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ABSTRACT

Neural oscillations are a ubiquitous form of neural activity seen across scales

and modalities. These neural rhythms correlate with diverse cognitive functions and

brain states. One mechanism for changing the oscillatory dynamics of large neuronal

populations is through neuromodulator activity. An intriguing phenomenon explored

here is when local neuromodulation of a distinct neuron type within a single brain

nucleus exerts a powerful influence on global cortical rhythms.

One approach to investigate the impact of local circuits on global rhythms is

through optogenetic techniques. My first project involves the statistical analysis of

electrophysiological recordings of an optogenetically-mediated Parkinsonian pheno-

type. Empirical studies demonstrate that Parkinsonian motor deficits correlate with

the emergence of exaggerated beta frequency (15-30 Hz) oscillations throughout the

cortico-basal ganglia-thalamic network. However, the mechanism of these aberrant

oscillatory dynamics is not well understood. A previous modeling study predicted that
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cholinergic neuromodulation of medium spiny neurons in the striatum of the basal

ganglia may mediate the pathologic beta rhythm. Here, this hypothesis was tested

using selective optogenetic stimulation of striatal cholinergic interneurons in normal

mice; stimulation robustly and reversibly amplified beta oscillations and Parkinsonian

motor symptoms.

The modulation of global rhythms by local networks was further studied using

computational modeling in the context of intrathalamic neuromodulation. While

intrathalamic vasoactive intestinal peptide (VIP) is known to cause long-lasting exci-

tation in vitro, its in vivo dynamical effects have not been reported. Here, biophysical

computational models were used to elucidate the impact of VIP on thalamocortical

dynamics during sleep and propofol general anesthesia. The modeling results sug-

gest that VIP can form robust sleep spindle oscillations and control aspects of sleep

architecture through a novel homeostatic mechanism. This homeostatic mechanism

would be inhibited by general anesthesia, representing a new mechanism contributing

to anesthetic-induced loss of consciousness.

While the previous two projects differed in their use of empirical versus theoret-

ical methods, a challenge common to both domains is the difficulty in visualizing

and analyzing large multi-dimensional datasets. A tool to mitigate these issues is in-

troduced here: GIMBL-Vis is a Graphical Interactive Multi-dimensional extensiBLe

Visualization toolbox for Matlab. This toolbox simplifies the process of exploring

multi-dimensional data in Matlab by providing a graphical interface for visualization

and analysis. Furthermore, it provides an extensible open platform for distributed

development by the community.
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Chapter 1

Introduction

1.1 Neural Rhythms

Neural rhythms are a ubiquitous form of neural activity seen across scales and modal-

ities. While neurons are commonly thought of and statistically modeled as randomly

firing, the average rate of spiking activity may be modulated rhythmically (Kramer

and Eden, 2016). In addition to single cell rhythms, neurons can synchronize activity

such that the average population spiking activity has oscillatory features (Buzsaki,

2006). Neural electrical activity can be recorded extracellularly at different locations,

including within the brain and on the scalp, corresponding to the local field potential

(LFP) and electroencephalogram (EEG), respectively. These signals are thought to

correspond to a transformed summation of membrane voltage potentials from many

individual neurons during synaptic and spiking activity (Buzsaki et al., 2012). The

oscillatory components of these signals are commonly examined using a power spec-

trum, involving a Fourier transform from the time to frequency domain. Neural

rhythms are revealed as peaks at different frequency bands in the power spectrum.

1.1.1 Cognitive Rhythms

Many neural rhythms correlate with diverse cognitive functions, brain states, or dis-

ease symptoms (Traub and Whittington, 2010)—those of the first category are often

referred to as cognitive rhythms. For example, transient basal ganglia beta (15–30

Hz) rhythms occur during specific phases of animal behavioral tasks (Leventhal et al.,
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2012; Feingold et al., 2015; Schmidt et al., 2013). In contrast, the exaggerated beta

oscillations discussed in chapter 2 correlate with the motor deficits of Parkinson’s

Disease and diminish with common treatments (Brown, 2007; Little et al., 2012).

Since the function and relevance of neural rhythms is still debated, important

questions are: (1) what mechanisms underly these rhythms; and (2) do these mecha-

nisms represent physiology useful for cognitive functions.

Some proposed mechanisms of rhythm generation have been described directly in

terms of neuronal biophysics and neurophysiology. For example, the thalamocortical

neurons of chapter 3 generate a bursting delta (1–4 Hz) rhythm from the interaction

between the hyperpolarization-activated non-selective cation HCN channels and the

transient T-type calcium channels. Based on their input-output transfer function

relationship and downstream effects (Sherman, 2001), these thalamocortical bursts

are thought to be important for awake attention and memory consolidation during

sleep (Llinas and Steriade, 2006).

1.2 Neuromodulation

Neuromodulators provide an effective means to alter the activity of large cell popula-

tions, including neural rhythms. Furthermore, they can do so over longer periods of

time than the temporospatially precise neurotransmitters. While the synaptic neuro-

transmitters typically act as ligands for ionic transmembrane receptors that trigger

immediate ionic currents, neuromodulators release from both synaptic and extrasy-

naptic sources and tend to activate metabotropic receptors; these receptors trigger

indirect effects through amplifying second messenger cascades that can affect various

aspects of cellular function, from gene transcription to ion channel conductance. Note

that some ligands can serve as either neurotransmitters or neuromodulators, depend-

ing on the source and receptor type (e.g., glutamate and epinephrine). Neuromodula-
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tors include norepinephrine, dopamine, serotonin, acetylcholine (ACh), and vasoactive

intestinal peptide (VIP). The latter two modulate M-current and H-current, and are

studied in chapters 2 and 3, respectively.

An intriguing phenomenon explored here is when local neuromodulation, poten-

tially of a distinct neuron type, within a single brain nucleus exerts a powerful influ-

ence on global cortical rhythms. In particular, chapter 2 describes how the interaction

between acetylcholine and M-current forms a mechanism to generate beta oscillations

in the cortico-basal ganglia-thalamic (CBT) circuit. Chapter 3 discusses how VIP

may transform the thalamocortical delta (1–4 Hz) rhythm to an alpha (8–12 Hz)

rhythm by modulating H-current.

1.2.1 Optogenetics

In the past, neuromodulation was studied via techniques like pharmacologic infusions

combined with implanted electrode recordings. These methods suffered from impre-

cise spatial control, as drugs would spread to neighboring areas and affect multiple cell

types. In addition, the experiments were temporally imprecise since the drugs diffuse

for a variable amount of time before an effect is seen. Furthermore, effects persist even

after termination of infusion, until the drugs are metabolized. Precise temporospatial

control became possible with the introduction of optogenetics (Boyden et al., 2005;

Kondabolu et al., 2015). This technique involves the expression of light-sensitive ion

channels, analogous to those found in the retina, in a cell type of interest using viral

or transgenic means of gene delivery. Light is delivered to activate the new ion chan-

nels in a region of interest. Excitatory or inhibitory effects are possible depending

on the type of channel expressed. Unlike pharmacologic techniques, optogenetics can

control cells of a specified type with millisecond precision over a small volume. Thus,

one approach to investigate the impact of local circuits on global rhythms is through

optogenetic techniques.
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1.2.2 Experimental Optogenetics Study: Parkinsonism and the Intrinsic

Striatal Acetylcholine System

Chapter 2 describes how optogenetics was used to modulate acetylcholine in the

striatum of the basal ganglia in order to create a Parkinsonian phenotype. Empirical

studies demonstrate that Parkinsonian motor deficits correlate with the emergence

of exaggerated beta frequency (15-30 Hz) oscillations throughout the cortico-basal

ganglia-thalamic network. However, the mechanism of these aberrant oscillatory dy-

namics is not well understood. A previous modeling study predicted that cholinergic

neuromodulation of medium spiny neurons in the striatum of the basal ganglia may

mediate the pathologic beta rhythm. Here, this hypothesis was tested using selec-

tive optogenetic stimulation of striatal cholinergic interneurons in normal mice. My

role was to analyze the electrophysiological recordings. Stimulation robustly and

reversibly amplified beta oscillations and Parkinsonian motor symptoms.

1.3 Theoretical Models

Theoretical computational models provide another method to study neuromodulation,

explored in chapter 3.

1.3.1 Biophysical Modeling

In general, a model is an abstraction of a feature of the real world. Biophysical models

utilize techniques from physics to simulate aspects of biology. Given the breadth of

physics and biology, there are many types of biophysical models, including systems

biology models of intracellular networks, finite element models of tissues to whole

bodies (Roberts et al., 2011), and protein folding models. Within the context of

neuroscience, models span the scale of nanometers to centimeters, ranging from neu-

rotransmitter release at single synapses to the dynamics of whole brains. Within
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the scope of neural networks, models range in complexity from neural mass models

of average population firing rates to linear integrate-and-fire point neurons to whole

brain networks of multi-compartment Hodgkin-Huxley style conductance-based neu-

rons with morphology derived from electron microscopy data.

The model of interest in chapter 3 is one of intermediate complexity: synaptically-

connected single-compartment Hodgkin-Huxley style conductance-based point neu-

rons, the most parsimonious spiking neuron model with parameters that represent

measurable biophysical quantities. These models are conductance-based in the sense

that they derive from a resistor-capacitor (RC) electrical circuit representation of the

neuron’s electrical activity. This type of model was used by Hodgkin and Huxley

to describe the flow of electrical current through the squid giant axon and led to a

Nobel prize in 1963 (Hodgkin and Huxley, 1952). It is called a “point” neuron be-

cause it does not explicitly model volume in its equations. Instead, the model has

the simplification of being composed of one of more points or compartments. A small

number of compartments is commonly used to model proximal versus distal synapses.

However, a large number of compartments approaches a more realistic representation

of volume with current flowing through various branches in the neural morphology.

Mathematically, conductance-based point neurons are composed of systems of

ordinary differential equations that must be solved numerically. In contrast, models

with continuous volume representation are composed of partial differential equations

of much greater complexity and parameterization, and hence are more challenging to

parameterize accurately and simulate.

Note on Statistical Models

There is great interest today across domains in statistical models, e.g. deep learning.

Statistical models can be useful for summarizing data and making decisions, but they

often lack interpretability. Even if interpretable, they tend to summarize correlative
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features but do not provide the mechanistic insights that biophysical models can.

Thus, there is a role for them in experimental science, but it is one that does not

substitute for biophysical models.

1.3.2 Harmony of Theory and Empiricism

While empiricism is the cornerstone of modern science, experimental investigations

often yield surprising or unexpected results with unclear mechanisms. Biophysi-

cal computational models can provide desirable explanatory power for these elusive

mechanisms. Different experimental conditions and manipulations can be tested com-

putationally, yielding a range of predictions. These predictions can then be tested

experimentally, leading to new insights and validation of the theoretical mechanism.

Thus, an effective way to study vexing scientific problems is to use a collaborative

dual process of empirical studies and computational models informing one another

with their complementary strengths.

Harmony of Models and Experiments: A Case-Study

An illustrative example of the interplay between theoretical models and empirical

studies in neuroscience is the study featured in chapter 2. This empirical investiga-

tion was motivated by the predictions from an in silico modeling study, supported

by preliminary in vivo experiments (McCarthy et al., 2011; Pittman-Polletta et al.,

2018). Previously, it was known that enhanced beta oscillations correlate with Parkin-

sonian features (Brown, 2007; Little et al., 2012), but the source and mechanism of

beta oscillations was unclear. After synthesizing the results of relevant studies and

considering the neural architecture, Michelle McCarthy realized that the core math-

ematical mechanism of paradoxical anesthetic beta oscillations was applicable to the

Parkinsonian beta rhythm. She demonstrated this with the computational modeling

study, which was subsequently supported by several experimental studies involving
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multiple techniques (McCarthy et al., 2011; Pittman-Polletta et al., 2018).

1.3.3 Biophysical Computational Modeling Study: Dynamic Effects of

Intrathalamic VIP in Sleep and Anesthesia

A similar although slightly different process inspired the computational model de-

scribed in chapter 3. While intrathalamic vasoactive intestinal peptide (VIP) neu-

romodulation has been known to cause long-lasting excitation in vitro, its in vivo

dynamical effects have not been reported. By combining knowledge of thalamus from

other studies and considering VIP’s known in vitro effects, it was possible to build

a biophysical computational model of intrathalamic VIP’s effects on thalamocortical

dynamics during sleep and propofol general anesthesia. The modeling results sug-

gest that VIP can form robust sleep spindle oscillations and control aspects of sleep

architecture through a novel homeostatic mechanism. This homeostatic mechanism

would be inhibited by general anesthesia, representing a new mechanism contributing

to anesthetic-induced loss of consciousness.

1.4 Software Tools

Several tools were essential to this work. In particular, optogenetics and biophys-

ical modeling are the key methods of chapters 2 and 3, respectively. While these

two projects differed in their use of empirical versus theoretical methods, a chal-

lenge common to both domains is the difficulty in visualizing and analyzing large

multi-dimensional datasets, especially within the Matlab software environment. For

example, when developing biophysical models one tests a range of values for different

parameters, both to explore different regimes of dynamics and to check the robustness

of findings. However, there did not yet exist an efficient Matlab workflow for visu-

alizing the results of model simulations when varying over multiple parameters. To

solve this problem, I created GIMBL-Vis: a GUI-based Interactive Multi-dimensional
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extensiBLe Visualization toolbox for Matlab (Roberts, 2017). Described in chapter

4, this toolbox simplifies the process of exploring multi-dimensional data in Matlab

by providing a graphical interface for visualization and analysis. Furthermore, it

provides an extensible open platform for distributed development by the community.

1.5 Summary Overview

This dissertation describes three computational projects which center on the theme

global neural rhythm control by local neuromodulation.

Chapter 2 reports the statistical analysis of an experimental dataset involving

cholinergic neuromodulation. Specifically, local optogenetic activation of mouse stri-

atal cholinergic interneurons induced a Parkinsonian-like state while globally elevating

cortico-basal ganglia-thalamic (CBT) loop beta (15-30 Hz) oscillations characteristic

of Parkinson’s Disease (Brown, 2007; Little et al., 2012). Since this beta rhythm was

reversibly generated in normal mice and transient CBT beta oscillations are associ-

ated with normal cognitive function, the exaggerated Parkinsonian beta oscillation is

hypothesized to result from the aberration of a normal physiological process due to

pathological changes in the neuromodulatory milieu.

Chapter 3 describes a computational model of vasoactive intestinal peptide (VIP)

neuromodulation of H-current local to thalamus during sleep and general anesthesia,

leading to global changes in cortical rhythms. The modeling results suggest that

VIP can form robust sleep spindle oscillations and control aspects of sleep architec-

ture through a novel homeostatic mechanism. This homeostatic mechanism would

be inhibited by general anesthesia, representing a new mechanism contributing to

anesthetic-induced loss of consciousness.

Chapter 4 introduces GIMBL-Vis, a GUI-based Interactive Multi-dimensional ex-

tensiBLe Visualization toolbox for Matlab. This tool supports the visualization and
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analysis of the multi-dimensional datasets generated by electrophysiological studies

of neuromodulation, whether experimental or computational.
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Chapter 2

Optogenetic Activation of Striatal

Cholinergic Interneurons

Note: this chapter is derived from a previously published article (Kondabolu et al.,

2016).

2.1 Abstract

Cortico-basal ganglia-thalamic (CBT) neural circuits are critical modulators of cog-

nitive and motor function. When compromised, these circuits contribute to neuro-

logical and psychiatric disorders, such as Parkinson’s disease (PD). In PD, motor

deficits correlate with the emergence of exaggerated beta frequency (15–30 Hz) os-

cillations throughout the CBT network. However, little is known about how specific

cell types within individual CBT brain regions support the generation, propagation,

and interaction of oscillatory dynamics throughout the CBT circuit or how specific

oscillatory dynamics are related to motor function. Here, we investigated the role of

striatal cholinergic interneurons (SChIs) in generating beta and gamma oscillations in

cortical-striatal circuits. We found that selective stimulation of SChIs via optogenet-

ics in normal mice robustly and reversibly amplified beta and gamma oscillations that

are supported by distinct mechanisms within striatal-cortical circuits. Whereas beta

oscillations are supported robustly in the striatum and all layers of primary motor

cortex (M1) through a muscarinic-receptor mediated mechanism, gamma oscillations

are largely restricted to the striatum and the deeper layers of M1. Finally, SChI acti-
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vation led to parkinsonian-like motor deficits in otherwise normal mice. These results

highlight the important role of striatal cholinergic interneurons in supporting oscil-

lations in the CBT network that are closely related to movement and parkinsonian

motor symptoms.

2.2 Introduction

Exaggerated beta oscillations (15–30 Hz) within the cortico-basal ganglia-thalamic

(CBT) neural network are putative electrophysiological correlates of bradykinesia

and rigidity in Parkinson’s disease (PD) (Brown, 2007; Little et al., 2012; Brown and

Williams, 2005; Kuhn et al., 2006). Therapies that effectively manage PD motor

symptoms, such as dopamine replacement therapy and deep brain stimulation, are

associated with a suppression of the exaggerated beta oscillations (Kuhn et al., 2006;

Kuhn et al., 2008). Beta oscillations are also found in the CBT circuits of patients

with other movement-related disorders, such as epilepsy and dystonia (Herrojo Ruiz

et al., 2014; Sochurkova and Rektor, 2003), and in normal, nonhuman primates (Bar-

tolo and Merchant, 2015; Courtemanche et al., 2003) and normal rodents (Leventhal

et al., 2012; Berke et al., 2004). Moreover, brief elevations (≤200 ms) of beta oscil-

lations are observed in the basal ganglia of task-performing nonhuman primates and

rodents during specific phases of behavioral tasks (Leventhal et al., 2012; Feingold

et al., 2015; Schmidt et al., 2013), indicating that beta oscillations may be important

for motor and nonmotor functions. In contrast to the regulated temporal variability

of beta oscillations in normal motor functions, temporal stability is correlated with

the Parkinsonian motor symptoms of bradykinesia and rigidity (Little et al., 2012).

