43,734 research outputs found

    Integrating trait-based empirical and modeling research to improve ecological restoration

    Get PDF
    A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long-term provision of ecosystem functions and a quantification of trade-offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait-based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long-term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade-offs and synergies among ecosystem services under a wide range of environmental conditions

    Effects of processes at the population and community level on carbon dynamics of an ecosystem model

    Get PDF
    Ecological processes at the population and community level are often ignored in biogeochemical models, however, the effects of excluding these processes at the ecosystem level is uncertain. In this study we analyzed the set of behaviors that emerge after introducing population and community processes into an ecosystem carbon model. We used STANDCARB, a hybrid model that incorporates population, community, and ecosystem processes to predict carbon dynamics over time. Our simulations showed that at the population level, colonization and mortality rates can limit the maximum biomass achieved during a successional sequence. Specifically, colonization rates control temporal lags in the initiation of carbon accumulation, and mortality rates can have important effects on annual variation in live biomass. At the community level, differences in species traits and changes in species composition over time introduced significant changes in carbon dynamics. Species with different set of parameters, such as growth and mortality rates, introduce patterns of carbon accumulation that could not be reproduced using a single species with the average of parameters of multiple species or by simulating the most abundant species (strategies commonly employed in terrestrial biogeochemical models). We conclude that omitting population and community processes from biogeochemical models introduces an important source of uncertainty that can impose important limitations for predictions of future carbon balances

    Seed mass diversity along resource gradients: the role of allometric growth rate and size-asymmetric competition

    Full text link
    The large variation in seed mass among species inspired a vast array of theoretical and empirical research attempting to explain this variation. So far, seed mass variation was investigated by two classes of studies: one class focuses on species varying in seed mass within communities, while the second focuses on variation between communities, most often with respect to resource gradients. Here, we develop a model capable of simultaneously explaining variation in seed mass within and between communities. The model describes resource competition (for both soil and light resources) in annual communities and incorporates two fundamental aspects: light asymmetry (higher light acquisition per unit biomass for larger individuals) and growth allometry (negative dependency of relative growth rate on plant biomass). Results show that both factors are critical in determining patterns of seed mass variation. In general, growth allometry increases the reproductive success of small-seeded species while light asymmetry increases the reproductive success of large-seeded species. Increasing availability of soil resources increases light competition, thereby increasing the reproductive success of large-seeded species and ultimately the community (weighted) mean seed mass. An unexpected prediction of the model is that maximum variation in community seed mass (a measure of functional diversity) occurs under intermediate levels of soil resources. Extensions of the model incorporating size-dependent seed survival and disturbance also show patterns consistent with empirical observations. These overall results suggest that the mechanisms captured by the model are important in determining patterns of species and functional diversity

    Ecological Modelling with the Calculus of Wrapped Compartments

    Get PDF
    The Calculus of Wrapped Compartments is a framework based on stochastic multiset rewriting in a compartmentalised setting originally developed for the modelling and analysis of biological interactions. In this paper, we propose to use this calculus for the description of ecological systems and we provide the modelling guidelines to encode within the calculus some of the main interactions leading ecosystems evolution. As a case study, we model the distribution of height of Croton wagneri, a shrub constituting the endemic predominant species of the dry ecosystem in southern Ecuador. In particular, we consider the plant at different altitude gradients (i.e. at different temperature conditions), to study how it adapts under the effects of global climate change.Comment: A preliminary version of this paper has been presented in CMC13 (LNCS 7762, pp 358-377, 2013

