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Abstract
The width complexity measure plays a central role in Resolution and other propositional proof
systems like Polynomial Calculus (under the name of degree). The study of width lower bounds is
the most extended method for proving size lower bounds, and it is known that for these systems,
proofs with small width also imply the existence of proofs with small size. Not much has been
studied, however, about the width parameter in the Cutting Planes (CP) proof system, a measure
that was introduced by Dantchev and Martin in 2011 under the name of CP cutwidth.

In this paper, we study the width complexity of CP refutations of graph isomorphism formulas.
For a pair of non-isomorphic graphs G and H, we show a direct connection between the Weisfeiler–
Leman differentiation number WL(G, H) of the graphs and the width of a CP refutation for the
corresponding isomorphism formula Iso(G, H). In particular, we show that if WL(G, H) ≤ k, then
there is a CP refutation of Iso(G, H) with width k, and if WL(G, H) > k, then there are no CP
refutations of Iso(G, H) with width k − 2. Similar results are known for other proof systems, like
Resolution, Sherali–Adams, or Polynomial Calculus. We also obtain polynomial-size CP refutations
from our width bound for isomorphism formulas for graphs with constant WL-dimension.
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1 Introduction

Central to the field of combinatorial optimization is the NP-hard problem of finding integer
solutions to linear programs. This is done by optimizing the linear objective function ⟨c,x⟩
(for a given vector c ∈ Rn) over the set of feasible points x for the LP relaxation, described
by a rational polytope of the form

P = {x ∈ Rn | Ax ≥ b, 0 ≤ x ≤ 1},

where A ∈ Zm×n is some integer matrix, and b ∈ Zm is an integer vector.1 If the polytope is
integral (i. e., only contains integer vertices), one can optimize over all real vectors in P (i. e.,
solve the linear relaxation in weakly polynomial time). Otherwise, one has to consider the
integral hull PZ := conv(P ∩ Zn) for the optimization, i. e., the smallest polytope containing

1 Note that we restrict our attention to polytopes in [0, 1]n rather than polyhedrons in Rn.
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26:2 Cutting Planes Width and the Complexity of Graph Isomorphism Refutations

the integral points of P . As was already suggested by Gomory [22] and later by Chvátal [12],
in such a case, one can iteratively refine the set of feasible solutions by adding further valid
constraints described by hyperplanes, or, more precisely, half-spaces, to the set of inequalities
describing P . These half spaces still contain PZ but – hopefully – cut off some parts of P .
For this purpose, the cut rule adds an inequality of the form ⟨a,x⟩ ≥ ⌈b⌉ with an integral
vector a and a rational number b such that every point of P satisfies the inequality ⟨a,x⟩ ≥ b.
If b is not an integer, then the former inequality is not valid for (some) fractional solutions
but still valid for all integer solutions. This process yields a sequence

P ⊇ P (1) ⊇ P (2) ⊇ · · · ⊇ PZ

of polytopes. If some polytope P (i) in this sequence is empty, P cannot have integer solutions.

Cutting Planes Proof System. Using this idea, Cook et al. [16] introduced the Cutting
Planes proof system. In this system, one is initially given a set

{ ∑n
j=1 ai,jxj ≥ bi

∣∣ i ∈ [m]
}

of integer inequalities describing the polytope P . Using the two deduction rules introduced in
Definition 2, one can repeatedly deduce new inequalities, aiming to derive the contradictory
inequality 0 ≥ 1. Obtaining a sequence of inequalities ending with 0 ≥ 1 is possible if and
only if the initial set of inequalities does not admit an integer solution. This yields the
Cutting Planes proof system (formally introduced in Section 2.2).

In particular, CP can be used to refute unsatisfiable CNF formulas (by translating them
into affine inequalities). Cutting Planes is a strong proof system that can simulate Resolution,
and it is exponentially stronger for several formula classes [16]. Exponential lower bounds
on the size of a Cutting Planes proof (as measured in the number of inequalities) have
been shown using the interpolation method [45, 27, 30] and, more recently, using lifting and
communication complexity results [21] that can be traced back to [34, 9, 31].

Other complexity measures for CP have been studied. These measures are defined
by the directed acyclic graph representing the proof (one connects the premises with the
consequences). The rank of a proof is the maximum number of applications of the cut
rule along any path in the directed graph. This is known as the Chvátal rank in linear
optimization (see [36] for an excellent overview in this area) and was introduced in [10] in the
area of proof complexity. This measure is the analogon of depth in Resolution [54]. Further,
Dantchev and Martin [18] introduced the parameter cutwidth, defined as the maximum
number of variables present in an inequality derived by performing a cut. This measure
was further studied in [46] under the name of width, where the author presents linear lower
bounds for this measure, as well as width/rank tradeoffs. In the case of Resolution, there is
also a related complexity measure of width that measures how many literals are present in
the largest clause in a refutation. In Polynomial Calculus, the analogous measure is degree.
The seminal paper [5] showed that proving width lower bounds for Resolution is a way to
prove size lower bounds for Resolution. This result extends to the corresponding measures in
Polynomial Calculus [13, 35]. These papers sparked interest in the width/degree complexity
measures, resulting in a long line of papers proving lower bounds for these measures. The
situation for CP width lower bounds is dramatically more sparse. We are only aware of the
two mentioned references [18, 46].

In this paper, we study graph isomorphism formulas with respect to the parameters rank
and width. This allows us to prove size upper bounds for isomorphism formulas based on
graphs with constant Weisfeiler–Leman dimension. We also show lower bounds for these
formulas in a subsystem of CP. A strong motivation for this study is that Cutting Planes
is a promising candidate to be used in future efficient implementations of SAT solvers.
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Furthermore, proof complexity results also hold for all integer linear programming solvers
based on the Gomory–Chvátal rule. These solvers provide up-to-date methods for solving
NP-hard Boolean optimization problems.

Weisfeiler–Leman and Proof Complexity. The graph isomorphism problem (GI), i. e., the
task of deciding whether two given graphs are isomorphic, has been intensively studied and
is well known for its unresolved complexity, as it is one of the few problems in NP that is not
known to be complete for this class nor to be in P. It is also unknown whether GI ∈ co-NP.

A naïve heuristic to distinguish two non-isomorphic colored graphs is the 1-dimensional
Weisfeiler–Leman algorithm (WL), or color refinement algorithm. This algorithm updates
the original vertex colors according to the multiset of colors of their neighbors. This basic
step is applied repeatedly until the colorings stabilize. This procedure can be generalized to
the k-dimensional Weisfeiler–Leman algorithm (k-WL) [56, 55]. In this more refined variant,
the set of k-tuples of vertices is partitioned into automorphism-invariant equivalence classes
(see, e. g., [37] for an overview of this procedure). It had been conjectured that GI is solvable
using the k-dimensional Weisfeiler–Leman algorithm, with k being sublinear in the number
of vertices of the graphs. However, this was shown to be false in the seminal work of Cai,
Fürer, and Immerman [11]. Fascinatingly, the authors achieved this by relating the power of
k-WL to the expressive power of Ck, the k-variable fragment of first-order logic augmented
with counting quantifiers, and a variant of an Ehrenfeucht-Fraïssé game [20, 19] called the
bijective k-pebble game. Nevertheless, the Weisfeiler–Leman method still plays a central role
in the algorithmic research on GI; for example, Babai’s famous algorithm for GI [3] uses the
Weisfeiler–Leman method as a subroutine.

