.g. testing of the “RTS/CTS+DATA+ACK” transmis-

sion, simple “DATA+ACK” transmission, retransmissions, cases of missing ACK

or CTS, partial MSDU removal, along with others. The developers were able to

simplify the quality check by isolating the MAC process from all other layers and

by creating dumb processes that will only perform specific operations, e.g the

PHY process functioning as a CCA sensor. The large number of exhaustive tests

that were carried out during implementation and the fact that this exact model

was utilized during the IEEE 802.11n standardization, may assure us that the

model surely provide accurate results and no further evaluation will be needed.

25

2. IEEE 802.11N

Figure 2.9: The STD for the PHY process

2.3.3 PHY Process Model Design

The PHY process has been separated from the joint MAC-PHY process supplied

by the existing OPNET model and furthermore it models the behaviour of fast

link adaptation over OFDM-MIMO transmissions. For a detailed structure about

the model, information can be found in [67] but generally speaking, it is a simple

interface between the Tx/Rx pipeline stages with multiple options for different

transmission and rate modes. It supports the new frame structures (A-MSDU

and MPDU) and allows the use of short guard intervals. Figure 2.9 shows the

STD of this extended PHY as implemented in OPNET. A summary of the main

functions that can support are: converting MPDU(s) data to PPDU format and

vice versa, transferring or receiving PPDU(s) data to Tx or from Rx ports, re-

spectively, providing CCA reports from the Rx port (e.g. the wireless medium is

busy or idle), checking if the packets can be decoded according to the channel’s

BER or received power and providing access to external models that describe the

performance of the PHY modulation, coding schemes and channel models. For

26

2. IEEE 802.11N

the latter, OPNET allows us to define external models that can function along

with the process’s operation, which is an advantage for object oriented platforms.

So, many of the complex functions that calculate the performance of the PHY

modulation and coding schemes have been implemented outside OPNET’s plat-

form.

2.4 Performance Evaluation

In this section we will perform various simulations in order to assess the perfor-

mance of 802.11n compliance standard. The TGn has predefined some specific

usage models [68] based on various market-based use cases that intend to sup-

port the definitions of network simulations. These will allow them to evaluate

performance of various proposals, like frame aggregation, in terms of network

throughput, delay, packet loss, and other metrics. A detail description for a set

of these use cases that we are going to use throughout this document have been

given in the Chapter Usage Models.

2.4.1 Point-to-Point HT Goodput Test

This scenario is also known by the Usage Models reference document as Model 17

- Point-to-Point Goodput Test (Figure 2.10). In this part, we test the efficiency

of aggregation over two HT STAs as shown in Figure 2.10a. The first station has

a compound data source providing 100 Mb/s or 200 Mb/s Offered Load (OL)

of Voice (VO) traffic with MSDU size of 1, 500 bytes (see Table 2.10c) with an

MIMO-Zero Forcing (ZF) [69] channel (see Table 2.10b). Note that the 802.11

header has been modified to add a new field to classify the type of traffic, e.g. a

VO traffic. The TID is used to select a UP for prioritized QoS or a TSPEC for

parametrized QoS. TID values between 0−−7 are considered user priorities and

these are identical to the IEEE 802.1D [70] priority tags and values between 8–16

refer to TSPECs.

Before we can discuss the simulation results, let us define two measurements

for the performance evaluation: Aggregate Goodput and MAC Efficiency. Ag-

gregate Goodput is the aggregate number of bits in MSDUs received at the MAC

27

2. IEEE 802.11N

(a) Layout

Parameter Value

Antenna Config. 2 x 2
Band 20 Mhz

Tx Power 17 dBm
Rx Noise 10 dB

PHY Type MIMO(ZF)
Basic Rate 16QAM 1/2
Oper. Rate 16QAM 1/2

(b) Channel Parameters

Traffic Generation Parameters

MSDU Size 1,500 bytes
Offered Load 100 & 200 Mb/s

VO Traffic

STAs 0 & 1

TID 7
TXOP 0.032 sec

Min. CW 3
Max. CW 7

AIFS 2

(c) Traffic Parameters

Figure 2.10: Scenario 17 - Layout & General Parameters

SAP within the specified delay bound of the application’s defined QoS require-

ments, divided by the simulation duration. A commonly related term is Through-

put, except that its end results include flows that fail to meet their QoS objectives.

On the other hand, MAC Efficiency is a measurement that can determine in terms

of a percentile the aggregate goodput divided by the average physical layer data

rate.

Table 2.3 shows the results of the aforementioned scenario within a simulation

run of 5 second interval. The OL for the first and second cases is 100 Mb/s and

200 Mb/s, respectively. Also, for both cases, we can observe that the achieved

PHY data rate that is achieved is in the region of 143 Mb/s, more than the goal

rate that TGn has set. The reason why the packets that are sent (Indicated

MSDUs) are twice the amount of frames that are received Received MPDUs, is

because of the A-MSDU aggregation algorithm. So, for a 100 Mb/s offered load,

the achieved Goodput is approximately 99.98 Mb/s with a MAC Efficiency of

69.6%. Similarly, for the case of 200 Mb/s offered load, the achieved Goodput

is approximately 137.2 Mb/s with a MAC Efficiency of 95.6%. Although, the

efficiency deviation for the above cases is 26%, it doesn’t mean that there is an

improvement with the overall performance. A given simple explanation is that in

the initial case the system’s resources have not been stretched as in the second

case, where it is more likely to reach saturation quicker.

From To Received MPDUs Indicated MSDUs Rx Rate Offered Load Goodput Efficiency

STA 0 STA 1 20,829 41,658 143.7382 100 99.9792 69.6%
STA 0 STA 1 28,583 57,166 143.5238 200 137.1984 95.6%

Table 2.3: Test HT with Scenario 17 - Numerical Results

28

2. IEEE 802.11N

2.4.2 Point-to-Point Legacy STA with HT AP

The following scenario describes an occasion where a legacy STA chooses to use

a HT Access Point (AP). In order to review the consequences of this particular

situation regarding the network’s performance and STAs behaviour, we need to

keep a simple structure that includes only the two participating nodes (e.g. like in

Figure 2.11a). The traffic generation parameters are set as above in Table 2.10c

but only for the case of an offered load of 100 Mb/s. Since the network includes

a legacy STA the channel parameters will be set accordingly (see Table 2.11b).

This scenario case follows Model 18 - Point-to-Point Legacy Throughput Test

description of the Usage Models document.

(a) Layout

Parameter
Value

HT AP Legacy STA

Antenna Config. 2 x 2 1 x 1
Band 20 Mhz 20 Mhz

Tx Power 17 dBm 17 dBm
Rx Noise 10 dB 10 dB

PHY Type MIMO(ZF) SISO
Basic Rate 16QAM 1/2 16QAM 1/2
Oper. Rate 64QAM 3/4 64QAM 3/4

(b) Channel Parameters

Figure 2.11: Scenario 18 - Layout & Channel Parameters

Our main concern over this simulation is the AP to be able to operate suf-

ficiently with the legacy device. From the results shown in Table 2.4, we derive

the conclusion that the STA was able to reach a throughput 44.72 Mb/s close to

its PHY rate without any complications; keep in mind that the maximum data

rate using OFDM is 54 Mb/s. The AP is capable to adapt SISO operation of a

OFDM modulation for any legacy devices that it associates with, managing MAC

Efficiency ratings of more than 88%. Note that the Received MPDUs and Indi-

cated MSDUs show a kind of aggregation but this is because of legacy bursting

and it is not a type of a new frame aggregation enhancement.

From To Received MPDUs Indicated MSDUs Rx Rate Offered Load Throughput Efficiency

STA 0 STA 1 9,316 18,632 54.00 100 44.72 82.8%

Table 2.4: Test HT with Scenario 18 - Numerical Results

29

2. IEEE 802.11N

2.4.3 Point-to-Point Legacy and HT Co-existence

Earlier, we showed that a legacy device operates effectively over a network con-

taining a single HT AP. Now, we are going to investigate a scenario (Figure

2.12) where two separate STAs, one HT STA and one STA belonging to the

legacy standard, concurrently operate with the HT AP. This case in the Us-

age Models reference document is known as Model 19 - Point-to-Point Legacy

Sharing Throughput Test. So, automatic rate adaptation in CSMA/CA WLANs

may cause drastic throughput degradation for high speed bit rate STAs. The

CSMA/CA medium access method guarantees equal long-term channel access

probability to all hosts when they are saturated. The saturation throughput of

any STA is limited by the saturation throughput of the STA with the lowest bit

rate in the same infrastructure [71, 72, 73]. For example, it has been demon-

strated that an IEEE 802.11g compliance network will achieve less throughput,

in many cases halved, when an IEEE 802.11b depended STA shares the same

resources with other IEEE 802.11g based STAs. To simulate this, we place both

stations beside the HT AP over equivalent distances, which an illustration of the

layout can also been see in Figure 2.12a, set the channel parameters as shown in

Table 2.12b and configure with a VO traffic flow as before.

(a) Layout

Parameter
Value

HT AP HT STA Legacy STA

Antenna Config. 2 x 2 2 x 2 1 x 1
Band 20 Mhz 20 Mhz 20 Mhz

Tx Power 17 dBm 17 dBm 17 dBm
Rx Noise 10 dB 10 dB 10 dB

PHY Type MIMO(ZF) MIMO(ZF) SISO
Basic Rate 16QAM 1/2 16QAM 1/2 16QAM 1/2
Oper. Rate 64QAM 3/4 64QAM 3/4 64QAM 3/4

(b) Channel Parameters

Figure 2.12: Scenario 19 - Layout & Channel Parameters

From To Received MPDUs Indicated MSDUs Rx Rate Offered Load Goodput Efficiency

STA 1 STA 0 26463 26463 129.5194 100 63.5112 49.0%
STA 2 STA 0 4480 4480 53.9999 100 21.6829 40.1%

Table 2.5: Test HT with Scenario 19 - Numerical Results

The simulation outcome from Table 2.5 confirms that the multi-rate fairness

issue still exists. The resolution of co-existence is not in favour of the system’s

30

2. IEEE 802.11N

overall performance as the higher throughput device achieves maximum goodput

of 63.5 Mb/s while the legacy device manages a throughput of 21.7 Mb/s. Both

STAs fall to half of their PHY data rate as the HT STA and legacy HT maintain

a MAC Efficiency of 49% and 40%, respectively.

2.4.4 Frame Aggregation Evaluation

In this section, we compare the performance of A-MSDU and A-MPDU aggrega-

tion schemes along with the two-level aggregation as defined in the latest amend-

ment of the IEEE 802.11 for HT devices. For the simulations, we used the

aforementioned simulation model implemented by Intel and based on the OP-

NET Modeler with the latest PHY and MAC enhancements. So, each simulation

run will be defining four cases for each combination of an aggregation scheme

that the STA supports:

• Both A-MPDU and A-MSDU are enabled

• Only the A-MPDU algorithm is used

• Only the A-MSDU algorithm is used

• No aggregation at all

For each case, the traffic generation rate is configured high enough to saturate

the air link rate that corresponds to the “PHY Peak” (144 Mb/s) on each figure,

and the maximal A-MSDU length is 4 KB. In the first simulation, the OL is

incremented by just varying the packet size while keeping constant the packet

generation interval, also known as Constant Packet Rate (CPR), which is 40 µs.

The initial OL is 25 Mb/s, and it increases up to 300 Mb/s with the packet

size varying gradually (i.e.,125/250/500/750/1, 000/1, 500 bytes). Figure 2.13

illustrates the throughput results (in Mb/s) obtained from the MAC SAP while

the OL from the associated HT STA is accumulating gradually.

As shown in Figure 2.13, we observe that all throughputs increase according

to the load. In general, as the packet size increases, the A-MSDU stays below 75

Mb/s, while A-MPDU and the two-level aggregation achieve maximum through-

puts of 136 and 134 Mb/s, respectively. When the packet size maintains values

31

2. IEEE 802.11N

Figure 2.13: Throughput vs. increased offered load by varying the packet size

of 125 bytes (see OL = 25 Mb/s) and 250 bytes (see OL = 50 Mb/s), the cor-

responding throughputs for any type of aggregation are alike. This is because

A-MSDU can aggregate several small packets within a single MPDU, even if the

length is limited to 4 KB; the same way that A-MPDU can place multiple MP-

DUs in a single PSDU. Thus, for small packet sizes, we can choose any type of

aggregation. On the other hand, when the packet size is larger than 250 KB,

the throughput of A-MSDU distinguishes significantly from A-MPDU and the

two-layer aggregation, with much lower values because the number of MSDUs

that fit into a single A-MSDU is becoming less than the other cases. We can

monitor this behaviour even more closely when packet size increases from 1, 000

bytes (see OL = 200 Mb/s) to 1, 500 bytes (see OL = 300 Mb/s). The A-MSDU

throughput drops slightly for the reason that we had four packets of 1 KB, fit-

ting to one A-MSDU, where in the case of 1, 500 bytes packet size, only two of

them can occupy the same space. The same behaviour occurs with the two-level

aggregation but only because of the A-MSDU stage. This is also why the A-

MPDU throughput increases further when two-level aggregation remains at the

32

2. IEEE 802.11N

same levels. The throughput for the no-aggregation case always increases with

the increase of the OL by varying the packet size even after the channel is satu-

rated. However, by only increasing the packet size up to the maximum Ethernet

transmission unit (1, 500 bytes), without aggregation, will achieve throughput

about three times lower than that of the A-MPDU and the two-level aggregation.

This clearly demonstrates that small packet size is the key factor that lowers the

throughput efficiency.

In the second simulation, we increase the OL by altering the packet interarrival

rates instead of increasing the packet sizes, a situation known as Variable Packet

Rate (VPR) evaluation. So the packet size remains constant at 1 KB during the

simulation test. So, to attain OLs for a range of 25 . . . 320 Mb/s, we increase

the packet interarrival rates from 320 µs to 25 µs. Note that the rates and the

interval periods are reverse proportional, so if we want to increase the rate, we

need to decrease the time interval analogous.

Figure 2.14: Throughput vs. increased offered load by varying the packet arrival
interval (packet size = 1 KB)

33

2. IEEE 802.11N

From Figure 2.14, we can observe that the MAC throughput performance for

all aggregation schemes increases respectively with the increase of the OL. Up

to the second step of the simulations, with independent variable at 50 Mb/s, all

three schemes provide an equivalent achieved goodput of 50 Mb/s too. For OLs

100 Mb/s and onwards, the A-MSDU fail to cope with the loading traffic capacity

and remain to a level of throughput up to 75 Mb/s. Similar to previous results,

the two-level aggregation again outperforms slightly the A-MPDU method with

a deviation of around 6 Mb/s. Still the maximal goodput to the all aggregation

schemes enabled is around 136 Mb/s and considering that the PHY data rate is

143.17 Mb/s, we can calculate the MAC Efficiency at 95.6%. Each case has a

different saturation point yet the saturation behaviour illustrated by the graphs is

slightly different than before. This has to do with the chosen value for the constant

packet size, as we set it to the medium size, 1 KB, in order to avoid stretching

the system’s impending demand too early in the simulation runs. Furthermore,

we can point out that the throughput achieved by the A-MPDU and the two-

level aggregation after saturation is approximately 4.5 times higher than the no

aggregation scheme.

This last simulation represents a scenario for a fixed OL of 100 Mb/s with

variant packet sizes and interval times. There is no channel saturation since the

required traffic demand stays at moderate level. Along with the throughput values

for each type of aggregation, we investigate the degree of aggregation that the

two-level aggregation performs, by comparing the number of indicated MSDUs

and the received MPDUs.

In Figure 2.15, the A-MPDU and the two-level aggregation achieve the 100

Mb/s goal that HTSG has set, whereas A-MSDU falls below that threshold at

around 75 Mb/s. Although the A-MSDU mechanism can achieve higher through-

put than the legacy IEEE 802.11 standards, it does not utilize the channel as fully

as A-MPDU and the two-level aggregation do. However, there is an exception for

the A-MPDU function when packet size is 125 bytes and packet interval rate at

10 µs each. This shows that this type of aggregation cannot handle consecutive

accumulate small size packets and a small portion of the overhead problem still

remains. It is very important to understand how this blend of A-MSDU and A-

MPDU, in most cases, is capable of improving the effectiveness of the MAC layer,

34

2. IEEE 802.11N

Figure 2.15: Throughput vs. increased MSDU size

specifically when there are many small MSDUs, such as TCP acknowledgements.

For example, when the packet size is set for 125 bytes, there are approximately

999, 775 MSDUs generated during the simulation period. In spite of this, the

number of MPDUs received at the receiver is 34, 476 MPDUs, so a single MPDU

included on average around 29 MSDUs. The latter suggests that a huge MAC

and PHY overhead was avoided. For the largest packet size of 1, 500 bytes, there

are approximate 83, 324 indicated MSDUs and about 41, 662 received MPDUs,

exactly two packets in each MPDU as it is bounded by the maximum A-MSDU

length of 3, 839 bytes. In conclusion, although all schemes employ the same PHY

techniques, a huge difference can be seen between the aggregation scheme and

the one which disables them. A MAC efficiency of the two-level aggregation is

calculated at 70% and for the non-aggregation option is well below at 30%. The

latter clearly shows the efficiency over the system’s performance of the frame

aggregation enhancements.

35

2. IEEE 802.11N

2.5 Summary

Within this chapter, we investigated the main types of frame aggregation as pro-

posed in the IEEE 802.11n standard: A-MSDU, A-MPDU and the combined

two-level aggregation. Our simulation results demonstrated that those concate-

nation/packing mechanisms performing over different sub-layers can actually in-

crease the channel efficiency of the 802.11 MAC in the next-generation WLANs.

We also demonstrated that by exclusively increase the PHY layer transmission

rate, the results won’t show analogous action and the initial output is around 4.5

times less bandwidth than the two-level aggregation.

All types of aggregation are highly required as they resolve the fundamental

problem of inefficiency which is thePHY/MAC overhead. However, the standard

only identifies the concepts and the data frame structures, which in a flawless

environment they can deliver attracted results but in terms of their functionality

there are still questions and issues that need further investigation. For example,

the processing time that is needed to compute these aggregates can increase

the overall delays. Actually, as the efficiency of the aggregation increases, its

operation becomes more complex (e.g. two-level aggregation). Another question

is how large should the devices set the concatenation threshold. Ideally, the

maximum value is preferable but in a noisy environment, short frame lengths are

preferred because of potential retransmissions. The concatenation schemes only

operate over the packets that are already buffered in the transmission queue, so

if the data rate is low then efficiency will be low too. There are many ongoing

studies that are introducing alternative queuing mechanisms than the usual FIFO.

A combination between frame aggregation and an enhanced queuing algorithm

could increase channel efficiency further.

36

Chapter 3

Frame Aggregation as a

M/G[a,b]/1/K Queue

The first batch service models initially derived to describe the efficiency of batch

service workstations within the production and manufacturing environment [74].

Other examples can also been seen in the customer services sector and in the area

of communication and information systems. Probabilistic model-based techniques

can show the reliability and availability for current or future system’s configu-

ration on various scenarios with versatile customer workload that is served as

bulks [75]. Throughout this paper, the majority of the content is evaluated using

empirical deductive methods of measurement and the results are derived from

the execution of various simulations. Nevertheless, in this specific instance, it is

easy to assume that the process of the frame aggregation that was described in

the previous section can easily correspond to a M/G[a,b]/1/K queueing system so

stochastic and probabilistic methods can be applied to obtain conclusions about

the performance and reliability properties.

There is a huge debate over which queuing model is suitable for describing a

WLAN. Historically, the most common approach to model the traffic’s interarrival

times is the exponential distribution [76] with memoryless properties. Poisson

models have been in use in the literature since the advent of computer networks,

and before that in the telecommunications arena [45]. These models are very

attractive from an analytical point of view [45], and with proper selection of

37

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

parameters a Poisson model can be fit to most network traffic traces reasonably

well for short periods. Later studies also show that in long term, data traffic

has self-similar characteristics [77, 78, 79] and so Poisson-based models do not

adequately model self-similar processes [80], either in modelling traffic for analysis

or in generating traffic for simulations. Recent refinements attempted to add

traffic “burstiness” and self-similar property on top of Poisson distributions, such

as Compound Poisson [81], Markov-Modulated Poisson Process (MMPP) [82, 83],

Packet Trains [84], etc. However, self-similar models may prove to be complex

in analytical solutions and not always appropriate [85]. Thus, M/G/1/K as a

queuing model for WLANs could prove as a wise choice as it is stable, simple,

accurate over short term and widely used.

Within an elementary queueing system M/G/1/K [86] and taken that its

finite buffer queue is not full, newly arriving jobs will be served while the system is

“idle”, otherwise are buffered to a storage area and wait for their turn. Similarly,

within a network system, the packet that arrives at the transmission link will

be either buffered and wait if channel is “busy” or set for transmission over

the communication channel while the channel remains “idle”. As our STA’s

transmission queue serves packets in batches, we can represent that system’s

behaviour with the use of a M/G[a,b]/1/K queueing model. In [87, 88], Chaudhry

and Gupta reduce the computation effort required to derive the queue statistics of

interest and combined with the classical algorithms for the M/G[a,b]/1/K queue

[74, 75, 89, 90, 91], we are able to introduce and determine the behaviour of

frame aggregation and its threshold variables (a, b). In this section, we review

the model definition and present numerical results for various classes of service

processes, different service starting or batch collection rules under various load

conditions. The main purpose of this chapter is to empirically prove that there

isn’t an optimal set of (a, b) that can maximize utilization and minimize queue

waiting times. Instead, each system’s performance will be dependent over the

service time and traffic intensity

38

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

3.1 Model Description

Let us assume that the model consists of a finite capacity queue (waiting space)

of size K and it is served by a single batch server according to a commencing

scheme which is driven by the number of packets waiting in the queue. Let packets

arrive in a Poisson process (exponential distribution, M) at average arrival rate λ

induced by a Poisson Arrivals See Time Averages (PASTA) property. The server

has a maximum capacity of b, where b < K and the service times are independent

identically distributed (i.i.d.) random variables (r.v.s) with distribution function

(d.f.) B(t) having mean 1/µ (general distribution, G). When the server is idle

and there are less than a number of packets in the queue (quorum), the server

remains idle until enough packets have been accumulated. At the end of a service

phase, the server will proceed according to the number of waiting packets. If

there are more than a number of packets in the queue at the scheduling time, the

server will start the next service immediately by taking up to b waiting packets.

Packets seeing upon arrival a full queue are thought of to be dropped (blocked).

The traffic intensity is given by the utilization factor ρ and is defined to be λ/bµ.

A simple illustration of the single node queueing model can be seen in Figure 3.1.

Figure 3.1: The basic M/G[a,b]/1/K queueing model

We approximate as Z(t) = (X(t), U(t)) a two-dimensional Markov stochastic

process, with X(t) denoting the number of packets in the queue at time t and U(t)

39

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

the remaining service time for the batch actually in service at time t. Because

of the imbedded nature of the process it is known as an imbedded Markov chain

model. Further, define Pk,0(t) and Pk,1(t) the probabilities that there are K

waiting packets in the queue at a random epoch (arbitrary point) and the server

is “idle” and “busy”, respectively.

More specifically,

Pk,0(t) = P{X(t) = k, U(t) = 0}, 0 6 k 6 a− 1,

Pk,1(u, t)du = P{X(t) = k, u < U(t) 6 u+ du}, u > 0, 0 6 k 6 K.

Let

Pk,0 = lim
t→∞

Pk,0(t), 0 6 k 6 a− 1,

Pk,1(u) = lim
t→∞

Pk,1(u, t), 0 6 k 6 K.

Now, let P+
k (0 6 k 6 K) be the probability of k packets in the queue imme-

diately after a transmission of a batch (departure epoch). Since, this probability

is relative to Pk,1(0) (0 6 k 6 K), we can derive some association between them

P+
k =

Pk,1(0)
K∑
i=0

Pi,1(0)

(3.1)

Note that from the summation
K∑
k=0

Pk,1(0), we can get the departure rate of

the aggregated frames given that the server is busy. Now, in order to resolve

equation 3.1, we would first need to derive some relations of the states of the

system at times t and t + ∆t in steady state but even so the computation of

Pk,1(0) would had been complex. Only for a simple queuing system M/G[a,b]/1/K

with a = b = 1 could be simple. To overcome this problem, we are employing

an imbedded Markov chain technique similar to the one carried out by Gold and

40

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Tran-Gia in [92] and the process will initially help us to get P+
k . Subsequently,

we make use of equation 3.1 to develop relations between arbitrary(Pk,0 and Pk,1)

and departure(P+
k) epoch probabilities.

The imbedded Markov chain analysis carried out in [92] is briefly discussed

here for the sake of completeness. The {P+
k } can be obtained by solving the

system of equations P+P = P+, where P+ = [P+
0 , P

+
1 , . . . , P

+
K] and P = (pij) is

one-step transition probability matrix with pijs given by

pij =



dj, i = 0, 1, . . . , b, j = 0, 1, . . . , K − 1

dj − (i− b), j > i− b, i = b+ 1, b+ 2, . . . , K, j = 0, 1, . . . , K − 1

1−
K−1∑
r=0

pir, i = 0, 1, . . . , K, j = K

0, otherwise

(3.2)

and

dj =

∫ ∞
0

e−λυ(λυ)j

j!
dB(υ) (3.3)

The expressions for dj represent the probability of j arrivals during a service

period and can be easily obtained for various service-time distributions.

It has been found from [87] the following association between state probabili-

ties at arbitrary epoch, Pk,0 (0 6 k 6 a− 1) and Pk,1 (0 6 k 6 K), and departure

epochs P+
k . These relations are given by the following equations (3.4, 3.5)

Pk,0 =

k∑
j=0

P+
j

ρb+
a−1∑
i=0

(a− i)P+
i

, 0 6 k 6 a− 1 (3.4)

Pk,1 =

min(b+k,K)∑
j=k+1

P+
j

ρb+
a−1∑
i=0

(a− i)P+
i

, 0 6 k 6 K − 1 (3.5)

and

41

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

PK,1 = 1−

(
a−1∑
k=0

Pk,0 +
K−1∑
k=0

Pk,1

)
(3.6)

The above relations are much simpler than the one derived in [88, 87] and

are also computationally more efficient even though both approaches provide

matching results.

3.2 Substitute Service Time Distribution Func-

tions

The service time distribution is assumed from the description to be generally

distributed. In order to have a parametric representation of the service time,

for each time state the expressions of the transition probabilities given in the

Laplace-Stieltjes domain need to be transformed by the Laplace inversion pro-

cedure. Also, in practice it often occurs that the only information of random

variables that is available, is their mean and standard deviation and not the real

data. Consequently, the calculations are of higher complexity or infeasible. How-

ever, for reasons of computing efforts, to obtain an approximating distribution it

is common to fit a phase-type distribution on the mean, E(X), and the coefficient

of variation, cX , of a given positive random variable X by using the two-moment

approximation technique, as proposed in [93, 94, 92]. Note that some argue that

an approximation of the distribution of the MAC layer service time can be repre-

sented by a Chi Square distribution (X2) with degrees of freedom according to the

set (a, b) [95] or a negative binomial distribution for a parametric representation

of stochastic processes could have been used in discrete time domain. Neverthe-

less, as substitute processes we choose a simple combination of phases, allowing

the approximation of any process with respect to their first and second moments.

Two cases are considered: i) a hypo-exponential process type (0 6 cB 6 1), com-

prised by a series of a deterministic (D) and an exponential (M) phase, and ii) a

hyper-exponential process type (cB > 1), an alternate of two exponentials (H2)

with balanced means. Mathematically, these processes are described by

42

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Case 1: 0 6 cB 6 1

FB(t) =

0, 0 6 t 6 t1

1− e−(t−t1)/t2 , t > t1
(3.7)

where t1 = E(B)(1− cB) and t2 = E(B)cB

Case 2: cB > 1

FB(t) = 1− pe−t/t1 − (1− p)et/t2 (3.8)

where t1,2 = E(B)
(

1±
√

c2B−1
c2B+1

)−1
and p = E(B)/2t1, pt1 = (1− p)t2

We remark that the results are slightly dependent on the chosen type of the

substitute process. If there is evidence of a much different process characteristic,

appropriate other substitutes can be chosen too. The authors in [96, 97], suggest

a choice of more sophisticated use of phase-type distributions by trying to match

the first three (or even more) moments of the random variable or at least to

approximate the shape. Also, for a two-moment fit, one can apply an Erlang

distribution for the case 0 6 cB 6 1 or even brake it down to a subclass of

cB > 0.5 which a Coxian-2 (a mixture of two Erlang) distribution can be used

[98]. Finally, we note that if the component process are Markovian, the resulting

process is Markovian again.

3.3 Performance Measures

The most relevant performance measures in the analysis of queueing models and

of interest to our purpose are:

• The blocking probability. The probability that the system will reject new

arrivals as the queue buffer has exceeded its limits. Usually, this occurs

when ρ > 1.

• The waiting time and the sojourn time of a packet. The sojourn time is the

waiting time plus the service time.

43

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

• The number of packets in the system (including or excluding the one or

those in service).

• The amount of packets the server takes at each start.

• The busy (occupied) or idle periods of the server. These are periods of

time during which the server is working continuously or remains without

packets, respectively.

In particular, we are interested in mean performance measures, such as the

mean waiting time, the mean queue length, etc. The mean waiting time can

of course be calculated from the Laplace-Stieltjes transform (L.S.T.) by differ-

entiation of the main function. Equivalently, the mean waiting time can also

be determined directly (i.e., without transforms) with the mean value approach.

This happens because for systems with Poisson arrivals, a very special property

holds, that arriving customers find on average the same situation in the queueing

system as an outside observer looking at the system at an arbitrary point in time.

There are numerous approximations for the blocking probability; usually de-

noted as B(K, ρ) but since we express as B(·) the service time distribution func-

tion, we use the term PB. So, the arbitrary time state probability from equa-

tion 3.6 can be used directly to calculate the blocking probability PB.

A new arriving packet, first has to wait for the residual service time of the

packets in service (if there is one) and then continues to wait for the servicing

of all packets who were already waiting in the queue on arrival. In general, the

mean waiting time, E(W), in the queue can be easily be derived by applying

Little’s Law, so:

E(W) =
E(Lq)

λ(1− PB)
(3.9)

where E(Lq) is the mean queue length and is given by equation 3.10

E(Lq) =
a−1∑
k=0

k(Pk,0 + Pk,1) +
K∑
k=a

kPk,1 (3.10)

The amount of accepted traffic is λ(1−PB), Thus, again with Little’s theorem,

we get the equation for the mean number of packets in the server, E(S):

44

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

E(S) = λ(1− PB)E(B) (3.11)

And more specifically, we are interested in the number of packets the server

aggregates at each start. This indicates the efficiency of the transmitter handling

and starting rules. The measure of the mean number of packets per start, E(SA),

is given by

E(SA) = a
a−1∑
k=0

P+
k +

b−1∑
k=a

kP+
k + b

K∑
k=b

P+
k (3.12)

Once we know P+
k , the expected occupied and idle periods, E(O) and E(I),

respectively, can be calculated as

E(O)
1

a−1∑
k=0

P+
k

(3.13a)

E(I) =

a−1∑
k=0

(a− 1)P+
k

bρ
a−1∑
k=0

P+
k

(3.13b)

3.4 Numerical Examples

In this part, we present numerical results for various classes of service processes,

different service starting or batch collection rules under various load conditions.

In the discussion of the results we stress the influence of firstly, the variation

of the service process, secondly, the service starting threshold dimensioning and

finally the traffic intensity on the mean waiting time and on the average number

of packets per start. In accordance to the substitute distributions discussed in

Section 3.2 we use a series of a deterministic and an exponential D+M distribu-

tions and a H2 distribution with balanced means to achieve service time handling

with coefficients 0 6 cB 6 1 and cB ≤ 1, respectively.

Let us assume that the time variables are standardized by E(B) = µ−1 = 1,

consequently the offered traffic intensity becomes ρ = λ/b. For the following

45

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

M/G[a,b]/1/K system we set as server capacity, b, and maximum waiting space,

K, 32 packets and 64 packets, respectively.

Figure 3.2: Waiting time behaviour

For the first results, we set a combination of variation of the service starting

threshold, ‘a’, and the coefficient of the service time, ‘cB’. So for this simulation

we choose two set of values (a = 4, a = 16) and (cB = 0 , cB = 1), for the service

quorum and cB, respectively. The aim is to distinguish the behaviour of the

system over a wide range of the utilization factor ρ (0 6 ρ 6 1.5) with a close to

unity (a = 4) and much larger quantity which is half the server capacity (a = 16),

in correspondence with both aforementioned distributions, thus cB = 0 and cB =

1. Figure 3.2 shows the mean waiting time, E(W), as a function of the traffic

intensity, ρ. As can be seen, with traffic intensity very low, the mean waiting time

is very high especially when the service starting threshold ‘a’ is much larger than

1 and as the traffic intensity increases it draws towards its minimum expected

waiting time. After it exceeds its stability point at approximately ρ ≈ 0.9, it starts

ascending again. As the limit for ρ→∞ all graphs tend to E(W) = K/b = 2.

In order to understand the influence of the service process, Figure 3.3 shows

46

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Figure 3.3: Influence of service process

the mean waiting time of a packet, E(W) over a range of cB that correspond

to D+M and H2 distributions, for that reason 0 6 cB 6 1 and cB ≤ 1. The

utilization ρ is set in a suitable way to provide stationary behaviour (ρ < 1)

but yet ρ = 0.4 and ρ = 0.8 can distinguish low from high traffic intensity.

