26 research outputs found

    The Gomory-Chvátal closure : polyhedrality, complexity, and extensions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2011.Vita. Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-166).In this thesis, we examine theoretical aspects of the Gomory-Chvátal closure of polyhedra. A Gomory-Chvátal cutting plane for a polyhedron P is derived from any rational inequality that is valid for P by shifting the boundary of the associated half-space towards the polyhedron until it intersects an integer point. The Gomory-ChvAital closure of P is the intersection of all half-spaces defined by its Gomory-Chvátal cuts. While it is was known that the separation problem for the Gomory-Chvátal closure of a rational polyhedron is NP-hard, we show that this remains true for the family of Gomory-Chvátal cuts for which all coefficients are either 0 or 1. Several combinatorially derived cutting planes belong to this class. Furthermore, as the hyperplanes associated with these cuts have very dense and symmetric lattices of integer points, these cutting planes are in some- sense the "simplest" cuts in the set of all Gomory-Chvátal cuts. In the second part of this thesis, we answer a question raised by Schrijver (1980) and show that the Gomory-Chvátal closure of any non-rational polytope is a polytope. Schrijver (1980) had established the polyhedrality of the Gomory-Chvdtal closure for rational polyhedra. In essence, his proof relies on the fact that the set of integer points in a rational polyhedral cone is generated by a finite subset of these points. This is not true for non-rational polyhedral cones. Hence, we develop a completely different proof technique to show that the Gomory-Chvátal closure of a non-rational polytope can be described by a finite set of Gomory-Chvátal cuts. Our proof is geometrically motivated and applies classic results from polyhedral theory and the geometry of numbers. Last, we introduce a natural modification of Gomory-Chvaital cutting planes for the important class of 0/1 integer programming problems. If the hyperplane associated with a Gomory-Chvátal cut for a polytope P C [0, 1]' does not contain any 0/1 point, shifting the hyperplane further towards P until it intersects a 0/1 point guarantees that the resulting half-space contains all feasible solutions. We formalize this observation and introduce the class of M-cuts that arises by strengthening the family of Gomory- Chvátal cuts in this way. We study the polyhedral properties of the resulting closure, its complexity, and the associated cutting plane procedure.by Juliane DunkelPh.D

    Cutting Planes Width and the Complexity of Graph Isomorphism Refutations

    Get PDF
    The width complexity measure plays a central role in Resolution and other propositional proof systems like Polynomial Calculus (under the name of degree). The study of width lower bounds is the most extended method for proving size lower bounds, and it is known that for these systems, proofs with small width also imply the existence of proofs with small size. Not much has been studied, however, about the width parameter in the Cutting Planes (CP) proof system, a measure that was introduced by Dantchev and Martin in 2011 under the name of CP cutwidth. In this paper, we study the width complexity of CP refutations of graph isomorphism formulas. For a pair of non-isomorphic graphs G and H, we show a direct connection between the Weisfeiler-Leman differentiation number WL(G, H) of the graphs and the width of a CP refutation for the corresponding isomorphism formula Iso(G, H). In particular, we show that if WL(G, H) ? k, then there is a CP refutation of Iso(G, H) with width k, and if WL(G, H) > k, then there are no CP refutations of Iso(G, H) with width k-2. Similar results are known for other proof systems, like Resolution, Sherali-Adams, or Polynomial Calculus. We also obtain polynomial-size CP refutations from our width bound for isomorphism formulas for graphs with constant WL-dimension

    Relaxations of mixed integer sets from lattice-free polyhedra

    Get PDF
    This paper gives an introduction to a recently established link between the geometry of numbers and mixed integer optimization. The main focus is to provide a review of families of lattice-free polyhedra and their use in a disjunctive programming approach. The use of lattice-free polyhedra in the context of deriving and explaining cutting planes for mixed integer programs is not only mathematically interesting, but it leads to some fundamental new discoveries, such as an understanding under which conditions cutting planes algorithms converge finitel

    On the complexity of branching proofs

    Get PDF
    We consider the task of proving integer infeasibility of a bounded convex K in Rn using a general branching proof system. In a general branching proof, one constructs a branching tree by adding an integer disjunction ax ≤ b or ax ≥ b + 1, a ∈ Zn, b ∈ Z, at each node, such that the leaves of the tree correspond to empty sets (i.e., K together with the inequalities picked up from the root to leaf is empty). Recently, Beame et al (ITCS 2018), asked whether the bit size of the coefficients in a branching proof, which they named stabbing planes (SP) refutations, for the case of polytopes derived from SAT formulas, can be assumed to be polynomial in n. We resolve this question in the affirmative, by showing that any branching proof can be recompiled so that the normals of the disjunctions have coefficients of size at most (nR)O(n2), where R ∈ N is the radius of an `1 ball containing K, while increasing the number of nodes in the branching tree by at most a factor O(n). Our recompilation techniques works by first replacing each disjunction using an iterated Diophantine approximation, introduced by Frank and Tardos (Combinatorica 1986), and proceeds by “fixing up” the leaves of the tree using judiciously added Chvátal-Gomory (CG) cuts. As our second contribution, we show that Tseitin formulas, an important class of infeasible SAT instances, have quasi-polynomial sized cutting plane (CP) refutations. This disproves a conjecture that Tseitin formulas are (exponentially) hard for CP. Our upper bound follows by recompiling the quasi-polynomial sized SP refutations for Tseitin formulas due to Beame et al, which have a special enumerative form, into a CP proof of the same length using a serialization technique of Cook et al (Discrete Appl. Math. 1987). As our final contribution, we give a simple family of polytopes in [0, 1]n requiring exponential sized branching proofs

