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Abstract

In this paper, we analyze a discrete-time queueing model with two types (classes) of cus-
tomers and two servers, one for each customer class. Although each server can only process
one type of customers, all customers are accommodated in one single queue and served in
their order of arrival, irrespective of their types. The numbers of customers arriving in the
system from time slot to time slot are independent, but the types of consecutive customers
are not necessarily independent. Specifically, we assume that a first-order Markovian cor-
relation (“interclass correlation”) exists between the types of subsequent customers in the
arrival stream. The fact that multiple customers of the same type may arrive back-to-back
and customers have to be served in their order of arrival, causes occasional under-utilization
of the service capacity of the system, because some customers may not be able to reach their
server owing to the presence of customers of the opposite type in front of them.

In this paper, we assume that the service times of both types of customers are inde-
pendent, geometrically distributed random variables. The paper extends earlier work where
all the service times were assumed to be of fixed length, either equal to 1 slot each, or
equal to multiple slots. The fact that, in the present paper, service times are of variable
length, entails that customers being served simultaneously can overtake each other, thus
disturbing the original arrival order. This phenomenon did not occur in previous studies
with fixed-length service times, and represents the main new element of the paper. It also
complicates the analysis of the system considerably. Nevertheless, we are able to derive ex-
plicit expressions for the probability generating functions and the mean values of the main
performance measures of the system, in terms of the original system parameters and one
root of a non-linear equation. Our results reveal the impact of the interclass correlation and
the variable nature of the service times on the achievable throughput, the (mean) number
of customers in the system, the (mean) customer sojourn times, the (mean) unfinished work
in the system, and related quantities.
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global FCFS; geometric service times
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1 Introduction and mathematical model

Classical multi-class queueing models deal with situations where multiple types (or classes) of
customers compete for the use of the same resources; see, e.g., [11, 2, 19, 16, 27, 25, 1, 3] for some
recent examples in various application areas. Usually, the resources to be shared are the facilities
that are able to deliver the requested services to the customers, or, in queueing language, the
“servers” of the queueing system. Very often, the different customer classes are characterized by
either their distinct arrival characteristics, their different service requirements, their loss priorities
([28]), their service priorities ([21, 23, 26]), etc. Arriving customers are either accommodated in
separate class-specific queues or in one global shared queue, but in general they require some kind
of processing from the same servers. It is mainly this particular circumstance that causes the
interdependence between the queueing performance of the individual customer classes.

In the present paper, we study a multi-class queueing model which is different from the above
setting, in that each customer class now has its own dedicated server, i.e., customer classes do not
compete for the same servers, but where the access to the servers is to be shared among different
customer classes, i.e., arriving customers are accommodated in one common waiting line and can
only reach the service area of the system in their order of arrival, regardless of the class they
belong to. In this setting, it is the sharing of the same storage capacity and the strict adherence
to the first-come-first-served (FCFS) service discipline that causes interaction between the various
customer classes. Some obvious practical applications of this kind of model occur in the context
of road networks (see, e.g., [22, 30, 29, 10]), when cars having different destinations use the same
road section in front of a traffic junction, or input queues in the context of packet switches in
the nodes of communication networks (see, e.g. [24, 4]), when information packets destined to
different downstream nodes are stored in shared buffers.

Specifically, this paper considers an infinite-capacity discrete-time queueing model with two
types (classes) of customers, each having their own dedicated server. Customer classes are named
1 and 2, servers are called A and B. Server A can only process customers of type 1 and server B
can only deal with customers of type 2. Customers are served in their order of arrival, regardless
of the class they belong to. In the context of single-server models, some authors have named
this kind of service discipline “multi-class FIFO” (see, e.g. [17, 15, 11]), where, of course, FIFO
stands for first-in-first-out. Here, because of the presence of two servers instead of just one, and
for the sake of consistency with our earlier papers, we will label this service discipline “global
first-come-first-served” (“global FCFS”).

As in all discrete-time models, the time axis is divided into fixed-length intervals, referred to
as slots in the sequel. New customers may enter the system at any given (continuous) point on
the time axis, but services are synchronized to (i.e., can only start and end at) slot boundaries.
Arrivals in the system are assumed to occur independently from slot to slot. Their numbers are
characterized by the probability mass function (pmf) e(n) and the probability generating function
(pgf) E(z), i.e.,

e(n) , Prob[n arrivals in one slot] , n ≥ 0 ,

E(z) ,
∞∑
n=0

e(n) zn . (1)

The mean arrival rate (per slot) is given by

λ = E ′(1) . (2)
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Figure 1: Situation where the system contains multiple customers and the eldest two customers
belong to the same class.

Subsequent customers arriving in the system may belong to either class 1 or class 2 randomly,
but not necessarily independently. Here we assume a simple first-order Markovian correlation
between the types of consecutive customers; we refer to this correlation with the term “interclass
correlation” in this paper. As in [9] and [8], we denote by α the probability that the next customer
has the same type as the previous one, and by 1 − α the probability that the next customer
belongs to the opposite class as the previous one. The parameter α (0 ≤ α ≤ 1), referred to as the
“cluster parameter” in the sequel, is indicative for the amount of class clustering in the arrival
process: a high value of α implies that high numbers of customers belonging to the same class
may arrive back-to-back, whereas a low value of α points at situations where the two customer
types alternate more frequently. In general, the average length of a “cluster”, i.e., a sequence of
consecutive customers of the same type, either 1 or 2, is given by 1/(1− α). In this model, both
customer classes occur equally frequently in the long run, and thus represent half of the arrival
load.

The service times of all customers, regardless of the class they belong to, are assumed to be
geometrically distributed with parameter 1− µ, i.e. their pmf s(n) is given by

s(n) , Prob[service time = n slots] = µ(1− µ)n−1 , n ≥ 1 , (3)

their pgf S(z) is given by

S(z) =
µz

1− (1− µ)z
, (4)

and their mean value E[s] is

E[s] =
1

µ
. (5)

We have studied a special case of the current model, where the service times are determinis-
tically equal to 1 slot each, i.e., where µ = 1, in our previous paper [9]. A first generalization of
this was examined in [8], where arbitrary-length constant service times, i.e., service times equal
to s ≥ 1 slots each, were considered. This extension was motivated mainly by the desire to study
the effect of the lengths of the service times (as compared to the slot length) on the queueing
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behavior of the two-class global-FCFS system. Although seemingly simple, the extension proved
to be non-trivial in terms of a substantially increased complexity of the state description of the
system and its analysis. Mathematically speaking, the main reason for this is the fact that the
deterministic distribution (with constant value s) does not possess the memoryless property if
s ̸= 1, which requires the state description of the system to include information on the elapsed (or
remaining) service time(s) of the customer(s) in service. In the present paper, we want to tackle
a second generalization of the basic model in [9]. Specifically, we want to relax the restriction
that service times need to be deterministic and allow for variable-length service times, while still
keeping the complexity of the analysis within reasonable limits. A geometric, and hence mem-
oryless, distribution for the service times, is therefore a suitable choice. The variable nature of
the service times implies that customers being served simultaneously (by servers A and B) can
possibly “overtake” each other, i.e., a customer arriving later than an other customer may finish
its service earlier, owing to a shorter service time. This phenomenon complicates the queueing
analysis of the system considerably, because it disturbs the concepts of “previous customer” and
“next customer” which are crucial in our Markovian model of class clustering. Nevertheless, we
are able to derive explicit expressions for the pgfs of the system content, the server content, the
queue content, and the unfinished work, in terms of the original system parameters and one root
of a nonlinear equation. From these pgfs, we can derive, among others, the mean system content,
the mean server content, the mean queue content, the mean unfinished work in the system, and
the mean delay and mean waiting time of the customers.