Together, these findings suggest that brief epochs of beta oscillations are a normal

aspect of basal ganglia dynamics, their temporal modulation is important for move-

ment regulation, and loss of regulation or uncontrolled expression of beta oscillations
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may contribute to movement deficits, such as those observed in PD.

Despite the clear link between CBT beta oscillations and movement, the mech-

anisms underlying their generation remain elusive. Dopamine clearly modulates the

generative mechanisms of CBT beta oscillations and beta frequency coherence be-

tween CBT structures. A hallmark of PD pathology is chronic reduction of dopamine

input to CBT circuits due to midbrain dopaminergic neuron loss. Loss of mid-

brain dopamine increases beta oscillation power and coherence in PD animal models

(Sharott et al., 2005; Mallet et al., 2008). Similarly, acute reduction of dopamine lo-

cally in the striatum increases striatal beta oscillations (Costa et al., 2006). Systemic

dopaminergic drugs decrease beta oscillation power and coherence in PD patients

(Brown et al., 2001), and also increase finely tuned gamma oscillations in the basal

ganglia and thalamus, although we know little about the functional significance of

these finely tuned gamma oscillations in PD (Brown et al., 2001; Kempf et al., 2009).

Because of the dense innervation of the striatum by the midbrain dopaminergic sys-

tem (Gerfen and Surmeier, 2011), we have recently proposed that dopamine may

modulate basal ganglia beta oscillations by acting on the striatum, in particular via

the striatal cholinergic system. Dopamine, acting on D2 receptors, provides tonic

suppression of acetylcholine (ACh) release in the striatum (DeBoer et al., 1996). Un-

der conditions of low striatal dopaminergic tone, such as in PD, increased cholinergic

tone may play a more prominent role in modulating striatal dynamics, such as sup-

porting the generation of exaggerated beta oscillations (Ikarashi et al., 1997; Ding

et al., 2006; McCarthy et al., 2011). Additionally, the striatum contains high levels of

cholinergic markers (Pisani et al., 2007), highlighting a prominent role for cholinergic

regulation in striatal function.

Recently, we demonstrated that direct local infusion of the cholinergic agonist car-

bachol into the striatum of normal mice can generate robust beta oscillations within
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the striatum (McCarthy et al., 2011). Using computational approaches, our previous

study predicted that increased striatal cholinergic tone could lead to elevated beta

oscillations through activation of muscarinic receptors that lead to the suppression

of M current in the striatal medium spiny neurons. Here, to further demonstrate the

function of the intrinsic striatal cholinergic system in modulating neural dynamics

of the CBT network and the related receptor mechanisms, we selectively activated

striatal cholinergic interneurons (SChIs) by using optogenetic techniques, while si-

multaneously recording local field potentials (LFPs) in the striatum and the primary

motor cortex (M1), with or without local infusion of selective cholinergic receptor

antagonist. We found that brief optogenetic stimulation of SChIs acutely elevated

beta oscillations in the striatum and all cortical layers of M1, and gamma oscillations

in the striatum and deeper layers of M1. Increased oscillations were accompanied

by increased coherence between striatum and M1 in a layer-dependent manner. In

addition, local striatal infusion of the muscarinic receptor blocker scopolamine, but

not the nicotinic receptor blocker mecamylamine, reduced striatal beta oscillations.

Finally, we assessed the effect of SChI stimulation on locomotion and found that ac-

tivation of SChIs decreased movement, increased immobility, and increased rotation.

Together, these results demonstrate that activation of SChIs can generate elevated

beta and gamma oscillations and coherence in the cortico-striatal network in a cortical

layer-dependent manner via muscarinic receptors, and alter locomotion behavior.

2.3 Methods

2.3.1 Experimental Preparation

All animal procedures were approved by the Boston University Institutional Animal

Care and Use Committee (IACUC). Surgically implanted adult mice were recorded

awake, head-fixed. Recordings were made simultaneously in the striatum [stereotac-
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tic coordinates 0 anterior-posterior (AP), 2.5–3 medial-lateral (ML), 2–2.5 depth] by

using a glass pipette to avoid photoelectric effects during optogenetic laser illumina-

tion, and in the primary motor cortex (M1) by using laminar electrodes containing

16 electrode contacts spaced at 100 µm, positioned across the entire cortical depth

(coordinates 1.5–2 AP, 1.25–1.5 ML). To optogenetically activate SChIs, a fiber was

coupled to a 473-nm laser.

Greater detail of the animal procedures, behavioral analysis, and histology is

available in the Supporting Information Methods Summary of the original paper

(Kondabolu et al., 2016).

2.3.2 Electrophysiological Data Analysis

All data analysis were performed by using Matlab. LFPs were first bandpass fil-

tered between 0.5 and 500 Hz with a second-order Butterworth filter to eliminate low

frequency drifts, and then down-sampled to 250 Hz by using Matlab’s resample func-

tion. The resulting LFPs were passed through a 60 Hz notch filter by using Matlab’s

iirnotch function. To reduce edge artifacts, 300 ms of data were removed from the

beginning and end of every trial for all subsequent analysis.

In awake, head-fixed recordings, there were occasional motion artifacts that influ-

enced spectral analysis. Trials with artifacts were rejected according to the following

method. LFPs recorded in each trial were first bandpass filtered with a second-order

Butterworth filter from 1 to 100 Hz. Trials where LFPs had a maximum amplitude

greater than 7.5 SDs from the mean or a minimum amplitude greater than 5 SDs

from the mean were rejected.

At the onset of optogenetic laser stimulation, LFPs exhibited large deflections,

which were likely due to synchronized current influx into stimulated neurons and

their downstream targets. At the offset of optogenetic laser stimulation, LFPs also

exhibited large deflections, likely due to the current efflux from activated neurons.
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Because these large LFP deflections interfere with spectral analysis, we excluded the

500 ms immediately after laser onset and offset from further analyses. To estimate the

power spectrum and coherence for different M1 layers, recordings from different lam-

inar electrode contacts were grouped according to anatomical locations based on the

electrode intercontact distance and histological findings. We grouped the recordings

into superficial layers (0–500 µm from the cortical surface, electrode contacts 2–6),

middle layers (500–800 µm, contacts 7–10), and deep layers (900–1200 µm, contacts

11–13).

We used the multitaper Fourier method for all spectral analysis, because it re-

duces noise through spectral smearing by obtaining multiple independent estimates

from the data. Spectrums and spectrograms were calculated by using the mtspec-

trumc and mtspecgramc functions of the Chronux toolbox, respectively (Bokil et al.,

2010). There was a frequency smear of ±2 Hz, corresponding to 17–19 tapers, de-

pending on period length. For spectrograms, a sliding 1 sec window with 20% overlap

and three tapers was chosen. The log normalized power during and after laser illumi-

nation was computed from the natural logarithm of the quotient from division by the

prelaser baseline power. The power spectrum was calculated by averaging across each

electrode group (M1 only) and then across trials for each animal. The population

power spectrum was obtained by averaging across animals. For the 1 sec stimulation

protocols used in Figure S2, because of the 500 ms data removal immediately after

laser onset and offset, we did not have enough time points left for power spectrum

analysis during laser stimulation. Hence, we only examined the 1 sec period starting

500 ms after laser offset.

For statistical testing, alpha was 0.05 and not corrected. For nondrug data, a

Wilcoxon signed-rank test was performed against the null hypothesis of no laser-

induced power change for each frequency band. Bar plot 95% confidence intervals
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were estimated with a bootstrap method by using 1000 resamples with replacement.

For the drug infusion bar plots, nonoverlap of the confidence intervals indicated a

significant difference in laserinduced power changes preinfusion to postinfusion. For

the scopolamine drug infusion bar plots, preinfusion and postinfusion were tested

separately by using a bootstrap resampling test against 0 laser-induced power change

because scopolamine reduced the prelaser baseline power. For mecamylamine and

ACSF, baseline power was not affect by infusion, so preinfusion to postinfusion laser-

induced power changes were compared with a paired signed-rank test.

The coherence and coherograms were computed by averaging trials from all an-

imals with Chronux’s coherency and cohgramc functions, respectively. The same

frequency smear, window, and resulting tapers from the power analysis were used.

For coherence, after a Fisher z-transformation, the prelaser baseline was subtracted

from the coherence estimates for the other periods. Population estimates were calcu-

lated by averaging across M1 channel groups. The jackknifed 95% confidence intervals

were used to test for significance of laser-induced coherence changes at the 0.05 alpha

level.

2.4 Results

2.4.1 Selective Optogenetic Activation of SChIs Increased Striatal Alpha,

Beta, and Gamma Oscillations

We recently demonstrated that the striatal cholinergic system can support the gen-

eration of beta oscillations by using a combination of mathematical modeling and

experimental techniques that combined in vivo electrophysiology with local infusion

of the nonselective cholinergic agonist carbachol (McCarthy et al., 2011). To fur-

ther explore the ability of intrinsic SChIs in modulating beta oscillations throughout

the CBT network, we recorded LFPs in the striatum and the primary motor cortex
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(M1), while optogenetically activating SChIs in transgenic choline acetyltransferase

promoter (Chat)-Channelrhodopsin-2 (ChR2) mice (Figure 2·1A). Chat-ChR2 mice

were generated by crossing Chat-Cre mice with Cre-regulated ChR2-reporter mice

(Ai32), resulting in selective ChR2 expression in Chat-positive SChIs (Figure 2·1B).

Control groups consisted of Ai32 transgenic littermates that did not express ChR2

protein because of the lack of Cre recombinase expression, despite the presence of

ChR2 genes in the genome. An optical fiber coupled to a glass electrode was po-

sitioned in the dorsal striatum for simultaneous optogenetic stimulation and LFP

recordings. Glass electrodes were used to record LFPs at the site of laser illumina-

tion to avoid photoelectric effects that are routinely observed on electrodes made of

other materials (Figure 2·1A) (Han et al., 2009).

Figure 2·1: Experimental setup and protocols. (A) Illustration of the recording configuration.
The recording pipette was coupled to an optical fiber and a laminar probe containing 16 electrode
contacts, positioned in the M1. (B) A representative image of the striatum showing ChR2-eYFP
fluorescence (green; Left), immunofluorescence of ChAT (red; Middle), and co-localization (Right).

Optogenetic activation of SChIs with a Poisson-distributed 40 Hz laser light pulse

train robustly increased oscillations across broad frequencies in the striatum (Figure

2·2C and D). The increase in oscillation power persisted for several hundred mil-

liseconds after laser offset (Figure 2·2C and D), suggesting that direct patterning of

SChIs by laser pulses was unlikely to account for the elevated oscillations at these fre-

quencies. To further evaluate the changes at specific frequency bands, we calculated

the normalized spectrum before, during, and after laser stimulation. We found that
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optogenetic stimulation of SChIs robustly increased oscillation power across higher

frequency bands conventionally defined as alpha (8–15 Hz), beta (15–30 Hz), low

gamma (30–60 Hz), and high gamma (60–100 Hz), but not lower frequency bands

of delta (1–4 Hz)or theta(4–8 Hz)(Figure 2·2E and F; n = 7 mice). A similar laser

illumination protocol in Ai32 control mice failed to alter oscillation power at any

frequency (n = 5 mice, P > 0.05 for all bands, signed-rank test), confirming that the

observed changes in Chat-ChR2 mice are due to optogenetic activation of SChIs.

To further rule out the possibility that the observed oscillation changes were due

to direct activation of SChIs, we tested a set of seven additional laser illumination

parameters, including 5-s-long constant laser illumination, 1-s-long fixed interval pulse

trains at 50 and 100 Hz, as well as Poisson-distributed pulse trains at 4, 9, 20, and

40 Hz. Because of the large LFP deflections induced by optogenetic stimulation

of SChIs during the 1-s stimulation, it was difficult to reliably estimate the power

changes during laser stimulation. Thus, we analyzed the 1-s period immediately

following laser offset. In general, we observed similar increases in beta and gamma

oscillations by using these stimulation patterns (Figures 2·3B and 2·42; n = 5 mice, P

≤ 0.05, signed-rank test). Together, these results demonstrate that direct activation

of SChIs generates robust beta and gamma oscillations within the striatum that

are independent of the particular optogenetic stimulation pattern and persist for an

extended period after the offset of light illumination, suggesting that these oscillations

emerge from dynamic network interactions upon an increase in the striatal cholinergic

tone.

2.4.2 SChI Activation Leads to Layer-Dependent Beta and Gamma Os-

cillation Changes in the M1

To understand the influence of the oscillations induced by optogenetic stimulation of

SChIs on the rest of the CBT network, we performed simultaneous recordings in M1 by
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Figure 2·2: Poisson-distributed 40 Hz optogenetic activation of SChIs increased striatal alpha, beta,
and gamma oscillations. (A) Representative coronal histological section showing an electrode and
optical fiber track into the striatum. (B) Representative 1-s LFPs recorded in the striatum before
(Top) and during (Bottom) laser stimulation at Poisson-distributed 40 Hz (Bottom; blue dashes
indicate the time of laser pulses). (C) Representative spectrogram from one mouse, aligned to laser
onset and averaged over all trials. The 500 ms immediately after laser onset and offset were excluded
from the corresponding statistics because of strong LFP deflections. (D) Population spectrogram
upon optogenetic stimulation of SChIs in ChAT-ChR2 mice (n = 7 mice). (E) Population power
spectrum normalized to baseline, across frequencies before (Baseline, black), during (blue), and
after laser stimulation (green), in the Chat-ChR2 mice (n = 7 mice). The shaded area around each
solid line represents the SEM. (F) Bar plots comparing changes upon laser stimulation in different
frequency bands between the Chat-ChR2 experimental group and the Ai32 control group for delta
(1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), low gamma (30–60 Hz), and high gamma
(60–100 Hz) oscillations. The error bars represent the bootstrapped 95% confidence intervals (*P ≤
0.05, nonparametric signed-rank test).
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Figure 2·3: Oscillations induced by SChI optogenetic stimulation with a constant, 5-s-long laser
illumination pattern. (A) Spectrograms before, during, and after optogenetic stimulation in striatum
(i), as well as superficial (ii), middle (iii), and deep (iv) M1 layers. Laser was on at 0–5 s. (B)
Normalized spectral power to prelaser baseline period in striatum (i), as well as the superficial (ii),
middle (iii), and deep (iv) layers of M1. Constant light illumination patterns elicited increases in
beta and gamma oscillations in striatum, as well as all layers of motor cortex. The shaded region
represents the SEM.
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Figure 2·4: Optogenetic stimulation of SChIs increased striatal beta and gamma oscillatory power
by using 1-sec-long laser illumination patterns, pulsed at Poisson-distributed 4 Hz (A), Poisson-
distributed 9 Hz (B), Poisson-distributed 20 Hz (C), Poisson-distributed 40 Hz (D), regular 50 Hz
(E), and regular 100 Hz (F). These stimulation protocols elicited increases in beta (15–30 Hz),
low-gamma (30–60 Hz), and high-gamma (60–100 Hz) oscillations in striatum. The bars are the
natural logarithm of the quotient of the power during the 1-s period starting 500 ms after laser
offset divided by the prelaser baseline power. The error bars represent the SEM. (*P < 0.05, ***P
< 0.001, nonparametric signed-rank test).
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using a laminar electrode containing 16 contacts spaced at 100 µm, which can identify

cortical layer-dependent changes (Figure 2·5A and B). We did not observe laser-

induced photoelectric artifacts on the laminar electrodes in M1. Because they were 2

mm away from the striatal laser illumination site, <0.1% of laser light was expected to

reach M1 (Han et al., 2009). Optogenetic activation of SChIs in the striatum coincided

with robust LFP voltage deflections across all cortical depths in M1 (Figure 2·5B), and

oscillation power consistently increased with cortical depth (Figure 2·5C). To compare

the difference in LFPs across anatomically defined cortical layers, we averaged the

power spectra recorded at different depths, with the first 500 µm corresponding to the

superficial layers, 500–800 µm corresponding to the middle layers, and 900–1200 µm

corresponding to the deep layers.

Beta frequency power consistently increased in all M1 layers during SChI stimu-

lation. In contrast, gamma frequency power, both high gamma and low gamma, were

selectively increased in the deep layers, but not the superficial layers (Figure 2·5 D-F).

In the middle layers, high gamma power was elevated, but not low gamma power.

We observed small but nonsignificant changes in delta, theta, and alpha frequencies

across all layers. Together, these results provide direct evidence that SChI activation

can enhance beta oscillations in all M1 layers, and gamma oscillations in a cortical

layer-dependent manner. These SChI activation-induced beta and gamma oscillations

across different M1 layers suggest that beta oscillations can be widely expressed by

neuronal ensembles within different M1 cortical layers, whereas gamma oscillations

are selectively expressed in deeper layers, although it is unknown how different cell

types within each M1 layer uniquely support these oscillations.



23

Figure 2·5: SChI activation led to layer-dependent beta and gamma oscillation changes in the M1.
(A) Representative coronal section demonstrating the position of laminar electrodes in M1. (B)
Representative 200-ms LFPs during the baseline period before laser simulation (black) and during
laser stimulation period (blue). (C) Representative power spectrum from an individual mouse for
superficial layers (C, i, averaged across Ch1–Ch5), middle layers (C, ii, averaged across Ch6–Ch9),
and deep layers (C, iii, averaged across Ch10–Ch12). The 500 ms immediately after laser onset
and offset were excluded from the corresponding statistics because of strong LFP deflections. (D)
Population spectrograms aligned to laser onset for superficial layers (D, i), middle layers (D, ii),
and deep layers (D, iii) (n = 7 mice). Bottom, blue dashes indicate the timing of laser light pulsed
at Poisson-distributed 40 Hz, for 5 s. (E) Population spectrum for M1 superficial layers (E, i),
middle layers (E, ii), and deep layers (E, iii). (F) Bar plots comparing oscillation powers at different
frequencies in superficial (F, i), middle (F, ii), and deep (F, iii) layers for delta (1–4 Hz), theta (4–8
Hz), alpha (8–15 Hz), beta (15–30 Hz), low gamma (30–60 Hz), and high gamma (60–100 Hz). Error
bars represent the bootstrapped 95% confidence intervals (*P ≤ 0.05, nonparametric signed-rank
test).
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2.4.3 SChI Activation Modulates Coherence Between the Striatum and

M1

To evaluate the synchronization of oscillations between the striatum and M1 upon

optogenetic activation of SChIs, we calculated the coherence of the LFPs recorded

in these two structures before and during laser stimulation. We found an increase in

coherence during laser stimulation between deep layers of M1 and the striatum at both

beta and low gamma frequencies, but not at high gamma frequencies (Figure 2·6; P

≤ 0.05, jackknife test). This increased coherence is consistent with the idea that deep

M1 layers contribute to M1-striatal coordination through direct axonal projections.

