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Abstract 

With the development of wireless networks, Quality of Service (QoS) has become one 

of the most important mechanisms to improve the system performance such as loss, 

delay and throughput. Cross-layer design is seen as one of the main approaches to 

achieve QoS provisioned services in contrast to the well-adopted TCP/IP network model. 

This thesis focuses on the cross-layer design incorporating queueing effects and 

adaptive modulation and coding (AMC), which operates at both the data-link layer and 

the physical layer, to obtain the performance analyses on loss, delay and throughput 

using the matrix geometric method. More specifically, this thesis explores the potential 

to extend the cross-layer analysis, at the data-link and the physical layer respectively. 

At the data-link layer, since the traffic types such as voice, video and data are proven to 

be bursty, and the well-adopted Poisson arrivals fail to capture the burstiness of such 

traffic types, the bursty traffic models including ON-OFF and aggregated ON-OFF 

arrivals are introduced in the cross-layer analysis. This thesis investigates the impact of 

traffic models on performance analysis, identifying the importance of choosing the 

proper traffic model for cross-layer analysis. 

At the physical layer, IEEE 802.11ac standard is adopted for the cross-layer analysis. In 

order to meet the specifications of 802.11ac with higher-order Modulation and Coding 

Schemes (MCS), wider channel bandwidth and more spatial streams, the Signal -to-

Noise Ratio (SNR) thresholds are re-determined for the AMC; in addition, a single user 

(SU) multiple in multiple out (MIMO) spatial multiplexing system with zero-forcing (ZF) 

detector is adopted for the cross-layer analysis. Furthermore, this thesis explores the 

impact of antenna correlations on the system performance. 

All of the work done in this thesis aims at obtaining more practical performance analysis 

on the cross-layer design incorporating queueing effects and AMC. The proposed cross -

layer analysis is quite general, so that it’s ready to be applied to any QoS provisioned 

networks. 
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Chapter 1 Introduction  

1.1 Background & Motivation 

Wireless networks have been under detailed investigation during recent decades, not 

only because of the mobility and convenience they’ve provided for mobile subscribers 

and any other devices which have wireless-enabled functionality, but also because the 

extra complexity in design and implementation they’ve created due to the restrictions 

of wireless channel variations and spectrum scarcity. This is very different from the 

static channel conditions and static resource allocations in wired networks. The whole 

history of the development of wireless networks is one of combating channel variations 

with limited spectral resources in order to make sure that more and more users are 

supplied with Quality of Service (QoS) provisioned services. 

With the development of multimedia packet-based wireless networks, users are no 

longer only satisfied with basic data or audio services. Therefore, more and more 

services like video streaming, real-time video chatting and faster reliable data transfer 

have emerged to meet the users’ needs. As a result, multimedia packet-based wireless 

networks require high data rates with the provision of higher spectral efficiency (SE) 

and controlled packet loss probability (PLP) and packet latencies (delays).  

Channel variations are mainly caused by the mobility of wireless-enabled devices and 

the impact of fading. Most of the existing wireless networks use adaptive modulation 

and coding (AMC) [6] at the physical layer as a means of combating channel quality 

variations, i.e. as the channel gets worse a modulation and coding scheme (MCS) with 

fewer bits per symbol is chosen for transmission by AMC, while as the channel gets 

better an MCS with more bits per symbol is chosen. This is to maintain the same target 

bit error rate (BER) by reacting to the changing channel conditions. As a result, AMC has 

become one of the key technologies used to combat channel variations and maximize 

system throughput. 

However, traditional analyses of AMC such as [6] [8] are based on an assumption that 

AMC operates at the physical layer alone, and these papers don’t consider the impact 

of queueing and buffering at the data-link layer. More specifically, traditional analyses 
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on AMC assume there are always data packets for the system to transmit and yet these 

never cause buffer overflow (i.e. the saturation model), which is unrealistic in real world 

packet-based wireless network scenarios. As indicated, current analyses cannot predict 

the overall system behavior at the packet level. Therefore, queueing analysis which 

takes into account the conditions of the data-link layer becomes necessary. During the 

last decade, cross-layer performance evaluations combining queueing analysis at the 

data-link layer and AMC at the physical layer have received a lot of attention in various 

scenarios such as [28] [30] [33] [34]. These include single-user (SU) and multi-user (MU) 

with single channel, MIMO and multi-hop relay studies. This cross-layer approach to 

performance evaluation makes it possible to analyze the probability of queue length in 

the buffer, the packet drop probability (PDP) due to buffer overflow, the average packet 

delay, and further obtain the PLP and average throughput while accounting for the 

impact of fading at the physical layer. 

At the transmitter side, this kind of cross-layer design can be well modelled with 

queueing theory. The kind of queue model used by most of the cross-layer designs 

found in published works such as [22] [28] [30] [31] [34] [42] are working-vacation 

queue models. Typically, queue models with working vacations [2] assume a lower 

service rate during vacations compared to the busy period, instead of the server 

completely stopping as in a conventional queue vacation model (in fact, working 

vacation queue model can be generalized as the special case of vacation queue model ), 

as shown in Figure 1.1.  

The durations for both busy periods and working vacation periods (            for 

non-vacation periods and              for working vacation periods) are usually 

assumed to follow the exponential distribution, which is suitable to build up a Markov 

Chain (MC) to identify the transition probabilities between busy and working vacation 

periods. However, the design for server working-vacation model shown in Figure 1.1 

only applies two independent service rates. Fortunately, the published works such as 

[28] have extended this original server-vacation model into a range of working 

vacations with different service rates, which is suitable to combine physical layer 

techniques such as AMC for cross-layer analysis. 
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Queueing analyses on cross-layer designs adopt a range of working vacations with 

different service rates, to fit with the MCSs used, at the physical layer. More specifically, 

most of the cross-layer designs found in the literature such as [28] [31] [34] utilize an 

M/D/s(t)/K queue model, in which the packet arrivals are homogenous (i.e. single class) 

and collectively form a Poisson arrival process, the buffer service rate (which is directly 

controlled by the MCSs) varies over time, and the buffer size K is finite. 

As indicated above, the cross-layer design, which considers both queueing effects at the 

data-link layer and AMC at the physical layer with application to various wireless 

scenarios, has been well studied in the literature. These published works also provide 

the basic framework of performance analysis on cross-layer design. However, there are 

still some interesting problems left to be solved on the cross-layer queueing analysis, 

which motivate the work completed in this thesis. 

Motivation 1: The applications of bursty traffic models for cross-layer analysis 

Most of the current literature such as [22] [28] [30] [31] [34] [42] apply Poisson arrivals 

as the only packet arrival process, for the memorylessness of Poisson arrivals provide 

convenience in queueing analysis; however, in practice Poisson arrivals only 

approximate well when packet arrivals are non-bursty or there’s no correlation 

between successive arrivals. With the development of the packet-based wireless 

networks, more and more published work [44]-[47] [49] reveal that the behaviors of 

Exponentially distributed 

Figure 1.1 Service rate for busy period and working vacations 
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arrival traffic patterns, such as voice, video and data center, turn out to be bursty. As a 

result, adopting a traffic model, which can capture the burstiness of the arrival packets, 

becomes necessary for practical performance analysis. 

In addition, choosing the proper arrival process based on arrival stream type before 

queueing analysis should be investigated as the complement of the state-of-the-art. As 

a generalization, the queueing behavior at the buffer suits a G/D/s(t)/K vacation queue 

model, where G indicates that the arrival process follows a general distribution  

including not only Poisson, but also more generally distributed arrivals. 

Motivation 2: The extension to IEEE 802.11ac standard 

As the packet-based wireless networks develop, it is necessary for industry to fulfil 

wireless standards with higher data rates to meet the QoS provisions for users. As a 

result, wireless standards have begun to consider higher-order MCSs, wider channel 

bandwidth and more spatial streams. As specified in [52] [53], the IEEE 802.11ac 

standard has become the most promising WLAN standard in the next three to five years 

as the substitute for IEEE 802.11n. IEEE 802.11ac, often seen as 5th-generation (5G) Wi-

Fi standard, has already been supported by WLAN routers and handsets since 2013. As 

predicted in [52], there will be one billion 802.11ac enabled devices by 2015, and the 

number of commercialised 802.11ac enabled devices is highly likely to reach this at the 

current rate of growth. With the rapid spread of 802.11ac, the cross-layer analysis with 

modified physical layer specifications, including higher-order MCSs, wider channel 

bandwidth and more spatial streams, become interesting to study. 

More specifically, the extension to 802.11ac for cross-layer analysis can be divided into 

two tasks: 

Task 1: The re-determination of SNR thresholds for AMC 

As mentioned above, the AMC scheme found in the literature such as [6] [22] adopts a 

range of MCSs with different service rates at the physical layer. And one of the most 

important steps for any AMC algorithm is to determine the SNR thresholds for MCSs. In 

the field of interest, SNR thresholds are mainly dependent on the physical layer 

specifications. Therefore, maintaining updated functional blocks for data processing 
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becomes quite important. Within the last 5 years, OFDM has been adopted as one of 

the key technologies in most popular packet-based wireless networks and standards 

such as 4th-generation cellular mobile network (4G) and 802.11a, g, n, ac. In general, 

OFDM technology splits the whole bandwidth into several parallel orthogonal 

subcarriers with frequency-flat fading for transmission. Compared to single carrier 

modulation and the original FDM, OFDM achieves higher spectral efficiency with the 

same bandwidth, which is important as bandwidth is always relatively scarce in wireless 

networks. With the development of the Fast Fourier Transform (FFT), it was possible for 

OFDM to be applied into packet-based wireless networks at the physical layer with low 

complexity (this is because OFDM modulation is equivalent to taking an IFFT operation 

to bit streams). This ensures OFDM is a useful and convenient tool to help combat 

channel variations for frequency-selective channels. 

However, queueing analyses on cross-layer design found in the literature such as [22] 

[28] [30] [31] [34] [42] do not take OFDM into consideration; although some of these 

claim to use OFDM, they actually adopt the same SNR thresholds originated in [22] in 

which no evidence has been shown to include OFDM. In addition, other physical layer 

specifications for 802.11ac such as higher-order MCS (up to 256 QAM with a coding rate 

of 5/6) and more channel bandwidth (up to 80+80 or 160 MHz) also demand the re-

determination of SNR thresholds for MCSs adopted. 

Task 2: The extension to MIMO at the air interface 

As specified in [52] [53], the Access Points (APs) supporting 802.11ac standard can be 

equipped with up to 8 antennas, providing the ability to simultaneously transmit up to 4 

spatial streams for each user, which leads to the use of MIMO both at the transmitter 

and the receiver side. In general, the usage of MIMO can be classified into two fields: 

diversity and spatial multiplexing. The diversity technique transmits the same piece of 

data on all antennas to achieve the diversity order, which is, in other words, to make 

the channel more reliable; while the spatial multiplexing technique exploits the spatial 

order to transmit different data on different antennas, which dramatically increase the 

channel capacity. As indicated by the specifications of 802.11ac, the introduction of 

MIMO is mainly used for obtaining spatial multiplexing. 



6 
 

In addition, 802.11ac is the first Wi-Fi standard to propose MU MIMO; while 

maintaining SU MIMO proposed in 802.11n. In general, SU MIMO allows AP to 

exchange data with only one user with multiple antennas at a time; while MU MIMO 

allows AP to exchange data with multiple users simultaneously. Compared to SU MIMO, 

MU MIMO requires further operations, usually beamforming, for AP to distinguish 

between the multiple users in different directions. As a result, although SU & MU MIMO 

bring out extra complexity for the system, they dramatically increase the spectral 

efficiency of the channel. 

For the state-of-the-art, most of the published works such as [28] [34] [42] only 

consider single antenna scenarios for cross-layer analysis; for those which consider 

MIMO such as [30] [31], they either concentrate on the diversity technique or fail to 

provide a reasonable system model for SU or MU MIMO as specified by 802.11ac. Thus, 

the extensions at the air interface become necessary for the cross-layer analysis on IEEE 

802.11ac standard. 

In summary, the motivations based on the queueing analysis on cross-layer design both 

at the physical layer and the data-link layer are detailed in order to meet the 

specifications of IEEE 802.11ac standard. The functional block of the proposed cross-

design, which indicates main modifications and extensions, is shown in Figure 1.2. 

 

 

 

Figure 1.2 Functional block diagram for proposed cross-layer design 
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1.2 Organisations of the thesis 

The rest of the thesis is organised as follows. Chapter 2 is the literature review on cross-

layer design; the main contributions of this thesis are also given at the end of Chapter 2. 

Chapter 3 gives formulas, implementations and validations of the basic M/D/1 queue 

model with and without buffer and vacation, laying the foundation of the application of 

queueing analysis using the chosen matrix geometric method. Chapter 4 discusses AMC 

and operates it with a Poisson arrival process to achieve a traditional single user cross-

layer design; performance analyses on queue length in the buffer, PDP due to buffer 

overflow, average packet delay, PLP and throughput, are the main focus as we look into 

the proposed cross-layer design. Chapter 5 modifies the arrival process to incorporate 

ON-OFF arrivals and aggregated ON-OFF arrivals at the data-link layer, and so facilitate 

evaluation of performance in cross-layer design and implementation. Chapter 5 also 

discusses the importance of using a properly representative arrival processes. Chapter 6 

extends the cross-layer design at the physical layer to meet the specifications of IEEE 

802.11ac by re-determining SNR thresholds for AMC and extending the scenario to 

single-user (SU) MIMO at the air interface. Chapter 7 concludes the thesis and provides 

possible future work.  
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Chapter 2 Literature Review & Basic Concepts 

2.1 Literature review 

2.1.1 Queue models with working vacations 

Working vacation queue models originate from vacation queue models. There has been 

extensive literature on vacation queue models, most of which dates back to 30 years 

ago, and the most up to date one is [1]. In [1], the authors focus on the M/D/1 vacation 

queue model with general distributed busy and vacation periods. 

After [1], the scholars turned their interest onto queue models with working vacations. 

As discussed in Chapter 1, queue models with working vacations can be good tools for 

queueing analysis on any cross-layer design when the model adopts a range of working 

vacations with different service rates to incorporate MCSs used by AMC. The 

emergence of this type of queue model partly originated from wireless network 

scenarios, and was first proposed by [2].  

In [2], the authors analysed one of the most common queue models: the M/M/1 model 

with working vacations. The authors applied this model into a scenario in which there 

are multiple data streams waiting to be transmitted. A token moves among these 

streams: when one data stream gets the token, it will transmit with a higher data rate – 

it is as if its corresponding server went into a busy period. The queue model is well-

fitted for a system with two transmission modes. In addition, [2] is the first attempt to 

relate vacation queue models to wireless networking scenarios. 

After [2], more related papers appeared which have targeted more queue models [3]-

[5]. [3] analysed the M/G/1 working vacation model with general or exponential 

distributed busy and vacation periods. [4] and [5] concentrates on the G/Geo/1 and 

Geo/Geo/1 working vacation models respectively with exponential distributed busy and 

vacation periods.  

Moreover, it is worth mentioning that [4] and [5] firstly use a different analytical 

method compared to former published works. The method, which is known as the 

matrix geometric method, is aiming at obtaining analytical results by building up MCs 
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for queue state transitions taking arrival and service processes into account. Normally, 

the steady-state distribution for the queue state can be obtained by analysing the 

eigenvectors of the queue state transition matrix.  

In general, most of the literature on queue models, no matter if queue models 

experience vacations or not, try to achieve closed-form expressions for average queue 

length and average waiting time for each customer in different scenarios. As introduced 

above, there are two main kinds of methods used for the queueing analysis: algebraic 

method and matrix geometric method.  

Compared to the matrix geometric method, the algebraic method often requires more 

mathematical manipulations including integration, differentiation and transforms in 

order to get closed-form expressions. And closed-form expressions that can be 

obtained by the algebraic method are often quite complicated even for a simple 

vacation queue model. Alternatively, the matrix geometric method aims at building a 

repetitive state transition matrix block and then tries to obtain the steady-state queue 

length distribution, and is comparatively straightforward. Although the matrix 

geometric method has its advantages in queueing analysis, the method still has its 

limitations. The main challenges of using matrix geometric method are focussed on: 

1. Whether there exists a repetitive state transition matrix block, which limits the 

method to the scope of quasi-birth-death process, continuous-time Markov chain 

(CTMC) or discrete-time Markov chain (DTMC). 

2. Whether there exists a steady-state distribution for the state transition matrix block, 

which requires the method to analyse reducibility, homogeneity and positive 

recurrence of the state transition matrix. 

The challenges of using the matrix geometric method are discussed in this thesis, in 

particular the feasibility of applying this method into our proposed cross-layer design 

analysis, as this is essential in order to evaluate the target metrics. 

In summary, the literature related to working vacation queue model only considers the 

case with two service rates, i.e. busy and working vacation service rates. In addition, 

these papers mainly concentrate on a theoretical analysis and generally lack 
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applications in practical scenarios. Working vacation models with only two states 

cannot be used to address the wireless system models considered in this thesis. All of 

the reasons above require us to extend the model with a range of working vacations 

with different service rates to fit into cross-layer design incorporating AMC, in a more 

straightforward way, which is matrix geometric method, for queueing analysis. 

2.1.2 Adaptive modulation and coding 

AMC was first adopted by [7] in High Speed Downlink Packet Access (HSDPA, also 

known as 3.5G) to substitute for the traditional fast power control used in CDMA for 

channel adaptation. AMC adapts to the channel variations such as to maximize the 

system throughput. [7] summarizes the advantages and challenges of using AMC as a 

channel adaptation technology. As suggested in [7], AMC is susceptible to feedback 

channel error and end-to-end packet transmission delay. To solve these two problems, 

we make the following assumptions in this thesis: 

1. For feedback channel errors, it is reasonable to assume an error-free feedback 

channel because the feedback payload is much smaller compared to the overall 

throughput. The system can ensure an error-free feedback at the cost of minor payload 

increase which is negligible. 

2. For packet transmission delay, it is reasonable to assume that the round-trip time for 

transmission is negligible compared to the duration for each timeslot; the timeslot is 

regarded as the basic time unit for each MCS adjustment, especially for WLAN 

standards such as 802.11a, g, n, ac.  

3. For channel fading conditions, it is reasonable to assume slow fading in WLAN 

scenarios because the mobility of devices and the rate at which the environment 

change are both quite slow. 

[7] also adopted a range of MCSs in HSDPA, but research has shown that 64QAM was 

rarely used. With the development of adaptive antenna technology and more efficient 

coding and decoding techniques, it is now feasible to use higher-order modulation 

schemes. In 802.11a standard, 64QAM has been much more commonly used. It is also 

suggested in [53] that 256QAM could be achieved in the IEEE 802.11ac standard. 
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Both [7] and [53] gave an overview of the development of AMC in different standards. 

However, they did not give any guidelines for analysing channel adaptation 

theoretically, which leaves a gap in the use of theory (and simulation), making AMC 

hard to study by performance analysis.  

Before the investigations of AMC, the studies to apply finite-state Markov chain (FSMC) 

for channel variation analysis had become a field under heated discussion [11]-[13]. [11] 

and [12] firstly introduced FSMC into slow Rayleigh fading channel modelling. 

Compared to the traditional Gilbert-Elliot channel, which classifies the channel 

condition only as good and bad, FSMC extends the two-state channel with more 

feasible states, which can better describe the channel variations. By analysing the quasi -

birth-and-death process suggested by slow fading, [11] and [12] divided the whole SNR 

scope into several thresholds to indicate the channel state transitions, which resulted in 

the analysis on the second-order statistics on Rayleigh fading channel such as level 

crossing rate (LCR) which is detailed later for MIMO channel modelling. However, the 

SNR threshold settings in [11] and [12] didn’t consider the combination of MCSs. 

Although [13] tried to divide SNR in terms of delay for each MS, the threshold settings 

still followed the old way as in [11] and [12]. 

Inspired by the studies on FSMC, there have been several published papers 

investigating rate adaptation strategies like adaptive modulation (AM) before AMC. 

Actually, AMC originated from AM, and AMC just combines AM and coding strategies, 

including encoding and puncturing operations, to make the bit streams more reliable 

under transmission. [6] was the first paper to analyze AM theoretically over a 

Nakagami-m fading channel. [6] concluded that a channel adaptation strategy like AM is 

the key factor in maximizing the throughput and spectral efficiency, compared to an 

old-fashioned power adaptation strategy in CDMA. The results in [6] secured a 

promising future for a channel adaptation strategy such as AMC as one of the key 

physical layer techniques. In addition, [6] provided a method for setting thresholds for 

each modulation scheme (MS) to achieve the rate adaptation strategy, which lays the 

foundation for a slot-based queueing analysis at the physical layer. After [6], [8] gave 

more detailed work on the AM strategy, concluding that restricting the transmit power 

such as to make it always constant also achieves a nearly optimal spectral efficiency for 
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the rate adaptation; this simplifies the SNR threshold settings for AM as well as AMC 

strategies. 

The development of FSMC and AMC resulted in the combination of them for channel 

variation analysis, especially after the introduction of OFDM. Compared to [11] and [12], 

[6] and [8] set SNR thresholds for MSs in terms of bit error rate (BER), which provided a 

more practical approach for OFDM-based networks. However, the focus of [6] [8] were 

only on the physical layer. Although [9] managed to detail AMC strategy in an OFDM 

system, and [10] took a step further by using packet error rate (PER) to set SNR 

thresholds with AMC strategy, all of the literature mentioned above didn’t consider the 

impact of the queueing behavior at the data-link layer on AMC. Because this impact 

does exist in practical scenarios, it is necessary to investigate the cross-layer analysis on 

how the physical layer and the data-link layer affect each other. 