The field of proof complexity provides a different approach to studying the complexity
of the GI problem. Here, one tries to find the smallest size of a proof of the fact that two
graphs are non-isomorphic. It holds that GI is in co-NP if and only if there is a concrete
proof system with polynomial-size proofs of non-isomorphism. Similar to the Cook–Reckhow
program [15] for the unsatisfiability problem UNSAT, this defines a clear line of research
trying to provide superpolynomial size lower bounds for refuting graph (non)isomorphism
formulas in stronger and stronger proof systems. The situation is even more interesting here
than in the SAT case since it was proven in [4] that GI is in co-AM, a randomized version
of co-NP. Hence, it would not be too surprising if GI ∈ co-NP, and this would imply the
existence of polynomial-size proofs for the problem in some system.

In a recent line of work, the power of different proof systems has been studied with respect
to their power in refuting graph isomorphism. The first example of such a lower bound was
given in [51] for the Resolution proof system. This result led to lower bounds for stronger
proof systems. These studies also make use of the Weisfeiler–Leman algorithm. The authors
of [6] exactly characterized the power of the Weisfeiler–Leman algorithm in terms of an
algebraic proof system between degree-k Nullstellensatz and degree-k Polynomial Calculus.
Moreover, it has been shown in [1, 42, 26] that the power of k-WL lies between the k-th and
(k+ 1)-st level of the canonical Sherali–Adams LP hierarchy [49]. Furthermore, it was shown
in [44] and independently in [14] that pairs of non-isomorphic n-vertex graphs exist such
that any Sum-of-Squares proof of non-isomorphism must have degree Ω(n). Closely related
are the results of [2] that show that Sum-of-Squares degree and Polynomial Calculus degree
correlate to the Weisfeiler–Leman dimension (up to constant factors). Recently, in [52], an
exact connection was shown between the width and depth measures in (narrow) Resolution
and the number of variables and the quantifier depth needed to distinguish a pair of graphs
by first-order logic sentences. This result extends to a lower bound for the strong SRC-1
proof system, equipping Resolution with a symmetry rule [53].

SAT 2023
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1.1 Our Results and Techniques
We show a strong connection between the Weisfeiler–Leman graph differentiation number
and the geometric Cutting Planes proof system. We write G ≡CP

k H if there is no width-k
Cutting Planes refutation of Iso(G,H), the set of inequalities encoding the statement that
the graphs G and H are isomorphic. Further, we write G ≡WL

k H if the graphs G and H

cannot be distinguished using the logic Ck. Our main result is the following theorem.

▶ Theorem 1 (Main Result). Let G and H be two non-isomorphic graphs. Then,

G ≡CP
k H =⇒ G ≡WL

k H =⇒ G ≡CP
k−2 H. (1)

In other words,
1. If WL(G,H) ≤ k, then Iso(G,H) can be refuted by Cutting Planes using width k.
2. If WL(G,H) > k, then Iso(G,H) is not refutable in Cutting Planes using width k − 2.

We achieve the first result by using the winning positions of Spoiler in the bijective pebble
game to derive the necessary inequalities. The second result is shown by constructing a set of
matrices that “protect” a given point in the isomorphism polytope from being cut away using
cuts of a certain width. This result is achieved by proving a so-called protection lemma for
graph isomorphism. This type of lemmata has a long tradition in combinatorial optimization
(see, e. g., [36]) and has also been used in the area of proof complexity in [10, 18, 40].
The concrete matrices are being constructed using winning positions for Duplicator in the
bijective pebble game. From the first result, we can derive polynomial-size CP refutations
for isomorphism formulas for graphs with constant WL-dimension.

We also show a size lower bound for refuting graph isomorphism formulas in the subsystem
of tree-like Cutting Planes with polynomially bounded coefficients by using known results
from communication complexity.

1.2 Organization of This Paper
The remainder of this paper is organized as follows. Section 2 introduces our notation, the
Cutting Planes proof system, the Gomory–Chvátal rule, our encoding of graph isomorphism
as a set of affine inequalities, and necessary tools from descriptive complexity. We proceed
in Section 3 by showing the tight connection between the Weisfeiler–Leman differentiation
number for graphs and the width of refuting the corresponding graph isomorphism formulas
in the Cutting Planes proof system. Section 4 establishes the lower bound for isomorphism
formulas in Tree-CP with polynomially bounded coefficients. Due to space constraints, the
proofs of some lemmas are presented in the full-length version of the paper.

2 Preliminaries

2.1 Notation
We let N denote the set of positive integers, and for n ∈ N, we define [n] := {k ∈ N | 1 ≤
k ≤ n}. This paper will denote tuples, vectors, and matrices in boldface. Given two vectors
x,a ∈ Rn, we let ⟨a,x⟩ :=

∑n
i=1 aixi denote the standard inner product.

2.2 The Cutting Planes Proof System
In this paper, we consider Cutting Planes as an inference system used for refuting unsatisfiable
CNF formulas, as suggested by [16]. For this, a CNF formula F is translated into a system
of affine inequalities that have a 0-1-solution if and only if the corresponding assignment
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satisfies F . These inequalities can then be manipulated according to certain rules. It is known
that a formula is unsatisfiable if and only if, applying these rules, it is possible to obtain the
contradiction 0 ≥ 1. A clause C = (ℓ1∨· · ·∨ℓk) is converted to τ(C) ≡

[
τ(ℓ1)+· · ·+τ(ℓk) ≥ 1

]
,

where for each literal ℓi, we let τ(ℓi) := x if ℓi = x and τ(ℓi) := 1 − x if ℓi = ¬x. We also
add the additional inequalities x ≥ 0 and −x ≥ −1 for each variable x, forcing them to take
values between 0 and 1 (this is a relaxation of the condition x ∈ {0, 1}).

▶ Definition 2. Let a ∈ Zn, ai ∈ Zn, γi ∈ Z for i ∈ [m], and x be a vector of n variables.
The Cutting Planes proof system (CP) has two rules:

Linear combination: From the linear inequalities ⟨a1,x⟩ ≥ γ1, . . . , ⟨am,x⟩ ≥ γm and non-
negative integers α1, . . . , αm, we can derive the inequality

∑m
i=1 αi⟨ai,x⟩ ≥

∑m
i=1 αiγi.

Rounding: From ⟨a,x⟩ ≥ γ, if all the coefficients in a are divisible by a positive integer
b > 0, then we can derive the inequality ⟨ a

b ,x⟩ ≥ ⌈ γ
b ⌉.

