47 research outputs found

    The Eulerian Distribution on Involutions is Indeed Unimodal

    Full text link
    Let I_{n,k} (resp. J_{n,k}) be the number of involutions (resp. fixed-point free involutions) of {1,...,n} with k descents. Motivated by Brenti's conjecture which states that the sequence I_{n,0}, I_{n,1},..., I_{n,n-1} is log-concave, we prove that the two sequences I_{n,k} and J_{2n,k} are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers a_{n,k} such that ∑k=0n−1In,ktk=∑k=0⌊(n−1)/2⌋an,ktk(1+t)n−2k−1. \sum_{k=0}^{n-1}I_{n,k}t^k=\sum_{k=0}^{\lfloor (n-1)/2\rfloor}a_{n,k}t^{k}(1+t)^{n-2k-1}. This statement is stronger than the unimodality of I_{n,k} but is also interesting in its own right.Comment: 12 pages, minor changes, to appear in J. Combin. Theory Ser.

    The Eulerian distribution on the involutions of the hyperoctahedral group is unimodal

    Full text link
    The Eulerian distribution on the involutions of the symmetric group is unimodal, as shown by Guo and Zeng. In this paper we prove that the Eulerian distribution on the involutions of the hyperoctahedral group, when viewed as a colored permutation group, is unimodal in a similar way and we compute its generating function, using signed quasisymmetric functions.Comment: 11 pages, zero figure

    Actions on permutations and unimodality of descent polynomials

    Get PDF
    We study a group action on permutations due to Foata and Strehl and use it to prove that the descent generating polynomial of certain sets of permutations has a nonnegative expansion in the basis {ti(1+t)n−1−2i}i=0m\{t^i(1+t)^{n-1-2i}\}_{i=0}^m, m=⌊(n−1)/2⌋m=\lfloor (n-1)/2 \rfloor. This property implies symmetry and unimodality. We prove that the action is invariant under stack-sorting which strengthens recent unimodality results of B\'ona. We prove that the generalized permutation patterns (13−2)(13-2) and (2−31)(2-31) are invariant under the action and use this to prove unimodality properties for a qq-analog of the Eulerian numbers recently studied by Corteel, Postnikov, Steingr\'{\i}msson and Williams. We also extend the action to linear extensions of sign-graded posets to give a new proof of the unimodality of the (P,ω)(P,\omega)-Eulerian polynomials of sign-graded posets and a combinatorial interpretations (in terms of Stembridge's peak polynomials) of the corresponding coefficients when expanded in the above basis. Finally, we prove that the statistic defined as the number of vertices of even height in the unordered decreasing tree of a permutation has the same distribution as the number of descents on any set of permutations invariant under the action. When restricted to the set of stack-sortable permutations we recover a result of Kreweras.Comment: 19 pages, revised version to appear in Europ. J. Combi

    The symmetric and unimodal expansion of Eulerian polynomials via continued fractions

    Get PDF
    This paper was motivated by a conjecture of Br\"{a}nd\'{e}n (European J. Combin. \textbf{29} (2008), no.~2, 514--531) about the divisibility of the coefficients in an expansion of generalized Eulerian polynomials, which implies the symmetric and unimodal property of the Eulerian numbers. We show that such a formula with the conjectured property can be derived from the combinatorial theory of continued fractions. We also discuss an analogous expansion for the corresponding formula for derangements and prove a (p,q)(p,q)-analogue of the fact that the (-1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant numbers). The (p,q)(p,q)-analogue unifies and generalizes our recent results (European J. Combin. \textbf{31} (2010), no.~7, 1689--1705.) and that of Josuat-Verg\`es (European J. Combin. \textbf{31} (2010), no.~7, 1892--1906).Comment: 19 pages, 2 figure

    On two unimodal descent polynomials

    Full text link
    The descent polynomials of separable permutations and derangements are both demonstrated to be unimodal. Moreover, we prove that the γ\gamma-coefficients of the first are positive with an interpretation parallel to the classical Eulerian polynomial, while the second is spiral, a property stronger than unimodality. Furthermore, we conjecture that they are both real-rooted.Comment: 16 pages, 4 figure
    corecore