    3D modelling of branching in plants

    Get PDF
    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants. Branching is regulated by multiple internal factors which are modulated by different environmental signals. A key environmental signal in the context of a plant population is a low red / far-red intensity ratio (R:FR) of the light reflected by neighbouring plants. For instance, low R:FR results in suppression of branching in favour of elongation growth, which is a key aspect of shade avoidance. Shade avoidance enables plants to anticipate future competition by preventing being shaded, rather than to react to prevailing shade conditions. Internally, branching is regulated by a finely tuned plant hormone network. The interactions within this network are modified by environmental cues such as R:FR which is perceived by specific photoreceptors. Combined, internal and external signals enable regulation of branch formation under the influence of environmental conditions. The different aspects of branching control act at different levels of biological organization (organ, whole plant, plant community). These aspects can be integrated in one modelling approach, called functional-structural plant modelling (FSPM), explicitly considering spatial 3D plant development. An FSP model typically contains detailed information at any moment in development of the plant on the number, size, location and orientation of all organs that make up the plant. In FSP models, physiological and physical processes occur within the plant (e.g. photosynthesis and transport of assimilates), and interaction with the environment occurs at the interface of organ and environment (e.g. light absorption by a leaf). Explicit simulation of absorption and scattering of light at the level of the plant organ is an important aspect of FSPM. In combination with dedicated experiments, this modelling tool can be used to analyse the response of plants to (imminent) competition, simulate the competitive advantage of shade avoidance for plants of different architecture, and predict plant form in various light environments. To assess the effect of plant population density through R:FR signalling on tillering (branching) in spring wheat (Triticum aestivum L.), an FSPM study was conducted (Figure 1). A simple descriptive relationship was used to link R:FR as perceived by the plant to extension growth of tiller buds and probability of a bud to form a tiller. A further study included a complete sub-model of branching regulation, aiming at simulating branching as an emergent property in Arabidopsis (Arabidopsis thaliana) under the influence of R:FR. These and other studies show that FSPM is a promising tool to simulate aspects of plant development, such as branching, under the influence of environmental factors. In close combination with dedicated experiments, FSPM can shape our ideas of the mechanisms controlling plant development, can integrate existing knowledge on plant development, and can predict plant development in untested conditions

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Landscape-scale establishment and population spread of yellow-cedar (Callitropsis nootkatensis) at a leading northern range edge

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2016Yellow-cedar is a long-lived conifer of the North Pacific Coastal Temperate Rainforest region that is thought to be undergoing a continued natural range expansion in southeast Alaska. Yellow-cedar is locally rare in northeastern portions of the Alexander Archipelago, and the fairly homogenous climate and forest conditions across the region suggest that yellow-cedar's rarity could be due to its local migrational history rather than constraints on its growth. Yellow-cedar trees in northern range edge locations appear to be healthy, with few dead trees; additionally, yellow-cedar tend to be younger than co-dominant mountain and western hemlock trees, indicating recent establishment in existing forests. To explore yellow-cedar's migration in the region, and determine if the range is expanding into unoccupied habitat, I located 11 leading edge yellow-cedar populations near Juneau, Alaska. I used the geographic context of these populations to determine the topographic, climatic, and disturbance factors associated with range edge population establishment. I used those same landscape variables to model suitable habitat for the species at the range edge. Based on habitat modeling, yellow-cedar is currently only occupying 0.8 percent of its potential landscape niche in the Juneau study area. Tree ages indicate that populations are relatively young for the species, indicating recent migration, and that most populations established during the Little Ice Age climate period (1100 -- 1850). To determine if yellow-cedar is continuing to colonize unoccupied habitat in the region, I located 29 plots at the edges of yellow-cedar stands to measure regeneration and expansion into existing forest communities. Despite abundant suitable habitat, yellow-cedar stand expansion appears stagnant in recent decades. On average, seedlings only dispersed 4.65 m beyond stand boundaries and few seedlings reached mature heights both inside and outside of existing yellow-cedar stands. Mature, 100 --200-year-old trees were often observed abruptly at stand boundaries, indicating that most standboundaries have not moved in the past ~150 years. When observed, seedlings were most common in high light understory plant communities and moderately wet portions of the soil drainage gradient, consistent with the species' autecology in the region. Despite an overall lack of regeneration via seed, yellow-cedar is reproducing via asexual layering in high densities across stands. Layering may be one strategy this species employs to slowly infill habitat and/or persist on the landscape until conditions are more favorable for sexual reproduction. This study leads to a picture of yellow-cedar migration as punctuated, and relatively slow, in southeast Alaska. Yellow-cedar's migration history and currently limited spread at the northeastern range edge should be considered when planning for the conservation and management of this high value tree under future climate scenarios
    • …
    corecore