2.1.3 Cross-layer design 

As discussed in sections 2.1 and 2.2, the existing queue models with working vacations 

are impractical for applications with AMC, and the literature related to AMC mentioned 

above lacked the consideration of the effects at the data-link layer. The cross-layer 

design, which can be abstracted as a queue model with a range of working vacations, is 

obtained by combining the packet-level effects as well as mechanisms at the data-link 

layer and AMC at the physical layer. An extensive amount of work has been done to 

study the cross-layer design and analysis. 

2.1.3.1 Overview 

The classical five-layer TCP/IP model standardizes the communication networks, and it 

is beneficial for network implementations. However, as the development of 

communication systems, the nature of the TCP/IP model, which indicates that the 

information cannot be shared throughout layers, becomes an obstacle to meet the 

requirement of each user, as well as to the optimisation of the overall system 

performance. As a result, the emergence of cross-layer design and analysis becomes 

necessary. As generalised by [21], the goals of cross-layer designs, which is shown by 

Figure 2.1, are security, QoS and mobility, and any cross-layer design should satisfy at 

least one of these goals. 
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Among these three goals, the most investigated one is QoS. Cross-layer designs which 

aim at achieving QoS provisions often focus on bitrate, delay, loss probability and 

throughput under various constraints such as power, delay and error rate. Therefore, 

the QoS provisioned cross-layer designs including scheduling and resource allocations 

have become one of the most important aspects of modern packet-based wireless 

networks. A large amount of work has been done to overview the cross-layer designs 

form different aspects during last decade, such as [17]-[21]. 

Among these published works, [17] was one of the earliest papers to overview cross-

layer designs. In [17], the authors investigated cross-layer designs on TCP, MU scenario 

in cellular network and the deployment of APs, and [17] also talked about the status of 

cross-layer design standardization and the interoperability of WLAN and cellular 

networks. After [17], [18] and [19] studied cross-layer designs for 3G & B3G CDMA-

based networks, and problems including cross-layer resource allocation and scheduling 

schemes were discussed in these two papers. After that, the investigations of cross-

layer designs on multi-hop networks [20] were given, and these led to more cross-layer 

problems such as joint routing and channel assignment. Until recently, [21] classified 

Figure 2.1 The goals of cross-layer designs [BF,YX,HD,HZ] 



14 
 

cross-layer designs with two dimensions: for the link level, cross-layer designs are 

classified as manager and non-manager methods; while for the network level, cross-

layer designs are classified as distributed and centralised methods. In addition, a 

discussion of the challenges including coexistence, signalling, overhead, lack of 

standardization and destruction of the layered model were also given in [21]. 

Following the timeline of the development of cross-layer designs, it can be concluded 

that the investigations on cross-layer designs have become more and more systematic, 

and it is nearly impossible to standardise cross-layer designs because they’ve covered 

nearly all fields of modern packet-based wireless networks by maintaining the classical 

layered model. Therefore, finding a unified solution to cross-layer designs becomes 

impossible, and instead we have to concentrate on specific layers for particular cross-

layer analysis. Based on sections 2.1 and 2.2, the cross-layer design which operates at 

the physical and data-link layers is our research focus. In addition, we concentrate on 

the link level cross-layer design because we investigate cross-layer effects and 

mechanisms at the lowest two layers. As a summary, Table 2.1 has given the 

mechanisms and parameters analysed in lower-layer cross-layer design. 

Table 2.1 Parameters analysed in lower-layer cross-layer design 

 Mechanism Parameters 

Data-link layer Error correction Link layer PER 

Retransmissions No. of retransmissions   
    (ARQ) 

Queueing effects Queue length, queueing delay 

Physical layer Adaptive modulation and 
coding 

Mode n, SNR   thresholds  
(channel fading) 

 

Based on Table 2.1, we review the literature on two aspects, most of which concentrate 

on data-link layer mechanisms and parameters with AMC: 

1.  Cross-layer design incorporating Automatic Repeat-reQuest (ARQ)  

2. Cross-layer design incorporating queueing effects 
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2.1.3.2 Cross-layer design incorporating ARQ 

Cross-layer design incorporating ARQ tries to combine ARQ protocol operated at the 

data-link layer with AMC at the physical layer. The utilization of ARQ at the data-link 

layer normally relieves the stringent error control requirement at the physical layer by 

setting up the maximum number of retransmissions for error packets. Lots of the 

published work has investigated this kind of cross-layer design incorporating ARQ such 

as [22]-[27]. 

As far as we know, [22] was the first attempt to complete a cross-layer design with AMC. 

This paper was the first one that used packet-level error rate constraints instead of 

physical-level BER utilized in [6] for MCS threshold setting. In addition, [22] adopted a 

range of MCSs, together with their asymptotic statistics and expressions for PER 

behaviours which have been used by many other related published work, specified in 

IEEE 802.11a with reasonable assumptions, which shows a way to apply a cross-layer 

design into WLAN standards. In summary, [22] provided a framework and procedure to 

analyse AMC at the physical layer in slot-based systems.  

After [22], the other researchers tried to apply this kind of cross -layer design 

incorporating ARQ to many other practical system models or networks. [24] managed 

to combine ARQ and AMC in a diversity MIMO system with STBC codes by using SISO 

equivalence for MIMO channel model. In addition, [24] tried to re-determine SNR 

thresholds, which agree to the values we obtained in Appendix A, for higher-order 

MCSs such as 256QAM. [25] applied the cross-layer design into a cognitive radio (CR) 

network, and obtained the SNR distributions for secondary users in order to optimise 

the spectral efficiency for secondary users. [26] investigated the cross-layer design 

incorporating ARQ in IEEE 802.11p standard, namely, the Dedicated Short Range 

Communications (DSRC) system, to maximize system spectral efficiency. And [27] 

investigated the cross-layer design incorporating ARQ for Long Term Evolution (LTE) 

system. In LTE, ARQ is used by two sublayers of the data-link layer, namely Radio Link 

Control (RLC) sublayer and Medium Access Control (MAC) sublayer. Therefore, two 

independent ARQ mechanisms were used and discussed in [27]. 
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In summary, the literature mentioned above provided a similar classical method for 

cross-layer analysis incorporating ARQ. All of them tried to maximize the system 

throughput and spectral efficiency under prescribed delay and PER requirements, which 

were suitable for various practical scenarios . However, these published works also have 

limitations, which are listed below: 

1. They usually assume a saturated queue, which means there are always packets 

waiting to be transmitted (while ignoring buffer overflow), which is totally unrealistic in 

practical scenarios such as IEEE 802.11 standards. 

2. They assume the buffer size is infinite at the data-link layer, thus they didn’t consider 

the possible packet drops due to buffer overflow. Although delay constraint is a 

reasonable factor to consider, we need a more general approach to include both buffer 

overflow and delay in order to better understand the system behaviour. 

Both of the reasons listed above motivate continuing work on queueing analysis with 

finite buffer size on the cross-layer design, i.e. the cross-layer design incorporating 

queueing effects. 

2.1.3.3 Cross-layer design incorporating queueing effects 

Different from the cross-layer design incorporating ARQ, we can obtain more metrics, 

including the stationary probability distribution for queue length in the buffer, PDP due 

to buffer overflow, average packet delay, PLP and system throughput, through cross-

layer analysis incorporating queueing effects . An extensive amount of work on the 

cross-layer design incorporating queueing effects has been done to cover various 

scenarios and mechanisms such as [28]-[36]. 

Among them, [29] and [30] adopted delay constraint analysis by effective capacity 

approach to obtain the PLP and throughput for the cross-layer design incorporating 

queueing effects for MIMO diversity systems. They used asymptotic expressions for 

queue length in the buffer larger than B assuming this tail probability decays 

exponentially. However, the behaviour of queue state in the buffer is impossible to 

obtain if the assumption on tail probability doesn’t stand for the effective capacity 

approach. In addition, both [29] and [30] assumed an infinite buffer size, which is 
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impractical. Therefore, queueing analysis, which investigates the system model by 

building up FSMC for state transitions and obtaining the steady-state queue state 

distribution with the matrix geometric method, has become a more general approach 

than delay constraint analysis.  

It is worth mentioning that queueing analysis on the cross-layer design lays the 

foundation of the whole scope of this thesis. In other words, any extensions specified in 

this thesis are based on the queueing analysis approach using the matrix geometric 

method. 

As far as we know, [28] firstly tried to achieve the cross-layer design using queueing 

analysis. The authors of [28] provided a basic analysis procedure, i.e. by building up the 

state transition matrix for queue state at the data-link layer and channel state at the 

physical layer based on an embedded FSMC. In addition, [28] generalised the metrics 

obtained by the matrix geometric method, including also queue length in the buffer, 

PDP due to buffer overflow, average packet delay, PLP and throughput, which covers 

nearly all system metrics for link level performance analyses. Furthermore, the authors 

of [28] managed to maximize system throughput and minimise the PLP caused by both 

transmission error and buffer overflow for Poisson arrivals. 

Based on the work done by [22] and [28], [23] managed to incorporate both ARQ and 

queueing effects for cross-layer analysis by building up the FSMC for a tuple of queue 

state, channel state and retransmission state. However, to our surprise, there is no 

continuing work after [23] extending the system model to MIMO or relay. As a 

comparison, the work on extensions to [28] is massive (detailed later). The reason 

might be because of computational complexity. Since [23] took more mechanisms into 

consideration, its analysis will require a much larger probability transition matrix. 

Although this brings extra complexity, the work in [23]  is still worth further 

investigation and extensions. 

After [28], continuing work done by other researchers [31]-[33] have proposed several 

extensions on MIMO. [31] firstly extended to an MIMO scenario for the cross-layer 

design by analysing both diversity and multiplexing MIMO systems, and an algorithm 

was proposed which selected to use diversity or multiplexing for transmission to 
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optimise the overall system throughput. For a spatial multiplexing MIMO system, the 

authors of [31] considered zero-forcing (ZF) detector in presence of channel 

correlations. However, the method they provided to obtain the stationary probability of 

each MCS was too general, and could not be applied to every correlation condition. [32] 

studied the spatial multiplexing MIMO system with ZF detector, and obtained the SNR 

distributions for users with imperfect channel state information (CSI) ; however, they 

assumed no channel correlations in order to obtain the closed-form expressions for the 

SNR distributions. [33] investigated the multiplexing MIMO system in the presence of 

transmit correlations, and the authors assumed Batch Bernoulli arrivals to try to 

capture the burstiness of packet arrivals. In addition, [33] assumed the number of 

transmit antennas was smaller than at the receiver, resulting in an approach for user 

selection. However, the system model for [33] did not consider AMC at the physical 

layer. 

After these papers on MIMO, researchers investigated more on relay networks [34]-[36]. 

[34] studied a two-hop scenario with single decoded-and-forward (DF) relay, which 

aimed at addressing the problem of relay deployment. [35] managed to insert a sleep 

mode, i.e. the server incorporating AMC will stop working for a period of time if the 

buffer goes empty, which improves the energy efficiency especially when the system 

load is low. In the meantime, [36] investigated the two-hop scenario with multiple DF 

relays, each of which was supported by the LAZY protocol, which was equivalent to 

inserting a sleep mode. [36] also assumed a Markov Modulated Poisson Process (MMPP) 

for bursty traffic approximation, and analysed the system by truncating an infinite-state 

transition matrix assuming infinite buffer size. 

Note that [33] and [36] had used two different traffic models to capture burstiness of 

arrival packets, but both of them managed to approximate the bursty arrivals to some 

extent.  

In summary, all of the literature mentioned above follows a similar queueing analysis 

procedure by building up embedded FSMC and utilising the matrix geometric method to 

obtain system metrics, which is inspiring and efficient for analysing cross-layer design. 

However, all of them failed to address the following problems: 



19 
 

1. How to analyse practical system behaviours with various (and more practically 

representative) packet arrival processes. Most of the literature only assumes a Poisson 

arrival process, which cannot cover all types of practical traffic patterns. None of the 

literature stated above introduces ON-OFF or aggregated ON-OFF arrival processes, 

which can appropriately approximate bursty behaviour.  

2. How to analyse a frequency-selective fading channel. All of the literature assumes the 

fading channel to be frequency-flat, which is not always the case as in practical 

scenarios. In order to help combat frequency-selective fading, we have to introduce 

OFDM technology into the physical layer. However, none of the literature stated above 

ever mentioned to achieve OFDM functionality. 

3. How to adjust the queueing analysis to meet the requirements for new standards 

such as IEEE 802.11ac with higher-order modulation schemes, more channel bandwidth 

and more spatial streams. Most of the literature adopts the same parameters and set of 

MCSs in 802.11a, and none of them ever tries to make these extensions. 

All of the problems stated above, together with motivations discussed in Chapter 1, 

require continuing work to make extensions to existing cross-layer designs, both at the 

physical layer and the data-link layer. 

2.2 Basic concepts 

2.2.1 Coding scheme 

In general, the source bits coming down from the data-link layer are first processed to 

be encoded by a convolutional or a Turbo code, a process also known as error 

correction coding (ECC), at the physical layer, in order to give the ability to detect and 

correct errors when decoding at the receiver side after going through the wireless 

channel. Although ECC adds a large percentage of bits to the original source bits, it 

makes the encoded bits more reliable and avoids most of the retransmissions caused by 

transmission errors, achieving system performance improvement.  

IEEE 802.11 standards define various coding rates ranging from 1/2, 2/3, 3/4 to 5/6. In 

general, the lower the coding rate is, the more reliable, but the more payload nee d to 
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be processed for the same number of source bits. How to determine the best coding 

rate for each MCS is affected by different factors, such as signal-to-noise ratio (SNR) of 

the wireless channel and the type of ECC we use, and this is out of the scope of our 

research. 

In real world scenarios, the source bit encoding is often achieved by a convolutional 

encoder with a coding rate of 1/2, which means that the number of source bits is 

doubled after convolutional encoding. In order to get various coding rates other than 

1/2, puncturing technology is used, together with 1/2 convolutional encoding. 

2.2.1.1 Convolutional encoder 

Convolutional encoder uses convolutional code with a coding rate of 1/2 to encode 

source bits, producing two encoded parity bits for each source bit [56]. Convolutional 

codes are often specified by a vector [m, n, K], where m is the number of input bits, n is 

the number of output bits and K is the constraint length. Therefore, the coding rate for 

convolutional code is obtained by m/n, and the output for each port j is relevant to 

previous (K-1) inputs. As indicated by its name, convolutional code performs 

convolution operation for the input stream with the output at each port j at timeslot i 

given by (2.1). 

  
 
 ∑   

 
     

   
   , (2.1) 

   is the input source bit stream;   
  is output encoded bit stream at port j; and   

  is the 

impulse response for port j. 

 

Figure 2.2 Classical convolutional encoder with the generator polynomial g = [171, 133] 
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The classical convolutional encoder used in industry performs 1/2 convolutional 

encoding with the constraint length K=7, as shown in Figure 2.2.  From Figure 2.2, we 

get the first generator polynomial is represented by binary vector [1 1 1 1 0 0 1], which 

is equivalent to 171 in octal; while the second generator polynomial is [1 0 1 1 0 1 1] in 

binary and 133 in octal. 

2.2.1.2 Puncturing patterns 

As detailed in [58] and IEEE 802.11 standards, the basic operation of puncturing is to 

remove some bits of the encoded data at the transmitter side; while at the receiver side, 

the received data is extended by adding 0 to corresponding positions where bits are 

removed in order to prepare for further decoding.  

From [58], we obtain the following observations for encoding and puncturing 

operations: 

1. The number of source bits is better to be a multiple of 5, 6 or 9 to avoid redundant 

tail bits for achieving the coding rate of 5/6, 2/3 or 3/4. However, the puncturing 

operation also gives the puncture pattern for tail bits if tail bits exist with little impact 

on the overall coding rate. 

2. The number of encoded bits after puncturing should be a multiple of the number of 

bits per symbol used by the modulation scheme; otherwise this MCS cannot be used for 

transmission because of redundant bits. 

2.2.1.3 Viterbi decoder 

The Viterbi decoder, which was proposed by Viterbi [54], applies maximum likelihood 

(ML) method for encoded sequence decoding [57]. The Viterbi method avoids the 

enumeration for all possible    combinations for encoded stream with n bits, which 

efficiently decodes the convolutional encoded bits with error corrections. The Viterbi 

decoder is often used as the corresponding decoding block at receiver side for 

convolutional encoder with 1/2 coding rate at transmitter side. We use a Viterbi 

decoder at the receiver side for error rate checking; however, we won’t explain the 

Viterbi method in detail since it is out of our research scope. 
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2.2.2 Modulation scheme 

IEEE 802.11 standards use various modulation schemes ranging from BPSK, QPSK to 

16QAM, 64QAM and 256QAM.  

High rate modulation schemes are highly susceptible to noise, and SNR is the main 

metric for the quality of the channel condition. Transmission with higher order 

modulation schemes of higher data rates is dependent on a good channel condition; 

otherwise, the system has to use a modulation scheme with a lower data rate to 

achieve the same prescribed BER with the poorer channel condition. The modulated 

stream is measured in symbols, each of which contains a varying number of bits for 

different modulation schemes. In general, higher order modulation schemes contain 

more bits per symbol, which is also a measurement for data rate assuming a fixed value 

of symbol rate. The numerical indicator before each modulation scheme is the number 

of all possible symbols, which is also the number of all possible combinations for n 

binary data bits per symbol (   possible combinations), for this modulation scheme. 

Both PSK and QAM can be represented in constellation diagrams, which display all 

possible symbols that can be achieved by the given modulation scheme with points 

indicating modulated amplitude and phase in the complex plane. As an example, the 

constellation diagrams for QPSK (2 bits/symbol) and rectangular 16QAM (4 bits/symbol) 

are shown in Figure 2.3. 

            

Figure 2.3 Constellation diagrams for QPSK and rectangular 16QAM 

As shown by constellation diagrams in Figure 2.3, we observe that the distance 

between each symbol for 16QAM is shorter than the one for QPSK, which explains why 
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modulation schemes with lower data rates are more robust to noise. The bit stream can 

also be correctly decoded with a low SNR for a low order modulation scheme such as 

QPSK, compared to possible decoding errors caused by channel noise when using a high 

order modulation scheme such as 16QAM. 

In addition, rectangular QAM schemes are applied in our research as shown by Figure 

2.3. Also note that rectangular QAM is a sub-optimal solution for symbol point spacing 

in constellation diagrams for a given energy. 

2.2.3 PHY layer IEEE 802.11ac standard 

In this section, we focus on the physical layer specifications of IEEE 802.11ac standard. 

802.11ac expects the maximum single-link throughput to be at least 500 Mbits/s and 

the minimum multi-antenna throughput using spatial multiplexing to be at least 1 

Gbits/s, which requires the extension of 802.11n to air interfaces with higher-order 

MCS, wider radio frequency (RF) bandwidth and more MIMO spatial streams. As shown 

in the specifications of 802.11ac [52] [53], the standard can provide the maximum 

single-channel throughput of 866.7 Mbits/s with up to 4 spatial streams for each user 

(therefore, achieving a maximum of 3.47 Gbits/s for multi-antenna throughput for each 

user), which successfully meets the specifications of the next generation WLAN 

standard. 

2.2.3.1 Higher-order MCSs 

Firstly, higher-order MCSs (up to 256QAM with a coding rate of 5/6) are adopted in 

802.11ac. 256QAM encodes 8 bits per symbol, which improves the highest data rate by 

nearly 1/3 with the same symbol rate compared to 64QAM (6 bits per symbol) which 

was adopted as the highest order modulation scheme in 802.11n. Compared to the 

MCSs adopted in 802.11a-g, we add two new MCSs with MCS index 8 and 9 which are 

detailed in next section.  

Note that MCS 9 cannot be directly used sometimes since the number of convolutional 

encoded bits in a packet should be a multiple of 3. As a consequence, MCS 9 is not 

always available for all system settings. Theoretically, we can still achieve MCS 9 by 
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padding redundant bits to original data bits before convolutional coding. The details of 

obtaining the punctured convolutional encoded bits were introduced in section 2.2.1.2. 

2.2.3.2 More RF bandwidth and OFDM 

Next, more RF bandwidth is specified in 802.11ac as an option, and we introduce OFDM 

operation at the physical layer. OFDM is one of the most widely used multiplexing 

techniques in 4th and 5th generation wireless networks such as the LTE and 802.11 

family. OFDM divides the bandwidth with a series of orthogonal subcarriers, within 

which the fading can be treated as frequency flat, to help combat the freq uency 

selective fading. Compared to classical FDM with non-overlapping subcarriers, OFDM 

improves the spectral efficiency with more divided subcarriers. 

For the 802.11 family, the minimum bandwidth of each channel is 20 MHz. 802.11ac 

also supports an option of 40 MHz, 80 MHz or 160 (or 80+80) MHz to meet the 

requirement of wider bandwidth to achieve the targeted throughput (Figure 2.4 gives 

the RF bandwidth extensions for 802.11ac compared to 802.11n). The whole operating 

bandwidth is divided into 13 overlapping channels at 2.4 GHz spectrum; roughly there 

are 185 overlapping channels at 5GHz spectrum. There are only 3 non-overlapping 

channels operating at 2.4 GHz spectrum, which is also one of the main reasons why 

802.11ac operates only at 5 GHz spectrum since the bandwidth is not enough for even 

one 80 MHz or 160 MHz channel used by 802.11ac, while the 5 GHz spectrum provides 

more available bandwidth to meet the specifications of 802.11ac. 