    Vašek Chvátal: A Very Short Introduction

    Full text link

    Robust Design of Single-Commodity Networks

    Get PDF
    The results in the present work were obtained in a collaboration with Eduardo Álvarez- Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano Parriani. The subject of this thesis is a robust network design problem, i.e., a problem of the type “dimension a network such that it has sufficient capacity in all likely scenarios.” In our case, we model the network with an undirected graph in which each scenario defines a supply or demand for each node. We say that a flow in the network is feasible for a scenario if it can balance out its supplies and demands. A scenario polytope B defines which scenarios are relevant. The task is now to find integer capacities that minimize the total installation costs while allowing for a feasible flow in each scenario. This problem is called Single-Commodity Robust Network Design Problem (sRND) and was introduced by Buchheim, Liers and Sanità (INOC 2011). The problem contains the Steiner Tree Problem (given an undirected graph and a terminal set, find a minimum cost subtree that connects all terminals) and therefore is N P-hard. The problem is also a natural extension of minimum cost flows. The network design literature treats the case that the scenario polytope B is given as the finite set of its extreme points (finite case) and that it is given as the feasible region of finitely many linear inequalities (polyhedral case). Both descriptions are equivalent, however, an efficient transformation is not possible in general. Buchheim, Liers and Sanità (INOC 2011) propose a Branch-and-Cut algorithm for the finite case. In this case, there exists a canonical problem formulation as a mixed integer linear program (MIP). It contains a set of flow variables for every scenario. Buchheim, Liers and Sanità enhance the formulation with general cutting planes that are called target cuts. The first part of the dissertation considers the problem variant where every scenario has exactly two terminal nodes. If the underlying network is a complete, unweighted graph, then this problem is the Network Synthesis Problem as defined by Chien (IBM Journal of R&D 1960). There exist polynomial time algorithms by Gomory and Hu (SIAM J. of Appl. Math 1961) and by Kabadi, Yan, Du and Nair (SIAM J. on Discr. Math.) for this special case. However, these algorithms are based on the fact that complete graphs are Hamiltonian. The result of this part is a similar algorithm for hypercube graphs that assumes a special distribution of the supplies and demands. These graphs are also Hamiltonian. The second part of the thesis discusses the structure of the polyhedron of feasible sRND solutions. Here, the first result is a new MIP-based capacity formulation for the sRND problem. The size of this formulation is independent of the number of extreme points of B and therefore, it is also suited for the polyhedral case. The formulation uses so-called cut-set inequalities that are known in similar form from other network design problems. By adapting a proof by Mattia (Computational Optimization and Applications 2013), we show that cut-set inequalities induce facets of the sRND polyhedron. To obtain a better linear programming relaxation of the capacity formulation, we interpret certain general mixed integer cuts as 3-partition inequalities and show that these inequalities induce facets as well. The capacity formulation has exponential size and we therefore need a separation algorithm for cut-set inequalities. In the finite case, we reduce the cut-set separation problem to a minimum cut problem that can be solved in polynomial time. In the polyhedral case, however, the separation problem is N P-hard, even if we assume that the scenario polytope is basically a cube. Such a scenario polytope is called Hose polytope. Nonetheless, we can solve the separation problem in practice: We show a MIP based separation procedure for the Hose scenario polytope. Additionally, the thesis presents two separation methods for 3-partition inequalities. These methods are independent of the encoding of the scenario polytope. Additionally, we present several rounding heuristics. The result is a Branch-and-Cut algorithm for the capacity formulation. We analyze the algorithm in the last part of the thesis. There, we show experimentally that the algorithm works in practice, both in the finite and in the polyhedral case. As a reference point, we use a CPLEX implementation of the flow based formulation and the computational results by Buchheim, Liers and Sanità. Our experiments show that the new Branch-and-Cut algorithm is an improvement over the existing approach. Here, the algorithm excels on problem instances with many scenarios. In particular, we can show that the MIP separation of the cut-set inequalities is practical

    Distances to lattice points in rational polyhedra

    Get PDF
    Let a ∈ Z n >0 , n ≥ 2 , gcd(a) := gcd(a1 , . . . , an ) = 1, b ∈ Z≥0 and denote by k · k∞ the ℓ∞-norm. Consider the knapsack polytope P(a, b) = { x ∈ R n ≥0 : a T x = b and assume that P(a, b) ∩ Z n 6= ; holds. The main result of this thesis states that for any vertex x ∗ of the knapsack polytope P(a, b) there exists a feasible integer point z ∗ ∈ P(a, b) such that, denoting by s the size of the support of z ∗ , i.e. the number of nonzero components in z ∗ and upon assuming s > 0 , the inequality kx ∗ − z ∗ k∞ 2 s−1 s < kak∞ holds. This inequality may be viewed as a transference result which allows strengthening the best known distance (proximity) bounds if integer points are not sparse and, vice versa, strengthening the best known sparsity bounds if feasible integer points are sufficiently far from a vertex of the knapsack polytope. In particular, this bound provides an exponential in s improvement on the previously best known distance bounds in the knapsack scenario. Further, when considering general integer linear programs, we show that a resembling inequality holds for vertices of Gomory’s corner polyhedra [49, 96]. In addition, we provide several refinements of the known distance and support bounds under additional assumption
    corecore