We can assume, without loss of generality, as done in [10], that a rounding operation
is always applied after each application of the linear combination rule and, therefore, both
rules can be merged into a single one (called Gomory–Chvátal cut, GC cut in [10]).

▶ Remark 3. As is standard (see, e. g., [36]), we will sometimes write a ≤ b or −b ≤ −a for a
Cutting Planes inequality of the form b ≥ a when it is more natural in our arguments.

▶ Definition 4. A Cutting Planes refutation for a set of affine inequalities f = {f1, . . . , fm},
is a sequence (g1, . . . , gt) of affine inequalities satisfying that

each gi is either an inequality in f (an axiom) or is obtained from previous inequalities by
a GC cut,
and gt is the inequality 0 ≥ 1.

It is well-known that all the above-mentioned derivation rules are sound for integer
solutions. Furthermore, the proof system is complete in the sense that each unsatisfiable
CNF formula has a Cutting Planes refutation (see, e. g., [12]).

A CP refutation can be represented in the usual way as a directed acyclic graph in which
each vertex corresponds to an affine inequality in the proof. The axioms are the sources, the
inequality 0 ≥ 1 is the only sink, and for every application of a GC cut, there is an edge
pointing from each of the vertices whose corresponding inequalities are involved in the cut
to the vertex representing the result of the cut. The most common complexity measure for
a CP refutation is its size, defined as the number of vertices in the refutation graph. Two
other complexity measures play a central role in our results:

▶ Definition 5. The rank of a CP refutation (also called depth) is the length of the longest
path from an axiom to the 0 ≥ 1 inequality in the refutation graph.

The cutwidth, or just width, of a CP refutation is the maximum number of variables in
an inequality that results from a GC cut. By this, we mean the number of variables remaining
after the linear combination in the rule has been performed or, equivalently, the number of
variables after the GC cut (linear combination plus rounding) has been done. If no GC cut is
used, we consider the cutwidth to be 0.

For any complexity measure C and any unsatisfiable system of affine inequalities f , the
C-complexity of f is the minimum value of C over all CP refutations of f .

SAT 2023
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2.3 Two Sets of Affine Inequalities for Graph Isomorphism
We only deal undirected simple graphs. Such a graph is a tuple G = (VG, EG), where VG is
a finite set of vertices and EG ⊆

(
VG

2
)

is the set of edges. For a vertex v in a graph G, we
denote by NG(v) the set of its neighbors, and for a set of vertices S, we define NG(S) as
the set of neighbors of the vertices in S. If the graph is clear from the context, we drop the
subscripts.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there is a bijection
φ : VG → VH (called isomorphism from G to H) such that {u, v} ∈ EG ⇐⇒

{
φ(u), φ(v)

}
∈

EH holds for all u, v ∈ VG. We will denote this by G ∼= H.
Let G = (VG, EG) and H = (VH , EH) be two graphs with VG = VH = {1, . . . , n}. We

will use the set of variables xi,j with i, j ∈ [n]. If xi,j is greater than 0, this indicates that
vertex i in G is mapped to vertex j in H.

For convenience, we consider two different sets of inequalities for which there is a satisfying
integer assignment if and only if there is an isomorphism between G and H. The first set
of affine inequalities is the one usually used in linear optimization. Let A and B be the
adjacency matrices of the graphs G and H. The graphs are isomorphic if and only if there is
a permutation matrix X satisfying AX = XB. This is expressed by the following sets of
inequalities. To keep the following definition concise, we write two inequalities a ≤ b and
b ≤ a as the equality a = b.

▶ Definition 6 (MIso Formulas). The set of affine inequalities MIso(G,H) (for matrix
isomorphism) contains the following axioms:
Type 1 axioms: For every v ∈ VG the equality

∑
w∈VH

xv,w = 1; and for every w ∈ VH the
equality

∑
v∈VG

xv,w = 1. Applied to the matrix X, these axioms mean that the sum of
each row, as well as the sum of each column, is one.

Type 2 axioms: These encode the matrix product AX = XB. For each position (i, j) ∈ [n]2,
we have the equality (AX)i,j = (XB)i,j, or alternatively

∑
k∈N(i) xk,j =

∑
ℓ∈N(j) xi,ℓ.

Type 3 axioms: These are for every variable x the CP axioms x ≤ 1 and x ≥ 0.

An alternative set of affine inequalities over the same set of variables is sometimes more
convenient and has been used before for encoding the isomorphism principle in other proof
systems like Resolution [51, 48, 52] or Polynomial Calculus [6]. Instead of the inequalities
for the matrices, for every two pairs of vertices v, v′ ∈ VG and w,w′ ∈ VH such that (v, v′)
is an edge in G and (w,w′) is not an edge in H (or the other way around) we include an
inequality indicating that v is not mapped to w or v′ is not mapped to w′.

▶ Definition 7 (Iso Formulas). The set Iso(G,H) contains the following inequalities:
Type 1 and Type 3 axioms: These are exactly the same as in the MIso formulas.
Type 2 axioms: For every v, v′ ∈ VG and w,w′ ∈ VH such that

{
(v, w), (v′, w′)

}
is not an

isomorphism in the graphs induced by {v, v′} and {w,w′}, the inequality xv,w +xv′,w′ ≤ 1,
indicating that an edge cannot be mapped to a non-edge or vice-versa.

Both systems of inequalities have the same set of 0-1 solutions, which encode the
isomorphisms between G and H but can have different sets of fractional solutions. For
example, setting all variables xi,j to 1

n is always a solution for Iso(G,H) (even when the
graphs are non-isomorphic) but only satisfies MIso(G,H) when these are regular graphs. A
fractional isomorphism is a solution that satisfies the MIso formulas but is not necessarily
integral.
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▶ Definition 8. The graphs G and H are fractional isomorphic if there exists a doubly
stochastic matrix P with AP = PB, where A and B are the adjacency matrices of G and H,
respectively. The matrix P is then called fractional isomorphism between G and H.

We show that there are short CP derivations of each set of inequalities from the other,
although, for the derivation of MIso(G,H) from Iso(G,H), we need to use the CG-cut rule.

▶ Lemma 9. There is a polynomial-size CP derivation of the set of inequalities Iso(G,H)
from MIso(G,H) without using the GC cut rule.

Since fractional solutions can only be eliminated in CP using the GC cut rule, this result
implies that the set of solutions of MIso(G,H) is included in the set of solutions of Iso(G,H).
We consider a derivation in the other direction:

▶ Lemma 10. For any two connected graphs G,H with maximum degree d, there is a
polynomial-size CP derivation with rank 2 and width 2d of the set of inequalities MIso(G,H)
from Iso(G,H).

2.4 The Weisfeiler–Leman Number and the Bijective k-Pebble Game
In order to express different properties of graphs by certain fragments of first-order logic
sentences, Immerman introduced the following definition.