It is worth mentioning that the current paper is also related with the work reported in reference
[20], in which a continuous-time two-server queueing model with two types of customers and
global FCFS service discipline is considered, under the assumptions that arrivals occur according
to a classical continuous-time Poisson process and all service times are exponentially distributed.
Although the continuous-time model and, especially, the method of analysis in [20] are profoundly
different from the discrete-time approach presented in the current paper, both papers do examine
the same type of queueing phenomenon. Some comparison of the results of both approaches will
therefore also be briefly included further in this paper.

Specifically, the structure of the rest of this paper is as follows. In section 2, we subsequently
introduce a Markovian state description of the system under study, establish equations describing
the system-state evolution as a function of time, and determine the maximum allowable traffic
intensity in order for the system to remain stochastically stable. Next, we present a detailed
analysis of the system content and various other related performance measures. Section 3 treats
two simple special cases of the model under study, for which results known in literature are easily
retrieved. An extended discussion of the main results, including comparison with the results
reported in [8, 20] and various numerical examples, is presented in section 4. Section 5 formulates
some conclusions and briefly comments on possible future work.

2 Queueing analysis

2.1 Markovian state description of the system

Let uk denote the total system content, i.e., the total number of customers present in the system
(i.e., queue + servers, see Figs. 1 and 2), let qk denote the queue content, i.e., the number of
waiting customers (excluding those in service, if any) in the system, and let rk (0 ≤ rk ≤ 2)
denote the server content, i.e., the number of customers in service (servers A and B together), as
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Figure 2: Situation where the system contains multiple customers and the eldest two customers
belong to opposite classes.

observed at the beginning of the k-th slot. It is clear then that, for all values of k, the following
simple relationship exists between these random variables:

uk = qk + rk . (6)

Furthermore, we note that the possible values of the random variable rk are determined by the
value of the random variable uk; specifically, we have

uk = 0 ⇒ rk = 0 ,

uk = 1 ⇒ rk = 1 ,

uk > 1 ⇒ rk = 1 or 2 .

(7)

Equations (7) can be justified as follows. If uk = 0, then the system is empty and, consequently,
the servers do not contain any customers either; so rk = 0. If uk = 1, then there is exactly one
customer in the system, which occupies either server A or server B, and, hence, rk = 1. If uk > 1,
then at least two customers are in the system. If the eldest two customers belong to the same
class, then only one customer can be served and rk = 1. This case is illustrated in Fig. 1 where
the eldest two customers happen to be of type 2. If the eldest two customers belong to opposite
classes, as illustrated in Fig. 2, then both are served and rk = 2.

One of the main purposes of our analysis is to derive the steady-state distribution of the
number of customers present in either the system or the queue. Therefore, it is clear that at least
either the random variable uk or the random variable qk should be a component of the system
state description at slot k. As new arrivals occur independently from slot to slot, there is no
need to keep track of the arrivals in the system state. However, the state description should also
contain sufficient information on the number of customers that can possibly leave the system at
the end of each slot. One might be tempted to conclude that the state of the system at slot k
can be fully described by the vector (uk, rk). In order for this to be true, the joint probability
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distribution of the couple (uk+1, rk+1) should be completely determined by the value of the couple
(uk, rk). It turns out that this is not really true, although one could say that it is nearly true.
More specifically, we shall see that the distribution of uk+1 can be derived as soon as the value
of (uk, rk) is known, but the distribution of rk+1 is only fully determined by the couple (uk, rk) if
uk ̸= 1.

In order to further substantiate the above claims, we first introduce some further notation.
Let ℓk indicate the number of customers leaving the system, i.e., the number of departures from
the system, at the end of slot k. Then ℓk can be expressed as

ℓk =

rk∑
i=1

tik , (8)

where the quantities {tik} are independent and identically distributed Bernoulli random variables
with parameter µ: tik = 1 if the i-th customer in service during slot k completes service at the
end of slot k, whereas tik = 0 if the service continues after slot k; owing to the memoryless
nature of the geometric service-time distribution, these events occur with probabilities µ and
1− µ respectively. It is not difficult to see then that

uk+1 = uk + ek − ℓk = uk + ek −
rk∑
i=1

tik , (9)

where ek, with pmf e(n) and pgf E(z) as defined in (1), denotes the total number of arrivals in
the system during the k-th slot. As the distributions of ek and {tik} are known, equation (9)
proves that the distribution of uk+1 is fully determined by the value of the couple (uk, rk).

Let us turn now to the distribution of the random variable rk+1, the number of customers in
service during slot k + 1. If uk = 0, then also rk = 0, and uk+1 = ek, which (in view of (7))
implies that rk+1 is completely determined by the number and types of the new arrivals in slot
k. Since all previous customers have left the system already, the system takes a new start at
the beginning of slot k + 1 and no more information on the types of earlier customers needs to
be retained. If uk > 1, then either rk = 1 or rk = 2, but in both cases the last customer to
have entered service is still present in the system, so that “the distribution of” the type of the
next customer to enter service can be determined from the Markovian customer-class-correlation
model. However, if uk = 1, then the customer in service is either the last customer to have entered
the system or a customer of the opposite type that has been overtaken by this last customer. In
this case, the couple (uk, rk) does not contain all the necessary information on the system state
at slot k to allow further study of the system state at slots k + 1 and later. It is clear that in
this case, the system state must be supplemented with (specific) information on the type of the
(only) customer in the system.

Summarizing, we may conclude that the state of the queueing system at hand can be fully
determined by means of a vector of three random variables: (uk, vk, rk), where the first and the
third components were defined earlier and where the second component vk is defined as follows.
If uk = 0, then, by definition, vk = 0. If uk = 1, then, vk = 1 if and only if the last customer that
has entered the system is still in service, whereas vk = 0 if and only if this condition does not
hold (and, thus, the customer in service has the opposite type). Finally, if uk > 1, then, again by
definition, vk = 1 if and only if rk = 1, whereas vk = 0 if and only if rk = 2. Notice that the second
component vk of the state vector is actually only needed when uk = rk = 1. By also defining vk
in case uk ̸= 1, as we did above, we can reduce the state vector to just two components: (uk, vk),
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the third component rk being completely determined by this couple. Indeed, when uk = 0 or
uk = 1, we know that rk = uk, and, when uk > 1, we know that rk = 1 if vk = 1 and rk = 2 if
vk = 0. In the sequel, we will therefore basically use the couple (uk, vk) as the state description
at slot k, but also keep the notation rk when useful.