 

 

 
Figure 2.4 RF bandwidth supported by 802.11n and 802.11ac 
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In addition, the access point (AP) using 802.11ac supports up to 8 spatial streams for all 

accessed users and up to 4 spatial streams for each user. Table 2.2 [58] gives the OFDM 

parameter settings for all MCSs adopted by 802.11ac with 3 spatial streams for each 

user. 

Table 2.2 OFDM parameter settings for 20 MHz bandwidth and 3 spatial streams 

MCS 

Index 

Modulation Coding 

rate 

                          Data rate 

(Mbits/s) 

800 ns 

GI 

400 ns 

GI 

0 BPSK 1/2 1 52 4 156 78 19.5 21.7 

1 QPSK 1/2 2 52 4 312 156 39.0 43.3 

2 QPSK 3/4 2 52 4 312 234 58.5 65.0 

3 16QAM 1/2 4 52 4 624 312 78.0 86.7 

4 16QAM 3/4 4 52 4 624 468 117.0 130.0 

5 64QAM 2/3 6 52 4 936 624 156.0 173.3 

6 64QAM 3/4 6 52 4 936 702 175.5 195.0 

7 64QAM 5/6 6 52 4 936 780 195.0 216.7 

8 256QAM 3/4 8 52 4 1248 936 234.0 260.0 

9 256QAM 5/6 8 52 4 1248 1040 260.0 288.9 

 

Here       is the number of bits per subcarrier;     is the number of data subcarriers; 

    is the number of pilot subcarriers;        is the number of convolutional coded bits 

per OFDM symbol;       is the number of data bits per OFDM symbol; GI is the width 

of the guard interval for each OFDM symbol. 

Note that the GI is inserted between successive OFDM symbols to combat the inter-

symbol interference (ISI) caused by the multi-path effect. We can choose from 800 ns 

and 400 ns for different scenarios. Usually, 800 ns is chosen when the multi -path effect 

is severe; on the contrary, 400 ns is chosen to further increase data rates.  

Also note that the 20 MHz channel was originally divided into a total of 52 subcarriers 

with 48 data subcarriers and 4 pilot subcarriers; however, the channel is divided into 56 

subcarriers with 4 more data subcarriers after optimization. Since 802.11ac provides an 
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option of 20 MHz, 40 MHz, 80 MHz and 160 MHz channels, the number of data 

subcarriers for channels with different bandwidth are listed in Table 2.3 with 400 ns GI. 

Table 2.3 Data subcarriers for different channel bandwidth with 400 ns GI 

Channel bandwidth 20 MHz 40 MHz 80 MHz 160 MHz 

No. of subcarriers 52 108 234 468 

 

Next, we introduce the basic operations to obtain the OFDM symbols. For pass band 

notation, the transmitted OFDM symbol is shown in (2.2) for 52 data subcarriers. 

 ( )  ∑  ( )           
           (2.2) 

Where  ( ) is the modulated symbol;    is the transmitted frequency for subcarrier k 

with           ;    is the central frequency for the channel;    is the bandwidth 

spacing for every adjacent two subcarriers.  

Therefore, for baseband notation, the transmitted OFDM symbol is shown by (2.3). 

 ( )  ∑  ( )            
           (2.3) 

Assume        (where    is the sample rate for each OFDM symbol), then 

   
  

 
   (    ) (where    is the channel bandwidth which equals 20 MHz). Then 

the baseband transmitted OFDM symbol can be converted as shown in (2.4). 

 ( )  ∑  ( )            
           (2.4) 

Equation (2.4) is actually an Inverse Discrete Fourier Transform (IDFT) for the 

modulated symbol  ( ). In order to use inverse Fast Fourier Transform (IFFT), we 

define N=64 to ensure that N is a power of 2 and N is larger than the number of data 

subcarriers. Thus, the OFDM operation is actually equivalent to taking a 64-point IFFT of 

the modulated symbols with bandwidth spacing for every two adjacent subcarriers 

    
  

 
          . 
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Note that there are a total of N=64 sub-channels numbered from -32 to 31 for a 20 MHz 

channel, but only sub-channels of [-26, -1] and [1, 26] are used as data subcarriers. We 

can set the values of the other sub-channels to 0 to do 64-point IFFT operation. Thus, 

the baseband transmitted OFDM symbol can also be written as shown in (2.5). 

 ( )  ∑  ( )          
 

 
  

      
  (2.5) 

2.2.3.3 More spatial streams 

The specifications of 802.11ac extend 802.11n with more spatial streams. 802.11ac AP 

can serve up to 4 users with a total of 8 spatial streams, and each 802.11ac user 

supports up to 4 spatial streams. In addition, 802.11ac is the first Wi-Fi standard to use 

multi-user MIMO (MU-MIMO), which means an AP can simultaneously transmit data to 

multiple users with multiple antennas. 

There are mainly two MIMO techniques: diversity and spatial multiplexing. The diversity 

technique transmits the same piece of data through multiple antennas to increase the 

reliability of data transmission, which is measured by the diversity order; the spatial 

multiplexing technique transmits multiple spatial streams with different data 

simultaneously to increase the overall system throughput. We focus on the spatial 

multiplexing technique because of the specifications of 802.11ac. 

The first thing to consider with respect to spatial multiplexing technique is the receiver 

detecting technology. Without loss of generality, a zero-forcing detector, which is 

widely used in literature [63] [61] [65] [64] because of its low complexity. Zero-forcing 

detecting is a technique for spatial signal processing that separates multiple spatial 

streams at the receiver after the channel. More specifically, the received signal is 

processed by the pseudo-inverse operation to obtain the non-interfered symbol vector.  

Zero-forcing detecting is widely adopted by the 802.11 family such as 802.11n and 

802.11ac. 

Next, spatial correlation is another factor that affects the performance of MIMO. Ideally, 

the channel gain of each pair of transmit and receive antennas are assumed to be 

independent and identical distributed (i.i.d.); however, the antennas are often 
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correlated with each other in practice because of limitations on antenna spacing. The 

existence of correlation in real networks motivates the emergence of the proper spatial 

correlation model, such as the Kronecker model which is well-accepted and has been 

widely used in the literature [63] [KM,MV,YJ] [62] [60], to make the performance 

analysis more accurate and practical. 

Note that both zero-forcing detector and spatial correlation model are detailed in 

Chapter 6 where cross-layer analysis on 802.11ac is extended. 

2.2.4 Confidence interval 

Confidence interval is a type of interval estimate for parameters in statistics. In this 

thesis, confidence interval is used for validating simulation results of performance 

analysis. The estimate is achieved by getting replications of simulation results, each of 

which is called a sample; the confidence interval is obtained by analyzing statistical 

behavior of these samples under the assumption that the variations of samples follow 

the normal distribution. 

More specifically, let   denote the sample set of the measured results with a total of   

samples. Then we can get the sample expectation   and the standard deviation  . Next, 

we obtain that the sample mean  ̅ also follows the normal distribution with expectation 

  and the standard deviation 
 

√ 
. By transforming to the standard normal distribution, 

the standardized random variable   is obtained by (2.6), 

  
 ̅   

 

√ 

 (   ) 

As a convention, we often choose 95% confidence interval for the interval estimate. 

Therefore, we have (2.7), 

 (            )           (   ) 

Where      follow the cumulative standard normal distribution function  ( ), thus, we 

obtain (2.8), 

        . (    )/     .  
 

 
/       (   ) 
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Finally, we determine the 95% confidence interval with , ̅      
 

√ 
  ̅      

 

√ 
-. 

Note that all the validations in this thesis use the confidence interval estimate method 

as a standard. In other words, we validate all simulation results with 95% confidence 

interval except specific explanations. 

2.3 Contributions of this thesis 

Based on the motivations discussed in Chapter 1 as well as the unfinished work on 

cross-layer design incorporating queueing effects stated in section 2.3, we generalise 

the contributions of this thesis accordingly, including the literature review for newly 

adopted techniques and models. 

Contribution 1: The applications of bursty arrivals for cross-layer analysis (Chapter 5) 

We apply ON-OFF and aggregated ON-OFF arrival processes as bursty traffic models at 

the data-link layer, in cross-layer design incorporating queueing effects. The 

performance analyses on queue state in the buffer, PDP due to buffer overflow, 

average queueing delay, PLP and average throughput are obtained by the matrix 

geometric method. The state transition matrix based on an embedded FSMC with a 

tuple of queue state, channel state and bursty state, is constructed for queueing 

analysis, which is the first time to provide bursty arrival cross-layer analysis. Finally, the 

G/D/s(t)/k queue model incorporating AMC is generalised for both Poisson and bursty 

arrivals. Numerical results show the importance of choosing proper arrival traffic 

models for practical performance analysis. 

The ON-OFF arrival process is considered as one of the most suitable traffic processes to 

model bursty arrivals. The ON-OFF traffic model discussed in this thesis assumes 

constant arrival rate during ON periods and zero arrivals during OFF periods, and similar 

assumption can also be found in the literature such as [46] [47] [48] [49]. 

Furthermore, for users requiring multiple streams, which means multiple bursty packet 

streams arriving and getting served simultaneously, the classical single ON-OFF arrival 

process should be extended to aggregated ON-OFF arrival process ([44] [45]), in which 

each stream has an independent ON-OFF arrival process.  
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In fact, there is always debate on the proper model for bursty traffic. [36] and [48] 

adopted MMPP as bursty traffic model; while [46] [47] [49] supported ON-OFF process. 

As a matter of fact, the arrival rate for ON period can either be a constant or follow a 

Poisson distribution, which is then equivalent to an MMPP. This thesis is not intended 

to address this debate, but to choose the ON-OFF process with constant arrival rates 

during ON periods to ensure widely acceptance and limited complexity. 

Contribution 2: The extension to IEEE 802.11ac standard (Chapter 6) 

We apply the generalized G/D/s(t)/K queue model incorporating AMC, which is detailed 

in Chapter 5, into an analysis of the IEEE 802.11ac standard. In order to meet the 

specifications of 802.11ac with higher-order MCSs, more channel bandwidth and more 

spatial streams, we re-determine the SNR thresholds for AMC at the physical layer, 

applying with OFDM and interleaving blocks for data processing. In addition, we 

introduce spatial multiplexing MIMO system with a SU-MIMO model in which both AP 

and the user device are equipped with 4 antennas, and the proposed cross-layer 

analysis is ready to apply to any other antenna settings . Moreover, regarding antenna 

correlations, we set up two scenarios: one with transmit correlation only; the other 

with both transmit and receive correlations. We construct a probability transition 

matrix, which is based on a FSMC with slow fading for the service process, by analyzing 

LCRs for envelops of the instantaneous SNR. Finally, the cross-layer analysis is achieved 

with both Poisson and bursty arrivals, and the impact of antenna correlations is also 

investigated by numerical results. 

For the part of re-determining SNR thresholds, we obtain the specifications of 802.11ac 

from [53] and [58], and we also get basic procedure for data processing from [55] [56] 

[57]. The PER analysis for each MCS adopted is detailed in Appendix A. It is the first time 

to obtain the statistics to determine SNR thresholds for 802.11ac. 

For the part of multiplexing MIMO in presence of antenna correlations, [61] [62] [63] 

managed to get the closed form expression for SNR distribution of each spatial stream 

with ZF detector in presence of transmit correlation only. [63] ever tried to obtain the 

closed-form expression for symbol error rate (SER), which is restricted to a     MIMO, 

with both transmit and receive correlations. Therefore, it is quite hard, if not impossible, 
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to get the closed-form expression for SNR distribution in presence of both transmit and 

receive correlations. As a result, we use Monte-Carlo simulation instead to get the 

asymptotic expression for SNR distribution for each spatial stream. 

For the part of constructing service rate transition matrix, we look for solution in terms 

of LCR for correlated channels. However, all of the related works found in the literature 

[66] [68] [69] [70] are for diversity MIMO especially for maximal-ratio combining (MRC) 

system. There’s no related work for spatial multiplexing MIMO with ZF detector. 

Through simulation, we find that the operation taken by ZF detector has changed the 

LCRs for correlated channels. Thus, it is too hard to get the closed-form expression for 

LCR, even with transmit correlation only. Therefore, we use Monte-Carlo simulation 

instead to obtain LCRs for constructions of service rate transition matrices. 
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Chapter 3 Queue Model with Vacations 

In this chapter, we validate and then analyse the basic queue models with and without 

vacations, in terms of average queue length, average waiting time and PDP. As specified 

in Chapter 1, the cross-layer design can be abstracted as an M/D/s(t)/K queue model 

with a range of working vacations with different service rates. Since we adopt a limited 

number of MCSs for the cross-layer design, the service rate change is actually a change 

in the number of servers. This chapter lays the foundation for Chapter 4 which achieves 

analysis of the cross-layer design. Based on the goal of achieving an M/D/s(t)/K queue 

model with a range of working vacations for Chapter 4, we build up and validate the 

queue model step by step: 

1. Construct and validate an M/D/1 queue model without vacations and with infinite 

buffer 

2. Construct and validate an M/D/1/K queue model without vacations  

3. Construct and validate an M/D/1/K queue model with vacations  (normally 

exponentially distributed) 

3.1 Construct M/D/1 and M/D/1/K queue model without vacations 

3.1.1 System model and queueing analysis 

The task of this section is to build up basic M/D/1 and M/D/1/K queue models without 

vacations and obtain the stationary distribution of queue length, average packet delay 

and PDP due to buffer overflow. The queueing analysis is packet-based so that the 

queue model is actually focused on the data-link layer.  The system diagram of M/D/1 

and M/D/1/K queue models without vacations is shown in Figure 3.1. Note that the 

system is slot-based, which means the time is divided into a series of equal-length 

timeslot δτ, and we make analysis and validations on a slot-by-slot basis. 

The service rate is deterministic, i.e. a fixed value between inter-service times in any 

busy period, and with only one server, so we set the service rate=1 packet/slot without 

loss of generality.  
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The basic M/D/1 queue model without limitation as to the buffer length is equivalent to 

M/D/1/K queue model with infinite buffer, i.e. K=inf. Therefore, both M/D/1 and 

M/D/1/K can be generalised as one type of queue model. 

The arrival process is a Poisson distributed number of arrivals per slot and the 

probability mass function (p.m.f.) for Poisson arrival process    which denotes the 

number of arrival packets within t-th timeslot is obtained by (3.1). 

 (    )  {
( )   (  )

  
     

            
   (3.1) 

  is the mean arrival rate for each timeslot of length δτ. 

Let    denote the queue state at the end of t-th timeslot,    denotes the number of 

departing packets at the beginning of t-th timeslot and K denotes the buffer size. We 

use the matrix geometric method, which will always be used in this thesis for 

theoretical analysis. Recall the general procedure for matrix geometric method 

specified in Chapter 1, the probability transition matrix for queue state should be 

obtained at first. 

The queue state    at the end of t-th timeslot after packet arrivals and departures is 

obtained by (3.2). 

      (      (  (          )))     (3.2) 

Then the probability transition matrix          for the process of queue state *  + can 

be obtained in terms of the p.m.f. of   ,    and buffer size K. By changing the value of 

 

 

 

M/D/1(/K) queue model without vacations 

Service rate 

(Deterministic) 
Buffer (size of 

K ,  𝑖𝑛𝑓)) 

Poisson arrival 

rate 𝜆 

Figure 3.1 M/D/1(/K) queue model without vacations 
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service rate, we can get different transition matrices. In general, the matrix          is 

shown by (3.3) with each element         

        (3.10). 

          (

    
       

     
       

   

    
       

     
       

),    (3.3) 

And 

        

        {
 (             )       ,   )

  ∑  (             )   ,   )         
 ,  (3.10) 

Based on the probability transition matrix         , the stationary distribution 

         for queue state in the buffer is obtained by solving (3.4). 

                           ∑   
       

  ,   -   ,    (3.4) 

Based on (3.2), we obtain the process for packet drop {  } at the end of each timeslot 

δτ by (3.5). 

       (  (            )),    (3.5) 

Thus, we can get the average number of packets dropped  ( ) within each timeslot δτ 

by (3.6). 

 ( )  ∑ ∑     (    )   
      

 
        

            (3.6) 

 (    )  is the stationary distribution of packet arrivals specified in (3.1) and 

     

       
 is the element of stationary distribution          for queue state in the 

buffer (3.4). 

Then the PDP for M/D/1/K queue model is obtained by (3.7) based on (3.6). 

    
                                 

                                 
 

 ( )

 
     (3.7) 

The average queue length  ( ) for M/D/1/K queue model is obtained by (3.8) from 

(3.4). 
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 ( )  ∑     
        

        (3.8) 

By Little’s Law, we can obtain the average packet delay  ( ), which is the packet 

waiting time before entering service, by (3.9) from (3.8). 

 ( )   ( ) ,  (     )-,   (3.9) 

The flow chart of getting queue state    and packet drop    for each timeslot δτ is 

shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Flow chart for obtaining    and    for M/D/1/K queue model 
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In summary, equations (3.7)-(3.9) provide performance analysis for an M/D/1/K queue 

model without vacations in terms of PDP due to buffer overflow, average queue length 

in the buffer and average packet delay. We will validate all of them in section 3.1.2. 

3.1.2 Numerical results 

As detailed in 3.1.1, we use the matrix geometric method for queueing analysis. In this 

section, we validate the theoretical results obtained from 3.1.1 by making comparisons 

with Monte-Carlo simulations. The metrics we check are the stationary distribution of  

queue length in the buffer, PDP due to buffer overflow and average packet delay. 

We specify a slot-based system at the data-link layer using an M/D/1(/K) queue model. 

The parameters setting are listed in Table 3.1. 

 

Parameter Value 

Slot duration    2 ms ([28]) 

Poisson arrival rate   [0.1, 0.3, 0.5, 0.7, 0.9] packet per slot  

Service rate   1 per slot (500 packets/s) 

System load   [0.1, 0.3, 0.5, 0.7, 0.9] 

 

Note that the system load        is always less than 1; otherwise the queue length 

will grow to infinity. The slot duration is set to 2 ms for unification with parameters 

adopted in cross-layer design, which is specified in Chapter 4. 

In addition, we need to make a comparison between an M/D/1 queue model with 

infinite buffer and an M/D/1/K queue model with a finite buffer length K in order to 

show the impact of buffer size K on performance at the data-link layer. 

3.1.2.1 Comparisons of queue length in the buffer 

Firstly, we validate and check the probability mass function for the queue length in the 

buffer for M/D/1(/K) queue models. We set buffer size K=50 ([28]) for the M/D/1/K 

queue model so that we only need to check the corresponding queue length up to 50 

Table 3.1 Parameters setting for M/D/1(/K) queue model at the data-link layer 
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for the M/D/1 queue model. We make a comparison with a range of system loads (0.1, 

0.3, 0.5, 0.7 and 0.9) to check the impact of system loads on queue length in the buffer.  

Figure 3.3 and 3.4 are stationary probability mass functions for the queue length in the 

buffer for M/D/1 and M/D/1/K queue model respectively. 

 

Figure 3.3 Stationary probability mass function of queue length for M/D/1 queue 

 

Figure 3.4 Stationary probability mass function of queue length for M/D/1/K queue 
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In general, we obtain from Figure 3.3 and 3.4 that the lower the load, the lower the 

probability for the buffer reaching larger queue lengths. The gaps between each line 

with different system loads become more obvious  (often a gap of 2 orders of 

magnitude when the probability is around      ) as the queue length grows.  

We can also get the differences between M/D/1 and M/D/1/K queue models from 

Figure 3.3 and 3.4. Generally, the M/D/1/K queue model achieves comparatively higher 

(e.g. a gap of nearly 1 order of magnitude when the system load is 0.9)  probabilities for 

queue length at the tail than M/D/1 queue model under all ranges of system loads, 

which is caused by the finite buffer size K in M/D/1/K queue model. 

3.1.2.2 PDP due to buffer overflow 

Next, we validate and check PDP due to buffer overflow for the M/D/1/K queue model. 

Based on the validation of M/D/1/K queue state and equations (3.5)-(3.7), we obtain 

PDP due to buffer overflow with different loads and different buffer sizes. The matrix 

analysis result is shown in Figure 3.5 in comparison with simulation results. 

 

Figure 3.5 PDP with different loads and buffer sizes for M/D/1/K 
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K. For the same system load  , PDP decreases as the buffer size K increases; while 

maintaining the same buffer size K, PDP increases as the system load   increases. 

3.1.2.3 Average packet delay 

In this section, we validate and check average queueing delay for the M/D/1/K queue 

model. Based on equations (3.8)-(3.9), we obtain average queueing delay with different 

loads and different buffer sizes. The analysis results, together with simulation results, 

are shown in Figure 3.6. 

 

Figure 3.6 Average queueing delays with different loads and buffer sizes for M/D/1/K 
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procedures of obtaining metrics using the matrix geometric method. The results reveal 

the impact of buffer size K on basic M/D/1 model and lay the foundation for analysing 

the M/D/1/K queue model with vacations. 

3.2 Constructing the M/D/1/K queue model with vacations 

3.2.1 System model and queueing analysis 

The task of this section is to build up an M/D/1/K working vacations model. As 

suggested in Chapter 1, working vacation queue model is the special case of vacation 

model, thus, we only check vacation queue model for simplicity. Similar to the method 

used in section 3.1, we obtain the queue length in the buffer by the matrix geometric 

method; then we get PDP and average packet delay based on the queue length in the 

buffer. Simulations and validations are done for M/D/1/K vacation model, and further 

comparisons with the M/D/1/K model without vacations are observed and analysed. 