▶ Definition 11 ([32, 33]). For a logic L (of first-order logic sentences), the graphs G and H
are L-equivalent, denoted by G ≡L H, if for all sentences ψ ∈ L it holds that

G ⊨ ψ ⇐⇒ H ⊨ ψ.

Otherwise, we say that L can distinguish G from H, denoted by G ̸≡L H.

For n ∈ N, we introduce a counting quantifier ∃≥n. The formula ∃≥nxψ has the meaning
that “there are at least n distinct x satisfying ψ”. We also need the notion of quantifier
depth (also called quantifier rank).

▶ Definition 12 ([41]). The quantifier depth of a formula ψ is defined inductively as follows:
If ψ is atomic, then qd(ψ) = 0;
qd(¬ψ) = qd(ψ);
qd(ψ1 ∨ ψ2) = max

{
qd(ψ1), qd(ψ2)

}
;

qd(∃≥nxψ) = qd(ψ) + 1.

▶ Definition 13. The k-variable counting logic Ck is the set of first-order logic formulas
that use counting quantifiers but at most k different variables (possibly re-quantifying them).
Further, Ck

r is the subclass of Ck where the quantifier depth in the formulas is restricted to r.

For example, ∃x
[
∃≥8y E(x, y)∧∀y

(
E(x, y) → ∃≥2xE(y, x)

)]
lies in C2

3 and says that there
is a vertex that has at least 8 neighbors, each of which has at least 2 neighbors themselves.

▶ Definition 14. The Weisfeiler–Leman differentiation number of two graphs G and H is
defined by

WL(G,H) :=
{

min{k ∈ N | G ̸≡Ck H} if G ̸∼= H

∞ if G ∼= H.

For a graph G, we say that it has Weisfeiler–Leman dimension at most k if and only if
G ̸≡Ck+1 H for all graphs H non-isomorphic to G.

SAT 2023
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Let G and H be two graphs for the remainder of this section. We describe the r-round
bijective k-pebble game of Hella [29], adapting the excellent notation from [1]. This game can
be used to test Ck

r -equivalence. We first describe some notation and the concept of partial
isomorphism before proceeding to introduce the game itself.

▶ Notation 15. Let k ∈ N. Suppose v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k. For i ∈ [k] and
v ∈ VG ∪ {⋆}, we let v[i/v] denote the tuple (v1, . . . , vi−1, v, vi+1, . . . , vk). Further, we let
|v|⋆ denote the number of stars in the tuple v.

▶ Definition 16. Let k ∈ N and let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k and w = (w1, . . . , wk) ∈
(VH ∪ {⋆})k be two k-tuples. We say that the pair (v,w) induces/is a partial isomorphism
between G and H if, for every i, j ∈ [k] we have:
1. vi = ⋆ if and only if wi = ⋆;
2. vi = vj if and only if wi = wj;
3. {vi, vj} ∈ EG if and only if {wi, wj} ∈ EH .

In the following game, Spoiler wants to exhibit a difference between the given graphs,
while Duplicator tries to disguise such a difference by maintaining a partial isomorphism.

▶ Definition 17. Let k, r ∈ N. The r-round bijective k-pebble game on the graphs G and H
is played by two players, called Spoiler and Duplicator. There are k pairs of matched pebbles
in the game. The game proceeds in rounds. The game position after round r is finished can
be represented by a pair (v,w) ∈ (VG ∪ {⋆})k × (VH ∪ {⋆})k. The game starts with some
initial position (v0,w0). If this initial tuple does not induce a partial isomorphism between
the graphs, Spoiler wins the game after 0 rounds. We now describe the round r + 1 of the
game. For this, we suppose that the position after round r is given by (v,w).

If |v|⋆ = |w|⋆ = 0, Spoiler must choose a position i ∈ [k] (otherwise, he can still opt to do
this deletion step). The tuples are updated to v[i/⋆] and w[i/⋆].
Duplicator then chooses a bijection φ : VG → VH (if no such bijection exists, she has lost).
Spoiler picks a vertex v ∈ VG and a position i ∈ [k] such that vi = wi = ⋆, and the tuples
are updated to v[i/v] and w[i/φ(v)].

If the new (v,w) does not induce a local isomorphism, then Spoiler has won after r + 1
rounds. Otherwise, the game continues with the next round. We say that Duplicator has a
winning strategy if she can make the game last indefinitely.

It was shown in [11, 29] that WL(G,H) ≤ k if and only if Spoiler has a winning strategy
for the bijective k-pebble game on G and H starting from the initial position (v,w) with
v = w = (⋆, . . . , ⋆).

3 CP Refutations for Isomorphism Formulas

We fix two graphs G and H. For the remainder of this paper, it is sometimes convenient to
use an alternative view of the pebbling configurations used in Section 2.4.

▶ Definition 18 (zip Operator). Let k ∈ N and let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k and
w = (w1, . . . , wk) ∈ (VH ∪ {⋆})k. We write

p = zip(v,w)

to denote the set p ⊆ VG × VH given by

p :=
{

(vi, wi)
∣∣ i ∈ [k] such that vi ̸= ⋆ and wi ̸= ⋆

}
.



J. Torán and F. Wörz 26:9

Definition 16 can easily be adapted to game positions denoted in the way above.

▶ Notation 19. Let k, r ∈ N. For a game position p ⊆ VG × VH , we write p ∈ Dk(G,H) if p
is a winning position for Duplicator in the k-bijective game played on G and H. Similarly,
the set Dk

r (G,H) is defined for the positions in which Duplicator does not lose in r rounds
in the game. We use the notation Sk

r (G,H) to denote winning positions for Spoiler in the
respective game.

As in [1, 6], we now define an equivalence relation on (VG ∪ {⋆})k ∪ (VH ∪ {⋆})k.

▶ Definition 20 ([1, 6]). Let k ∈ N. Further, let G and H be two graphs and let K,K ′ ∈
{G,H}, not necessarily distinct. Additionally, let u ∈ (VK ∪ {⋆})k and u′ ∈ (VK′ ∪ {⋆})k.
We write u ≡Dk u′ if p := zip(u,u′) ∈ Dk(K,K ′).

It was shown in [1, Lemma 3] that ≡Dk is an equivalence relation.

3.1 Constructing a CP Refutation from the Bijective Pebble Game
We show that if a pair (G,H) of non-isomorphic graphs can be separated by the bijective
k-pebble game in r rounds, then there is a CP refutation for Iso(G,H) having width k and
rank r simultaneously. By Lemma 9, the same result holds for the MIso(G,H) formulas. We
use the equivalence relation ≡Dk to define a bipartite graph with certain properties.

▶ Definition 21. Let p ⊆ VG × VH be an initial position of the bijective pebble game played
on the graphs G and H. The bipartite graph Bk

r (p) is defined as B := Bk
r (p) = (VG ⊎VH , EB)

with edge set

EB :=
{

{v, w}
∣∣ p ∪

{
(v, w)

}
̸∈ Sk

r (G,H)
}
.