2.2 System-state evolution

Let us now examine the evolution of the state vector from slot k to slot k + 1. In order to do so,
we assume that both components at slot k, i.e., uk and vk are known, and we try to determine
(the joint distribution of) the state components at slot k + 1, i.e., uk+1 and vk+1, conditioned on
this knowledge. As far as uk+1 is concerned, all the required information is already contained in
equation (9) above:

uk+1 = uk + ek −
rk∑
i=1

tik , (10)

because knowledge of (uk, vk) implies knowledge of (uk, rk) and the distributions of ek and {tik}
are known. The virtue of equation (10) is that it expresses uk+1 explicitly in terms of the known
random variables ek and {tik}, as soon as the current state (uk, vk) is given. It is intuitively clear
that the second component of the state vector at slot k + 1, i.e., vk+1 is also dependent on the
random variables ek and {tik}, but, unfortunately, we do not dispose of a simple equation that
expresses vk+1 in terms of these. Rather, we must distinguish between various values of the current
system state (uk, vk) to be able to express the dependence of vk+1 on ek and {tik}. Moreover, it
also turns out to be impossible to treat the dependence of vk+1 on ek and {tik} separately from
the dependence of uk+1 on the same variables. In view of all the above considerations, we have
found that the most practical way to proceed is to introduce the conditional joint pgfs P (z, x|n, j),
defined as follows:

P (z, x|n, j) , E[zuk+1xvk+1|uk = n, vk = j] , (11)

for all n ≥ 0 and j ∈ {0, 1}. Here the notation E[·] refers to the mean-value operator.
Let us first consider the case where rk = 0, and, hence, also uk = 0 and vk = 0. Equation

(10) shows that in this case, the system-state evolution (and, hence, also vk+1) is completely
determined by the new arrivals in slot k (i.e., the quantity ek with pmf e(n) as defined in (1))
and we find

P (z, x|0, 0) = E[zekxvk+1|uk = 0, vk = 0] = φ(z, x) , (12)

where φ(z, x) is a known function of z and x, defined as

φ(z, x) , e(0) + e(1)zx+ [E(z)− e(0)− e(1)z](1− α + αx) . (13)

Next, we turn to the case where rk = 1. This situation may occur when the system contains
only one single customer (i.e., uk = 1, and either vk = 1 or vk = 0) or when the system contains
at least two customers and the eldest two customers belong to the same class (i.e., uk > 1
and vk = 1). According to equation (10), state changes are now completely determined by the
joint effect of the new arrivals in slot k (i.e., the quantity ek with pmf e(n)) and the service
of the customer being served (i.e., the Bernoulli quantity t1k, with Prob[t1k = 0] = 1 − µ and
Prob[t1k = 1] = µ). We distinguish between four different sub-cases:

7



P (z, x|1, 1) = E
[
z1+ek−t1kxvk+1|uk = 1, vk = 1

]
= (1− µ)ψ(z, x) + µφ(z, x) ,

P (z, x|1, 0) = E
[
z1+ek−t1kxvk+1|uk = 1, vk = 0

]
= (1− µ)ψ̂(z, x) + µφ(z, x) ,

P (z, x|2, 1) = E
[
z2+ek−t1kxvk+1|uk = 2, vk = 1

]
= (1− µ)z2E(z)x+ µψ(z, x) ,

P (z, x|n, 1) = E
[
zn+ek−t1kxvk+1|uk = n, vk = 1

]
= [(1− µ)zx+ µ(1− α + αx)]zn−1E(z) , if n > 2 .

(14)
Here the known functions ψ(z, x) and ψ̂(z, x) are defined as

ψ(z, x) , e(0)zx+ z[E(z)− e(0)](1− α + αx) ,

ψ̂(z, x) , e(0)z + z[E(z)− e(0)][α+ (1− α)x] .

(15)

Finally, we examine the case where rk = 2. This situation occurs when at least two customers
are in the system and the eldest two customers have opposite types (i.e., uk > 1 and vk = 0).
The system-state evolution is now completely determined by the joint effect of the new arrivals
in slot k (i.e., the quantity ek with pmf e(n)) and the services of the two customers being served
(i.e., the Bernoulli quantities t1k and t2k). We make a further distinction between three different
sub-cases:

P (z, x|2, 0) = E
[
z2+ek−t1k−t2kxvk+1|uk = 2, vk = 0

]
= (1− µ)2z2E(z) + µ(1− µ)[ψ(z, x) + ψ̂(z, x)] + µ2φ(z, x) ,

P (z, x|3, 0) = E
[
z3+ek−t1k−t2kxvk+1|uk = 3, vk = 0

]
= (1− µ)2z3E(z) + µ(1− µ)z2E(z)(1 + x) + µ2ψ(z, x) ,

P (z, x|n, 0) = E
[
zn+ek−t1k−t2kxvk+1|uk = n, vk = 0

]
= [(1− µ)2z2 + µ(1− µ)z(1 + x) + µ2(1− α+ αx)]zn−2E(z) , if n > 3 .

(16)

2.3 Stability condition of the system

In the next subsections we will analyze the steady-state behavior of the queueing system under
study. Before tackling this analysis, we first examine the conditions under which such a steady
state exists. In general terms, it is not difficult to see that the system is stable, i.e., a steady state
exists, if and only if the traffic intensity, i.e., the average amount of work entering the system
per slot, given by λE[s] = λ/µ, is strictly less than the average “service capacity” of the system,
i.e., the average amount of work that the servers are able to deliver per slot when the system
is saturated, i.e., when there are always customers available in the system. As each busy server
performs one unit of work per time slot, the amount of work the system-as-a-whole delivers in
one slot, say slot k, is equal to the number of busy servers during that slot, i.e., the quantity rk,
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defined earlier. The average service capacity of the system is therefore given by

C = lim
k→∞

E[rk|uk large]

= 1 · lim
k→∞

Prob[rk = 1|uk large] + 2 · lim
k→∞

Prob[rk = 2|uk large]

= 1 · lim
k→∞

Prob[vk = 1|uk large] + 2 · lim
k→∞

Prob[vk = 0|uk large]

= vsat(1) + 2vsat(0) ,

(17)

where the quantities vsat(1) and vsat(0) denote the long-run probabilities that the server state
(i.e., vk for k → ∞) is either 1 or 0 in a saturated system. The probabilities vsat(1) and vsat(0)
can be determined from a study of the time evolution of the server state in a saturated system.
In order to do so, we use the last equation in the set (14) and the last equation in the set (16),
for z = 1 and large values of n, which results in

P (1, x|n, 1) , E[xvk+1|uk = n, vk = 1] = (1− µ)x+ µ(1− α + αx) ,

P (1, x|n, 0) , E[xvk+1|uk = n, vk = 0] = (1− µ)2 + µ(1− µ)(1 + x) + µ2(1− α + αx) .

In terms of conditional probabilities, the above equations imply that, in a saturated system,

Prob[vk+1 = 1|vk = 1]sat = 1− µ+ µα , Prob[vk+1 = 0|vk = 1]sat = µ(1− α) ,

Prob[vk+1 = 1|vk = 0]sat = µ(1− µ+ µα) , Prob[vk+1 = 0|vk = 0]sat = 1− µ+ µ2(1− α) .