As a general observation, it appears a discontinuous behaviour of the curves

at the interchange point(cB = 1) of these distribution types substitutes which

unquestionably is due to the unnatural element of the representation of the service

time distribution. Regardless, for the case of deterministic service time the best

batch collection rule is not to collect batches at all but to start the server even

with only a single packet in the queue. Also, in the case of ρ = 0.4 there is a

crossover of the waiting time diagrams for service starting threshold a = 4 and

a = 16. This is due to the fact that normally during shorter service periods

less packets will arrive and thus the server is often caused to work inefficiently.

Overall, the reduction of waiting time gained by choosing the service starting

threshold ‘a’ appropriately gets larger with growing coefficient of variation of the

service time and diminishes slightly with higher traffic intensity.

47

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Figure 3.4: Threshold dimensioning aspects

Figure 3.4 demonstrates that the optimal choice of the quorum is not always

as clear as for the case with cB = 0, e.g. the best batch collection rule is not to

collect batches at all but to start the server even with only a single packet in the

queue, but becomes more critical for higher variations of the service time. The

superposition of the diverse dependencies of the waiting time leads to a special

appreciation for the choice of the service starting threshold ‘a’ for each set of

parameters cB and ρ.

So far, we analysed an optimized solution for minimizing the waiting time

for various traffic types by considering the batch collection rule. However, if we

are seeking to utilizing the server in an efficient way, we may have to consider

a different approach. Figure 3.5 shows the average number of packets per start,

E(SA), as a function of the traffic intensity, ρ. We derive the deduction that

for constant service time and low traffic intensity, the average number of packets

per start with small service starting threshold is significantly smaller than with

larger service starting threshold. On the other hand, in the case of high traffic

intensity, the service starting threshold has no influence on the average number

48

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Figure 3.5: Server Utilization

of packets per start. As the limit for ρ → ∞ all graphs tend to the maximum

server capacity, b = 32. Regarding the coefficient of variation of service time,

when the parameter is set to cB = 1, the choice of a effects the average number

of packets per start even when traffic intensity is high; this tendency can also

be seen over our previous results (e.g. see Figure 3.2) where service starting

threshold signifies analogous the mean waiting time. On the contrary, despite

the value of cB, in the case of low traffic intensity, the service starting threshold

‘a’ imposes contradictory consequences between minimizing mean waiting time

and maximizing server utilizations, as the former is inverse proportional and the

latter proportional.

In Figure 3.6, we conduct a model simulation for the blocking probability

PB versus the traffic intensity ρ when the service starting threshold is set with

values a = 4 and a = 16 and for the coefficient of variation of the service time

two diverse values are assigned, cB = 0 and cB = 2. As expected, the blocking

probability tends to high results as the traffic intensity increases. Nevertheless,

for smaller coefficient of variation of the service time the blocking probability is

49

3. FRAME AGGREGATION AS A M/G[A,B]/1/K QUEUE

Figure 3.6: Blocking probability

less and for the curves with coefficient cB = 2, the PB increases as the service

starting threshold is set to smaller values.

3.5 Summary

In conclusion, depending on the question which viewpoint is more important,

minimizing the waiting time or maximizing utilization, a trade-off choice has to be

taken into account. We point out that it doesn’t exist a batch collection rule which

is generally valid so each individual case has to be considered separately. Except

of designing and implementing an algorithm which would be able to control the

server’s initiation mechanism besides the server starting threshold according to

some pre-set parameters. This method will dynamically determine and adapt

the starting based upon the traffic’s characteristics, the packet maximum delay

requirements and the server’s maximum capacity.

50

Chapter 4

IEEE 802.11n and QoS in

Conjunction

The IEEE 802.11n latest amendment attains rates of 100+ Mb/s by introducing

innovative enhancements at the PHY and MAC, e.g. MIMO and Frame Ag-

gregation, respectively. However, the performance improvement potentials may

be limited by the interaction between prioritized and parameterized channel ac-

cess scheduling mechanisms defined for the QoS support and the enhanced asyn-

chronous data service for the increased MAC efficiency. So, if STAs of multiple

priorities share the wireless medium at the same time, the IEEE 802.11e amend-

ment defines a prioritization method where the higher priorities STAs should

maintain shorter waiting channel access periods. Consequently, as we will show

here, the higher priority STAs will tend to have small aggregate sizes and lower

priority STAs a small channel access frequency, both effects result in poor channel

utilization and overall poor network performance. In the following sections, we

will briefly describe 802.11e’s EDCA mechanism and how this interferes with the

new HT enhancements.

4.1 IEEE 802.11e and EDCA

Several related aspects of traffic grade of service standards for the most recent HT

amendment builds upon IEEE 802.11e’s probabilistic priority mechanisms. This

51

4. IEEE 802.11N AND QOS IN CONJUNCTION

QoS standard is considered of critical importance for delay-sensitive applications,

such as VoIP over WLAN and streaming multimedia. It enhances the legacy DCF

and PCF, through a new coordination function, known as HCF. Within the HCF,

there are two methods of channel access, similar to those defined in the legacy

802.11 MAC, the HCCA and the EDCA. Both EDCA and HCCA have been

thoroughly studied and discussed about the QoS improvements over the legacy

standard by the research and academic community [99, 100, 101, 102, 103]. Since

the distributed coordination mechanism that is based on the CSMA/CA function

is of interest for this study, HCCA will not be discussed any further. A simple

illustration of EDCA’s operation and mechanism can be seen in Figure 4.1.

(a) The four ACs (b) IEEE 802.11e interframe space relationship

Figure 4.1: An example of EDCA operation

The QoS support in EDCA is provided by the introduction of prioritization via

distinguishing the traffic flows into ACs including a set of backoff entities for each

AC, such as minimum and maximum CW and AIFS duration, seen in Figure 4.1a.

Note that, the AIFS timers assigned by IEEE 802.11e are all defined as one SIFS

value plus a variable number of slots times, known as AIFS-number (AIFSN),

times Tslot, the duration of a time slot set by the physical layer encoding method

in-use. The formula to calculate the AIFS in time slots for each AC is given by

the equation AIFS[AC] = SIFS + AIFSN ∗ Tslot. There are four ACs defined

as FIFO queues, according to their target application, i.e., Best Effort (BE),

Background (BK), Video (VI) and VO, also known as [AC 0, AC 1, AC 3, AC 4]

with the enumeration denoting the order of importance from low to high prior-

ity and following the same order of the applications given above. So, BE traffic

52

4. IEEE 802.11N AND QOS IN CONJUNCTION

maintain the lowest priority while VO the highest. Consequently, there are four

distinct sets of contending entities with separate values between them that define

relative priority in medium access per AC. The main idea is to use four coupled

CSMA/CA queue mechanisms one for each AC that behaves as a single enhanced

DCF contending entity, and all to contend for access to the same medium. How-

ever, each AC is parametrised with different set of values, so higher priority traffic

has certain parameters to allow it to gain access to the channel earlier than the

lower priority traffic which have longer backoff timers and Inter-Frame Space

(IFS) periods. An example of the default set values for the parametrization of

each AC as defined in the IEEE QoS standard are given in Table 4.1.

Parameter AC BE AC BK AC VI AC VO

AIFSN 7 3 2 2
CWmin 15 15 7 3
CWmax 1,023 1,023 15 7

TXOP Limit
802.11a,g,n 0 µs 802.11a,g,n 0 µs 802.11a,g,n 3,008 µs 802.11a,g,n 1,504 µs

802.11,b 0 µs 802.11,b 0 µs 802.11,b 6,016 µs 802.11,b 3,264 µs

Table 4.1: EDCA parameters for each AC

An 802.11e STA that obtains medium access must not utilize radio resources

for duration longer than a specified limit. This important new attribute of the

802.11e MAC is referred to as a TXOP. A TXOP is an interval of time during

which a backoff entity has the right to deliver MSDUs and therefore is an impor-

tant means to control delivery delay. A TXOP is defined by its starting time and

duration which is limited by a parameter that takes a default set value from the

standard. When TXOP is equal to 0, the standard defines that a single MSDU,

PPDU, A-MSDU or A-MPDU is allowed to be transmitted. But in a nutshell, an

HT STA that is a TXOP holder may transmit multiple MPDUs of the same AC

within an A-MPDU as long as the duration of transmission of the A-MPDU plus

any expected BlockAck response is less than the remaining Transmitter Network

Allocation Vector (TXNAV) timer value that was initialized with the duration

from the Duration/ID field in the frame most recently transmitted successfully.

As high priority flows have poor channel utilization because of their traffic

characteristics, the low priority flows throughput can be amerced even further.

Apart from the traffic load, where a high offered load from the application will sig-

nify a big pile in the MAC stack, we need to investigate analytically the operation

of EDCA on each prioritized flow.

53

4. IEEE 802.11N AND QOS IN CONJUNCTION

4.2 An Analytical Model for EDCA

Most of the recent analytical work on the performance 802.11e EDCA stems

from the simple and fairly accurate model proposed by Bianchi [104] to calculate

saturation throughput of the legacy DCF. Later, Ziouva and Antonakopoulos

[105] improved the model by stopping the backoff counter during busy slots,

which is more consistent with the standard, and to find saturation delays but

traffic differentiation still was not considered. Based on these analysis, Xiao

[106, 107] and many others extended the model to prioritized schemes for EDCA

by introducing multiple ACs with distinct parameter settings, such as minimum

and maximum CW, different AIFS and TXOP parameters, finite retry limit,

etc. Many of the related works cover assumptions of a fully saturated channel

[108, 109, 110, 111] and other non-saturated cases [112, 113, 114]. By saturation,

we mean the network is overloaded and each node always has packets to transmit.

As a matter of fact, all the nodes are continuously contending for accessing the

channel, leading to a high level of packet collisions especially in the presence

of a large number of nodes. On the other hand, if the system operates under

unsaturated traffic conditions, the network has less contention as not all nodes

accessing the channel at every time event, resulting in less packet collisions and

packet retransmissions.

We assume a system consists of ni, (i = 0, . . . , N − 1) STAs for each N

ACs priority i classes, also here we consider the order of 0 corresponding to

the lowest priority and N − 1 to the highest. Following the considerations of

[106], for a given STA that belongs to ACi, (i = 0, . . . , N − 1) priority class,

b(i, t) is defined as a random process representing the value of the backoff counter

at time t, and s(i, t) is defined as the random process representing the backoff

stage j (j = 0, 1, . . . , Li,retry) where Li,retry is the retry limit for the priority ACi

class. The value of the backoff counter b(i, t) is uniformly chosen in the range

(0, 1, . . . ,Wi,j − 1), where Wi,j is defined in Equation (4.1).

54

4. IEEE 802.11N AND QOS IN CONJUNCTION

Wi,j =


2jWi,0 for j = 0, 1, . . . ,mi − 1, if Li,retry > mi

CWi,max for j = mi . . . , Li,retry, if Li,retry > mi

2jWi,0 for j = 0, 1, . . . , Li,retry, if Li,retry ≤ mi

mi = log2 (CWi,max/CWi,min)

(4.1)

Let pi denote the probability that the transmitted frame collides and also that

a station in the backoff stage for the priority ACi class senses the channel busy.

Therefore, the two-dimensional random process {s(i, t), b(i, t)} can be modelled as

a discrete-time Markov chain. Thus, the state of each STA in the ACi is described

by i, j, l, where j stands for the backoff stage and l stands for the backoff delay.

The state transition diagram of ACi is depicted in Figure 4.2.

Let bi,j,l = lim
t→∞
{s(i, t) = j, b(i, t) = l} be the stationary distribution of the

Markov chain. In steady state, we have

bi,j,0 = pji bi,0,0 0 ≤ j ≤ Li,retry (4.2)

bi,j,l =
Wi,j − l
Wi,j

1

1− pi
Bi,j,0 0 ≤ j ≤ Li,retry, 1 ≤ l ≤ Wi,j − 1 (4.3)

Also, by imposing the normalization condition for stationary distribution, we

get

Li,retry∑
j=0

Wi,j−1∑
l=0

bi,j,l = 1 (4.4)

Then, from Equations (4.2), (4.3) and (4.4), we can derive a generic approxi-

mation of the initial state for each ACs and is given by Equation (4.5).

1

bi,0,0
=

Li,retry∑
j=0

1 +
1

1− pi

Wi,j−1∑
l=1

Wi,j − l
Wi,j

 pji (4.5)

Let pt,i the probability that a station in the ACi priority class transmits during

a generic time slot. The following relations can be derived,

55

4. IEEE 802.11N AND QOS IN CONJUNCTION

Figure 4.2: The state transition diagram for ACi

pt,i =

Li,retry∑
j=0

bi,j,0 = bi,0,0
1− pLi,retry+1

i

1− pi
(4.6)

pi = 1−

(
i−1∏
h=0

(1− pt,h)nh
)

(1− pt,i)ni−1
(

N−1∏
h=i+1

(1− pt,h)nh
)

(4.7)

The Equations (4.5), (4.7) & (4.6) represent a non-linear system of equations

with unknowns bi,0,0, pt,i, and pi, which can be solved by numerical results using

56

4. IEEE 802.11N AND QOS IN CONJUNCTION

any numerical computing environment such as MATLAB [115].

4.2.1 Saturation Throughput

The probability that the channel is busy, pb, can be written as

pb = 1−
N−1∏
h=0

(1− pt,h)nh (4.8)

Let ps,i denote the probability that a successful transmission occurs in a time

slot for the ACi, and let ps denote the probability that a successful transmission

occurs in a time slot in general. So, we have

ps,i = nipt,i(1− pt,i)ni−1
N−1∏

h=0,h6=i

(1− th)nh (4.9)

ps =
N−1∑
i=0

ps,i =
N−1∑
i=0

nipt,i
1− pt,i

(1− pb) (4.10)

The average length of a time slot comprises of idle period (I), successful

transmission period (I) and collision period (Tc). Let Tslot, TE(Lpacket), TE(Lpacket∗),

TH and δ be the duration of a time slot, the time to transmit the average payload,

the time to transmit the payload of the longest frame involved in a collision, the

time to transmit the MAC & PHY headers plus any pads or tails, and the time

of the propagation delay, respectively. So the mean I, mean Ts and mean Tc can

be derived as

E(I) = (1− pb)Tslot (4.11)

E(Ts) = psTs

= ps(TH + TE(Lpacket) + SIFS + δ + TACK +DIFS + δ) (4.12)

57

4. IEEE 802.11N AND QOS IN CONJUNCTION

E(Tc) = (pb − ps)Tc = (pb − ps)(TH + TE(Lpacket∗) +DIFS + δ) (4.13)

According to the Equations (4.8)-(4.13), the normalized saturation through-

put, Si, for an ACi can be written as

Si =
E(payload successful transmission time of ACi)

E(total period between two successive transmission)

=
ps,iTE(Lpacket)

E(I) + E(Ts) + E(Tc)
(4.14)

4.2.2 Saturation Delay

According to Xiao, the saturation delay for an ACi, denoted here as Di, is the

average delay under the saturation condition of a class i priority, and includes

the medium access delay, transmission delay, and any IFS.

Let Xi (i = 0, . . . , N − 1) denote the r.v. representing the total number of

backoff slots a packet a priority i class experiences without backoff counter freezes.

Similarly, let Xi (i = 0, . . . , N − 1) the r.v. of the total number of times that the

queue of ACi senses the medium busy before its backoff timer reaches zero. In

other words, the total number of times that the counter freezes for a frame of the

priority i class. Let Ni,retry (i = 0, . . . , N −1) denote the r.v. of the total number

of retries for the priority i class. Consequently, we can derive the following mean

values

E(Xi) =

Li,retry∑
j=0

pji (1− pi)
1− pLi,retry+1

i

j∑
h=0

Wi,h − 1

2
(4.15)

E(Bi) =
E(Xi)

(1− pi)
pi (4.16)

E(Ni,retry) =

Li,retry∑
j=0

jpji (1− pi)
1− pLi,retry+1

i

(4.17)

58

4. IEEE 802.11N AND QOS IN CONJUNCTION

Let To denote the time that a station has to wait when its frame transmission

has failed before it can sense the channel again and let TACKTimeout
express the

interval of which a STA has to wait before sensing the channel again or before

assuming a packet collision occurred.

To = SIFS + TACKTimeout
(4.18)

Given the Equations (4.15)-(4.18), the average saturation delay of an ACi

queue can be calculated from the following

E(Di) = E(Xi)δ + E(Bi) [E(Ts)− E(Tc)] + E(Ni,retry)(Tc + To) + Ts (4.19)

4.3 Numerical Results Using MATLAB

We conduct analytical results to evaluate the performance of the 802.11e EDCA

medium access mechanism in terms of saturation throughput and access delay.

More specifically, we would like to gain a better understanding on how the be-

haviour of the QoS prioritization of high priority ACs over lower priority effect

the overall performance, which sometimes could lead into starvation for the lower

priority ACs. We use the IEEE 802.11a as an example and its parameters can

be found in [6, 11]. The data rate is 54 Mb/s and the control rate is kept at 6

Mb/s. The packet lengths are fixed at 1, 500 bytes for each STA and the number

of STAs varies according to the scenario in consideration. For simplicity reasons

the RTS/CTS frame exchange as a collision protection mechanism has not been

utilized as the derived objective conclusions are analogous, in any case it can be

easily applied.

For our results we defined three numerical experiments where each STA de-

ploys one backoff entity of one and only AC to contend for the channel. Since

we can’t vary the packet length or the time slot for individual STAs in order to

increase the offered load of a specific priority class, we add more STAs of that

AC. For the first scenario, there are ten (10) wireless STAs that comprise of one

backoff entity per AC V O (STA1), two backoff entities for AC V I (STA2 and

59

4. IEEE 802.11N AND QOS IN CONJUNCTION

STA3), three per AC BK (STA4, STA5 and STA6) and four per AC BE (STA7,

STA8, STA9 and STA10). For the second scenario, there are again ten (10) STAs

but a reverse approach is followed, instead of increasing the lower priorities, now

we increase the higher priorities. So, the second scenario includes one backoff

entity per AC BE (STA1), two backoff entities for AC BK (STA2 and STA3),

three per AC V I (STA4, STA5 and STA6) and four per AC V O (STA7, STA8,

STA9 and STA10). The third scenario has a totally different set-up. We employ

thirty (30) STAs of BE traffic that constantly transmit throughout the simulation

run and alongside ten backoff entities for AC V O (STA1 to STA0) are gradually

imported. Finally, for all three (3) scenarios, we perform ten (10) separate sim-

ulation steps where we add to the system progressively STA1 to STA10, one by

one, and collect individual performance measurements.

Figure 4.3 shows the collected results for saturation throughput and expected

mean access delay for each AC as non-QoS STAs increase. It can be observed that

the total throughput (Figure 4.3a) for all participated ACs tends to a constant

value around ∼ 0.6 of the normalised data rate. This again verifies the tendency

of the poor channel efficiency, already high lighted in previous sections. As more

STAs are included in the results, the saturation throughputs of each AC is affected

analogously. Even though the majority of the wireless nodes belong to the lower

priority classes, the saturation throughputs for the higher priorities yield graphs

higher than the lower ACs, despite being less. For example, although the single

STA for the AC V O backoff entity is effected from the increasing offered loads,

it uses the channel more often. This behaviour is also derived from Figure 4.3b

where the real-time applications satisfy their delay requirements, in contrast to

heavy profiled traffic flows with no QoS demands which expect higher delay.

More specific, the mean access delay for STA1 that is comprised with AC V O

traffic flows remains around ∼ 0.5 ms throughout the simulation runs, while

the subsequent AC, the AC V I, has a small incline every time a new STA is

introduced to the system. Furthermore, the commencing mean delay for the

AC BE is six (6) times more than the highest priority AC.

On the other hand, in Figure 4.4 we change the ratio of non-QoS and QoS

STAs by introducing more of the latter. Again, for the saturation throughput

results (Figure 4.4a), we observe an influential attitude towards the higher pri-

60

4. IEEE 802.11N AND QOS IN CONJUNCTION

(a) Saturation Throughput vs. Stations (b) Access Delay vs. Stations

Figure 4.3: EDCA performance measurements as non-QoS STAs increase

(a) Saturation Throughput vs. Stations (b) Access Delay vs. Stations

Figure 4.4: EDCA performance measurements as QoS STAs increasing

ority traffic since they ‘steal’ bandwidth from the lower priorities. Even though

there are instances where the non-QoS flows show peaks of transmission, these

are immediately dropped once higher ACs are introduced over the subsequent

simulation steps. At the beginning of the simulation, the single STA of AC BE

attains a normalized throughput of 0.4833. As newly arrived traffic (or STAs)

enter the network the throughput for the BE application rapidly decreases with

an exponentially rate and at the last simulation run achieved only 0.0283. The

prioritization mechanism even effects the channel access delay as for the AC BE

we observe a rapid increase while more QoS delay bounded flows enter the sys-

tem. Even though the number of AC V O backoff entities prevail in this scenario,

61

4. IEEE 802.11N AND QOS IN CONJUNCTION

they hold the least channel access delay (Figure 4.4b).

(a) Saturation Throughput vs. Stations (b) Access Delay vs. Stations

Figure 4.5: QoS STAs get more greedy

In order to demonstrate the magnitude of this unfairness over the lower ACs,

for this third scenario we have introduced heavy-load traffic conditions of AC BE

traffic. So, thirty (30) STAs constantly contend the channel and after are granted

access permission, they transmit a payload size of 1, 500 bytes. In addition, at

every simulation step, a QoS provisioned STA of AC V O traffic will be introduced

in the system. Figure 4.5 shows both saturation throughput and channel access

delay of this scenario. From the saturation throughput (Figure 4.5a), it can

be observed that as the first AC V I backoff entity enters the system, the best

effort flows maintain a higher portion of the channel’s bandwidth. Yet again,

the delay results (Figure 4.5a) indicate that there is a huge burden over the low

backoff entities as from the start the BE traffic flows count large values of delay

which rapidly increases as the simulation runs progress. Also, for the third QoS

provisioned STA that enters the network we observe a cross-over point for the

ACs normalized throughputs, where the most prioritized traffic begins to absorb

more bandwidth. Note that at that point, the number of STAs for the low priority

AC are thirty (30) while the high priority AC STAs are only three (3). On the

other hand the channel access delay for the delay bounded traffic remains in low

values throughout the simulation. The EDCA through the prioritization process

starves AC BE STAs in order to serve AC V O STAs that have delivery time

boundaries.

62

4. IEEE 802.11N AND QOS IN CONJUNCTION

4.4 Simulations Using OPNET

In addition, we argue that frame aggregation adheres due to the EDCA sched-

uler’s priority mechanism from IEEE 802.11e, resulting in the network’s poor

overall performance. Although this situation can induce unfairness to the lower

ACs, this is the most adequate mechanism for the higher ACs to attain channel

access within the delay-constraints appointed from the originated application.

But, as the waiting period is decreasing, so are the number of packets that trail

the first arrived packet, consequently the aggregate size is small. As we described

in the previous chapter, there is a trade-off of choice that has to be taken into

account when we want to improve network performance, minimizing the waiting

time or maximizing utilization or efficiency. So, far we show that in order to min-

imize the access channel waiting periods, we impose a burden to the best-effort

applications which also compromise most of network’s traffic. In this section,

we will show how 802.11e’s EDCA function decreases the efficiency of the higher

priority transmission queues over the IEEE 802.11n environment.

We also evaluate closely the performance of EDCA through various simu-

lations using OPNET. The design and choice of network architecture for each

scenario corresponds to a home, a large enterprise and a hot spot environment.

Therefore, for the scenarios’ configuration and layout, we follow, as before, the

802.11n usage Scenario 1, Scenario 4 and Scenario 6 from TGn’s Usage Models

document [68]. A detailed description for a set of the case scenarios which we are

going to use throughout this section have also been given in the Appendix Usage

Models. The following set of standard performance metrics are collected: the

total goodput for the WLAN and for each individual flow (in Mb/s), the aver-

age aggregated sizes, the maximum and average latency values for every AC (in

sec), and the Packet Loss Rate (PLR), but only for the QoS flows since PLR is

defined as the percentage of packets that have not been delivered within the al-

lowed maximal delay set by the QoS bounded originated application. Something

that may be out of scope for the time being but will prove significant on the

following chapters, for all the scenarios the TCP New Reno flavour is used and

the receiver’s TCP window buffer is set at 655, 350 bytes.

63

4. IEEE 802.11N AND QOS IN CONJUNCTION

4.4.1 Residential Scenario

The first scenario represents an indoor (room to room) residential network with

several HT devices. A total of twelve (12) HT wireless nodes are spread over

a residential platform, eleven (11) STAs plus a single QoS AP. Distinguished

examples of application usage, is the viewing of Standard-Definition television

(SDTV) and HDTV anywhere in the house and simultaneous talk on VoIP tele-

phones, surfing the Internet or listening to MP3 music that is stored on a central

wireless unit or even playing games on-line via wireless consoles. A further study

of the UPs used in this scenario, will show that the majority of the applications

are real-time, thus delay bounded. There are only two BE flows, an Internet and

Local file transfer applications of OL of 1 and 30 Mb/s, respectively. The simu-

lation is run for an adequate enough time and results are gathered after the first

second passes in order to allow time for the system to establish communication

links, e.g. TCP slow start.

From To UP Offered Load Goodput Average Aggregate Maximal Delay Average Delay PLR

STA 0 STA 1 5 19.2 19.041 21.89 0.08823 0.03082 0
STA 0 STA 3 5 24 23.679 23.49 0.09434 0.03295 0
STA 0 STA 4 5 4 3.978 13.41 0.28929 0.04302 0
STA 0 STA 4 0 1 0.991 13.41 0.28929 0.04302 N/A
STA 0 STA 7 7 0.096 0.096 1.01 0.01264 0.00248 0
STA 0 STA 8 7 0.096 0.096 1.01 0.01274 0.00261 0
STA 0 STA 9 7 0.096 0.096 1.01 0.01284 0.00275 0
STA 0 STA 10 5 2 1.989 11.91 0.08563 0.02228 0
STA 0 STA 11 5 0.128 0.127 1.85 0.08516 0.02732 0
STA 1 STA 0 5 0.06 0.06 1.71 0.05398 0.00924 0
STA 3 STA 0 5 0.06 0.06 1.72 0.05603 0.00911 0
STA 4 STA 10 0 30 6.366 40.04 1.14062 0.68815 N/A
STA 5 STA 6 5 0.5 0.498 2.25 0.06179 0.01326 0
STA 6 STA 5 5 0.5 0.499 2.15 0.05688 0.01148 0
STA 7 STA 0 7 0.096 0.096 1.02 0.01527 0.00323 0
STA 8 STA 0 7 0.096 0.096 1.01 0.01495 0.00322 0
STA 9 STA 0 7 0.096 0.096 1.01 0.01526 0.00327 0
STA 10 STA 0 7 1 1 1.18 0.01168 0.00224 0
STA 11 STA 10 7 0.5 0.5 2.25 0.01648 0.00187 0

AC BE
83.524 59.362

26.73 0.71495 0.36558 N/A
AC VI 8.93 0.09681 0.02217 0
AC VO 1.19 0.01398 0.00271 0

Table 4.2: Detailed simulation results of 802.11n for Scenario 1

Table 4.2 lists the simulation results for the Residential case. The total offered

load from all applications is 83.524 Mb/s, while the network delivers a Goodput

of 59.362 Mb/s. Consequently, we observe that the scenario accomplishes around

71% of the total offered load. Regarding the aggregation mechanisms, the frames

concatenate on average 26.73, 8.93, 1.19 packets for the AC BE, AC V I and

AC V O, respectively. This validates our previous argument that higher priority

64

4. IEEE 802.11N AND QOS IN CONJUNCTION

flows access the channel in shorter periods, therefore their aggregates are smaller,

e.g. see AC V O 7→ 1.19. Nevertheless, all delay requirements are met and there

are no packets lost due to network’s restraints.

4.4.2 Large Enterprise Scenario

Briefly, the Scenario 4 from the usage models document contains one (1) AP and

thirty (30) associated STAs. The mixture of applications varies from internet and

local file transfers, video conferencing, VoIP to some media player usage. The

range of applications in this scenario share both high and low priority ACs but

with the best-effort flows calling for a high bandwidth demand. In a nutshell,

it captures the users’ daily peak activity of some company’s wireless network

domain.

Table 4.3 lists the simulation results for the Large Enterprise case. The total

offered load from all applications is 460.176 Mb/s, while the network delivers

a Goodput of 62.061 Mb/s. Consequently, we observe that the scenario ac-

complishes around 13.5% of the total offered load. Regarding the aggregation

mechanisms, the frames concatenate on average 42.95, 2.66, 1.13 packets for the

AC BE, AC V I and AC V O, respectively. Again, these results confirm the issue

that emerges when the enhancements of 802.11n are utilized with the QoS mech-

anisms in conjunction. From individual results we derive the conclusion that only

a very small portion of the requested bandwidth from the best-effort applications

was served. Nevertheless, all delay requirements are met and the packets lost due

to network’s restraints is negligible (PLR for VO = 0.2%).

4.4.3 Hot Spot Scenario

On the other hand, Scenario 6 has forty-one (41) STAs and one (1) AP, all present

within AP’s range. The configuration is arbitrary like most hot-spot networks

are and the traffic applicable is VoIP, high and medium quality audio with video

streaming, SDTV broadcasting and Internet File (IF) transfers. The bandwidth

requests are not excessively large as we show with previous scenarios and the

offered load is equally distributed between best-effort and real-time applications,

if not the latter retain a slight advantage. Most of the applications, such as voice

65

4. IEEE 802.11N AND QOS IN CONJUNCTION

From To UP Offered Load Goodput Average Aggregate Maximal Delay Average Delay PLR

STA 0 STA 1 0 1 0.798 61.41 1.64487 1.04880 N/A
STA 0 STA 2 0 1 0.806 56.94 1.63768 1.04401 N/A
STA 0 STA 3 0 1 0.810 62.84 1.62690 1.06538 N/A
STA 0 STA 4 0 1 0.791 52.74 1.62377 1.06626 N/A
STA 0 STA 5 0 1 0.923 63.47 1.63517 0.88424 N/A
STA 0 STA 6 0 10 4.358 55.38 1.63434 0.78534 N/A
STA 0 STA 7 5 1 1 2.1 0.05037 0.00711 0
STA 0 STA 8 5 1 1 2.23 0.05099 0.00773 0
STA 0 STA 9 5 2 2 2.93 0.03936 0.00639 0
STA 0 STA 10 5 2 2 3.15 0.04341 0.00689 0
STA 0 STA 11 0 30 2.808 39 1.43707 1.02419 N/A
STA 0 STA 12 0 30 2.76 43.81 1.62735 0.98273 N/A
STA 0 STA 13 0 30 0.627 29.86 1.32756 1.00657 N/A
STA 0 STA 14 0 30 3.198 48.45 1.64367 1.07792 N/A
STA 0 STA 15 0 30 3.678 43.79 1.63651 0.95851 N/A
STA 0 STA 16 0 30 1.638 42 1.31235 0.95273 N/A
STA 0 STA 17 0 30 2.742 45.7 1.63142 0.96771 N/A
STA 0 STA 18 0 30 2.139 41.94 1.27320 0.93958 N/A
STA 0 STA 19 0 30 2.469 43.32 1.64988 1.02852 N/A
STA 0 STA 20 0 30 3.126 45.3 1.44636 0.89745 N/A
STA 0 STA 25 7 0.096 0.096 1.06 0.01905 0.00414 0
STA 0 STA 26 7 0.096 0.096 1.06 0.01918 0.00423 0
STA 0 STA 27 7 0.096 0.096 1.06 0.01939 0.00434 0
STA 0 STA 28 7 0.096 0.096 1.07 0.01959 0.00445 0
STA 0 STA 29 7 0.096 0.096 1.08 0.02425 0.00474 0
STA 0 STA 30 7 0.096 0.096 1.1 0.02447 0.00508 0
STA 1 STA 0 0 0.256 0.308 22.89 0.22494 0.04354 N/A
STA 2 STA 0 0 0.256 0.309 23.79 0.16898 0.04057 N/A
STA 3 STA 0 0 0.256 0.305 23.47 0.15510 0.04087 N/A
STA 4 STA 0 0 5 3.786 34.34 0.15084 0.04751 N/A
STA 5 STA 0 0 10 4.651 55 0.53720 0.13319 N/A
STA 6 STA 0 0 0.256 0.421 29.49 0.27016 0.05749 N/A
STA 7 STA 0 5 1 1 2.71 0.05279 0.00874 0
STA 8 STA 0 5 1 1 2.82 0.05128 0.00912 0
STA 21 STA 0 0 30 0.942 34.89 0.14798 0.09065 N/A
STA 22 STA 0 0 30 3.42 38 0.28590 0.09713 N/A
STA 23 STA 0 0 30 3.567 39.63 0.16145 0.07232 N/A
STA 24 STA 0 0 30 1.53 39.23 0.13310 0.09225 N/A
STA 25 STA 0 7 0.096 0.096 1.18 0.02701 0.00567 0
STA 26 STA 0 7 0.096 0.096 1.17 0.02701 0.00606 0
STA 27 STA 0 7 0.096 0.096 1.2 0.03699 0.00598 0
STA 28 STA 0 7 0.096 0.096 1.21 0.02732 0.00612 0
STA 29 STA 0 7 0.096 0.096 1.19 0.03731 0.00598 1
STA 30 STA 0 7 0.096 0.096 1.18 0.03262 0.00590 1

AC BE
460.176 62.061

42.95 1.03937 0.63252 N/A
AC VI 2.66 0.04803 0.00766 0
AC VO 1.13 0.02618 0.00522 0.2

Table 4.3: Detailed simulation results of 802.11n for Scenario 4

and video traffic, is transmitted using UDP and only for the IF transfers we do

apply the TCP protocol.