We need the following result from [6]:

▶ Lemma 22. Suppose that Spoiler has a winning position for the bijective k-pebble game
played on the graphs G and H in r+1 rounds starting from position p. In the graph B := Bk

r (p)
there are two sets S ⊆ VG and T ⊆ VH with the following properties:

N(S) = T , N(T ) = S, and |S| > |T |;
Spoiler can win the game in r rounds from the starting position p ∪

{
(v, w)

}
for every

pair (v, w) ∈ VG × VH with the property v ∈ S ↔ w ̸∈ T .

Proof. By assumption, p ∈ Sk
r+1(G,H). This means that for all bijections φ : VG → VH that

Duplicator can provide, there is always a v ∈ VG that Spoiler can choose in return, such that
he still has a winning strategy from the position p ∪

{
v, φ(v)

}
in r rounds. Hence for this

v, we have
{
v, φ(v)

}
̸∈ EB. Thus, there can be no perfect matching in the graph B. By

Hall’s marriage theorem [28], a set S ⊆ VG exists with |NB(S)| < |S|. We choose S to be an
inclusion-maximal set with this property. Further, let

T := NB(S).

We claim that NB(T ) = S holds. To reach a contradiction, suppose that there is a vertex

v ∈ NB(T ) \ S. (2)

The maximality of S implies NB(v) ̸⊆ T . Let

w ∈ NB(v) \ T (3)

SAT 2023



26:10 Cutting Planes Width and the Complexity of Graph Isomorphism Refutations

be a vertex witnessing this fact. Since v ∈ NB(T ), there exists a vertex

w′ ∈ NB(v) ∩ T. (4)

Moreover, since T = NB(S) there is a vertex

v′ ∈ NB(w′) ∩ S. (5)

The choice of the vertices in Equations (2) – (5) implies that there are edges

{v′, w′}, {v, w′}, {v, w} ∈ EB .

This means that Duplicator has a winning strategy for the r-round k-bijective pebble game
from the starting positions p ∪

{
(v′, w′)

}
, p ∪

{
(v, w′)

}
, and p ∪

{
(v, w)

}
. Since ≡Dk is

an equivalence relation, we thus have that she also has a winning strategy starting from
p ∪

{
(v′, w)

}
. Hence, {v′, w} ∈ EB . However, this contradicts w ̸∈ NB(S). ◀

For a game position p =
{

(v1, w1), . . . , (vℓ, wℓ)
}

⊆ VG × VH we let Sp :=
∑ℓ

i=1 xvi,wi
.

Note that, in particular, S∅ = 0.

▶ Theorem 23. Suppose that Spoiler has a winning strategy for the r-round bijective k-pebble
game played on the graphs G and H with initial position p0. Then, there is a CP derivation
of the inequality Sp0 ≤ |p0| − 1 from Iso(G,H) having width k and rank r simultaneously.

Proof. We prove the theorem by induction on r, the number of rounds in the game. First, we
consider the base case, where Spoiler wins the game from p0 in 0 rounds. Since |VG| = |VH |, it
must be that p0 is not a local isomorphism; therefore, there are two pairs (v, w), (v′, w′) ∈ p0
that induce a local non-isomorphism. Hence, the inequality xv,w + xv′,w′ ≤ 1 must be a
Type 2 axiom of Iso(G,H). Adding the Type 3 axiom inequalities xa,b ≤ 1 for all |p0| − 2
many other pairs (a, b) ∈ p0 \

{
(v, w), (v′, w′)

}
, we obtain a derivation of Sp0 ≤ |p0| − 1.

For the induction step, let p ⊆ p0 with |p| = ℓ < k be the set of pairs not deleted by
Spoiler at the beginning of the first round in the game. It suffices to show that it is possible
to derive the inequality Sp ≤ |p| − 1. We consider the bipartite graph B from Definition 21.
From Lemma 22, we know that there are two sets S ⊆ VG and T ⊆ VH with N(S) = T ,
N(T ) = S and |S| > |T | and such that for every pair (v, w) with v ∈ S ↔ w ̸∈ T , Spoiler can
win the game in r-rounds from the start position p ∪

{
(v, w)

}
. By the induction hypothesis,

there is a CP derivation of Sp + xv,w ≤ |p| for all such pairs.
We notice first that we can derive the inequalities∑
v∈S, w∈T

xv,w ≤ |T | and
∑

v∈S, w∈T

xv,w ≤ |S|. (6)

To derive the first one of them, observe that for each w ∈ T , we have the axiom inequality∑
v∈VG

xv,w ≤ 1, which can be reduced to
∑

v∈S xv,w ≤ 1 by adding the axioms xv,w ≥ 0
for all v ∈ S. We obtain the first expression by adding the inequalities for all w ∈ T . The
second one is completely analogous. Adding both inequalities of (6) together, we get:∑

v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w ≤ |T | + |S|. (7)

Since |T | + |S| < |S| + |S| = n, Inequality (7) can be weakened to∑
v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w ≤ n− 1.
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Next, for each vertex v ∈ S adding over all inequalities Sp + xv,w ≤ |p| corresponding to
pairs (v, w) for w ∈ T (derived inductively) we get∑

w∈T

(Sp + xv,w) ≤ |T |ℓ,

and adding over all v ∈ S, we obtain∑
v∈S

∑
w∈T

(Sp + xv,w) ≤ |S||T |ℓ. (8)

Analogously, considering the pairs with v ̸∈ S and w ∈ T , we get∑
w∈T

∑
v∈S

(Sp + xv,w) ≤ |S||T |ℓ. (9)

Let γ := |S||T | + |S||T |. By adding the inequalities corresponding to the long Type 1
axioms for all vertices v ∈ VG, we can derive the inequality∑

v∈VG, w∈VH

xv,w ≥ n.

Subtracting (8) and (9) from this, we get∑
v∈S, w∈T

xv,w +
∑

v∈S, w∈T

xv,w − γSp ≥ n− γℓ.

Also subtracting the weakened version of (7), we derive

−γSp ≥ 1 − γℓ.

Observe that this last inequality has been obtained as the linear combination of axioms
and previous inequalities, and therefore, the derivation can be done in one step. Using the
rounding rule dividing by γ, we get

−Sp ≥
⌈

1 − γℓ

γ

⌉
= 1 − ℓ,

which is equivalent to Sp ≤ ℓ− 1. The linear combination and the rounding rule count as
one use of the GC-rule. ◀

▶ Corollary 24. If G ̸≡Ck
r
H, then there is a CP refutation for Iso(G,H) having width k and

rank r simultaneously.

Proof. Spoiler can win the game starting at the empty initial position p0 = ∅. The above
result implies that the contradiction 0 ≤ −1 can be derived with the desired parameters. ◀

▶ Corollary 25. If a pair of non-isomorphic graphs G,H with n vertices each can be separated
by the bijective k-pebble game, then there is a CP refutation for Iso(G,H) having size nO(k).

