89 research outputs found

    Excitable neurons, firing threshold manifolds and canards

    Get PDF
    We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives rise to rebound spiking within a specific range of propofol doses. Using techniques from geometric singular perturbation theory, we identify geometric structures, known as canards of folded saddle-type, which form the firing threshold manifolds. We find that the position and orientation of the canard separatrix is propofol dependent. Thus, the speeds of relevant slow synaptic processes are encoded within this geometric structure. We show that this behavior cannot be understood using a static, inhibitory current step protocol, which can provide a single threshold for rebound spiking but cannot explain the observed cessation of spiking for higher propofol doses. We then compare the analyses of dynamic and static synaptic inhibition, showing how the firing threshold manifolds of each relate, and why a current step approach is unable to fully capture the behavior of this model

    The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABA<sub>A</sub> receptor-mediated inhibition

    Get PDF
    Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described ‘spillover’ mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)(A) receptors (GABA(A)Rs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1β2γ2) and extrasynaptic (α4β2δ) GABA(A)Rs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α1(0/0)) or extrasynaptic (δ(0/0)) GABA(A)Rs. Etomidate (3 μm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABA(A)Rs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABA(A)Rs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states

    Global neural rhythm control by local neuromodulation

    Get PDF
    Neural oscillations are a ubiquitous form of neural activity seen across scales and modalities. These neural rhythms correlate with diverse cognitive functions and brain states. One mechanism for changing the oscillatory dynamics of large neuronal populations is through neuromodulator activity. An intriguing phenomenon explored here is when local neuromodulation of a distinct neuron type within a single brain nucleus exerts a powerful influence on global cortical rhythms. One approach to investigate the impact of local circuits on global rhythms is through optogenetic techniques. My first project involves the statistical analysis of electrophysiological recordings of an optogenetically-mediated Parkinsonian phenotype. Empirical studies demonstrate that Parkinsonian motor deficits correlate with the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the cortico-basal ganglia-thalamic network. However, the mechanism of these aberrant oscillatory dynamics is not well understood. A previous modeling study predicted that cholinergic neuromodulation of medium spiny neurons in the striatum of the basal ganglia may mediate the pathologic beta rhythm. Here, this hypothesis was tested using selective optogenetic stimulation of striatal cholinergic interneurons in normal mice; stimulation robustly and reversibly amplified beta oscillations and Parkinsonian motor symptoms. The modulation of global rhythms by local networks was further studied using computational modeling in the context of intrathalamic neuromodulation. While intrathalamic vasoactive intestinal peptide (VIP) is known to cause long-lasting excitation in vitro, its in vivo dynamical effects have not been reported. Here, biophysical computational models were used to elucidate the impact of VIP on thalamocortical dynamics during sleep and propofol general anesthesia. The modeling results suggest that VIP can form robust sleep spindle oscillations and control aspects of sleep architecture through a novel homeostatic mechanism. This homeostatic mechanism would be inhibited by general anesthesia, representing a new mechanism contributing to anesthetic-induced loss of consciousness. While the previous two projects differed in their use of empirical versus theoretical methods, a challenge common to both domains is the difficulty in visualizing and analyzing large multi-dimensional datasets. A tool to mitigate these issues is introduced here: GIMBL-Vis is a Graphical Interactive Multi-dimensional extensiBLe Visualization toolbox for Matlab. This toolbox simplifies the process of exploring multi-dimensional data in Matlab by providing a graphical interface for visualization and analysis. Furthermore, it provides an extensible open platform for distributed development by the community

    Tonic inhibition mediates a synchronisation enhancement during propofol anaesthesia in a network of hippocampal interneurons: a modelling study