In general, real-time video and audio streaming applications are designed to

be more persistent to occasional lost packets, thus UDP is a more suitable and

flexible protocol suite to use. But, in order to support UDP-based real-time

applications over the Internet, it is necessary to provide bandwidth to the UDP

applications within the network so that the performance of the UDP applications

will not be seriously affected during periods of congestion. UDP flows do not

typically back off when they encounter congestion, but aggressively use up more

bandwidth than TCP friendly flows [116]. This scenario has a twofold importance,

66

4. IEEE 802.11N AND QOS IN CONJUNCTION

From To UP Offered Load Goodput Average Aggregate Maximal Delay Average Delay PLR

STA 0 STA 1 0 2 0.769 53.42 2.45539 1.14827 N/A
STA 0 STA 2 0 2 0.770 55.78 2.45565 1.11628 N/A
STA 0 STA 3 0 2 0.764 55.35 2.44974 1.10791 N/A
STA 0 STA 4 0 2 0.737 55.82 2.49027 1.13431 N/A
STA 0 STA 5 0 2 0.737 53.43 2.49131 1.15636 N/A
STA 0 STA 6 0 2 0.766 53.17 2.50471 1.18454 N/A
STA 0 STA 7 0 2 0.769 53.38 2.45179 1.18854 N/A
STA 0 STA 8 0 2 0.760 55.09 2.44876 1.11164 N/A
STA 0 STA 9 0 2 0.753 52.29 2.46219 1.10786 N/A
STA 0 STA 10 0 2 1.032 49.57 1.60842 0.86487 N/A
STA 0 STA 11 5 2 1.792 43.75 0.46845 0.21803 52
STA 0 STA 12 5 2 1.775 43.33 0.43233 0.21443 50
STA 0 STA 13 5 2 1.783 38.69 0.47600 0.22433 54
STA 0 STA 14 5 2 1.814 37.68 0.49668 0.22221 53
STA 0 STA 15 5 8 7.009 48.55 0.50869 0.26744 71
STA 0 STA 16 5 8 7.022 48.63 0.51228 0.26655 71
STA 0 STA 17 5 8 7.004 49.21 0.51202 0.26559 69
STA 0 STA 18 5 5 4.470 25.69 0.48250 0.23943 59
STA 0 STA 19 5 5 4.476 26.64 0.49225 0.23176 54
STA 0 STA 20 7 0.096 0.096 1.52 0.05023 0.00920 3
STA 0 STA 21 7 0.096 0.096 1.28 0.03668 0.00669 1
STA 0 STA 22 7 0.096 0.096 1.28 0.03680 0.00680 1
STA 0 STA 23 7 0.096 0.096 1.29 0.03691 0.00690 1
STA 0 STA 24 7 0.096 0.096 1.39 0.03830 0.00781 1
STA 0 STA 25 7 0.096 0.096 1.39 0.03852 0.00791 1
STA 0 STA 26 7 0.096 0.096 1.3 0.03703 0.00701 1
STA 0 STA 27 7 0.096 0.096 1.32 0.03714 0.00710 1
STA 0 STA 28 7 0.096 0.096 1.34 0.03725 0.00719 1
STA 0 STA 29 7 0.096 0.096 1.35 0.03737 0.00732 1
STA 0 STA 30 7 0.096 0.096 1.4 0.04549 0.00826 2
STA 0 STA 31 7 0.096 0.096 1.35 0.03748 0.00744 1
STA 0 STA 32 7 0.096 0.096 1.36 0.03764 0.00755 1
STA 0 STA 33 7 0.096 0.096 1.38 0.03786 0.00766 1
STA 0 STA 34 7 0.096 0.096 1.38 0.03808 0.00778 1
STA 20 STA 0 7 0.096 0.096 1.56 0.06600 0.01026 3
STA 21 STA 0 7 0.096 0.096 1.55 0.06351 0.01007 3
STA 22 STA 0 7 0.096 0.096 1.53 0.05985 0.01026 3
STA 23 STA 0 7 0.096 0.096 1.38 0.04639 0.00842 1
STA 24 STA 0 7 0.096 0.096 1.45 0.04957 0.00905 2
STA 25 STA 0 7 0.096 0.096 1.51 0.03713 0.00957 2
STA 26 STA 0 7 0.096 0.096 1.56 0.06379 0.00999 2
STA 27 STA 0 7 0.096 0.096 1.51 0.04598 0.01000 3
STA 28 STA 0 7 0.096 0.096 1.52 0.04480 0.00986 3
STA 29 STA 0 7 0.096 0.096 1.54 0.06292 0.00984 3
STA 30 STA 0 7 0.096 0.096 1.61 0.07350 0.01082 5
STA 31 STA 0 7 0.096 0.096 1.58 0.07546 0.01073 4
STA 32 STA 0 7 0.096 0.096 1.54 0.04675 0.00977 3
STA 33 STA 0 7 0.096 0.096 1.58 0.05420 0.01037 4
STA 34 STA 0 7 0.096 0.096 1.32 0.03623 0.00738 1

AC BE
64.88 47.879

53.73 2.38182 1.11206 N/A
AC VI 40.24 0.48680 0.23886 59.2
AC VO 1.44 0.04696 0.00888 2

Table 4.4: Detailed simulation results of 802.11n for Scenario 6

first to check the interaction between high and low ACs but also to understand

the behaviour of UDP over TCP protocols over the Transport Layer.

Table 4.4 lists the simulation results for the Hot Spot case. The total offered

load from all applications is 64.88 Mb/s, while the network delivers a Goodput

of 47.879 Mb/s. Consequently, we observe that the scenario accomplishes around

64.3% of the total offered load. Regarding the aggregation mechanisms, the

frames concatenate on average 53.73, 40.24, 1.44 packets for the AC BE, AC V I

and AC V O, respectively. Within this scenario, we observe a high number of

67

4. IEEE 802.11N AND QOS IN CONJUNCTION

concatenated frames for the AC V I traffic. The reasoning behind this effect has

to do with the delayed channel access for this AC caused by the immediate higher

priority flow from it, the AC V O. This natural delayed channel access causes the

aggregation queues to form larger aggregates and this behaviour is the base for

our delayed channel access algorithm described over the next chapter. However,

since this delay cannot be controlled or dynamically adjusted, we observe a high

PLR for the AC V I traffic, PLRV I = 59.22% and hence failure of their respective

QoS requirements. On the other hand, the delay requirements for the AC V O

flows are met and the packets lost due to network’s restraints is negligible with

PLRV O = 2%.

4.5 Summary

The new IEEE 802.11n standard provides enough capacity to service immense

offered loads. Nevertheless, the PHY enhancements are not sufficient to guar-

antee significant throughput performance. The principle of Frame Aggregation

is to form larger frames for transmission by collecting multiple packets inside

an aggregate buffer. In the interest to increase the aggregated size, there is a

need of packets to be piled in the stack. However, we’ve demonstrated that the

performance improvement potentials may be limited by the interaction between

prioritized and parameterized channel access scheduling mechanisms defined for

the QoS support and the enhanced asynchronous data service for the increased

MAC efficiency. Mainly because, the waiting period for delay-sensitive traffic

decreases, but so are the number of packets that trail the first arrived packet,

consequently the aggregate size is small.

Also, within the analytical analysis of EDCA, we’ve pointed out that the

prioritization process starves AC BE STAs in order to serve AC V O STAs that

have delivery time boundaries. Consequently, not only the higher priority STAs

will tend to have small aggregate sizes but also the lower priority STAs maintain

a small channel access frequency. In most cases, frame aggregation adheres due to

the EDCA scheduler’s priority mechanism, resulting in the network’s poor overall

performance.

68

Chapter 5

Delayed Channel Access and the

TCP Problem

The new IEEE 802.11n standard provides enough capacity to service immense

offered loads. Nevertheless, the PHY enhancements are not sufficient to guarantee

significant throughput performance. As indicated earlier, having a large amount

of data in each aggregate buffer is crucial to achieve high channel utilization and

MAC efficiency. In order to achieve that there are two approaches to follow:

proactive, e.g. set a quorum, a minimum required number of packets before the

queue request channel access and during that time it remains idle or reactive,

e.g. once a STA requests permission to access the channel, a scheduling agent

can determine if there is enough data in the queue and if not, delay it’s channel

access granting so it can let the buffer collect more packets.

On the other hand, traffic intensity is a considerable factor that affects the

size of these bursts. Meaning the ratio between how often the packets arrive

at the queue, towards the interval that has to wait before these packets can be

served, has to be taken into consideration too. We also show that IEEE 802.11e’s

probabilistic prioritization mechanism for QoS provides shorter waiting intervals

for high priority entities in relation to lower priority. Although this situation can

induce unfairness to the lower ACs, this is the most adequate mechanism for the

higher ACs to attain channel access within the delay-constraints appointed from

the originated application. But, as the waiting period is decreasing, so are the

69

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

number of packets that trail the first arrived packet in the queue, consequently

small aggregates are formed.

Regarding the question of which viewpoint is more important, minimizing the

waiting time or maximizing utilization, a trade-off choice has to be taken into

account in respect of the overall system’s performance and QoS. A specific batch

collection rule it doesn’t exist, indicating that each scenario is distinctive with its

individual characteristics, exclusive requirements and particular behaviour. How-

ever, an algorithm to determine all the aforementioned aspects and dynamically

adapt, in both proactive and reactive manner, specific scheduling parameters that

directly interfere with the channel access delay and act alongside the system’s dis-

tributed coordination function, could be a solution.

5.1 A Description of the DCA

The concept of implementing an archetype delayed channel access algorithm was

first introduced by Liu and Stephens in [19] and it was designed to intentionally

commence a further delay at the MAC layer in order to increase the number of

packets that can be buffered at the AC’s queue, resulting in increased network

overall performance. A good measurement for each station’s channel load is the

channel access delay. The channel access delay for a frame arriving at the MAC is

defined as the period from the time that the frame arrives at the front of the queue

buffer till its successful transmission to the intended receiving STA, excluding the

wireless propagation delay (depicted in Figure 5.1). However, a set of conditions

need to be applied so that it can match the aggregated packet formation with the

traffic burst within an appropriate time scale.

A traffic burst of a flow describes a sequence of packets bounded by the first

and last packets [117]. The frame compound formed with two or more aggregated

packets requires to be proportional to the channel load, given that traffic burst

can be either high when the channel load is elevated or low when the channel

load is minimal. Packetised traffic exhibits bursty and self-similar or fractal-like

characteristics [118]. Data analysis collected from an Ethernet network, show

that self-similar traffic typically intensifies as the number of active traffic sources

increases, contrary to generally accepted argument that aggregate traffic becomes

70

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Figure 5.1: An illustration of the channel access delay

smoother (less bursty) as the number of traffic sources increase [77, 78, 79]. To

keep track of the traffic burst, we identify TB as the inter-arrival time of the traffic

burst under review and satisfy two conditions a) the expected inter-arrival times

of any two neighbouring packets belonging to the same burst is less than TB;

b) packets in different bursts satisfy a separation timing constraint. It is natural

to use this flow characteristic as an initial condition to form an aggregate for each

traffic burst.

Then, there is a robust association between aggregation length and waiting

time, further waiting time signifies larger aggregate sizes. However, this situation

might lead to unnecessary idling even when the packet queue isn’t empty or

the supplementary deferment may cause unpredictable issues to delay-bounded

applications. The set appropriate time scale must identify the QoS requirements

of the incoming traffic and foresees that the expected delivering times do not

surpass the delay constraints. So, we set a positive constant, τ , which designates

the maximal waiting time for a packet in the aggregation buffer. Note that,

taking in consideration the time needed for a frame to be successfully received

while setting τ , excess jitter can be avoided.

In an 802.11e WLAN, best-effort traffic is bounded by the large channel access

waiting periods due to prioritization given to higher ACs. In addition, these non-

delay constrained BE flows comprise a huge share of the total load and belong

to bulk transfer applications, also known to be bandwidth-hungry (e.g. file-

sharing and peer-to-peer applications) [119]. Regarding the transport protocol,

71

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

the majority of the traffic is generated by TCP connections but it has been shown

that the TCP throughput decreases in accordance to the amount of channel

bandwidth occupied by the UDP traffic. Mathematical analysis and network

observations show that in the saturated regime aggregate throughput obtained

by the UDP flows can be more than the aggregate throughput achieved by the

TCP persistent flows by a factor equal to the total number of UDP traffic flows

[120]. This behaviour is independent of the QoS support mechanisms but is

based over the upper layer transport protocol characteristics and their dynamics.

Nevertheless, TCP flows are not delay bounded, neither does the traffic burst

depend on the channel load since this is mainly occupied by the UDP real-time

applications. Therefore, a different condition is set for its channel access delay, a

constant number of packets to be formed in an aggregate. So, let σ the maximum

number of packets in the aggregation buffer before aggregation is triggered.

5.2 The DCA Algorithm

The DCA algorithm maintains three attributes (see Table 5.1) and these are

extremely important for the determination of the algorithm’s decisions.

Parameter Description and Recommended Value

γ A positive constant that is the ratio of the inter-
arrival time to the channel access delay. It is rec-
ommended that γ takes a value no less than 2.
(Default = 10)

τ A constant that is the maximal waiting time for
packets in the aggregation buffer. For example, for
a video flow with 200ms maximal delay, we recom-
mend 100ms for low packet loss ratio requirement
and 50ms for high packet loss ratio requirement.
(Default = ‘Low PLR’)

σ A constant that determines the maximal number
of packets in the aggregation buffer before aggre-
gation is triggered. (Default = 48).

Table 5.1: DCA algorithm’s parameters

The algorithm delays the channel access as long as the number of packets in

72

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

the aggregation buffer hasn’t reached σ packets, or the period since the first packet

that was received hasn’t exceeded the maximal waiting time τ , or the duration

from the last received packet remains below the time that was last needed to

access the channel by a factor of γ.

The DCA scheduler follows this basic idea in two steps:

• It identifies the traffic burst by an inter-arrival time proportional to the

last MAC channel access delay and puts all packets belonging to the corre-

sponding traffic burst in an aggregation buffer.

• When the identified traffic burst is completed, it aggregates all the packets

in the buffer in one aggregate for channel access and transmission.

In order for the scheduler to identify the traffic burst and control the trigger-

ing mechanism, each station needs to maintain a number of state variables for

each AC. The following table (see Table 5.2) presents these variables, including

their initial values, and a small description about their functionality. The state

variables are also illustrated in Figure 5.1.

Variable Initial Value Description

TB 10−6 The inter-arrival time in seconds for
the current burst.

NMSDU 0 The number of packets from upper
layer that are still in the aggregation
buffer.

TF N/A The arrival time of the first packet
from upper layer in the current ag-
gregation buffer.

TL N/A The arrival time of the last packet
from upper layer.

TCA N/A The channel-access starting time for
an aggregate.

TTX N/A The transmission starting time for
an aggregate.

t N/A The current time.

Table 5.2: DCA state variables

73

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

The pseudo-code below (labelled as Algorithm 1), describes in a manner of

conditional and iteration consequence statements, the steps that the algorithm

undertakes during its operation. These events also affect the values of the state

variables, defined earlier. So, during the DCA operation, a While-Loop will re-

peatedly allow newly packets to tail the aggregate buffer queue till the boolean

conditional trigger mechanisms are met. Note, that the iteration process is

time and not packet dependant, meaning that DCA algorithm can remain in

an “IDLE” state when there are no packet arrivals from the upper layer but yet

it still carries conditional checks over the resting and total period of time.

Algorithm 1 DCA Pseudo-code

if NMSDU = 0 then
TF ← t

else
while (t− TF < τ) or (t− TL < TB) do . DCA triggers

if new packet arrival then
NMSDU ← NMSDU + 1 . form an aggregate
TL ← t
if (NMSDU < σ) then . DCA trigger

break iteration
end if

end if
end while

end if . start channel access
TCA ← t
NMSDU ← 0
repeatWAIT
until ready to transmit
TTX = t . and transmit frame
repeatWAIT
until ACK or BA is received
TB ← γ(TTX − TCA)

74

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

5.3 Performance Evaluation of DCA

In this section, we evaluate closely the performance of DCA through various

simulations using OPNET’s model. The design and choice of network architec-

ture for each scenario corresponds to a home, a large enterprise and a hot spot

environment, Scenario 1, Scenario 4 and Scenario 6 from TGn’s Usage Mod-

els document [68], respectively. For each scenario, a simulation is run with and

without DCA and the channel is regarded as error-free. The simulation results

are compared to determine the performance gain provided by DCA. In all the

simulations, we collect the standard performance metrics, including the goodput

for WLAN and each individual flow when applicable, the mean aggregated sizes

of the frames, the latency values for the ACs, and the PLR for the QoS flows.

Note that for all TCP traffic we are choosing the TCP New Reno extension [121]

and the TCP receiver’s advertised window size is set to 655, 350 bytes follow-

ing the recommendations in [122] where it is suggested that the maximum TCP

window size should be at least as large as the bandwidth-delay product of the

wireless link. Last, we have disabled the A-MSDU aggregation mechanism and

the QoS attributes for the DCA are set to γ = 10, τ ≤ 1
2

maximal delay (e.g.

τBK&BE = 0.15 ms, τV I = 0.1 ms and τV O = 0.008 ms), and σ = 48 packets.

In addition, for a home-based scenario, we choose to design a supplementary

case which is still characterised as overloaded but yet is much simpler and consists

of only four (4) STAs, as illustrated in Figure 5.2. We call this new scenario

Scenario 2 for future reference. So, for Scenario 2 we consider an overloaded

802.11n WLAN that includes three (3) STAs and a single AP. All STAs are

relatively close to each other and in Line of Sight (LoS). Their operational PHY

rate is at 117 Mb/s since we’ve set a channel with 64-Quadrature Amplitude

Modulation (QAM), a 3
4

coding rate and 800 ns guard interval (see Modulation

and Coding Scheme (MCS) index table for two spatial streams at 20 MHz in

[13]).

Also, we set three different types of flows along with different sorts of protocol

connections (UDP TCP). The IF task, as well as being supported by TCP

protocol, has also been categorized as a BE AC. While the HDTVs are considered

as VI and are streamed over UDP connections. The offered load, the source and

75

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Figure 5.2: Spatial distribution in OPNET for custom Scenario 2

destination addresses, and other values are given in the in Table 5.3. Note that

although the AP has not got any direct application requests towards STA2, there

is in practise a transmission link to that wireless node since TCP is a bi-directional

communication process.

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

STA 0 HDTV +
PCM 5.1 Au-
dio

STA 1 24 Mb/s Constant, UDP 1,500 B 200 ms VoD Control
Channel

STA 0 HDTV +
Futuristic
Audio

STA 3 19.2 Mb/s Constant, UDP 1,500 B 200 ms VoD Control
Channel

STA 2 Internet
File Transfer

STA 0 120 Mbps Constant, TCP 1,500 B P2P
Downloading

Table 5.3: Role and configuration for each STA for custom Scenario 2

Table 5.4 and Table 5.5 show the results for the overloaded WLAN Scenario

2 when DCA algorithm is disabled and enabled, respectively. Now, both HDTV

average aggregated sizes have been increased dramatically, from 1.80 to 13.11

and from 1.31 to 12.21. The successfully received data over the total offered load

has been increased from 33.7% (no DCA) to 58.2% (with DCA) as the goodput

is increase from 54.987 Mb/s to 94.98 Mb/s, respectively. So, we observe that

by deferring the channel access by introducing DCA, the end-to-end delays of

both HDTV traffic flows have an insignificant increase and the maximum delays

remain way below the 200 ms delay boundary. DCA doesn’t override the AC’s

priority but limits the frequent channel accesses from high ACs to less and more

76

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

efficient ones. It is obvious that the DCA algorithm has increased the system’s

performance to the point of ensuring a better channel utilization.

Name Goodput (Mb/s) Avg. Aggregate
Size (MPDUs)

Max Delay (sec) Avg. Delay (sec) Max PLR (%))

HDTV 23.994 1.80 0.01267 0.00115 0
HDTV 19.197 1.31 0.01120 0.00099 0

Internet file transfer 11.796 24.57 0.65408 0.39693 N/A

Table 5.4: Numerical results for Scenario 2 w/o DCA

Name Goodput (Mb/s) Avg. Aggregate
Size (MPDUs)

Max Delay (sec) Avg. Delay (sec) Max PLR (%))

HDTV 23.865 13.11 0.04457 0.01342 0
HDTV 19.116 12.21 0.04471 0.01520 0

Internet file transfer 51.999 25.27 0.13416 0.08866 N/A

Table 5.5: Numerical results for Scenario 2 with DCA

Table 5.6 shows the simulation results for Scenario 1 when the DCA function

is disabled and enabled for comparison reasons. It can be seen that the DCA

improves the system’s goodput from 59.362 Mb/s to 83.154 Mb/s. The intro-

duction of DCA brought a massive increase of 40.08% in performance and the

system’s goodput over the total offered load went from 71.07% to 99.56%. In

both cases the QoS requirements are met since the PLR results are at reasonable

rates for all multimedia flows. For the case where the delayed channel operation

is in operation, the PLR has increased slightly but the return gain of the system’s

overall performance shows significant results. Consequently, the trade-off between

delaying channel access, that can also been seen in the delay results, to increase

goodput pays out. Similar to previous simulation results, the aggregation sizes of

the frames of the HDTV and VoIP traffic has increased respectively 8.93→ 13.66

and 1.19→ 2.71 as an effect of the further introduced delay before channel access.

It is also noticeable that the overall performance has been increased because the

BE traffic with the DCA function can utilize more resources and the goodput

increases from 7.357 Mb/s to 30.831 Mb/s.

Table 5.7 displays the simulation results for Scenario 4 with and without

the DCA algorithm. Once more, the DCA improves the system’s goodput from

62.061 Mb/s to 86.075 Mb/s, an increase of 38.7%. The system’s goodput over

the total offered load went from 13.6% to 18.7%. In spite of the ratio being so

low, the overloaded enterprise-based scenario manages to utilizes more resources

77

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Scenario 1 Off. Load Goodput Avg. Aggr. Max. Delay Avg. Delay PLR

DCA Off
BE

83.524
31

59.362
7.357 26.73 0.71495 0.36558 N/A

VI 50.448 49.93 8.93 0.09681 0.02217 0
VO 2.076 2.075 1.19 0.01398 0.00271 0

DCA On
BE

83.524
31

83.154
30.883 27.98 0.12536 0.04525 N/A

VI 50.448 50.195 13.66 0.10769 0.04451 2.33
VO 2.076 2.076 2.72 0.01881 0.00684 4.86

Table 5.6: Numerical results for Scenario 1 with and w/o DCA

for the immense demand of the BE traffic, going from 52.909 Mb/s to 76.964

Mb/s (out of total 451.024 Mb/s) when DCA is enabled. Again, the average

channel access delay has slightly increased as well but all the delay requirements

for the multimedia traffic are met. It is evident that the growth of the packets in

an aggregated frame for the VI flows has increased from 2.66 to 19.64 packets per

frame. Last, the maximum observed PLR for the VI traffic has increased by 0.1%

and is considered negligible as it remains well below the maximum permitted PLR

of 5%. Again, DCA increases aggregate sizes for high priority flows and hence

improves channel utilization.

Scenario 4 Off. Load Goodput Avg. Aggr. Max. Delay Avg. Delay PLR

DCA Off
BE

460.176
451.024

62.061
52.909 42.95 1.03937 0.63252 N/A

VI 8 8 2.66 0.04803 0.00766 0
VO 1.152 1.1513 1.13 0.02618 0.00522 0.2

DCA On
BE

460.176
451.024

86.075
76.964 42.82 0.60900 0.38581 N/A

VI 8 7.958 19.64 0.12937 0.05273 0
VO 1.152 1.152 1.82 0.03404 0.00932 0.3

Table 5.7: Numerical results for Scenario 4 with and w/o DCA

The Hot Spot use case, known as Scenario 6, comprises of a large number of

STAs that running mainly VoIP applications. This scenario is a typical case of

resource starvation over low ACs caused by the higher ACs. This can be noticed

from the simulation results given on Table 5.8, where the PLR for video flows,

when DCA is not in operation, is 59.22% and hence badly fail their respective

QoS requirements. Although the VoIP users do not require excessive bandwidth

(OL = 2.88 Mb/s), the contention prioritized process for gaining access to chan-

nel from so many high AC users impacts the immediate below priority access

class (here the AC V I). On the other hand, when DCA is set in operation, the

PLR for the VI cease to exist and the flows are served successfully without any

jitter. Moreover, the BE traffic raises from 7.856 Mb/s to 15.966 Mb/s with an

overall system performance increase at 26.54%. The DCA function improves the

system’s goodput from 47.878 Mb/s to 60.583 Mb/s and by considering that the

78

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

total offered load is 64.88 Mb/s then the efficiency corresponds to 73.79% and

93.37% , respectively.

Scenario 6 Off. Load Goodput Avg. Aggr. Max. Delay Avg. Delay PLR

DCA Off
BE

64.88
20

47.878
7.857 53.73 2.38182 1.11206 N/A

VI 42 37.144 40.24 0.48680 0.23886 59.22
VO 2.88 2.8783 1.44 0.04696 0.00863 2

DCA On
BE

64.88
20

60.583
15.966 58.13 0.84084 0.38268 N/A

VI 42 41.738 27.26 0.11732 0.04036 0
VO 2.88 2.878 2 0.05212 0.01091 3.4

Table 5.8: Numerical results for Scenario 6 with and w/o DCA

Based on the above results and the given analysis, we can argue that the

operation of DCA resolves the negative performance impact which comes into

being from the conjoining of EDCA and the new MAC enhancement of frame

aggregation.

5.4 TCP Problem with DCA

Previously, during DCA’s evaluation, the simulation runs for all the aforemen-

tioned scenarios were set with a TCP’s window buffer size equal to 655, 350 bytes,

following the recommendations in [122] where it is suggests that the maximum

TCP window size should be at least as large as the bandwidth-delay product of

the wireless link. In a nutshell, the window buffer defines the system’s through-

put, the amount of outstanding TCP data (unacknowledged by the recipient) that

can remain in the network. Since the current scenarios comprises of HT STAs,

in order to acquire theoretical performance measurements, it is wise to define a

capacious buffer size for the TCP window (e.g. 655, 350 bytes) with the purpose

that no result will be affected by it.

For actual TCP rwnd settings, Microsoft (MS) Windows 98 has a default

of 8, 192 bytes, MS Windows 2000 has a default of 17, 520 bytes, Linux and MS

Windows XP have a default of 65, 535 bytes, and for various hand-held devices the

default window size varies depending on the installed mobile OS and the integrat-

ing circuit capabilities [123, 124, 125]. Next-generation TCP/Internet Protocol

(IP) stacks in later MS Windows versions (Vista and 7) support TCP receiver

window scaling option and no longer uses the TCPWindowSize registry value [126]

but this is not always absolute. Note that over a WLAN, the TCP performance

79

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

can also be affected by the link quality as the TCP operation may mistakenly

determine a wireless error for congestion [127, 16]. Also, it has been studied that

various buffer sizes of the STAs within a WLAN, individually STAs can cause

unfairness issues and consequently play a key role in the overall throughput [128].

Going back to the performance evaluation of the DCA for Scenario 2 and set

as a more realistic TCP rwnd equal to 65, 535 bytes, we can derive the simulation

results of Table 5.9. This table also includes the previously acquired results for

TCP rwnd equal to 655, 350 bytes for comparison reasons. To clarify, we define

as small rwnd and as large rwnd the buffer sizes of 65, 535 bytes and 655, 350

bytes, respectively.

DCA TCP rwnd Traffic Offered Load Goodput Avg. Delay

Off 655,350
HDTV 19.2 19.197 0.00100
HDTV 24 23.994 0.00115

Internet File 120 11.796 0.39693

On 655,350
HDTV 19.2 19.116 0.01520
HDTV 24 23.865 0.01342

Internet File 120 51.999 0.08866

Off 65,535
HDTV 19.2 19.2 0.00087
HDTV 24 23.997 0.00100

Internet File 120 9.714 0.03194

On 65,535
HDTV 19.2 19.197 0.01520
HDTV 24 23.988 0.01189

Internet File 120 4.494 0.07948

Table 5.9: Numerical results for Scenario 2 for various TCP window sizes with
and w/o DCA

So, Table 5.9 displays the simulation results for small and large rwnd when

DCA is set as enabled and disabled. As an initial observation, we can determine

that even with DCA disabled there is an impact of the varying rwnd over the IF

traffic. The TCP communication over the MAC has been reduced from 11.796

Mb/s to 9.714 Mb/s, so by decreasing the rwnd to the default setting of MS

Windows XP, the adverse impact for the IF goodput over the original value is

−17.65%. Up until now, we have seen a great improvement over the network’s

overall performance when DCA is introduced. Nevertheless, for a small rwnd

80

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

the DCA operation carries a negative effect as the goodput for the TCP traffic

without applying channel access deferring is 9.714 Mb/s and with DCA declines

at a diminutive value of 4.494 Mb/s. In conclusion, the reduction of the rwnd

in conjunction with DCA functionality may bring unfavourable consequences.

For the rest of the multimedia applications, in every case, both HDTV retain

a goodput equal to the offered load with the maximal delay increasing slightly

when DCA is applied for reasons that have already been explained.

Before we can explain very much about this negative behaviour of DCA with

TCP traffic, firstly we need to describe briefly the TCP architecture as the origin

of this contradictory reaction lies behind the TCP’s protocol operation and calls.

5.5 A Brief Understanding of the TCP

The TCP [129, 130] is one of the core protocols of the IP Suite [131] and was

first introduced by Cerf and Kahn in [132]. The TCP is a reliable, robust and

connection-oriented method of data delivery and is commonly used over the Inter-

net as it is well known for its flexibility since it adapts the transmission behaviour

dynamically according to the network’s disparate conditions [133]. Furthermore,

it provides transparent segmentation and reassembly of user data and handles flow

and congestion control. The main applications that usually employ the TCP pro-

tocol are the ones that emphasize reliability over reduced latency, such as WWW,

email, remote administration and local or remote file transfers, P2P file sharing,

etc. The form of data that passes over to the IP layer id known as segment and

the Maximum Segment Size (MSS) is usual equal to the Maximum Transmission

Unit (MTU) of the system’s data link layer. During operation (see Figure 5.3),

the protocol initiates various calls, such as to open and close connections or to

send and receive data on established connections.

So, TCP is a connection-oriented protocol, hence when two STAs wish to

communicate, first the receiver must bind to a port to open it up for incoming

connections and then the sender commences a connection to that port. At that

point, a three-way handshake occurs, a series of three calls take place for the

connection to be established:

81

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Figure 5.3: An illustration of a typical TCP connection

• The initiator of the session sends a segment with the Synchronize (SYN)

flag set to the recipient.

• Upon receipt of the segment, the recipient sends a SYN segment to the

initiator with the ACK number set to the sequence number increased by

one, and sets a new sequence number for its own end.

• The initiator then sends an ACK of its own in response to the recipient’s

SYN with the ACK number set to the recipient’s sequence number increased

by one.

At this point, both the client and the server have received an acknowledge-

ment of the connection establishment and communicating applications can trans-

mit data between each other. Most of the discussion surrounding data transfer

requires us to look at flow control and congestion control techniques which we

82

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

discuss later in this section. Note that in Figure 5.3 the data transfer is illustrated

with a bi-direction communication of DATA and ACK segments but in reality

this does not depict an accurate operation of the TCP transfer but only appear

for clarity, e.g. a single flow of the data from the sender to the receiver could be

more than one segment. When their communication is complete, the connection

is terminated or closed, in a similar way, to free the resources for other uses. The

connection termination phase uses, at most, a four-way handshake, with each side

of the connection terminating independently.

• The initiator of the close sends a Finalize (FIN) segment to the recipient.

• The recipient sends an ACK of the FIN segment.

• The recipient sends a FIN segment of its own to the initiator.

• The initiator responds with an ACK to that FIN segment.

Also, TCP provides reliability by recovering from packet loss using two mech-

anisms. Each segment is stamped with a sequence number so the end receiver

can reply back with corresponding TCP ACK over the segments that it has suc-

cessfully received, out of sequence packets are generating duplicate ACKs. So,

the sender detects a loss when multiple duplicate ACKs arrive, implying that the

next packet was lost. However, IP may reorder datagrams, thus TCP cannot

immediately assume that all gaps in the packet sequence signify losses. When

the session becomes idle or ACKs are lost, TCP detects losses using time-outs.

Retransmission timers are continuously updated based on a weighted average of

previous Round Trip Time (RTT) measurements. Accuracy is critical, since

delayed time-outs slow down recovery, while early ones may lead to redundant

retransmissions. So, if a TCP ACK is not received within a reasonable Retrans-

mission Time-Out (RTO), then it will be assumed that the data was lost and a

re-transmission will be initiated. Each RTO is computed after a new estimated

RTT between the sender and receiver is specified, as well as the variance in this

round trip time [134]. Note that ACKs arriving back at the sender arrive at

intervals approximately equal to the intervals at which the data packets arrived

at the sender.

