Ecological processes at the population and community level are often ignored in biogeochemical models, however, the effects of excluding these processes at the ecosystem level is uncertain. In this study we analyzed the set of behaviors that emerge after introducing population and community processes into an ecosystem carbon model. We used STANDCARB, a hybrid model that incorporates population, community, and ecosystem processes to predict carbon dynamics over time. Our simulations showed that at the population level, colonization and mortality rates can limit the maximum biomass achieved during a successional sequence. Specifically, colonization rates control temporal lags in the initiation of carbon accumulation, and mortality rates can have important effects on annual variation in live biomass. At the community level, differences in species traits and changes in species composition over time introduced significant changes in carbon dynamics. Species with different set of parameters, such as growth and mortality rates, introduce patterns of carbon accumulation that could not be reproduced using a single species with the average of parameters of multiple species or by simulating the most abundant species (strategies commonly employed in terrestrial biogeochemical models). We conclude that omitting population and community processes from biogeochemical models introduces an important source of uncertainty that can impose important limitations for predictions of future carbon balances