However, we note that although the coherence at beta frequencies below 23 Hz is

maintained throughout the simulation, coherence at higher beta frequencies dissipates

rapidly after the first second of stimulation, suggestive of multiple independent beta

oscillations within the 15–30 Hz range defined here.

The lack of coherence changes at high gamma frequencies suggests that the ob-

served increase in high gamma power may be due to increased local neuronal activity

within M1 (Manning et al., 2009). In the middle layer, where both beta and high

gamma power increased, we observed a significant increase in coherence at beta fre-

quency, but not at high gamma frequencies (Figure 2·6). Considering that middle

layers of M1 do not directly connect to the striatum, the observed increase in coher-

ence at beta frequencies are likely coordinated or relayed through other structures,

such as the thalamus that directly project to the middle layer, especially layer 4.

Surprisingly, despite the increase in superficial layer beta power, activation of SChIs

resulted in significant attenuation of coherence at beta and gamma frequencies (Fig-

ure 2·6; P ≤ 0.05, jackknife test), suggesting that oscillations within the striatum and

superficial M1 are independently regulated. In summary, activation of SChIs in the

striatum appears to engage multiple independent beta generators that interact in the
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Figure 2·6: SChI activation modulated coherence between the striatum and M1. (A) Population
coherograms show coherence between the striatum and superficial (i), middle (ii), and deep layers
(iii) of M1 before, during, and after laser stimulation. Laser stimulation was pulsed at a Poisson-
distributed 40 Hz, during 0–5 s (bottom, blue dashes indicate the timing of laser pulses, n = 7 mice).
The 500 ms immediately after laser onset and offset were excluded from the corresponding statistics
because of strong LFP deflections. (B) Bar plots comparing the coherence between the striatum
and M1 superficial (B, i), middle (B, ii), and deep (B, iii) layers before and during laser stimulation
for beta (15–30 Hz), low gamma (30–60 Hz), and high gamma (60–100 Hz) frequencies. Error bars
indicate the jackknifed 95% confidence interval error bars (*P ≤ 0.05, nonparametric jackknife test).
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CBT network in a cortical layer-dependent manner, whereas high gamma oscillations

are locally generated.

2.4.4 Striatal Muscarinic Receptors Mediate SChI-Induced Beta and Low

Gamma Oscillations in the Corticostriatal Network

To understand the receptor mechanism by which SChIs engage the striatum and

M1 to generate beta and gamma oscillations, we combined optogenetic activation of

SChIs with local intracranial infusion of selective cholinergic receptor antagonists. We

infused either the muscarinic antagonist scopolamine (100 µm/µL) or the nicotinic an-

tagonist mecamylamine (10 µm/µL) into the striatum, and optogenetically activated

SChIs while simultaneously recording LFPs in the striatum and M1.

We observed that scopolamine infusion in the striatum broadly decreased oscilla-

tion power in the striatum across all frequencies analyzed (approximately from 2 to

100 Hz, Figure 2·7A; n = 8 mice; >2 SEM). A similar reduction in oscillation power

was also observed in the middle and deep layers of M1, although not at very low

frequencies of 2-5 Hz, (Figure 2·7B; n = 8 mice). Interestingly, no change in power

was observed in the superficial layers of M1, suggesting that oscillatory dynamics in

the superficial layers are only loosely coupled to the CBT network (Figure 2·7 B, i).

Together these results demonstrate that intrinsic striatal muscarinic tone is responsi-

ble for basal levels of oscillations across broad frequencies in the striatum and deeper

layers of M1.

We next tested the effectiveness of optogenetic activation of SChIs in generating

oscillations in the presence of muscarinic or nicotinic receptor blockers. Because of

the reduction of oscillation power across all frequencies upon scopolamine infusion,

we cannot directly compare the effects of optogenetic stimulation in the presence of

scopolamine to that observed in the absence of scopolamine. We thus compared the

effect of optogenetic activation of SChIs in the presence of scopolamine and found
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Figure 2·7: Striatal muscarinic receptors modulated basal levels of beta and gamma oscillations
in the striatum and deeper layers of M1. After striatal drug infusion, population power spectrums
in the striatum (A), and different layers of M1 [superficial (B, i), middle (B, ii), and deep layers
(B, iii)]. The shaded area around each solid line represents the SEM. Scopolamine infusion reduced
oscillation power in the striatum, middle layers of M1, and deep layers of M1.

that activation of SChIs in the presence of the muscarinic blocker scopolamine re-

mained effective at inducing beta, low gamma, and high gamma oscillations in the

striatum (Figure 2·8 B, i and C, i; P ≤ 0.05, bootstrap test). However, the increases

were relatively weaker compared with that observed without scopolamine (Figure 2·8

A, i). In M1, SChI stimulation in the presence of scopolamine failed to alter beta,

low gamma, or high gamma power from the prestimulation baseline in any cortical

layer (Figure 2·8 B, ii-iv and C, ii-iv; P > 0.05, signed-rank test). Infusion of arti-

ficial cerebrospinal fluid (ACSF) or the nicotinic antagonist mecamylamine failed to

alter oscillation power at any frequency in the striatum or M1, compared with the

preinfusion baseline (Figures 2·7 and 2·9, n = 6 mice infused with mecamylamine;

and Figure S4, n = 5 mice infused with ACSF; P > 0.05, signed-rank test). Together,

these results suggest that cholinergically induced elevation of beta and gamma oscilla-

tions in the striatum is mediated by striatal muscarinic receptors, but not by striatal
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nicotinic receptors. The fact that in the presence of scopolamine, SChI activation

only elevated striatal oscillations, but not M1 oscillations, suggests that striatal beta

oscillations are independent of phasic beta input from M1, supporting the existence

of a basal ganglia generator of beta oscillations. These results further suggest that

the elevation in M1 beta oscillations depends on active muscarinic mechanisms in the

striatum.

2.4.5 Unilateral SChI Activation Decreases Locomotion and Increases

Rotation Behavior

To evaluate whether a transient increase in striatal cholinergic tone is sufficient to alter

locomotion, we optogenetically stimulated SChIs in another group of freely moving

mice. To optimize the illumination volume, we designed a fiber array containing four

optical fibers unilaterally targeting a large fraction of the dorsolateral striatum that

receives M1 inputs (Ramanathan et al., 2002) in Chat-ChR2 mice (n = 5 mice), or

control Ai32 mice (n = 5 mice). We monitored the locomotion in a custom arena

while optogenetically stimulating SChIs by using the same light illumination pattern

at Poisson-distributed 40 Hz, but illuminated for 2 min to better quantify behavioral

effects (Figure 2·11A). Locomotion was monitored for 8 min/d, over 7 consecutive

days.

We first estimated the overall effect of stimulating SChIs on locomotion by calcu-

lating the total distance traveled during each 2-min period before, during, and after

laser illumination and found that optogenetic activation of SChIs significantly reduced

the total distance traveled compared with the pre-laser baseline period (Figure 2·11B

and C; P ≤ 0.001, Bonferroni-corrected nonparametric paired signed-rank tests). This

reduction persisted for an additional 2 min immediately after laser offset (post-laser

1) (P ≤ 0.001, paired signed-rank test) and returned to baseline in the subsequent

2-min interval (Post-Laser 2) (P > 0.05, paired signed-rank test). Further analysis
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Figure 2·8: Striatal muscarinic receptors mediated SChI-induced beta and gamma oscillations in
the striatum and M1. (A and B) Optogenetic stimulation induced changes in the power spectrum
before (A) and after (B) scopolamine infusion (n = 8 mice), in the striatum (i), superficial (ii),
middle (iii), and deep layers of M1 (iv). The power spectrum during laser stimulation (blue) and
after laser stimulation (green) was normalized to the baseline (black). (C) Bar plot comparison of
oscillation power changes in beta (15–30 Hz), low gamma (30–60 Hz), and high gamma (60–100 Hz)
frequencies, before (gray) and after (white) scopolamine infusion. Error bars are the bootstrapped
95% confidence intervals (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; nonparametric bootstrap test).
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Figure 2·9: Oscillations induced by optogenetic stimulation of SChIs, in the presence of the nico-
tinic receptor antagonist mecamylamine in the striatum (i) as well as superficial (ii), middle (iii), and
deep (iv) M1 layers. (A) Preinfusion spectrogram demonstrating increased beta and gamma oscilla-
tions in the striatum, as well as elevated beta oscillations in all layers of M1 and gamma oscillations
in deeper layers of M1. (B) Postinfusion spectrograms showing increased beta and gamma oscil-
lations in striatum and M1. (C) Bar plot comparing SChI stimulation-induced oscillation changes
between preinfusion and postinfusion periods. There were no significant changes in beta and gamma
power when comparing premecamylamine with postmecamylamine infusion laser-induced power in
the striatum. The error bars represent the 95% confidence intervals (*P < 0.05; ***P < 0.001; non-
parametric paired signed-rank test). Beta, 15–30 Hz; low gamma, 30–60 Hz; high gamma, 60–100
Hz.
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Figure 2·10: Oscillations induced by optogenetic stimulation of SChIs upon infusion with ACSF in
the striatum (i) as well as the superficial (ii), middle (iii), and deep (iv) M1 layers. (A) Preinfusion
spectrogram. (B) Postinfusion spectrogram. (C) Bar plot comparing laser-induced oscillation power
normalized to the prelaser baseline during preinfusion and postinfusion period. Laser stimulation
was effective at inducing beta and gamma oscillations. There were no significant differences between
preinfusion and postinfusion in striatum. The error bars represent the 95% confidence intervals. (*P
< 0.05; ***P < 0.001; nonparametric paired signed-rank test). Beta, 15–30 Hz; low gamma, 30–60
Hz; high gamma, 60–100 Hz.
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Figure 2·11: Unilateral SChI activation decreased locomotion and increased rotation behavior.
(A) Behavioral optogenetic experimental protocol consists of a baseline period, laser period, and
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(Left) and a control Ai32 mouse (Right) before (black trace), during (blue trace), and post-laser
periods (green traces) after laser illumination. (C–E) Bar plot comparison of locomotor activity
measures, including baseline-normalized distance (C), percent time immobile (D), and movement
speed when mobile (E). (F) Bar plot comparison of rotation in the Chat-ChR2 group (Left) and
the control Ai32 group (Right) (n = 5 mice for Chat-ChR2 group; n = 5 mice for control Ai32
group). Error bars indicate the SEM (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; Bonferroni-corrected
nonparametric paired signed-rank tests).
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indicated that locomotion reduction resulted from in- creased immobility, defined as

the percentage of time when movement was smaller than 1.5 cm/s (Figure 2·11D; P ≤

0.001, paired signed-rank test), as well as decreased movement speed (Figure 2·11E;

P ≤ 0.001, paired signed-rank test). The same optogenetic analysis in control Ai32

mice did not produce any change in locomotion, immobility, or movement speed (n

= 5, P > 0.05 for all periods analyzed, paired signed-rank test), confirming that the

observed locomotion deficit was due to optogenetic activation of SChIs.

To further assess whether unilateral optogenetic stimulation of SChIs biases move-

ment direction preference, we assessed rotation behavior. Interestingly, we found that

stimulation of SChIs in one hemisphere resulted in a significant increase in both ip-

silateral and contralateral rotations during the laser period (Figure 2·11F; P ≤ 0.01

and P ≤ 0.05, respectively, paired signed-rank test). Similar analysis in control Ai32

mice did not yield any change in rotation behavior (P > 0.05, paired signed-rank

tests). In the context of our experimental protocol, these results suggest that opto-

genetic activation of SChIs is not sufficient to bias movement direction preference in

freely moving mice, but instead leads to an overall increase in rotation behavior. In

summary, our results suggest that SChIs are critically involved in modulating loco-

motion, and that a selective increase in striatal cholinergic tone leads to direct motor

behavioral deficits.

2.5 Discussion

We tested the role of intrinsic physiological striatal ACh release in modulating beta

and gamma oscillations within cortico-striatal circuits. Combining optogenetics,

pharmacology, and electrophysiology in mice, we show that SChI activation reliably

and reversibly increased alpha, beta, and gamma oscillations in the striatum. In M1,

SChI stimulation increased beta power in all layers and gamma power in a layer-
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dependent manner. SChI-induced striatal and M1 beta and low gamma oscillations

critically depended on striatal muscarinic receptors. Furthermore, SChI activation

correlated with decreased locomotion and increased rotation behavior. Together,

these results demonstrate that SChIs mediate changes in beta and gamma oscilla-

tions within the CBT circuit that are relevant to movement and movement deficits.

Activation of SChIs selectively increased higher frequency oscillations in the stria-

tum, including alpha, beta, and gamma oscillations, but not lower frequency theta or

delta oscillations. In our previous work, we found beta oscillations were elevated in

striatum in response to the local infusion of the cholinergic agonist, carbachol (Mc-

Carthy et al., 2011). However, this study did not look at gamma oscillations and,

thus, more work is needed to determine whether carbachol also elevates gamma fre-

quency rhythms in striatum. In M1, SChI activation increased beta oscillations in all

layers, and gamma oscillations only in middle and deep layers. Interestingly, despite

the increase in beta, low gamma, and high gamma oscillations in the striatum and

M1 deeper layers, the coherence between these two structures remained unchanged

at high gamma frequencies during SChI activation, further confirming that these os-

cillations are supported by distinct mechanisms, with high gamma oscilations likely

representing a local increase in neuronal excitability (Manning et al., 2009). Using

conventionally defined frequency bands, we find SChI stimulation increased alpha

oscillations (8–15 Hz) in striatum but not in M1. Interestingly, the PD motor symp-

toms of bradykinesia and rigidity are correlated with elevated beta oscillations in

basal ganglia that can extend down to 8 Hz and, thus, includes the alpha frequency

range (Kuhn et al., 2006; Kuhn et al., 2009).

To determine the contributions of cholinergic receptor subtypes toward beta oscil-

lation generation, we incorporated pharmacological techniques into our present study.

Local infusion of scopolamine, a muscarinic receptor antagonist, in the striatum not
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only reduced oscillation powers across all frequencies analyzed, but also drastically

reduced the evoked beta and gamma oscillations upon optogenetic stimulation of

SChIs.

In contrast, scopolamine did not alter SChI-induced high gamma oscillations,

suggesting a mechanistic separation between the generators of beta/low gamma and

high gamma oscillations. In contrast, the nicotinic receptor antagonist mecamylamine

failed to change SChI-induced elevation of beta, low gamma, or high gamma oscil-

lations in either the striatum or M1. These results demonstrate that SChIs exert

rapid and powerful control over the dynamic generation of beta and gamma oscilla-

tions both within the striatum and throughout the CBT network through muscarinic

mechanisms.

Beta frequency oscillations are found in the basal ganglia and the cortex of PD

patients (Stein and Bar-Gad, 2013; Pollok et al., 2012) and PD animal models (Mal-

let et al., 2008; Stein and Bar-Gad, 2013; Devergnas et al., 2014). Beta elevation

correlates with the PD motor symptoms of bradykinesia and rigidity. The multi-

ple plastic changes seen throughout the CBT loop due to chronic loss of dopamine

are not present in our current experiments, and we do not consider the SChI stim-

ulation state equivalent to the Parkinsonian state. Nevertheless, it is interesting

that some Parkinsonian phenomenology (elevated beta and hypokinetic movement)

was evident during SChI stimulation despite normal dopaminergic function and lack

of Parkinsonian plastic changes. Interestingly, one recent study demonstrated that

optogenetic inhibition of SChIs alleviated some Parkinsonian motor symptoms in 6-

hydroxydopamine (6-OHDA) mice (Maurice et al., 2015). Together, these findings

suggest that the CBT network components that modulate beta oscillations in normal

states may be operational, but unmodulated, in PD states.

Striatal manipulations often produce alterations in behavior that generally can be
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classified as either hyperkinetic or hypokinetic. Examples of striatal perturbations

resulting in hyperkinesia include inhibition of striatal fast spiking (FS) interneurons

(Gittis et al., 2011), optogenetic stimulation of D1 medium spiny neurons (MSNs)

(Kravitz et al., 2010), and intrastriatal infusion of amphetamine (Wang and Rebec,

1993). In contrast, hypokinetic movements are produced by optogenetic stimulation

of striatal D2 MSNs (Kravitz et al., 2010). Here, we demonstrated that stimulation of

SChIs also resulted in hypokinetic movements, highlighting a prominent role of SChIs

in modulating basal ganglia network dynamics. We note that a recent study reported

a lack of movement changes upon optogenetic simulation of SChIs in virally labeled

animals (Maurice et al., 2015). It is possible that sufficient activation of SChIs is

needed to produce an observable behavioral effect, and our experimental conditions

using transgenic mice may allow us to activate sufficient numbers of SChIs to bias

behavior.

Interestingly, we observed unexpected changes in rotational behavior in both di-

rections after unilateral SChI stimulation. It is possible that unilateral stimulation of

SChIs could engage not only the ipsilateral CBT loop but also the contralateral CBT

loop through M1 bilaterally projecting intra-telencephalic neurons (Shepherd, 2013).

Alternatively, because both ACh and glutamate are released from SChIs (Higley et al.,

2011) and can potentially activate both D1 and D2 populations of MSNs, it is also

possible that the direction of rotation depends on the relative excitation level of these

two populations.