83

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Another characteristic of TCP is flow control. Flow control is a technique

whose primary purpose is to properly match the transmission rate of sender to

that of the receiver in order to avoid having the sender send data faster than

what the receiver can handle. TCP uses a sliding window flow control protocol.

The receiver specifies in every response a rwnd size, the amount of additionally

received data that it is willing to buffer for the connection. The sending host can

send segments only up to that amount of rwnd size before it must wait for an

ACK and window update from the receiving host. If data queued by the sender

reaches a point where data sent will exceed the receiver’s advertised window size,

the sender must halt transmission and wait for further acknowledgements and an

advertised window size that is greater than zero before resuming.

Although flow control has similar diagnostics with congestion control, they

are not the same since the latter’s primarily concern is to sustain overloading the

network. Congestion occurs when routers are overloaded with traffic that causes

their queues to build up and eventually overflow, leading to high delays and

packet losses. Therefore, when losses are detected, besides retransmitting the lost

packet, TCP also reduces its transmission rate, allowing router queues to drain.

Subsequently, it gradually increases its transmission rate so as to gently probe

the network’s capacity. In order to control the transmission rate, the protocol

maintains a Congestion Window (cwnd), which is an estimate of the number of

segments that can be in transmit without causing congestion. The initial size of

the cwnd is usually a single segment of size up to the MSS but can also be more

as mentioned in [135]. New segments are only sent if allowed by both this window

and the receiver’s advertised window. It is important for the transmission to be

at a high enough rate to ensure good performance, but also to protect against

overwhelming the network or receiving host. The way that the TCP protocol

handles the cwnd depends on the implementation of the TCP variant but the

typical protocol will be using one of the following algorithms, also defined in

[136]: i) TCP Slow Start, ii) Congestion Avoidance, iii) Fast Retransmit, and

iv) Fast Recovery.

The original TCP congestion avoidance algorithm [137] includes both TCP

Tahoe and TCP Reno extensions. Since then, many other alternative algorithms

have been introduced that engage the congestion in a more or less aggressive and

84

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

systematic manner. Some of the most commonly used variants are TCP Vegas

[138, 133], FAST TCP [139], TCP New Reno [121, 140, 141], TCP Hybla [142],

TCP CUBIC [143], and Compound TCP [144].

Attribute Value

Version/Flavour New Reno
Maximum Segment Size (bytes) Auto-Assigned
Receive Buffer (bytes) 4,096 - 655,350
Receive Buffer Adjustment None
Receive Buffer Usage Threshold 0.0
Delayed ACK Mechanism Segment/Clock Based
Maximum ACK Delay (sec) 0.200
Slow-Start Initial Count (MSS) 1
Fast Retransmit Enabled
Duplicate ACK Threshold 3
Fast Recovery New Reno
Window Scaling Enabled
Selective ACK (SACK) Disabled
ECN Capability Disabled
Segment Send Threshold Byte Boundary
Active Connection Threshold Unlimited
Nagle Algorithm Disabled
Karn’s Algorithm Enabled
Timestamp Disabled
Initial Sequence Number Auto Compute
Retransmission Thresholds Attempts Based
Initial RTO (sec) 3.0
Minimum RTO (sec) 1.0
Maximum RTO (sec) 64
RTT Gain 0.125
Deviation Gain 0.25
RTT Deviation Coefficient 4.0
Timer Granularity (sec) 0.5
Persistence Timeout (sec) 1.0
Connection Information Do Not Print

Table 5.10: TCP configuration for OPNET simulations

The TCP New Reno is the TCP extension of interest since this is being used

for the TCP traffic for our simulation runs. For congestion control, the TCP

New Reno applies the current mechanisms of TCP Reno, Slow Start, Congestion

Avoidance and Fast Retransmit, and it modifies the Fast Recovery. During con-

gestion avoidance, receipt of four back-to-back identical ACKs causes the sender

to perform Fast Retransmit and to enter in a Fast Recovery mode. For the Fast

Retransmit mechanism, the sender retransmits the lost segment, sets the slow

start threshold (ssthresh) to half the current cwnd (cwnd/2) and sets cwnd equal

to the new ssthresh size plus three (3) segments. Upon entering Fast Recovery,

the sender continues to increase the cwnd by one (1) segment for each subse-

quent received duplicate ACK. Within the old TCP Reno, if the sender receives a

non-duplicate ACK, it starts a window deflation and cancels Fast Recovery. The

resolution of TCP New Reno corrects this behaviour by distinguishing between a

“full” ACK and a “partial” ACK, depending if all or part of segments that were

85

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

outstanding at the start of Fast Recovery have been acknowledged. Unlike TCP

Reno, window deflation and congestion avoidance instance will only arise with

the reception of a “full” ACK. Otherwise, the TCP protocol retransmits the seg-

ment next in sequence based on the “partial” ACK, and reduces the congestion

window by one less (−1) than the number of segments acknowledged.

Note that for every simulation run, the selected TCP flavour for the OPNET

scenarios is TCP New Reno, thus the wireless nodes that carry TCP traffic have

been configured with the following common properties shown in Table 5.10. Most

of the parameters are set by OPNET’s default value, except “Window Scaling”

and “Receiver Buffer” where respectively we have chosen to expand the window

size in view of high bandwidth network and vary the receiver’s buffer according

to the scenario’s characteristics or objectives. Information about the definitions

and description of the listed TCP attributes can be gathered from OPNET’s

documentation [63], more specifically from the section labelled as TCP Model

User Guide.

5.6 Cause of the TCP Problem

So now that we have a better understanding of the procedure that the TCP

protocol follows and bearing in mind that the scheme was designated for single

packet transmissions, we can go back to the previous Scenario 2 and find the

cause of the problem. We set new simulation runs for a range of TCP window

sizes, beginning with a size of 4, 096 bytes and increase by a growth factor of two

(2) till we reach 655, 350 bytes. Figure 5.4 and Figure 5.5 present the goodput

and maximal delay results for the single TCP flow, the traffic generated by the

IF application. Both graphs follow a similar pattern, starting from the beginning

and up to a certain point we observe that by enabling the DCA algorithm, there

is a negative impact over the performance measurements.

More precisely, at the beginning (TCP rwnd = 4, 096 bytes) the goodput

and peak delay results for the TCP traffic while DCA is disabled is equal to

0.666 Mb/s and 0.09950 sec, respectively. When DCA is activated, the goodput

slightly drops to 0.636 Mb/s but the delay rises to 0.16677 sec. This negative

behaviour is visible even at the aforementioned low rwnd (TCP rwnd = 65, 535

86

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Figure 5.4: Goodput for Scenario 2 of TCP for various TCP window sizes with
and w/o DCA

Figure 5.5: Maximal delay for Scenario 2 of TCP for various TCP window sizes
with and w/o DCA

87

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

bytes), where goodput decreases from 9.714 Mb/s to 4.494 Mb/s and delay grows

from 0.11326 sec to 0.16125 sec. For the consecutive simulation run (TCP rwnd

= 81, 920 bytes), the resulting behaviour diverges. Now, when DCA is activated,

the goodput results increases from 10.554 Mb/s to 13.116 Mb/s and peak delay

subsides from 0.22219 sec to 0.03618 sec. Finally, for TCP rwnd = 655, 350 bytes,

we see a massive increase in the performance of DCA as the goodput increases

from 11.796 Mb/s to 51.999 Mb/s and the delay extensively drops from 0.65408

sec to 0.13416 sec.

Investigating further the divergence, we have discovered that the point that

the graphs change behaviour is the rwnd step increase from 70, 079 → 70, 080,

where we closely observe that 70, 080 is equal to 48 × 1, 460, where 1, 460 bytes

is the MSS attribute and 48 the value of the DCA triggering parameter σ. This

finding assures us that there is definitely a negative association between DCA

and TCP traffic. So, in order to trace out the TCP anomaly and find the cause

for performance degradation, we need to simplify the scenario by designing a use

case with a single TCP flow. Figure 5.6 illustrates the layout of a scenario with

a single TCP flow with two (2) STAs, a sender (STA 1) and a receiver (STA 0).

The data traffic is generated by an Internet File application which is classified as

BE traffic and its characteristics can be retrieved from Table 5.11.

Figure 5.6: Layout of the single TCP flow scenario

STA Name Dest. STA Role Mean Rate Rate Distrib. MSDU Delay

STA 1 STA 0 Internet File Transfer 120 Mbps Constant, TCP 1,500 B N/A

Table 5.11: Configuration of the single TCP flow scenario

As a first step, we will access OPNET’s Discrete Event Simulation (DES)

statistics of TCP delay, cwnd size and RTT calculations. In OPNET, TCP delay

88

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

refers to the time (in sec) required to transmit buffered TCP data, computed as

the time difference from the instance the TCP process started refraining from

sending data due to small congestion window to the time when the data is sent

out. In addition, the RTT is defined as a mean estimation of the round-trip

delay, and is calculated based on the current measurement of the round-trip

time and the smoothed mean deviation estimator of the previous and the current

value. Figure 5.7 show the aforementioned performance measurements for a set

of simulations with DCA enabled or disabled and the parameter of the TCP rwnd

set at 70, 080 and 70, 079 bytes.

(a) Congestion Window vs. Sim. Time (b) RTT vs. Sim. Time

(c) TCP Send Delay vs. Sim. Time

Figure 5.7: OPNET results for single TCP flow scenario

89

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

If we assume a steady state transmission, no channel errors and without any

congestion, the RTT of segments shall be maintaining a constant rate. Then,

based on this assumption, we can also claim that the time to transmit a number of

segments and receive TCP ACKs back will have a steady rate too. The responsive

TCP ACK for each set of segments is very important because it will have an

effect on the cwnd update. The cwnd behaviour was observed for the cases with

or without DCA, for both buffer size, combinedly (see Figure 5.7a). It was found

that without DCA algorithm the rate of change of the cwnd with respect to

the simulation time is higher. This means that in a 5 second simulation time

the cwnd was updated more often and so its size increased considerably. Also,

it is noted that a huge difference arises between the two TCP cwnd results for

both TCP rwnd when DCA is enabled. One can observe that at the end of the

simulation run, for a TCP buffer up to 70, 080 bytes the correspondent cwnd is

around 24, 900, 000 bytes while for a buffer size of 70, 079 bytes only achieves an

insubstantial 4, 100, 000 bytes.

The discrepancy in the cwnd maximum size is explained by observing and

comparing the update rate of both cases. In the DCA enabled case the cwnd was

updated 552 times per second while without DCA the cwnd was updated 3, 901

times per second. This implies that during a simulation time of five (5) seconds

the case without DCA increased the cwnd to such a value that more data was

sent to the receiver thus increasing the throughput of the system. Each time

an update occurs the cwnd is increased by 1, 460 bytes that is one (1) segment

at a time. The delay that is introduced by the DCA algorithm will effectively

have a repercussion on the cwnd update rate. The latter can also been seen in

Figure 5.7b. The round trip delay for each bunch of segments has been increased

for when compared to the normal channel access method.

So far, we have established that by deferring the channel access delay causes a

drawback for the TCP traffic. Both RTT and cwnd comparative results verify this

argument. However, we haven’t pointed out if the problem is mainly originated

by the delay of the responding acknowledgements from the receiver’s side or does

the sender take a huge responsibility in this performance degradation as well.

Figure 5.7c shows the time required for the TCP layer to buffer a number of

segments equal to the receiver’s rwnd and have that data transmitted. Thus,

90

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

it includes TCP refraining, MAC channel access delay and the delay from the

Frame Aggregation procedure due to DCA algorithm. During a five (5) seconds

simulation run, we observe that for both TCP buffer sizes the mean TCP send

delay is around 0.056 sec. Once DCA is included, the mean outcomes increase,

for rwnd = 70, 080 bytes the mean delay reaches around 0.089 sec and for rwnd =

70, 079 bytes escalates to a deferment of 0.359 sec. In conclusion, there is definitely

an additional delay over the data transmission from the TCP initiator’s side.

The original OPNET model for this new HT standard had to be significantly

amended in order to provide additional monitoring information. Flags and extra

variables were introduced in the code so as to be able to study how the DCA is

reacting with different scenario attributes and parameters. As we’ve mentioned

earlier, the DCA algorithm has three main way to trigger a formed frame in the

aggregate buffer to acquire channel access permission. In general, the three trig-

gers are, an aggregate size threshold (σ), an interval constraint starting from the

initial packet in the buffer due to delay requirements (τ), and a time-out period

due to a burst factor which forecasts the inter arrival time of the packets (γ).

Note that γ is not really a triggering condition but rather a variable that updates

another conditional parameter which will be the focus in more detail in Chapter 7,

nevertheless within this chapter we consider it as a trigger. By setting the OP-

NET model in debugging mode, we were able to study the triggering mechanisms

over the single TCP flow scenario and produce the results in Table 5.12.

TCP Buffer: 70,080 bytes Triggers
Traffic From To No. Packets Total γ τ σ
DATA 1 0 33,153 700 13 0 687
ACK 0 1 11,665 728 728 0 0

TCP Buffer: 70,079 bytes Triggers
Traffic From To No. Packets Total γ τ σ
DATA 1 0 5,485 127 127 0 0
ACK 0 1 2,091 154 154 0 0

Table 5.12: Triggering trend for different TCP buffer sizes

The results that we are interested in are the triggering types and the total

number of packets that were transmitted. Based on the results, as an initial ob-

91

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

servation, we can determine that there are no τ triggers involved, something that

is consistent with the QoS rules since the traffic in thus study is a BE flow and

has no delay requirements. Continuing, we distinguish that for the STA 0 (the re-

sponder) and in both cases the DCA algorithm was only triggered by γ, 728 times

for rwnd = 70, 080 bytes and 154 times for rwnd = 70, 079 bytes. Again, this be-

haviour is rational since the responder, in a perfect environment, only transmits

acknowledgements (usually a single TCP ACK) to verify the successfully recep-

tion of the transmitted segments; within the TCP protocol the amount of data

that has been sent but not yet acknowledged is known as Flight Size. This last

observation although it shows a particular divergence, shall not really be incited

as the main cause of the whole TCP problem since the performance degradation

is a follow up behaviour of a problem caused by another source. The main dif-

ference between the two TCP buffer sizes is the triggering type of σ at STA 1,

while for rwnd = 70, 080 bytes there are 687 triggers issued, for rwnd = 70, 079

bytes there are none except 127 events of the γ triggering type. Note that, the

TCP buffer for the first case can fill up exactly 48 segments which is the precise

equivalent to the DCA’s number of packet threshold (σ), however for the second

case there is a single segment difference as it only fills up to 47 segments at the

TCP buffer. So, for the 48 segment threshold there is an immediate response for

less segments, while the bulk has to wait till it is triggered by γ. This waiting

period is the additional deferment that causes the TCP problem in study and is

resulting in less transmitted packets.

This situation can also been illustrated in Figure 5.8 and results in the scenario

where both the TCP layer and the MAC layer are waiting for data from each

other. The TCP is waiting to get acknowledgements for a number of segments

that had already been sent, before it can continue with the next rwnd while at the

MAC layer the DCA is waiting for following segments to come from the upper

layer before some of the other conditions can trigger the channel access stage.

This leads to a point where both layers are dependent on each other to proceed

and interlocked in a waiting period where they cannot do anything, hence the

long delay results. Consequently, although we previously validated that DCA

increases the channel efficiency for high priority flows when it comes down to the

TCP traffic with small window buffers there is a dead-lock issue which needs to

92

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Figure 5.8: TCP and DCA behaviour

be resolved.

5.7 TCP Problem Over the Other Scenarios

So far, we’ve identified and described the problem of the TCP protocol in con-

junction with the proposed DCA algorithm for a specific HT WLAN. The initial

observation of the degrading performance was done over the overloaded WLAN

scenario called Scenario 2 and in order to determine the cause of the problem, a

single TCP flow scenario was created. However, to establish our hypothesis that

DCA may become deficient for smaller rwnd also with other WLANs, we need to

provide the resulting behaviour for the rest of the usage case scenarios shown in

previous chapters, e.g. for Scenario 1, Scenario 4 and Scenario 6.

93

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

Scenario TCP rwnd DCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

1

655,350

Off
BE

83.524
31

59.362
7.36 26.725 0.36558 N/A

VI 50.448 49.93 8.93 0.02217 0
VO 2.076 2.075 1.19 0.00271 0

On
BE

83.524
31

83.154
33.831 27.98 0.04525 N/A

VI 50.448 47.247 13.66 0.04451 2.33
VO 2.076 2.076 2.72 0.00684 4.86

65,535

Off
BE

83.524
31

56.849
4.636 19.25 0.05536 N/A

VI 50.448 50.139 6 0.01374 0
VO 2.076 2.075 1.17 0.00257 0

On
BE

83.524
31

57.199
4.809 24.48 0.06772 N/A

VI 50.448 50.314 11.22 0.04122 2.78
VO 2.076 2.076 2.37 0.00555 4.71

Table 5.13: DCA results with large and small rwnd for Scenario 1

By testing DCA with Scenario 1 for small and large rwnd, we acquire the

simulation results of Table 5.13. So, for a total OL of 83.524 Mb/s and rwnd

set to 655, 350 bytes, the total goodput for a network with DCA disabled and

enabled is 59.362 Mb/s and 83.154 Mb/s, respectively. Thus, we observe a high

increase in performance close to the administered application services. On the

other hand, when TCP rwnd takes a lower value of 65, 535 bytes then the sys-

tem’s performance, for both available cases of DCA, stays low. The TCP flow

achieves throughputs of 4.636 Mb/s and 4.809 Mb/s for DCA disabled and en-

abled, respectively. Although the end goodput result rises slightly, the ∼ 0.35

Mb/s increase cannot be considered justifiable for a DCA enhancement over low

TCP buffer sizes since it is obvious that a deferment will only cause a MAC delay

twice the period without DCA and with a PLR increase.

Scenario TCP rwnd DCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

4

655,350

Off
BE

460.176
451.024

62.061
52.909 42.95 0.63252 N/A

VI 8 8.001 2.66 0.00766 0
VO 1.152 1.151 1.13 0.00522 0.2

On
BE

460.176
451.024

86.075
76.964 42.82 0.38581 N/A

VI 8 7.958 19.64 0.05273 0
VO 1.152 1.152 1.82 0.00932 0.3

65,535

Off
BE

460.176
451.024

58.69
49.569 38.70 0.11170 N/A

VI 8 7.969 2.69 0.00772 0
VO 1.152 1.152 1.13 0.00529 0.2

On
BE

460.176
451.024

77.494
68.476 35.9 0.07168 N/A

VI 8 7.867 17.57 0.05135 0
VO 1.152 1.151 1.62 0.00824 0.2

Table 5.14: DCA results with large and small rwnd for Scenario 4

In Table 5.14, we can observe the simulation outcomes for Scenario 4. Similar

to the evaluation of the DCA performance at a previous chapter, we ascertain

that when DCA is established, the network’s performance increases effectively

by 38.7% with the only downside being a negligible rise to the VO’s PLR and

some accumulation to VI’s delay. As the outcomes of PLR and mean MAC

94

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

delays remain below the QoS requirements while throughput increases, the DCA

enhancement can be characterised as effective for the case of receiver’s TCP

buffer size equal to 655, 350 bytes. Diversely from above, when the rwnd is set to

a lower value, the scenario’s overall goodput still improves with a gain of 32.04%,

in detail it increases from 58.69 Mb/s to 77.494 Mb/s. However, these results

shall not be considered to definitively determine the efficiency of DCA with lower

rwnd since the underlying behaviour doesn’t explicitly originate from the DCA

operation solely but from the scenario’s set-up as well. The Large Enterprise

scenario accommodates a wide number of TCP flows and this congestion may

act unintentionally to the network’s traffic control realization. The latter will

be evidently supported over the next chapters where by modifying the channel

access delay conditions, we can achieve even higher results.

Scenario TCP rwnd DCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

6

655,350

Off
BE

64.88
20

47.878
7.857 53.73 1.11206 N/A

VI 42 37.144 40.24 0.23886 59.22
VO 2.88 2.8783 1.44 0.00863 2

On
BE

64.88
20

60.583
15.966 58.13 0.38268 N/A

VI 42 41.738 27.26 0.04036 0
VO 2.88 2.88 2 0.01091 3.4

65,535

Off
BE

64.88
20

49.415
10.5 30.96 0.23790 N/A

VI 42 36.042 39.92 0.29321 65.89
VO 2.88 2.871 1.44 0.00886 2.3

On
BE

64.88
20

61.45
16.933 40.23 0.11176 N/A

VI 42 41.641 25.15 0.03761 0
VO 2.88 2.876 1.97 0.01081 3

Table 5.15: DCA results with large and small rwnd for Scenario 6

Analogous, Table 5.15 yields OPNET’s simulation results for Scenario 6.

Here, we determine that from both rwnd situations, a performance improvement

holds for the DCA method by a gain of 26.52% and 24.37% towards the initial

goodput measurements for rwnd set to 655, 350 bytes and 65, 535 bytes, respec-

tively. In spite of the improvement over the total goodput, the dominate advance

over the network’s performance applies to the PLR of the VI traffic. The system’s

apparent crowding with the majority of the STAs belonging to the highest AC,

prevails upon lower ACs so the VI flows fetch PLR rates of 59.22% and 65.89%,

unacceptable and deficient for video streaming. By introducing DCA, a better

channel utilization takes place with flows applying the aggregation methods ef-

fectively, resulting in diminishing the PLR to zero ratings. Similar to previous

scenario, first findings show that a lower rwnd configuration won’t affect the sim-

ulation runs, yet this reaction mainly occurs because of the scenario’s congestion

95

5. DELAYED CHANNEL ACCESS AND THE TCP PROBLEM

and not of DCA.

5.8 Summary

In the previous chapter, we’ve identified issues arising from the poor interaction

of the EDCA prioritized channel access mechanism defined in the IEEE 802.11e

amendment and the frame aggregation mechanisms proposed in the latest HT

standard. Using the original DCA algorithm with static parameters, we’ve seen

that these issues can be addressed successfully. Through extensive simulation

runs, we’ve demonstrated that DCA and its extensions can provide great fairness

over lower ACs by deferring the transmission for all flows, including high ACs.

Results show that for all contenting entities great improvement over the channel

utilization and the total throughput while still obeying all QoS requirements.

Although we’ve seen that DCA increases the channel efficiency for high prior-

ity flows when it comes down to the TCP traffic with small window buffers there is

a dead-lock issue which needs to be resolved. The alteration of the wireless chan-

nel contention by delaying the channel access granting request may prove to be

diminishing for networks similar to Scenario 1 and Scenario 2 when STAs apply

low TCP receiving buffers. However, testing over other overcrowded scenarios,

e.g. Scenario 4 and Scenario 6, have shown that DCA and low rwnd users may

not after all affect overall performance since other characteristics such as conges-

tion may become controlling factors. Anyhow, the TCP protocol and the MAC

scheduling mechanism are independent and transparent to each other. An ideal

situation would have been a mean of communication between these two layers

in order to adjust attributes like rwnd according to QoS requirements. Since in

reality this is not possible, we need to apply other solutions such as dynamically

over time adapting DCA’s parameters over the prominent TCP behaviour.

96

Chapter 6

Adaptive DCA

In previous chapters, we have seen that the new enhancements of the latest IEEE

802.11 amendment for HT STAs are considered valuable for reaching high data

rate targets, since they mitigate transmission overheads by concatenating multi-

ple data units into single frames and acquire higher channel bandwidth by using

innovative channel transmission techniques. On the other hand, the set of QoS

methods defined in IEEE 802.11e and handled by the EDCA mechanism seem to

limit overall performance since delay-sensitive applications can be concerned with

high importance and preeminent low priority flows. A STA with high priority

traffic defers, on average, for less period than a STA with low priority traffic,

so the number of data packets assigned in each aggregated frame turns out low,

resulting the wireless medium to be utilized insufficiently. We demonstrated that

this abominable behaviour can be resolved by introducing the DCA algorithm

which impels STAs into further deferring in a way that it allows throughout

buffering process more packets to arrive allowing the end aggregate size to ac-

cumulate, resulting in network’s performance improvement. However, although

DCA increases the channel efficiency when it comes down to the TCP traffic with

small window buffers there are dead-lock waiting issues with deleterious outcome

to the overall throughput.

Within this chapter, we will be introducing an extension of DCA, named as

Adaptive DCA (ADCA). This proposed algorithm tends to dynamically alter

one of DCA’s parameter according to the current TCP transmission window

size. Further simulation results will show the efficiency and competence of our

97

6. ADAPTIVE DCA

innovative proposal towards the network’s performance measurements.

6.1 Rethinking of DCA

The initial DCA algorithm as proposed in [19], it includes three main attributes

that basically control and dictate its behaviour. The identifiers τ , σ and γ are

preset and considered important for the determination of the algorithm’s deci-

sions. If we have previous knowledge of the network’s layout, infrastructure and

STAs service demands, we may be able to adjust the values of these parameters

for each node in order to achieve maximum performance from the system. Still,

within a WLAN the high rate of topology changes due to mobility or environmen-

tal factors [145] [146], may prove the predefined parameter solution impractical

for a long-term situation.

The first two main attributes, τ and σ, determine the maximal waiting time

for packets and the utmost allowable number of packets in the aggregation buffer,

respectively, before aggregation is triggered. Despite the fact that both of these

values define the behaviour of the DCA; once a value is set there is no flexibility,

in the current implementation, to adapt the dynamics of the algorithm towards

the incoming traffic flows. The last of the three DCA attributes, γ, which value

determines the ratio of the inter-arrival time to the MAC channel access delay, it

is considered a more flexible quantity even though it’s set as constant as well. The

reasoning behind this flexibility is that since the MAC channel access intervals will

be deferring according to the STA’s traffic flow bursts and WLAN’s congestion

conditions, in order to maintain a consistent transmission flow, DCA maintains

records of the current traffic flow burst via the TB variable and dynamically

adapts the triggering mechanism concerning receiving and sending packets.

So, the way the current DCA is implemented is too rigid and there is no

flexibility in adapting the parameters to any of the environmental factors, even

if these are the incoming traffic flows, further QoS constraints or the eccentric

characteristics of the MAC channel access scheduler. The only adaptability that

currently provide is an adjusting mechanism over a specific traffic burst in order

to avoid operational idling. An additional improvement would be to be able to

adapt dynamically the aggregate size threshold (σ) based on feedback mechanisms

98

6. ADAPTIVE DCA

within the DCA but at the same time keep transparency from other layers.

6.2 TCP Window Sizes

The latest Internet standard track protocol of TCP Congestion Control from In-

ternet Engineering Task Force (IETF), a document known as RFC 5681 [147],

describes in detail the TCP’s four intertwined congestion control algorithms, spec-

ifies how TCP should begin transmission after a relatively long idle period, and

also discusses various acknowledgement generation methods. More importantly

it defines state variables and describes the usage of them in order to maintain

congestion management.

The set of state variables that are added to the TCP per-connection state and

are of interest to the following proposal, are listed below:

• Congestion Window (cwnd): This value limits the amount of data a TCP

can send.

• Receiver Window (rwnd): The most recently advertised receiver window.

• Flight Size: The amount of data that has been sent but not yet acknowl-

edged.

Note that cwnd is a sender-side limit on the amount of data the sender can

transmit into the network before receiving an ACK. As we’ve mentioned previ-

ously, every TCP protocol flavour has implemented a distinct function how to

manage congestion and on how to surpass a situation like this. So, the operation

of congestion control defers from each implementation but all focus on what val-

ues shall cwnd set to. On the other hand, the receiver’s rwnd is a receiver-side

limit on the amount of outstanding data and is based on the physical aspects of

the TCP buffer length or the OS that the network is based on. By any means,

these two state variables govern the data transmission rate and at any given time,

a TCP transmission must not send data with a sequence number higher than the

sum of the highest acknowledged sequence number and the minimum of cwnd

and rwnd. The last state variable of interest is the Flight Size as it represents

99

6. ADAPTIVE DCA

the number of segments that the sender has transmitted during a specific TCP

state but not yet acknowledged by the receiver. The term of FlightSize can also

be seen in TCP’s protocol implementation and it has been proven to be an im-

portant variable since bounds the ssthresh parameter to be assigned with a value

not larger than the current rwnd, which it could had been larger if cwnd variable

was used instead.

The single TCP flow scenario set in Chapter 5 established as cause of the DCA

& TCP problem the differentiation between receiver’s TCP buffer size, declared

in the rwnd attribute, and the number of packets formed in the DCA buffer

before a transmission trigger is initiated, defined by σ triggering condition. So,

if the expected number of packets stated by σ was bigger than the number of

segments announced by the rwnd, then DCA could cause deficient results. A

possible solution is to try to comprise both sizes or keep σ less than rwnd.

6.3 Set σ Equal to Receiver Window

Let’s assume that there are no boundaries between the layers of the OSI reference

model and a concept of cross-layer communication exists. Then, one layer is

permitted to access the data of another layer, exchange information and enable

interaction. Under these circumstances, the size of the receiver’s TCP buffer can

be known to the MAC layer via a simple feedback mechanism.

So, now that the rwnd size and the TCP segment length are available, we can

compute the recommended number of packets that wait in the DCA buffer before

the scheduler initiates a channel access procedure. Using Scenario 2, we derive

some new simulation runs for a range of TCP window sizes, beginning with a

size of 8, 192 bytes and increase by a growth factor of 2 till we reach 655, 350

bytes but this time we also adjust σ triggering mechanism, as shown in Table 6.1.

Note, that the total number of packets may not exceed 64, the maximal allowable

packets in a frame as defined in IEEE 802.11n, also as segment size we’ve used

1, 460 bytes. The rest of the DCA parameters are set to γ = 10 and τ ≤ 1
2

maximal delay (e.g. τBK&BE = 0.15 ms, τV I = 0.1 ms and τV O = 0.008 ms).

Figure 6.1 illustrates the goodput results for the TCP flow of Scenario 2. The

comparison between the cases of DCA disabled and enabled has already been

100

6. ADAPTIVE DCA

rwnd (bytes) 8,192 16,384 32,738 65,535 81,920 131,072 262,144 524,288 655,350
σ (packets) 5 11 22 44 56 64 64 64 64

Table 6.1: Respective σ values for each rwnd

Figure 6.1: Goodput for TCP traffic vs rwnd for Scenario 2 with set σ

discussed before. The conclusion was that DCA will in general provide better

results but before a certain point there is a negative impact over the performance

and that can also be show over the bar graph. Now, the latest additional case of

where DCA algorithm is enabled but the parameter σ has already been set with a

value equal to the number of segments fit in a TCP rwnd, show an improvement

throughout the simulation runs, although is still limited due to the small TCP

bandwidth. Even for instances with low rwnd, the outcome exceeds the two other

cases. More precisely, the numerical results of rwnd = 65, 535 bytes show that

the IF traffic of the BE flow achieves a throughput of 9.714 Mb/s, 4.494 Mb/s

and 11.451 Mb/s, respectively for each DCA case. Reasoning behind the low

throughputs for smaller rwnd sizes is the difference between the rwnd and the

101

6. ADAPTIVE DCA

present cwnd. In an optimum environment with no congestion, without corrupted

TCP segments and RTT within the delay boundaries, the number of segments

on every TCP transmission step will be increasing until it reaches the maximal

allowable size of the advertised rwnd. Nevertheless, before the transmission size

reaches rwnd, the cwnd will be starting from a rather small number and on every

step will be adding one or more segments. Hence, the TCP Flight Size not always

equals rwnd, especially at the beginning of the stage. In conclusion, being able to

adjust the triggering parameter σ, DCA will be definitely improve performance

even for TCP traffic with low rwnd but the magnitude of that improvement is

determined from the attribute setting mechanism.

6.4 Adapting σ Towards TCP Flight Size

A first challenge towards the proposed solution was to set DCA’s parameter σ

equal to TCP rwnd. If a cross-layer communication existed, this could have

easily be done through exchange of information over different layers. However,

in a real case scenario, the layers of an OSI reference model are transparent

and independent from each other. Therefore, a realistic solution will require a

mechanism that would be able to determine or more preferably guess a TCP

Window Size within the MAC layer only. A quick resolution is to increment

the aggregate size threshold, σ, gradually until the Flight Size of the TCP flow

concurs, in this way we can always guarantee that σ ≤ Flight Size. The traffic

flow burst variable, TB, will then be used as a condition to determine if σ has

reached the maximal value of the TCP Flight Size. This very simple dynamic

adjustment of DCA’s parameters is shown in Figure 6.2.

So, the DCA parameter σ initializes with a starting low value and every time

DCA’s mechanism is triggered this value will be either incremented or decreased

analogous. If the trigger was caused by σ itself, it means that the number of

packets in the aggregation buffer is more likely less or equal than the number

of segments in a TCP Flight Size, therefore next σ will be increased by a unit.

Otherwise, if the IAT trigger was initiated then the algorithm assumes that the

size of the packets in the buffer queue has exceeded the TCP Window Size and

there are no more segments to be received from the above layer. Once the first

102

6. ADAPTIVE DCA

Figure 6.2: An example of DCA with adaptive σ

IAT trigger appears, the algorithm will assume that the prior σ value was also

the maximal buffer size for TCP transmissions and so reduces it by a single

packet and keeps that value throughout a specified period. The IAT trigger,

stands for Inter-Arrival Time and it describes the true condition of the current

interval timed from the last received packet, TL, has exceeded the last recorded

traffic burst duration, TB. The conditional statement describing IAT triggering

is denoted in Equation 6.1.