The M/D/1/K vacation model is a little more complicated to analyse because we must 

also consider possible service rate variations between adjacent timeslots. For a normal 

M/D/1/K vacation model, we often assume there are two states for the server: non-

vacation state and vacation state. For non-vacation periods, the server works as in 

classical M/D/1/K queue model. While for vacation periods, the service rate is zero. 

Therefore, a two-state Markov chain for service rates is constructed to indicate service 

rate transition probabilities between adjacent timeslots shown in Figure 3.7. The 

probability transition matrix for service rate change            is obtained by (3.11). 

 

 

 

 

           (
    

    
*  (3.11) 

 

Vacation 

period 

Non-vacation 

period 

p 

1-q 

1-p 
q 

Figure 3.7 General Markov chain for service rate change in a simple vacation model 
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Based on the property of Markov chains, both vacation and non-vacation periods are 

exponentially distributed [78]. Note that the vacation model we adopt here is different 

from certain server vacation models proposed in the literature, such as [1]. Traditional 

server vacation models transfer into a vacation period when the buffer goes empty; it 

changes back to a non-vacation period after (usually) an exponentially distributed 

period of time when the queue length in the buffer hits a predefined threshold. 

However, our vacation model is driven by a probability transition matrix which is 

independent of the queue state. Our adopted vacation model is suitable for extensions 

to cross-layer design with AMC which is detailed in Chapter 4. 

We first obtain the probability transition matrix for the M/D/1/K vacation model. The 

system operates on a slot-by-slot basis. Similar to the flow chart for analysing M/D/1/k 

model without vacations specified in Figure 3.2, we can obtain the queue state process 

*  + slot by slot. Note that the values for service process *  + are no longer fixed to 1 

packet/slot but have to choose from [0, 1] based on the probability transition matrix for 

service rate change            obtained by (3.11). Therefore, the probability transition 

matrix for state change for M/D/1/K vacation model should consider not only queue 

state     but also service rate state   . Thus, the transitions for both    and    form an 

embedded FSMC with each element (       )  where all elements are accessible from 

each other. 

Based on the embedded Markov chain (       )  , we can obtain the probability 

transition matrix           (3.12) for (       ) with each element         

         (3.13). 

          (

    
             

        

   

    
             

        

)  (3.12) 

        

         (
 (      ) (    )

         (      ) (    )
        

 (      ) (    )
         (      ) (    )

        
+  (3.13) 
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The elements  (       ) (       )
         of matrix           satisfy (3.14). 

 (       ) (       )
         

{
        

           (             )       ,   )

        

          ∑         

           (             )   ,   )         
     (3.14) 

        

          is the element of service rate transition matrix            obtained by (3.11); 

 (    ) is the Poisson distribution obtained by (3.1). 

Then we can get the stationary distribution           for queue state and service state 

for the M/D/1/K vacation model (3.15). 

                                  ∑  (   )
        

  ,   -

  ,     - 

  ,    (3.15) 

Thus, we can obtain the average number of packets dropped  ( ) within each timeslot 

δτ by (3.16). 

 ( )  ∑ ∑ ∑     (    )     

           
    

 
      

 
    (       )

             (3.16) 

   is obtained by (3.5);  (    )  is obtained by (3.1);  (       )
         is obtained by 

(3.15);    

         , which is the stationary probability distribution for service rates, is 

obtained by (3.17). 

                                     ∑   
         

  ,     -   ,    (3.17) 

Similar to the method specified in 3.1.1, we can obtain the PDP due to buffer overflow, 

and the average packet delay by (3.7)-(3.9) for the M/D/1/K vacation model. 

3.2.2 Numerical results 

We validate the theoretical results specified in 3.2.1 with Monte-Carlo simulations. In 

addition, we check the similarities and differences between M/D/1/K queue models 

with and without vacations in terms of queue length in the buffer, PDP due to buffer 

overflow and average queue length, in order crucially to find the impact of vacations on 

performance (this aspect is vital, as in the future the ‘vacations’ represent the 

behaviour of the fading channel).  
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3.2.2.1 Comparisons of queue length in the buffer 

Firstly, we validate queue length in the buffer for M/D/1/K queue models with and 

without vacations. We set buffer size K=50 (the same setting as in [28]). To check the 

similarities and differences between M/D/1/K queue models with and without 

vacations, we need to adjust the probability transition matrix for service rate change 

           to different values as well as keeping system loads the same. 

In order to keep the same system loads for M/D/1/K model with and without vacations, 

we need to adjust the Poisson arrival rates for the two models. Since the service rate 

for M/D/1/K queue model without vacations is 1 packet/slot and service rate for 

M/D/1/K vacation model is 0 or 1 packet/slot with probability distribution of           , 

we can obtain the relationship of Poisson arrival rates for two models by (3.18). 

                  

         
, (3.18) 

Next, we need to adjust service rate transition matrix            to different values for 

comparisons. We’ve defined different settings of values for 

                              : 

1. When non-vacation periods dominate: state 0 for vacation period and state 1 for 

non-vacation period. The probability transition matrix for service change is obtained by 

(3.19) as an example. 

           .
      
      

/, (3.19) 

That is   
         

           
         

    . The corresponding Markov chain is 

shown in Figure 3.8. 
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Figure 3.8 Service rate transition Markov chain for M/D/1/K vacation model by setting 1 
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We set           =0.81, the equivalent classical M/D/1/K queue model without 

vacations                   
         =0.9.  

2. When equivalent      for M/D/1/K model without vacations is not very high 

maintaining (3.19). For example,          . Then                 

  

         
=0.63. 

3. (a) When non-vacation periods are not much longer than vacation periods in 

M/D/1/K vacation model. The probability transition matrix for service change is 

obtained by (3.20) as an example. 

           .      
      

/, (3.20) 

That is   
                    

             . The corresponding Markov chain is 

shown in Figure 3.9. 

 

 

 

 

We set           =0.45, the equivalent classical M/D/1/K queue model without 

vacations                   

         
=0.9 by (3.20).  

(b) Then we change (3.20) to (3.21). 

           .
      
      

/, (3.21) 

That is   
         

           
         

    . The corresponding Markov chain is 

shown in Figure 3.10. 
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Figure 3.9 Service rate transition Markov chain for M/D/1/K vacation model by setting 3(a) 
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And we set           =0.45, the equivalent classical M/D/1/K queue model without 

vacations                   

         
=0.9 by (3.21).  

Based on different settings for                               , we specify a slot-

based system for M/D/1/K queue model with and without vacations. The parameter 

settings are listed in Table 3.2. 

Table 3.2 Parameter settings for M/D/1/K queue model with and without vacations 

 M/D/1/K vacation model M/D/1/K model no vacations 

Slot duration    2ms 2ms 

Poisson arrival rate   [0.45, 0.63, 0.81] packet/slot [0.7, 0.9] packet/slot 

Service rate   [0, 1] packet/slot 1 packet/slot 

System load   [0.7, 0.9] [0.7, 0.9] 

Buffer size K 50 50 

 

Figure 3.11-3.14 are queue state comparisons between M/D/1/K model with and 

without vacations obtained by different settings for                               . 

All theoretical results for M/D/1/K vacation models are achieved by matrix geometric 

analysis and are validated with Monte-Carlo simulations. For comparison, queue state 

analysis for M/D/1/K model without vacations under same system load is also obtained. 

Vacation period 
service rate = 0 
packet/frame 

Non-vacation period 
service rate = 1 

packet/frame 

0.9 

0.1 

0.1 0.9 

Figure 3.10 Service rate transition Markov chain for M/D/1/K vacation model by setting 3(b) 
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Figure 3.11 Queue state comparisons for M/D/1/K model given by setting 1 

 

 

Figure 3.12 Queue state comparisons for M/D/1/K model given by setting 2 
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Figure 3.13 Queue state comparisons for M/D/1/K model given by setting 3 (a) 

 

 

Figure 3.14 Queue state comparisons for M/D/1/K model given by setting 3 (b) 
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From Figure 3.11-3.14, we have following observations: 

1. For each figure, there is a gap between M/D/1/K queue model with and without 

vacations under the same system load. M/D/1/K vacation models always achieve higher 

probabilities for queue length at the tail, which are influenced by vacation periods. 

Intuitively, during vacation periods, arriving packets fill the buffer more easily, causing 

higher probabilities for the buffer to stay at longer queue lengths. 

2. Comparison between Figure 3.11 and Figure 3.12 illustrates an example of the impact 

of system load on queue models. Recall that we use      =0.9 in Figure 3.11 and 

     =0.7 in Figure 3.12. When system load gets lower, the probabilities for the buffer 

to stay at shorter queue lengths get higher, and the probabilities for the buffer to stay 

at longer queue lengths get lower. 

3. Comparison between Figure 3.11 and Figure 3.14 illustrates an example of the impact 

of the stationary probability distribution for service rates   
          on queue models 

under the same system load. When the stationary probability of the server to stay at 

non-vacation period   
          gets lower (from 0.9 to 0.5 in our case), arriving packets 

fill the buffer more easily with comparatively longer vacation periods, causing higher 

probabilities for buffer to stay at longer queue lengths.  

4. Comparison between Figure 3.13 and Figure 3.14 illustrates an example of the impact 

of service rate transition matrix            on queue models under the same system 

load and the same stationary probability distribution for service rates    
         . Recall 

equation (3.11). When p and q specified in (3.11) get higher (from 0.5 to 0.9 in our case), 

which means the transition between vacation and non-vacation periods become less 

frequent, arriving packets fill the buffer more easily during each comparatively longer 

individual vacation period, causing higher probabilities for buffer to stay at longer 

queue lengths. 

In summary, we observe and analyse the comparisons for M/D/1/K queue model with 

and without vacations under different parameter settings in terms of queue length in 

the buffer, concluding that the queue model is highly influenced by system load  , 
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stationary probability distribution for service rates    
          and service rate 

transition matrix           . 

3.2.2.2 Comparisons of PDP due to buffer overflow 

Based on the validations of queue length in the buffer for M/D/1/K vacation queue 

model with various service rate transition matrices           , we check PDP due to 

buffer overflow with the same service rate transition matrices            specified by 

equations (3.19)-(3.21) under different system loads   ranging from 0.1 to 0.9 and 

different buffer size K ranging from 5 to 25. Note that there would be too many curves 

if we show all results within one diagram; in addition, there exists some common 

properties for M/D/1/K vacation models compared to M/D/1/K queue models without 

vacations. Therefore, we only analyse two representative figures including: 1. 

Comparisons between M/D/1/K queue models with and without vacations  with one 

definite service rate transition matrix            specified by equation (3.19) to show 

the common properties for the M/D/1/K vacation models (Figure 3.15), and 2. 

Comparisons between M/D/1/K vacation models with one definite buffer size K=25 to 

show the differences in PDP due to buffer overflow with different service rate transition 

matrix            specified by equations (3.19)-(3.21) (Figure 3.16). 

 

Figure 3.15 PDP comparisons for M/D/1/K model given by setting 1 
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From Figure 3.15, we have following observations: 

1. Same as PDP behaviour for M/D/1/K queue model without vacations, the gaps 

between PDPs for M/D/1/K vacation model with different buffer sizes become more 

obvious (over 1 order of magnitude when the system load is 0.1) when the system load 

decreases. 

2.  Compared to M/D/1/K queue model without vacations, M/D/1/K vacation models 

always achieve higher PDPs with the same system loads and buffer sizes, which can be 

understood because of the impact of vacations although they only take up 

approximately 10% of the total time. The queue is much easier filled causing buffer 

overflow.  

 

Figure 3.16 PDP comparisons between M/D/1/K vacation models when K=25 
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vacations take. The impact of longer vacations often results in higher PDP, which has 

already been shown by Figure 3.15. 

2. For the comparison between the curves for setting 3 (a) and 3 (b) with the same 

stationary probability distribution for service rate   
         

, the differences on PDPs 

are caused by the values of service rate transition matrix           . For setting 3 (b), 

busy and vacation periods often last longer than ones for setting 3 (a) (namely, less 

transitions). As a result, higher PDPs are achieved for longer busy periods. In addition, 

compared to the memory-less property for settings 1, 2 and 3 (a), setting 3 (b) 

fundamentally approximates the burstiness for the arrival traffic, which lays the 

foundation of Chapter 5. 

3.2.2.3 Comparisons of average queue delay 

Same as the analysis process for PDP, we check average queueing delay by equations 

(3.8)-(3.9) from two aspects: 1. Comparisons between M/D/1/K queue models with and 

without vacations to show the common properties for the M/D/1/K vacation models 

(Figure 3.17), and 2. Comparisons between M/D/1/K vacation models to show the 

differences in average queueing delays with different service rate transition matrix 

           (Figure 3.18). Note that average queueing delay is measured by number of 

slot durations. 

 

Figure 3.17 Delay comparisons for M/D/1/K model given by setting 1 
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From Figure 3.17, we have following observations: 

1. For comparisons of M/D/1/K vacation models with different buffer sizes, the average 

queueing delay increases as the system load increases; and the differences become 

more obvious (nearly 0.4 in number of slot for K=5; while nearly 1 for K=25 when the 

system load=0.9) when the system load get larger. This property follows the same 

pattern as for M/D/1/K queue models without vacations. 

2. For the comparisons of M/D/1/K queue models with and without vacations, M/D/1/K 

vacation models achieve higher average queueing delays compared to M/D/1/K queue 

model without vacations, which is caused by longer vacation times. During busy periods, 

the queue length in the buffer is often larger than in the equivalent queue model 

without vacations. As a result, the packets arrived during busy periods often take longer 

time to get served. 

 

Figure 3.18 Delay comparisons between M/D/1/K vacation models when K=25 

From Figure 3.18, we have following observations: 

1. For comparisons between M/D/1/K vacation models with settings 1, 2 and 3 (a), 

which is summarized as memory-less arrival rate settings, average queueing delay gets 
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larger when the probability to stay at busy periods  q in (3.11) gets smaller. The situation 

is caused by longer vacation times. 

2. For comparisons between curves using setting 3 (a) and 3 (b), the differences on 

average queueing delays are caused by the values of service rate transition matrix 

          . Longer average queueing delays are caused by on average longer busy and 

vacation periods. 

3.2.3 Summary 

We present a queueing analysis for M/D/1/K queue models with and without vacations. 

We use matrix geometric method for theoretical analysis and validate the results with 

Monte-Carlo simulations in terms of queue length in the buffer, PDP due to buffer 

overflow and average packet delay. This section also lays the foundation for queueing 

analysis of cross-layer design incorporating with AMC. 

The simulation results are obtained for comparisons and reveal the impact of system 

load  , stationary probability distribution for service rates    
          and service rate 

transition matrix            on queue models. 
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Chapter 4 Cross-layer Design with AMC 

In this chapter, we validate and analyse the cross-layer design incorporating AMC. We 

investigate how to combine packet-based queueing behaviour at the data-link layer and 

AMC at the physical layer to achieve a cross-layer design. As a result, an M/D/s(t)/K 

queue model with a full range of working vacations, representative of wireless 

networking, is obtained for queueing analysis on cross-layer design. The framework of 

queueing analysis on cross-layer design, including analysis on queue length in the buffer, 

PDP due to buffer overflow, average packet delay, PLP and throughput,  is built up for 

further investigations. We evaluate the impact of fading in wireless channels on 

performance analysis. 

4.1 MCS adopted 

As introduced in Chapter 1, AMC adopts a range of MCSs with different service rates . In 

wireless channel scenarios, AMC adaptively adjusts to instantaneous channel conditions 

by assigning the proper MCS for transmission to help combat wireless fading. Before 

understanding how AMC works at the physical layer, we need to specify a range of 

MCSs for AMC to choose from. The MCS can be divided into two parts: modulation 

scheme and coding scheme, which have been specified in section 2.2. Note that we only 

consider a single channel scenario in this chapter, which fits with the specification of 

IEEE 802.11a standard. Therefore, the MCSs adopted by AMC in this chapter are those 

with only one spatial stream in a wireless channel. 

As mentioned in Chapter 1, AMC is widely used in packet-based wireless networks, and 

MCSs adopted by AMC have been standardised with an MCS index. In general, we take 

MCSs with index number from 0 to 7, which are for cases with one spatial stream, into 

consideration for cross-layer design in this chapter. The MCSs for one spatial stream 

considered in this chapter (IEEE 802.11a standard) are listed in Table 4.1. 
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Table 4.1 MCSs for one spatial stream in 802.11a 

MCS Index Modulation Coding rate Coded bits per 
symbol 

Data bits per 
symbol 

0 BPSK 1/2 1 1/2 

1 QPSK 1/2 2 1 

2 QPSK 3/4 2 3/2 

3 16QAM 1/2 4 2 

4 16QAM 3/4 4 3 

5 64QAM 2/3 6 4 

6 64QAM 3/4 6 9/2 
7 64QAM 5/6 6 5 

 

As suggested in [7] [50], we don’t need to use all of the MCSs for AMC; instead, we can 

choose some of them for AMC because there is little reduction in average throughput 

compared to the case when using all of them for AMC. The selection of MCSs has been 

done by [22], and the MCSs chosen are listed in Table 4.2. 

Table 4.2 MCSs chosen for AMC with one spatial stream 

MCS Index Modulation Coding rate Coded bits per 
symbol 

Data bits per 
symbol 

0 BPSK 1/2 1 1/2 

1 QPSK 1/2 2 1 

2 QPSK 3/4 2 3/2 

4 16QAM 3/4 4 3 

6 64QAM 3/4 6 9/2 

 

We use the chosen MCSs listed in Table 4.2 for queueing analysis on cross-layer design 

incorporating with AMC, which is detailed in section 4.2. 
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4.2 Cross-layer design incorporating with AMC 

4.2.1 System model 

The task of this scenario is to explain queueing analysis on cross -layer design 

incorporating AMC. To begin with, a system model with single transmitter, single 

wireless channel and single receiver is constructed. An M/D/s(t)/K queue model with a 

range of working vacations is built up for queueing analysis. The block diagram for the 

cross-layer design is shown in Figure 4.1. The basic idea for queueing analysis on this 

cross-layer design has been discussed by [28] and we generalise the design as a queue 

model (M/D/s(t)/K), and validate the analytical results with system-level simulations 

both at the physical and the data-link layer. We discuss how we can make the cross-

layer analyses extendable for further implementations in the following chapters.  

 

 

The whole system shown in Figure 4.1 is time slot-based. As assumed by [28], incoming 

packets arrive at the data-link layer as a Poisson process, and enter a buffer of size K. 

The newly incoming packets will be dropped if the buffer is full.  The MCS controller 

controls the number of servers, and this determines the service rate for the packet 

queue at the transmitter side, based on the information conveyed on an error-free 

feedback channel sent by the MCS selector at the receiver side. The MCS selector 

chooses the right MCS for transmission by using channel state information provided by 

the channel estimator. At the transmitter side, the served packets coming out of the 

buffer are encoded using convolutional codes with 1/2 coding rate and puncturing. The 

encoded bit streams are encapsulated into frames with some pilot and controlling 

Figure 4.1 Functional block diagram for cross-layer design 
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information, and transmitted through a frequency flat, slow Nakagami-m fading 

channel. At the receiver side, the received frames are broken down into packets after 

removing redundant information and decoding by puncturing recovery and a Viterbi 

decoder. Then the recovered packets are compared to original packets in order to get 

PER and system throughput. 

AMC adopts a range of MCSs which are listed in Table 4.2. The task is to determine 

when to use which MCS. As mentioned above, the selection of MCS is influenced by 

instantaneous channel information determined by channel estimator at the receiver 

side. As inspired by [22], we make use of instantaneous SNR measured by the channel 

estimator for MCS selection. As indicated by [6], we can set a range of SNR threshold    

for adopted MCSs, and thus divide the whole range of SNR into several non-overlapping 

intervals ,       ). If instantaneous SNR   ,       ), the MCS with mode label n will 

be selected for transmission. 

For determining the SNR threshold   , we need to specify the PER behaviour over a 

range of SNRs in an additive white Gaussian noise (AWGN) channel. A closed-form 

expression for PER in terms of SNR can be obtained based on [76], but the expression is 

too complex for analysis. For simplicity, [22] provides an asymptotic expression for PER 

which has been validated by Monte-Carlo simulation. We use this asymptotic approach 

for PER calculation which is obtained by (4.1).  

    ( )  {
                     ≥    

                                   
,   (4.1) 

              are fitting parameters obtained by nonlinear regression based on 

Monte-Carlo simulation results, and the method for getting these parameters are 

detailed in Appendix A. In general,   ≥    ; otherwise the channel is too poor in SNR 

to use MCS with mode label n and PER will be 1. For a prescribed PER    caused by 

channel noise,    can be obtained by (4.2). 

   
  

  
    (

  

  
),    (4.2) 

Table 4.2 has provided the MCSs adopted by AMC in this single user single channel 

scenario. As noted earlier, the system is slot-based and each timeslot lasts a period of a 
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frame duration. We assume that packet length              ([28]) and data symbols 

per frame                      , so that we can get the service rate measured 

in transmitted packets during each timeslot. Table 4.3 gives the parameter settings for 

each adopted MCS with mode label n, together with equivalent packet service rate for 

each timeslot. 

 

Mode n n=0 n=1 n=2 n=3 n=4 n=5 

MCS Index - 0 1 2 4 6 

Modulation - BPSK QPSK QPSK 16QAM 64QAM 

Coding rate - 1/2 1/2 3/4 3/4 3/4 

Coded bits 
per symbol 

0 1 2 2 4 6 

Data bits per 
symbol 

0 0.5 1 1.5 3 4.5 

Service rate 
(packets/slot) 

0 1 2 3 6 9 

   0 274.7229 90.2514 67.6181 53.3987 35.3508 
   0 7.9932 3.4998 1.6883 0.3756 0.0900 

   (  ) - -1.5331 1.0942 3.9722 10.2488 15.9784 

 

We use mode n as a representation for each MCS, instead of the MCS index, from now 

on mainly for convenience. Note that there is also a mode 0 with a service rate of 0 

packet/slot, which indicates that the instantaneous channel condition is too poor to use 

any of the MCSs adopted. Therefore, the server stops working to avoid transmission 

errors caused by noise in mode 0. 