    Get PDF
    Neural oscillations are thought to be correlated with the execution of cognitive functions. Indeed, gamma oscillations are often recorded in functionally-coupled brain regions for cooperation during memory tasks, and this rhythmic behaviour is thought to result from synaptic GABAergic interactions between in-terneurons. Interestingly, GABAergic synaptic and ex-trasynaptic receptors have been shown to be the preferred target of the most commonly used anaesthetic agents. We present a in-depth computational study of the action of anaesthesia on neural oscillations by introducing a new mathematical model which takes into account the four main effects of the anaesthetic agent propofol on GABAergic hippocampal interneurons. These are: the action on synaptic GABA A receptors, which includes an amplification and an extension of the duration of the synaptic currents, as well as an increase in current baseline, and the action on extrasynaptic GABA A receptors mediating a tonic inhibitory current. Our results indicate that propofol-mediated tonic inhibition contributes to an unexpected enhancement of synchro-nisation in the activity of a network of hippocampal interneurons. We speculate that this enhanced synchro-nisation could provide a possible mechanism supporting the occurrence of intraoperative awareness and explicit memory formationunder general anaesthesia, by transiently facilitating the communication between brain structures which should supposedly be not allowed to do so when anaesthetised

    The (un)conscious mouse as a model for human brain functions: key principles of anesthesia and their impact on translational neuroimaging

    Get PDF
    In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca(2+) imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species

    Neurosystems: brain rhythms and cognitive processing

    Get PDF
    Neuronal rhythms are ubiquitous features of brain dynamics, and are highly correlated with cognitive processing. However, the relationship between the physiological mechanisms producing these rhythms and the functions associated with the rhythms remains mysterious. This article investigates the contributions of rhythms to basic cognitive computations (such as filtering signals by coherence and/or frequency) and to major cognitive functions (such as attention and multi-modal coordination). We offer support to the premise that the physiology underlying brain rhythms plays an essential role in how these rhythms facilitate some cognitive operations.098352 - Wellcome Trust; 5R01NS067199 - NINDS NIH HH

    Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex

    Get PDF
    Synaptic interactions between neurons of the human cerebral cortex were not directly studied to date. We recorded the first dataset, to our knowledge, on the synaptic effect of identified human pyramidal cells on various types of postsynaptic neurons and reveal complex events triggered by individual action potentials in the human neocortical network. Brain slices were prepared from nonpathological samples of cortex that had to be removed for the surgical treatment of brain areas beneath association cortices of 58 patients aged 18 to 73 y. Simultaneous triple and quadruple whole-cell patch clamp recordings were performed testing mono- and polysynaptic potentials in target neurons following a single action potential fired by layer 2/3 pyramidal cells, and the temporal structure of events and underlying mechanisms were analyzed. In addition to monosynaptic postsynaptic potentials, individual action potentials in presynaptic pyramidal cells initiated long-lasting (37 ± 17 ms) sequences of events in the network lasting an order of magnitude longer than detected previously in other species. These event series were composed of specifically alternating glutamatergic and GABAergic postsynaptic potentials and required selective spike-to-spike coupling from pyramidal cells to GABAergic interneurons producing concomitant inhibitory as well as excitatory feed-forward action of GABA. Single action potentials of human neurons are sufficient to recruit Hebbian-like neuronal assemblies that are proposed to participate in cognitive processes

    Network and synaptic mechanisms underlying high frequency oscillations in the rat and cat olfactory bulb under ketamine-xylazine anesthesia

    Get PDF
    Wake-related ketamine-dependent high frequency oscillations (HFO) can be recorded in local field potentials (LFP) from cortical and subcortical regions in rodents. The mechanisms underlying their generation and occurrence in higher mammals are unclear. Unfortunately, anesthetic doses of pure ketamine attenuate HFO, which has precluded their investigation under anesthesia. Here, we show ketamine-xylazine (KX) anesthesia is associated with a prominent 80–130 Hz rhythm in the olfactory bulb (OB) of rats, whereas 30–65 Hz gamma power is diminished. Simultaneous LFP and thermocouple recordings revealed the 80–130 Hz rhythm was dependent on nasal respiration. This rhythm persisted despite surgical excision of the piriform cortex. Silicon probes spanning the dorsoventral aspect of the OB revealed this rhythm was strongest in ventral areas and associated with microcurrent sources about the mitral layer. Pharmacological microinfusion studies revealed dependency on excitatory-inhibitory synaptic activity, but not gap junctions. Finally, a similar rhythm occurred in the OB of KX-anesthetized cats, which shared key features with our rodent studies. We conclude that the activity we report here is driven by nasal airflow, local excitatory-inhibitory interactions, and conserved in higher mammals. Additionally, KX anesthesia is a convenient model to investigate further the mechanisms underlying wake-related ketamine-dependent HFO