(t− TL > TB)→ IAT (6.1)

The operation of ADCA outlines a similar mechanism of that of a standard

process that TCP protocol follows. Taking as an example TCP’s slow-start mode,

the transmitter initiates a transmission of some low number segments, the initial

TCP Flight Size. After a successful transmission, which will be determined by a

preceded TCP ACK from the receiver, the next TCP cwnd will be accumulated

by one or more segments. The increments of the number of segments has been de-

fined differently in each TCP extension but it logically increments exponentially.

The size of the window buffer may vary dynamically depending on the timeouts

or retransmissions that may occur, this is why this process is also known as a

103

6. ADAPTIVE DCA

sliding window protocol. So, for every further successfully transmissions the TCP

Flight Size increases till it reaches receiver’s rwnd. Thereafter, the sliding window

remains stable or increases slightly by a single packet. For any network traffic

congestion issues the following number of segments drops back to the initial point.

Nevertheless, transparency remains throughout the layers and so the application

will still be offering data for transmission to TCP without being aware of any of

these fluctuations. So, the TCP window size varies dynamically depending on the

network traffic and the buffer length of ADCA follows a similar behaviour but

depending on the DCA’s triggering mechanisms. When both processes follow a

similar pattern, the achieving performance outcomes can be proven optimal.

So, to investigate further the performance of the latter solution, the HT model

in OPNET had to be modified accordingly. For that reason, adjustments were

carried out within DCA algorithm’s functions and a decisional controller for σ,

that will increase its value as described above, was implemented. Again, another

set of simulations were performed over Scenario 2 with exactly the same settings

as before for comparison purposes.

The results of the simulation runs for DCA with σ dynamically increasing

towards an estimated TCP Flight Size can be seen in Figure 6.3. From the

bar graphs we observe that for lower rwnd buffer sizes, the latest enhancement

surpass previous results. Specifically, for a rwnd buffer size equal to 16, 384 bytes

the TCP throughput for the IF flow is 10.761 Mb/s, an increase of around 338.4%

and 454.6% when DCA is disabled and enabled in its initial form, respectively.

Likewise, when the receiver’s advertise window is 65, 535 bytes, the throughput

gain is around 3.9 and 8.3 times more than the previous cases. However, as

the rwnd sizes start to largely increase the advancement over the original DCA

algorithm diminishes. So, for buffer sizes above 262, 144 bytes the DCA with

adapted σ is bounded to a throughput of ∼ 43 Mb/s where for unchanged DCA

the outcome reaches up to ∼ 52 Mb/s.

Overall, the results reveal potential advancements over a range of TCP buffer

sizes especially when these are rather small. So, the experimental dynamic ad-

justment of σ depending over other traffic characteristics is the right way for ad-

vancement to the solution. However, the end algorithm requires some additional

polishing as specific characteristics of the TCP behaviour ought to be taken into

104

6. ADAPTIVE DCA

Figure 6.3: Goodput for TCP traffic vs rwnd for Scenario 2 with adaptive σ

consideration and these may possibly improve the results even further. A simple

factor that hasn’t been examined is the TCP congestion control which its function

alters in time the cwnd depending on the TCP’s protocol policy that it follows.

So, the flexibility of the DCA over dynamically changing its parameters needs to

follow additional rules.

6.5 Design of Adaptive DCA

The next challenge was to make the DCA fully adaptive over its aggregate size

threshold attribute, σ. The proposed solution is to use the IAT as a condition to

be able to increase or decrease the aggregate size threshold but at the same time

make the σ be able to stabilise for a particular period of transmissions before

attempting to alter its value. The new proposed algorithm will have an adaptive

σ attribute and two marginal values, a minimum value (σmin) which within our

105

6. ADAPTIVE DCA

model we set as a minimum aggregate size four (4) packets, and a maximal value

(σmax) that can be set at any value up to the allowable maximal packets in an

aggregated frame (64 packets). The adjusting σ will stabilise to any value below

σmax and that should yield an optimum TCP throughput. Therefore, σ won’t

have to be known and be set prior DCA’s operation but it will be computed

dynamically.

The proposed ADCA algorithm is built on the basic concept of the original

DCA algorithm but some supplementary functions, attributes and conditions

are introduced so as to make the system perform better under various changing

traffic behaviour. Figure 6.4 illustrates the flowchart of current DCA algorithm

including the conditional triggering mechanism. So far, the algorithm has three

pre-set attributes, τ , σ and γ, and only the latter is taking the role of adjusting

the behaviour of DCA according to the conditional IAT trigger. The squared red

section points out the part of the transition diagram where changes will take place

for the new proposed ADCA algorithm. Additionally the circled characters, ‘A’,

‘B’, ‘C’ and ‘D’, denote connections between the algorithm’s input and output

transition flows of the legacy DCA and new ADCA and will be used as reference

points within the description of the latter. The main objective of ADCA is to

find a value where the queue is most likely to be at steady state, considering that

the TCP connection doesn’t have many imbalances.

The new proposed DCA enhancement characterised by its adaptability will

be based on the two main conditions, the inter-arrival time trigger (IAT) and

the current aggregate size threshold (σ). The flowchart in Figure 6.5 outlines the

modifications of ADCA that were made over the original DCA algorithm.

On this basis, the mechanism of ADCA will perform the following course of

actions. At start, every queue buffer will initialize its aggregate size threshold

with σmin as commencing value. Then, σ will be increasing each time, triggered

by the aggregate size threshold condition and this will provide a measure of

improving the aggregate size gradually and dynamically. So, the next σ value is

updated by a predefined variant but without exceeding the maximum allowable

size, σmax. On other hand, if IAT condition is triggered, meaning that there was

an excessive waiting time at the MAC, current aggregate size, σ, will initially

decrease its threshold by the predefined fluctuation value and if the following

106

6. ADAPTIVE DCA

Figure 6.4: The flowchart of the original DCA algorithm

triggering behaviour continues then the threshold shall be dropped down to the

preset minimum value, σmin. Eventually, the flutter will stabilize with the number

of packets in the buffer queue being similar to the number of segments sent from

the TCP layer.

Nevertheless, it is possible for the algorithm to develop an oscillatory be-

107

6. ADAPTIVE DCA

Figure 6.5: The flowchart of the proposed Adaptive DCA algorithm

haviour where the triggering will bounce from the aggregate size threshold con-

dition to the burst factor condition. In order to balance such an attitude, we also

introduce some oscillation controllers which establish the number of times the

individual triggers occur. We use two oscillation counters, psi (ψ) and phi (φ) for

the IAT and σ triggering conditions, respectively. When the σ is stabilised, we

will keep it in steady-state for a definite amount of packet formed transmissions,

φ oscillator controller, and then try again to increment the aggregate size thresh-

old. Likewise, in order to avoid cropping the buffer size down to σmin just from

a single IAT trigger occurrence and definitely affect the overall performance, ψ

108

6. ADAPTIVE DCA

Figure 6.6: Simple example of Adaptive DCA over time

oscillator is introduced. The algorithm becomes flexible and withstands possible

glitches within a certain preset number of trials. Figure 6.6 shows how σ varies

over time and also indicates the importance of ADCA’s oscillator factors. The

examples assigns the set (φ, ψ) = (3, 2) to the oscillator controllers.

Table 6.2 shows the triggering trend for a TCP buffer size of 65, 535 bytes when

using ADCA over a single TCP flow scenario. In Chapter 5, the legacy DCA fired

too many IAT alerts and the reasoning behind it was the size mismatch between

rwnd and σ. Nevertheless, ADCA resolves that issue and from the results derives

the factual evidence that the proposed algorithm has a double benefit towards the

sender with the aggregated segments and the receiver having consequent ACK

responses. In the table, we denote as IAT triggering condition the attribute

γ since this is the DCA parameter that updates its rates from. With ADCA

the majority of the triggers occur due to maximum number of packets in buffer

(σ). Specifically, for the DATA flow and for the ACKs there were 756 and 776 σ

triggers out of total 771 and 807, respectively. While with any rwnd size over the

legacy DCA, we show that the receiver’s ACK responses always actuate channel

access action via the IAT condition. The outnumbered IAT triggers are mainly

caused during the adjustment phase or when TCP traffic causes irregularities but

still are considered negligible.

109

6. ADAPTIVE DCA

TCP Buffer: 65,535 bytes Triggers
Traffic From To No. Packets Total γ τ σ
DATA 1 0 32,854 771 15 0 756
ACK 0 1 4,886 807 31 0 776

Table 6.2: Triggering trend for TCP buffer size 65,535 bytes

In conclusion, such a variable and adaptable buffer size threshold, σ, allows

the MAC layer to proceed with the ADCA operation without the need to have a

priori knowledge of the flight size or what type of flow will be received from the

upper layers. The ADCA can work for both UDP and TCP protocols and each

buffer queue from each AC will maintain individual values for its attributes. Last

but not least, an exact pattern of behaviour for TCP traffic doesn’t exist as the

TCP mechanism reacts differently at every step while considering many internal

and external factors. However, a close representation within the ADCA methods

should provide optimum results.

6.6 Performance Evaluation of Adaptive DCA

In this chapter, we proposed an extension of DCA with an adaptive aggregated

size threshold (σ), thus was given the name ADCA. We resolved the issue of the

degrading performance over small rwnd due to the opposing queue sizes of the

TCP and MAC layers. The solution to the problem of balancing both of these

queue sizes so that the TCP protocol won’t have to wait for a responsive ACK and

at the same time DCA would form an aggregate ready for transmission to create

an algorithm that would follow closely TCP actions and dynamically adapt its

conditional triggering mechanisms. In this section, we evaluate its performance

thoroughly by using the predefined use case scenarios known in this document as

Scenario 2, Scenario 1, Scenario 4 and Scenario 6 and for the set parameters we

used: σmax = 48 packets, σmin = 10 packets, σincr = 2 packets, φ = 5 times and

ψ = 2 times.

The results of TCP traffic for Scenario 2 for various rwnd sizes can be seen in

Figure 6.7. Each simulation run displays the TCP throughput for the BE traffic

for different rwnd sizes. Very much like previous proposed attempts, the product

110

6. ADAPTIVE DCA

Figure 6.7: Goodput for TCP traffic vs rwnd for Scenario 2 with ADCA

of the latest ADCA function surpasses the outcome of IEEE 802.11n HT standard

without applying any further amendments and that of original DCA algorithm.

The augmentation of the performance is most obvious within the range of 32, 738

– 131, 072 of the independent variable rwnd. It is interesting to mention that

for a rwnd equal to 65, 535 and with DCA and ADCA applied, the throughputs

are 4.494 Mb/s and 38.454 Mb/s, respectively, an increase of around 855.7%.

The latter proves the efficiency of how a deferment before accessing the wireless

channel improves channel utilization but only if algorithm has been designed

rationally.

More numerical results of Scenario 2 can also be seen in Table 6.3. It provides

the goodput and average delay outcomes of all accommodate traffic for low and

high rwnd when ADCA is disabled and enabled. For all HDTV flows, the offered

load is transmitted fully in every single case and while having slightly longer de-

lays than those without ADCA are still delivered well below the allowed maximal

111

6. ADAPTIVE DCA

ADCA TCP rwnd Traffic Offered Load Goodput Avg. Delay

Off 655,350
HDTV 19.2 19.197 0.00100
HDTV 24 23.994 0.00115

Internet File 120 11.796 0.39693

On 655,350
HDTV 19.2 19.194 0.00661
HDTV 24 23.952 0.00824

Internet File 120 46.89 0.10278

Off 65,535
HDTV 19.2 19.2 0.00087
HDTV 24 23.997 0.00100

Internet File 120 9.714 0.03194

On 65,535
HDTV 19.2 19.122 0.00495
HDTV 24 23.97 0.00595

Internet File 120 38.454 0.00775

Table 6.3: Numerical results for Scenario 2 with ADCA for low and high TCP
window sizes

delay of 200 ms. For the BE traffic, ADCA provides a better channel utilization

and results in a throughput of 46.89 Mb/s and 38.454 Mb/s for high and low

rwnd, respectively. Out of 163.20 Mb/s total offered load, the new algorithm

achieves 90.04 Mb/s and 81.55 Mb/s total goodput, a MAC efficiency of 55.17%

and 49.96% for each rwnd case.

Scenario TCP rwnd ADCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

1

655,350

Off
BE

83.524
31

59.362
7.357 26.725 0.36558 N/A

VI 50.448 49.93 8.931 0.02217 0
VO 2.076 2.075 1.187 0.00271 0

On
BE

83.524
31

80.021
27.634 24.97 0.08034 N/A

VI 50.448 50.312 9.133 0.03382 2.1
VO 2.076 2.075 2.62 0.00654 2.7

65,535

Off
BE

83.524
31

56.849
4.636 19.245 0.05536 N/A

VI 50.448 50.139 5.995 0.01374 0
VO 2.076 2.075 1.17 0.00257 0

On
BE

83.524
31

73.59
21.186 17.605 0.01598 N/A

VI 50.448 50.329 7.982 0.03131 2
VO 2.076 2.075 2.511 0.00643 1

Table 6.4: ADCA results with large and small rwnd for Scenario 1

For simulating ADCA with Scenario 1 for small and large rwnd, we acquire

the results of Table 6.4. So, for a total OL of 83.524 Mb/s and rwnd set to 655, 350

bytes, the total goodput for a network with ADCA disabled and enabled is 59.362

Mb/s and 80.021 Mb/s, respectively. Before, we tested simple DCA with a lower

TCP rwnd of 65, 535 bytes and the outcome was diminishing. However, with

ADCA the system’s total throughput performance reaches up to 73.59 Mb/s well

above previous results of DCA’s mechanism. The formed frames have increased

even for the higher ACs, resulting in a better channel utilization. Within this

scenario we can justify channel access delay as a method for improvement even

for various TCP traffic characteristics.

In Table 6.5, we can look up the simulation outcomes for Scenario 4. Similar

112

6. ADAPTIVE DCA

Scenario TCP rwnd ADCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

4

655350

Off
BE

460.176
451.024

62.061
52.909 42.95 0.63252 N/A

VI 8 8.001 2.66 0.00766 0
VO 1.152 1.151 1.13 0.00522 0.2

On
BE

460.176
451.024

81.989
72.887 40.77 0.42764 N/A

VI 8 7.95 11.48 0.02882 1
VO 1.152 1.152 1.74 0.00893 0.7

65535

Off
BE

460.176
451.024

58.69
49.569 38.70 0.11170 N/A

VI 8 7.969 2.69 0.00772 0
VO 1.152 1.152 1.13 0.00529 0.2

On
BE

460.176
451.024

79.415
70.304 38.4 0.07592 N/A

VI 8 7.962 10.93 0.02890 0.8
VO 1.152 1.150 1.71 0.00880 0.4

Table 6.5: ADCA results with large and small rwnd for Scenario 4

to the evaluation of the DCA performance at a previous chapter, we ascertain

that when a form of DCA is established, the network’s performance increases

effectively with the only downside being a negligible rise on the average delay.

As the total goodput increases by 32.11% and 35.32% for high and low rwnd,

respectively, so does the average delay of VI by ∼ 3.7 times more for both cases.

Nevertheless, as the outcomes of PLR and mean MAC delays remain below the

QoS requirements, the DCA enhancement can be characterised as effective. It is

interesting how the aggregated sizes for the VI flows increase from 2.66 and 2.69

packets to 11.48 and 10.93 for the correspondent high and low rwnd sizes.

Scenario TCP rwnd ADCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

6

655,350

Off
BE

64.88
20

47.878
7.857 53.73 1.11206 N/A

VI 42 37.144 40.24 0.23886 59.22
VO 2.88 2.8783 1.44 0.00863 2

On
BE

64.88
20

56.833
12.17 55.32 0.83852 N/A

VI 42 41.728 16.49 0.02454 0
VO 2.88 2.875 1.95 0.01028 2.2

65,535

Off
BE

64.88
20

49.415
10.5 30.96 0.23790 N/A

VI 42 36.042 39.92 0.29321 65.89
VO 2.88 2.871 1.44 0.00886 2.3

On
BE

64.88
20

60.959
16.167 39.07 0.14825 N/A

VI 42 41.914 24.9 0.05686 0.2
VO 2.88 2.877 1.99 0.01067 2.9

Table 6.6: ADCA results with large and small rwnd for Scenario 6

Again, the results in Table 6.6 for Scenario 6 demonstrate an overall im-

provement. TCP throughput increases from 7.86 Mb/s to 12.17 Mb/s when high

rwnd is used and 10.5 Mb/s to 16.17 Mb/s, otherwise. The key role of ADCA

can be highlighted when comparing the PLRs for the VI flow. In the case of

rwnd = 655, 350 bytes the PLR for a normal case is at the unacceptable rate of

59.22%, while for rwnd = 65, 535 the PLR increases more at 65.89%. But once

ADCA is enabled all packets can be received successfully with negligible loss ra-

tio, PLR→∼ 0. Additionally, a decrease of the VI flow occurs but this is normal

113

6. ADAPTIVE DCA

since ADCA has stabilized the EDCA prioritization and now that VO flow use

the resources with fairness, the VI have more channel access and consequently a

significant drop on the PLRs.

6.7 Summary

In most cases, frame aggregation adheres due to the EDCA scheduler’s priority

mechanism, resulting in the network’s poor overall performance. Using the orig-

inal DCA algorithm with static parameters, we’ve seen that these issues can be

addressed successfully, however when various TCP windows sizes are inspected

further issues arise. By incrementing the aggregate size threshold, σ, gradually

until the flight size of the TCP flow is reached, we eliminate any TCP problems

and MAC deadlocks. The static DCA is too rigid and there is no flexibility in

dynamically adjusting the parameters. Our proposed adaptive DCA administers

the contingency to incorporate adaptability. The simulation results evinced that

the ADCA operation with various TCP window sizes over different scenarios im-

proves the system performance significantly as compared with systems abstaining

delayed channel access. The impact of the proposed modified DCA enhancement

over the network’s performance is perceived as outstanding and the architecture

of this innovative idea can be considered as a guide for the design of future HT

standards.

114

Chapter 7

Selective DCA

In previous chapters, we have demonstrated that over a HT network that is com-

pliant with the IEEE 802.11n standard, the achieved throughput performance can

be bounded to lower rates. The DCA solution aims to resolve the poor channel

utilization and the low efficiency that high priority stations adhere due to shorter

waiting times allocated by the EDCA function. The algorithm operates over the

MAC layer and based on the traffic characteristics, it delays the packets from

being transmitted by postponing the channel access request. As a result, the

average aggregate size of a high priority flow increases and consequently so is the

channel efficiency and the end overall performance. However, in some situations

we have noticed that further deferring has a negative impact with applications

that are using the TCP/IP protocol rather the UDP transport protocol. A pos-

sible resolution is a traffic awareness feature that will allow the algorithm to

distinguish any data transferred over TCP and if found necessary to override the

additional MAC delay that DCA applies. But before we are able to classify the

incoming traffic, first we need to come upon with the conditional elements that

the selection process will be based on. A simple empirical analysis of the traffic

flow behaviour can provide a distinguished pattern that the selection process can

be based on.

Within this chapter, we will be introducing another extension of DCA, named

as Selective DCA (SDCA). This proposed algorithm will be examining the be-

haviour of the incoming traffic flows, based on characteristics of inter-arrival in-

tervals, packet lengths, short recordings of previous packets, assigned destination

115

7. SELECTIVE DCA

addresses, etc., and accordingly will be deciding if the MAC aggregate buffer shall

be deferred further or not. Further simulation results validate the efficiency and

competence of our innovative selection process towards the network’s performance

measurements.

7.1 UDP & TCP Usage Over Large Networks

The necessity of network traffic monitoring and analysis is growing dramatically

with the increasing network usage demands. Wireless technology has become

ubiquitous to computer networks located in small and broad areas, so it is increas-

ingly important to understand trends in the usage of these networks specifically.

A study dated back to 2004, shows that over a three (3) years period there were

dramatic increases in usage, and changes in the applications and devices used

on the authors’ campus wireless network [148]. The WLAN was initially dom-

inated by WWW traffic but the latest traces presented significant increases in

P2P, streaming multimedia, VoIP, and IF traffic. Also, the proportion of heavy

users on our WLAN remained static, despite the shift from early adopters to a

more general population.

A more recent study shows that even though there is a growth over the net-

work’s flows, there is no clear evidence that the ratio between TCP and UDP

transfers has increased or decreased [149]. Again, the ratio is rather dependent

on application popularity and, consequently, on user choices. However, the ma-

jority of traffic volume is dominated by the TCP protocol in contrast with the

UDP which is ahead with the number of flows, mostly from P2P applications. A

traffic flow is defined as a sequence of packets sent from a particular source to

a particular destination that the source desires to label as a flow. Also, a flow

could consist of all packets in a specific transport connection or a media stream

[150]. The analysis of the network traffic trace in [151], summarizes that the byte

count and packet count of TCP traffic is much larger than those of UDP traffic,

while the flow count of TCP traffic is two times smaller than UDP traffic. More

specific, the proportions, out of all flows, packets and length, for the TCP traffic

are 34%, 93% and 98% and for the UDP traffic are 63%, 6% and 2%, respectively.

Note, that after establishing a TCP connection (using the three-way handshake)

116

7. SELECTIVE DCA

the communication between the hosts is bi-directional, thus two flows are cre-

ated. On the other hand, the communication of the applications using the UDP

protocol as mean of transportation are unicast, so only single flows exist. Last

but not least, UDP transport provides Best-Effort delivery but in terms of QoS

the majority of low priority BE traffic use TCP instead.

7.2 TCP-Aware DCA

So far, we have demonstrated DCA’s increase on the system’s overall performance

but over low TCP buffer sizes the results may be contrary to the expectations.

A solution to the issue is to enhance DCA with a TCP awareness functionality,

meaning that an agent will identify TCP flows over the incoming traffic. This

measure will allow the DCA algorithm to operate as normal until a packet arrives

from the upper layers that includes a TCP header. In this case, DCA will initiate

the channel access procedure for the packets that are currently formed in the

aggregate buffer. For any following TCP packets, DCA will defer no further the

transmission and a zero-waiting mode will be taking place. The functionality of

TCP-Aware DCA is illustrated in Figure 7.1.

Figure 7.1: Flowchart of TCP-Aware DCA

The challenge in this chapter is how to let the MAC layer know that a data

unit that arrives from the upper layer is TCP or UDP. If we assume that there

are no boundaries between the layers of the OSI reference model and a concept

117

7. SELECTIVE DCA

of cross-layer communication exists, then one layer is permitted to access the

data of another layer, exchange information and enable interaction. A physical

example to that solution is to amend the IEEE 802.1D standard [70] and provide

an additional support for the MAC service that will state the transport protocol.

This procedure is similar to the “Maintenance of QoS – Priority Mapping” but

it uses a mapping table for the transport protocol instead. The information from

the IP layer can be retrieved via the “Protocol” element of the IPv4 (or IPv6)

header.

A preliminary study regarding an enhanced DCA algorithm that is able to

determine TCP instances, was introduced by the author of this Thesis in his

MSc Dissertation [152]. The simulation results of the study were retrieved using

OPNET together with the HT model but altered accordingly. The original model

had to be modified at the beginning of the DCA’s method, so instead of checking

if the incoming packet is the first arrived to queue’s buffer, we just inquire if it

is a TCP packet. If yes, we send it straight for transmission along with other

packets that may have waited in the aggregated buffer. In OPNET, a special

data type called ICI can contain fields for user-defined parameters to be shared

by multiple entities in the network and consecutively these are referenced in calls

to Kernel Procedures (KPs) from within process models [63].

An ICI becomes associated with an interrupt if a process initializes the ICI

prior to taking the action that causes the interrupt. ICIs are dynamic simulation

entities, since they are created and destroyed as needed during the execution of

a process. The KP op ici create() is used to create ICIs, based on a specified

format. An ICI format, which has been created using the ICI Format Editor,

determines the list of attribute names and data types supported by the newly

created data structure type. After an ICI is created it returns a pointer which is

used to reference this ICI in most KPs. ICIs have been created in almost every

layer of the 802.11n OPNET model, so we modified an already existing one, by

adding extra information about the transport protocol in use and move it along

to the MAC layer and act accordingly.

Similar with previous chapter, for the evaluation purpose of the newly pro-

posed TCP-Aware DCA algorithm, simulation runs over Scenario 2 were designed

and carried out. Figure 7.2 and Figure 7.3 display the results in bar charts for the

118

7. SELECTIVE DCA

goodput and mean delay for all participating applications. The figures also show

a comparison between scenarios with small (65, 535 bytes) and large (655, 350

bytes) and DCA enabled, disabled or enabled with TCP-Aware agent.

(a) TCP rwnd set to 65,535 bytes (b) TCP rwnd set to 655,350 bytes

Figure 7.2: Goodput for low and high rwnd using TCP-Aware DCA

(a) TCP rwnd set to 65,535 bytes (b) TCP rwnd set to 655,350 bytes

Figure 7.3: Average Delay for low and high rwnd using TCP-Aware DCA

The goodput results for the HDTV in both TCP rwnd cases are equal and

do correspond to the initial offered load of 24 Mb/s and 19.2 Mb/s, respectively.

The mean delay for the two cases that DCA is enable has increased expectedly

as we have already mentioned that by applying further deferment endorses to a

better channel utilization. However, with TCP-Aware DCA enabled, the delay

is much smaller for the low TCP rwnd and at the same time the throughput

for the TCP application surpasses all other cases. Specifically, the throughput

119

7. SELECTIVE DCA

when DCA is enabled achieved 9.71 Mb/s, when disabled is 4.49 Mb/s and when

enabled conjointly with TCP-Aware reaches up to 47.496 Mb/s. For larger TCP

rwnd the enhanced DCA works equally well with the original algorithm and it is

logical that there are no significant differences between them.

In conclusion, the enhanced DCA algorithm with TCP traffic awareness is

more effective than the simple algorithm if you consider that realistically a WLAN

device may advertise a smaller TCP window size than 655, 350 bytes. However,

the implementation of a cross layer communication between MAC with other

layers and the required amendments over existing protocols in real-life are con-

voluted.

7.3 Design of Selective DCA

A standard IEEE 802.11 device follows the seven-layered OSI Model, thus we

must overrule any cross-layer assumptions and settle with the aspect that layer

functions and elements are not specified and should be transparent to other layers.

The only information that the MAC layer receives from the upper layer, except

the actual payload, is the Type of Service (ToS). So, aa a provisional idea will be

to exclude the use of DCA from BE flows since large portion of these application

utilize the TCP protocol. Then, similar with TCP-Aware, this can be easily

implemented by just placing the DCA process into a conditional statement which

will intermittently check if the incoming packets are of BE type. Then again,

sometimes there are BE flows that are using UDP connections and other real-

time applications (AC V I or AC V O) that are connected trough TCP links.

Therefore, this approach may not be realistic either.

Recent research on Internet traffic classification algorithms has yielded a flurry

of proposed approaches for distinguishing types of traffic based on transport layer

ports, host behaviour, and flow features [153]. Traditional methods of traffic flow

classification relied on the well-known ports registered with Internet Assigned

Numbers Authority (IANA) to represent a specific application. However, emerg-

ing popular application such as those that support P2P file sharing, started to

use arbitrary port numbers in order to hide their identity, so solely based on

port numbers alone could lead to inaccurate assumptions [154, 155, 156]. An-

120

7. SELECTIVE DCA

other more reliable approach is deep packet inspection, a work-around that was

mainly used by commercial tools [157, 158] which inspect packet payloads for

specific string patterns of known applications [159, 160, 161, 162], provided that

the packets are not encrypted. Nevertheless, it is costly, processor and bandwidth

resource-thirsty and causes tremendous privacy and legal concerns. Two proposed

traffic classification approaches that avoid payload inspection and tend to be more

popular are: i) host-behaviour-based, which takes advantage of information re-

garding “social interaction” of hosts [163, 155, 159], and ii) flow features-based,

which classifies based on flow duration, number and size of packets per flow, and

inter-packet arrival time [164, 165, 166, 167, 168, 169].

Taking in consideration the aforementioned traffic classification algorithms,

we came to the conclusion that the approach with the most prospects is the flow

feature-based. So, in order to come up with a potential resolution, we had to

identify a pattern for the TCP flows using the three (3) types of classification:

a) flow duration, b) number and size of packets per flow, and c) inter-packet arrival

time. The inter-packet arrival time was identified from the trace files collected

from various OPNET simulations. The traces showed that the TCP segments,

assigned in a single queue buffer, were arriving at the MAC layer in a homogeneous

Poison process with a constant rate. The period from the point where the first

segment arrived at the MAC layer until a second full segment appeared, from

the same TCP process, was observed to be precisely 10 µs. In addition, we

found that most of the TCP segments complied with the MSS and MTU rules, so

we were able to determine the expected packet (segment) length of the payload

arriving from the higher layers. Figure 7.4 illustrates the encapsulation method

that occurs over each layer with the additional headers and tails. Therefore,

for a segment size equal to 1, 460 bytes and following the encapsulation process,

the packet that will arrive to the MAC layer will be including a TCP header

of 20 bytes, consequently will have a total size of 1, 480 bytes. Also, packets

smaller than 44 bytes are mostly TCP’s associated packets, such as ACK, SYN,

FIN or RST. Last but not least, TCP flows start with a three-way handshake

and terminate with a four-way handshake (or a time-out), so we can identify a

signature for the flow duration. In conclusion, all these clues are the foundations

to design a cognitive agent that will select the incoming flows.

121

7. SELECTIVE DCA

Figure 7.4: Encapsulation Process

The new proposed enhanced DCA method is called SDCA and is fundamen-

tally based on the TCP-Aware with only difference the conditional decisions of

determine the type of flow. The new algorithm will try to distinguish the flows

by observing its features. So, each AC buffer collects discrete information for

each recipient and reviews the flows separately. Within the function there is a

constant variable which defines the level of tolerance, meaning that there could

be a margin of deviation on the TCP packet rate. In order to decrease the level of

misconception, the function also checks the packet sizes. It is known that when

a TCP connection establishes there is a three-way handshake, a negotiation be-

tween the two nodes where they shared information with specific segments with

no data but just the headers. The size of these segments can easily be determined

(40 – 44 bytes long) and audited at the beginning and end of the transaction. As

a result, whenever a packet shows up at the MAC with length less than 44 bytes

then the function increases its level of awareness.

The accuracy of the function’s decisions has been tested with a set of traffic

patterns and found that if there are any misjudgements on the flow type, there

won’t be any negative development over the SDCA performance. Let us assume

an example where both UDP and TCP belong in the same AC and share the

same receiver. Then, the function may not be able to distinguish any distinct-

ness between them two as the next TCP packet will be compared with the last

arrived UDP traffic, or vice versa. Nevertheless, the packets in queue increases

exponentially and DCA triggers before the interlock situation discussed earlier

122

7. SELECTIVE DCA

occurs. Also, it is unusual to receive UDP traffic with a 10 µs inter-arrival rate

and in a series of TCP packets, it will definitely have at least two consequent

TCP packets. So, once the first packet initiates a transmission sequence, every

other following packet (UDP or TCP) that arrives during that time will be trans-

mitted too. Finally, because the nature of TCP traffic is generally BE flows, it

will ordinarily have a long AIFS and Back Off timer so it helps the aggregates to

increase further without the need of SDCA.

7.4 Test-Bed for Packet Analyser

In order to verify our hypothesis that the inter-segment arrival rate at MAC

for TCP flows is within the region of 10 µs, we examined the packet traffic of

a small Ad-hoc network. The purpose of these experiments was to establish

that aforementioned assumptions, derived from OPNET’s trace files, can also

be reflected to real networks. We consider a set-up consisting of two (2) laptop

computers, choosing as general OS Linux-based platform Ubuntu 8.10 (Intrepid

Ibex) [170], and including the following wireless interfaces: i) a Netgear WG511T

adapter card [171] and ii) a USRobotics USR5410 adapter card [172] . The STAs

operated in a 22MHz frequency band around 2.462GHz, were located in the same

room resulting in a high Signal-to-Noise Ration (SNR) between nodes and no

hidden terminals. The channel is error-prone, thus few inaccuracies are expected.

A schematic of the test-bed set-up is shown in Figure 7.5.

Figure 7.5: A schematic of the test-bed set-up

As we will discuss in detail, our measurements focus on two traffic scenarios.

First, we consider UDP traffic from one STA (Client) to the other STA (Server) of

123

7. SELECTIVE DCA

constant packet length with Poisson distributed inter-departure times at different

rates, depending the application in study taken from Scenario 2. Subsequently,

we consider the same configuration parameters but with TCP traffic instead.

Note that the applications will be checked for both types of traffic although in

real scenarios this is not the case, however to validate our results we consider all

possible cases.

The traffic was generated using the Distributed Internet Traffic Generator

(D-ITG) [173, 174, 175], which allowed us to statistically characterize parameters

such as Inter-Departure Times (IDTs) and packet length. For example, in order

to generate the traffic for the UDP traffic for Case 1, as displayed in Table 7.1, we

instruct D-ITG to generate UDP packets at a rate of 1, 600 packets per second

with constant inter-departure times and a constant packet length of 1, 458 bytes.