Proof. This follows from the observation that the CP refutation of Iso(G,H) described above
only contains axioms and inequalities of the form Sp ≤ |p| − 1 for sets of pairs p. Since there
are at most

∑k
i=0

(
n
i

)2 = nO(k) such sets of pairs, the result follows. ◀

Grohe [24] proved that two non-isomorphic graphs in every non-trivial minor-closed
graph class can be distinguished using k-WL for a constant k. This implies that for these
graphs, the Cutting Planes procedure can produce polynomial-size certificates of graph
non-isomorphism. As a concrete example, we mention that it was shown in [38] that the
Weisfeiler–Leman dimension of the class of all finite planar graphs is at most 3. Furthermore,
2-WL asymptotically almost surely decides isomorphism for random regular graphs [8, 39].
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3.2 CP Width Lower Bound for the Isomorphism Formulas
As described in [36], for a polytope P ⊂ Rn, the Chvátal closure P ′ is the polytope of all
points x such that, for every a ∈ Zn and every b ∈ R, we have[

∀y ∈ P : ⟨a,y⟩ ≥ b
]

=⇒ ⟨a,x⟩ ≥ ⌈b⌉; (10)

that is, we remove all points of the polytope P that are (in a certain sense) definitely
not integer solutions. By iteratively defining P (i+1) := (P (i))′, we obtain a sequence
P = P (0) ⊇ P (1) ⊇ P (2) ⊇ . . . of polytopes. The Chvátal rank can then be seen as the
smallest r such that P (r) = PZ (it was shown by Schrijver [47] that such an r always exists).

Protection lemmas have a long tradition in optimization theory for the study of the
Chvátal rank. For the CP rank, such lemmas have been used in [10] and [40]. A protection
lemma for CP width was introduced in [18]. We give a width protection lemma adapted to
the graph isomorphism problem. This generalizes (10). The following notation is employed.

▶ Notation 26. Given a matrix X ∈ Rn×n and a set I ⊆ [n] we denote by X|I ∈ Rn×n the
projection of X to the rows in I, that is, to the positions Rows[I] := {(i, j) | i ∈ I, j ∈ [n]}
(meaning that the rows which are not in I are set to 0).

▶ Definition 27. Let G and H be two graphs with n vertices each and let PG,H be the polytope
in [0, 1]n×n defined by the MIso(G,H) inequalities. For k ∈ N, we define

P ′
G,H(k) :=

{
X ∈ PG,H

∣∣∣∣ ∀A ∈ Zn×n, ∀b ∈ R, ∀I ⊆ [n] with |I| = k :[
∀ Y ∈ PG,H : ⟨A,Y|I⟩F ≥ b

]
=⇒ ⟨A,X|I⟩F ≥ ⌈b⌉

}
.

Here ⟨A,B⟩F :=
∑n

i=1
∑n

j=1 ai,j bi,j denotes the Frobenius inner product between the matrices
A = (ai,j) ∈ Rn×n and B = (bi,j) ∈ Rn×n.

▶ Lemma 28 (Protection Lemma for Graph Isomorphism). Let k ∈ N. Further, let X ∈ [0, 1]n×n

be a fractional isomorphism in the polytope PG,H . Suppose that for any I ⊆ [n] with |I| ≤ k,
there is a set of matrices Y1, . . . ,Ys ∈ [0, 1]n×n satisfying:

For all t ∈ [s], (Yt)i,j ∈ {0, 1} in all positions (i, j) ∈ Rows[I];
for all t ∈ [s], the matrix Yt is a fractional solution of PG,H ; and
the restriction X|I is a convex combination of Y1|I , . . . ,Ys|I .

Then, X ∈ P ′
G,H(k).

Proof. Suppose, to reach a contradiction, that X is a fractional isomorphism in PG,H but
X ̸∈ P ′

G,H(k). Then, by Definition 27 there exists a matrix A ∈ Zn×n, a real number b ∈ R,
and a set I ⊆ [n] with |I| = k such that for all Y ∈ PG,H we have ⟨A,Y|I⟩F ≥ b but
⟨A,X|I⟩F < ⌈b⌉. Since X ∈ PG,H , we have ⟨A,X|I⟩F ≥ b. This implies that ⟨A,X|I⟩F ̸∈ Z.

For all the protection matrices Yt ∈ {Y1, . . . ,Ys}, since they are 0-1-valued in Rows[I],
we have that ⟨A,Yt|I⟩F is an integer. Also, since Yt is in the polytope, ⟨A,Yt|I⟩F ≥ b.
Combining both facts, we have ⟨A,Yt|I⟩F ≥ ⌈b⌉. However, since X|I is a convex combination
of the protection matrices, it must hold ⟨A,X|I⟩F ≥ ⌈b⌉, which is a contradiction. ◀

Note that for |I| = k, the above restrictions consider kn variables. In previously published
protection lemmas, these restrictions had size k. However, our version can only make the
construction of the protection matrices harder.

For each game position p ⊆ VG × VH , we define a matrix Mp that we will show in
Lemma 35 to be a fractional isomorphism between G and H. We begin by first defining
auxiliary functions that will be used to define the entries of this matrix. Since ≡Dk is an
equivalence relation, we can define the type of v ∈ (VG ∪ {⋆})k as the equivalence class of v.
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▶ Definition 29 ([6]). Given a tuple v ∈ (VG ∪ {⋆})k we let

c(v) := [v]≡
Dk

be the equivalence class of v. Further, we define

t(v) := |c(v) ∩ (VG ∪ {⋆})k|.

▶ Definition 30. Let v ∈ (VG ∪ {⋆})k and w ∈ (VH ∪ {⋆})k. For every non-empty game
position q = zip(v,w) ̸= ∅, the function ζ is defined in the following way:

ζ(q) :=
{

0 if c(v) ̸= c(w)
1

t(v) otherwise. (11)

For q = ∅, we let ζ(∅) := 1.

We use the function ζ to define the entries of the matrix. For a game position p ⊆ VG ×VH

and a tuple (v, w) ∈ VG × VH , we use the notation p ∪ vw as a shorthand for p ∪
{

(v, w)
}

.

▶ Definition 31. Let p ⊆ VG × VH be a game position with |p| ≤ k − 1. For every i, j ∈ [n],
the number mp

i,j is defined in the following way:

mp
i,j :=

{
0 if p ∪ viwj ̸∈ Dk(G,H)

ζ(p∪viwj)
ζ(p) otherwise. (12)

We further define the matrix Mp by letting (Mp)i,j := mp
i,j for each i, j ∈ [n].

Observe that in the case ζ(p) = 0, the value of mp
i,j is 0 because the first case in (11)

implies that p ∪ viwj ̸∈ Dk(G,H), ensuring that we do not divide by zero in (12). The
following result follows directly from the definition of the matrix entries.

▶ Lemma 32. If p ∈ Dk(G,H) and (vi, wj) ∈ p, then
(i) mp

i,j = 1, and
(ii) mp

i′,j = mp
i,j′ = 0 for i ̸= i′ and j ̸= j′.