It follows that the probabilities vsat(1) and vsat(0) satisfy the following set of linear balance
equations:

vsat(1) = vsat(1)(1− µ+ µα) + vsat(0)µ(1− µ+ µα) ,

vsat(0) = vsat(1)µ(1− α) + vsat(0)[1− µ+ µ2(1− α)] .
(18)

Of course, vsat(1) and vsat(0) should also add up to 1, i.e.,

vsat(1) + vsat(0) = 1 . (19)

Solving equations (18) and (19), we obtain

vsat(1) =
1− µ+ µα

1 + (1− µ)(1− α)
, vsat(0) =

1− α

1 + (1− µ)(1− α)
, (20)

and, hence, from (17),

C =
1 + (2− µ)(1− α)

1 + (1− µ)(1− α)
, (21)

so that the stability condition of the system can be expressed as

λ

µ
<

1 + (2− µ)(1− α)

1 + (1− µ)(1− α)
. (22)
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2.4 Steady-state analysis of the system content

For all k, let pk(n, j) and Pk(z, x) denote the joint pmf and the joint pgf of the state vector
variables (uk, vk), respectively, i.e.,

pk(n, j) , Prob[uk = n, vk = j] , n ≥ 0, j ∈ {0, 1} ,

Pk(z, x) , E[zukxvk ] =
∞∑
n=0

1∑
j=0

pk(n, j)z
nxj .

Then, by virtue of the law of total expectation, equation (11) entails

Pk+1(z, x) = E[zuk+1xvk+1 ] =
∞∑
n=0

1∑
j=0

pk(n, j)P (z, x|n, j) . (23)

Now, let us assume that the queueing system at hand is stable, i.e., that the stability condition
(22) is fulfilled. Letting the time parameter k go to infinity in equation (23) results in

P (z, x) =
∞∑
n=0

1∑
j=0

p(n, j)P (z, x|n, j) , (24)

where
p(n, j) , lim

k→∞
pk(n, j) and P (z, x) , lim

k→∞
Pk(z, x) (25)

are the steady-state pmf and the steady-state pgf of the system state vector, respectively. By
means of (12), (14) and (16), equation (24) can be rewritten as

P (z, x) = p(0, 0)φ(z, x) + p(1, 1)[(1− µ)ψ(z, x) + µφ(z, x)]

+ p(1, 0)[(1− µ)ψ̂(z, x) + µφ(z, x)] + p(2, 1)[(1− µ)z2E(z)x+ µψ(z, x)]

+
∞∑
n=3

p(n, 1)[(1− µ)zx+ µ(1− α+ αx)]zn−1E(z)

+ p(2, 0)[(1− µ)2z2E(z) + µ(1− µ)[ψ(z, x) + ψ̂(z, x)] + µ2φ(z, x)]

+ p(3, 0)[(1− µ)2z3E(z) + µ(1− µ)z2E(z)(1 + x) + µ2ψ(z, x)]

+
∞∑
n=4

p(n, 0)[(1− µ)2z2 + µ(1− µ)z(1 + x) + µ2(1− α + αx)]zn−2E(z) .

(26)

Introducing the partial generating functions U1(z) and U0(z) as

U1(z) ,
∞∑
n=1

p(n, 1)zn and U0(z) ,
∞∑
n=0

p(n, 0)zn , (27)
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and using the expressions (13) and (15), we can rewrite the above equation as

U1(z)x+ U0(z) = p(0, 0)[e(0)α− e(1)(1− α)z](1− x) + p(0, 0)E(z)(1− α + αx)

+ p(1, 1){e(0)[(1− α)(1− µ)z − αµ] + e(1)(1− α)µz}(x− 1)

+ p(1, 1)E(z)[(1− µ)z + µ](1− α+ αx)

+ p(1, 0){e(0)[(1− α)(1− µ)z + αµ]− e(1)(1− α)µz}(1− x)

+ p(1, 0)E(z)[(1− α)(1− µ)zx+ αµx+ (1− µ)αz + µ(1− α)]}

+ p(2, 1){e(0)(1− α)µz(x− 1) + E(z)[(1− µ)z2x+ µz(1− α + αx)]}

+ p(2, 0){[e(0)α− e(1)(1− α)z]µ2(1− x) + E(z)[(1− µ)2z2 + µ(1− µ)z(x+ 1) + µ2(1− α + αx)]}

+ p(3, 0){e(0)(1− α)µ2z(x− 1) + zE(z)[(1− µ)2z2 + µ(1− µ)z(x+ 1) + µ2(1− α + αx)]}

+

[
U1(z)−

2∑
n=1

p(n, 1)zn
]
E(z)

z
[(1− µ)zx+ µ(1− α + αx)]

+

[
U0(z)−

3∑
n=0

p(n, 0)zn
]
E(z)

z2
[(1− µ)2z2 + µ(1− µ)z(1 + x) + µ2(1− α+ αx)] .

(28)
By grouping, in the above equation, terms containing p(2, 1), p(2, 0) and p(3, 0), we get

U1(z)x+ U0(z) = p(0, 0)[e(0)α− e(1)(1− α)z](1− x) + p(0, 0)E(z)(1− α+ αx)

+ p(1, 1){e(0)[(1− α)(1− µ)z − αµ] + e(1)(1− α)µz}(x− 1)

+ p(1, 1)E(z)[(1− µ)z + µ](1− α + αx)

+ p(1, 0){e(0)[(1− α)(1− µ)z + αµ]− e(1)(1− α)µz}(1− x)

+ p(1, 0)E(z)[(1− α)(1− µ)zx+ αµx+ (1− µ)αz + µ(1− α)]

+ p(2, 1)e(0)(1− α)µz(x− 1) + p(2, 0)[e(0)α− e(1)(1− α)z]µ2(1− x) + p(3, 0)e(0)(1− α)µ2z(x− 1)

+

[
U1(z)− p(1, 1)z

]
E(z)

z
[(1− µ)zx+ µ(1− α + αx)]

+

[
U0(z)− p(0, 0)− p(1, 0)z

]
E(z)

z2
[(1− µ)2z2 + µ(1− µ)z(1 + x) + µ2(1− α + αx)] .

(29)
Apart from the two partial pgfs U1(z) and U0(z), equation (29) contains six unknown probabil-
ities: p(0, 0), p(1, 1), p(1, 0), p(2, 1), p(2, 0), and p(3, 0). It turns out that three simple linear
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relationships can be established between these six unknowns by identifying the constant terms
and the linear terms in the variables x and z on both sides of equation (29). Specifically, for the
terms in z0x0, we obtain

p(0, 0) = p(0, 0)e(0) + p(1, 1)µe(0) + p(1, 0)µe(0) + p(2, 0)µ2e(0) , (30)

for the terms in z1x1,

p(1, 1) = p(0, 0)e(1) + p(1, 1)[(1− µ)e(0) + µe(1)] + p(1, 0)µe(1) + p(2, 1)µe(0)

+ p(2, 0)µ2e(1) + p(2, 0)µ(1− µ)e(0) + p(3, 0)µ2e(0) .
(31)

and for the terms in z1x0,

p(1, 0) = p(1, 0)(1− µ)e(0) + p(2, 0)µ(1− µ)e(0) . (32)

Note that the three “boundary equations” (30), (31) and (32) can also be derived by expressing
the probabilities of finding the system in states (0, 0), (1, 1) and (1, 0), respectively, in terms of
the state probabilities one slot earlier, once a steady state has been reached. The three boundary
equations can now be used to eliminate the unknown probabilities p(2, 1), p(2, 0) and p(3, 0) from
the functional equation (29), which results in

U1(z)x+ U0(z) = p(0, 0)[α(1− x) + E(z)(1− α+ αx)] + p(1, 1)(1− α)z[(1− µ)E(z)− 1](1− x)

+ p(1, 0)E(z)[(1− µ)(1− α)zx+ µαx+ (1− µ)αz + µ(1− α)] + p(1, 0)(1− α)z(1− x)

+ U1(z)
E(z)

z
[(1− µ)zx+ µ(1− α+ αx)]

+

[
U0(z)− p(0, 0)− p(1, 0)z

]
E(z)

z2
[(1− µ)2z2 + µ(1− µ)z(1 + x) + µ2(1− α+ αx)] .