Note that the listed packet size, refers to the packet length of the transmitted

frame, consequently when we calculate the packet length for D-ITG, we consider

the expected payload length at the Application Layer, thus excluding additional

headers.

Case Flow Name Protocol Offered Load Packet Size Packets/Sec IDT

1 HDTV + Futuristic Audio UDP 19.2 Mb/s 1,500B 1,600 0.000625 sec
2 HDTV + PCM 5.1 Audio UDP 24 Mb/s 1,500B 2,000 0.0005 sec
3 Internet File TCP 120 Mb/s 1,500B 10,000 0.0001 sec

Table 7.1: Test-bed traffic generation parameters

Besides the statistics provided by the wireless interface, we used nstat to

gather IP, UDP and TCP statistics aggregated across all interfaces, so as to

check for unexpected network activity during the tests. We have also operated

a customized Packet Analyser (sniffer) to record detailed logs of all packets sent

and received by the wireless interfaces during each test. Sniffers [176] are pro-

grams used to read packets that travel across the network at various levels of

the OSI layer. The custom implemented Packet Analyser was able to retrieve

specific interface statistics, such as number of packets received and transmitted,

inter-arrival times, packet lengths, etc., and histograms, like signal noise levels.

The Listing 7.1 displays a snippet of one of the TCP traces. The sniffer’s trace

files were examined off-line on a case by case basis, so a flow behavioural pattern

for TCP and UDP cases could be derived. In order to calculate mean, minimum

and maximum values for the statistics and examine the TCP and UDP traces,

124

7. SELECTIVE DCA

a specialised parser was implemented as well. Both source codes for the Packet

Analyser and the Parser can be found in Appendix Source Codes of Packet Anal-

yser and Parser.

01:03:52.143554 IP 10.0.0.2.38221 > 10.0.0.1.9000: S 419399396:419399396(0) win 5840

01:03:52.144533 IP 10.0.0.1.9000 > 10.0.0.2.38221: S 3728503593:3728503593(0) ack 419399397 win 5792

01:03:52.144585 IP 10.0.0.2.38221 > 10.0.0.1.9000: . ack 1 win 92

01:03:52.144636 IP 10.0.0.2.38221 > 10.0.0.1.9000: P 1:2(1) ack 1 win 92

01:03:52.145999 IP 10.0.0.1.9000 > 10.0.0.2.38221: . ack 2 win 91

01:03:52.146741 IP 10.0.0.1.9000 > 10.0.0.2.38221: P 1:2(1) ack 2 win 91

01:03:52.146763 IP 10.0.0.2.38221 > 10.0.0.1.9000: . ack 2 win 92

01:03:52.147124 IP 10.0.0.2.38221 > 10.0.0.1.9000: P 2:34(32) ack 2 win 92

01:03:52.148390 IP 10.0.0.1.9000 > 10.0.0.2.38221: P 2:7(5) ack 34 win 91

01:03:52.184451 IP 10.0.0.2.38221 > 10.0.0.1.9000: . ack 7 win 92

01:03:52.201978 IP 10.0.0.2.8998 > 10.0.0.1.8997: S 422983504:422983504(0) win 5840

01:03:52.203473 IP 10.0.0.1.8997 > 10.0.0.2.8998: S 3729080509:3729080509(0) ack 422983505 win 5792

01:03:52.203525 IP 10.0.0.2.8998 > 10.0.0.1.8997: . ack 1 win 92

01:03:52.208791 IP 10.0.0.2.8998 > 10.0.0.1.8997: P 1:1435(1434) ack 1 win 92

01:03:52.208986 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 1435:2883(1448) ack 1 win 92

01:03:52.210538 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 1435 win 136

01:03:52.210580 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 2883:4331(1448) ack 1 win 92

01:03:52.210602 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 4331:5779(1448) ack 1 win 92

01:03:52.211198 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 2883 win 181

01:03:52.211226 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 5779:7227(1448) ack 1 win 92

01:03:52.211248 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 7227:8675(1448) ack 1 win 92

01:03:52.213064 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 4331 win 227

01:03:52.213092 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 8675:10123(1448) ack 1 win 92

01:03:52.213112 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 10123:11571(1448) ack 1 win 92

01:03:52.215352 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 5779 win 272

01:03:52.215379 IP 10.0.0.2.8998 > 10.0.0.1.8997: P 11571:13019(1448) ack 1 win 92

01:03:52.215412 IP 10.0.0.2.8998 > 10.0.0.1.8997: P 13019:14341(1322) ack 1 win 92

01:03:52.216928 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 7227 win 317

01:03:52.216955 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 14341:15789(1448) ack 1 win 92

01:03:52.216977 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 15789:17237(1448) ack 1 win 92

01:03:52.218180 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 8675 win 362

01:03:52.218207 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 17237:18685(1448) ack 1 win 92

01:03:52.218228 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 18685:20133(1448) ack 1 win 92

01:03:52.219005 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 10123 win 408

01:03:52.219031 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 20133:21581(1448) ack 1 win 92

01:03:52.219042 IP 10.0.0.2.8998 > 10.0.0.1.8997: P 21581:23029(1448) ack 1 win 92

01:03:52.220559 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 11571 win 453

01:03:52.220610 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 23029:24477(1448) ack 1 win 92

01:03:52.220627 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 24477:25925(1448) ack 1 win 92

01:03:52.221040 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 13019 win 498

01:03:52.221066 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 25925:27373(1448) ack 1 win 92

01:03:52.221080 IP 10.0.0.2.8998 > 10.0.0.1.8997: . 27373:28821(1448) ack 1 win 92

01:03:52.221741 IP 10.0.0.1.8997 > 10.0.0.2.8998: . ack 14341 win 543

Listing 7.1: Sample of Sniffer’s trace file

Simulation Results (Client ↔ AP)

Flow HDTV (19.2 Mb/s) HDTV (24.0 Mb/s) IF (120.0 Mb/s)

IAT ≤ 10 µs
UDP 4.32% UDP 2.64% UDP 2.87%
TCP 89.4% TCP 94.92% TCP 89.92%

Table 7.2: Ad-hoc test-bed results for inter-packet arrival expectancy

For the experiments, we processed five (5) repetitions for each case and then

provided as an output the average calculated result from all runs. Table 7.2

displays the ratio for the segments arrived at the MAC layer within the 10 µs

(± small deviation) interval over the total number of segments. Although the

125

7. SELECTIVE DCA

actual HDTV and IF flows are transmitted over the UDP and TCP protocols,

respectively, we’ve also examined cases with opposite transport protocols with

the same traffic characteristics (e.g. inter-arrival times, offered loads) for the

sake of confidence. For the UDP test, we can observe that percentage of traffic

arriving within that specific interval is only 4.32% and 2.64% for the HDTV flows,

and 2.87% for the IF. For the TCP traffic, the statistics provided by the wireless

interface are proving our initial hypothesis to a huge extend. A large portion of

the total segments was recognised as TCP traffic even for flows that have smaller

rates, like the HDTV. The results for the TCP traffic over both HDTV and IF,

were 89.4%, 94.92% and 89.92%, respectively.

7.5 Performance Evaluation of SDCA with OP-

NET

In this chapter, we introduced another extension of DCA, named as SDCA. This

proposed algorithm will be examining the behaviour of the incoming traffic flows

and determine according to the flow pattern if the traffic belongs to TCP or UDP

protocols. In the case of a TCP packet arrival, the algorithm will function similar

to the operation of TCP-Aware DCA. Within this section, we will evaluate closely

the performance of SDCA through various simulations using OPNET. The design

and choice of network architecture for each scenario corresponds to a home, a large

enterprise and a hot spot environment. Therefore, for the home scenario, we use

previously defined Scenario 1 and Scenario 2 while for the large enterprise and

hot spot layout, we follow usage models Scenario 4 and Scenario 6, respectively.

All scenarios use TCP New Reno with the receiver’s window buffer set at 65, 535

and 655, 350 bytes.

The numerical results of Scenario 2 in Table 7.3 provide the goodput and

average delay outcomes of all accommodate traffic for low and high rwnd when

SDCA is disabled and enabled. For all HDTV flows, the offered load is transmit-

ted fully in every single case and while having slightly longer delays than those

without SDCA are still delivered well below the allowed maximal delay of 200 ms.

For the BE traffic, ADCA provides a better channel utilization and results in a

126

7. SELECTIVE DCA

SDCA TCP rwnd Traffic Offered Load Goodput Avg. Delay

Off 655,350
HDTV 19.2 19.197 0.00100
HDTV 24 23.994 0.00115

Internet File 120 11.796 0.39693

On 655,350
HDTV 19.2 19.074 0.01488
HDTV 24 23.904 0.01341

Internet File 120 50.343 0.09721

Off 65,535
HDTV 19.2 19.2 0.00087
HDTV 24 23.997 0.00100

Internet File 120 9.714 0.03194

On 65,535
HDTV 19.2 19.062 0.01490
HDTV 24 23.994 0.01294

Internet File 120 47.517 0.00638

Table 7.3: SDCA results with large and small rwnd for Scenario 2

throughput of 50.343 Mb/s and 47.517 Mb/s for high and low rwnd, respectively.

Out of 163.20 Mb/s total offered load, the new algorithm achieves 93.32 Mb/s

and 90.57 Mb/s total goodput, an efficiency of 57.18% and 55.5% for each rwnd

case.

Scenario TCP rwnd SDCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

1

655,350

Off
BE

83.524
31

59.362
7.357 26.73 0.36558 N/A

VI 50.448 49.93 8.93 0.02217 0
VO 2.076 2.075 1.19 0.00271 0

On
BE

83.524
31

76.946
24.836 28.79 0.05401 N/A

VI 50.448 50.036 13.38 0.04389 4.33
VO 2.076 2.074 2.7 0.00661 2.71

65,535

Off
BE

83.524
31

56.849
4.636 19.25 0.05536 N/A

VI 50.448 50.139 6 0.01374 0
VO 2.076 2.075 1.17 0.00257 0

On
BE

83.524
31

81.944
29.764 22.87 0.03192 N/A

VI 50.448 50.104 13.61 0.04409 3.4
VO 2.076 2.075 2.7 0.00651 2.8

Table 7.4: SDCA results with large and small rwnd for Scenario 1

Table 7.4 shows the computed results for Scenario 1 for SDCA. Notice the

differences between the values for SDCA enabled with a system set with regular

IEEE 802.11n complied operation without any enhancements. The mean aggre-

gate sizes for AC V I and AC V O traffic flows with TCP rwnd set to the lower

value, grow notably on average from 6.00 packets to 13.61 packets and from 1.17

packets to 2.69 packets, respectively. Hence, as the channel utilization for the

higher ACs increases we would assume that the overall goodput must be im-

proved significantly too. Actually the performance data unquestionably proves

this conjecture since the system’s overall goodput for a realistic TCP buffer size

of 65, 535 bytes, boosts from 56.85 Mb/s to 81.94 Mb/s which is a 44.13% in-

crease. Furthermore, all multimedia packets, while having slightly longer delays

than those without SDCA, are still delivered well below the allowed maximal

delay (200 ms). For example, the mean delays for the AC V I packets are 44

127

7. SELECTIVE DCA

ms that is around 22% of the delay boundary. Furthermore, we can observe an

increase to the PLR ratios but nevertheless this scenario proves SDCA effective

of improving the system’s goodput with no QoS suffering.

Scenario TCP rwnd SDCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

4

655350

Off
BE

460.176
451.024

62.061
52.909 42.95 0.63252 N/A

VI 8 8.001 2.66 0.00766 0
VO 1.152 1.151 1.13 0.00522 0.2

On
BE

460.176
451.024

85.149
76.091 42.2 0.40677 N/A

VI 8 7.906 18.24 0.05222 0
VO 1.152 1.151 1.79 0.00923 0.7

65535

Off
BE

460.176
451.024

58.69
49.569 38.70 0.11170 N/A

VI 8 7.969 2.69 0.00772 0
VO 1.152 1.152 1.13 0.00529 0.2

On
BE

460.176
451.024

83.076
74.013 39.89 0.07549 N/A

VI 8 7.91 19.60 0.05303 0
VO 1.152 1.151 1.74 0.00889 0.3

Table 7.5: SDCA results with large and small rwnd for Scenario 4

Scenario TCP rwnd SDCA UP Off. Load Goodput Avg. Aggr. Avg. Delay PLR

6

655,350

Off
BE

64.88
20

47.878
7.857 53.73 1.11206 N/A

VI 42 37.144 40.24 0.23886 59.22
VO 2.88 2.8783 1.44 0.00863 2

On
BE

64.88
20

57.903
13.298 57.97 0.70561 N/A

VI 42 41.728 25.54 0.03705 0
VO 2.88 2.878 1.92 0.01030 2.1

65,535

Off
BE

64.88
20

49.415
10.5 30.96 0.23790 N/A

VI 42 36.042 39.92 0.29321 65.89
VO 2.88 2.871 1.44 0.00886 2.3

On
BE

64.88
20

61.165
16.438 41.79 0.19522 N/A

VI 42 41.849 24.88 0.03655 0
VO 2.88 2.877 1.92 0.01030 2.1

Table 7.6: SDCA results with large and small rwnd for Scenario 6

Table 7.5 and Table 7.6 show the simulation results for SDCA for Scenario 4

and Scenario 6, respectively. Let us start describing the outcomes for the TCP

buffer sizes equal to 655, 350 bytes. We observe that for the BE traffic flows

for for Scenario 4, there is an increase in the overall goodput from 62.06 Mb/s

to 85.15 Mb/s and similar to for Scenario 6 from 47.88 Mb/s to 57.90 Mb/s.

Especially, for the TCP flows in Scenario 4, the throughput escalates with an

extraordinary raise of 43.8%. Furthermore, the expected PLR for VI flows is

0% in both scenarios and only for VO flows is 0.7% and 2.1%, respectively, but

yet again is less than the allowed maximal PLR of 5%. Also, SDCA’s key role

in increasing multimedia performance can be noted when comparing the PLRs

values for VI applications in Scenario 6. With SDCA set to disable, the network

fails to deliver in time 59.22% of the total video flows, on the other hand when

SDCA is applied, all packets are received successfully and the PLR drops to

negligible rates. For the case of a low TCP rwnd the PLR is much higher and

128

7. SELECTIVE DCA

yet when SDCA kicks off the results show no drops. All multimedia flows meet

their QoS provisions even though we choose to defer further the channel access

scheduling mechanism. This is because SDCA manages to increase the aggregate

sizes for high priority flows and hence uses the wireless medium efficiently. More

specific, in Scenario 4 the VI flows’ aggregate frame sizes have gone up from 2.69

(SDCA Off) to 19.60 (SDCA on) packets and there is a similar augmentation for

the VO frames too. However, we can still see a decrease of the aggregated size

of the VI flows in Scenario 6 but this is normal since SDCA has stabilized the

802.11e’s probabilistic priority mechanism and both multimedia can fairly share

the wireless medium effectively, on that account the immediate drop over the

PLR ratings.

7.6 Summary

By using a simple function that analyses and records the flow of packets arriving at

the MAC layer we are able to specify the packet’s type of transportation protocol

that uses. A simple empirical analysis of the traffic flow behaviour can provide a

distinguished pattern that the selection process can be based on. The efficiency

of the proposed operation has been demonstrated in a real test-bed and the

outcomes have shown relative collateral results. A small marginal differentiation

over the comparisons between the test-bed and the modelled simulation runs shall

be linked to environmental conditions, as the test-bed operated in a error-prone

channel.

We use more than one scenario to evaluate our proposal and prove that the

SDCA algorithm improves the system performance significantly. Based on the

above results, we can claim that the SDCA fixes the significantly negative per-

formance impact by the poor interaction between EDCA and IEEE 802.11n and

in addition it can effectively confine the TCP problem for smaller TCP window

buffer sizes as well.

129

Chapter 8

Conclusions

The latest IEEE 802.11n standards attains rates of more than 100 Mb/s by

introducing innovative enhancements at the PHY and MAC layer, e.g. MIMO and

Frame Aggregation, respectively. However, in this thesis we demonstrated that

frame aggregation’s performance adheres due to the EDCA scheduler’s priority

mechanism and consequently resulting in the network’s poor overall performance.

Short waiting times for high priority flows into the aggregation queue resolves to

poor channel utilization. A Delayed Channel Access algorithm was designed

to intentionally postpone the channel access procedure so that the number of

packets in a formed frame can be increased and so will the network’s overall

performance. However, in some cases, the DCA algorithm has a negative impact

on the applications that utilize the TCP protocol, especially the when small TCP

window sizes are engaged. So, the TCP process starts to refrain from sending

data due to delayed acknowledgements and the overall throughput drops. The

main objectives to this research work is to introduce innovative resolutions to the

problem.

8.1 Research Outcomes

We started the thesis by indicating the throughput limitations of the archetype

IEEE 802.11 standard and how these can be overcome with the use of Frame

Aggregation. Then we described in detail the Frame Aggregation mechanism

130

8. CONCLUSIONS

and validate the beneficial advancements of this new MAC enhancement over the

networks overall performance through extensive simulations using a HT model in

OPNET. We then developed an analytical model to explicitly illustrate the impact

of Frame Aggregation, which from the mathematical analysis we derived the

assumption that for networks with low traffic intensity, we need to intentionally

defer the channel access procedure in order to introduce additional packets in

the aggregate buffer. However, a trade-off choice has to be taken into account

regarding the question which viewpoint is more important, minimizing the waiting

time or maximizing utilization, an algorithm which would be able to dynamically

control the aggregation buffer may be valuable.

Afterwards, we discussed and demonstrated the luck of performance improve-

ment of IEEE 802.11n in conjunction with IEEE 802.11e prioritization mecha-

nisms. Each AC is parametrised with different set of values, so higher priority

traffic has certain parameters to allow it to gain access to the channel earlier and

more often than the lower priority traffic. Based on computer model analysis,

we demonstrated the magnitude of impact that high ACs have over lower ACs.

Most of the simulated use case scenarios had been chosen from TGn’s Usage Mod-

els document [68], in addition of a customized home scenario called as Scenario

2, and all were tested thoroughly over various conditions. Next, we introduced

DCA, an algorithm that provides great improvement over the total throughput

by deferring the transmission for all flows, including high ACs, while still obeying

all QoS requirements. Results showed that for all contenting entities, there was a

huge gain over the channel utilization and the total throughput as the algorithm

repeatedly allows newly packets to tail the aggregate buffer queue till certain

conditions, predefined in the DCA mechanism, are met.

Later, we tested the original DCA mechanism with various TCP Window sizes

since previous results were set with the suggestive BDP value and not with a more

realistic value. The results affirmed that the reduction of the rwnd in conjunc-

tion with the DCA functionality produced unfavourable consequences over the

network’s performance measurements. The source of the problem, it was found

to be a dead-lock situation caused by the buffering queues integrated in the MAC

and TCP layer. The operational actions of both queues let their mechanisms to

wait for a certain packet before it carried on; the MAC layer was expecting an

131

8. CONCLUSIONS

extra segment from the upper layers while the TCP protocol was holding for an

acknowledgement.

Then, we went on adapting the basic DCA and extending it further in order

to provide support for both UDP and TCP protocols. So, we first considered an

adapting sizing algorithm that is based on certain measurements of the current

and previous packet traffic, and feedback from DCA’s triggering mechanism. And

our second approach was to classify with the aid of a cognitive agent the type

of transportation protocol that flows use based on duration, number and size of

packets per flow, and inter-packet arrival time. We designed and implemented

two distinct enhancements for DCA, known as Adaptive DCA and Selective DCA.

Each has a different operational approach but the end objective is the same. The

effectiveness of these algorithms was demonstrated via extensive simulations and

experimental measurements. For the test-bed experiments a Packet Analyser was

implemented in C language.

Figure 8.1 and Figure 8.2 summarise the results of ADCA and SDCA for

Scenario 2 with TCP Window size set to 65, 535 bytes and 655, 350 bytes. For

comparison reasons, the performance results of original DCA and HT model

without an extensions have been included too. From the goodput results of

the consisting applications for large TCP rwnd, we observe the benefits of the

additional deferment on channel access, illustrated by the DCA based cases. On

the other hand, for small TCP rwnd, the original DCA presents an unfavourable

behaviour by dropping the TCP throughout from 9.71 Mb/s to 4.49 Mb/s, while

for ADCA increases at 38.454 Mb/s and for SDCA rises even further at 47.517

Mb/s. Similar behaviour show the mean delay outcomes, with the original DCA

algorithm falling behind with higher delays for the TCP flows. It is important

to mention that with the incorporation of any DCA extension, some flows will

encounter additional mean delays. For example the HDTV traffic with 24 Mb/s

and TCP Window size set to 655, 350 bytes, the derived mean delay is 0.00115 sec,

0.01342 sec, 0.00824 sec and, 0.01341 sec, given in the same order as displayed.

So, there is a huge increase in the time that the packets wait in the aggregation

buffer which in both DCA and SDCA cases has ascents up to 11.6 times. In

conclusion, we can be certain of choosing which DCA extension is preferable to

utilize for best improvements, ADCA or SDCA. Both enhancements operate in a

132

8. CONCLUSIONS

different manner but have the same objectives and any one of them may surpass

the other’s performance in a different case scenario.

(a) TCP rwnd set to 65,535 bytes (b) TCP rwnd set to 655,350 bytes

Figure 8.1: Goodput for low and high rwnd using various DCA enhancements

(a) TCP rwnd set to 65,535 bytes (b) TCP rwnd set to 655,350 bytes

Figure 8.2: Average Delay for low and high rwnd using various DCA enhance-
ments

8.2 Future Research Directions

Now that the activities of 802.11n standard have been finalized and IEEE 802.11

wireless cards are available, we can deploy a real test-bed and retrieve performance

measurements for various scenarios. In addition, the open-source community has

devoted huge efforts to provide Linux based firmwares, such as carl9170 [177],

133

8. CONCLUSIONS

ar9170 [178] and brcm80211 (by Broadcom) [179]. Open Source firmwares are

suitable for providing the easiest approach to implement an experimental method

while at the same time supporting a great number of functionalities within the

framework of the respective hardware platform used.

The proposed ADCA and SDCA can be extended even further. Both algo-

rithms, in their own manner, are trying to speculate the presence of a TCP flow

and determine its parameters, e.g. TCP Window size. For the SDCA extension,

we propose a basic but still innovative flow-features based classification mecha-

nism with evaluation experiments showed positive results. Additional classifying

methods have been introduced, such as Support Vector Machine (SVM) algo-

rithm, which achieves a 98.0% accuracy on every trace and application[153]. The

basic principle of SVM is to construct the optimal separating hyperplane, which

maximizes the distance between the closest sample data points in the (reduced)

convex hulls for each class, in an n-dimensional feature space[180]. Therefore,

DCA is a subject of extended research that could easily improve performance

even further by implementing new approaches.

The initial DCA algorithm was firstly introduced as a concept in TGnSync

Proposal Technical Specification Document [181]. TgnSync was one of the main

industry associations that took part in the development of the IEEE 802.11n

standard. The standard’s specification document had to undergo through many

changes and various balloting sessions before eventually reach its final form as

we know it today. Usually during a standardization process, there are multiple

issues that to have to be addressed and negotiated between the Task Group’s

members, mainly technical differences but also licensing of intellectual property

which then could lead to endless conflicts. Nevertheless, when TGnSync and an-

other consortium, known as WWiSE, collaborated together, the DCA proposal

was dropped from their joint specifications document. The reasoning is unknown

but we assume that DCA design was on its initial phase and hadn’t been re-

searched thoroughly. Evidence of the issues that the algorithm imposes is the

TCP Window size problem, also discussed in this text. However, the evolution

of the HT wireless broadband networks still continues with the emerging devel-

opment of IEEE 802.11ac and IEEE 802.11ad. Both end specifications will aim

to enable multi-station WLAN communication at multi-gigabit speeds. Frame

134

8. CONCLUSIONS

aggregation will still be a key technology for this future standards and so can the

inclusion of well defined DCA algorithm.

Final but not least, since energy-related considerations are gaining popularity

in wireless networks, especially for mobile devices, there is a tremendous interest

in energy efficiency. The main transmission technique in 802.11n is utilizing the

MIMO technology, enabling the use of multiple sending and receiving antennas

with the objective of providing high rates but resulting in higher power consump-

tion too. Early studies have shown that enhanced frame aggregation schemes that

increase channel utilization while supporting robust frame delivery, can also re-

duce the energy cost for wireless devices [182]. The improvements from the DCA

operation can also be compared with possible gains over the power consumption

as well.

135

Appendix A

Usage Models

A general definition for the term “Usage Model” is given within IEEE’s Usage

Models documentation for the emerging 802.11n amendment [68]. According

to 802.11 TGn, usage model is a specification of one or more applications and

environments from which a simulation scenario can be created once the traffic

patterns of the applications are known. A use case is a description of how end

users uses an application, such as HDTV, video streaming, internet transfer,

VoIP and etc. and how these users are deployed over the system. In general,

usage models are created to cover various market-based use-cases and intend to

support the definitions of network simulations that will allow 802.11 TGn to

evaluate performance of various proposals in terms of network throughput and

goodput, delay, packet loss and other metrics.

The following usage models are enumerated according to [68] and brief de-

scriptions and definitions are provided.

A.1 Model 1 - Residential

The first scenario represents an indoor (room to room) residential network with

several HT devices. Wireless connectivity has been spread over a residential

platform for a long time now, a distinguished example is the use of cordless

telephones that can provide the flexibility to move around the house and have

conversations on the phone with minimum jitter. Nowadays, more and more

136

A. USAGE MODELS

home wireless devices are being used and further more are being developed for

the near future. By introducing higher data rates and QoS, users will be able to

view SDTV and HDTV anywhere in the house and simultaneous talk on their

VoIP telephones, surf on the Internet, listening to MP3 music that is stored on a

central wireless unit or even playing games on-line via their wireless consoles.

Figure A.1: Spatial distribution in OPNET for Usage Model 1

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP Access Point STA 1 19.2 Mbps Constant, UDP 1,500 B 200 ms HDTV
STA 3 24 Mbps Constant, UDP 1,500 B 200 ms HDTV
STA 4 4 Mbps Constant, UDP 1,500 B 200 ms SDTV
STA 4 1 Mbps TCP 300 B Internet File
STA 7 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 8 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 9 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 10 2 Mbps UDP 512 B 200 ms Internet

Streaming
STA 11 0.128 Mbps UDP 418 B 200 ms MP3 Audio

STA 1 HDTV Dis-
play

AP 60 kbps Constant, UDP 64 B 100 ms VoD Control
Channel

STA 3 HDTV Dis-
play

AP 60 kbps Constant, UDP 64 B 100 ms VoD Control
Channel

STA 4 SDTV Dis-
play, Gaming
& Printing

STA 10 30 Mbps Constant, TCP 1,500 B Local File
Transfer

STA 5 Video Phone STA 6 0.5 Mbps Constant, UDP 512 B 100 ms Video
STA 6 Video Phone

& Internet
Upload

STA 5 0.5 Mbps Constant, UDP 512 B 100 ms Video

STA 7 VoIP Phone AP 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 8 VoIP Phone AP 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 9 VoIP Phone AP 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 10 Video Con-

sole &
Internet En-
tertainment

AP 1 Mbps Constant, UDP 512 B 50 ms Console to
Internet

STA 11 Video Gam-
ing Con-
troller

STA 10 0.5 Mbps Constant, UDP 50 B 16 ms Controller to
Console

Table A.1: Role and configuration for each STA for Usage Model 1

137

A. USAGE MODELS

The main role that each device possesses during this scenario can be found

in Table A.1. Some of these stations may operate more than one application

depending on their functionalities. The complexity of the scenario’s configuration

increases while we consider direct links between STAs and with the AP who

also acts as a flow coordinator. The spatial distribution for the stations over a

residential plot of 20m range is shown in Figure A.1.

A.2 Model 4 - Large Enterprise

With more than 70 percent of enterprises upgrading or deploying WLANs in the

21st century, comprehensive management of the wireless network is a top priority

to limit burgeoning operational costs. Business is one of the major customers

for the wireless manufacturing. Therefore, an additional attention and concern

comes over the surface regarding over how this new technology is going to affect

enterprise market.

Figure A.2: Spatial distribution in OPNET for Usage Model 4

The following scenario illustrates a large enterprise network (Fig. A.2). It

holds 30 stations which are randomly deployed over an indoor area of 300 square

meters (m2). It has an infrastructure topology and its AP is located in the middle

as it covers all stations in range. A considerable difference from the residential

scenario is that we are expecting from the AP to participate more as a bridge

138

A. USAGE MODELS

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP Access Point STA 1 1 Mbps TCP 300 B Internet File
STA 2 1 Mbps TCP 300 B Internet File
STA 3 1 Mbps TCP 300 B Internet File
STA 4 1 Mbps TCP 300 B Internet File
STA 5 1 Mbps TCP 300 B Internet File
STA 6 10 Mbps TCP 300 B Internet File

& DLing
Large Email
Attachments

STA 7 1 Mbps Constant, UDP 512 B 100 ms Video Con-
ferencing

STA 8 1 Mbps Constant, UDP 512 B 100 ms Video Con-
ferencing

STA 9 2 Mbps UDP 512 B 200 ms Internet
Streaming &
MP3 Audio

STA 10 2 Mbps UDP 512 B 200 ms Internet
Streaming &
MP3 Audio

STA 11 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 12 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 13 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 14 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 15 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 16 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 17 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 18 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 19 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 20 30 Mbps TCP 1,500 B 200 ms Local File
Transfer

STA 25 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 26 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 27 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 28 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 29 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 30 0.096 Mbps Constant, UDP 120 B 30 ms VoIP

STA 1 Web Brows-
ing

AP 0.256 Mbps TCP 64 B Clicking Web
Links

STA 2 Web Brows-
ing

AP 0.256 Mbps TCP 64 B Clicking Web
Links

STA 3 Web Brows-
ing

AP 0.256 Mbps TCP 64 B Clicking Web
Links

STA 4 Internet File AP 5 Mbps TCP 1,000 B UPLing
Internet File

STA 5 Internet File AP 10 Mbps TCP 1,500 B UPLing
Internet File

STA 6 Web Brows-
ing

AP 0.256 Mbps TCP 64 B Clicking Web
Links

STA 7 Video Con-
ferencing

AP 1 Mbps Constant, UDP 512 B 100 ms Video Con-
ferencing

STA 8 Video Con-
ferencing

AP 1 Mbps Constant, UDP 512 B 100 ms Video Con-
ferencing

STA 9 - 20 Sink Node AP None
STA 21 - 24 Local File

Transfer
Source

AP 30 Mbps TCP 1,500 B Local File
Transfer

STA 25 - 30 VoIP Phone AP 0.096 Mbps Constant, UDP 120 B 30 ms VoIP

Table A.2: Role and configuration for each STA for Usage Model 4

with the backbone wired network and not just as a coordinator. The applications

used in this scenario are representing user requests that could be running over a

normal enterprise network (Table A.2).

139

A. USAGE MODELS

A.3 Model 6 - Hot Spot

The hotspots are locations with public wireless access points where allow connec-

tions from mobile computers, such as a laptop, a tablet or a smart phone to use

the Internet through the wireless medium. Hotspots are often found near restau-

rants, train stations, airports, cafs, libraries and other public places and usually

are free to access. The level of simplicity for a user to associate and connect in

such an environment may result to a headache for the network administrator as

it is rather difficult to manually control the traffic.

Figure A.3: Spatial distribution in OPNET for Usage Model 6

Because of the importance of such a network deployment, the following sce-

nario represents a Hotspot situation. Again the roles that each station exercises

are given from the Table A.3. Until recently, clients were mainly interested into

internet file transfers, web browsing and email messaging are included, but nowa-

days VoIP has developed into a very useful application since it provides cheap

global telephony. Thus, a large number of VoIP users had also to be considered

in this scenario.

The sketch (Fig. A.3) displayed here, shows the exact location of each corre-

lated STAs which are also fixed deployed over the area given by the specifications.

In a real-life scenario there should be frequent associations and de-associations

from new and existed clients respectively. However, in our case we assume that

140

A. USAGE MODELS

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP Access Point STA 1 - 10 2 Mbps TCP 300 B Internet File
Transfer

STA 11 - 14 2 Mbps UDP 512 B 200 ms Mid Qual-
ity Audio
& Video
Streaming

STA 15 - 17 8 Mbps UDP 512 B 200 ms High Qual-
ity Audio
& Video
Streaming

STA 18 - 19 5 Mbps UDP 1,500 B 200 ms SDTV
Broadcast

STA 20 - 34 0.096 Mbps Constant, UDP 120 B 30 ms VoIP
STA 20 - 34 VoIP Phone AP 0.096 Mbps Constant, UDP 120 B 30 ms VoIP

Table A.3: Role and configuration for each STA for Usage Model 6

all STAs remain connected with the Independent Basic Service Set (IBSS) for the

whole simulation period and there are no new STAs ask permission for associa-

tion.

A.4 Model 17 - Point-to-Point High Through-

put Goodput Test

In this scenario we will be testing the efficiency of aggregation over two HT

stations, both operating in the 20 MHz channel range. The first station has a

compound data source providing 100 Mb/s offered load using the UDP protocol

and an MSDU size of 1, 500 bytes as seen in Table A.4.