Although the source of the exaggerated beta oscillations in PD has not yet been

established, we suggest here that it may consist of multiple, interacting sources. At

least two independent beta generators are suggested by the distinct time course of

coherence between deep layers of M1 and the striatum upon SChI activation, with

coherence at higher beta frequencies of 22–30 Hz increasing and then rapidly dissipat-
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ing, and coherence at lower beta frequencies of 15–22 Hz staying elevated throughout

SChI activation. The dissipating coherence in the high beta frequency range despite

consistently elevated beta power suggests at least two independent sources of high

frequency beta, possibly one from basal ganglia networks and another in M1. An

independent beta generator in M1 is consistent with in vitro work, demonstrating

that deep layers of M1 can generate high frequency beta oscillations (27 Hz) in layer

V in the presence of carbachol and kainate (Yamawaki et al., 2008). Additionally, we

observed decreased coherence between striatum and superficial M1 throughout the

entire beta frequency range (15–30 Hz) despite significant increases in beta power

in these structures upon SChI stimulation, suggesting an additional source of beta

oscillations within the CBT loop. It has been observed that both high and low fre-

quency beta oscillations are elevated in the basal ganglia in Parkinsonian states and

are correlated with different PD motor symptoms (Toledo et al., 2014). The observed

dissociation of different frequency beta oscillations here, in normal mice with elevated

striatal cholinergic tone, may indicate possible distinct network sources that generate

PD-related betaband oscillations.

Whereas the literature proposes several putative mechanisms of CBT loop beta

oscillation generation, our previous work suggests that networks of striatal MSNs

can produce beta oscillations with sufficient MSN excitation (McCarthy et al., 2011).

Because muscarinic receptors can increase MSN excitability by decreasing the M-

current, our computational model predicts that muscarinic receptor blockade will

interfere with the beta-producing mechanism in the striatum. This mechanism is

supported by the experimental results of the present study demonstrating that striatal

muscarinic blockade significantly decreases SChI stimulation-induced beta oscillations

in the striatum. If the beta-producing mechanism of high striatal cholinergic tone

plays a role in PD, our work suggests that modalities reducing striatal cholinergic tone
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may be instrumental in alleviating excessive beta oscillations in the Parkinsonian CBT

loop, along with their correlated motor symptoms. In fact, systemic antimuscarinic

drugs were the sole pharmacologic treatment for PD until the late 1960s, when L-dopa

was introduced (Fox, 2013), although their clinical use is limited by neuropsychiatric

and cognitive side effects (Katzenschlager et al., 2003).

The literature proposes two other origins of pathologic beta oscillations in PD:

the subthalamic nucleus (STN)-globus pallidus externa (GPe) circuit (Holgado et al.,

2010) and M1 (Yamawaki et al., 2008). The former hypothesis depends on the pres-

ence of plastic changes attributable to chronic loss of dopamine in the STN-GPe

network. Such mechanisms may be applicable to the Parkinsonian state. However,

our results suggest that neither chronic plastic changes nor chronic low dopamine is

needed to produce robust beta oscillations within the CBT loop upon SChI stimula-

tion. We note that a similar finding is evident in M1, where robust beta oscillations

can emerge in nonParkinsonian M1 slices in the presence of sufficient excitation with

carbachol and kainate (Yamawaki et al., 2008; Lacey et al., 2014). Excitation of M1

neurons occurs in response to increased D1 MSN spiking and can also occur tran-

siently to a subset of M1 neurons in response to D2 MSN spiking (Oldenburg and

Sabatini, 2015). To what extent M1 generated beta oscillations are induced under

the conditions of SChI stimulation is an interesting topic of future study. Excitation

to M1 during SChI stimulation may depend on the amount and timing of excitation

provided to D1 versus D2 MSNs (Oldenburg and Sabatini, 2015).

Recent studies (Bar-Gad et al., 2004; Tachibana et al., 2011) showed that mi-

croinfusions of GABAergic antagonists in GPe failed to reduce beta oscillatory activ-

ities at the site of infusion in 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine (MPTP)

neurotoxin-induced Parkinsonian monkeys, although infusion of glutamatergic an-

tagonists in GPe and STN reduced beta oscillations. These results are consistent
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with the view that the striatum is a source of beta oscillations, whereas the STN-

GPe network serves as an amplifier of the striatally generated oscillations. In our

framework, mechanisms that decrease the activity of STN or GPe will compromise

the beta amplification mechanism and, thus, decrease beta oscillations. Correspond-

ingly, mechanisms that increase the connectivity of STN and GPe (e.g., suppression

of GPe lateral inhibition with GABAergic antagonist) may increase beta oscillations.

This observation, taken together with the fact that microinfusion of GABAergic an-

tagonists blocks a small amount of striatal inputs to GPe, suggests that substantial

change to GPe beta oscillatory activity would not be expected with the microinfusion

experiments performed in refs: (Bar-Gad et al., 2004; Tachibana et al., 2011).

Although much of the oscillatory spectrum in striatum is elevated during SChI

stimulation, these elevations do not occur across the entire frequency range and,

thus, are not considered a broadband increase in power. In contrast, scopolamine

infusion decreased power at all frequencies, as expected with a broadband decrease

(Figure 2·7A). However, in the presence of scopolamine, SChIs remained as effective

as in the absence of scopolomine in elevating high gamma oscillations, but not beta

or low gamma, suggesting a mechanistic separation between the generators of these

frequencies. Additionally, coherence between striatum and the deep layers of M1

increased for beta and low gamma, but not high gamma, despite increases in power in

both structures in all these frequency bands. Thus, beta and low gamma elevations

appear to be both selectively elevated and coordinated in the CBT circuit during

SChI stimulation, whereas high gamma may represent increased neuronal excitability

(Manning et al., 2009).

SChI activation also produced electrophysiological effects that are not commonly

observed in PD, including gamma power (30–100 Hz) elevation in cortex and striatum.

Finely tuned gamma oscillations in the range of 60–90 Hz are a consistent feature of
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basal ganglia and thalamic recordings (Jenkinson et al., 2013) that are diminished in

PD patients in the absence of dopaminergic replacement (Brown et al., 2001; Kempf

et al., 2009). However, rather than an increase in finely tuned gamma, here we ob-

served a broader-band gamma power increase, which may represent a general increase

in neuronal activity (Manning et al., 2009). Laserinduced striatal high gamma os-

cillations remained elevated after either muscarinic or nicotinic blockade, suggesting

that ACh is not involved in the generation of striatal high gamma oscillations. Gluta-

mate, which is also coreleased from SChIs, may be responsible for the increase in high

gamma oscillations during SChI stimulation (Higley et al., 2011). Striatal low gamma

oscillations, however, are more correlated with beta in our current study, consistent

with that observed in the basal ganglia of rats (Leventhal et al., 2012). While it is

unclear how low gamma is generated in the CBT circuits, evidence from the ventral

striatum of rats have suggested that low and high gamma have distinct sources, with

dopaminergic drugs selectively diminishing the power of low gamma and enhancing

the power of high gamma (Berke, 2009). In addition, low and high gamma oscillations

are increased at different times during a spatial decision task (van der Meer, 2009),

likely coordinated by different sets of FS interneurons (Berke, 2009; van der Meer,

2009). Further work is required to delineate the mechanisms that result in increased

M1 low and high gamma oscillatory activity due to increased striatal cholinergic tone.

Interneurons represent a small proportion of striatum, but these neurons can

strongly modulate striatal output. The proportion of interneurons in striatum is 4-5%

in mouse, >23% in monkey (Graveland et al., 1985), and up to at least 25% in human

(Graveland et al., 1985), suggesting a more prominent role for striatal interneurons

in nonhuman primates and humans. The majority of GABAergic interneurons in the

striatum are parvalbumin-positive FS interneurons, which project primarily to the

MSNs. Although FS interneurons are excited by nicotinic agonists (Koos and Tep-



41

per, 2002), optogenetic activation of SChIs failed to increase FS interneuron spiking

in one study (English et al., 2011). Additionally, optogenetic stimulation of SChIs

in ChAT-ChR2 mice elicits both fast and slow inhibitory postsynaptic potentials in

MSNs by nicotinic-mediated GABA release from dopamine projections to striatum

(Nelson et al., 2014) and neuropeptide Y-expressing neurogliaform GABAergic in-

terneurons, resulting in inhibition of MSNs (English et al., 2011). However, nicotinic

receptors generally quickly desensitize and, thus, we did not expect GABAergic block-

ade of MSN spiking to continue through the 5 s of stimulation used in our current

study. Accordingly, our study reveals that nicotinic receptor blockade by mecamy-

lamine did not change the spectral profile of either beta or gamma oscillations in the

striatum or cortex over 5-s periods. This result suggests that SChI-induced GABA

release does not exert long-term control over the SChI-induced oscillations along the

corticostriatal circuit.

In contrast, we show that SChI-induced elevation of beta and low gamma oscilla-

tions depends on muscarinic receptors, because striatal scopolamine infusion lowered

SChI-induced spectral power elevations of these oscillations. ACh acts through mus-

carinic receptors present on MSNs to decrease the activity of KCNQ (M-current) and

Kir2.3 channels, thereby increasing MSN excitability (Shen et al., 2005; Shen et al.,

2007). In addition, ACh also works through muscarinic receptors to inhibit the release

of glutamate from corticostriatal terminals and GABA from striatal FS cells (Koos

and Tepper, 2002; Higley et al., 2009). Thus, muscarinic receptor activity diminishes

the impact of glutamatergic and GABAergic input on MSNs while simultaneously

increasing the excitability of MSNs. Therefore, muscarinic receptor activation could

potentially accentuate the intrinsic dynamics of the MSN network.

It is surprising that stimulation of a single interneuron type, SChIs, can reversibly

reproduce some of the key electrophysiological and behavioral manifestations of PD in
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normal mice, including increased beta oscillations in corticostriatal circuits, increased

coherence between the cortex and the basal ganglia, and decreased mobility. SChI

stimulation also increased rotational behavior, a phenotype often observed in mice

rendered Parkinsonian by a 6-OHDA lesion (Deumens et al., 2002). These results

suggest that the exaggerated beta oscillations in PD may reflect an uncontrolled

expression of a normal dynamical state of the CBT network, a state that is directly

modulated by SChI excitability.

In summary, we provide evidence supporting the existence of a beta frequency

pacemaker within the CBT loop that can be activated by stimulation of striatal

cholinergic interneurons via striatal muscarinic receptors. Our results suggest that the

beta oscillations in PD may be an overexpression of normal CBT network dynamics

due to a striatal dopamine/ACh imbalance, rather than a de novo oscillation due to

a PD-induced network pathology.
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Chapter 3

A Computational Study of Intrathalamic

Vasoactive Intestinal Peptide

3.1 Abstract

Studies examining neural mechanisms of sleep and general anesthesia typically ig-

nore the presence of intrinsic neuromodulation in thalamus. The thalamic reticular

nucleus (TRN) is considered a source of inhibition for thalamus, yet it releases the

neuromodulator vasoactive intestinal peptide (VIP) that depolarizes thalamocorti-

cal neurons in vitro. Specifically, VIP activates the cyclic adenosine monophosphate

(cAMP) pathway known to augment the excitatory H-current of HCN pacemaker

channels. While intrathalamic VIP is known to cause long-lasting excitation in vitro,

its in vivo dynamical effects have not been reported. Here, biophysical Hodgkin-

Huxley-like conductance-based computational models are used to elucidate the im-

pact of intrathalamic VIP on thalamocortical dynamics during sleep and propofol

general anesthesia. Importantly, multiple timescales of VIP effects are included to

represent different cAMP actions within the cell. The findings suggest that VIP

homeostatically drives thalamus toward the edge of a firing mode transition between

the burst mode, characteristic of sleep and anesthesia, and the tonic relay mode of

awake states. This mechanism contributes to different features of sleep depending

on the timescale of intracellular effects. Multi-hour timescale effects lead to the em-

pirically observed trend of decreasing ratio of stage 3 non-rapid-eye-movement sleep
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(NREM3) to NREM2 sleep during successive sleep cycles. Effects on the 90 minute

timescale cause NREM3 to NREM2 transitions. Seconds timescale effects represent a

new biological spindle mechanism that enhances spindle robustness compared to pre-

vious computational models. Finally, propofol anesthesia both directly and indirectly

counteracts VIP’s effects, maintaining thalamus in a sustained burst mode unsupport-

ive of consciousness. Inhibition of intrathalamic VIP homeostasis represents a novel

mechanism contributing to propofol-induced loss of consciousness.

3.2 Introduction

Research on the neuromodulatory mechanisms of sleep and general anesthesia has

often focused on changes in brainstem neuromodulators affecting the thalamus and

cortex. For example, the effects of acetylcholine, adenosine, dopamine, histamine,

norepinephrine, and serotonin on cortex and thalamus have been studied extensively

(McCormick, 1992; Franks, 2008; Brown et al., 2010). However, the presence of in-

trinsic thalamic neuromodulators like vasoactive intestinal peptide (VIP) has been

mostly neglected, despite several papers reporting VIP-mediated long-lasting thala-

mic excitation and firing mode changes (Lee and Cox, 2008; Lee and Cox, 2006; Lee

and Cox, 2003; Sun et al., 2003). While several papers have explored these potent

VIP effects in vitro, no experiments have examined the effects of intrathalamic VIP

in vivo.

In addition, VIP may affect multiple intracellular targets with differing kinet-

ics. However, it would be difficult using current experimental methods to separately

examine VIP’s effects on different timescales. This provides an opportunity to use

computational models to explore the impact of different timescales of VIP activity

on thalamocortical dynamics.

Here, biophysical Hodgkin-Huxley-like conductance-based computational models
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are used to determine the implications of multiple timescales of VIP effects on thala-

mocortical dynamics during sleep and propofol general anesthesia. To the best of my

knowledge, the modeling of multiple timescales of a single neuromodulator is a novel

technique for this branch of computational neuroscience that simulates conductance-

based models. An additional advantage of starting with a computational model is

that it inspires specific predictions that can guide judicious use of physical resources

when testing new hypotheses and exploring new areas, as in this case.

3.2.1 VIP Co-release from TRN

The thalamic reticular nucleus (TRN), the thin outer shell of thalamus, is the only

thalamic nucleus that lacks efferent connections to regions outside of thalamus. In-

stead, it uniquely projects widely within thalamus and via GABAergic inhibition

serves a synchronizing role similar to that of inhibitory interneurons in other brain

regions like cortex (Pinault, 2004). This inhibition is mediated by γ-aminobutyric

acid (GABA)-A and -B receptors on other TRN and thalamocortical (TC) relay neu-

rons, with timescales of tens and hundreds of milliseconds, respectively (Destexhe

et al., 1994).

Complicating this standard inhibitory TRN perspective, TRN co-transmits exci-

tatory vasoactive intestinal peptide (VIP) (Kaneko et al., 1985)(see section 3.2.5).

VIP mediates its excitatory effects in TC relay cells on the timescale of seconds to

minutes, and likely hours as well (Lee and Cox, 2003; Sun et al., 2003). The latter

timeframe is plausible, given that VIP-mediated effects in other nuclei last up to a

week (Bourgin et al., 1997).

Even though other brain circuits (including those related to arousal) also co-

transmit traditional neurotransmitters along with neuropeptides, the functional im-

plications of this phenomenon remain poorly understood (Vaaga et al., 2014). Here,

the potential impact of thalamic dual neurotransmitter-release on thalamocortical
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dynamics is described.

3.2.2 VIP’s Intracellular Mechanism

Synaptic VIP from TRN produces its effects via G protein-coupled transmembrane

receptors on TC cells. VPAC1 and VPAC2 are the predominant VIP receptor types

in relay thalamus, although other receptors including PAC1 are also present (Joo

et al., 2004; Laburthe et al., 2002). VIP-mediated G protein activation increases the

concentration of cyclic adenosine monophosphate (cAMP), a ubiquitous mediator of

many cellular signaling cascades (Sun et al., 2003); intracellular calcium can also

increase cAMP (Luthi and McCormick, 1999). These two methods of cAMP amplifi-

cation will be compared regarding their ability to regulate thalamic spindle dynamics

in section 3.3.1.

Among its diverse effects, cAMP augments the excitatory hyperpolarization-activated

non-selective cation H-current of HCN channels, the same pacemaker channel respon-

sible for the funny current in the heart (Budde et al., 1997)(Figure 3·1). This effect

is mediated by cAMP binding the HCN cyclic nucleotide binding domain (CNBD)

(He et al., 2013).

Figure 3·1: Intracellular mechanisms of HCN modulation in thalamocortical neurons. VIP stimu-
lates adenylate cyclase (AC) to produce cAMP. cAMP increases the H-current conductance of HCN
channels. In a separate mechanism, calcium influx from T-type calcium channels can also activate
some adenylate cyclase isoforms to produce cAMP. Alternatively, calcium may modulate HCN chan-
nels directly via complexing with a protein like CaMKII. Solid lines are known interactions, while
dashed lines are plausible interactions relevant to HCN modulation.
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3.2.3 Multiple cAMP Timescales From Compartmentalization

Consistent with the notion that cAMP molecules are able to simultaneously control

different functional pathways in cells with temporal and spatial precision, a given stim-

ulus can generate differing cAMP responses in different microdomains (Zaccolo et al.,

2000; Rich et al., 2001; DiPilato et al., 2004). Specifically, cAMP has varying con-

centration ranges and kinetics in different subcellular compartments or microdomains

(Wachten et al., 2009; Zaccolo, 2011; Lefkimmiatis and Zaccolo, 2014), as outlined

in Figure 3·2. This supports the incorporation of multiple cAMP timescales in my

model, further discussed in sections 3.2.4 and 3.2.7.