(33)
By identifying equal powers of x on both sides of the above equation, we obtain a system of two
linear equations in the partial pgfs U1(z) and U0(z):

U1(z) = p(0, 0)α[E(z)− 1]− p(1, 1)(1− α)z[(1− µ)E(z)− 1]

+ p(1, 0){µαE(z) + (1− α)z[(1− µ)E(z)− 1]}+ U1(z)
E(z)

z
[(1− µ)z + µα]

+

[
U0(z)− p(0, 0)− p(1, 0)z

]
E(z)

z2
µ[(1− µ)z + µα]

(34)

and

U0(z) = p(0, 0)[α + (1− α)E(z)] + p(1, 1)(1− α)z[(1− µ)E(z)− 1]

+ p(1, 0){z + µ(1− α)E(z) + αz[(1− µ)E(z)− 1]}+ U1(z)
E(z)

z
µ(1− α)

+

[
U0(z)− p(0, 0)− p(1, 0)z

]
E(z)

z2
[(1− µ)2z2 + µ(1− µ)z + µ2(1− α)] .

(35)
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Solving the two simultaneous linear equations (34) and (35) for the two partial pgfs U1(z) and
U0(z) is a matter of some standard, but tedious, algebraic operations. Once the solution of the
system (34)(35) is known, the steady-state pgf U(z) of the system content can be obtained as

U(z) = P (z, 1) = U1(z) + U0(z) , (36)

where the function P (z, x) was defined in (25). It turns out that the result can be written as

U(z) = µ(z − 1)E(z)
p(0)g0(z) + p(1)g1(z)

n(z)
, (37)

where p(0) and p(1) are unknown coefficients, defined as

p(0) , p(0, 0) and p(1) , αp(1, 0) + (1− α)p(1, 1) (38)

and g0(z), g1(z) and n(z) are known functions of z, given by

g0(z) , µ(1− 2α + αz) + [µα + (2− µ− α)z][1− (1− µ)E(z)] ,

g1(z) , z[(1− µ)z + µ][1− (1− µ)E(z)] ,

n(z) ,
{
z − [(1− µ)z + µα]E(z)

}{
z − (1− µ)[(1− µ)z + µ]E(z)

}
− µ2(1− α)E(z) .

(39)

It is remarkable that equation (37) contains only two unknown parameters (notably, p(0) and
p(1)) while the original system of simultaneous equations (34) and (35) contains three (notably,
p(0, 0), p(1, 0) and p(1, 1)). Apparently, in the determination of U(z), the knowledge of the
boundary probabilities p(1, 0) and p(1, 1) individually is not required, but only the combination
p(1) of these, as defined in (38). We note that a probabilistic interpretation can be given for the
parameter p(1): it denotes the joint probability that the system contains exactly one customer
and the next customer to enter service has the opposite type as the customer in service.

It now remains for us to determine the two remaining unknowns p(0) and p(1). A first relation
between p(0) and p(1) can be obtained from the normalization condition of the system-content
distribution, i.e., the condition U(1) = 1. Some algebra on equation (37) leads to

p(1) = [1− p(0)][1 + (2− µ)(1− α)]− λ

µ
[1 + (1− µ)(1− α)] . (40)

Using this result in (37), we can express U(z) as

U(z) = (z − 1)E(z)
p(0)h0(z) + h1(z)

n(z)
, (41)

where h0(z) and h1(z) are given by

h0(z) , µ
{
g0(z)− [1 + (2− µ)(1− α)]g1(z)

}
,

h1(z) ,
{
µ(1− α) + (µ− λ)[1 + (1− µ)(1− α)]

}
g1(z) .

(42)

Equation (41) contains just one remaining unknown parameter p(0), which denotes the probability
that the system be empty. In order to determine p(0), we invoke the analyticity of the pgf U(z).
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Specifically, it can be formally shown that, as soon as the stability condition (22) is met, the
denominator n(z) of equation (41) has exactly two zeroes inside the closed unit disk of the
complex z-plane: z = 1 and, say, z = θ < 1. A proof of this statement, based on the methodology
developed by Gail et al. [13], is given in the Appendix at the end of this paper. Both the zeroes
z = 1 and z = θ must also be zeroes of the numerator of (41) since, in these circumstances,
U(z) is a regular pgf and remains bounded inside the closed unit disk. For the zero z = 1, this
condition is clearly fulfilled in view of the factor z−1 in the numerator of (41); for the zero z = θ,
this condition leads to

p(0)h0(θ) + h1(θ) = 0 ,

and, hence,

p(0) = −h1(θ)
h0(θ)

, (43)

and, finally,

U(z) = (z − 1)E(z)
h0(θ)h1(z)− h1(θ)h0(z)

h0(θ)n(z)
. (44)

In equations (41) and (44) all quantities are known: the functions h0(z), h1(z) and n(z) were
defined in terms of the system parameters in (42) and (39) above, whereas the quantity θ is
uniquely defined as the only root strictly inside the complex unit disk of the equation n(z) = 0,
and the probability p(0) follows from (43). Note that, in general, the value of θ is to be determined
numerically.

The mean system content E[u] can be found from equation (41) as

E[u] = U ′(1) =
E ′′(1)

2(Cµ− λ)
+
λ(1− λ)(C − 1)

(1− α)(Cµ− λ)

+
{µ2(2− µ)2[1− p(0)] + λ(1− µ)[µp(0) + λ(1− µ)− µ(3− µ)]}(C − 1)

µ(Cµ− λ)
,

(45)
where the average service capacity C was defined in (21). Higher-order moments of the system
content can be similarly derived by computing higher-order derivatives of the pgf U(z).

2.5 Other performance measures

In subsection 2.4, we have determined the steady-state characteristics (pgf, mean value) of the
system content. Various other performance measures can be derived from these results by means
of some additional mathematical manipulations.