Figure A.4: Spatial distribution in OPNET for Usage Model 17

141

A. USAGE MODELS

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP HT AP Sink Node
STA HT Source AP 100 Mbps Constant, UDP 1,500 B Traffic Gen-

erator

Table A.4: Role and configuration for each STA for Usage Model 17

Note, that unlike other UDP sources, these UDP sources have no time-out

values specified. Basically, in order to perform plain throughput analysis with

OPNET, we use a simple node model that consists from two basic processes,

the source which generates compound traffic and the sink that destroys received

traffic. Obviously, additional processes for the MAC and PHY layers will be

essential. Finally, the stations are placed over a distance of 10 meters and they

are in a LoS arrangement as can been seen from Figure A.4.

A.5 Model 18 - Point-to-Point Legacy Through-

put Test

The following scenario illustrated in Figure A.5 describes the occasion where

a legacy device chooses to utilize an IEEE 802.11n compliant AP. In order to

review the consequences of this particular situation regarding the network’s and

nodes’ performance, we need to keep a simple structure that includes only the

two participating nodes. Again, both operate over a 20 MHz wide channel, using

the same parameters as before and they are 10 metres away. Table A.5 presents

the parameters of each STAs set up within the scenario. Our main concern over

this simulation is to determine if the AP can be able to operate sufficiently with

a wireless node that follows the legacy IEEE 802.11 standard.

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP HT AP Sink Node
STA Legacy

Source
AP 100 Mbps Constant, UDP 1,500 B Traffic Gen-

erator

Table A.5: Role and configuration for each STA for Usage Model 18

142

A. USAGE MODELS

Figure A.5: Spatial distribution in OPNET for Usage Model 18

A.6 Model 19 - Point-to-Point Legacy Sharing

Throughput Test

Within this model case, we are going to investigate a scenario where two separate

STAs, one HT and one STA belonging to the legacy standard, concurrently op-

erate with a HT AP. This scenario examines the effect, if any, of the multi-rate

fairness problem caused by a STA with lower PHY rate. Previous studies show

that a co-existence of two diverse data rate STAs will reduce the performance of

the upper date rate down to the network’s bottleneck, also known as multi-rate

fairness problem. For example, it has been demonstrated that an IEEE 802.11g

based network will achieve less throughput, in many cases halved, when an IEEE

802.11b compliant shares the same resources with other IEEE 802.11g applicable

nodes [73, 71].

STA Name Role Dest. STA Mean Rate Rate Distrib. MSDU Delay Application

AP HT AP Sink Node
STA 1 Legacy

Source
AP 100 Mbps Constant, UDP 1,500 B Traffic Gen-

erator
STA 2 HT Source AP 100 Mbps Constant, UDP 1,500 B Traffic Gen-

erator

Table A.6: Role and configuration for each STA for Usage Model 19

To simulate this, we place both STAs beside the AP over equivalent distances

as illustrated in Figure A.6 and configure them with the exact same parameters

143

A. USAGE MODELS

Figure A.6: Spatial distribution in OPNET for Usage Model 19

shown in Table A.6. The AP acts as a data information recipient while the

adjacent wireless nodes send compound traffic of similar packet but utilizing

heterogeneous transmission techniques.

144

Appendix B

Source Codes of Packet Analyser

and Parser

B.1 Packet Analyser

1 /*

2 *

3 * Purpose: A simple packet analyser application

4 * Author: D. Skordoulis

5 * Version: 0.8

6 * Date: 03-Feb -09

7 *

8 ***

*/

9

10 #include <stdio.h> // standard I/O (e.g. printf)

11 #include <stdlib.h> // standard library (eg. exit)

12 #include <string.h> // manipulate strings

13 #include <errno.h> // error reporting mechanism

14

15 #include <sys/socket.h> // declaration of socket constants ,

types and functions

16 #include <sys/types.h> // needed for bind function

17 #include <sys/time.h> // needed for the time function

18 #include <sys/ioctl.h> // I/O control - ifreq struct

145

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

19

20 #include <linux/ip.h> // IP hdr structure

21 #include <linux/tcp.h> // TCP hdr structure

22 #include <linux/udp.h> // UDP hdr structure

23 #include <net/if.h> // contains the interface ’s name

length

24 #include <netinet/in.h> // IPPROTO declarations

25

26 #include <features.h> // for the glibc version number

27 #if __GLIBC__ >= 2 && __GLIBC_MINOR >= 1

28 #include <netpacket/packet.h> // packet structures

29 #include <net/ethernet.h> // the L2 protocols

30 #else

31 #include <asm/types.h>

32 #include <linux/if_packet.h>

33 #include <linux/if_ether.h> // the L2 protocols

34 #endif

35

36 /* Define symbolic constant declarations */

37 #define MAXBUFFSIZE 1514 // Ethernet Frame Length (also

consider 1518(1522) or 2048)

38 #define IF_NAME "wlan0" // Network ’s Interface Name (

other eth0 & ath0)

39 #define MAC_ADDR_LEN 6 // Length of the MAC address

40 #define DEBUG 0 // Debug Mode (0 = false / 1 = true)

41

42 /* Declare new data types

43 typedef unsigned char MAC[MAC_ADDR_LEN]; // a character

structure for the MAC address

44

45 /* Function that prints a number in HEX format */

46 void print_in_HEX(unsigned char *element , char dlm , int len

) {

47 while (len --) {

48 printf("%.2X%c", *element , (len != 0 ? dlm : ’\0’));

49 element ++;

50 }

51 }

52

53 /* Main Function */

54 int main(int argc , char *argv []) {

55 // Initialize variables

56 int sockfd , numbytes , count , seconds;

146

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

57 struct timeval curr_time;

58 struct sockaddr_ll my_addr , rcv_addr;

59 struct ifreq ifr;

60 struct ethhdr *eth_hdr;

61 struct iphdr *ip_hdr;

62 struct tcphdr *tcp_hdr;

63 struct udphdr *udp_hdr;

64 socklen_t addr_len;

65 FILE *fp;

66 char *outputFilename = NULL;

67 void* buffer = (void*) malloc(MAXBUFFSIZE); // Buffer for

ethernet frame

68

69 /* For LAN Interfaces

70 192.168.0.2 - 00:0c:76:fb :18:34

71 192.168.0.4 - 08:00:46: cf:1c:ad

72

73 MAC sta_1 = {0x00 , 0x0C , 0x76 , 0xFB , 0x18 , 0x34};

74 MAC sta_2 = {0x08 , 0x00 , 0x46 , 0xCF , 0x1C , 0xAD};

75 */

76

77 /* For WLAN Interfaces

78 10.0.0.1 - 00:07: CA:03:0F:D7

79 10.0.0.2 - 00:09:5b:c5 :00:81 - atheros

80 10.0.0.2 - 00:C0 :49:53:98:48 - acx

81 */

82

83 // Assign the MAC address of the interfaces in use

84 MAC sta_1 = {0x00 , 0x07 , 0xCA , 0x03 , 0x0F , 0xD7};

85 //MAC sta_2 = {0x00 , 0x09 , 0x5B , 0xC5 , 0x00 , 0x81};

86 MAC sta_2 = {0x00 , 0xC0 , 0x49 , 0x53 , 0x98 , 0x48};

87

88

89 // Create the Socket

90 if((sockfd = socket(PF_PACKET , SOCK_RAW , htons(ETH_P_ALL)

)) == -1) { // not ETH_P_IP

91 perror("socket");

92 exit (1);

93 }

94 if (DEBUG) printf("Socket created\n");

95

96 // Obtaining interface index

97 strncpy(ifr.ifr_name , IF_NAME , 16);

147

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

98 if(ioctl(sockfd , SIOCGIFINDEX , &ifr) == -1) {

99 perror("IF index");

100 exit (1);

101 }

102 if (DEBUG) printf("Interface_ID ::: %d\n", ifr.

ifr_ifindex);

103

104 // Assign the values to the sockaddr structure

105 memset (&my_addr , ’\0’, sizeof(struct sockaddr_ll));

106 my_addr.sll_family = AF_PACKET;

107 my_addr.sll_protocol = htons(ETH_P_ALL);

108 my_addr.sll_ifindex = ifr.ifr_ifindex;

109 addr_len = sizeof(struct sockaddr_ll);

110

111 if (DEBUG) printf("Address Length (sockaddr_ll) ::: %d\n"

, addr_len);

112

113 // Bind the interface

114 if (bind(sockfd , (struct sockaddr *) &my_addr , addr_len)

== -1) { // casting &my_addr

115 perror("bind");

116 printf("Binding Error ::: %s\n", strerror(errno));

117 exit (1);

118 }

119 if (DEBUG) printf("Socket bounds to device ::: %d\n",

my_addr.sll_ifindex);

120 if (DEBUG) printf("MAXBUFFSIZE ::: %d\n", MAXBUFFSIZE);

121

122 count = 0;

123

124 // Set memory allocation for receiver ’s address and timer

125 memset (&rcv_addr , ’\0’, sizeof(struct sockaddr_ll));

126 memset (&curr_time , ’\0’, sizeof(struct timeval));

127

128 if (argc > 1) {

129 outputFilename = argv [1]; // Output the results

130 }

131

132 numbytes = 0;

133

134 // Loop indefinitely for incoming transmission

135 while (1) {

136 // Retrieve length of packet at MAC layer

148

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

137 if ((numbytes = recvfrom(sockfd , buffer , MAXBUFFSIZE ,

0, (struct sockaddr *) &rcv_addr , &addr_len)) == -1)

{

138 perror("recvfrom");

139 exit (1);

140 }

141

142 // Obtaining socket ’s timestamp

143 if (ioctl(sockfd , SIOCGSTAMP , &curr_time) == -1) {

144 perror("Current Time");

145 exit(-1);

146 }

147

148 // Open file stream to output packets ’ information

149 if (outputFilename != NULL) {

150 fp = fopen(outputFilename , "a");

151 if (fp == NULL) {

152 perror("Can’t open output file");

153 exit (1);

154 }

155 }

156

157 // Receiving and Ethernet packet

158 if (numbytes > sizeof(struct ethhdr)) {

159

160 eth_hdr = (struct ethhdr *) buffer;

161

162 if ((memcmp(eth_hdr ->h_dest , sta_1 , MAC_ADDR_LEN) *

163 memcmp(eth_hdr ->h_source , sta_1 , MAC_ADDR_LEN) ==

0) &&

164 (memcmp(eth_hdr ->h_dest , sta_2 , MAC_ADDR_LEN) *

165 memcmp(eth_hdr ->h_source , sta_2 , MAC_ADDR_LEN) ==

0) &&

166 htons(eth_hdr ->h_proto) == ETH_P_IP) {

167 count ++;

168 if (outputFilename != NULL) {

169 fprintf(fp , "%5d\t%5d\t", count , numbytes);

170 }

171 else {

172 printf("%5d\t%5d\t", count , numbytes);

173 }

174

175 seconds = (curr_time.tv_sec) % 86400;

149

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

176 if (seconds < 0) seconds += 86400;

177 if (outputFilename != NULL) {

178 fprintf(fp , "%02d:%02d:%02d.%06u\t", seconds /

3600, (seconds % 3600) / 60,

179 seconds % 60, (u_int32_t) curr_time.tv_usec);

180 }

181 else {

182 printf("%02d:%02d:%02d.%06u\t", seconds / 3600, (

seconds % 3600) / 60,

183 seconds % 60, (u_int32_t) curr_time.tv_usec);

184 }

185

186 eth_hdr = (struct ethhdr *) buffer;

187 // print_in_HEX(eth_hdr ->h_dest , ’:’, 6); printf ("\t

"); // 6 B - Dest. Address

188 // print_in_HEX(eth_hdr ->h_source , ’:’, 6); printf

("\t"); // 6 B - Source Address

189 // printf ("0x%.4x\t", htons(eth_hdr ->h_proto)); //

2 B - Ethernet Protocol

190

191 if (ntohs(eth_hdr ->h_proto) == ETH_P_IP) {

192 if (numbytes >= sizeof(struct ethhdr) + sizeof(

struct iphdr)) {

193 ip_hdr = (struct iphdr*) (buffer + sizeof(

struct ethhdr));

194 if (outputFilename != NULL) {

195 fprintf(fp , "%s\t", inet_ntoa(ip_hdr ->saddr))

;

196 fprintf(fp , "%s\t", inet_ntoa(ip_hdr ->daddr))

;

197 fprintf(fp , "%d\t", ip_hdr ->protocol);

198 }

199 else {

200 printf("%s\t", inet_ntoa(ip_hdr ->saddr));

201 printf("%s\t", inet_ntoa(ip_hdr ->daddr));

202 printf("%d\t", ip_hdr ->protocol);

203 }

204 // Packet uses UDP protocol

205 if (ip_hdr ->protocol == IPPROTO_UDP) {

206 udp_hdr = (struct udphdr *) (buffer + sizeof(

struct ethhdr) +

207 ip_hdr ->ihl*4);

208 if (outputFilename != NULL) {

150

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

209 fprintf(fp , "%d\t", ntohs(udp_hdr ->source))

;

210 fprintf(fp , "%d\t", ntohs(udp_hdr ->dest));

211 }

212 else {

213 printf("%d\t", ntohs(udp_hdr ->source));

214 printf("%d\t", ntohs(udp_hdr ->dest));

215 }

216 }

217 // Packet uses TCP protocol

218 else if (ip_hdr ->protocol == IPPROTO_TCP) {

219 tcp_hdr = (struct tcphdr *) (buffer + sizeof(

struct ethhdr) +

220 ip_hdr ->ihl*4);

221 if (outputFilename != NULL) {

222 fprintf(fp , "%d\t", ntohs(tcp_hdr ->source))

;

223 fprintf(fp , "%d\t", ntohs(tcp_hdr ->dest));

224 }

225 else {

226 printf("%d\t", ntohs(tcp_hdr ->source));

227 printf("%d\t", ntohs(tcp_hdr ->dest));

228 }

229 }

230 }

231 else {

232 /* printf ("!!! Not a full IP header !!!\n"); */

233 }

234 }

235 else {

236 /* printf ("!!! Not an IP header !!!\n"); */

237 }

238 if (outputFilename != NULL) {

239 fprintf(fp , "\n");

240 }

241 else {

242 printf("\n");

243 }

244 }

245 // Close output file buffer

246 if (outputFilename != NULL) {

247 fclose(fp);

248 }

151

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

249 }

250 else {

251 printf("!!! Packet size too small !!!");

252 }

253 }

254 // Close all network sockets

255 close(sockfd);

256 if (DEBUG) printf("Socket closed\n");

257 return 0;

258 }

B.2 Parser

1 /*

2 *

3 * Purpose: A parser that reads and processes the exported

files from

4 * listener

5 * Author: D. Skordoulis

6 * Version: 0.1

7 * Date: 23-Feb -09

8 *

9 ***

*/

10

11 #include <stdio.h> // standard I/O (e.g. printf)

12 #include <stdlib.h> // standard library (eg. exit)

13 #include <string.h> // manipulate strings

14 #include <errno.h> // error reporting mechanism

15

16 #include <time.h> // needed for the time function

17 #include <math.h> // needed for mathematical functions

18

19 // Definitions

20 #define LINE_MAX_LENGTH 100

21 #define S_IP "10.0.0.2"

22 #define D_IP "10.0.0.1"

23 #define S_PORT "8998"

24 #define D_PORT "8997"

25

152

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

26 int display_file(char*);

27

28 /* Main Function */

29 int main(int argc , char *argv []) {

30

31 int i;

32 char *file_name_input = NULL;

33 char *file_name_output = NULL;

34 char line[LINE_MAX_LENGTH];

35 int lcount;

36 double rate;

37 double time_var;

38

39 FILE *file_input;

40 FILE *file_output;

41

42 // Input arguments from the CLI that define the file and

requested results

43 if (argc < 5) {// 0: command , 1: -i, 2: fileA , 3: -r, 4:

rate , 5: -t, 6: variation

44 printf("usage: %s [-i input_file] [-r rate] [-v

variation]\n", argv [0]);

45 return 1;

46 }

47

48 for (i = 1; i < argc; i++) {

49 if (argv[i][0] == ’-’)

50 switch (argv[i][1]) {

51 case ’i’:

52 file_name_input = argv[i+1];

53 // printf ("%s, with size %d\n",file_name_input ,

sizeof(file_name_input));

54 file_name_output = malloc(strlen(file_name_input) +

10);

55 strncpy(file_name_output , file_name_input , strlen(

file_name_input) - 4);

56 strcat(file_name_output , "_stats.txt");

57 // printf ("%s, with size %d\n",file_name_output ,

sizeof(file_name_output));

58 break;

59 case ’r’:

60 rate = atof(argv[i+1]);

61 break;

153

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

62 case ’v’:

63 time_var = atof(argv[i+1]);

64 break;

65 }

66 }

67

68 // Open file streams for the input and output results

69 file_input = fopen(file_name_input , "r");

70 file_output = fopen(file_name_output , "w");

71

72 if (file_input == NULL) {

73 printf("Error opening %s: %s (%u)\n", file_name_input ,

74 strerror(errno), errno);

75 return 1;

76 }

77

78 else if (file_output == NULL) {

79 printf("Error creating %s for writing: %s (%u)\n",

file_name_output ,

80 strerror(errno), errno);

81 return 1;

82 }

83

84 char str_time [16], str_ip [2][16] , str_port [2][6];

85 int no , bytes , prot;

86

87 while (fgets(line , LINE_MAX_LENGTH , file_input) != NULL)

{

88 sscanf(line , "%d%d%s%s%s%d%s%s", &no , &bytes , str_time ,

str_ip [0],

89 str_ip [1], &prot , str_port [0], str_port [1]);

90 if ((strcmp(str_ip [0], S_IP) == 0) && (strcmp(str_ip

[1], D_IP) == 0) &&

91 (strcmp(str_port [0], S_PORT) ==0) && (strcmp(str_port

[1], D_PORT) == 0)

92) {

93 lcount ++;

94 fprintf(file_output , "%d\t%d\t%s\t%s\t%s\t%d\t%s\t%s\

n", no , bytes , str_time ,

95 str_ip [0], str_ip [1], prot , str_port [0], str_port

[1]);

96 }

97 }

154

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

98

99 fclose(file_input);

100 fclose(file_output);

101

102 file_input = fopen(file_name_output , "r");

103 char *str_time_[lcount];

104 int count = 0;

105 while (fgets(line , LINE_MAX_LENGTH , file_input) != NULL)

{

106 str_time_[count] = malloc (16);

107 sscanf(line , "%*d%*d%s%*s%*s%*d%*s%*s", str_time_[count

]);

108 // printf ("%s\n", str_time_[count]);

109 count ++;

110 }

111 fclose(file_input);

112

113 struct timeval times[lcount];

114 struct tm tm;

115

116 int cc = 0;

117

118 for (; cc < lcount; cc++) {

119 strptime(str_time_[cc], "%H:%M:%S", &tm);

120 times[cc]. tv_sec = (tm.tm_hour * 3600) + (tm.tm_min *

60) + (tm.tm_sec);

121 sscanf(str_time_[cc], "%*9s%d", ×[cc]. tv_usec);

122 }

123

124 struct timeval times_diff[lcount -1];

125

126 for (cc = 1; cc < lcount; cc++) {

127 /* Perform the carry for the later subtraction by

updating y. */

128 if (times[cc]. tv_usec < times[cc -1]. tv_usec) {

129 int nsec = (times[cc -1]. tv_usec - times[cc -1]. tv_usec

) / 1000000 + 1;

130 times[cc -1]. tv_usec -= 1000000 * nsec;

131 times[cc -1]. tv_sec += nsec;

132 }

133 if (times[cc]. tv_usec - times[cc -1]. tv_usec > 1000000)

{

134 int nsec = (times[cc]. tv_usec - times[cc -1]. tv_usec)

155

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

/ 1000000;

135 times[cc -1]. tv_usec += 1000000 * nsec;

136 times[cc -1]. tv_sec -= nsec;

137 }

138 /* Compute the time remaining to wait. tv_usec is

certainly positive. */

139 times_diff[cc -1]. tv_sec = times[cc]. tv_sec - times[cc

-1]. tv_sec;

140 times_diff[cc -1]. tv_usec = times[cc]. tv_usec - times[cc

-1]. tv_usec;

141 }

142

143 struct timeval time_diff_max , time_diff_min;

144 int equal_rate = 0;

145 int rate_10 = 0;

146 int betw_diff = 0;

147 double time_diff_total = 0;

148

149 for (cc = 0; cc < lcount -1; cc++) {

150 if (cc == 0) {

151 time_diff_max = times_diff[cc];

152 time_diff_min = times_diff[cc];

153 }

154 else if ((times_diff[cc]. tv_sec > time_diff_max.tv_sec)

||

155 (times_diff[cc]. tv_sec == time_diff_max.tv_sec &&

156 times_diff[cc]. tv_usec > time_diff_max.tv_usec))

{

157 time_diff_max = times_diff[cc];

158 }

159 else if ((times_diff[cc]. tv_sec < time_diff_min.tv_sec)

||

160 (times_diff[cc]. tv_sec == time_diff_min.tv_sec &&

161 times_diff[cc]. tv_usec < time_diff_min.tv_usec))

{

162 time_diff_min = times_diff[cc];

163 }

164 if (times_diff[cc]. tv_sec == 0) {

165 if (fabs(times_diff[cc]. tv_usec - (rate * 1000000)) <

1E-9) {

166 equal_rate ++;

167 }

168 if (times_diff[cc]. tv_usec - ((rate + time_var) *

156

B. SOURCE CODES OF PACKET ANALYSER AND PARSER

1000000) <= 1E-9 &&

169 times_diff[cc]. tv_usec - ((rate - time_var) *

1000000) >= (-1)*1E-9) {

170 betw_diff ++;

171 }

172 if (times_diff[cc]. tv_usec - 10 <= 0) {

173 rate_10 ++;

174 }

175 }

176 time_diff_total += ((times_diff[cc]. tv_sec * 1000000) +

times_diff[cc]. tv_usec);

177 }

178

179 // Structured output results

180 file_output = fopen(file_name_output , "w");

181

182 fprintf(file_output , "Filename - Input: %s\n",

file_name_input);

183 fprintf(file_output , "No. of Packets: %d\n", lcount);

184 fprintf(file_output , "Total time: %6.6f\n",

time_diff_total / 1000000);

185 fprintf(file_output , "Avg. time: %6.6f\n", (

time_diff_total / 1000000) / (lcount -1));

186 fprintf(file_output , "MAX IAT: %d.%06d\n", time_diff_max.

tv_sec , time_diff_max.tv_usec);

187 fprintf(file_output , "MIN IAT: %d.%06d\n", time_diff_min.

tv_sec , time_diff_min.tv_usec);

188 fprintf(file_output , "Equal Rate (%f): %3.2f%% (%d

packets)\n", rate , ((equal_rate / (double)(lcount -1))

*100), equal_rate);

189 fprintf(file_output , "Within (+/-) Variation (%f): %3.2f

%% (%d packets)\n", time_var , ((betw_diff / (double)(

lcount -1))*100), betw_diff);

190 fprintf(file_output , "Below or Equal 10 usec: %3.2f%% (%d

packets)\n", ((rate_10 / (double)(lcount -1))*100),

rate_10);

191

192 fclose(file_output);

193

194 display_file(file_name_output);

195

196 return 0;

197 }

157

References

[1] D. Skordoulis, Q. Ni, H. Chen, A. Stephens, C. Liu, and A. Jamalipour,

“IEEE 802.11n MAC Frame Aggregation Mechanisms for Next-Generation

High-Throughput WLANs,” Wireless Communications, IEEE, vol. 15,

no. 1, pp. 40–47, 2008.

[2] D. Skordoulis, Q. Ni, and C. Zarakovitis, “A Selective Delayed Channel Ac-

cess (SDCA) for the High-Throughput IEEE 802.11n,” in Wireless Commu-

nications and Networking Conference, 2009. WCNC 2009. IEEE. IEEE,

2009, pp. 1–6.

[3] D. Skordoulis, Q. Ni, G. Min, and K. Borg, “Adaptive Delayed Channel

Access for IEEE 802.11n WLANs,” in Circuits and Systems for Communi-

cations, 2008. ICCSC 2008. 4th IEEE International Conference on. IEEE,

2008, pp. 167–171.

[4] D. Skordoulis, Q. Ni, U. Ali, and M. Hadjinicolaou, “Analysis of Concate-

nation and Packing Mechanisms in IEEE 802.11n,” in Proceedings of the

6th Annual Postgraduate Symposium on the Convergence of Telecommuni-

cations, Networking and Broadcasting (PGNET07), 2007.

[5] D. Akhmetov, S. Shtin, and A. Stephens, “MAC Detailed Design - Docu-

mentation,” Intel Corporation, Tech. Rep., 2004.

[6] IEEE Computer Society LAN MAN Standards Committee, “Part 11: Wire-

less LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-

ifications,” in ANSI/IEEE Std 802.11, 1999 Edition (R2003), 2003.

158

REFERENCES

[7] Broadband Radio Access Networks Project, “Radio Equipment and Sys-

tems (RES): High Performance Radio Local Area Network (HIPERLAN):

Functional Specification,” European Telecommunications Standards Insti-

tute, vol. 6, p. 921, 1995.

[8] V. Jones, R. DeVegt, and T. Jerry, “Interest for Higher Data Rates (HDR)

extension to 802.11a,” IEEE 802.11n Working Group Document - IEEE

802.11-02/081r0, 2002.

[9] J. Rosdahl, “Draft Project Authorization Request (PAR) for High Through-

put Study Group,” IEEE 802.11n Working Group Document - IEEE

802.11-02/798r2, 2003.

[10] IEEE Computer Society LAN MAN Standards Committee, “Part 11: Wire-

less LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-

ifications: High-speed Physical Layer in the 5 GHZ Band,” in IEEE Std

802.11a-1999 (Supplement to IEEE Std 802.11-1999), 1999.

[11] Y. Xiao and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11,”

Communications Letters, IEEE, vol. 6, no. 8, pp. 355–357, 2002.

[12] IEEE Computer Society LAN MAN Standards Committee, “Part 11: Wire-

less LAN Medium Access Control (MAC) and Physical Layer (PHY) Speci-

fications - Amendment 8: Medium Access Control (MAC) Quality of Service

Enhancements,” in ANSI/IEEE Std 802.11e, 2005 Edition, 2005.

[13] ——, “Part 11: Wireless LAN Medium Access Control (MAC) and Phys-

ical Layer (PHY) Specifications - Amedment 5: Enhancements for Higher

Throughput,” in ANSI/IEEE Std 802.11n, 2009 Edition, 2009.

[14] M. Visser and M. El Zarki, “Voice and Data Transmission Over an 802.11

Wireless Network,” in Personal, Indoor and Mobile Radio Communications,

1995. PIMRC’95. Sixth IEEE International Symposium on, vol. 2. IEEE,

1995, pp. 648–652.

159

REFERENCES

[15] Y. Tian, K. Xu, and N. Ansari, “TCP in Wireless Environments: Problems

and Solutions,” Communications Magazine, IEEE, vol. 43, no. 3, pp. S27–

S32, 2005.

[16] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen, “TCP Per-

formance Issues over Wireless Links,” Communications Magazine, IEEE,

vol. 39, no. 4, pp. 52–58, 2001.

[17] G. Xylomenos and G. Polyzos, “TCP and UDP Performance over a Wire-

less LAN,” in INFOCOM’99. Eighteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 2.

IEEE, 1999, pp. 439–446.

[18] D. Leith and P. Clifford, “TCP Fairness in 802.11e WLANs,” in Wire-

less Networks, Communications and Mobile Computing, 2005 International

Conference on, vol. 1. IEEE, 2005, pp. 649–654.

[19] C. Liu and A. Stephens, “Delayed Channel Access for IEEE 802.11e Based

WLAN,” in Communications, 2006. ICC’06. IEEE International Confer-

ence on, vol. 10. IEEE, 2006, pp. 4811–4817.

[20] C. Villamizar and C. Song, “High Performance TCP in ANSNET,” ACM

SIGCOMM Computer Communication Review, vol. 24, no. 5, pp. 45–60,

1994.

[21] L. Green, K. Balmy, and M. Emmelmann, “Theoretical Throughput Lim-

its (Substantive Standard Draft Text),” 802.11 TGt Wireless Performance

Prediction Task Group doc. 06/928r2, 2006.

[22] J. Jun, P. Peddabachagari, and M. Sichitiu, “Theoretical Maximum

Throughput of IEEE 802.11 and its Applications,” in Network Computing

and Applications, 2003. NCA 2003. Second IEEE International Symposium

on. IEEE, 2003, pp. 249–256.

[23] Y. Xiao, “Packing Mechanisms for the IEEE 802.11n Wireless LANs,”

in Global Telecommunications Conference, 2004. GLOBECOM’04. IEEE,

vol. 5. IEEE, 2004, pp. 3275–3279.

160

REFERENCES

[24] Y. Kim, S. Choi, K. Jang, and H. Hwang, “Throughput Enhancement

of IEEE 802.11 WLAN via Frame Aggregation,” in Vehicular Technology

Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, vol. 4. IEEE, 2004,

pp. 3030–3034.

[25] R. Choudhury, Y. Chen, and S. Emeott, “Performance Analysis of Data Ag-

gregation Techniques for Wireless LAN,” in Proceedings of IEEE Globecom.

Citeseer, 2006, pp. 1958–1962.

[26] Y. Lin and V. Wong, “Frame Aggregation and Optimal Frame Size Adapta-

tion for IEEE 802.11n WLANs,” in Global Telecommunications Conference,

2006. GLOBECOM’06. IEEE. IEEE, 2006, pp. 1–6.

[27] T. Selvam and S. Srikanth, “A Frame Aggregation Scheduler for IEEE

802.11n,” in Communications (NCC), 2010 National Conference on. IEEE,

2010, pp. 1–5.

[28] B. Ginzburg and A. Kesselman, “Performance Analysis of A-MPDU and A-

MSDU Aggregation in IEEE 802.11n,” in Sarnoff Symposium, 2007 IEEE.

IEEE, 2007, pp. 1–5.

[29] J. Hu, G. Min, and M. Woodward, “Analysis and Comparison of Burst

Transmission Schemes in Unsaturated 802.11e WLANs,” in Global Telecom-

munications Conference, 2007. GLOBECOM’07. IEEE. IEEE, 2007, pp.

5133–5137.

[30] ——, “Modeling of IEEE 802.11e Contention Free Bursting Scheme with

Heterogeneous Stations,” in Modeling, Analysis, and Simulation of Com-

puter and Telecommunication Systems, 2007. MASCOTS’07. 15th Interna-

tional Symposium on. IEEE, 2007, pp. 88–94.

[31] N. Taher, Y. Ghamri-Doudane, and B. El Hassan, “Transmission Time

Analysis and Modeling in 802.11e Contention Free Burst Mode,” in Global

Information Infrastructure Symposium, 2007. GIIS 2007. First Interna-

tional. IEEE, 2007, pp. 191–194.

161

REFERENCES

[32] T. Suzuki, A. Noguchi, and S. Tasaka, “Effect of TXOP-Bursting and

Transmission Error on Application-Level and User-Level QoS in Audio-

Video Transmission with IEEE 802.11e EDCA,” in Personal, Indoor and

Mobile Radio Communications, 2006 IEEE 17th International Symposium

on. IEEE, 2006, pp. 1–7.

[33] S. Selvakennedy, “The Impact of Transmit Buffer on EDCA with Frame-

Bursting Option for Wireless Networks,” in Local Computer Networks,

2004. 29th Annual IEEE International Conference on. IEEE, 2004, pp.

696–697.

[34] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao, and T. Turletti, “Aggregation

with Fragment Retransmission for Very High-Speed WLANs,” IEEE/ACM

Transactions on Networking (TON), vol. 17, no. 2, pp. 591–604, 2009.

[35] Q. Ni, T. Li, T. Turletti, and Y. Xiao, “AFR Partial MAC Proposal for

IEEE 802.11n,” IEEE 802.11n Working Group Document - IEEE 802.11-

04/0949r00, 2004.

[36] S. Rashwand and J. Misic, “IEEE 802.11e EDCA Under Bursty Traffic-

How Much TXOP Can Improve Performance,” Vehicular Technology, IEEE

Transactions on, vol. 60, no. 3, pp. 1099 – 1115, 2011.

[37] F. Peng, H. Alnuweiri, and V. Leung, “Analysis of Burst Transmission in

IEEE 802.11e Wireless LANs,” in Communications, 2006. ICC’06. IEEE

International Conference on, vol. 2. IEEE, 2006, pp. 535–539.

[38] H. Zimmermann, “OSI Reference Model - The ISO Model of Architecture

for Open Systems Interconnection,” Communications, IEEE Transactions

on, vol. 28, no. 4, pp. 425–432, 1980.

[39] I. Tinnirello and S. Choi, “Efficiency Analysis of Burst Transmissions with

Block ACK in Contention-Based 802.11e WLANs,” in Communications,

2005. ICC 2005. 2005 IEEE International Conference on, vol. 5. Ieee,

2005, pp. 3455–3460.

162

REFERENCES

[40] H. Lee, I. Tinnirello, J. Yu, and S. Choi, “Throughput and Delay Analy-

sis of IEEE 802.11e Block ACK with Channel Errors,” in Communication

Systems Software and Middleware, 2007. COMSWARE 2007. 2nd Interna-

tional Conference on. IEEE, 2007, pp. 1–7.

