33 research outputs found

    A single-server Markovian queuing system with discouraged arrivals and retention of reneged customers

    Get PDF
    Customer impatience has a very negative impact on the queuing system under investigation. If we talk from business point of view, the firms lose their potential customers due to customer impatience, which affects their business as a whole. If the firms employ certain customer retention strategies, then there are chances that a certain fraction of impatient customers can be retained in the queuing system. A reneged customer may be convinced to stay in the queuing system for his further service with some probability, say q and he may abandon the queue without receiving the service with a probability p(=1− q). A finite waiting space Markovian single-server queuing model with discouraged arrivals, reneging and retention of reneged customers is studied. The steady state solution of the model is derived iteratively. The measures of effectiveness of the queuing model are also obtained. Some important queuing models are derived as special cases of this model

    Performance analysis of a discrete-time queueing system with customer deadlines

    Get PDF
    This paper studies a discrete-time queueing system where each customer has a maximum allowed sojourn time in the system, referred to as the "deadline" of the customer. Deadlines of consecutive customers are modelled as independent and geometrically distributed random variables. The arrival process of new customers, furthermore, is assumed to be general and independent, while service times of the customers are deterministically equal to one slot each. For this queueing model, we are able to obtain exact formulas for quantities as the mean system content, the mean customer delay, and the deadline-expiration ratio. These formulas, however, contain infinite sums and infinite products, which implies that truncations are required to actually compute numerical values. Therefore, we also derive some easy-to-evaluate approximate results for the main performance measures. These approximate results are quite accurate, as we show in some numerical examples. Possible applications of this type of queueing model are numerous: the (variable) deadlines could model, for instance, the fact that customers may become impatient and leave the queue unserved if they have to wait too long in line, but they could also reflect the fact that the service of a customer is not useful anymore if it cannot be delivered soon enough, etc
    corecore