Let us first concentrate on the unfinished work in the system, i.e., the total amount of service
time required to process all the customers in the system, at the beginning of an arbitrary time
slot in steady state. Specifically, let fk denote the unfinished work at the beginning of slot k.
Then it is easily seen that

fk =

qk∑
j=1

sj +

rk∑
i=1

ŝi , (46)

where the quantities sj (1 ≤ j ≤ qk) denote the (total) service times of the qk customers present
in the queue at the beginning of slot k, and the random variables ŝi (1 ≤ i ≤ rk) indicate the
remaining service times of the rk customers in service, at the same epoch. From equation (3) we
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know that the sj’s are independent geometric random variables with parameter 1−µ. In view of
the memoryless property of the geometric distribution, the same goes for the ŝi’s, which implies
that fk is, in fact, the sum of qk + rk = uk (see equation (6)) independent geometric random
variables with parameter 1− µ:

fk =

uk∑
j=1

s̃j , (47)

where all the s̃j’s are i.i.d. It then easily follows that the steady-state pgf of the unfinished work
at the beginning of a slot is given by

F (z) , lim
k→∞

E
[
zfk

]
= U(S(z)) , (48)

where U(z) is given by (37) or (41) and S(z) is the known pgf of the service times of the customers
(see equation (4)). The mean unfinished work E[f ] can be easily derived from this as

E[f ] = F ′(1) = U ′(1)S ′(1) = E[u]E[s] =
E[u]

µ
. (49)

The steady-state distribution of the server content can also be easily determined. Let r(n)
denote the corresponding pmf, i.e.,

r(n) , lim
k→∞

Prob[rk = n] , (50)

then it is easily seen that

r(0) = p(0, 0) ,

r(1) = p(1, 0) + p(1, 1) +
∞∑
n=2

p(n, 1) = p(1, 0) + U1(1) ,

r(2) =
∞∑
n=2

p(n, 0) = U0(1)− p(0, 0)− p(1, 0) .

(51)

Here the partial pgfs U1(z) and U0(z) were defined in (27) and the quantities U1(1) and U0(1)
can be readily derived by solving the set of simultaneous equations (34) and (35) for z = 1; some
standard algebra leads to

U1(1) = 2− 2p(0, 0)− p(1, 0)− λ

µ
,

U0(1) = 2p(0, 0) + p(1, 0)− 1 +
λ

µ
.

(52)

Using these results and (38) in (51), we get

r(0) = p(0) ,

r(1) = 2[1− p(0)]− λ

µ
,

r(2) =
λ

µ
− [1− p(0)] .

(53)
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The steady-state pgf R(z) of the server content follows from this as

R(z) =
2∑

n=0

r(n)zn = 1 +
λ

µ
z(z − 1)− [1− p(0)](z − 1)2 . (54)

The mean server content E[r] is given by

E[r] = r(1) + 2r(2) = R′(1) =
λ

µ
. (55)

The (simple) result in equation (55) can also be found without solving any balance equations, by
merely expressing that, in the steady-state, the average amount of work leaving the system per
slot, i.e., the average number of busy servers E[r], should be in balance with the average amount
of work entering the system per slot, i.e., the traffic intensity λE[s] = λ/µ. In particular, we note
that although the knowledge of the empty-system probability p(0) is required to determine the
pmf (53) and the pgf (54) of the server content, the parameter p(0) does not appear in expression
(55) for the mean server content.

The steady-state pgf Q(z) of the queue content can be derived from equation (6) as follows:

Q(z) = lim
k→∞

E[zqk ] = lim
k→∞

E
[
zuk−rk

]
. (56)

Using the law of total expectation, we can rewrite this as

Q(z) = p(0, 0) + [p(1, 0) + p(1, 1)] +
∞∑
n=2

p(n, 1)zn−1 +
∞∑
n=2

p(n, 0)zn−2

= p(0, 0) + p(1, 0) + z−1U1(z) + z−2[U0(z)− p(0, 0)− p(1, 0)z]

= p(0, 0)[1− z−2] + p(1, 0)[1− z−1] + z−1U1(z) + z−2U0(z)

=
p(0, 0)(z2 − 1) + p(1, 0)z(z − 1) + P (z, z)

z2
.

(57)

Here the joint pgf P (z, x) = U0(z) + xU1(z) was introduced in (25). The mean queue content
E[q] can be expressed as

E[q] = Q′(1) = 2p(0, 0) + p(1, 0)− 2 + P ′(1, 1) , (58)

where the total derivative P ′(1, 1) is given by

P ′(1, 1) =
d

dz
[U0(z) + zU1(z)]|z=1 = U ′

0(1) + U ′
1(1) + U1(1) , (59)

so that, in view of (36) and (52),

E[q] = E[u]− λ

µ
= E[u]− E[r] , (60)

in full agreement with equations (6) and (55).
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By applying (the discrete-time version of) Little’s theorem [18, 7, 12] and/or using (5), we
can also find the mean delay (system time) E[d] and the mean waiting time E[w] of a customer
as

E[d] =
E[u]

λ
(61)

and

E[w] =
E[q]

λ
= E[d]− E[s] =

E[u]

λ
− 1

µ
. (62)

3 Special cases

3.1 The case µ = 1

In an earlier paper [9], we have studied the special case where µ = 1, i.e., where the service times
of the customers are deterministically equal to 1 slot each, by means of a simpler analysis. It is
not immediately obvious from the formulas derived above that we do obtain the same results as
in [9]. Let us check the main results. First of all, we note that, for µ = 1, the average service
capacity of the system, given in equation (21), reduces to

C = 2− α , (63)

so that the stability condition (22) reads

λ < 2− α . (64)

Furthermore, for µ = 1, the probability p(1, 0) reduces to zero, because in that case all service
times have the same length so that customers cannot overtake each other, and therefore, vk cannot
be zero when uk = 1. It follows that the probability p(1), defined in (38), is equal to

p(1) = (1− α)p(1, 1) = (1− α)u(1) (65)

and the pgf U(z), given in (37), reduces to

U(z) = µ(z − 1)E(z)
u(0)[z + 1− α] + u(1)(1− α)z

z2 − (1− α + αz)E(z)
, (66)

where
u(0) , lim

k→∞
Prob[uk = 0] = p(0) ,

u(1) , lim
k→∞

Prob[uk = 1] = p(1, 1) .

(67)

These are exactly the results obtained in [9].

3.2 The case α = 1

When the cluster parameter α is equal to 1, all customers belong to the same class and the
system under study basically degenerates to a single-class single-server queue with geometric
service times. The stability condition (22) now requires

λ < µ , (68)
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the probability p(1), given by (38), reduces to zero and the pgf U(z) (37) of the system content
becomes

U(z) = µ(z − 1)E(z)
p(0){µ(z − 1) + [µ+ (1− µ)z][1− (1− µ)E(z)]}

{z − [(1− µ)z + µ]E(z)}{z − (1− µ)[(1− µ)z + µ]E(z)}
, (69)

or, upon cancellation of a common factor in numerator and denominator,

U(z) =
p(0)µ(z − 1)E(z)

z − [(1− µ)z + µ]E(z)
. (70)

This result is well-known from many books and papers on discrete-time queues; see e.g. [14, 5,
6, 7].

4 Discussion of results and numerical examples

Having derived, in section 2, expressions for the main performance measures, we are now in
a position to discuss the qualitative behavior of the system, and illustrate it quantitatively by
means of some numerical examples. We also compare the results obtained here for geometric
service times with the corresponding results derived for fixed-length service times in [9, 8] and
even with the ones obtained in [20] for a continuous-time model with exponential service times.