[41] A. Balachandran, G. Voelker, P. Bahl, and P. Rangan, “Characterizing User

Behavior and Network Performance in a Public Wireless LAN,” in ACM

SIGMETRICS Performance Evaluation Review, vol. 30, no. 1. ACM, 2002,

pp. 195–205.

[42] M. Balazinska and P. Castro, “Characterizing Mobility and Network Usage

in a Corporate Wireless Local-Area Network,” in Proceedings of the 1st

International Conference on Mobile Systems, Applications and Services.

ACM, 2003, pp. 303–316.

[43] A. Jardosh, K. Ramachandran, K. Almeroth, and E. Belding-Royer, “Un-

derstanding Link-Layer Behavior in Highly Congested IEEE 802.11b Wire-

less Networks,” in Proceedings of the 2005 ACM SIGCOMM. ACM, 2005,

pp. 11–16.

[44] T. Nakajima, Y. Utsunomiya, Y. Nishibayashi, T. Tandai, T. Adachi, and

M. Takagi, “Compressed Block Ack, an Efficient Selective Repeat Mecha-

nism for IEEE 802.11n,” in Personal, Indoor and Mobile Radio Commu-

nications, 2005. PIMRC 2005. IEEE 16th International Symposium on,

vol. 3. IEEE, 2005, pp. 1479–1483.

[45] V. Frost and B. Melamed, “Traffic Modeling for Telecommunications Net-

works,” Communications Magazine, IEEE, vol. 32, no. 3, pp. 70–81, 1994.

[46] P. Kenis and V. Schneider, “Policy Networks and Policy Analysis: Scru-

tinizing a New Analytical Toolbox,” Policy Networks: Empirical Evidence

and Theoretical Considerations, pp. 25–59, 1991.

[47] R. Paul and D. Balmer, Simulation Modelling. Chartwell-Bratt, 1993.

[48] D. Vose, Quantitative Risk Analysis: Guide to Monte Carlo Simulation

Modelling. John Wiley and Sons, 1996.

163

REFERENCES

[49] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Hand-

ley, A. Helmy, J. Heidemann, P. Huang, et al., “Improving Simulation for

Network Research,” 1999.

[50] X. Xian, W. Shi, and H. Huang, “Comparison of OMNET++ and Other

Simulator for WSN Simulation,” in Industrial Electronics and Applications,

2008. ICIEA 2008. 3rd IEEE Conference on. IEEE, 2008, pp. 1439–1443.

[51] G. Lucio, M. Paredes-Farrera, E. Jammeh, M. Fleury, and M. Reed, “OP-

NET Modeler and Ns-2: Comparing the Accuracy of Network Simulators

for Packet-Level Analysis Using a Network Testbed,” WSEAS Transactions

on Computers, vol. 2, no. 3, pp. 700–707, 2003.

[52] OPNET Technologies Inc. OPNET Modeler. [Online]. Available: http:

//www.opnet.com/solutions/network rd/modeler.html

[53] X. Chang, “Network Simulations with OPNET,” in Simulation Conference

Proceedings, 1999 Winter, vol. 1. IEEE, 1999, pp. 307–314.

[54] R. Baldwin, N. Davis IV, and S. Midkiff, “Implementation of an IEEE

802.11 Wireless LAN model using OPNET,” in Proceedings of OPNET-

WORK, vol. 98, 1998.

[55] W. Xi, T. Whitley, A. Munro, and M. Barton, “Modeling and Simulation

of MAC for QoS in IEEE 802.11e Using OPNET Modeler,” Networks &J

Protocols Group, CCR, Department of Electrical & Electronic Engineering,

University of Bristol, 2006.

[56] C. Li, T. Tsuei, and H. Chao, “Evaluation of Contention-Based EDCA for

IEEE 802.11e Wireless LAN,” Journal of Internet Technology, vol. 5, no. 4,

pp. 429–434, 2004.

[57] J. Song and L. Trajkovic, “Enhancements and Performance Evaluation

of Wireless Local Area Networks,” 2003. [Online]. Available: http:

//www.ensc.sfu.ca/∼ljilja/papers

[58] J. Ransbottom and N. Davis IV, “Packet Aggregation through a Wireless

LAN using OPNET,” 2003.

164

http://www.opnet.com/solutions/network_rd/modeler.html
http://www.opnet.com/solutions/network_rd/modeler.html
http://www. ensc. sfu. ca/~ ljilja/papers
http://www. ensc. sfu. ca/~ ljilja/papers

REFERENCES

[59] S. Mujtaba et al., “TGnSync Proposal MAC Results,” IEEE 802.11n Work-

ing Group Document - IEEE 802.11-04/0892r0, 2004.

[60] A. Stephens, Y. Morioka, T. Adachi, D. Akhmetov, and S. Shtin, “TGn

Joint Proposal MAC Results,” IEEE 802.11n Working Group Document -

IEEE 802.11-05/1266r1, 2006.

[61] A. Stephens, D. Akhmetov, and S. Shtin, “802.11 TGn Intel Simula-

tion Model,” IEEE 802.11n Working Group Document - IEEE 802.11-

08/0740r0, 2008.

[62] D. Akhmetov, S. Shtin, and A. Stephens, “MPS High-Level Design - Doc-

umentation,” Intel Corporation, Tech. Rep., 2004.

[63] OPNET Modeler, Product Documentation - Release 10.5, OPNET Tech-

nologies Inc, 2004.

[64] D. Akhmetov and S. Shtin, “A Method for 802.11e QoS Functionality Im-

plementation,” Intel Corporation, Tech. Rep., 2006.

[65] M. Gaudel, “Testing can be formal, too,” TAPSOFT’95: Theory and Prac-

tice of Software Development, pp. 82–96, 1995.

[66] G. Bernot, M. Gaudel, and B. Marre, “Software Testing Based on Formal

Specifications: a Theory and a Tool,” Software Engineering Journal, IET,

vol. 6, no. 6, pp. 387–405, 1991.

[67] D. Akhmetov, S. Shtin, and A. Stephens, “PHY Detailed Design - Docu-

mentation,” Intel Corporation, Tech. Rep., 2004.

[68] A. Stephens et al., “IEEE P802.11 Wireless LANs: Usage Models,” IEEE

802.11n Working Group Document - IEEE 802.11-03/802r23, May 11 2004.

[69] C. Wang, E. Au, R. Murch, W. Mow, R. Cheng, and V. Lau, “On the

Performance of the MIMO Zero-Forcing Receiver in the Presence of Chan-

nel Estimation Error,” Wireless Communications, IEEE Transactions on,

vol. 6, no. 3, pp. 805–810, 2007.

165

REFERENCES

[70] IEEE Computer Society LAN MAN Standards Committee, “IEEE Stan-

dard for Local and Metropolitan Area Networks: Media Access Control

(MAC) Bridges,” in ANSI/IEEE Std 802.1D-1998 Edition (R2004), 2004.

[71] L. Li, M. Pal, and Y. Yang, “Proportional Fairness in Multi-rate Wireless

LANs,” in INFOCOM 2008. The 27th Conference on Computer Communi-

cations. IEEE. IEEE, 2008, pp. 1004–1012.

[72] G. Tan and J. Guttag, “Time-based Fairness Improves Performance in

Multi-rate WLANs,” in Proceedings of the annual conference on USENIX

Annual Technical Conference. USENIX Association, 2004, pp. 23–23.

[73] G. Cantieni, Q. Ni, C. Barakat, and T. Turletti, “Performance Analysis un-

der Finite Load and Improvements for Multirate 802.11,” Computer Com-

munications, vol. 28, no. 10, pp. 1095–1109, 2005.

[74] N. Bailey, “On Queueing Processes with Bulk Service,” Journal of the Royal

Statistical Society. Series B (Methodological), pp. 80–87, 1954.

[75] F. Downton, “Waiting Time in Bulk Service Queues,” Journal of the Royal

Statistical Society. Series B (Methodological), pp. 256–261, 1955.

[76] M. Wilson, “A Historical View of Network Traffic Models,” Washington

University in St. Louis, Tech. Rep., 2008.

[77] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the Self-Similar

Nature of Ethernet Traffic (Extended Version),” Networking, IEEE/ACM

Transactions on, vol. 2, no. 1, pp. 1–15, 1994.

[78] P. Olivier and N. Benameur, “Flow Level IP Traffic Characterization,”

Networks, IEEE, vol. 10, p. 11, 2001.

[79] W. Willinger, V. Paxson, and M. Taqqu, “Self-similarity and Heavy Tails:

Structural Modeling of Network Traffic,” A Practical Guide to Heavy Tails:

Statistical Techniques and Applications, vol. 23, pp. 27–53, 1998.

166

REFERENCES

[80] B. Mandelbrot, “Self-similar Error Clusters in Communication Systems

and the Concept of Conditional Stationarity,” Communication Technology,

IEEE Transactions on, vol. 13, no. 1, pp. 71–90, 1965.

[81] R. Adelson, “Compound Poisson Distributions,” Operational Research,

vol. 17, no. 1, pp. 73–75, 1966.

[82] H. Heffes and D. Lucantoni, “A Markov Modulated Characterization of

Packetized Voice and Data Traffic and Related Statistical Multiplexer Per-

formance,” Selected Areas in Communications, IEEE Journal on, vol. 4,

no. 6, pp. 856–868, 1986.

[83] G. Min, J. Hu, and M. Woodward, “Performance Modelling and Analy-

sis of the TXOP Scheme in Wireless Multimedia Networks with Heteroge-

neous Stations,” Wireless Communications, IEEE Transactions on, vol. 10,

no. 12, pp. 4130–4139, 2011.

[84] R. Jain and S. Routhier, “Packet Trains – Measurements and a New Model

for Computer Network Traffic,” Selected Areas in Communications, IEEE

Journal on, vol. 4, no. 6, pp. 986–995, 1986.

[85] A. Erramilli, M. Roughan, D. Veitch, and W. Willinger, “Self-Similar Traffic

and Network Dynamics,” Proceedings of the IEEE, vol. 90, no. 5, pp. 800–

819, 2002.

[86] G. Bolch, Queueing Networks and Markov Chains: Modeling and Perfor-

mance Evaluation with Computer Science Applications. Wiley-Blackwell,

2006.

[87] M. Chaudhry and U. Gupta, “Modelling and Analysis of M/G[a, b]/1/N

queue - A simple alternative approach,” Queueing Systems, vol. 31, no. 1,

pp. 95–100, 1999.

[88] M. Chaudhry, B. Madill, and G. Briere, “Computational Analysis of Steady-

State Probabilities of M/G[a, b]/1 and Related Nonbulk Queues,” Queueing

Systems, vol. 2, no. 2, pp. 93–114, 1987.

167

REFERENCES

[89] M. Chaudhry and J. Templeton, A First Course in Bulk Queues. John

Wiley&Sons, 1983.

[90] K. Hirasawa, “Numerical Solutions of Bulk Queues via Imbedded Markov

Chain,” Elec. Eng. Jpn, vol. 91, pp. 127–136, 1971.

[91] U. Bhat, An Introduction to Queueing Theory: Modeling and Analysis in

Applications. Birkhauser, 2008.

[92] H. Gold and P. Tran-Gia, “Performance Analysis of a Batch Service

Queue Arising Out of Manufacturing System Modelling,” Queueing Sys-

tems, vol. 14, no. 3, pp. 413–426, 1993.

[93] P. Kuehn, “Approximate Analysis of General Queuing Networks by De-

composition,” Communications, IEEE Transactions on, vol. 27, no. 1, pp.

113–126, 1979.

[94] P. Tran-Gia and T. Raith, “Performance Analysis of Finite Capacity Polling

Systems with Nonexhaustive Service,” Performance Evaluation, vol. 9,

no. 1, pp. 1–16, 1988.

[95] S. Kuppa and G. Dattatreya, “Modeling and Analysis of Frame Aggregation

in Unsaturated WLANs with Finite Buffer Stations,” in Communications,

2006. ICC’06. IEEE International Conference on, vol. 3. IEEE, 2006, pp.

967–972.

[96] I. Adan and J. Resing, Queueing Theory - Lecture Notes, 2001. [Online].

Available: http://www.win.tue.nl/∼iadan/queueing.pdf

[97] S. Ross, Introduction to Probability Models. Academic Press, 2009.

[98] R. Marie, “Calculating Equilibrium Probabilities for λ(n)/Ck/1/N

Queues,” in ACM Sigmetrics Performance Evaluation Review, vol. 9, no. 2.

ACM, 1980, pp. 117–125.

[99] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, and L. Stibor, “IEEE

802.11e Wireless LAN for Quality of Service,” in Proc. European Wireless,

vol. 2, 2002, pp. 32–39.

168

http://www.win.tue.nl/~iadan/queueing.pdf

REFERENCES

[100] S. Mangold, S. Choi, G. Hiertz, O. Klein, and B. Walke, “Analysis of

IEEE 802.11e for QoS support in wireless LANs,” Wireless Communica-

tions, IEEE, vol. 10, no. 6, pp. 40–50, 2003.

[101] A. Grilo and M. Nunes, “Performance Evaluation of IEEE 802.11e,” in

Personal, Indoor and Mobile Radio Communications, 2002. The 13th IEEE

International Symposium on, vol. 1. IEEE, 2002, pp. 511–517.

[102] S. Choi, J. Del Prado, S. Mangold, et al., “IEEE 802.11e Contention-Based

Channel Access (EDCF) Performance Evaluation,” in Communications,

2003. ICC’03. IEEE International Conference on, vol. 2. IEEE, 2003,

pp. 1151–1156.

[103] Q. Ni, “Performance Analysis and Enhancements for IEEE 802.11e Wireless

Networks,” Network, IEEE, vol. 19, no. 4, pp. 21–27, 2005.

[104] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coor-

dination Function,” Selected Areas in Communications, IEEE Journal on,

vol. 18, no. 3, pp. 535–547, 2000.

[105] E. Ziouva and T. Antonakopoulos, “CSMA/CA Performance under High

Traffic Conditions: Throughput and Delay Analysis,” Computer Commu-

nications, vol. 25, no. 3, pp. 313–321, 2002.

[106] Y. Xiao, “Performance Analysis of IEEE 802.11e EDCF Under Saturation

Condition,” in Communications, 2004 IEEE International Conference on,

vol. 1. IEEE, 2004, pp. 170–174.

[107] ——, “Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE

802.11e Wireless LANs,” Wireless Communications, IEEE Transactions on,

vol. 4, no. 4, pp. 1506–1515, 2005.

[108] J. Hui and M. Devetsikiotis, “A Unified Model for the Performance Analysis

of IEEE 802.11e EDCA,” Communications, IEEE Transactions on, vol. 53,

no. 9, pp. 1498–1510, 2005.

[109] A. Banchs and L. Vollero, “A Delay Model for IEEE 802.11e EDCA,” Com-

munications Letters, IEEE, vol. 9, no. 6, pp. 508–510, 2005.

169

REFERENCES

[110] Z. Kong, D. Tsang, B. Bensaou, and D. Gao, “Performance Analysis of

IEEE 802.11e Contention-Based Channel Access,” Selected Areas in Com-

munications, IEEE Journal on, vol. 22, no. 10, pp. 2095–2106, 2004.

[111] J. Robinson and T. Randhawa, “Saturation Throughput Analysis of IEEE

802.11e Enhanced Distributed Coordination Function,” Selected Areas in

Communications, IEEE Journal on, vol. 22, no. 5, pp. 917–928, 2004.

[112] P. Engelstad and O. Østerbø, “Non-Saturation and Saturation Analysis of

IEEE 802.11e EDCA with Starvation Prediction,” in Proceedings of the

8th ACM international symposium on Modeling, analysis and simulation of

wireless and mobile systems. ACM, 2005, pp. 224–233.

[113] J. Hu, G. Min, M. Woodward, and W. Jia, “A Comprehensive Analyti-

cal Model for IEEE 802.11e QoS Differentiation Schemes under Unsatu-

rated Traffic Loads,” in Communications, 2008. ICC’08. IEEE Interna-

tional Conference on. IEEE, 2008, pp. 241–245.

[114] X. Chen, H. Zhai, X. Tian, and Y. Fang, “Supporting QoS in IEEE 802.11e

wireless LANs,” Wireless Communications, IEEE Transactions on, vol. 5,

no. 8, pp. 2217–2227, 2006.

[115] The MathWorks, “MATLAB R2010a,” Natick, Massachusetts, 2010.

[116] S. Jeong, H. Owen, J. Copeland, and J. Sokol, “QoS Support for UDP/TCP

Based Networks,” Computer communications, vol. 24, no. 1, pp. 64–77,

2001.

[117] S. Lam and G. Xie, “Burst Scheduling: Architecture and Algorithm for

Switching Packet Video,” in INFOCOM’95. Fourteenth Annual Joint Con-

ference of the IEEE Computer and Communications Societies. Bringing

Information to People. Proceedings. IEEE. IEEE, 1995, pp. 940–950.

[118] M. Becchi, “From Poisson Processes to Self-Similarity: a Survey of Network

Traffic Models,” Washington University in St. Louis, Tech. Rep., 2008.

170

REFERENCES

[119] M. Marcon, M. Dischinger, K. Gummadi, and A. Vahdat, “The Local and

Global Effects of Traffic Shaping in the Internet,” in Communication Sys-

tems and Networks (COMSNETS), 2011 Third International Conference

on. IEEE, 2011, pp. 1–10.

[120] R. Bruno, M. Conti, and E. Gregori, “Throughput Analysis and Measure-

ments in IEEE 802.11 WLANs with TCP and UDP Traffic Flows,” Mobile

Computing, IEEE Transactions on, vol. 7, no. 2, pp. 171–186, 2008.

[121] S. Floyd, T. Henderson, and A. Gurtov, “RFC 2582: The NewReno Modifi-

cation to TCPs Fast Recovery Algorithm,” Network Working Group, Tech.

Rep., 1999.

[122] IEEE 802.11T Task Group, “Recommended Practice for the Evaluation of

802.11 Wireless Performance,” IEEE Unapproved Draft Std P802.11.2 /

D1.01, 2008.

[123] F. Li, M. Li, R. Lu, H. Wu, M. Claypool, and R. Kinicki, “Measuring Queue

Capacities of IEEE 802.11 Wireless Access Points,” in Broadband Commu-

nications, Networks and Systems, 2007. BROADNETS 2007. Fourth Inter-

national Conference on. IEEE, 2007, pp. 846–853.

[124] H. Park, J. Lee, and B. Kim, “TCP Performance Issues in LTE Networks,”

in ICT Convergence (ICTC), 2011 International Conference on. IEEE,

2011, pp. 493–496.

[125] M. Claypool, R. Kinicki, M. Li, J. Nichols, and H. Wu, “Inferring Queue

Sizes in Access Networks by Active Measurement,” Passive and Active Net-

work Measurement, pp. 227–236, 2004.

[126] Description of Windows 2000 and Windows Server 2003 TCP Features.

[Online]. Available: http://support.microsoft.com/kb/224829

[127] T. Lakshman and U. Madhow, “The Performance of TCP/IP for Networks

with High Bandwidth-Delay Products and Random Loss,” Networking,

IEEE/ACM Transactions on, vol. 5, no. 3, pp. 336–350, 1997.

171

http://support.microsoft.com/kb/224829

REFERENCES

[128] S. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and P. Sinha, “Understanding

TCP Fairness over Wireless LAN,” in INFOCOM 2003. Twenty-Second An-

nual Joint Conference of the IEEE Computer and Communications. IEEE

Societies, vol. 2. IEEE, 2003, pp. 863–872.

[129] J. Postel, “RFC 793: Transmission Control Protocol,” Defense Advanced

Research Projects Agency, Tech. Rep., 1981.

[130] W. Stevens, TCP/IP Illustrated: the Protocols. Addison-Wesley Profes-

sional, 1994, vol. 1.

[131] J. Postel, “RFC 791: Internet Protocol,” Defense Advanced Research

Projects Agency, Tech. Rep., 1981.

[132] V. Cerf and R. Kahn, “A Protocol for Packet Network Intercommunica-

tion,” Communications, IEEE Transactions on, vol. 22, no. 5, pp. 637–648,

1974.

[133] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoid-

ance on a Global Internet,” Selected Areas in Communications, IEEE Jour-

nal on, vol. 13, no. 8, pp. 1465–1480, 1995.

[134] V. Paxson and M. Allman, “RFC 2988: Computing TCPs Retransmission

Timer,” Network Working Group, Tech. Rep., 2000.

[135] M. Allman, S. Floyd, and C. Partridge, “RFC 3390: Increasing TCPs Initial

Window,” Network Working Group, Tech. Rep., 2002.

[136] M. Allman, V. Paxson, and W. Stevens, “RFC 2581: TCP Congestion

Control,” Network Working Group, Tech. Rep., 1999.

[137] W. Stevens, “RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Re-

transmit, and Fast Recovery Algorithms,” Network Working Group, Tech.

Rep., 1997.

[138] L. Brakmo, S. O’malley, and L. Peterson, “TCP Vegas: New Techniques

for Congestion Detection and Avoidance,” in ACM SIGCOMM Computer

Communication Review, vol. 24, no. 4. ACM, 1994, pp. 24–35.

172

REFERENCES

[139] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, Al-

gorithms, Performance,” in INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications Societies, vol. 4.

IEEE, 2004, pp. 2490–2501.

[140] J. Hoe, “Start-Up Dynamics of TCP’s Congestion Control and Avoidance

Schemes,” Master’s thesis, Massachusetts Institute of Technology, Dept. of

Electrical Engineering and Computer Science, 1995.

[141] ——, “Improving the Start-Up Behavior of a Congestion Control Scheme

for TCP,” in ACM SIGCOMM Computer Communication Review, vol. 26,

no. 4. ACM, 1996, pp. 270–280.

[142] C. Caini and R. Firrincieli, “TCP Hybla: a TCP Enhancement for Hetero-

geneous Networks,” International Journal of Satellite Communications and

Networking, vol. 22, no. 5, pp. 547–566, 2004.

[143] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed

TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,

pp. 64–74, 2008.

[144] K. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A Scalable and

TCP-Friendly Congestion Control for High-Speed Networks,” Proceedings

of PFLDnet 2006, 2006.

[145] M. Corson, J. Macker, and G. Cirincione, “Internet-Based Mobile Ad Hoc

Networking,” Internet Computing, IEEE, vol. 3, no. 4, pp. 63–70, 1999.

[146] R. Schmitz, M. Torrent-Moreno, H. Hartenstein, and W. Effelsberg, “The

Impact of Wireless Radio Fluctuations on Ad Hoc Network Performance,”

in Local Computer Networks, 2004. 29th Annual IEEE International Con-

ference on. IEEE, 2004, pp. 594–601.

[147] M. Allman, V. Paxson, and E. Blanton, “RFC 5681: TCP Congestion

Control,” Internet Engineering Task Force, Tech. Rep., 2009.

173

REFERENCES

[148] T. Henderson, D. Kotz, and I. Abyzov, “The Changing Usage of a Mature

Campus-wide Wireless Network,” in Proceedings of the 10th Annual Inter-

national Conference on Mobile Computing and Networking. ACM, 2004,

pp. 187–201.

[149] D. Lee, B. Carpenter, and N. Brownlee, “Observations of UDP to TCP

Ratio and Port Numbers,” in Internet Monitoring and Protection (ICIMP),

2010 Fifth International Conference on. IEEE, 2010, pp. 99–104.

[150] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering, “RFC 3697: IPv6

Flow Label Specification,” Network Working Group, Tech. Rep., 2004.

[151] M. Kim, Y. Won, and J. Hong, “Characteristic Analysis of Internet Traffic

from the Perspective of Flows,” Computer Communications, vol. 29, no. 10,

pp. 1639–1652, 2006.

[152] D. Skordoulis, “Simulation Analysis of the IEEE 802.11n Next-Generation

Wireless LAN,” Master’s thesis, Brunel University, ECE, 2005.

[153] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee,

“Internet Traffic Classification Demystified: Myths, Caveats, and the Best

Practices,” in Proceedings of the 2008 ACM CoNEXT Conference. ACM,

2008, p. 11.

[154] C. Lee, D. Lee, and S. Moon, “Unmasking the Growing UDP Traffic in a

Campus Network,” in Passive and Active Measurement. Springer, 2012,

pp. 1–10.

[155] T. Karagiannis, A. Broido, M. Faloutsos, et al., “Transport Layer Identifica-

tion of P2P Traffic,” in Proceedings of the 4th ACM SIGCOMM Conference

on Internet Measurement. ACM, 2004, pp. 121–134.

[156] A. Moore and K. Papagiannaki, “Toward the Accurate Identification of

Network Applications,” Passive and Active Network Measurement, pp. 41–

54, 2005.

[157] Ellacoya Networks. Ellacoya IP Service Control System. [Online]. Available:

http://www.ellacoya.com

174

http://www.ellacoya.com

REFERENCES

[158] Packeteer. Packetshaper. [Online]. Available: http://www.packeteer.com

[159] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel

Traffic Classification in the Dark,” in ACM SIGCOMM Computer Commu-

nication Review, vol. 35, no. 4. ACM, 2005, pp. 229–240.

[160] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-Network Iden-

tification of P2P Traffic Using Application Signatures,” in Proceedings of

the 13th international conference on World Wide Web. ACM, 2004, pp.

512–521.

[161] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: Automated Con-

struction of Application Signatures,” in Proceedings of the 2005 ACM SIG-

COMM Workshop on Mining Network Data. ACM, 2005, pp. 197–202.

[162] T. Choi, C. Kim, S. Yoon, J. Park, B. Lee, H. Kim, H. Chung, and T. Jeong,

“Content-Aware Internet Application Traffic Measurement and Analysis,”

in Network Operations and Management Symposium, 2004. NOMS 2004.

IEEE/IFIP, vol. 1. IEEE, 2004, pp. 511–524.

[163] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and

G. Varghese, “Network Monitoring Using Traffic Dispersion Graphs,” in

Proceedings of the 7th ACM SIGCOMM Conference on Internet Measure-

ment. ACM, 2007, pp. 315–320.

[164] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow Clustering Using

Machine Learning Techniques,” Passive and Active Network Measurement,

pp. 205–214, 2004.

[165] A. Moore and D. Zuev, “Internet Traffic Classification Using Bayesian Anal-

ysis Techniques,” in ACM SIGMETRICS Performance Evaluation Review,

vol. 33, no. 1. ACM, 2005, pp. 50–60.

[166] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-Service Map-

ping for QoS: a Statistical Signature-Based Approach to IP Traffic Classifi-

cation,” in Proceedings of the 4th ACM SIGCOMM Conference on Internet

Measurement. ACM, 2004, pp. 135–148.

175

http://www.packeteer.com

REFERENCES

[167] J. Erman, M. Arlitt, and A. Mahanti, “Traffic Classification Using Clus-

tering Algorithms,” in Proceedings of the 2006 SIGCOMM workshop on

Mining Network Data. ACM, 2006, pp. 281–286.

[168] T. Auld, A. Moore, and S. Gull, “Bayesian Neural Networks for Internet

Traffic Classification,” Neural Networks, IEEE Transactions on, vol. 18,

no. 1, pp. 223–239, 2007.

[169] N. Williams, S. Zander, and G. Armitage, “A Preliminary Performance

Comparison of Five Machine Learning Algorithms for Practical IP Traffic

Flow Classification,” ACM SIGCOMM Computer Communication Review,

vol. 36, no. 5, pp. 5–16, 2006.

[170] Canonical Ltd. Ubuntu 8.10 (Intrepid Ibex). [Online]. Available:

http://old-releases.ubuntu.com/releases/8.10/

[171] Netgear. WG511T–108 Mbps Wireless PC Card. [Online]. Available:

http://support.netgear.com/product/WG511T

[172] USRobotics. USR5410–802.11g Wireless Turbo PC Card. [Online]. Avail-

able: http://www.usr.com/support/product-template.asp?prod=5410

[173] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-ITG

Distributed Internet Traffic Generator,” in Quantitative Evaluation of Sys-

tems, 2004. QEST 2004. Proceedings. First International Conference on

the. IEEE, 2004, pp. 316–317.

[174] A. Botta, A. Dainotti, and A. Pescapè, “Multi-protocol and multi-platform

traffic generation and measurement,” INFOCOM 2007 DEMO Session,

2007.

[175] S. Avallone, A. Botta, D. Emma, S. Guadagno, and A. Pescapè, “D-ITG

V. 2.4 Manual,” University of Napoli Federio II, Tech. Rep, 2004.

[176] F. Fuentes and D. Kar, “Ethereal vs. Tcpdump: a Comparative Study

on Packet Sniffing Tools for Educational Purpose,” Journal of Computing

Sciences in Colleges, vol. 20, no. 4, pp. 169–176, 2005.

176

http://old-releases.ubuntu.com/releases/8.10/
http://support.netgear.com/product/WG511T
http://www.usr.com/support/product-template.asp?prod=5410

REFERENCES

[177] carl9170 Driver. [Online]. Available: http://wireless.kernel.org/en/users/

Drivers/carl9170

[178] ar9170 Driver. [Online]. Available: http://wireless.kernel.org/en/users/

Drivers/ar9170

[179] Broadcom BRCMSMAC(PCIe) and BRCMFMAC(SDIO) Drivers. [On-

line]. Available: http://wireless.kernel.org/en/users/Drivers/brcm80211

[180] K. Bennett and C. Campbell, “Support Vector Machines: Hype or Hal-

lelujah?” ACM SIGKDD Explorations Newsletter, vol. 2, no. 2, pp. 1–13,

2000.

[181] TGnSync, “TGnSync Proposal Technical Specification,” 2004.

[182] S. Jeon and J. Lee, “Adaptive Frame Aggregation Scheme for Energy Effi-

ciency in WLAN,” in Consumer Electronics (ICCE), 2011 IEEE Interna-

tional Conference on. IEEE, 2011, pp. 463–464.

177

http://wireless.kernel.org/en/users/Drivers/carl9170
http://wireless.kernel.org/en/users/Drivers/carl9170
http://wireless.kernel.org/en/users/Drivers/ar9170
http://wireless.kernel.org/en/users/Drivers/ar9170
http://wireless.kernel.org/en/users/Drivers/brcm80211

	Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	1 Introduction
	1.1 Working Towards High-Throughput WLAN
	1.2 Motivations
	1.3 Major Contributions
	1.3.1 Mitigating Overhead Further for Very High-Speed WLANs
	1.3.2 Restoring Fairness in QoS Networks
	1.3.3 Buffer Sizing for TCP Flows

	1.4 Thesis Outline

	2 IEEE 802.11n
	2.1 Throughput Limits of IEEE 802.11
	2.2 Frame Aggregation Mechanisms
	2.2.1 Aggregated MAC Service Data Unit
	2.2.2 Aggregated MAC Protocol Data Unit
	2.2.3 Two-Level Aggregation

	2.3 High-Throughput Model in OPNET
	2.3.1 PHY & MAC Interaction and Interfaces
	2.3.2 MAC Process Model Design
	2.3.3 PHY Process Model Design

	2.4 Performance Evaluation
	2.4.1 Point-to-Point HT Goodput Test
	2.4.2 Point-to-Point Legacy STA with HT AP
	2.4.3 Point-to-Point Legacy and HT Co-existence
	2.4.4 Frame Aggregation Evaluation

	2.5 Summary

	3 Frame Aggregation as a M/G[a,b]/1/K Queue
	3.1 Model Description
	3.2 Substitute Service Time Distribution Functions
	3.3 Performance Measures
	3.4 Numerical Examples
	3.5 Summary

	4 IEEE 802.11n and QoS in Conjunction
	4.1 IEEE 802.11e and EDCA
	4.2 An Analytical Model for EDCA
	4.2.1 Saturation Throughput
	4.2.2 Saturation Delay

	4.3 Numerical Results Using MATLAB
	4.4 Simulations Using OPNET
	4.4.1 Residential Scenario
	4.4.2 Large Enterprise Scenario
	4.4.3 Hot Spot Scenario

	4.5 Summary

	5 Delayed Channel Access and the TCP Problem
	5.1 A Description of the DCA
	5.2 The DCA Algorithm
	5.3 Performance Evaluation of DCA
	5.4 TCP Problem with DCA
	5.5 A Brief Understanding of the TCP
	5.6 Cause of the TCP Problem
	5.7 TCP Problem Over the Other Scenarios
	5.8 Summary

	6 Adaptive DCA
	6.1 Rethinking of DCA
	6.2 TCP Window Sizes
	6.3 Set sigma Equal to Receiver Window
	6.4 Adapting sigma Towards TCP Flight Size
	6.5 Design of Adaptive DCA
	6.6 Performance Evaluation of Adaptive DCA
	6.7 Summary

	7 Selective DCA
	7.1 UDP & TCP Usage Over Large Networks
	7.2 TCP-Aware DCA
	7.3 Design of Selective DCA
	7.4 Test-Bed for Packet Analyser
	7.5 Performance Evaluation of SDCA with OPNET
	7.6 Summary

	8 Conclusions
	8.1 Research Outcomes
	8.2 Future Research Directions

	A Usage Models
	A.1 Model 1 - Residential
	A.2 Model 4 - Large Enterprise
	A.3 Model 6 - Hot Spot
	A.4 Model 17 - Point-to-Point High Throughput Goodput Test
	A.5 Model 18 - Point-to-Point Legacy Throughput Test
	A.6 Model 19 - Point-to-Point Legacy Sharing Throughput Test

	B Source Codes of Packet Analyser and Parser
	B.1 Packet Analyser
	B.2 Parser

	References

