28,523 research outputs found

    Antisocial pool rewarding does not deter public cooperation

    Full text link
    Rewarding cooperation is in many ways expected behaviour from social players. However, strategies that promote antisocial behaviour are also surprisingly common, not just in human societies, but also among eusocial insects and bacteria. Examples include sanctioning of individuals who behave prosocially, or rewarding of freeriders who do not contribute to collective enterprises. We therefore study the public goods game with antisocial and prosocial pool rewarding in order to determine the potential negative consequences on the effectiveness of positive incentives to promote cooperation. Contrary to a naive expectation, we show that the ability of defectors to distribute rewards to their like does not deter public cooperation as long as cooperators are able to do the same. Even in the presence of antisocial rewarding the spatial selection for cooperation in evolutionary social dilemmas is enhanced. Since the administration of rewards to either strategy requires a considerable degree of aggregation, cooperators can enjoy the benefits of their prosocial contributions as well as the corresponding rewards. Defectors when aggregated, on the other hand, can enjoy antisocial rewards, but due to their lack of contributions to the public good they ultimately succumb to their inherent inability to secure a sustainable future. Strategies that facilitate the aggregation of akin players, even if they seek to promote antisocial behaviour, thus always enhance the long-term benefits of cooperation.Comment: 9 two-column pages, 5 figures; accepted for publication in Proceedings of the Royal Society

    An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application

    Get PDF
    Decision making for the management of water resources is a complex and difficult task. This is due to the complex socio-economic system that involves a large number of interest groups pursuing multiple and conflicting objectives, within an often intricate legislative framework. Several Decision Support Systems have been developed but very few have indeed proved to be effective and truly operational. MULINO (Multisectoral, Integrated and Operational Decision Support System for Sustainable Use of Water Resources at the Catchment Scale) is a project funded under the Fifth Framework Programme of the European Research and the key action line dedicated to operational management schemes and decision support system for sustainable use of water resources. The MULINO DSS (mDSS) integrates hydrological models with multi-criteria decision methods and adopts the DPSIR (Driving Force – Pressure – State – Impact – Response) framework developed by the European Environment Agency. The DPSIR was converted from a static reporting scheme into a dynamic framework for integrated assessment modelling (IAM) and multi-criteria evaluation procedures. This paper presents the methodological framework and the intermediate results of the mDSS tool through its application in a pilot study area located in the Watershed of the Lagoon of Venice.Integrated water resources management, Spatial decision-making, Decision support system, Catchment, Environmental modelling

    Water and molecular chaperones act as weak links of protein folding networks: energy landscape and punctuated equilibrium changes point towards a game theory of proteins

    Get PDF
    Water molecules and molecular chaperones efficiently help the protein folding process. Here we describe their action in the context of the energy and topological networks of proteins. In energy terms water and chaperones were suggested to decrease the activation energy between various local energy minima smoothing the energy landscape, rescuing misfolded proteins from conformational traps and stabilizing their native structure. In kinetic terms water and chaperones may make the punctuated equilibrium of conformational changes less punctuated and help protein relaxation. Finally, water and chaperones may help the convergence of multiple energy landscapes during protein-macromolecule interactions. We also discuss the possibility of the introduction of protein games to narrow the multitude of the energy landscapes when a protein binds to another macromolecule. Both water and chaperones provide a diffuse set of rapidly fluctuating weak links (low affinity and low probability interactions), which allow the generalization of all these statements to a multitude of networks.Comment: 9 pages, 1 figur

    Collective intelligence: aggregation of information from neighbors in a guessing game

    Get PDF
    Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena.Comment: 9 pages, 9 figure
    • 

    corecore