    Investigation of neuronal pathways underlying sleep regulation

    Get PDF
    Sleep is a fundamental physiological function and regulates many complex physiological aspects, such as mental health, metabolism, cognition and memory. Despite numerous efforts to understand the function of sleep, we still do not know why we spend a third of our life asleep. One way to tackle this mystery is the investigation of processes regulating sleep time and need, such as sleep homeostasis. Synaptic plasticity has been proposed as a mechanism capable of explaining sleep homeostasis, as synapse structure could change with fluctuations in sleep pressure. To understand whether plasticity mechanisms regulate sleep patterns, I deleted from lateral preoptic (LPO) hypothalamic neurons, key sleep regulators, the NR1 gene encoding a NMDA receptor subunit, fundamental for synaptic potentiation. Using floxed-NR1 animals and injections of Cre recombinase, I deleted the NMDAr from LPO neurons and observed sleep behaviours. ΔNR1-LPO animals were constantly hyperactive and showed dramatic sleep fragmentation and continuous sleep loss. Although sleepy, these animals were incapable of recuperating lost sleep after sleep deprivation, despite showing a delta power rebound- an indicator of sleep homeostasis. This phenotype was not present when the NR1 gene was deleted from other hypothalamic nuclei, suggesting that the NMDAr in LPO is a specific mechanism capable of coupling phenotypic sleep rebound to cortical delta power activity. To better understand LPO functions during behavioural states, I analysed the in vivo calcium activity of subsets of LPO neurons and successfully dissected sleep and wake active circuits, to find that most of LPO neurons are REM sleep active but fire under Dexmedetomidine sedation. Additionally, I studied Grm2 expressing neurons of the lateral habenula. Using a Grm2-cre mouse line, I performed in vivo calcium imaging and optogenetic stimulation showing how these neurons might be a connecting hub for the regulation of both NREM sleep and propofol-induced sedation.Open Acces

    POST-TRAUMATIC SLEEP FOLLOWING DIFFUSE TRAUMATIC BRAIN INJURY

    Get PDF
    Traumatic brain injury (TBI) is a major cause of death and disability throughout the world with few pharmacological treatments available for individuals who suffer from neurological morbidities associated with TBI. Cellular and molecular pathological processes initiated at the time of injury develop into neurological impairments, with chronic sleep disorders (insomnia, hypersomnolence) being among the somatic, cognitive and emotional neurological impairments. Immediately post-injury, TBI patients report excessive daytime sleepiness, however, discordant opinions suggest that individuals should not be allowed to sleep or should be frequently awoken following brain injury. To provide adequate medical care, it is imperative to understand the role of acute post-traumatic sleep on the recovery of neurological function after TBI. The aim of this thesis was to examine post-traumatic sleep after experimental TBI, defined as an increase in sleep during the first hours post-injury. In these studies, we non-invasively measured sleep activity following diffuse brain injury induced by midline fluid percussion injury to examine the architecture of post-traumatic sleep in mice. We detected significant injury-induced increases in acute sleep for six hours regardless of injury severity or time of day injury occurred. We found concurrent increases in cortical levels of the sleep promoting inflammatory cytokine interleukin 1-beta. We extended the timeline of post-injury sleep recording and found increases in post-traumatic sleep are distinctly acute with no changes in chronic sleep following diffuse TBI. Further, we investigated if post-traumatic sleep was beneficial to neurological outcome after brain-injury by disrupting post-traumatic sleep. Disruption of post-traumatic sleep did not worsen functional outcome (neuromotor, sensorimotor, cognition) at one week after diffuse TBI. With sufferers of TBI not always seeking medical attention, our final studies investigated over-the-counter analgesics and their effect on post-traumatic sleep and functional outcome. Acute administration of analgesics with varying anti-inflammatory properties had little effect on post-traumatic sleep and functional outcome. Overall, these studies demonstrated translational potential and suggest sleep after a concussion is part of the natural recovery from injury. While disrupting sleep does not worsen outcome, it is in no way beneficial to recovery. Additionally, a single analgesic dose for pain management following concussion plays little role in short term outcome
    • …
    corecore