As depicted in Figure 3·3, subcompartments are created by varying combina-

tions of cAMP buffers, various isoforms of transmembrane and soluble adenylate

cyclases that make cAMP, different phosphodiesterases (PDEs) that degrade cAMP,

and protein scaffolds that bind cAMP protein machinery in a local area (Calebiro

and Maiellaro, 2014). For example, experimental data depicted in Figure 3·4 demon-

strates that two different adenylate cyclase (AC) isoforms both located at the cell

membrane respond to VIP stimulation with differing kinetics, and lead to different

cAMP concentrations over time (Zaccolo et al., 2000).

cAMP concentrations can oscillate intrinsically or due to external inputs. While

differing oscillatory frequencies of cAMP can yield unique intracellular effects (Dy-

achok et al., 2006), even the same cAMP input frequency can have heterogeneous

effects at different intracellular targets (Ni et al., 2010). This is relevant since the

different sleep stages examined here correspond to differing synaptic input frequen-

cies to thalamic cells, and secondly because the main results correspond to different

oscillatory frequencies of cAMP. This corresponds to modulation of HCN channels at

different timescales simmutaneously.
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Figure 3·2: Different timescales of VIP’s intracellular actions. VIP activity on TC cells leads to
cAMP production. cAMP has been observed to maintain different kinetics and concentration ranges
in different subcellular compartments, including different parts of the cell membrane, cytoplasm,
mitochondria, and the nucleus. In addition to different cAMP timescales, cAMP’s intracellular
actions possess different intrinsic timescales (example actions in blue text; H binding refers to HCN
channel binding). This 2-stage mixing of timescales (cAMP microdomain concentrations and actions)
may enable cells to have diverse output activity timescales.
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Figure 3·3: Major mechanisms implicated in cAMP compartmentation. “Different mechanisms
have been put forward to explain the compartmentation of cAMP/PKA signaling in spite of the
high diffusibility of cAMP in solution. These include the formation of cAMP gradients due to
reaction-diffusion mechanisms, a different subcellular localization of signaling molecules (receptors,
ACs, PDEs, etc.), factors (e.g., phyisical barriers, buffering, higher viscosity) capable of hindering
the diffusion of cAMP, and the association of signaling molecules into supramolecular complexes,
often through the intervention of scaffolding proteins” (Calebiro and Maiellaro, 2014).
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Figure 3·4: Differing kinetics of in vitro cAMP microdomains in pituitary cells. (A) Adeny-
late cyclase (AC) protein expression detected by fluorescence resonance energy transfer (FRET).
globalEpac2 is found throughout the cytosol whereas pmEpac2 and Epac2AC8 isoforms are both
localized to the cell membrane. (B) Change in AC FRET response after treatment with 10 nM VIP.
(C) Change in calculated [cAMP] after treatment with 10 nM VIP. In both B and C, notice that
the membrane-associated isoforms have differing kinetics. Adapted from (Zaccolo et al., 2000)
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3.2.4 Multiple Timescales of H-Current Modulation by cAMP

In addition to the differing cAMP concentration kinetics due to subcompartments,

cAMP’s intracellular actions possess differing intrinsic timescales. Hence, HCN mod-

ulation by cAMP could involve several mechanisms of different timescales, including

phosphorylation, receptor trafficking (Shah et al., 2010), and nuclear transcription/-

translation. HCN channels can be reversibly inactivated via phosphorylation (Jung

et al., 2010; Arinsburg et al., 2006; Yu et al., 2004), a process that takes seconds or

less (Sitaramayya and Liebman, 1983). HCN channels can also be reversibly trafficked

from the membrane to intracellular vesicles, also referred to as endocytosis or inter-

nalization (Santoro, 2004; Hardel et al., 2008; Lewis et al., 2009). An example of the

timing of ion channel trafficking is shown in Figure 3·5—internalization of potassium

channels in hippocampal neurons took several minutes to achieve a large effect (Kim

et al., 2007). The transcription, translation, and trafficking of new HCN proteins to

the membrane would presumably take even longer, potentially hours. Hence, it is

conceivable that VIP’s modulation of H-current could have multiple components that

span the time scale of seconds to hours. This key insight motivated my decision to

include multiple timescales of intracellular second messenger activity here, discussed

further in section 3.2.7. In the context of the model described here, the terms “VIP

effects” and “cAMP” will be used interchangeably since they are combined into a

single state variable.

3.2.5 In Vitro VIP Studies

To date, no studies have explored the specific effects of intrathalamic neuromodulation

by VIP in vivo, although global VIP infusions demonstrate sleep architecture changes

(see section 3.4.5). However, several in vitro studies using rat thalamic slices (Lee

and Cox, 2008; Lee and Cox, 2006; Lee and Cox, 2003; Sun et al., 2003) have revealed
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Figure 3·5: Voltage-gated A-type K+ channel (Kv4.2) clathrin-mediated endocytotic internaliza-
tion takes minutes to acheive a large effect in hippocampal neurons. “Time course of averaged
fractional fluorescent changes (∆F/F0) of Kv4.2g in spines. AMPA stimulation resulted in a pro-
gressive decrease of Kv4.2g-specific fluorescent intensity in spines.” Modified from (Kim et al.,
2007).

long-term depolarizations sufficient to cause firing mode changes (see section 3.2.6).

The earliest paper to study VIP’s effects on thalamic slices documented an increase

in membrane potential that peaked at 6-8 mV and lasted 20 minutes after a 4 minute

VIP infusion, shown in Figure 3·6B (Sun et al., 2003). VIP selectively depolarized TC

but not TRN cells, suggesting that recurrent TRN connections lack VIP effects. The

depolarization was reproduced by a similar set of experiments involving a 1 minute

bolus infusion of VIP, leading to at least 5 minutes of increased membrane potential

before washout (Figure 3·6A)(Lee and Cox, 2003).

In general, the higher VIP concentrations led to longer-lasting depolarizations

of greater amplitude. Later work demonstrated a dose-dependence of the cAMP

analog, 8-cpt-cAMP, on membrane depolarization amplitude and length, reaching up

to 5 minutes with the tried doses (Lee and Cox, 2006). This study also implicated

VPAC2 as the functionally dominant receptor of the VIP effects in thalamus.
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Importantly, infusions with greater VIP concentrations revealed the presence of

multiple timescales of depolarization (Lee and Cox, 2008). A 1 min 0.2 µM VIP

infusion yielded a rise and fall of membrane potential lasting 2 minutes. Similarly,

a 1 min 3 µM infusion showed a similar waxing and waning voltage, but maintained

a slowly decaying voltage plateau that lasted at least 5 minutes. The presence of

multiple voltage decay timescales supports the notion that VIP activates heterogenous

cAMP targets within TC neurons, leading to H-current augmentation at different

timescales.

These results were extended to peptide histidine isoleucine (PHI), a peptide shar-

ing the same precursor as VIP, which is co-localized with VIP in the reticular nucleus

(Lee and Cox, 2008) and also activates VPAC2 receptors, but with greater affinity

(Harmar et al., 2012). Another homologous neuropeptide with similar actions is pitu-

itary adenylate cyclase-activating polypeptide (PACAP), which has greater binding

affinity for PAC1 receptors found in select thalamic regions, but equivalent affinity

for VPAC1/2 receptors common in thalamus (Sun et al., 2003). Interestingly, VIP

is located primarily in the dorsal sensory relay thalamus (Burgunder et al., 1999),

while the more potent PACAP is found predominantly in the central thalamic nu-

clei involved in arousal (see section 3.2.11)(Koves et al., 1991), suggesting that VIP-

mediated H-current modulation is more critical to the arousal system considered here.

For the purposes of this model, PHI, PACAP, and VIP are considered equivalent and

collectively referred to as VIP since they have equivalent actions given the model’s

granularity.

In addition, TC neurons from different thalamic nuclei and with differing mor-

phologies responded to VIP similarly (Sun et al., 2003); thalamic regions tested

included ventral posteromedial and ventral posterolateral (somatosensory), ventral

lateral and ventral medial (motor), lateral geniculate (vision), as well as posterior
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(i.e., pulvinar; visual attention)(Lee and Cox, 2008; Sun et al., 2003). While VIP’s

effects in intralaminar thalamus have not yet been reported, the presence of VIP in

TRN regions projecting to intralaminar thalamus (Burgunder et al., 1999) as well as

within intralaminar thalamus (Koves et al., 1991; Kaneko et al., 1985) suggests it

would have similar effects. Thus, this H-current augmentation by intrathalamic VIP

is likely a ubiquitous feature of non-TRN thalamus.

Figure 3·6: VIP depolarizes TC neurons in vitro for minutes. (A) 5 minutes of increased membrane
potential after a 1 minute infusion of 0.5 µM VIP. Adapted from (Lee and Cox, 2003). (B) increase
in membrane potential that peaked at 6-8 mV and lasted 20 minutes (beyond figure timespan) after
a 4 minute 2 µM VIP infusion. Adapted from (Sun et al., 2003). Note that hyperpolarizations at
peaks are due to injected current checking input resistance.

3.2.6 Thalamic Firing Modes

Thalamocortical neurons exhibit two firing modes, relay and burst (examples in Fig-

ure 3·7). In thalamus, relay mode is associated with depolarization and larger H-

current characteristic of wakefulness, while burst mode is associated with hyperpo-

larization and lower H-current typical of non-rapid eye movement (NREM) sleep and

anesthesia (Weyand et al., 2001). Incidentally, bursts also occur sporadically during

wakefulness and may be important for attention (Llinas and Steriade, 2006).

The thalamic differences and switch between bursting/sleep and relay/awake states

are commonly attributed to changing levels of brainstem neuromodulators that af-



55

fect multiple ion channels, especially the potassium leak currents that strongly affect

membrane potential (McCormick and Huguenard, 1992). However, in vitro studies

of intrathalamic VIP revealed an additional mechanism: VIP-mediated thalamic de-

polarization can shift firing mode from burst to tonic firing (Sun et al., 2003)(Figure

3·8). This is an exciting finding, since the literature otherwise discusses the switch

between thalamic firing modes in the context of factors external to the thalamus,

especially brainstem (McCormick, 1992; Sherman, 2001).

Figure 3·7: Intracellular recordings of a thalamocortical neuron from a cat thalamic lateral genicu-
late nucleus (LGN) in vitro slice. (A) Tonic spikes in relay mode. (B) Low-threshold spiking (LTS)
in burst mode. Adapted from (Sherman, 2001).

In general, the level of thalamic depolarization determines the mode of thalamic

spiking (Sherman, 2001). Awake states are associated with a depolarized thalamic

relay mode, in which thalamus responds to weak inputs with single spike outputs

(Ramcharan et al., 2000). In contrast, non-rapid eye movement (NREM) sleep and

general anesthesia are characterized by a hyperpolarized burst mode consisting of

low-threshold spiking (LTS), in which thalamus intrinsically oscillates with bursts of

multiple spikes (Swadlow and Gusev, 2001). These bursts originate from an interac-
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Figure 3·8: VIP induces a thalamic firing mode switch for in vitro thalamocortical neurons. The
firing mode is revealed by a depolarizing step current after starting from a silent baseline state. Note
the 6 mV difference in baseline voltage after the 2 µM VIP application. Adapted from (Sun et al.,
2003).

tion between the positive cation pace-making H-current and T-type calcium channels

(mechanism diagram and description in Figure 3·9)(McCormick and Pape, 1990).

3.2.7 Thalamocortical Computational Models

Previously, the thalamocortical circuit has been modeled extensively by Bazhenov,

Destexhe, Kopell, McCormick, Rinzel, Sejnowski, Timofeev, and Wang (Bazhenov

et al., 2002; McCormick and Huguenard, 1992; Destexhe et al., 1993a; Destexhe

et al., 1993b; Wang et al., 1995; Destexhe et al., 1996; Terman et al., 1996; Lyt-

ton et al., 1997; Ching et al., 2010; Vijayan and Kopell, 2012; Soplata et al., 2017).

These models have been useful for exploring mechanisms of sleep spindles (Destexhe

et al., 1993b), absence seizures (Lytton et al., 1997), alpha-delta sleep common in fi-

bromyalgia (Vijayan et al., 2015), awake alpha oscillations (Vijayan and Kopell, 2012),

anesthetic alpha oscillations (Ching et al., 2010), and anesthetic phase-amplitude cou-

pling (Soplata et al., 2017). Additionally, a recent modeling study simulated changes

between sleep stages using simulated changes in brainstem neurotransmitters onto
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Figure 3·9: Low-threshold spiking (LTS) burst mechanism. The H-current pacemaker raises mem-
brane potential (blue region) to the threshold for T-type calcium current activation (orange region).
T-current creates to a plateau of depolarization crowned by sodium-potassium spikes. H-current de-
activates and T-current inactivates from the high membrane potential. Resulting hyperpolarization
removes T-channel inactivation (bottom edge of blue region) and H-current reactivates, leading to
another cycle. Adapted from (McCormick and Pape, 1990).

cortex and thalamus (Krishnan et al., 2016); this model compressed hours of sleep

into a 5 minute simulation, similar to the approach used here which is described in

the methods section 3.6.1.

Importantly, these prior thalamic computational models have not included in-

trathalamic VIP-mediated modulation of H-current. Instead, the models made the

simplification of directly modulating H-current conductance by calcium. The au-

thors of these previous works recognized that calcium doesn’t actually modify HCN

channels directly in thalamus (Destexhe and Sejnowski, 2001), as demonstrated in

rat thalamic neurons (Budde et al., 1997). Calcium does indirectly modulate HCN

channels though, since it affects cAMP production via adenylate cyclase stimulation

(Luthi and McCormick, 1999). However, the relative efficacy of calcium versus cAMP

for modulating H-current is unknown. Incidentally, one study reported that in heart

cells calcium may directly increase H-current conductance while cAMP may affect
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HCN kinetics (Hagiwara and Irisawa, 1989).

Canonical Spindle Model

The calcium-mediated H-current augmentation model represents the canonical spin-

dle mechanism (Destexhe et al., 1996)(Figure 3·10). Spontaneous continuous thalamic

bursting during burst mode is silenced by T-current inactivation due to depolarization

from calcium-mediated H-current augmentation. T-current is necessary for creating

the depolarized plateaus that trigger bursts of spikes (see Figure 3·9). T-current is a

key source of calcium, so its inactivation leads to calcium decay along with progres-

sive hyperpolarization. With sufficient hyperpolarization T-current is de-inactivated,

leading to the reemergence of a spontaneous bursting segment characteristic of spin-

dles.

Figure 3·10: Calcium-mediated upregulation of thalamocortical cell H-current terminates spindles
in a computational model. The top panel shows the trace for the calcium-bound open state which
has twice the modulation capacity as the non-calcium-bound open state. See section 3.6.3 for more
information. Adapted from (Destexhe et al., 1996).
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3.2.8 Sleep

VIP’s long-lasting thalamic depolarization in simple in vitro assays raise the question

of how it affects in vivo thalamic dynamics. One interesting regime is that of sleep,

since lower levels of excitation lead to a switch in thalamic firing mode to bursting,

the firing mode associate with slow-wave sleep (section 3.2.6).

One question examined here is how VIP affects the sleep spindle oscillations char-

acteristic of stage 2 non-rapid-eye-movement (NREM2) sleep. Spindles are α fre-

quency (8-12 Hz) wave groups lasting several seconds and recurring periodically on

the seconds timescale (Contreras et al., 1997). They have interested researchers since

they correlate with declarative memory, learning capacity, and intelligence measures

(Luthi, 2014; Fogel et al., 2007). While TRN bursting is important for spindling (Ste-

riade et al., 1987; Halassa et al., 2011; Bartho et al., 2014), several computational

models have focused on mechanisms within TC cells that control spindles (Destexhe

et al., 1998; Destexhe et al., 1996; Wang et al., 1995; Destexhe et al., 1993b; Destexhe

et al., 1993a). The canonical spindle mechanism (Destexhe et al., 1996) involves ini-

tiation by spontaneous TC bursting that terminates within several seconds after a

depolarizing mode transition due to calcium-mediated H-current augmentation (see

section 3.2.7).

Previous models have also demonstrated the capacity of thalamus to generate syn-

chronized δ (1-4 Hz) oscillations, common in deeper NREM3 but also found sparsely

in shallower NREM2 sleep (Destexhe et al., 1996). These models switch between the

continuous bursts of NREM3 and the spindles of NREM2 by modulating H-current

(Destexhe et al., 1993a). Notably, thalamic neurons empirically depolarize 8-12 mV

when switching NREM to REM/wakefulness (Hirsch et al., 1983), which is a depo-

larization magnitude VIP is capable of achieving in vitro. Since VIP modulation of

H-current can depolarize thalamic neurons enough to match changes between sleep
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stages, another question addressed here is how VIP affects transitions between sleep

stages.

Another phenomenon that VIP may impact is the trend of decreasing depth of

sleep, i.e. decreasing NREM3 : NREM2 ratio, between successive ≈ 90 minute

NREM–REM sleep cycles during the course of human sleep (depicted in Figure

3·11)(Scammell et al., 2017). Here, the question of whether long-term, i.e. multi-

hour, timescales of VIP effects may contribute to this feature of sleep is evaluated. It

is important to note that sleep architecture is species-specific (Genzel et al., 2014),

and that this work focuses on human sleep.

Figure 3·11: Diagram of human sleep architecture. During the course of sleep, there is a trend of
decreasing depth revealed as a shift toward higher NREM sleep stages, increasing REM length, and
increasing REM : NREM time ratios with each NREM–REM cycle. Adapted from (Scammell et al.,
2017).

3.2.9 Sleep Regulation

There is an immense literature dissecting the circuit mechanisms of sleep. This has led

to conceptual models implicating key regulatory roles for multiple brainstem nuclei

as well as forebrain structures like the cholinergic basal forebrain and hypothalamus

(Weber and Dan, 2016). However, while thalamus’ role in arousal is often discussed
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(see section 3.2.11), I am unaware of any theories of direct thalamic control of sleep

architecture, a hypothesis explored here. What follows in this section is a summary

of the sleep regulation literature to permit comparison with the notion of sleep archi-

tecture control by thalamus.

Sleep-Wake Control

Different neural regions promote wakefulness, NREM sleep, and REM sleep. Wake-

promoting nuclei include the noradrenergic locus coeruleus (LC), serotoninergic dorsal

raphe (DR), and histaminergic tuberomammilary nucleus (TMN); sleep-promoting

populations include the GABAergic ventrolateral and medial preoptic areas (VLPO,

mPOA) (Saper et al., 2001; Booth and Diniz Behn, 2014). Incidentally, while wake-

fulness and REM sleep are similar electrophysiologically, a key difference is that the

ascending monoaminergic inputs (LC, DR, TMN) are silent in REM (Saper et al.,

2001).