As the main issue of this paper is the degradation of the average service capacity of the
system due to the imposed global-FCFS queueing discipline, we first focus on equation (21),
which expresses the mean service capacity C in terms of the system parameters µ and α, i.e.,

C =
1 + (2− µ)(1− α)

1 + (1− µ)(1− α)
. (71)

Using equation (5), we can also express this as

C = Cgeom(E[s] , α) ,
(3− 2α)E[s]− (1− α)

(2− α)E[s]− (1− α)
, (72)

where E[s] indicates the mean service time. Formula (72) is represented graphically in Figs. 3
and 4, where the service capacity Cgeom(E[s] , α) is depicted versus α (for given values of E[s])
and versus E[s] (for given values of α), respectively.

Expression (72) and Fig. 3 reveal that the average service capacity, i.e., the maximum achiev-
able throughput of the system, expressed in work units per slot, is very directly determined by the
interclass correlation in the arrival process as described by the cluster parameter α. Specifically,
when α increases from 0 to 1, the service capacity goes down from

Cgeom(E[s] , 0) =
3E[s]− 1

2E[s]− 1
(73)

to
Cgeom(E[s] , 1) = 1 . (74)

Of course, the intuitive explanation of this is that the system becomes more and more non-work-
conserving, i.e., the fraction of time that only one of the two available servers is busy gets larger
and larger, as the customers tend to cluster more according to their types.
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Figure 3: Maximum achievable throughput Cgeom(E[s] , α) for geometric service times, versus the
cluster parameter α, for various values of the mean service time E[s]. For E[s] = 1, the result is
identical to the result for deterministic service times. For E[s] → ∞, the result for exponential
service times is obtained.
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Figure 4: Maximum achievable throughput Cgeom(E[s] , α) for geometric service times, versus
mean service time E[s], for various values of the cluster parameter α.

Expression (72) and Fig. 4 also show that, for all values of α ̸= 1 (i.e., for genuine two-class
systems), the maximum achievable throughput decreases when the average lengths of the service
times get larger. This effect is more pronounced for low values of the cluster parameter α and
gradually disappears as α approaches the value 1. Specifically, for a given value of α ̸= 1, the
maximum achievable throughput decreases from

Cgeom(1, α) = 2− α (75)

to

Cgeom(∞, α) =
3− 2α

2− α
, (76)
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when the mean service time goes from 1 to infinity. Fig. 4 illustrates, however, that the value of
Cgeom(E[s] , α) saturates as soon as E[s] has reached a threshold of about 3−5 (depending on α).
The reason for this (slight) decrease of service capacity for increasing service times, for low values
of E[s] and for any given value of α ̸= 1, is not immediately clear, in view of the observation
that the fraction of customers that have the same type as the previous customer is simply given
by the cluster parameter α and thus does not depend on E[s]. Of course, the phenomenon that
customers of opposite types can overtake each other during service when E[s] > 1 plays a role
here: even when customers of the two types alternate permanently (i.e., when α = 0), the two
servers only work simultaneously part of the time, because the order of arrival can be disturbed
by the “overtaking mechanism”. For α = 1, of course, the system only processes one type of
customers and the service capacity is constant and equal to 1 (see also equation (74)).

It is interesting to compare the above results for geometric service times with mean value E[s],
with the case of deterministic service times equal to E[s] slots. From [8] we retrieve the following
formula for the maximum achievable throughput for this case:

Cdet(E[s] , α) = 2− α , (77)

which apparently is independent of the mean service time. Specifically, we note that

Cdet(E[s] , α) = Cgeom(1, α) , (78)

for all possible values of the mean service time E[s]. Graphically, this implies that the curve for
geometric service times with E[s] = 1, i.e., the upper curve in Fig. 3, also gives the results for
deterministic service times of any length. We recall from [8] that, in case of deterministic service
times, the mean service capacity reduces by a factor 2 when the cluster parameter α goes up from
the value 0 to the value 1, i.e.,

Cdet(E[s] , 0) = 2 (79)

and
Cdet(E[s] , 1) = 1 . (80)

Comparing (72) and (77), we can show algebraically that

Cgeom(E[s] , α) ≤ Cdet(E[s] , α) , (81)

for all values of E[s] and α, i.e., the mean service capacity is lower for geometric service times
than for deterministic service times with the same (mean) length. Of course, the inequality (81)
is also very apparent from Fig. 3, where the curve for E[s] = 1 lies above all the other curves.
Intuitively, again, this is due to the “overtaking mechanism” in case of geometric service times,
which does not occur when all service times are identical.

We now turn to a comparison of the discrete-time model analyzed in the current paper with the
continuous-time model treated in [20], which can be more or less considered as the continuous-time
analog of the model under study. Specifically, the model in [20] assumes a continuous-time Poisson
arrival process of new customers, with arrival rate λ (i.e., the inter-arrival times are exponential
continuous random variables with parameter λ), two exponential servers with identical service
rates µ (i.e., the service times are exponential continuous random variables with parameter µ)
and an identical interclass correlation model with cluster parameter α as in the present paper. We
note that, in view of the independent-increment property of the classical Poisson process (see, e.g.,
[18]), these assumptions imply in particular that the numbers of arrivals during non-overlapping
time intervals are independent, just as in the current discrete-time model. Although the meaning
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of the parameters λ and µ is different in the discrete time setting (where they refer to numbers of
customers arriving or being served per finite time slot) and in the continuous time setting (where
time slots as such do not exist and λ and µ refer to numbers of customers per time unit), the
ratio λ/µ indicates the traffic intensity in both time settings, which in steady state is equal to
the average number of busy servers, i.e., the mean server content, labelled E[r] earlier in this
paper (see, e.g., equation (55)). In reference [20], it was shown that the stability condition of the
continuous-time system takes the form

λ

µ
< Cexpon(α) ,

3− 2α

2− α
. (82)

This result is, in fact, consistent with our current findings, if we look at the continuous-time
model as the limit of the discrete-time model when the slot length goes to zero. Indeed, in this
limit transition, the parameters λ and µ in the discrete-time model would both go to zero, but
their ratio would remain finite and the mean service time, expressed in infinitesimal-length time
slots, would go to infinity, i.e., E[s] → ∞. Comparing (82) with (72) or (76), we indeed find that

Cexpon(α) = Cgeom(∞, α) . (83)

It is not difficult to see from equations (72) and (82) that

Cexpon(α) ≤ Cgeom(E[s] , α) , (84)

for all values of E[s] and α, i.e., the mean service capacity is lower for exponential service times
than for geometric service times with the same (mean) length. The inequality (84) is also very
clear from Fig. 3, where the curve for E[s] → ∞ (nearly coinciding with the curve for E[s] = 10)
lies below all the other curves.

We conclude from the above discussion, that for any given values of the parameters α and
E[s],

Cexpon(α) ≤ Cgeom(E[s] , α) ≤ Cdet(E[s] , α) , (85)

which says that the case of geometric service times considered in this paper exhibits a throughput
performance between the cases of exponential and deterministic service times, studied in [20]
and [8], respectively. If we notice that, for a given value E[s] of the mean service time, the
variance of the service time is given by 0 (zero) in the deterministic case, by E[s] [E[s]− 1] in the
geometric case, and by E[s]2 in the exponential case, this result suggests that the deterioration
of the maximum achievable throughput increases with the service-time variability. Intuitively,
this could be attributed to the growing impact of the “overtaking mechanism” when consecutive
service times can differ more.