Once the MCSs adopted for AMC are determined, we need to investigate the transition 

behaviours among these MCSs in the slot-based system. We assume a frequency flat 

slow fading channel, which means the channel condition remains invariant during each 

timeslot, and the MCSs can only possibly be changed between adjacent modes or stay 

unchanged on a slot-by-slot basis. In other words, the transition probability     
    from 

mode m to mode n satisfies (4.3). 

    
         |   | ≥  ,    (4.3) 

Table 4.3 Parameter settings for MCSs with one spatial stream 
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We assume a Nakagami-m fading channel with probability density function (p.d.f)   ( ) 

in terms of SNR obtained by (4.4). 

  ( )  
       

 ̅   ( )
  

 
   

 ,    (4.4) 

Note that   ( ) is Rayleigh distributed when m=1.  ( )  is the Gamma function 

obtained by (4.5). 

 ( )  ∫           
 

 
,   (4.5) 

Recall that mode n is selected if instantaneous SNR   ,       ), thus the stationary 

probability   
    for the system to stay at mode n in Nakagami-m fading channel is 

obtained by (4.6). 

  
    ∫   ( )  

    

  
 

 .  
    

 
/  .  

      
 

/

 ( )
   (4.6) 

 .  
    

 
/       .  

      

 
/ are the complementary incomplete Gamma function 

obtained by (4.7). 

 (   )  ∫           
 

 
,   (4.7) 

And the transition probability     
    between adjacent modes has been given by (4.8) 

for N=5 in [11]. 

{
      

    
       

  
         ,     -     

      
     

      

  
         ,   -    

   (4.8) 

   is slot duration.   
    is the stationary probability for mode n obtained by (4.6).    is 

determined by (4.9). 

   √   
    

 
 

  

 ( )
 (

    

 
)     

 
    

      (4.9) 

m is the coefficient of Nakagami-m channel (m=1 for Rayleigh fading channel).    is the 

Doppler spread which is measured in Hz.   is the average SNR for a channel. 
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Furthermore, the transition probability     
    for staying at the same mode between 

adjacent timeslots is obtained by (4.10). 

{

    
          

          

    
            

          

    
            

          
             

  (4.10) 

Based on equations (4.3), (4.8) and (4.10), we construct the transition matrix for service 

rate      obtained by (4.11) which can be validated by (4.12). 
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  (4.11) 

               ∑   
   

  ,   -     (4.12) 

Therefore, the mode transition process forms an FSMC which is shown in Figure 4.2. In 

particular, it is a quasi-birth-death process, which can be analysed by matrix geometric 

method as specified in Chapter 1. The values obtained in Figure 4.2 are based on 

equations (4.3), (4.8), (4.10) and Table 4.3. 

 

 

 

 

Figure 4.2 Transition process for service rate 
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4.2.2 Queueing analysis 

In this section, we present the queueing analysis and obtain the metrics we want to 

evaluate, such as queue length in the buffer, PDP due to buffer overflow, average 

packet delay, PLP (caused by PDP and transmission error) and throughput through 

performance analysis using the matrix geometric method. This section provides a basic 

procedure for queueing analysis on cross-layer design, which lays the foundation for 

further extensions. 

4.2.2.1 Arrival process 

The arrival process    is Poisson distributed and the p.m.f for Poisson arrival process    

which denotes the number of arrival packets within t-th timeslot is obtained from (4.13).  

 (    )  {
( )   (  )

  
     

            
   (4.13) 

  is mean arrival rate for each timeslot δτ. 

4.2.2.2 Service process 

Service process    is determined by the AMC operating at the physical layer in order to 

adjust to the instantaneous channel conditions. The number of packets that gets 

transmitted per slot is totally determined by the mode selected, which is equivalent to 

a deterministic service process with varied number of servers. The number of servers 

can only be chosen from a service rate set  , which is shown by (4.14). 

       *     ,   -+  (4.14) 

Based on Table 4.3, the service rate set   *           + is measured by packets per 

slot. 

The queueing analysis relies on the service rate probability transition matrix      and 

the stationary probability distribution      for each mode adopted, and the matrix 

geometric method in section 4.2.1. 

In order to keep the system stable, we should make sure that average arrival rate   is 

less than average service rate, that is, the system load   should satisfy the condition 
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specified in (4.15). 

  
                            

                    
 

 

∑   
     

     
    (4.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Flow chart for obtaining    and    for M/D/s(t)/K queue model 

 

No 

Yes 

Yes 

Beginning of 

timeslot t (End of 

timeslot t-1) 

Packets 

departure 𝑆𝑡  

(Current 

𝐵𝑡  𝐴𝑡)  𝐾? 

Packets arrive 𝐴𝑡  

(𝐵𝑡   𝑆𝑡)

≥  ? 

No 

𝐵𝑡     (  (𝐵𝑡   𝑆𝑡))

 𝐴𝑡  

 

Current 𝐵𝑡    

𝐷𝑡     (  (𝐵𝑡   𝑆𝑡))  𝐴𝑡  𝐾  

𝐵𝑡  𝐾,  End of timeslot t 

(Beginning of 

timeslot t+1) 

Current 

𝐵𝑡  𝐵𝑡   𝑆𝑡  

 



63 
 

4.2.2.3 Queue state transition 

Let    denote the queue state at the end of the t-th timeslot, or equivalently, the queue 

state at the beginning of (t+1)-th timeslot. In addition, the system serves at most    

packets at the beginning of the t-th timeslot; or serves      packets if        . After 

packet departures,    packets come into the buffer (with buffer size K) within the t-th 

timeslot. If the current queue state after packet arrivals is larger than the buffer size K, 

then      and excess packets will be dropped due to buffer overflow to form the 

packet drop process   .  

The queue state    at the end of t-th timeslot after packet arrivals and departures is 

obtained by (4.16). 

      (      (  (       ))    )     (4.16) 

The flow chart of obtaining queue state    and packet drop    for each timeslot is 

shown in Figure 4.3. 

Then we obtain the probability transition matrix for the M/D/s(t)/K queue model with a 

range of server working vacations. As s(t) is no longer a fixed value in an M/D/s(t)/K, an 

embedded FSMC, which considers both queue state transitions and service rate 

transitions, is built up. As a consequence, the probability transition matrix       ( )   

for queue state transition should consider both the queue state process    and the 

service process   . In general, the transition matrix is obtained by (4.17) with each 

element         

     ( )  
 (4.18). 

      ( )    (

    

     ( )  
     

     ( )  

   

    

     ( )  
     

     ( )  
),    (4.17) 

        

     ( )  
 (

 (      ) (    )
     ( )  

  (      ) (    )
     ( )  

   

 (      ) (    )
     ( )  

  (      ) (    )
     ( )  

,  (4.18) 
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And the elements  (       ) (       )
     ( )  

 of matrix         

     ( )  
 satisfies (4.19). 

 (       ) (       )

     ( )  
       (       )         (4.19) 

More specifically, the probability  (   ) (   )

     ( )  
 for transitioning from (           ) 

to (           ) is obtained using (4.20). 

 (   ) (   )

     ( )  
  (           |           )   (      |    )  

 (    |           )      
     (    |           ), (4.20) 

    
    is the transition probability for the service rate which is obtained using (4.11). And 

 (    |           ) can be obtained by using (4.21). 

 (    |           )  {
 (         (   ))      ,   )

  ∑  (    |           )  ,   )        
  

(4.21) 

 (    ) is the Poisson distribution obtained using (4.13). 

Then we can derive the stationary distribution       ( )   for queue state and service 

state for M/D/s(t)/K model with a range of working vacations using (4.22). 

      ( )         ( )         ( )       ∑  (   )
     ( )  

  ,   -
    

  ,    (4.22) 

4.2.2.4 Performance analysis 

Based on (4.16) and Figure 4.3, we obtain the process for packet drop    at the end of 

t-th timeslot by (4.23). 

       (      (  (       ))     ),    (4.23) 

Thus, we can get the average number of packets dropped  ( ) within each timeslot δτ 

by using (4.24). 

 ( )  ∑ ∑ ∑     (    )   
(       )

     ( )  
    

 
      

 
    

∑ ,    (      (  (       ))     )   (    )    ,   )      ,   -     

 
(       )

     ( )  
-     (4.24) 
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 (    )  is the stationary distribution of packet arrivals  specified in (4.13) and 

 (       )
     ( )  

 is the element of the stationary distribution       ( )   for the queue state 

in the buffer and the service state (4.22). 

Then the PDP for M/D/s(t)/K queue model is obtained by (4.25) based on (4.24). 

    
                                 

                                 
 

 ( )

 
     (4.25) 

And the average queue length  ( ) for M/D/s(t)/K queue model is obtained by using 

(4.26) from (4.22). 

 ( )  ∑    
(       )

     ( )  
  ,   -

    

     (4.26) 

By Little’s Law, we can obtain the average packet delay  ( ), which is the average 

packet waiting time before getting served, by using (4.27) from (4.25) and (4.26). 

 ( )   ( ) ,  (     )-,   (4.27) 

Then we can obtain PLP caused by PDP due to buffer overflow and average PER    ̅̅ ̅̅ ̅̅  

due to transmission errors based on prescribed PER    by (4.28). 

      (     )  (     ̅̅ ̅̅ ̅̅ )  (4.28) 

The throughput within each timeslot can be obtained by (4.29). 

                     (     )    (     )  (     ̅̅ ̅̅ ̅̅ )  (4.29) 
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4.2.3 Numerical results 

Before starting the performance analysis, we should pre-define some parameters for 

simulation use. These parameters with their values are listed in Table 4.4, 

 

Parameter Value 

Frame duration    2 ms 

Total simulation time 200 s 

Packet length    1080 bits 

Symbol/frame    2160 

Doppler frequency    10 Hz 

Packet error rate         

Fading channel Slow Nakagami-m with m=1 

Buffer length K 50 

Average service rate 4.33 packets/slot 

Average SNR  ̅ 15 dB 

 

4.2.3.1 Queue length in the buffer 

Firstly, we analyse an M/D/s(t)/K queue model with a range of different levels of 

working vacations obtained in Figure 4.2. The service rate for M/D/s(t) queue model is 

no longer a fixed value. The stationary distribution of buffer size for M/D/s(t)/K queue 

model with different system loads is obtained by equation (4.22) extending M/D/1/K 

vacation model. Note that we also consider the fading factor, which is the shaping 

parameter m for Nakagami-m distribution, for wireless channel. In this scenario, we use 

Nakagami-m (with m=1, which is equivalent to Rayleigh) slow fading channel which 

means the transmission mode can only be changed between adjacent ones and the 

transition probability matrix can be obtained by equations (4.17)-(4.21).  

 

Table 4.4 Parameter settings for cross-layer analysis 
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Figure 4.4 Steady-state probability of buffer state for M/D/s(t)/K vacation model  

Figure 4.4 validates and obtains the queue length in the buffer with different system 

loads. We have following observations: 

Figure 4.4 shows the impact of fading on queue model with different system loads.  In 

Figure 3.4 which describes the queue state behaviour for an M/D/1/K queue model, the 

gaps between curves with different system loads become more obvious  (often a gap of 

2 orders of magnitude when the probability is around      ) as the queue length in the 

buffer increases, however, the result changes when we introduce slow Nakagami-m 

fading channel into system model. As can be seen in Figure 4.4, when system load gets 

higher, the gaps become less obvious (e.g. the difference is over 2 orders of magnitude 

between system load of 0.17 and system load of 0.33 at queue length equals 45; while 

the difference becomes less than 1 order of magnitude between a load of 0.33 and a 

load of 0.50 at queue length equals 45). Therefore, we can primarily conclude that the 

impact of fading changes the probabilistic behaviour of the queue length in the buffer. 

On the other hand, the impact of fading for M/D/s(t)/K model can be shown when 

compared to M/D/1/K vacation model. Figure 4.5 is the comparison when system 

load=0.17, 
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Figure 4.5 Comparison between M/D/s(t)/K and M/D/1/K queue model  

We have following observations: 

Compared to the black triangle line which is equivalent M/D/1/K vacation model, we 

can find a gap of over 20 orders of magnitude, which also results from the impact of 

fading, between these two queue models. M/D/s(t)/K queue model adopts a range of 

working vacations with different data rates. The SNR for mode 0 is too poor (usually 

SNR<2dB)  to satisfy the requirement for any MCS; while the service rates for mode 1-3 

are also lower than the average service rate specified in Table 4.4. Therefore, when the 

channel condition can only support MCSs with service rates below average service rate, 

there is higher probability to cause buffer overflow.  

Next, we would like to check the impact of shaping parameter m used by Nakagami-m 

fading channel on M/D/s(t)/K queue model. The probability density function for 

Nakagami-m fading channel is obtained by equation (4.30): 

  ( )  
 

   ( )
 (

    

 
)   

 
    

 , (4.30) 

Where m is the shaping parameter,   is the average SNR,    is SNR threshold for mode 

n obtained by equation (4.2) and  ( ) is Gamma function. For m=1, it is a Rayleigh 
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fading channel; when m>1, Nakagami-m fading channel can provide good coordination 

to Ricean fading channel; when m<1, the fading condition is worse than the Rayleigh 

fading channel. 

Figure 4.6-4.8 show the impact of different shaping parameters m on probability 

distributions of queue length under low, medium and high system load (Load=0.2, 0.5, 

0.8 respectively). As suggested by [77], the shaping parameter m ranges from 0.5 to 4.5  

with an average of 1.56 based on measurements for urban scenarios. Therefore, we 

choose to simulate and analyze scenarios with m from 0.5 to 2.5 to cover most cases. 

 

Figure 4.6 Impact of different fading channels on M/D/s(t)/K model when load=0.2 
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Figure 4.7 Impact of different fading channels on M/D/s(t)/K model when load=0.5 

 

 

Figure 4.8 Impact of different fading channels on M/D/s(t)/K model when load=0.8 
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We have following observations: 

1. Figure 4.6-4.8 study the impact of fading on queue model. Probabilities are 

accumulated at the tail of each curve because of limited buffer size. In addition, the 

probabilities at the tail get larger when the system load gets larger. The shaping 

parameter m in the Nakagami-m model has a far greater effect on packet queueing at 

lower loads. 

2. Figure 4.6 shows that when system load is low, the impact of different shaping 

parameters m on M/D/s(t)/K queue model becomes obvious (around 1 order of 

magnitude between adjacent curves when queue length is 50) as queue length in the 

buffer increases. 

3. Figure 4.6-4.8 show that PMF curves for queue state with different shaping 

parameters often intercept with each other at different points. When the system load 

gets higher, the corresponding values of queue lengths for interception points get 

larger. For example, the interception points are around 5 in queue length when system 

load = 0.2; while around 18 in queue length when system load=0.5; moreover, around 

49 in queue length when system load=0.8. 

4.2.3.2 PDP due to buffer overflow 

Next, we validate and analyse PDP due to buffer overflow with two aspects: 1. Check 

PDP with different buffer sizes when m=1 shown by Figure 4.9, and 2. Check PDP with 

different shaping parameters m when K=50 shown by Figure 4.10.The red lines are 

obtained by matrix geometric analysis and blue lines are simulation results. We have 

following observations: 

1. Figure 4.9 and 4.10 show that the gaps between curves become more obvious (over 1 

order of magnitude when the system load is 0.1) when the system load decreases.  

2. Compared to Figure 3.15 which analyses PDP for M/D/1/K vacation models  with 

different buffer sizes, Figure 4.9 shows higher PDPs which indicate the impact of fading. 

While Figure 4.10 reveals the impact of fading degrees for fading channel on the queue 

model. More specifically, PDPs get larger when the fading gets worse (decrease in 

shaping parameter m). 
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Figure 4.9 PDP with different buffer sizes 

 

Figure 4.10 PDP with different shaping parameters m 
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4.2.3.3 Average queueing delay, PLP and throughput 

In this section, we validate and analyse average queueing delay, PLP and throughput for 

the proposed M/D/s(t)/K queue model which are respectively shown by Figure 4.11-

4.13. We have following observations: 

1. Figure 4.11 shows the average queueing delay for M/D/s(t)/K queue model with a 

range of working vacations. We see that the gaps between different curves become 

more obvious (over 1 slot in delay between adjacent curves when the system load is 0.9) 

when the system load gets larger; this is because we plot delay as an absolute (not 

relative) value. In addition, average queueing delays with different buffer sizes nearly 

converges to a point when system load=0.1 where buffer size has little impact. 

Compared to Figure 3.17, which captures the average queueing delay for M/D/1/K 

vacation model, M/D/s(t)/K queue model achieves higher average queueing delays. This 

is also influence by fading. 

3. Figure 4.12 captures PLP with different buffer sizes. As shown by equation (4.28), PLP 

is determined by PDP and average PER, of which PDP has been captured by Figure 4.9 

and average PER is approximately equal to           when we adopt the MCSs listed 

in Table 4.3. From 4.12, we obtain that PLP is mainly dependent on PDP when PDP is 

larger than      so that average PER is comparatively negligible; while PLP is mainly 

dependent on average PER when PDP is lower than     . 

4. Figure 4.13 reveals the behaviour of throughput, which is measured in packets per 

slot, for M/D/s(t)/K queue model. The gaps between curves become more obvious 

(around 0.1 packet per slot in throughput between adjacent curves when the system 

load is 0.9) when the system load gets higher. We also get that longer buffer sizes leads 

to larger throughput; however, a longer buffer size is not always a good way to ensure 

the system performance. For example, from Figure 4.11, we conclude that longer buffer 

size results in longer average queueing delay. Therefore, finding a proper buffer size to 

trade-off between average queueing delay and throughput becomes an interesting field 

to investigate in, but it’s out of this chapter’s scope and the discussion on buffer sizes is 

given in Chapter 6. 
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Figure 4.11 Average queueing delay for M/D/s(t)/K queue model 

 

 

Figure 4.12 PLP for M/D/s(t)/K queue model 
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Figure 4.13 Throughput for M/D/s(t)/K queue model 

4.3 Summary 

In this chapter, a cross-layer design is built up which is suggested by [28], and we 

summarize it as M/D/s(t)/K queue model with a range of working vacations. At the 

data-link layer, packets arrived as a Poisson process; while a range of MCSs with various 

service rates indicating the channel variations are adopted by IEEE 802.11 standard. A 

Markov chain model for service rate transitions in a slow Nakagami-m fading channel is 

constructed. Brief introductions related to MCSs are given, and the queueing analysis 

on the cross-layer design is obtained. After that, we validate the performance analysis, 

including queue state, PDP, average queueing delay, PLP and throughput, through 

simulation, and reveal the impact of fading on our proposed M/D/s(t)/K queue model. 

In addition, the impact of degrees of fading is also discussed in terms of queue length in 

the buffer and PDP due to buffer overflow. 

The work done in this chapter provides a fundamental framework for analysis on slot-

based system which needs cross-layer analysis with fading channels, which is a useful 

approach for performance analysis on wireless networks. 
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Chapter 5 Cross-layer Analysis with Bursty Arrivals 

In this chapter, we introduce the bursty arrivals model including the single on-off arrival 

model and the aggregated on-off arrival model into the cross-layer analysis. As we 

stated in Introduction section, Poisson arrivals, which is used for analysing the cross-

layer design specified in Chapter 4, is not a reasonable approximation for bursty 

services. Therefore, we need to look for other traffic models for bursty behaviour. The 

literature has given abundant proof [46] [47] [78] to show that on-off traffic model is one 

of the main models used for bursty service approximation, especially in the scenarios 

where users require multiple services simultaneously. As a result, queue models 

including on-off/D/s(t)/K and N-burst/D/s(t)/K with a full range of working vacations 

have been obtained for cross-layer queueing analysis with bursty traffic. Following the 

similar framework of queueing analysis specified in Chapter 4, metrics including queue 

length in the buffer, PDP due to buffer overflow, average packet delay, PLP and 

throughput are obtained for the cross-layer analysis with bursty services. In addition, 

we compare the differences in performance between the Poisson arrival model and on-

off traffic models. These indicate that the traffic model plays an important part in 

wireless packet network performance evaluation. 

5.1 Bursty traffic models 

In this section we introduce two well-accepted bursty traffic models in the literature 

including the single on-off traffic model and the aggregated on-off traffic model.  

The single on-off traffic model, which gives a higher constant arrival rate during on 

periods and a lower constant arrival rate during off periods, is naturally suitable for 

bursty voice streams. In addition, the superposition of multiple single on-off traffic 

model, which is also known as aggregated on-off model (or N-burst model, Batch on-off 

model etc.), is good at approximating bursty data traffics based on extensive 

observations in the existing literature. As stated in the Introduction section, published 

work gives strong support to using the on-off traffic model instead of the Poisson arrival 

model to approximate bursty streams, making on-off arrival model one of the best 

choices when applied to queueing analysis on bursty streams in a cross-layer design.  



77 
 

Application to cross-layer analysis has not been published previously. 

Note that we assume the system as slot-based and that the channels remain invariant 

within each timeslot. We focus on discrete-time traffic models and build Markov chains 

to find the probabilities of state transitions. 

Also note that there are slight differences for definitions on on-off traffic models among 

the published works. Therefore, we need to explain the exact meanings of these traffic 

models to be used in our cross-layer design. 