Mutually inhibitory connections between the wake- and sleep-promoting popu-

lations led to the bistable “flip-flop switch” hypothesis of wake-sleep control, with

orexinergic neurons in lateral hypothalamus supporting the stability of each state

(Saper et al., 2001). Improper orexinergic function causes narcolepsy, a medical

condition characterized by aberrant transitions into REM sleep during wakefulness

(Saper et al., 2001).

REM Control

Several nuclei are associated with REM sleep. Separate populations in hypothala-

mus are associated with NREM versus REM (Lu et al., 2000; Chen et al., 2018).

Also, optogenetic activation of cholinergic pedunculopontine tegmentum (PPT) and

laterodorsal tegmentum (LDT) neurons induces REM sleep (Van Dort et al., 2015).

Conversely, activation of GABAergic neurons in the midbrain ventrolateral periaque-
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ductal gray suppresses REM in favor of NREM sleep (Weber et al., 2018). Thus,

one hypothesis is that mutually inhibitory REM-off and REM-on areas in the meso-

pontine tegmentum create a bistable “flip-flop switch” for NREM-REM control (Lu

et al., 2006), separate from the “flip-flop switch” hypothesis of wake-sleep control.

A recent theory unifying sleep-wake and NREM-REM control is the arousal-action

model (Liu and Dan, 2019). It expands upon the mutually inhibitory flip-flop models

mentioned previously to include two classes of mutually excitatory wake-promoting

neurons: arousal neurons that increase neural activity, and action neurons that both

increase neural activity and activate muscles.

Local Cortical Sleep

The notion of local cortical control of sleep is an alternative although not mutually

exclusive concept to that of brainstem control (Siclari and Tononi, 2017). This has

been motivated by studies showing local cortical slow oscillations or cortical deactiva-

tions during prolonged wakefulness in various species. For example, during prolonged

wakefulness in rats, localized cortical slow waves with neuronal deactivation are seen

(Vyazovskiy et al., 2011). Similarly, local cortical deactivations have been seen in

monkeys (Pigarev et al., 1997). Moreover, some species of birds and ocean mam-

mals can maintain wakefulness while having one hemisphere engage in sleep (Lyamin

et al., 2008). In humans, different regions of cortex enter sleep at different times, local

“awakenings” can occur, and sleep tends to be fragmented across cortex (Nobili et al.,

2012). The model here produces local spindles that suggest a role of local thalamic

activations in local cortical sleep.

Computational Models of Sleep Regulation

A critical challenge in sleep physiology research is the limitations from in vivo proto-

cols as well as the absence of sleep dynamics with in vitro assays. While investigations
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have yielded conceptual models, the models lack a detailed description of network dy-

namics and temporal interactions. Computational models can overcome these obsta-

cles and integrate different sources of information to improve understanding of sleep

dynamics (Booth and Diniz Behn, 2014). They can demonstrate how interactions

between different neural populations shape dynamics to achieve the observed sleep

architectures. A brief history of sleep architecture models follows.

Early mathematical models were phenomenological. One example is the “two

process model” of sleep regulation, in which a sleep-independent circadian process

(Process C) and a sleep-dependent processes (Process S) interact to determine sleep

propensity and duration (Borbély, 1982).

Later models represented more physiological detail. One of the first physiologically-

based models is McCarley and Hobson’s “reciprocal interaction model,” which used

Lotka-Volterra-type equations that were found in predator-prey models (McCarley

and Hobson, 1975). They modeled oscillations between REM and NREM sleep states

based on the interactions between the cholinergic pontine gigantocellular tegmental

field and the noradrenergic locus coeruleus.

Current models focus on simulating neural population firing rates (Wilson-Cowan-

type) or voltage traces (Morris-Lecar-type). Nearly all of these models include mu-

tually inhibitory connections between wake-promoting and NREM sleep-promoting

populations following the “flip-flop switch” hypothesis (Booth and Diniz Behn, 2014).

Some models do not include REM sleep. Interestingly, one model is able to transition

from the stereotyped human sleep structure to the highly-variable rodent architec-

ture with a change of parameters and by increasing stochasticity (Gleit et al., 2013;

Diniz Behn and Booth, 2010).

The thalamocortical model introduced here can regulate aspects of sleep archi-

tecture and differs critically from previous models of sleep regulation: it has more
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biophysical detail and more completely describes the origin of the sleep timescales.

3.2.10 General Anesthesia

As with sleep, general anesthetic states correspond to distinct thalamocortical phys-

iology and rhythms that have been studied extensively with computational models

(Soplata et al., 2017; Ching and Brown, 2014; Vijayan et al., 2013; McCarthy and

Kopell, 2012; Ching et al., 2012; Ching et al., 2010; McCarthy et al., 2008). Im-

portantly, the cornucopia of general anesthetic agents differ greatly from sleep in

their underlying mechanisms and phenotypes (Purdon et al., 2015; Akeju and Brown,

2017). GABA-potentiating anesthetics, like the commonly used propofol, are thought

to achieve sedation by activating the endogenous sleep pathway (Nelson et al., 2002)

and inhibiting targets across the brain and brainstem (Brown et al., 2010; Franks,

2008). In addition to high amplitude slow/delta waves also found in sleep, the elec-

troencephalogram (EEG) under GABA-ergic anesthetics reveals strong frontal α os-

cillations (Purdon et al., 2015).

Of relevance to intrathalamic VIP, several anesthetic agents, including propofol,

directly inhibit the TC neuron H-current that is normally augmented by VIP (Ying

et al., 2006). The question of how propofol interacts with the effects of intrathalamic

VIP is investigated here.

3.2.11 Thalamic Control of Arousal

In addition to shaping sleep and anesthetic dynamics, central thalamus is also rec-

ognized as exerting control over cortical arousal. For example, electrophysiological

changes related to loss of consciousness in natural sleep and propofol general anes-

thesia have been observed in centromedial thalamus prior to cortex (Magnin et al.,

2010; Baker et al., 2014; Gent et al., 2018), suggesting that thalamus plays a key role

in controlling cortical arousal. This is reinforced by studies demonstrating the rever-
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sal of general anesthesia, NREM sleep, and minimally conscious states by increasing

excitation within centromedial thalamus (as opposed to brainstem or systemic alter-

ations)(Gent et al., 2018; Alkire et al., 2009; Alkire et al., 2007; Schiff et al., 2007).

GABAergic manipulations of central thalamus were also shown to control arousal and

the threshold for seizures originating from other brain regions (Miller and Ferrendelli,

1990). From lesion studies, the degree of impairment to consciousness correlates with

the extent of damage to central thalamic nuclei and their connections to other brain

regions (Maxwell et al., 2006; Jennett et al., 2001). As for sleep induction, direct

optogenetic activation of a portion of awake rat TRN induced a drowsy state (Lewis

et al., 2015). Of note, other thalamic nuclei, e.g. somatosensory nuclei, are func-

tionally separated with differing connectivity profiles, such that they do not seem to

control arousal (Baker et al., 2014; Gent et al., 2018). However, the thalamic “ma-

trix” regions in non-central thalamus project diffusely similar to central thalamus

(Jones, 2001), and may contribute to arousal regulation (Honjoh et al., 2018).

While thalamus’ role in arousal is often discussed, it remains unclear which specific

aspects of arousal are controlled by the brainstem versus thalamus, and whether they

can at least partially substitute for one another, analogous to the various potential

pacemakers in the heart. These same questions of thalamus vs. brainstem are also

relevant to sleep architecture regulation.

3.2.12 Present Work

While intrathalamic VIP is known to cause long-lasting excitation in vitro, its in vivo

dynamical effects have not been reported. Furthermore, the implications of multiple

timescales of VIP intracellular effects on thalamocortical dynamics is unclear.

Here, biophysical Hodgkin-Huxley-like conductance-based computational models

are used to elucidate the impact of intrathalamic VIP on thalamocortical dynam-

ics during sleep and propofol general anesthesia. Previous thalamocortical models
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(Destexhe et al., 1996; Destexhe et al., 1998; McCarthy et al., 2008) were extended

to include intrathalamic VIP as well as multiple timescales of VIP effects, repre-

senting different cAMP actions within the cell. The modeling of multiple timescales

of a single neuromodulator is a novel technique for conductance-based modeling in

computational neuroscience.

The findings suggest that VIP homeostatically drives thalamus toward the edge

of a firing mode transition between the burst mode, characteristic of sleep and anes-

thesia, and the tonic relay mode of awake states. This mechanism contributes to

different features of sleep depending on the timescale of intracellular effects. Multi-

hour timescale effects lead to the empirically observed trend increasing ratio of stage

2 non-rapid-eye-movement sleep (NREM2) to NREM3 sleep during successive sleep

cycles. Effects on the 90 minute timescale cause NREM2 to NREM3 transitions, typ-

ically thought to be controlled by brainstem (Saper et al., 2001). Seconds timescale

effects represent a new biological spindle mechanism that enhances spindle robustness

compared to previous computational models.

Finally, propofol anesthesia both directly and indirectly counteracts VIP’s effects,

maintaining thalamus in a sustained burst mode unsupportive of consciousness. In-

hibition of intrathalamic VIP homeostasis represents a novel mechanism contributing

to propofol-induced loss of consciousness.

3.3 Results

The role of intrathalamic vasoactive intestinal peptide (VIP) was studied using com-

putational simulations of a thalamocortical model. The thalamic model incorporates

two neuronal populations corresponding to different thalamic nuclei: (1) thalamo-

cortical (TC) neurons representing the higher-older centromedial nucleus of the in-

tralaminar thalamus important for arousal (Van der Werf et al., 2002; Baker et al.,



67

2014); and (2) thalamic reticular nucleus (TRN) neurons. This model was extended

from the canonical thalamic model (Destexhe et al., 1996) to incorporate VIP activ-

ity from TRN, which promotes excitation of TC cells. The TRN model imparts 5

timescales of activity onto TC cells via 3 neurotransmitters: short inhibitory GABA-

A (≈10 ms), medium inhibitory GABA-B (≈100 ms), and long excitatory VIP (three

timescales ranging from seconds to hours). The cortical model also has two popula-

tions, representing excitatory regular spiking (RS) pyramidal neurons and inhibitory

parvalbumin-positive fast-spiking (FS) interneurons, referred to as E and I cells, re-

spectively. The model is comprised of 2 (or 20) neurons of each type, corresponding

to 4 (8) and 40 (80) cell models for thalamic and corticothalamic models, respec-

tively. For the thalamic model, AMPA-ergic TC relay neurons are mutually con-

nected to GABA/VIP-secreting TRN neurons with all-to-all connections between all

cells, except for the absence of TC-TC connections (Figure 3·33A). TC cells have

both GABA-A and GABA-B receptors, as well as VIP receptors. The rest of the

thalamocortical connections are shown in Figure 3·33B and all are described in more

detail in section 3.6.6. In the context of the model described here, the terms “VIP

effects” and “cAMP” will be used interchangeably since they are combined into a

single state variable.

3.3.1 Short Timescale VIP Effects Create Robust Spindles

Using the isolated thalamus model, the impact of short timescale VIP effects on the

order of seconds was investigated. Specifically, a 1 second time constant was used

since spindles often last only a couple seconds (Contreras et al., 1997). This short

timescale also maximized the separation from other time constants (see methods sec-

tion 3.6.1). Simulations revealed that intrathalamic VIP represents a new biological

mechanism for spindle generation (Figure 3·12), although it is mathematically anal-

ogous to the canonical calcium spindle mechanism (introduced in section 3.2.7 and
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further described in the next section).

Comparison of VIP versus Calcium Spindle Mechanisms

The VIP and calcium mechanisms share many similarities. At a hyperpolarized

membrane potential, continuous bursting starts spontaneously once the pacemaker H-

current depolarizes the membrane potential into the window of T-current activation—

T-current creates a depolarized plateau that triggers bursts of spikes (see Figure 3·9).

Both mechanisms involve H-current augmentation, causing depolarization which in-

activates T-current, reducing the depolarized plateau, and causing a period of silence

characteristic of the inter-spindle interval.

The calcium mechanism involves the activated T-type calcium current increasing

the calcium concentration at the inner membrane. Calcium binds a protein (assumed

to be CaMKII), and as a complex allosterically binds to open HCN channels to

create a locked-open state. In the model, the HCN conductance is further increased

by the locked-open state versus the open state by a multiplicative factor (caCoop

parameter). This soon depolarizes the cell outside of the T-current window, leading

to the T-current inactivation. Calcium concentration decays, which frees calcium

from HCN channels, permitting HCN channels to close. This hyperpolarizes the cell,

enabling de-inactivation of T-current and a new round of bursting.

The VIP mechanism differs from the calcium one primarily in the biological de-

scription, but also in terms of implementation. With each TC burst, TRN also bursts,

releasing VIP at the TC cell synapse. VIP increases the cAMP concentration via

adenylate cyclase activation. cAMP binds to HCN channels at the cyclic nucleotide

binding domain (CNBD), augmenting H-current. This causes depolarization which

inactivates T-current and leads to silence of TC and TRN cells. TRN silence permits

VIP, cAMP, and H-current decay leading to membrane hyperpolarization before a

new bursting cycle.
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In the model iH equation, the cAMP binding to HCN channels is not a separate

state as with calcium, but instead is represented more parsimoniously by an additive

term to the conductance (campMult1 ∗ campModNorm1 term), since this avoids

specifying two kinetic terms (analogous to k3 and k4 ) with unknown values (see

appendix A).

Both mechanisms involve H-current augmentation to terminate spindles. Spindle

termination is followed by an after-depolarization (ADP) silent period of slow repo-

larization as the H-current conductance decreases toward baseline due to inactivity.

Once the membrane polarizes sufficiently, the T-current is de-inactivated.

Robustness of VIP versus Calcium Spindles

How does the robustness of the new VIP mechanism (Figure 3·13A) compare to the

calcium-mediated spindles (Figure 3·13B) of the canonical TC model (Destexhe et al.,

1996)?

To answer this question, spindle generation via H-current modulation by VIP,

calcium, and their combination was tested over a 2-dimensional parameter space.

Specifically, the two key parameters examined are the potassium leak conductance

(gLeak; modified by neuromodulators extrinsic to thalamus), and the HCN conduc-

tance (gH; modified by both extrinsic and intrinsic neuromodulators like VIP). The

leak is important for changing the membrane potential, which H- and T-current

activation depends on. The H-current conductance affects not just the membrane

potential, but also the TC cell depolarization rate which can affect the inter-burst

interval and thus the frequency of bursts. These two currents are recognized in the

literature as being efficacious in switching between different firing modes, including

spindling (Soplata et al., 2017; Destexhe et al., 1996; Destexhe et al., 1993a).

Results are depicted in Figure 3·14. The VIP mechanism makes spindles much

more robust in parameter space than did the calcium one (Figure 3·14, blue versus red



70

Figure 3·12: VIP HCN-modulation represents a new biological spindle mechanism. VIP augmen-
tation of H-current terminates continuous bursting via depolarization block of the T-current, leading
to the formation of a spindle. Pictured here is a 10 sec window around a 3 sec spindle (4–7 sec).
Notice the after depolarization (ADP) following the termination of bursting in the top voltage panel.
The third panel shows the H-current conductance (gH), which is modulated by VIP activity, shown
in the bottom panel.
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Figure 3·13: Two Types of H-Current Modulation in the TC neuron model. (A) VIP modulates
H-current via cAMP. The model uses 1 to 3 cAMP pools with differing kinetics. (B) Calcium
modulates H-current via a calcium-bound state.

region). Changing (increasing or decreasing) the magnitude of calcium-mediated H-

current augmentation (caCoop parameter) in the locked-open state (OpenCaLocked

state variable) only decreased the spindle robustness further. The addition of the

calcium mechanism to the VIP one leads to a slight decrease in spindle robustness

over that of VIP alone (Figure 3·14, green region versus blue). This is likely because

the excess excitation from combining mechanisms predisposes the TC cells to tonic

relay mode, preventing sufficient hyperpolarization to de-inactivate T-current needed

for spindle bursts. In summary, VIP not only represents a new biological mechanism

of spindle generation, but forms spindles that are much more robust to heterogeneity

in key biophysical parameters.

Propagating Regular-Interval Spindles

Since a core aspect of spindles is their traveling wave propagation across thalamus

and cortex (Golomb et al., 1996; Destexhe et al., 1996), spindle wave propagation

with the new VIP mechanism was examined in the thalamus model with sparse 20%

nearest-neighbor connections (instead of all-to-all connectivity). Since spatial wave

propagation depends on synapses, two synaptic conductances were varied: TC →

TRN gAMPA and TRN→ TRN gGABA-A. These conductances were chosen because
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Figure 3·14: VIP HCN-modulation (blue) creates the most robust spindles in gLeak–gH parameter
space. This is in comparison to calcium-mediated spindles (red) and the combination of both (green).
The exact borders of each region are approximate based on the sparseness of simulations covering
the parameter space. Spindles were identified via visual inspection of the simulation voltage traces.
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they strongly impacted synchrony in the sparse randomly-connected model, discussed

later in section 3.3.3. The addition of 0-mean Gaussian current noise was also tested,

since it was expected to impair the traveling waves.

Thus, the presence of spindle waves was tested over a two-dimensional grid of

different values for the synaptic strengths of TC → TRN gAMPA and TRN → TRN

gGABA-A, both with and without noise (Figure 3·15A). Traveling waves were iden-

tified as those that moved smoothly around the circuit with a regular interval for at

least a few cycles, as shown in Figure 3·15B and C. These clean traveling waves were

identified throughout the parameter space, with some positions changing after the

addition of low noise, but without a clear trend.

With greater noise, none of the simulations showed long-lasting spontaneous trav-

eling waves with regular-intervals. A couple simulations did show the start of a

regular-interval wave, but these would terminate after 1 cycle. A few simulations

revealed noisy wave propagation, but these too did not last more than a cycle.

Notably, there was a sharp increase in spatial wave frequency with higher TRN

→ TRN gGABA-A values (Figure 3·15B1 vs. B2). In general, higher TRN → TRN

gGABA-A was associated with fewer spikes per TRN burst and fewer TRN cells

bursting in the model. This leads to less and shorter TC inhibition, so more TC

cells can burst, and do so more rapidly after the hyperpolarization. This explains the

faster wave propagation with higher TRN → TRN gGABA-A.