▶ Notation 33. Let v = (v1, . . . , vk) ∈ (VG ∪ {⋆})k such that there is an i ∈ [k] with vi = ⋆.
Such tuples represent positions in the bijective pebble game and are thus closed under
permutations when the corresponding tuple in the other graph is permuted with the same
permutation; see, e. g., [1, Claim 11]. For v ∈ VG, we let vv be the tuple that results by
replacing any ⋆ in v with v.

In the following, we tacitly assume an ordering v1 ≺ v2 ≺ · · · ≺ vn on the vertices of
the graph and often identify a vertex vi with its number i in this order. Hence, we can
now speak of matrix positions (v, w). This helps to keep the following notation clear. The
following technical lemma is needed in the next results. It follows from the properties of the
equivalence relations defined by the bijective game.

▶ Lemma 34. Let p ⊆ VG × VH with |p| ≤ k − 1, and p = zip(a,b). Then, for every
(v, w) ∈ VG × VH , if c(av) = c(bw), then

t(av) = t(a) ·
∣∣{w′ ∈ VH

∣∣ c(av) = c(bw′)
}∣∣ .

Proof. Since c(av) = c(bw), we have∣∣{w′ ∈ VH

∣∣ c(av) = c(bw′)
}∣∣ =

∣∣{v′ ∈ VG

∣∣ c(av) = c(av′)
}∣∣ = |c(av)|

|c(a)| = t(av)
t(a) . ◀
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▶ Lemma 35. Let a ∈ (VG ∪ {⋆})k and b ∈ (VH ∪ {⋆})k be such that c(a) = c(b) and such
that p := zip(a,b) has size |p| < k − 1. Then, the matrix Mp is a fractional isomorphism
between G and H.

Proof. We first show that when p is as above, the axioms expressed that we are dealing with
a double stochastic matrix are satisfied by Mp (even when |p| = k − 1). For each v ∈ VG we
have∑

w∈VH

(Mp)v,w =
∑

w∈VH

c(a v)=c(bw)

ζ(p ∪ vw)
ζ(p) =

∑
w∈VH

c(a v)=c(bw)

t(a)
t(av) .

By Lemma 34 we have
∣∣{w ∈ VH

∣∣ c(av) = c(bw)
}∣∣ = t(av)/t(a). Hence, the sum of a row

in the matrix adds to 1. The proof for the columns is analogous.
For the case of the isomorphism axioms, let (v, w) ∈ VG × VH . We have to show∑
i∈N(v)

mp
i,w =

∑
j∈N(w)

mp
v,j . (13)

By the result on the double stochasticity of the matrices just proved above, since |p ∪ iw| ≤
k − 1, we have that for every i ∈ N(v),

1 =
∑

j∈VH

mp∪iw
v,j =

∑
j∈N(w)

mp∪iw
v,j ,

where the last equality holds because only for the neighbors of w the value of mp∪iw
v,j can

be different from 0. By the definition, if mp∪iw
v,j ̸= 0, then this number can be expressed as

ξ ·mp
v,j , with

ξ := t(av) · t(a i)
t(a) · t(a iv) .

Therefore,∑
j∈N(w)

mp
v,j =

∑
j∈N(w)

mp∪iw
v,j

1
ξ

= 1
ξ
.

Similarly for every j ∈ N(w), we have

1 =
∑

i∈N(v)

mp∪vj
i,w ,

and also the numbers mp∪vj
i,w (when different from 0) can be expressed as ξ ·mp

i,w. Therefore
both sums in (13) are equal. ◀

We observe that in the previous result, it does not suffice that |p| ≤ k− 1 in order for the
matrix Mp to be a fractional isomorphism between G and H. As a counterexample consider
G to be a cycle with 6 vertices and H to be the union of two cycles with 3 vertices each, and
let A and B be the adjacency matrices of these graphs. Duplicator wins the 2-pebble game
on G,H; however, it can be easily checked that for p =

{
(v, w)

}
for any pair v ∈ VG, w ∈ VH ,

the matrix Mp does not satisfy AMp = MpB.

▶ Theorem 36. Let G and H be two non-isomorphic graphs with n vertices each such that
G ≡Ck H. Further, let p ∈ Dk(G,H) with |p| < k − 1 and consider the matrix Mp. For any
I ⊆ [n] with |I| < k − 1, there is a set of matrices Y1, . . . ,Ys, satisfying:
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Each of these matrices is 0-1-valued on Rows[I];
each of these matrices is a fractional isomorphism in PG,H of the form Mp′ , with
|p′| < k − 1, and p′ ∈ Dk(G,H); and
the restriction Mp|I is a convex combination of Y1|I , . . . ,Ys|I .

Proof. We prove the result by induction on ℓ = |I|. For the induction base ℓ = 1, let p be a
game starting position as above and let I = {i1}. Consider the matrix Mp. We can suppose
that w. l. o. g. that i1 is not a vertex contained in a tuple of p and also that for all j ∈ [n],
the matrix entry mp

i1,j ̸= 1. Otherwise, Mp already has the desired properties.
Let us start with the simpler case in which |p| < k − 2. Also, not all the positions in

a row i1 of Mp can be 0 since we are dealing with a fractional isomorphism. Under these
conditions, there is a set of at least two non-zero elements in that row; let us call this set
NZ(i1). This follows from the fact that the sum of the row elements adds to 1. For each
j ∈ NZ(i1) let pj := p ∪ vi1wj and consider the matrices Yj := Mpj for j ∈ NZ(i1).

These matrices have the following properties: According to Lemma 32, they have 0-1
values on the row i1. Due to Lemma 35, the matrices Mpj are fractional isomorphisms since
|pj | < k − 1. All the pj considered as game positions are winning positions for Duplicator
in the k-bijective game since they can be reached if Spoiler adds the pair (vi1 , wj) (for any
j ∈ NZ(i1)) which is a valid move since these positions are non-zero in Mp, meaning that
p ∪ vi1wj is also a winning position for Duplicator. It is only left to show that Mp|I is a
convex combination of the restriction to Rows[I] of the matrices Mpj , but this follows from
the fact that for each j ∈ NZ(i1), the matrix Mpj has a 1 in position (i1, j), and 0’s in all
other positions in the row i1, and all these positions have the same value in Mp. Therefore,
Mp|I can be obtained as a convex combination of the restriction to Rows[I] of the new
matrices, multiplying each one of them times (Mp)i1,j . This is a correct combination since
for p = zip(a,b), and c(avi1) = c(bwj), we have

(Mp)i1,j = t(a)
t(avi1)

and the number of such matrices is equal to∣∣NZ(i1)
∣∣ =

∣∣{j ∣∣ c(avi1) = c(bwj)
}∣∣ = t(avi1)

t(a) .

Let us now suppose |p| = k − 2. In this situation, we cannot just add elements to p since
then, we cannot guarantee that the resulting matrix is a fractional isomorphism, and we have
to delete some elements from p first. Let (v, w) be any pair in p and let p̂ = p \

{
(v, w)

}
.