5.1.1 Single on-off traffic model 

The single on-off traffic model uses two periods: ON periods and OFF periods. During 

ON periods, the packets arrive with an arrival rate of    ; while during OFF periods, the 

packet arrival changes to a comparatively lower rate of     .       is often assumed to 

be zero where there is no packet arriving during OFF periods. The state transition rates 

        (transition rate from ON to OFF period) and          (transition rate from OFF 

to ON period) between ON and OFF periods can be shown by a two-state Markov chain 

which is shown in Figure 5.1. 

 

 

 

 

The parameter values for the single on-off traffic model are listed in Table 5.1. Note 

that the values provided in Table 5.1 correspond to individual subscriber Internet 

scenario as suggested by [78], and these values are captured by real network 

simulations in order to obtain the distribution of HTTP sessions. Although the 

experiments carried out in [78] are not intended to be applied at the data-link layer, 

they provide the basic idea of bursty traffic models, which captures the burstiness of 

network traffic at all levels. 

 

ON periods OFF periods 

 
𝑟𝑜𝑓𝑓 𝑜𝑛 

𝑟𝑜𝑛 𝑜𝑓𝑓  

Figure 5.1 State transition rate between ON and OFF periods 



78 
 

 

Table 5.1 Parameter settings for on-off traffic model 

Parameter Value 

       , transitions/timeslot 1.445      

       , transitions/timeslot 1.084      

Timeslot duration    2 ms 

 

Based on parameters given in Table 5.1, we can obtain the state transition matrix for 

the single on-off traffic model. Both         and         are measured in 

transitions/timeslot and remain constant in the long run simulation. Both ON and OFF 

periods follow the exponential distribution with rate parameters of         and 

       . 

As a result, the probability to stay in the ON state        is equal to the probability that 

the duration of ON period     is larger than timeslot duration   , which is denoted as 

 (      )  and can be obtained by the complement of CDF of exponential 

distribution (5.1): 

        (      )             , (5.1) 

And the probability to transfer from ON to OFF state         is shown by (5.2) 

following a similar method. 

         (      )               , (5.2) 

And we can also obtain          (Equation (5.3)) and          (Equation (5.4)) 

respectively. 

         (       )               , (5.3) 

          (       )             , (5.4) 
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By Equations (5.1)-(5.4), we can construct the two-state Markov chain to give the state 

transition probabilities. The MC is shown by Figure 5.2. 

 

 

 

 

Correspondingly, we can construct the probability transition matrix         for single 

on-off traffic model shown by (5.5). 

        (                         

                        

), (5.5) 

As we know, typical voice codecs generate voice packets at a constant rate, thus, single 

on-off traffic model is used for approximating the behaviours of burstiness of voice and 

silence periods suppressed by codec with a constant arrival rate     during ON periods. 

5.1.2 Aggregated on-off traffic model 

The aggregated on-off traffic model, which is good at approximating bursty data 

streams, is constructed by the superposition of multiple single on-off traffic models. The 

structure of aggregated on-off traffic model is shown by Figure 5.3. 

 

ON state 

𝑝𝑜𝑛 𝑜𝑛  

𝑝𝑜𝑓𝑓 𝑜𝑛 

𝑝𝑜𝑛 𝑜𝑓𝑓  𝑝𝑜𝑓𝑓 𝑜𝑓𝑓  

OFF state 

Figure 5.2 Markov chain for state transition probabilities 

 

Figure 5.3 Aggregated on-off traffic model 
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As shown in Figure 5.3, there are a total of    independent single on-off streams at 

input ports. Each single on-off stream    input    
 packets per timeslot during ON 

periods with a constant arrival rate. In addition, each single on-off stream follows an 

independent state probability transition matrix. Therefore, the arriving packets within 

each timeslot for the aggregated on-off traffic model form a value set with finite 

elements which are dependent on single constant arrival rate value set {   
+. As a result, 

the aggregated arrival rate can vary over time but still be limited to a finite dataset, 

which enables us to use the matrix geometric method for queueing analysis and ensure 

a limited degree of complexity. 

5.2 Cross-layer analysis with bursty arrivals 

5.2.1 System model 

In this section, we apply bursty traffic models including the single on-off traffic model 

and the aggregated on-off traffic model, instead of Poisson arrival model, into the 

proposed cross-layer design specified in Chapter 4. We consider an end-to-end wireless 

link with single antenna at both transmitter and receiver side. The block diagram is 

shown in Figure 5.4. 

 

 

At the transmitter side, the data-link layer packets with aggregated on-off arrivals are 

going into a queue with finite buffer size K. The packets are converted into frames and 

are served in a first-in-first-out (FIFO) manner, and we regard each frame as a timeslot. 

Figure 5.4 Block diagram for cross-layer analysis with bursty arrivals 
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The frame duration, which is equal to timeslot duration,    is fixed, and the number of 

packets transmitted per timeslot depends on the MCS selected. We assume a slow and 

frequency flat Nakagami-m fading channel, so that the mode used during one frame 

duration (also referred to as a timeslot) remains the same. The MCS may change at the 

end of a timeslot, in accordance with a Markov process. At the receiver side, a channel 

estimator measures the current Channel State Information (CSI), and an MCS selector at 

the receiver side then determines the MCS used during next frame duration and feeds 

back to the transmitter side through an error-free feedback channel. (The functional 

block diagram for the cross-layer design is similar to Figure 4.7) 

Next, we adopt a series of MCSs to adjust to the channel variations. To make a 

reasonable comparison between bursty arrivals and Poisson arrivals , we select the 

same MCSs used in Chapter 4 for queueing analysis. The parameter settings for the 

proposed cross-layer analysis with bursty traffic are listed by Table 4.3. 

We determine SNR thresholds {  } for the system to use mode n by Equations (4.1)-

(4.2). 

We also assume a frequency-flat slow Nakagami-m fading channel, which suggests the 

channel condition remains invariant during each timeslot. Using equations (4.3)-(4.11), 

we obtain the probability transition matrix for service rate      and construct a six-

state Markov chain correspondingly. The Markov chain for service rate transitions is 

shown by Figure 4.8. 

In addition, we generalize the proposed cross-layer analysis with single on-off traffic 

model as an on-off/D/s(t)/K queue model, and the cross-layer analysis with aggregated 

on-off traffic model as N-burst/D/s(t)/K queue model for further queueing analysis. 

5.2.2 Queueing analysis 

In this section, we focus on the queueing analysis of the proposed on-off/D/s(t)/K and 

N-burst/D/s(t)/K queue models, of which the system accepts multiple on-off arriving 

(fixed length) packets, and serves the incoming packets with a varied number of servers 

determined by the AMC and the fading channel, and has a finite buffer length of K 

packets. Arrival process, service process and queue state transitions are discussed for 
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the proposed queue models, and finally we construct FSMCs for queue state transition 

probabilities. Moreover, we address the feasibility of obtaining the stationary 

distribution of queue state based on queue state transition matrix. Finally, the metrics 

including queue state, PDP, average packet delay, PLP and throughput are discussed. 

5.2.2.1 Arrival process 

For single on-off source, the arrival process   
       is independent of the queue state 

and the service process (which is determined by the AMC algorithm). The transition 

matrix         for ON and OFF states is obtained using (5.5). Then, we can get the 

probabilities for the traffic model to be in ON and OFF states by solving (5.6).  

                         
           (5.6) 

Note that we assume a constant arrival rate     during ON periods for single on-off 

traffic model. Therefore, the average arrival rate for single on-off traffic   
      ̅̅ ̅̅̅ ̅̅ ̅̅̅  can be 

calculated by (5.7). 

  
      ̅̅ ̅̅̅ ̅̅ ̅̅̅           (5.7) 

For aggregated on-off arrivals, the arrival process   
        is also independent of the 

queue state and the service process. As shown in Figure 5.3, a user can require at most 

   streams, each of which    follows an on-off process with    
 packets/slot when it is in 

the ON state and 0 packets/slot in the OFF state. Each of these on-off processes follows 

an independent MC with probability transition matrix of        
   shown by (5.8) which 

is similar to (5.5). 

       
    (

  
      

  

    
    

  
)  (5.8) 

Where state 0 is OFF, and state 1 is ON.   
   is the probability for the process to stay in 

the OFF state, and   
   is the probability to stay in the ON state. 

Then we can obtain the stationary distribution for ON and OFF states of each on-off 

process by solving (5.9). 
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       ∑     

   ,    - 
  ,   (5.9) 

We obtain    

   and    

    as the stationary probability for stream    to be in ON state 

and OFF state respectively.   

All of the single on-off arrivals of these    streams will combine together, and the 

outcome outputs an aggregated on-off arrival process. The average arrival rate for 

aggregated on-off arrival process   
       ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅   can be calculated as (5.10). 

  
       ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅    ∑    

     
       

  (5.10) 

Note that if   
       

   for all    streams and the values of {   
} are all equal, the 

probability of a number of k single streams being in the ON or OFF state     and      

in any timeslot follows the binomial distribution (5.11): 

{
  (      )  (  

 
)(   

  ) (   

   )    

  (      )  (  
 
)(   

   ) (   

  )    
  (5.11) 

In this case, the arrival process is memoryless because whether the state is in ON or 

OFF is actually independent of the states in the past; otherwise, we have to calculate 

  (     )        (      )  carefully by analyzing each individual        
  . 

Assuming *  + is the set of all the combination of k streams in ON state with (  
 
) 

elements, and denote each combination as   
 , and each complementary combination 

as C(  
 ), then (5.12): 

{
   (     )  ∑ (∏   

  
    

  ∏   
   

   (  
 ) )

.  
 

/

   

   (      )  ∑ (∏   
  

       
  ∏   

   
   (     

 ) )
.  

 
/

   

  (5.12) 

5.2.2.2 Service process 

The same as the service process detailed in Chapter 4, the service process    is 

determined by the AMC algorithm operating at the physical layer in order to adjust to 

CSI. The number of servers can only be chosen from a set S, of which (5.13), 

       *     ,   -+          (5.13) 
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Where    is data bits per symbol specified in Table 4.3. Normally, we would like to keep 

*  + as integer values, thus, b is usually set to 2. Based on Table 4.3, for the modes with 

convolutional coding,   *           +  

In order to keep the system stable, we should maintain an average overall arrival rate 

less than the average service rate, that is, the system load   cannot be larger than 1, 

otherwise the queue will tend to grow to infinity and most of the new incoming packets 

will be dropped due to buffer overflow. System load constraints          and          

are shown by (5.14) and (5.15) for single and aggregated on-off traffic models. 

        
  

      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅
 

  ̅
 

       

∑   
     

     
    (5.14) 

         
  

       ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

  ̅
 

∑    
   

  
    

   

∑   
     

     
    (5.15) 

Where *  
   + is the stationary probability distribution for staying in each mode of the 

service process. 

5.2.2.3 Queue state transition 

We denote    as the queue state at the end of a timeslot ‘t’, or equivalently, the queue 

state in the beginning of timeslot ‘t+1’. At the beginning of timeslot t, the system serves 

at most    packets, or serves      packets if        . Then the on-off arriving packets 

at timeslot t,   , comes into the queue. If the current queue state after arrivals is larger 

than the buffer size K, then      and excess packets will be dropped due to buffer 

overflow. The queue state transition process can be calculated by (5.16). 

      (      (  (       ))    )     (5.16) 

Then we can obtain the probability transition matrix for queue state with each element 

     (5.17). 

      (    |      )          (5.17) 

For single on-off traffic model,    *     +, since the model stays at either OFF state 

with 0 arrival rate or ON state with a constant arrival rate of    . 
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For the aggregated on-off traffic model, we consider the summation of instantaneous 

arrival rates for all single on-off streams. More specifically, we denote by A, which is a 

vector, all possible summations of combinations of single on-off streams {   
}, and 

    . In this case, single on-off traffic is actually a special case for aggregated on-off 

traffic with   *     +. Then we can merge these two traffic models into one case for 

further queueing analysis. 

Since the next states for both of the arrival and service processes are only dependent 

on the current states; we have to consider all possible single cases for both arrival and 

service processes. That is (5.18), 

     ∑  (                  |                )                     

(5.18) 

For each  (     ) (     )  (5.19) of the probability transition matrix   , 

 (     ) (     )   (                  |                ) 

  (      |    )   (      |    )   (    |                )  

(5.19) 

  (      |    ) is the transition probability for on-off traffic. For single on-off 

traffic,  (      |    )         (   ) where         is detailed by (5.5) and 

       (   ) is the element of         with row   and column  . 

For aggregated on-off traffic, if all of    
  , then  (      |    ) (5.20) can be 

obtained from (5.11) and (5.12): 

 (      |    )    (     )    (     ), (5.20) 

More generally, assuming *  + is the set of all combinations for the summation of 

arrival rate equals to    . Denote each combination as   
 , and each complementary 

combination as C(  
 ). Then  (      |    ) can be obtained by (5.21), 

 (      |    ) 
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 0∑ .∏   
  

    
  ∏   

   
   (  

 ) /  
    

1  0∑ .∏   
  

    
    

    

∏   
   

   (  
 ) /1 (5.21) 

  (      |    ) is the transition probability for service rate. And  (    |   

             ) (5.22): 

 (    |                )  {
          (      (  (   ))   ) 

          (      (  (   ))   ) 
  (5.22) 

Next, we discuss the feasibility of getting the stationary distribution of the queue state 

    . As shown in [QL,SZ,GB], the stationary distribution   exists and is unique if the 

probability transition matrix of the enlarged FSMC is irreducible, homogeneous and 

positive recurrent. Therefore, we can have the lemma below: 

Lemma: The Markov chain of (a, u, c), where (     )       , has only one closed 

communicating class, and therefore is positive recurrent. 

Proof: Firstly, we need to show there exists a multi-transition path with non-zero 

transition probability from state (     )  (     ), where (     ) (     )    

   . 

1) If      (      (  (   ))   ), we can find a direct path from (     )  

(     ) with non-zero transition probability by (5.19). 

2) If         (      (  (   ))   ) , there exists a path with non-zero 

transition probability from (     )  (        ), where either    or    is equal to 0; 

then we can always find a multi-transition path from (        )  (     ) with each 

intermediate state (           ), where either     or     is equal to 0, to offset the 

difference between         . 

Then we can draw the conclusion that the finite state set (     )        forms a 

closed communicating class where every pair of states (     ) (     ) in the set 

communicates with each other. Therefore, the state transition matrix is irreducible by 

definition. In addition, since the FSMC of state transition is independent of time, the 

state transition matrix is homogeneous by definition. 
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Finally, we can conclude that the Markov chain of state transition is positive recurrent, 

because [79] asserts that the finite state irreducible homogeneous Markov chain is 

positive recurrent. (End of Proof) 

Based on the lemma stated above, we can draw the conclusion that the stationary 

distribution of queue state    
 exists and is unique, and    

≥    

Based on (5.17)-(5.22), we can get the stationary distribution of queue state by solving 

(5.23), 

   
    

        ∑ ∑ ∑      ,   -        , (5.23) 

5.2.2.4 Performance analysis 

We would like to analyze the PDP due to buffer overflow, the average queueing delay, 

the PLP (caused by PDP and transmission PER) and the system throughput for the 

proposed cross-layer analysis. Firstly, we have to obtain the packet drop process, 

denoted as   . As mentioned above, the excess packets are dropped within each 

timeslot ‘t’ if the buffer if full, thus, we can obtain the expression for    (5.24), 

       (          (         )), (5.24) 

Thus, the average number of dropped packets during timeslot ‘t’ is (5.25): 

 ( )  ∑ ∑ ∑     (                )  
     

 
            (5.25) 

Together with the expression we obtained in (5.7) and (5.10), we can get the PDP due 

to buffer overflow as follows (5.26), 

    
                                 

                                 
 

 ( )

  ̅̅ ̅
, (5.26) 

Where   
̅̅ ̅ stands for either   

      ̅̅ ̅̅̅ ̅̅ ̅̅̅  or   
       ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ . Next, we can obtain the average 

queueing delay  ̅ based on Little’s Law [74]. The expression for  ̅ is shown as follows 

(5.27), 

 ̅  
 ( )

(     )   ̅̅ ̅
  (5.27) 

Where  ( ) is the average queue length which can be obtained by (5.28) from (5.23), 
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 ( )  ∑ (∑ ∑          )    
     (5.28) 

Then, we can get the PLP (5.29) which is determined by PDP (5.26) and average PER 

   ̅̅ ̅̅ ̅̅ , 

      (     )  (     ̅̅ ̅̅ ̅̅ )  (5.29) 

And finally, we can obtain the system throughput T by (5.30), 

    
̅̅ ̅  (     )  (5.30) 

5.2.3 Numerical results 

In this section, we present numerical results for the probabilities associated with the 

queue state in the buffer, the PDP due to buffer overflow, the average queueing delay, 

the PLP and the throughput based on analytical expressions specified in 5.2.2. We 

validate the cross-layer analysis with bursty traffic models including single on-off model 

and aggregated on-off model by Monte-Carlo simulation. We also make comparisons 

between cross-layer models with Poisson arrivals and bursty arrivals with the same 

system loads by adjusting the parameters of the on-off probability transition matrix.  

Similar to the parameter settings in Chapter 4, we assume frame duration        , 

prescribed PER         (Note that    is the upper bound, and average PER    ̅̅ ̅̅ ̅̅  is 

much less than   , approximately equal to           with the MCSs adopted in Table 

4.3), system average SNR=15 dB, buffer length K=50 packets for queue state analysis 

and K=[10 20 30 40 50] for other analyses (as suggested in [34] and [23]). The average 

service rate   ̅      packets/slot for our chosen channel model. 

The probability transition matrix        
    should be carefully chosen in order to 

approximate the burstiness of each single on-off stream. As suggested in [78], a 

practical packet generation model for wireless networks is given by a discrete-time 

batch Markovian arrival process (DBMAP) for which on-off traffic should follow the 

probability transition matrix (5.31), and the values of matrix (5.31) are obtained by 

Table 5.1 and equations (5.1)-(5.4), 

       
    .

            
            

/  (5.31) 
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The matrix (5.31) suggests that the probabilities for single on-off arrival staying in the 

ON and OFF state are so high (0.9857 and 0.9892 respectively) that the state rarely 

changes, which is a reasonable approximation for bursty behavior, since arriving 

packets will keep coming during a long period of time staying in the ON state, and then 

no packet will come during another long period of time staying in the OFF state. As a 

comparison, we also introduce another probability transition matrix (5.32) with the 

same stationary distribution     
 as (5.31). 

       
    .            

            
/  (5.32) 

The matrix (5.32) suggests that whether the stream is in ON or OFF state is memoryless. 

Therefore, the matrix (5.32) cannot approximate bursty traffic streams, and the traffic 

behavior is like Poisson traffic’s. 

In addition, we assume all of the single on-off probability transition matrices are 

independent and identical with    
=1 packet/slot. Therefore, we can obtain the single 

on-off stream arrival rate    
    

          packet/slot. Therefore, the system load 

      for a single on-off arrival traffic, and so the system can support roughly up to 10 

traffic streams. 

In order to maintain the same system loads for comparisons, the Poisson arrival rate is 

adjusted to the same value as the one for aggregated on-off arrivals. In our case, the 

Poisson arrival rate is a multiple of 0.4303 packets/slot. 

5.2.3.1 Bursty traffic validation 

In this section, we validate the cross-layer analysis with bursty traffic models including 

single on-off model and aggregated on-off model by Monte-Carlo simulation. We 

validate the system with a range of system loads from 0.1 to 0.9, which suggests that 

    ranges from 1 to 9 packets/slot for single on-off traffic model, or the number of 

streams ranges from 1 to 9 for the aggregated on-off traffic model. 

Figure 5.5 and Figure 5.6 give the validation of queue length in the buffer, which lays 

the foundation for further performance analysis on PDP, PLP etc., for two bursty traffic 

models. We have the following observations:  
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The queue state results for both single and aggregated on-off traffic oscillate about 

mean values. However, practical buffer dimensioning would aim to use a smoothed 

p.m.f.; one solution for this would be, 

{
  ( )   ( )              

  ( )  
 (   )   ( )   (   )

 
     

 (    ) 

Where   ( ) is the smoothed version of original p.m.f. of queue state. But we will still 

use the original p.m.f. for the accuracy of other metrics based on queue state. 
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Figure 5.5 Validation for single on-off traffic model 

Figure 5.6 Validation for aggregated on-off traffic model 
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5.2.3.2 Queue state comparisons 

Figure 5.7 and Figure 5.8 show the probability of queue state in the buffer for bursty 

arrivals and Poisson arrivals. We have the following observations: 

1. One property in common for results with two different arrival processes is that the 

queue state probabilities are often increasing when reaching the buffer length K. One of 

the reasons is because the buffer is finite; thus, probability is accumulated at the tail. 

On the other hand, the behavior of cross-layer design in wireless environment is 

influenced by fading, and sometimes the channel state is so poor that we have to use 

MCSs with lower data rates, resulting in an increase in the probabilities for staying at 

longer queue lengths. 

2. Unlike Poisson arrivals which often achieve the maximum value at the head when 

queue state=0, aggregated on-off arrivals usually feature a lower empty buffer 

probability, which is understandable because the buffer won’t be empty as long as one 

single on-off stream is in the ON state. However, for single on-off arrival process, empty 

buffer probability usually achieves the maximum at the head. 

3. The proposed cross-layer analysis using on-off arrival processes achieves a 

comparatively higher probability at the tail than the one using Poisson arrival with the 

same system loads, especially when system load is low (usually below 0.5). 