We end this section with some numerical results for the discrete-time model with geometric
service times. The main performance metric we focus on is the mean system content E[u], as given
by formula (45). Other interesting performance measures, such as the mean unfinished work E[f ]
(see equation (49)), the mean queue content E[q] (see equation (60)), the mean customer delay
E[d] (see equation (61)) and the mean waiting time E[w] (see equation (62)) are not explicitly
considered here, because of their very close relationship with E[u]. Although the formulas derived
in this paper are valid for any choice of the arrival pgf E(z), we choose a Poisson distribution
for the number of arrivals per slot, i.e., E(z) = eλ(z−1), because of its great practical applicability
and, also, because in this case the equation n(z) = 0 which has to be solved numerically to find
the root θ is a transcendental equation (see equation (39)) and, hence more “complicated” than
for many other choices of E(z). Even in this case, no numerical problems were encountered.
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Figure 5: Probability of empty system p(0) versus traffic intensity λE[s], for Poisson arrivals,
geometric service times with mean E[s] = 4, and various values of the cluster parameter α.
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Figure 6: Mean system content E[u] versus traffic intensity λE[s], for Poisson arrivals, geometric
service times with mean E[s] = 4, and various values of the cluster parameter α.

Fig. 5 depicts the empty-system probability p(0), determined numerically according to the
procedure summarized in equation (43), versus the traffic intensity λE[s], for a value E[s] = 4.
The figure clearly shows that the empty-system probability decreases as the traffic intensity gets
larger, for any value of the cluster parameter α, as expected. The probability p(0) reaches the
value zero when the traffic intensity approaches the mean service capacity, i.e., when

λE[s] = Cgeom(4, α) =
11− 7α

7− 3α
. (86)

For the α-values shown in Fig. 5, p(0) reaches zero at traffic intensity 1.57 in case α = 0, 1.41 in
case α = 0.4, 1.24 in case α = 0.7,and 1 in case α = 1.

Figs. 6 and 7 show graphs of the mean system content E[u] versus the traffic intensity λE[s],
for a given value E[s] = 4 and various values of α, and for a given value α = 0.5 and various
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Figure 7: Mean system content E[u] versus traffic intensity λE[s], for Poisson arrivals, α = 0.5
and geometric service times with mean E[s] as indicated.

values of E[s], respectively. Both figures clearly show the expected increase of the mean system
content with the traffic intensity, and exhibit vertical asymptotes at the values of λE[s] where
the maximum achievable throughput is reached. In Fig. 6, the vertical asymptotes occur at the
same values of λE[s], as the ones where p(0) reaches the value zero in Fig. 5, i.e., the values
determined from equation (86). In Fig. 7, the vertical asymptotes occur at

λE[s] = Cgeom(E[s] , 0.5) =
4E[s]− 1

3E[s]− 1
, (87)

i.e., at traffic intensity 1.5 for E[s] = 1, 1.4 for E[s] = 2 and 1.36 for E[s] = 5.

5 Conclusions and future work

In this paper, we have analyzed a discrete-time queueing model with two customer classes and two
class-dedicated servers, operating under the global-FCFS service discipline, assuming independent
arrivals from slot to slot with a simple first-order Markovian interclass-correlation model. The
paper extends earlier work ([9, 8]) from deterministic service times, either equal to 1 slot or s > 1
slots, to variable service times with geometric distribution. The model studied in this paper can
also be considered as the discrete-time counterpart of an earlier continuous-time model ([20])
with exponential service times. The results confirm the strong impact of “class clustering” in the
arrival stream on the stability and the main steady-state performance measures of a multi-class
global-FCFS queueing system. In particular, they suggest a negative effect of the variability
of the service times on the maximum achievable throughput of such a system. Future work
could incorporate more general distributions for the service times in the model to corroborate
this conjecture. Other possible extensions could consider more than two customer classes, more
general interclass-correlation models and relative load distributions of the various customer classes
in the aggregated arrival stream, time-correlated arrival processes, etc. Also, the derivation of
the full distribution (or pgf) of customer delays and waiting times could be envisaged.
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Appendix

In subsection 2.4, the last remaining unknown quantity p(0) was determined by identifying a zero
z = θ ̸= 1 of the denominator n(z) in expression (37) for the steady-state pgf U(z) of the system
content. We now show that, in all “non-degenerate” cases, exactly one such zero always exists.

It can be verified that expression (39) for n(z) can be written as

z2n(z) = det
(
z2I−A(z)

)
, (88)

with I the 2×2 identity matrix and

A(z) = E(z)

[
(1− µ)2z2 + µ(1− µ)z + (1− α)µ2 µ(1− µ)z + αµ2

µ(1− α)z (1− µ)z2 + µαz

]
. (89)

This is readily obtained by rewriting the set of simultaneous equations (35) and (34) as a vector-
matrix equation for the row vector

[
U0(z) U1(z)

]
. In [13], Gail et al. studied the location and

existence of zeroes in the closed unit disk of expressions like (88) in detail, and we can apply their
theorems to our model. First, note that A(1) is the transition matrix of a 2-state discrete-time
Markov chain that is irreducible. The chain is only reducible if one of the off-diagonal elements
is zero, i.e., if either µ = 0 or α = 1. The first case corresponds to infinite service times while
the second represents a system with one customer class only and is treated separately in section
3.2, where p(0) can be obtained by direct normalization. Both cases are, in fact, degenerate
instances of the system under study, and are not further considered here. Secondly, all elements
of d

dz
A(z)|z=1 are finite, which is equivalent to the requirement that λ = E ′(1) is finite. Thirdly,

we also have that d
dz

det(z2I−A(z))|z=1 > 0 since this corresponds to the stability condition (22),
as can easily be verified.

Under these three conditions, it is shown in [13] that the function z2n(z) in (88) has exactly
4−g zeroes (counting multiplicities) inside and g zeroes on the unit circle in the complex z-plane,
with g > 1. Obviously, z = 0 is a double zero, so n(z) is left with 2− g and g zeroes inside and
on the unit circle, respectively, g being either 1 or 2. The case g = 2 occurs if and only if the
right-hand side of (88) for z = y1/2 is a single-valued function in y for |y| 6 1, or in other words, if
only even-degree terms z2k occur in (89). Again, this only happens in the precluded cases µ = 0
or α = 1. Therefore, the conclusion is that g = 1 and that n(z) has exactly one zero on the unit
circle (this is z = 1) and one zero z = θ with |θ| < 1.
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[27] Ö. Ulusçu and T. Altiok. Waiting time approximation in multi-class queueing systems with
multiple types of class-dependent interruptions. Annals of Operations Research, 202(1):185–
195, 2013.

[28] A. Vadivu, R. Vinayak, S. Dharmaraja, and R. Arumuganathan. Performance analysis of
voice over internet protocol via non markovian loss system with preemptive priority and
server break down. Opsearch, 51(1):50–75, 2014.

[29] F. van Wageningen-Kessels, B. van’t Hof, S. Hoogendoorn, H. Van Lint, and K. Vuik.
Anisotropy in generic multi-class traffic flow models. Transportmetrica A: Transport Sci-
ence, 9(5):451–472, 2013.

[30] T. Van Woensel and N. Vandaele. Modeling traffic flows with queueing models: A review.
Asia-Pacific Journal of Operational Research, 24:435–461, 2007.

26