For any j ∈ NZ(i1) let p′
j := p̂ ∪ vi1wj and consider the matrices Yj := Mp′

j . Again these
matrices have 0-1 values on the row i1 and encode fractional isomorphisms since each p′

j has
the right length and is a winning position for Duplicator in the k-bijective game since these
positions can be reached if Spoiler deletes (v, w) from p and adds (vi1 , wj), which are valid
moves since these positions are non-zero in Mp, meaning that p ∪ vi1wj is also a winning
position for Duplicator and, therefore, p′

j is also one. It is only left to show that Mp|I is a
convex combination of the restriction to Rows[I] of the matrices Mp′

j . Let p = zip(av,bw).
The value of a non-zero position in row i1 in Mp is

t(av)
t(av vi1) .

If there is a non-zero position in row i1 in Mp, then the same position in Mp̂ is also non-zero
since p̂ ⊆ p. Each matrix Mp′

j has a 1 in position (i1, j) and 0’s in the other positions in
that row. If (Mp)i1,j ̸= 0, then Mp′

j is one of the Y matrices since (Mp̂)i1,j ̸= 0. There are
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∣∣{j ∣∣ c(av vi1) = c(bwwj)
}∣∣ = t(av vi1)

t(aw)

non-zero positions in row i1 in Mp. Multiplying the Y matrices corresponding to these
positions times t(a v)

t(a v vi1 ) and adding them together, we obtain the convex combination.
The induction step is completely analogous. Given Mp and I = {i1, . . . , iℓ}, let I ′ =

{i1, . . . , iℓ−1}. By induction, we can construct a set of matrices Yt of the form Mp′ with p′

containing a set of pairs
{

(i1, j1), . . . , (iℓ−1, jℓ−1)
}

satisfying the conditions and such that
Mp|I′ is a convex combination of the constructed matrices. These are 0-1 on Rows[I ′]. In
one last step, we can construct from these the matrices for I as in the case for ℓ = 1. A
convex combination from convex combinations is still one. ◀

▶ Corollary 37. If Duplicator has a winning strategy for the k-pebble bijective game played
on G,H, then there is no CP refutation of MIso(G,H) of width k − 2.

Proof. This follows from Lemma 28 and the previous result since they together imply that
each Mp corresponding to a winning position p for Duplicator of size |p| ≤ k−2 survives cuts
of size k− 2. At each step, starting from the empty position p = ∅, we consider the fractional
isomorphism Mp. There are protection matrices for it that also correspond to winning
positions p′ for the Duplicator with size |p′| ≤ k− 2. For each of these new positions p′ there
are also protection matrices and therefore, it is not possible, allowing only cuts of width k−2,
to eliminate any of these fractional isomorphisms from PG,H . ◀

A close inspection of the proof of the previous theorem, together with Lemma 28, also
gives a connection to CP rank.

▶ Corollary 38. Let k ≥ 3. If Duplicator has a winning strategy for the r-round k-pebble
bijective game played on G,H, then there is no CP refutation of MIso(G,H) of width k − 2
and rank r

k−2 .

4 Tree-CP∗ Size Lower Bounds for Refuting Isomorphism

Proving size lower bounds for Cutting Planes refutations of the isomorphism problem is a
challenging open question. Basically, the two only known methods for proving such bounds
are interpolation and lifting. Neither of these methods is suitable for isomorphism formulas.
Interpolation requires some monotone problem, and GI is highly non-monotone. Also, after
applying lifting, one obtains some constructed formulas that are not isomorphism formulas.
Using some known results from communication complexity, we can, however, show size lower
bounds for the restricted case of tree-like Cutting Planes proofs with polynomially bounded
coefficients (we denote this system with Tree-CP∗). A refutation is tree-like if the underlying
directed acyclic graph is a tree. A CP proof for a formula F has polynomially bounded
coefficients if there exists a constant c > 0 such that the absolute value of all coefficients
used in inequalities of the proof is bounded by O(nc), where n is the number of variables
of F . The system Tree-CP∗ is non-trivial, allowing, for example, polynomial-sized proofs for
the pigeonhole principle [16].

In [34], the size of Tree-CP proofs for a formula F was related to the communication
complexity of a search problem for F , showing that if the underlying search problem has high
communication complexity, this implies a lower bound for the Tree-CP size of refuting F .
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Critical block sensitivity is a communication complexity measure introduced in [31],
extending the classical concept of block sensitivity [43]. It is an easy fact that a critical
block sensitivity lower bound for a problem implies the same bound for the communication
complexity of the search problem.

In [23, Theorem 3], lower bounds on the critical block sensitivity of Tseitin formulas were
proved. The authors showed that there exist graph families of bounded degree, with critical
block sensitivity communication Ω(n/ logn) which by the results in [34] imply a size lower
bound of Ω(2n/ log2 n) for Tree-CP∗ refutations of Tseitin formulas.

It was shown in [50, Lemma 4.2] that there is a direct reduction from Tseitin to isomorph-
ism formulas, and it is, thus, possible to obtain lower bounds for isomorphism formulas from
lower bounds for Tseitin formulas. As a direct consequence of all these results, we obtain:

▶ Corollary 39. There are families of non-isomorphic graphs G,H, with n vertices each,
and such that the refutation of MIso(G,H) in Tree-CP∗ requires size Ω(2n/ log2 n).

5 Conclusions and Open Problems

We have shown an exact characterization of the Weisfeiler–Leman graph differentiation
number of two graphs in terms of the cutwidth needed for refuting the corresponding
isomorphism formula. Let us emphasize that Equation (1) holds for both the Iso and MIso
formulas. For this, we have introduced a new protection lemma for the graph isomorphism
polytope. This new connection enabled us to show that the Cutting Planes proof system can
show graph non-isomorphism in polynomial time for graphs with a constant Weisfeiler–Leman
dimension. Furthermore, by using known results from communication complexity, we were
able to give a lower bound for the size of tree-like CP refutations with polynomially bounded
coefficients for refuting graph isomorphism inequalities. Some important questions remain
open. Maybe the most interesting one is to prove CP size lower bounds for isomorphism
formulas. This is quite challenging since basically all the lower bounds for this kind of
formula are based on graphs related to the Tseitin formulas, and recently a quasi-polynomial
upper bound for the CP size of such formulas has been shown [17]. Furthermore, it would
be interesting to have trade-off results between the dimension of the WL algorithm and
its iteration number (this is equivalent to a trade-off between the number k of pebbles in
Hella’s bijective pebble game and the number r of rounds). While trade-off results are known
for these parameters [7, 25], they do not hold for structures of bounded arity (like graphs).
However, due to the connection of these parameters to the Resolution proof system [52] and
the Cutting Planes proof system, as shown in this paper, such results would immediately
imply proof complexity trade-offs (in our case, between width and rank for Cutting Planes).
Moreover, it is open if the second implication in (1) can be improved.
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