The higher probability at the tail obtained from bursty arrivals are because of the bursty 

behavior of on-off traffic model (5.31). As a result, the probabilities for large queue 

length in the buffer gets higher for bursty arrivals since the continuous arrival of 

packets with a period of time fill the buffer faster than arriving packets with a constant 

arrival rate provided by Poisson arrival. This is of high importance for real network 

design. 
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Figure 5.7 Queue state comparisons for single on-off and Poisson 

Figure 5.8 Queue state comparisons for aggregated on-off and Poisson 
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5.2.3.3 PDP comparisons 

Figure 5.9 - Figure 5.12 show the PDP due to buffer overflow for bursty arrivals and 

Poisson arrivals with two transition matrix (5.31) and (5.32) under a range of buffer 

sizes K. We have the following observations:  

1. The PDPs for the proposed cross-layer analysis with bursty traffic shown in Figure 5.9 

and Figure 5.10, which approximate the bursty behavior for streams with single and 

aggregated on-off arrivals, are larger than the ones with Poisson arrivals with the same 

system load. The difference is much more apparent when system load is low from      

to      absolute difference in probability values (at these buffer lengths).  

However, the PDPs shown in Figure 5.11 and Figure 5.12 which doesn’t capture the 

burstiness for streams with single and aggregated on-off arrivals show little difference 

when compared with Poisson arrivals. 

3. The results also suggest that the traffic arrival process is highly important in 

determining the PDPs, even for a fading channel. Therefore, in order to obtain more 

accurate results which are more suitable for specific network system approximation, we 

should study the buffer performance by using a model that more accurately represents 

the traffic patterns. 
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Figure 5.9 PDP comparisons for single on-off and Poisson using (5.31) 
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Figure 5.10 PDP comparisons for aggregated on-off and Poisson using (5.31) 

 

Figure 5.11 PDP comparisons for single on-off and Poisson using (5.32) 
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5.2.3.4 Delay, PLP and throughput comparisons 

Because we have known that single on-off arrival can be treated as a special case of the 

aggregated on-off arrivals model, and we have shown enough evidence on differences 

between single on-off arrival and Poisson arrival in terms of queue state and PDP, we 

only provide the comparisons between aggregated on-off arrival and Poisson arrival in 

this section. Figure 5.13 - Figure 5.15 illustrates the comparisons for bursty arrivals and 

Poisson arrivals in terms of average queueing delay, PLP and throughput. And we have 

the following observations: 

1. The comparison for average queueing delay suggests that aggregated on-off arrival 

model results in higher delays compared to the Poisson arrival model, especially when 

loads are low. The results of queueing delay show gaps of over 1 slot duration in delay 

between adjacent curves among the same traffic model, which suggests a problem of 

choosing a proper buffer size for the cross-layer analysis to tradeoff between PDP due 

to buffer overflow and average queueing delay. However, this problem is out of this 

chapter’s scope and we won’t detail it. 

2. The comparison for PLP suggests that the aggregated on-off arrival model results in 
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Figure 5.12 PDP comparisons for aggregated on-off and Poisson using (5.32) 
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higher PLP compared to the Poisson arrival model. However, it is also important to note 

that when load       ,    ̅̅ ̅̅ ̅̅  dominates the PLP for Poisson arrival; while PDP 

dominates the PLP in other cases with parameters set in this chapter. We can predict 

that    ̅̅ ̅̅ ̅̅  dominates the PLP in more cases when buffer size K>50. And the minimum 

for PLP is approaching           but always larger than           with the MCSs 

adopted in Table 4.3. 

3. The comparison for throughput suggests that the aggregated on-off arrival model 

achieves lower throughput compared to the Poisson arrival model especially when 

loads are high, as expected. By equation (5.30), we see that throughput is determined 

by PLP. The throughput difference becomes apparent (around 0.1 packet per slot in 

throughput between Poisson and aggregated on-off traffic models) when PLP is larger 

than     . 

4. The comparisons shown by Figure 5.13 - Figure 5.15 also give evidence of the 

importance of selecting proper traffic models for different traffic patterns. The 

aggregated on-off arrival model is more appropriate than Poisson arrival  model in 

bursty service approximations. 
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5.3 Summary 

In this chapter, a new cross-layer analysis model combining bursty arrivals, including 

single on-off traffic model and aggregated on-off traffic model, and AMC with finite 

buffer for analyzing bursty services is proposed and analyzed. More specifically, we 

consider an end-to-end wireless link with single antenna at both transmitter and 

receiver side. At the transmitter side, the data-link layer packets with bursty arrivals are 

input into a queue with finite buffer size K. We analyze the queueing behaviors for 

bursty arrivals through the matrix geometric method. We obtain an enlarged FSMC for 

the proposed cross-layer analysis model and build up the transition matrix with a tuple 

of three parameters (arrival state, queue state and service state) accordingly. The 

queueing behaviors for burst arrivals are analyzed, and the results for performance 

analysis are compared with those generated by the usual Poisson traffic model.  

Our numerical results clearly indicate that the traffic characteristics have a powerful 

effect on system performance. This means that future studies of wireless networks with 

fading channels must incorporate both the fading channel and a viable model (not just 

Poisson) of the packet arrival process(es) in order to achieve valid performance 

evaluation. 
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Chapter 6 Cross-layer Analysis for IEEE 802.11ac 

In this chapter, we apply our proposed cross-layer analysis to a well-known WLAN 

standard – IEEE 802.11ac. Since the parameter settings of our proposed cross-layer 

analysis detailed in Chapter 4 and 5 only satisfies the specifications of 802.11a, we 

extend the existing cross-layer analysis, especially on the air interface part at the 

physical layer, to meet the requirements of the state-of-the-art. The system model with 

spatial multiplexing MIMO is introduced in this chapter, which is an extension of the 

cross-layer analysis with single channel as specified in Chapter 4 and 5. At the data-link 

layer, we use both Poisson arrivals and the bursty arrivals, which were introduced in 

Chapter 4 and Chapter 5 respectively, to approximate different traffic types. Similar to 

Chapters 4 and 5, we obtain the performance analysis on queue length in the buffer, 

PDP due to buffer overflow, average queueing delay, PLP and throughput (sub-channel 

throughput) through queueing analysis with the matrix geometric method after 

validating the system model. 

6.1 Cross-layer analysis for IEEE 802.11ac 

6.1.1 System model 

We consider a point to point frequency flat Rayleigh fading SU-MIMO channel with    

transmit antennas and    receive antennas. The channel is modeled as (6.1). 

  √      , (6.1) 

Where    is the transmit energy per antenna;   is      receive vector;   is      

receive vector with each element    selected from unit energy constellation;   is 

     circular symmetric complex additive white Gaussian noise vector with variance 

     
 where    

 is the identity matrix;   is the       channel gain matrix with each 

element     the channel gain from the jth transmit antenna and ith receive antenna. 

We adopt zero-forcing detector at the receiver side. The received       symbol 

vector  ̂ after pseudo-inverse operation is shown in (6.2), 

 ̂      (√      )      , (6.2) 
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Where   
 

√  
   

 

√  
(   )     denotes the pseudo-inverse operation to 

channel gain matrix   so that √      ;    denotes the Hermitian transpose or 

conjugate transpose of channel gain matrix  . 

Therefore, the SNR on the kth spatial stream    can be calculated by (6.3), 

   
 (    

 )

 (,(  )(  ) -  )
 

  

  ,     
-  

 
  

  ,(   )  -  
 

  

,(   )  -  
, (6.3) 

Where    
  

  
;   ( ) is the symbol or noise power; , -   is the kth diagonal entry of the 

matrix. Note that  (    
 )    since each symbol    is picked from a unit energy 

constellation. Basically, we can use (6.7) to obtain the instantaneous SNR for each 

spatial stream given the channel gain matrix  . Furthermore, we can obtain the closed-

form expressions for    if we can identify the distribution of ,(   )  -  . 

Next, we adopt the Kronecker model as the spatial correlation model. Generally, the 

channel gain matrix   for the Kronecker model is obtained by (6.4) with Rayleigh fading, 

    
     (  

   ) , (6.4) 

Where the elements of    are independently identical complex Gaussian random 

numbers, distributed with zero mean and unit variance;    is the transmit correlation 

matrix;     is the receive correlation matrix;   is the transpose of the matrix. As a result, 

the elements of channel gain matrix   follow a circular symmetric complex Gaussian 

distribution with covariance matrix       (6.5), 

    (       ), (6.5) 

Where   denotes the Kronecker product. 

Based on the adoption of spatial multiplexing with zero-forcing detector and spatial 

correlation model, we introduce two SU-MIMO scenarios which are suitable for 

802.11ac. The first scenario only assumes transmit correlations providing there is rich 

scattering at the receiver side which leads to no receive correlations; the second 

scenario assumes both transmit and receive correlations to obtain a more general 

model. Note that      . More specifically, we focus on a     MIMO model since 
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there are at most 4 antennas for the user to implement and at most 4 spatial streams, 

but the system model is ready to be extended to any other MIMO configurations. 

We assume that AP antennas are not correlated with user antennas, which is indicated 

by the Kronecker model (6.4) in which transmit correlation matrix    and receive 

correlation matrix    are independent of each other. We also assume that the 

antennas between different users are not correlated since the real distances between 

users are usually large enough to ignore inter user antenna correlation. As a result, the 

Kronecker model can be reduced as (6.6) for the first scenario, 

    (  
   ) , (6.6) 

Recall from (6.3) that the closed-form expressions for the SNR on the kth spatial stream 

   can be obtained if we can identify the distribution of ,(   )  -  . Since each row 

of the channel gain matrix   detailed in (6.6) follows an   -variate normal distribution 

with zero mean, (   ) is a complex Wishart matrix. Therefore, the SNR on the kth 

spatial stream    with zero-forcing detectorcan be obtained by (6.7) which is given by 

[61], 

 (  )  
,  

  -   
 

  ,  
  -  
  

   (       )
(
  ,  

  -  

  
)     , (6.7) 

However, for the second scenario, in which intra user antenna correlation should be 

taken into consideration, each row of the channel gain matrix   given by (6.4) does not 

follow a multi-variate normal distribution. Therefore, it is at least very hard, even if 

possible, to obtain the closed-form expressions for the SNR on the kth spatial stream    

given by (6.3). Therefore, we instead construct and verify the flat fading Rayleigh fading 

channels with transmit and receive correlation, and capture the distributions of    by 

using Monte-Carlo simulation for the second scenario. Since the distributions of    are 

dependent on the values of    and   , the results will be given in section 6.1.3 with 

specific    and    for the second scenario. 

Note that all equations given in this section lay the foundation of the queueing analysis 

on 802.11ac, which is the main contribution of this chapter, for the next section. 
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6.1.2 Queueing analysis 

Once the distributions of    are determined, we can obtain the stationary probability 

  
  for the kth stream to be in mode n given by (6.8) which is similar to (4.6), 

  
  ∫  (  )   

    

  
, (6.8) 

Where  (  ) is detailed by (6.7); *  + is the SNR threshold which is determined by 

(4.1)-(4.2). Note that because we need to meet the specifications  of 802.11ac with 

higher order MCSs and OFDM operation, the original parameter settings for MCSs 

specified in Table 4.3 is no longer applied; instead, we determine new SNR thresholds 

for MCSs chosen from Table 2.2. Since different settings for the data-link level 

simulation detailed in Figure 1.2 result in different SNR threshold values, and it often 

takes quite a long time to get the PER curve for each MCS through simulation, we use 

one specific parameter settings for PER analysis and further SNR threshold 

determination, which is given by Table 6.1, throughout this chapter. In fact, we can 

obtain SNR threshold for any reasonable system parameter settings (see Appendix A). 

Table 6.1 Parameter settings for PER analysis 

Parameter Value Parameter Value 

Packet length 1080 bits Symbols per frame 2160 

SNR range -5 35 dB Channel bandwidth 20 MHz 

No. of data subcarriers 52 No. of FFT points 64 

Bits/symbol [1,2,4,6,8] Interleaving block (          )
    

Numerical system Grey code Modulation Rectangular QAM 

OFDM symbol duration 3.2    GI 800 ns 

 

Then we select 5 MCSs (for details, see Appendix A) from MCS    , the chosen MCSs 

together with their parameter settings are listed in Table 6.2, 
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Mode n n=0 n=1 n=2 n=3 n=4 n=5 

MCS Index - 0 2 4 6 8 

Modulation - BPSK QPSK 16QAM 64QAM 256QAM 

Coding rate - 1/2 3/4 3/4 3/4 3/4 

Coded bits 

per symbol 

0 1 2 4 6 8 

Data bits per 

symbol 

0 0.5 1.5 3 4.5 6 

Service rate 
(packets/slot) 

0 1 3 6 9 12 

   0 2.898 2.690 2.973 2.934 2.999 
   0 0.7383 0.2041 0.04633 0.01158 0.003091 

   (  ) - 1.5872 6.8559 13.7139 19.6825 25.6085 

 

Based on the parameter settings given in Table 6.2, we can obtain SNR thresholds {  } 

from equations (4.1)-(4.2). Together with (6.7), we can obtain   
  given by (6.8). 

Based on   
 , we can obtain the probability transition matrix for the kth streams service 

rate   . Since we assume a slow Rayleigh fading channel for each stream, the service 

rate can only be changed between adjacent modes. Then we can build up the 

probability transition matrix similar to the one given by Equation (4.10). We can 

calculate the transition probabilities of the kth stream *      
 + and *      

 + using (6.9), 

which is similar to equation (4.8) for N=5 (since we choose 5 MCSs for queueing 

analysis), 

{
      

  
       

  
       ,     -     

      
   

      

  
       ,   -    

   (6.9) 

Where   
  is obtained by (6.8);    is calculated by (6.10), 

          (
                 

                          
), (6.10) 

Where                                         ,     ( )  is the ceiling 

function. Other parameters can be obtained in Table 6.1. 

Table 6.2 Parameter settings for 802.11ac MCSs 
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Therefore, the remaining problem for (6.9) is that of obtaining the level crossing rate 

(LCR) for each mode *     ,   -    +. The LCR is the value quantifying the 

frequency of the envelope of SNR going across some chosen thresholds in either a 

positive or a negative direction when using the fading channels. In our case the 

thresholds are the obtained SNR thresholds {  } detailed above. The usual method to 

obtain the LCR is to check the envelope crossing a given level R in the positive direction  

(6.11) given by [67], 

   ∫   ̇ (  ̇      )   ̇
 

 
 ∫   ̇ (  ̇|    ) (    )   ̇

 

 
, (6.11) 

Where  ̇ is the derivative of   with respect to time. And  (   ), which is given by 

(6.12), can be obtained by (6.7) with the transformation  (  )|   |   (  )|   | and 

   
  
 

 
 for the first scenario, 

 (  )  
  

   ,  
  -    (       )

 
 

  
 

    ,  
  -  (

  
 

    ,  
  -  

)     , (6.12) 

However, for the rest of the integral   ̇ (  ̇|    ) in (6.16), we are not able to find a 

way to solve it in the presence of transmit (and receive) correlation, because we cannot 

identify the distribution of   ̇, and neither can we find a possible solution in the 

literature with similar scenario settings. Through simulation, we find that zero-forcing 

detecting operation given by (6.2) has changed the LCRs, although the distributions for 

   remains quite similar to Rayleigh fading ones when      . As a result, we use 

Monte-Carlo simulation to determine LCR with transmit (and receive) correlations. 

All of the above are the major changes to the service process to meet the specifications 

of 802.11ac; while all the other queueing analysis , which has little changes compared 

with 802.11ac, including: 1. arrival process with Poisson and bursty traffic models , 2. 

Queue state transition analysis and 3. Performance analyses on PDP, delay, PLP and 

throughput, have been detailed in Chapter 4 and 5. 

6.1.3 Numerical results 

In this section, we present numerical results for the probabilities associated with the 

queue state in the buffer, the PDP due to buffer overflow, the average queueing delay, 
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the PLP and the throughput. We study the proposed cross-layer analysis with both 

Poisson and bursty traffic models. We also make comparisons between the scenarios 

with and without receive antenna correlations. 

Similar to the parameter settings in Chapter 4 & 5, we assume a frame duration of 

        and a prescribed PER        .  

We set the system average SNR=35 dB for each spatial stream, compared to 15 dB set 

in Chapter 4 & 5. There is a huge increase in average SNR. After analysis, we get three 

possible reasons for the increment of average SNR: 

1. We use higher-order MCS, that is, 256 QAM with 3/4 coding rate, to increase the 

maximum data rate, which requires better channel conditions compared to MCSs 

adopted in Chapter 4 & 5. 

2. We insert 800 ns GI for each OFDM symbol. The insertion of GI results in the increase 

in SNR in order to obtain the same PER. 

3. The trace-back length for the Viterbi decoder we use for simulation is quite short. We 

set trace-back length = 35 because conventionally the trace-back length is 5 times 

longer than the constraint length, which has been set to 7, used by a 1/2 convolutional 

encoder. However, the trace-back length has a strong impact on the PER. The longer 

the trace-back length is, the smaller the PER will be. But longer trace-back length also 

results in larger registers to store the path metrics used by the Viterbi decoder. As a 

result, a longer trace-back length takes more time for a simulation of PER. The trace-

back length we use might be too short compared to the one used by real devices. 

Therefore, we have to increase SNR to obtain the same PER. 

The next problem is to select the proper buffer length used for analysis and simulation. 

There is not so much information on buffer sizing in published work, although some 

inspiring attempt has been made in literature [71]-[73], the problem still remains open 

for investigation. However, the selection of the proper buffer size is out of this thesis’s 

scope, and we just try to find out the buffer size in use by simulation tools and testbeds. 

As suggested by [71], ns-2 simulator uses a default buffer size of 50 packets for the 

queue object (which is also why papers like [22] uses 50 packets as the buffer size, and 
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we follow this setting in Chapter 4 & 5); while the open source MadWifi drivers for the 

Atheros chipset adopts 200 packets for the buffer size; and the ath5k drivers equally 

divide 200 packets buffer size into four queues representing four different traffic types; 

the ath9k drivers uses 512 instead 200 packets for similar division for 802.11n standard.  

To offset the differences in these buffer size settings , we adopt a range of buffer 

lengths, from 50, 100, 150, 200 to 250 packets. 

Next, the proper transmit and receive correlation matrices    and    need to be 

adopted. Consistent with those adopted in [62], we set    and    using (6.13). Note 

that the correlation matrices are not necessarily the same, and the elements for 

correlation matrices are also dependent on real antenna configurations, which may 

vary in different scenarios. 

        (

            

           
                     

                     

                     

                     
            

           

,, (6.13) 

Since the correlation matrices specified by (6.13) are symmetric, we obtain that the 

performances for stream 1 & 4 are the same; while the performances for stream 2 & 3 

are the same. Therefore, we only need to check stream 1 and stream 2 for simplicity. 

Based on correlation matrices, we can obtain the average service rate   ̅  for our chosen 

channel model. Table 6.3 lists the average service rate for the two scenarios. 

 

 Scenario 1 Scenario 2 

Stream 1 8.80 packets/slot 8.10 packets/slot 

Stream 2 8.08 packets/slot 7.35 packets/slot 

 

Note that the average service rates for scenario 1 when there is only transmit 

correlation are larger than ones for scenario 2 when both transmit and receive 

correlations exist with the same average SNR for each spatial stream. Thus, the 

Table 6.3 Average service rate for 802.11ac MCSs 
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existence of correlation degrades the channel conditions, which can also be verified by 

equation (6.7) where the kth diagonal entry ,  
  -   is a real number larger than 1. 

After we obtain the average service rates for the queueing analysis, the arrival rates for 

both Poisson and bursty traffic models should be identified for various system loads. 

Poisson arrival rates can be easily adjusted to the specified average service rates to 

obtain different system loads; while bursty arrival rates need more manipulations. If we 

use the probability transition matrix for each single on-off traffic stream specified by 

equation (5.31), for which we still adopt in this section to approximate the burstiness 

for arrival traffic, we obtain the single on-off stream arrival rate=0.4303 packet/slot. 

Therefore, we get several definite values of system loads for analytical simplicity, 

although we can obtain any arbitrary system load by changing the elements in equation 

(5.31). 

6.1.3.1 SNR distribution validation for each stream 

Before performance analysis, we validate the SNR distribution for scenarios 1 & 2. The 

analytical expression for the SNR distribution for scenario 1 has been given by equation 

(6.7), and Figure 6.1 has given the CDF for SNR distribution by both theoretical analysis 

and simulation. From Figure 6.1, we obtain that streams 1 & 4 have the same CDF for 

SNR distribution; while stream 2 & 3 have the same CDF. Moreover, analytical and 

simulation results match quite well, which validates the SU-MIMO channel we built. In 

addition, the matching results prove that using Monte-Carlo simulation for SU-MIMO 

channel construction is feasible in practice. Therefore, we use Monte-Carlo simulation 

to generate a CDF for the SNR distribution for scenario 2 for which we are not able to 

obtain an analytical expression. 

Figure 6.2 shows the simulation results for each stream. Least square regression 

analysis with exponential fitting is used for obtaining an asymptotic expression of the 

CDF for the SNR distribution. The reason we use exponential fitting is because 

simulation results are shaped similar to the CDF of an exponential distribution, and an 

exponential expression is easier to take into further operations such as integration for 

the calculation of average PER. 
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Figure 6.2 CDF of SNR for each stream for scenario 2 

 

Figure 6.1 CDF of SNR for each stream for scenario 1 
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6.1.3.2 Queue state in the buffer 

Figure 6.3-6.5 show the probabilities associated with queue state in the buffer for both 

Poisson and bursty arrivals for scenario 1 & 2 when the buffer size K=100. System load = 

0.7 for Poisson arrival in both scenario 1 &2; while system load = 0.3409, 0.3713, 0.3713, 

0.3409 for bursty arrival of each stream in scenario 1 and system load = 0.3740, 0.4082, 

0.4082, 0.3740 in scenario 2. We have the following observations: 

1. For Figure 6.3 and 6.4, we see that the shapes of curves with different average 

service rates are also different even if they share the same system load, which shows 

the impact of fading on the queue models. 