3.3.2 Medium Timescale VIP Leads to NREM3 → NREM2 Sleep Cycle

Transition

Medium timescale VIP effects on the order of an hour biologically were determined

using the isolated thalamic model with 20 cells of each population type (Figure 3·16).

Following the time compression technique used here (see methods section 3.6.1), in

simulation time the “hour” timescale was modeled using a 10 second timescale.
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Figure 3·15: Spindle Waves Propagate in a Sparsely-Connected Thalamic Network. (A) Simula-
tions of regular interval traveling waves are identified for different values of TC–TRN gAMPA and
TRN–TRN gGABA-A. Blue dots are traveling waves without 0-mean current noise, while orange
dots are traveling waves at low (0.5 standard deviation) 0-mean Gaussian-distributed noise. There
is some overlap between the no and low noise conditions, but low noise mostly led to different sim-
ulations with traveling waves. Overall, low noise reduced the number of simulations with waves.
Higher noise (1.5 standard deviations) prevented all regular-interval waves. (B) The wave propaga-
tion speed depended on the level of TRN–TRN gGABA-A. Simulations with TRN–TRN gGABA-A
≤.13 (B1) had much slower velocity than the waves from the gGABA-A range in panel A (B2). The
rasters show a transition from continuous delta bursting to traveling spindle waves due to increasing
gH from a slower VIP timescale, discussed in section 3.3.2.
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Figure 3·16: Single NREM3 → NREM2 transition in the 40 cell thalamic model. (A) TC cell
activity. Top panel shows the voltage trace for the first 10 TC cells. Middle panel shows the spike
rastergram for all 20 TC cells. Bottom panel shows the time-frequency spectrogram of the average
TC population voltage trace. (B) TRN cell activity. Top panel shows the voltage trace for the first
10 TRN cells. Bottom panel shows the spike rastergram for all 20 TRN cells. Top NREM bar: the
red portion shows the timespan of NREM3 continuous bursting, while the blue portion identifies the
period of NREM2 spindling. The NREM3→NREM2 transition occurs around 25 seconds.
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NREM3 Continuous Bursting

To model larger subpopulations of synchronized cells and facilitate visualization,

medium timescale VIP effects were further investigated using a model with 2 cells of

each type (i.e., each cell represents a synchronized cell population). As with the 40

cell model, the 4 cell model was initiated with parameters corresponding to the be-

ginning of a deep non-rapid eye movement stage 3 (NREM3) sleep, during which time

the whole model was bursting at a slow δ frequency (≈1 Hz) in synchrony (Figure

3·17). As TRN fired bursts of spikes, VIP synaptic activity onto TC cells augmented

the H-current. This corresponded to an increase in frequency for the entire circuit to

a maximum of ≈6 Hz over 25 seconds of simulation time, corresponding to about an

hour of biological time.

There is a switch to anti-phase TC activity midway through the NREM3 period,

doubling the multi-unit activity (MUA) to an α (≈9 Hz), while the single-unit activity

(SUA) stays roughly the same (Figure 3·17). This is true for both the 4 and 20 cell

models, although it is most easily seen in the 4 cell model voltage traces. In contrast,

TRN stays synchronized throughout. This synchrony switch is discussed more in the

synchrony section 3.3.3 below. Unlike with the isolated thalamus model, simulations

including cortex maintained TC synchrony throughout the NREM3 period (Figure

3·21B) (see Corticothalamic Synaptic Strength Modulates Global Synchrony section).

A synchronizing effect of cortex for thalamic oscillations has been reported previously

(Destexhe et al., 1998), although at a broader scope in terms of spindle groups instead

of the individual bursts considered here.

NREM2 Spindles

Eventually, the increasingly augmented H-current depolarizes the TC cells out of the

NREM3 continuous bursting mode into the burst-tonic threshold region. At this time,
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Figure 3·17: Population frequency doubles to anti-phase activity during NREM3 in absence of
synchronizing cortical E↔E connections in 4 cell thalamic model. The switch occurs at 15 seconds.
(A) TC cell voltage trace. (B) TC cell raster. (C) TRN voltage trace. (D) TRN raster. (E)
Spectrogram for TC averaged population activity. (F) Average spectrogram for individual TC cells.
Notice the increase in MUA spectrogram in E at around 16 seconds not reflected in the SUA power in
F, indicating that the doubling of population frequency is due to a switch to anti-synchrony without
a change in single-unit frequency.
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the cells cease firing in the absence of external input sources.

To simulate in vivo conditions with inputs arriving from brainstem and other non-

modeled regions, random Poisson synaptic noise was added to TC cells. Due to the

lack of an informed noise model, Poisson noise was used since it is the most agnostic

for discrete events.

With this noise added, the silent period is brief since the synaptic noise triggers

bursts in a TC cell, which recruits the entire network to engage in a short spindle

of a few seconds (Figure 3·19B). As with previous modeling results (Destexhe et al.,

1996), the population bursting activity is anti-phase at α frequency, consistent with

the empirical observation that TC cells typically fire every 2–3 TRN bursts in ferret

lateral geniculate nucleus (LGN) slices (Figure 3·18)(Bal et al., 1995). Furthermore,

the interspindle interval is random due to spindles being triggered by Poisson noise.

In the absence of noise to the TC cells, VIP acting on the hour timescale maintains

the cells in a silent region between excitation-driven spontaneous tonic spiking and

burst mode (Figure 3·19A). If the noise is delivered to the TRN neurons instead of TC

cells, the TRN cells synchronize the TC cells and cause brief episodes of δ frequency

bursts (not shown) (see the synchrony results section 3.3.3 next and the discussion

section 3.4.2 for more explanation of this difference).

Unlike the all-to-all connected thalamic model which starts NREM3 with TC

synchrony, the sparse 20% nearest-neighbor connected model starts NREM3 with

TC anti-synchronous thalamic bursting in the absence of cortex (same finding as in

Figure 3·21A for low E→TC gAMPA corticothalamic connectivity). Despite the TC

synchrony difference, the population frequency starts in the δ range for both. Previous

modeling work only reported the NREM3 continuous bursting condition with a 4 cell

all-to-all network, not a sparse network (Destexhe et al., 1996).
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Figure 3·18: Transition from synchronized NREM3 delta bursting (blue background) to anti-phase
NREM2 alpha spindling (green background). Top panel is the voltage trace for the 2 TC neurons,
while the bottom panel is the multi-unit spectrogram. Notice the shift from 6 Hz bursting to 11 Hz
alpha. Note: this particular simulation featured a longer initial spindle that continues past the right
edge of the figure before terminating.

Mixed Local and Global NREM2 Spindles

Changing the 40 cell thalamic model’s synaptic connectivity from all-to-all to a sparser

20% nearest-neighbor topology leads to traveling spindle waves. As seen in previous

experimental (Kim et al., 1995) and modeling (Destexhe et al., 1998) studies, some

waves stay local to the region of input, while most propagate globally to all TC cells

(Figure 3·20), as well as to all E cells (Figure 3·21A). While Poisson inputs to 1

TC cell or 2 TRN cells yielded global spindles, inputs to only 1 TRN cell did not.

This imbalance is likely because a single TC cell can recruit multiple TRN cells.

The occurrence of both mixed local and global spindles provides validation of this

new model. These local spindles support the notion of thalamic involvement in local

cortical sleep (described in the Introduction).
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Figure 3·19: Poisson noise to TC cells triggers spindles. (A) Without poisson noise, there are no
NREM2 spindles, just depolarized silence. (B) With noise, the NREM2 period has alpha spindles
(green region).
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Figure 3·20: Mixed local and global NREM2 spindles in a sparsely connected 40 cell thalamic
model. Global traveling spindles are found between 25 and 30 seconds. Three local spindles occurred
around 35 seconds.
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Corticothalamic Synaptic Strength Modulates Global Synchrony

Previous modeling studies have demonstrated a synchronizing role of cortex for spin-

dle groups in different thalamic cells (Destexhe et al., 1998). To explore thalamic

interactions with cortex in a sparse setting, a 40 cell cortical model with the same

sparseness was added to the 40 cell thalamic model of the previous section to yield

an 80 cell sparse 20% nearest-neighbor-connected corticothalamic model.

I hypothesized that the addition of cortex would synchronize individual bursts

across cells. Indeed, the strength of the synapse from cortex E cells to thalamic cells

controlled the degree of synchrony across all populations, as depicted in Figure 3·21.

Lower E→TC gAMPA led to sparse anti-synchronous firing within each population at

NREM3 (i.e., the lower VIP/gH levels) found at the start of the simulations. Higher

E→TC gAMPA recruited and synchronized all the thalamic cells, and most of the

cortical cells. E→TRN gAMPA had similar effects. This synchrony with higher

synaptic values was present for both NREM3 and NREM2 spindles.

Since there are no TC↔TC synapses in thalamus, these excitatory neurons are

predisposed to anti-synchrony. The synchrony from including cortex is due to the

cortical E↔E connections, which effectively adds an excitatory connection between

TC cells.

Synchronous spindle bursts are characteristic of interlaminar thalamic nuclei (Des-

texhe and Sejnowski, 2001). Thus, the higher E→TC gAMPA values are desirable

for modeling the arousal-related thalamic regions of interest here.

Finally, while traveling spindle waves occurred for most E→TC gAMPA values

tested, extremely large values led to synchrony of all cells, even during spindles (not

shown).
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Figure 3·21: Corticothalamic synaptic strength modulates global synchrony in a sparsely connected
80 cell corticothalamic model. Each cell with synapses connected to it’s 5 nearest neighbors (20%
connectivity per cell). (A) Low E→TC gAMPA = 0.002. TC cells remain anti-synchronous during
NREM3 continuous bursting before switching to synchronous NREM2 traveling spindle waves. (B)
Higher E→TC gAMPA = 0.02 recruited and synchronized all the thalamic cells, and most of the
cortical cells, even during NREM3 at the beginning of the simulation.
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3.3.3 Synchrony Changes During H-Current Modulation

Surprisingly, many parameter combinations yielded changes in synchrony within TC

and TRN populations during H-current augmentation from medium-timescale VIP

effects. Since these synchrony changes have not been explored extensively in the

literature, the mechanisms of synchrony change were analyzed using phase response

curve theory and simulations over multiple parameters.

Examining Synchrony using Phase Response Curves

The switch from synchrony to anti-synchrony in the isolated thalamic model was

investigated further using phase response curves (PRCs). The PRC is a useful tool to

assess synchrony mechanisms, and consists of determining the change in the interspike

or interburst interval after inputs are delivered at various phases within the interval

(Borgers, 2017).

Instantaneous impulse input PRCs for TC cells lacking noise were calculated for

different levels of gH, representing the increasing VIP effect over time. At higher gH

levels corresponding to relay mode, TC cells have a type 1 PRC (all positive or neg-

ative valued) for both positive and negative inputs, which indicates a predisposition

toward synchrony (Figure 3·22)(Borgers, 2017).

Unlike relay mode, TC cells at lower gH levels corresponding to burst mode have a

type 2 (positive and negative valued) PRC (Borgers, 2017), which was similar across

bursting gH levels (only the magnitude of peaks changed slightly). For excitatory

impulses, the positive slope when crossing the 0 phase shift (y-axis) at middle phases

(x-axis) suggests stable synchrony (Figure 3·23B), whereas the negative slope when

crossing 0 phase shift for inhibitory impulses suggests stable anti-synchrony (Figure

3·23A)(Borgers, 2017). Based on these results, one would expect short time constant

AMPA synapses from cortex to act to synchronize TC cells, while rapid GABA-A
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Figure 3·22: TC cells in relay mode have a type 1 (all positive or negative valued) phase response
curve (PRC) for instantaneous inputs suggesting stable synchrony. Positive inputs are in red while
negative impulses are in blue.

synapses from TRN are expected to encourage anti-synchrony. The slope magnitude

can also affect stability interpretations but was not further examined here.

PRCs for TC cells in burst mode at different gH levels were also calculated for

non-instantaneous inhibitory inputs with decay times ranging from 5 ms (GABA-A)

to 500 ms (GABA-B). These PRCs reveal a switch from type 2 stable anti-synchrony

for GABA-A to type 1 stable synchrony for GABA-B (Figure 3·24). Curves were

similar across the tested gH ranges.

Exploring Synchrony via Simulation of a Parameter Volume

Synchrony was also examined through simulations of the 4 cell thalamic model with-

out VIP. When initial TC cell voltages lay within ≈8 mV of one another, they tended

to synchronize; when TC cells started >≈8 mV from one another, they moved into

an anti-synchronous rhythm (Figure 3·25). Thus, empirically there is a small window

of stable synchrony, likely due to the interaction between synchronizing GABA-B and

anti-synchronizing GABA-A.

Indeed, simulations of the same 4 cell thalamic model with different levels of noise,
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Figure 3·23: TC burst mode phase response curve (PRC) for instantaneous inputs at different
H-Current conductances. (A) Type 2 PRC (positive and negative valued) for inhibition indicating
stable anti-synchrony. (B) Type 2 PRC for excitation suggesting stable synchrony.

Figure 3·24: TC burst mode phase response curves for synaptic inhibition with decay time con-
stants ranging from 5 ms (GABA-A) to 500 ms (GABA-B) reveal switch from type 2 to type 1.
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Figure 3·25: Rastergram reveals that TC cell synchrony in 4 cell model depends initial TC voltage
spread. (A) TC cells synchronize when initial voltages are equivalent; (B) TC cells become anti-
synchronous when initial voltages differ by 10 mV.

synaptic conductance, and starting voltage shifts reveal that both synchrony and anti-

synchrony can be stable. Increasing TC→TRN gAMPA, TRN→TRN gGABA-A, and

gH tended to promote anti-synchrony (Figure 3·26). Higher TRN→TRN gGABA-A

led to fewer spikes per burst, and hence less cooperative GABA-B release, shifting

the balance toward anti-synchronous GABA-A. Increasing TRN→TC GABA-A could

cause a tendency toward either synchrony or anti-synchrony, depending on the values

of the other parameters.

To summarize, TC cells in burst mode have a tendency toward anti-synchrony from

TRN GABA-A, and synchrony from TRN GABA-B and cortical AMPA. The relative

strength of each of these controls the type of synchrony. Including VIP effects in the

isolated thalamic model starting from anti-synchrony reveals a continuous increase in

frequency from δ to α, as expected. While it did not appear to affect the results, it

has been demonstrated that noise can lead to bifurcations that change the synchrony
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Figure 3·26: Anti-synchronous solutions for 4 cell thalamic model in gH and 3 synaptic conductance
parameter space. (A) is baseline TRN→TC gGABA-A while (B) is 2x gGABA-A. (1) is a view with
TC→TRN gAMPA in the x-axis position, while (2) is an alternative view with gGABA-A in the
x-axis position. Anti-synchronous solutions cluster at higher values for all 3 axes. Note the general
reduction in anti-synchronous points for 2x gGABA-A (i.e., B panels).
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conclusions that are based on the PRC (Ermentrout and Saunders, 2006).

These results suggest that the switch from synchrony to anti-synchrony discussed

in the NREM3 section above results in part from an increase in the effective GABA-A

strength as the TC cells depolarize away from the GABA-A reversal potential with

increasing VIP effect. In addition, given a fixed time lag for TRN firing after TC

firing and the shortening of the interburst interval with increasing depolarization,

the GABA-A inhibitory post-synaptic potentials (IPSPs) will arrive at later phases

closer to the maxima for phase advancement, which is maximally destabilizing of the

synchrony condition.

3.3.4 Long Timescale VIP Shapes Sleep Stage Architecture

To determine the effect of long timescale (≈8 hour) VIP effects on sleep stages using

the uncompressed biological hours timescale in model time (versus a compressed

seconds model timescale; see section 3.6.1), a simplified non-spiking thalamic model

based on the spiking thalamic model was implemented first (described in section

3.6.7). As can be seen in Figure 3·27, the TC cells in successive NREM phases become

progressively more depolarized. From the spiking model findings in section 3.3.2, this

corresponds to a shift toward higher NREM3 bursting frequencies and greater time

spent in NREM2 spindling (Figure 3·18). The trend of decreasing NREM3 : NREM2

was the desired feature that matches human hypnogram data (Scammell et al., 2017).

Next, all 3 timescales of VIP effects were added to the compressed-timescale spik-

ing thalamocortical model to examine VIP’s effects on sleep stage architecture during

a simulated full night’s sleep (described in section 3.6.3). The full night’s sleep was

comprised of five≈20 second-long NREM-REM sleep cycles, corresponding to five bio-

logical 90 minute sleep cycles (i.e., 7.5 hours sleep). The newly added third timescale

is the hours biological timescale corresponding to a 1 minute time constant in the

model.
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Figure 3·27: Human sleep architecture in a simplified non-spiking thalamic model with long
timescale VIP effects leads to decreasing NREM sleep depth between REM cycles. This model
demonstrates the timescales in the uncompressed true timescale, unlike the compressed timespan
spiking model. Red horizontal bars indicate REM periods.

Figure 3·28 depicts the sleep data for TC cells in the 8 cell thalamocortical model,

and reveals how each of the three cAMP timescales contributes to a feature in the

voltage trace (Figure 3·28A). The seconds cAMP biological timescale shown in Fig-

ure 3·28B leads to the NREM2 spindles. Figure 3·28C reports how cAMP acting

on the minutes biological timescale leads to NREM3→NREM2 transitions. Finally,

Figure 3·28D demonstrates how the steady rise of the slowest cAMP state variable

(hours biological timescale) creates the trend of decreasing ratio of NREM3 : NREM2

throughout the night, as found also in the simplified model (Figure 3·27). Within

TC cells, this trend results from steadily increasing the minimum membrane poten-

tial, predisposing TC cells to depolarized NREM2 spindling over the hyperpolarized

NREM3 bursting.