2. For Figure 6.5, we see that different scenarios can share the same curves with 

different average service rates if we do not change the elements of the probability 

transition matrix for each single on-off traffic stream specified by equation (5.31), which 

shows the impact of the burstiness of the traffic on the queue models. 

Note that other performance analysis are easily validated after we validate the queue 

state in the buffer, thus, we won’t validate other performance metrics.  In addition, 

since scenario 2 (considering receive correlations) is more general than scenario 1, the 

results for scenario 1 are mainly used for comparisons with ones for scenario 2 to avoid 

unnecessary repetitions. 
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Figure 6.3 Queue state in the buffer with Poisson arrival for scenario 1 

 

Figure 6.4 Queue state in the buffer with Poisson arrival for scenario 2 
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6.1.3.3 PDP due to buffer overflow 

Figure 6.6-6.9 captures the behaviors of PDP due to buffer overflow with both Poisson 

and bursty arrivals. We have following observations: 

1. Figure 6.6 and 6.7 shows the comparisons for streams with different average service 

rates. We see that the stream with larger average service rate (stream 1 in our case) 

always achieves a lower PDP with the same system load and buffer size, which shows 

the impact of fading on the queue models. 

2. Figure 6.8 and 6.9 illustrates the comparisons on the same stream for different 

scenarios. We find that the stream without receive correlations always achieves a lower 

PDP with the same system load and buffer size. This situation is understandable 

because streams without receive correlations always obtain higher average service 

rates under the same average SNR, so the same conclusion can be drawn as in 

observation 1. The comparisons illustrate the impact of antenna correlations. 
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Figure 6.7 PDP with bursty arrival for scenario 2 
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6.1.3.4 Average queueing delay 

Figure 6.10-6.13 shows the analysis of average queueing delay with both Poisson and 

bursty arrivals. We have the following observations: 

1. Figure 6.10 and 6.11 compare streams with different average service rates in the 

presence of transmit and receive correlations. We see that the stream with lower 

average service rate (stream 2 in our case) always has  a larger average queueing delay 

with the same average SNR for each stream, which shows the impact of fading on the 

queue models. 

2. Figure 6.12 and 6.13 show the comparisons on the same stream for different 

scenarios. We see that the stream with receive correlations always results in a larger 

average queueing delay with the same system load, buffer size and average SNR. This is 

also because the stream with receive correlations has lower average service rates 

compared to the stream without receive correlations, which shows the impact of 

antenna correlations on queue models. 

3. We do not analyze the case when system load grows larger than 0.9; however, we 

can still predict the curves for average queueing delay become flat because of the finite 

buffer sizes. 
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Figure 6.11 Average queueing delay with bursty arrival for scenario 2 

Figure 6.12 Average queueing delay comparisons with Poisson arrival 
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6.1.3.5 PLP 

Figure 6.14-6.17 illustrate the PLP for the cross-layer analysis for both Poisson and 

bursty arrivals. The average PERs for streams 1 & 2 are equal to 

                            respectively for scenario1; while they are equal to 

                            for scenario 2. We have following observations: 

1. As analyzed in Chapter 4 and 5, PLP is determined by PDP and average PER by 

equation (4.28). In this case, PLP is dominated by PDP when PDP is larger than     ; 

while PLP is dominated by average PER when PDP is lower than     . Therefore, PLPs 

will converge to the values of average PERs when PDPs are lower than     . 

2. Figure 6.14 and 6.15 show the PLP with different average service rates. The stream 

with higher average service rate achieves lower PLP, again illustrating the impact of 

fading on queue models. 

3. Figure 6.16 and 6.17 show the comparisons on PLP for different scenarios. The 

stream without receive correlations gives lower PLP, which again verifies the impact of 

antenna correlations on queue models. 
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Figure 6.13 Average queueing delay comparisons with bursty arrival 



117 
 

 

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

System load

P
a

c
k
e

t 
lo

s
s
 p

ro
b

a
b

il
it
y

 

 

Stream1, K=50

Stream2, K=50

Stream1, K=100

Stream2, K=100

Stream1, K=150

Stream2, K=150

Stream1, K=200

Stream2, K=200

Stream1, K=250

Stream2, K=250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

System load

P
a

c
k
e

t 
lo

s
s
 p

ro
b

a
b

il
it
y

 

 

Stream1, K=50

Stream2, K=50

Stream1, K=100

Stream2, K=100

Stream1, K=150

Stream2, K=150

Stream1, K=200

Stream2, K=200

Stream1, K=250

Stream2, K=250

Figure 6.14 PLP with Poisson arrival for scenario 2 

Figure 6.15 PLP with bursty arrival for scenario 2 
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Figure 6.16 PLP comparisons with Poisson arrival 

Figure 6.17 PLP comparisons with bursty arrival 
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6.1.3.6 Throughput 

Figure 6.18 and 6.19 show the throughput, which is a measure of packets transmitted 

per slot, for each stream when the buffer size K=200. We have following observations: 

1. We see that the stream without receive correlations achieves higher throughput, 

which again shows the impact of antenna correlations on queue models. 

2. The spatial multiplexing technology used by the SU-MIMO channel model can 

dramatically increase the overall throughput for the user exploiting the spatial order.  

Theoretically, the user equipped with 4 antennas can achieve 4 times larger throughput 

than a single antenna user without antenna correlations; however, the presence of 

antenna correlations degrades the throughput for each stream which results in the 

reduction in overall throughput in the ideal case. (e.g. for the receive correlation only 

case with Poisson arrivals at load 0.9, the total throughput is approximately   

(         )        packets/slot, but ideally the total throughput is   

(         )        packets/slot by values in Table 6.3) 
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Figure 6.18 Throughput comparisons with Poisson arrival 
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6.2 Summary 

In this chapter, cross-layer analysis on IEEE 802.11ac with higher-order MCSs, wider 

bandwidth and more spatial streams is given. Finally, we successfully extend the 

original single channel single antenna scenario (specified in Chapters 4 & 5) to the SU-

MIMO scenario which is able to be analyzed by the matrix geometric method. The 

modifications of queueing analysis, especially on the service process, are detailed for 

performance analysis. We adopt Poisson and bursty traffic arrival processes, which are 

discussed throughout Chapters 4 & 5, to approximate behaviors of different traffic 

types using 802.11ac. In addition, the presence of antenna correlations, which play an 

important role in practical MIMO systems, are discussed and evaluated in this chapter. 

Performance metrics including queue state in the buffer, PDP due to buffer overflow, 

average queueing delay, PLP and throughput are validated and analyzed by simulations. 

By performance comparisons, we not only illustrate the impact of fading and traffic 

types, but also that of the antenna correlations on the queue models. All the work done 

in this chapter is oriented at performance evaluation for the IEEE 802.11ac standard. 
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Figure 6.19 Throughput comparisons with bursty arrival 
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Chapter 7 Conclusion & Future Work 

7.1 Conclusion 

In this thesis, extensions and modifications, both at the data-link layer and the physical 

layer, to the cross-layer operation incorporating packet queueing effects are 

investigated, evaluated and discussed. The generalized G/D/s(t)/K queue model for 

both Poisson and bursty arrivals incorporating AMC is proposed for queueing analysis. 

To evaluate the packet queueing distributions, delays and losses, the matrix geometric 

method is adopted throughout the thesis. The main contributions are included in 

Chapter 5 and Chapter 6 based on the fundamental work done in Chapter 3 and 

Chapter 4. 

7.1.1 Fundamental work 

In Chapter 3, the M/D/1/K queue models with and without vacations are investigated 

respectively. Metrics including queue state in the buffer, PDP due to buffer overflow 

and average queueing delay are obtained. In addition, the comparisons between queue 

models with and without vacations are investigated, and the impact of vacations is 

examined, which lays the foundation of the extension for cross-layer analysis 

incorporating AMC. 

In Chapter 4, the cross-layer design incorporating queueing effects and AMC is 

examined. This chapter is mainly based on the work already done in the literature [28]. 

The equivalent M/D/s(t)/K queue model with a range of working vacations , which 

correspond to MCSs adopted by AMC, is obtained for queueing analysis on a single 

channel, single user scenario. As an extension to Chapter 3, metrics including PLP and 

average throughput are investigated for performance analysis. As a result, the impact of 

fading, which determines the variations of service rate controlled by AMC, is examined. 

7.1.2 Contributions 

In Chapter 5, the cross-layer analysis with bursty arrivals at the data-link layer is 

obtained. Bursty traffic processes, including ON-OFF process and aggregated ON-OFF 

process, are adopted for queueing analysis. Compared to the Poisson arrivals adopted 

in Chapter 4, bursty arrivals can better approximate traffic types such as voice, video 
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and data centre in practical scenarios. The feasibility of applying the matrix geometric 

method in cross-layer analysis with bursty arrivals is discussed. In addition, 

performance analyses are obtained to reveal the impact of bursty arrivals compared to 

Poisson arrivals. Numerical results show the importance of choosing proper traffic 

models in practical scenarios. 

In Chapter 6, the cross-layer analysis is extended at the physical layer to meet the 

specifications of IEEE 802.11ac standard with high-order MCSs, more channel 

bandwidth and more spatial streams. Spatial multiplexing SU-MIMO with ZF detector in 

the presence of both transmit and receive correlations is considered and successfully 

modelled by the matrix geometric method with both Poisson and bursty traffic models. 

The PER analysis for candidate MCSs is obtained, resulting in the re-adoption of MCSs 

and re-determination of SNR thresholds for the service process. Numerical results 

reveal the impact of antenna correlations as well as traffic models on system 

performance. 

7.2 Future work 

This thesis investigates cross-layer analysis, incorporating queueing effects and AMC 

both at the data-link layer and the physical layer, by queueing analysis using the matrix 

geometric method. In general, there are two paths that could be followed by the future 

work. 

On one hand, the contributions of this thesis are mainly oriented at cross-layer analysis 

incorporating AMC. More specifically, we only investigate how the physical layer 

mechanisms like AMC impact on the queueing behaviour at the data-link layer; there is 

still a lack of studies on how the queue state at the data-link layer can affect the 

physical layer decisions. Therefore, the cross-layer solution/algorithm to make 

interactive decisions between the physical layer and the data-link layer can be 

investigated and developed as the continuing work. An outline of how this could work is 

elaborated in section 7.2.1. 

On the other hand, the cross-layer analysis is extended to partly meet the specifications 

of IEEE 802.11ac standard in this thesis. In order to obtain more practical performance 
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analysis for 802.11ac, potential extensions can focus on the completion of traffic 

models, algorithms, protocols and mechanisms for 802.11ac, both at the data-link layer 

and the physical layer. 

7.2.1 Cross-layer algorithm 

In order to achieve a functioning cross-layer algorithm between the data-link and the 

physical layer, we need to specify the interactions and decision making between these 

two layers.  

From Chapter 4 to 6, we have provided a method to evaluate how AMC at the physical 

layer determines the service process of the queue at the data-link layer. The service 

rate transition matrix is constructed to identify the transitions of MCSs adopted by AMC. 

Additional steps are needed to be followed in order to achieve a cross-layer algorithm. 

More specifically, these steps will address how the physical layer mechanisms can 

access the information at the data-link layer to obtain better QoS performance.  

The rest of this section focusses on how the queue state at the data-link layer can be 

used to optimize MCS selection decisions at the physical layer. 

As indicated by equation (4.28) and (4.29), both of the PLP and throughput are 

dependent on average PER and PDP due to buffer overflow. Roughly speaking, using 

higher-order MCS increases in PER under the same CSI, but decreases in the number of 

packets dropped if the buffer tends to be full; on the other hand, if the buffer tends to 

be empty, using lower-order MCS reduces PER while ensuring no packet dropped. 

Therefore, if the physical layer can obtain queue state information at the data-link layer, 

then the cross-layer algorithm can make MCS decisions for each timeslot that 

maximizes the throughput or minimize the PLP for the long run. 

The matrix geometric method we adopt from Chapter 4 to 6 can obtain the queue state 

behaviour under any specific system load and any specific measured traffic burstiness 

(i.e. bursty transition matrix such as equation (5.5)) by equation (4.16) on a slot-by-slot 

basis. Recall it for convenience, 

      (      (  (       ))    )     (4.16) 



124 
 

Originally,    is totally determined by CSI; a possible cross-layer algorithm can also take 

queue state      and the average number of arrival packets with a limited length of 

sliding window   ̅̅ ̅̅  into consideration. Note that we adopt a late arrival system (LAS) 

for cross-layer analysis throughout the thesis, which means packets in the buffer are 

served before new packets are arrived within each timeslot. Therefore, we use   ̅̅ ̅̅  

instead of    in determining    in each timeslot for the cross-layer algorithm.   ̅̅ ̅̅  is 

given by (7.1) with an integer number of W, 

  ̅̅ ̅̅  
 

 
∑   

 

       

 (   ) 

As a result, a possible cross-layer algorithm determining    for each timeslot is given as 

below; note that the service rate can only be chosen from a vector S and S(n) denotes 

the service rate in mode n. 

 

 

   

 

 

 

 

 

 

 

 

 

1. Get the service rate 𝑆𝑡
  𝑆(𝑛) which is totally determined by CSI with mode 

n 

2. (The case when the buffer tends to go empty) 

Check if 𝐵𝑡   𝑆𝑡
 . If so, go to step 3; if not, the updated service rate 

𝑆𝑡
   𝑆(𝑖)  𝑆𝑡

 , then go to step 4   

3. FOR 𝑖  𝑛:   

        IF 𝐵𝑡  ≥ 𝑆(𝑖) 

                𝑆𝑡
   𝑆(𝑖)  BREAK 

        ELSE 

                CONTINUE 

        ENDIF 

END 
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In summary, the above proposal for a cross-layer algorithm exploits the queue state 

and traffic arrival behaviours at the data-link layer to affect the MCS decisions at the 

physical layer on a slot-by-slot basis. Such a cross-layer algorithm could be used to 

optimize the throughput, which would be one of the main contributions for any such 

future work. 

4. (The case when the buffer tends to cause overflow) 

Calculate the predicted number of packets dropped due to buffer overflow 

𝐷𝑡
̅̅ ̅  within the timeslot by 𝐷𝑡

̅̅ ̅     (     (  (𝐵𝑡   𝑆𝑡
  ))  𝐴𝑊̅̅ ̅̅  𝐾), 

and calculate the average packets dropped by transmission error 𝐸�̅�  within 

the timeslot by 𝐸�̅�  𝑆𝑡
   𝑃𝐸𝑅𝑖(𝛾) , where 𝑃𝐸𝑅𝑖(𝛾)  is obtained by 

equation (4.1). Therefore, the average of total packets dropped 𝐷𝑡𝑜𝑡𝑎𝑙(𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   

𝐷𝑡
̅̅ ̅  𝐸�̅�  for mode i. 

5. IF 𝑖  𝑁  

        FOR 𝑗  𝑖:𝑁 

                CALCULATE 𝐷𝑡𝑜𝑡𝑎𝑙(𝑗)̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅  and 𝐷𝑡𝑜𝑡𝑎𝑙(𝑗  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅  

                        IF  𝐷𝑡𝑜𝑡𝑎𝑙(𝑗)̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅  𝐷𝑡𝑜𝑡𝑎𝑙(𝑗  )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅ 

                                 𝑆𝑡  𝑆(𝑗  ) 

                        ELSE 

                                𝑆𝑡  𝑆(𝑗)  BREAK 

                        ENDIF 

        END 

ELSE 

        𝑆𝑡  𝑆(𝑗)   

ENDIF 

6. OUTPUT 𝑆𝑡  as the determined service rate for the timeslot after the cross -

layer algorithm 
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7.2.2 Extensions to the full specifications of 802.11ac 

7.2.2.1 Extensions to the data-link layer 

Since queueing effects are the only data-link layer factor considered in this thesis, more 

data-link layer mechanisms could be applied into the cross-layer analysis.  

As introduced in section 2.3.2, an extensive amount of work has investigated the cross-

layer design incorporating ARQ; moreover, [23] has provided the framework for the 

cross-layer design incorporating both queueing effects and ARQ using the matrix 

geometric method, and it is possible to incorporate ARQ into the cross-layer analysis 

investigated in Chapter 6. A tuple with four elements, including queue state, service 

state, traffic arrival state and ARQ retransmission state, would need to be considered 

for constructing the probability transition matrix in order to obtain the stationary 

distribution for the queue length in the buffer. The hidden challenge would be the 

operation time for solving the left eigenvector of the probability transition matrix 

because, in such a proposed algorithm, the matrix would get much larger. 

Besides ARQ, more mechanisms at the data-link layer such as a CSMA/CA mechanism 

could be considered for a similar cross-layer analysis in 802.11-based networks. This 

collision avoidance mechanism is applied to the uplink scenario when multiple users try 

to set up transmission to an AP when that AP is only able to communicate with a single 

user. The published work has provided some heuristic approaches to achieve a 

queueing analysis incorporating CSMA/CA. [37] incorporated the classical Distributed 

Coordination Functions (DCF) as the medium access method for queueing analysis, 

while [38] applied Distributed Queueing Collision Avoidance (DQCA) MAC protocol, 

which adopted two queues: one for solving collisions and the other for data 

transmissions, for queueing analysis. The challenge to incorporate CSMA/CA 

mechanism in the cross-layer analysis would be the complexity of the queueing analysis. 

In addition, as suggested by [36] [48] [37], an MMPP traffic model is also good at 

capturing burstiness of packet traffic as an alternation to using N-ON-OFF processes. In 

order to get a better understanding of the bursty traffics, an MMPP can be used as the 

bursty traffic model for the cross-layer analysis. A tuple with queue state, service state 

and arrival state could be used for constructing the probability transition matrix. 
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However, the problem of finding an ideal bursty traffic model is still not addressed; the 

underlying solution is keeping track of new experimental achievements in this related 

field. 

7.2.2.2 Extensions to the physical layer 

In Chapter 6, only a SU-MIMO system is considered at the air interface; however, 

802.11ac also supports MU-MIMO. [33] claimed to extend to MU-MIMO scenario, but 

the system model provided in this paper was equivalent to SU-MIMO. As far as we 

know, in order to achieve a MU-MIMO operation model, a precoding operation such as 

beamforming should be applied at the transmitter (i.e. the AP for 802.11-based 

networks) to separate spatial streams for different users. In addition, more detectors 

other than ZF detector, such as the minimum mean squared error (MMSE) detector, 

could be considered for equalizing at the receiver side. The challenge is in how to obtain 

the SNR distribution for each spatial stream by ZF or MMSE detector with precoded 

channel gain matrix, and this would also make interesting future work. 

Another interesting extension is in antenna selection for users. As specified in 802.11ac, 

an AP can be equipped with at most 8 antennas, while a user device can be equipped 

with at most 4 antennas. When there are sufficient antennas available for the AP, it can 

perform antenna selection for performance optimization. [62] provided two antenna 

selection strategies: one to maximize the average throughput and the other to minimize  

the average SER. The strategies are achieved by investigating diagonal entries of the 

inverse of transmit correlation matrix; however, these strategies only work for the ZF 

detector with transmit correlation only. In addition, the available antennas for AP after 

antenna selection can transmit the same data to achieve diversity order or go into sleep 

mode to save energy. Therefore, further investigation could be focused on performance 

optimizations on the cross-layer analysis. 
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Appendix 

A. Determining SNR thresholds for MCSs 

From Equation (4.2), we obtain that SNR thresholds are dependent on prescribed PER. 

Therefore, before we get SNR thresholds for MCSs, we need to analyse the PER curve 

with different SNRs. It has been discussed in [22] that the PER for convolutional coded 

modulations cannot be obtained directly from BER although the exact BER for QAM has 

been given by [76]. Thus, we use Monte-Carlo simulation to get the PER with a range of 

SNRs, and use least square regression analysis with exponential fitting (as specified by 

(4.2)) to approximate PER behaviour for each MCS. 

We choose MCSs adopted by 802.11ac, which is listed in Table 6.1, as an example. 

System parameter settings are given in Table 6.4. Then, we get the PER curves for 

different MCSs versus SNR shown by Figure A1. 

 

 

We find that there is no need to use all MCSs adopted by 802.11ac for queueing 

analysis, because some MCSs (such as 64QAM 3/4 and 64QAM 5/6) behaves nearly the 

same in PER analysis. In addition, published work such as [7] claims to use fewer MCSs 

with slightly throughput change to reduce complexity. Thus, we select MCS 0, 2, 4, 6, 8 

for further queueing analysis instead of all of the MCSs adopted by 802.11ac. 
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Figure A1 PER curve for MCSs used by 802.11ac 
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Below is a chart provided by WLAN Pro to describe the SNR to MCS data rate mapping 

under different Wi-Fi standards (Figure A2). These are simply a generic approximation 

for Wi-Fi devices but still provide valuable information to estimate the range to use 

each MCS. We focus on mappings for 802.11ac with 20 MHz channel bandwidth, and 

find that our values generated by Monte-Carlo simulation (Table 6.5 and Figure A1) kind 

of agree to the values captured by real Wi-Fi devices.  

 

 Figure A2 SNR and MCS mapping for Wi-Fi standards 