Statistics from 100 replications of the 80 cell full night’s sleep thalamocortical

model are shown in Figure 3·29. What differed between replications were the stochas-

tic elements of the model, specifically the current noise and Poisson TC synaptic
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Figure 3·28: Progressive shift to greater NREM2 : NREM3 over course of full night of sleep in
spiking model. (A) Voltage trace for 2 TC cells. The bottom portion of the panel reveals the sleep
stages, including NREM3 (red), NREM2 (blue), and REM (green). (B) Seconds timescale cAMP.
(C) Minutes biological timescale = 10 seconds model timescale cAMP. (D) Hours biological timescale
= 1 min model timescale cAMP.
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input that triggered spindles and affected REM3 lengths. Figure 3·29A shows the

proportion of time spent in each sleep stage compared to rough empirical values—the

proportion of model time spent in each sleep stage of 19%, 59%, and 22% approxi-

mates empirical values (Scammell et al., 2017) of 25%, 50%, and 25% of time spent

in NREM3, NREM2, and REM, respectively.

Figure 3·29B-D shows the model TC population spectral power for each sleep

stage averaged over the 100 replicates. The spectrum of figure 3·29B shows the 6

Hz δ frequency peak for NREM3. Figure 3·29C demonstrates how NREM2 lacks a

δ power peak below 5 Hz, and has power at both δ and α bands. The NREM2 δ

power is due to these simulations often being synchronized during spindles, leading

to a lower frequency, as discussed in 3.3.3 section. The REM β peak at 15 Hz in

Figure 3·29D results from the cortex having a beta frequency preference when driven

strongly, as in REM conditions.

3.3.5 Propofol Counteracts VIP’s Mechanisms

Since propofol anesthesia is believed to harness the innate sleep pathway in addition to

directly inhibiting the H-current responsible for VIP’s effects, the interaction between

propofol and the VIP mechanisms above was examined using the isolated thalamic

model.

Propofol’s three dominant actions on thalamus, pictured in Figure 3·30A, were

examined separately: (1) augmented TRN GABA-A conductance and decay time

constant (2x baseline) in Figure 3·30B; (2) decreased H-current conductance (20%

baseline) in Figure 3·30D; (3) indirectly increased potassium leak conductance (1.5x

baseline) via the brainstem neuromodulators histamine and acetylcholine in Figure

3·30C. The three cAMP timescales were all sped up to ensure that cAMP equilibrated

faster, permitting 30 second simulations (versus keeping the timescales slower and

having to simulate longer with the same end result).
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Figure 3·29: Statistics of thalamocortical model sleep stage architecture are similar to empirical
human values. A full night’s sleep of 5 NREM-REM cycles is simulated 100 times in the 80 cell
thalamocortical model with different instantiations of current and TC synaptic noise. (A) Proportion
of time spent in each sleep stage of 19%, 59%, and 22% compared to empirical values of 25%, 50%,
and 25% for NREM3, NREM2, and REM, respectively. Error bars show 2 standard errors of the
mean. (B) Mean average spectrum of TC cells for NREM3, NREM2, and REM, respectively. Shaded
error region represents 2 standard errors of the mean.
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All three propofol effects decreased excitation within thalamus sufficiently to pre-

vent VIP’s effects from switching thalamus from NREM3 continuous bursting to

NREM2 spindling, keeping the TC cells bursting in a slow/delta bursting regime.

Simulations also revealed that increasing any of the three propofol effects led to

decreasing burst frequency, which is expected from the greater inhibition and hyper-

polarization.

Figure 3·30: Propofol counteracts VIP mechanisms in 30 second simulations of the thalamic model.
(A) Propofol has 3 effects on thalamus: (1) augmentation of GABA-A conductance and its decay
time constant (2x baseline); (2) increased gH (20% baseline); (3) indirect increase of potassium leak
(1.5x baseline) via brainstem neuromodulators histamine and acetylcholine. (B-D) modeling each
of the three propofol effects on thalamus maintained continuous bursting at delta frequencies and
prevented transition to relay mode or spindle patterns. Importantly, these effects persisted once
VIP-mediated cAMP second messenger activity reached equilibrium (bottom panels of B-C).
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3.4 Discussion

The present work investigated the significance of intrathalamic vasoactive intestinal

peptide (VIP) neuromodulation in a computational model. This model was extended

from previous models (Destexhe et al., 1996; Destexhe et al., 1998) to include VIP neu-

romodulation at multiple timescales, each of which yielded different results. Shorter

timescales led to more robust spindles compared to past models. Longer timescales

shaped NREM3 to NREM2 transitions and the trend of decreasing ratio of NREM3

: NREM2 through a night’s sleep. The simulated effects of propofol counteracted

these VIP mechanisms, keeping thalamus in a slowly bursting state characteristic

of anesthesia. Thus, the main results are that (1) intrathalamic VIP controls sleep

stage architecture, and (2) neutralization of intrathalamic VIP’s excitatory effects

contributes to the inhibition by propofol anesthesia.

3.4.1 Spindles from Short Timescale VIP Effects

As shown in Figure 3·14, simulations of short timescale VIP in the isolated thalamic

model revealed a novel mechanism for spindle production. These spindles were more

robust than those from previous models, meaning they could be elicited over a larger

region of the relevant parameter space, i.e. maximal gH and gLeak. Interestingly,

the range of spindles increased even more when the VIP mechanism was isolated by

removing the calcium one. Furthermore, modifying the calcium modulation from the

starting value only decreased the robustness of spindles. In contrast to the current

view, these results suggest that fast-timescale neuromodulation from TRN may be

the primary mechanism of spindle termination in TC cells. If true, inhibiting VIP’s

actions should reduce or fully prevent spindles.

The H-current augmentation mechanism responsible for spindles is similar for

VIP- and calcium-mediated spindles (Figures 3·10, 3·14B). However, calcium entry
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is related to T-current activation during TC bursting while VIP-activity results from

TRN bursting. Incidentally, TRN bursts tend to have tens of spikes while TC bursts

have only a few spikes. A TRN source of spindle bursting is more consistent with

the literature result that spindle length correlates more strongly with TRN than TC

activity (Bartho et al., 2014).

Minimal Biophysical Spindle Mechanism

Biophysically, any source that depolarizes the cell during a period of bursting can

terminate the bursts, since the essential T-current would be inactivated by depolar-

ization. T-current inactivation removes its depolarized plateau on which bursts occur.

If the depolarization mechanism were to terminate bursts only after a few seconds

of bursting and then last at least a few seconds after termination, that could shape

spindle formation. This is in contrast to short depolarizations less than a second that

would cause brief segments of burst skipping, very unlike spindles.

Spindle Mechanisms In The Literature

Both experimental and computational studies have examined the mechanisms of spin-

dles for decades. The consensus is that TRN is fundamental to spindle generation.

Early studies demonstrated that the isolated TRN can produce recurring segments

of α oscillations (Steriade et al., 1987), and that spindles are abolished once TC cells

are disconnected from TRN (Steriade et al., 1985).

From the mathematical literature (Kopell and Ermentrout, 1986; Izhikevich, 2007;

Ermentrout and Terman, 2010), the switch from continuous bursting to spindles

requires a mechanism to terminate the bursts and force a temporary period of silence

before bursting reinitiates. Once the thalamus is sufficiently hyperpolarized, the H/T-

current pacemaker serves as the initiator of bursting (section 3.2.6). That spindle

termination results from H-current augmentation was verified by reducing H-current
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and demonstrating conversion of spindles to continuous bursting (Luthi et al., 1998),

as predicted by computational models (Destexhe et al., 1996). However, these models

made the simplification of modulating H-current by calcium, as discussed in section

3.2.7. The ultimate mediator of H-current augmentation was not determined.

More recently, optogenetic stimulation of mouse TRN was shown to generate cor-

tical spindles (Halassa et al., 2011). Cortex can also initiate spindles, but this is

likely though cortical stimulation of TRN (Bonjean et al., 2011). A rat study record-

ing TC and TRN cells during spontaneous spindles concluded that spindle length

was more correlated with TRN than TC activity; although in a separate experiment,

the magnitude of TRN optogenetic activation did not correlate with spindle length,

suggesting a more complicated relationship between spindles and each thalamic cell

type (Bartho et al., 2014).

This work is the first to identify TRN-mediated intrathalamic neuromodulation

by VIP as a source of bursting termination, which is consistent with the many studies

highlighting the important role of TRN in shaping spindle activity.

3.4.2 NREM3→NREM2 Sleep Cycle Transitions from Medium Timescale

VIP Effects

VIP effects on the order of a biological hour-timescale led to transitions from NREM3

to NREM2. Potential biological mechanisms to account for this slow effect are recep-

tor trafficking to the membrane and translation of new HCN channels during minutes

of repeated VIP synaptic activity. A prediction from this result is that blocking VIP

effects should prevent or delay transition to NREM2.

Spindles are Triggered by Synaptic Noise

The initiation for NREM2 spindles in the main sleep model differed from both the

initial spindle model discussed above in section 3.4.1 as well as previous models (Des-
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texhe et al., 1996) on which it was based. Specifically, the first spindle model had

spindles initiate spontaneously—H-current modulation decayed, permitting T-current

de-inactivation, which was followed by H-current depolarization which activated T-

current. In the main sleep model, instead of waiting for spontaneous emergence of

spindles, spindles were triggered by random Poisson synaptic noise.

Differing Synchrony is Responsible Delta versus Alpha Activity in NREM2

Furthermore, while Poisson synaptic noise to TC cells led to an anti-synchronous

α spindles, synaptic noise to TRN cells led to brief bouts of synchronized δ bursts

(section 3.3.2). Consequently, the ratio of the noise to TC versus TRN cells determines

the prevalence of α spindles versus δ bursts, respectively. This follows from the

Synchrony section results in section 3.3.2. Specifically, Poisson noise to a subset of

TC cells initiates their firing, which leads to TRN bursting back onto the TC cells.

The first TC subgroup were aligned by the input while the remainder are aligned in

silence when the TRN cells fire, encouraging anti-synchrony between the two groups.

In contrast, when the TRN cells are first activated by noise, all the TC cells are at

a similar state of silence awaiting input, encouraging synchrony as the LTS burst

together.

This NREM2 model fits experimental data more closely since human NREM2 is

characterized by spindles co-existing with a few short delta bursts (Nir et al., 2011).

Moreover, the model realistically yielded different spindle lengths and interspindle

intervals (Contreras et al., 1997).

3.4.3 TC Cell Synchrony

PRCs for TC cells were calculated to better understand their synchronization. From

the PRCs, GABA-A and GABA-B inputs to TC cells from TRN are expected to pro-

mote synchrony and anti-synchrony, respectively. Subsequent simulations supported
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this prediction for GABA-B. However, GABA-A could promote either synchrony or

anti-synchrony, depending on the other parameters. PRC theory has typically been

used in simpler circuits than (Borgers, 2017). This explains why the results from

the PRCs did not always match up with the simulation results. The wide range of

synchrony behaviors seen here motivates the need for more theoretical research in

systems of coupled rebound oscillators.

Increasing TRN–TRN gGABA-A consistently led to anti-synchrony. This is con-

sistent with previous theoretical investigations which showed that rebound oscilla-

tions in mutually-coupled inhibitory neurons could lead to anti-synchrony (Wang and

Rinzel, 1992; Skinner et al., 1994).

One question is why increasing gH can switch from synchrony to anti-synchrony,

as in Figure 3·26. As gH increases, the bursting frequency increases. Since the

phase response curves stayed about the same with respect to phase for different gH

values, this corresponds to a shorter time to reach the global maxima for phase

advancement. Thus, if the time lag to TRN GABA-A IPSPs was about constant, one

would expect faster burst frequencies corresponding to higher gH to be more prone

to anti-synchrony, as seen in Figure 3·26.

3.4.4 Post-REM Sleep Stage

In humans, REM is followed by a NREM2→NREM3→NREM2 cycle. This initial

post-REM NREM2 stage was replicated in the simple non-spiking model (Figure 3·27)

by adding post-REM decaying excitation that could result from brainstem acetyl-

choline (methods section 3.6.7). This is plausible since REM is associated with high

acetylcholine (Scammell et al., 2017), whose excitatory effects (especially within TC

cells) could take time to decay, causing the slow transition to deeper NREM3 after

REM.

However, the full spiking model lacks this post-REM excitation since I hypothesize
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that it is external to the thalamocortical circuit under investigation here and does

not affect this work’s main results. Furthermore, the minutes biological cAMP state

variable is reset to 0 after REM periods, representing its decline during REM when

TRN is not bursting and hence not releasing much VIP. The reset was necessary due

to an artifact of the 8 cell model: since the model only had 2 cells of each type, the

effective population synchrony remained relatively high during REM (i.e., even in full

anti-synchrony, 1 cell firing is equivalent to 50% population synchrony), which led to

continued VIP accumulation. In a larger model, REM would be associated with far

less synchrony, so VIP would decline during REM and the reset would be unneces-

sary. Thus, Figure 3·28C reveals sharp declines in the minutes cAMP timescale state

variable after each REM period. In a larger model, this decline would start at the

beginning of REM.

Because the spiking model lacks the post-REM excitation, NREM3 follows REM

without an intermediate NREM2 period, as seen in Figure 3·28. Future extensions to

this model should incorporate a source of post-REM excitation to more realistically

model the REM→NREM2→NREM3→NREM2→REM cycle.

3.4.5 Sleep Stage Architecture Modulation by Long Timescale VIP Ef-

fects

Intrathalamic VIP slow-timescale effects via cAMP can explain the trend of decreasing

depth of NREM sleep between REM cycles during natural sleep, i.e. decreasing ratio

of NREM3 : NREM2 sleep. This requires biological timescales on the order of hours,

which is entirely feasible considering that cAMP-modifying neuromodulators in other

systems maintain this timescale (Blum et al., 2014). Moreover, VIP-mediated effects

in other nuclei last up to a week, suggesting involvement of nuclear effects such as

increased HCN mRNA transcription and protein translation (Bourgin et al., 1997).

The model predicts that NREM3 thalamic bursting frequencies would progres-



101

sively increase after each NREM-REM cycle. Seemingly contradicting this prediction,

a human EEG sleep study reporting spectrum data found that frequencies below 2 Hz

decreased in power and shifted to lower frequencies over 4 successive NREM periods

(Achermann and Borbély, 1997). However, since cortex has a slow wave mechanism

separate from thalamus (Neske, 2015), the progressive increase in thalamic NREM3

bursting frequency with each NREM-REM cycle may be masked in common EEG

analyses by cortex’s internally driven slow pacemaker. Supporting the model predic-

tions was the finding that the EEG spectrum peaks at ≈7 and ≈14 Hz (the latter may

be a harmonic) increased slightly (up to 2 Hz) between NREM-REM cycles. This is

consistent with the model if the thalamic bursting frequency started at 7 Hz.

In Vivo Studies

There are several relevant in vivo studies that involved sleep architecture modulation,

specifically that thalamus plays a role in transitions between NREM and REM sleep.

One used optogenetics to stimulate mouse TRN with a spindle-like α frequency;

NREM-REM transitions increased, although average durations of those states did not

change from baseline (Kim et al., 2012). Similarly, injecting PACAP (a VIP-analog)

intracerebrally in rats led to increased NREM-REM transitions without changing

the durations of these states compared to baseline (Fang et al., 1995). That TRN

stimulation and VIP-analog infusion yielded the same result is consistent with the

theory introduced here that TRN-VIP can control sleep architecture.

Although the NREM-REM transition was not modeled here as a direct VIP effect,

VIP’s actions in the model replicates the experimental observation that the transi-

tion from NREM to REM sleep (and wakefulness) correlates with continuously rising

depolarization of TC and TRN neurons (Hirsch et al., 1983). Thus, VIP causes an

effect in the model that correlates with NREM-REM transitions, consistent with the

intriguing hypothesis (not explored here) that intrathalamic VIP can trigger a NREM-
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REM transition. Notably, this novel idea is not mutually exclusive of the dominant

theory that NREM-REM transitions are controlled by ascending neuromodulatory

centers, like the brainstem and forebrain (Weber and Dan, 2016), since these struc-

tures strongly influence thalamus. It is also possible that there is dual-control of sleep

stage transitions.

Considering the case that NREM-REM transitions are controlled exclusively by

sources extrinsic to thalamus, how would intrathalamic VIP increase NREM-REM

transitions? One explanation follows indirectly from VIP’s pressure to keep thalamus

depolarized closer to NREM2, since less external excitation would be required to

transition thalamus to a depolarized state like REM. This hypothesis assumes that a

depolarizing state transition in thalamus is required for REM, which is consistent with

the evidence supporting thalamus’ key role in arousal (discussed in section 3.2.11). If

intrathalamic VIP’s actions were blocked, the model predicts that it would be more

difficult to achieve sufficient excitation to bring thalamus into REM, which would

lead to longer NREM periods and altered REM electrophysiology.

A limitation of the in vivo experimental studies discussed in this section is that

rodent sleep architecture is very different from humans, e.g. it is far more fragmented

throughout a day (Genzel et al., 2014). Furthermore, rodent studies do not typically

differentiate between NREM2 and 3.

Adenosine

Another candidate molecule for the continuously rising depolarization is adenosine

(A1). Adenosine has the opposite effect on thalamic H-current from VIP (i.e, in-

hibitory), and is thought to act by decreasing cAMP levels (McCormick, 1992). In-

deed, taking the adenosine receptor antagonist caffeine at bedtime increases human

spindle power and decreases slow-wave power (Landolt et al., 1995), which is expected

from H-current disinhibition; incidentally, this is consistent with the general idea that
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H-current augmentation biases sleep toward NREM2. In addition, adenosine levels

decline throughout a night’s sleep (Porkka-Heiskanen et al., 2000), suggesting that

adenosine’s inhibition of thalamus would decline, leading to net TC depolarization

during sleep. An alternative mechanism for indirect control of thalamus derives from

the finding that adenosine reduced thalamocortical synaptic excitation of cortical

neurons presynaptically, suggesting a role in reducing cortical excitation directly and

thalamus indirectly (Fontanez and Porter, 2006).

There is also evidence against a direct role for adenosine in progressive thalamic

depolarization. A study that increased adenosine levels in cat thalamus via infusion

of the adenosine transport inhibitor NBTI found no changes in NREM sleep relative

to wakefulness, as well as no change in the δ spectral power; however, augmenting

the cholinergic basal forebrain adenosine did lead to increased NREM sleep (Porkka-

Heiskanen et al., 1997). Furthermore, sleep deprivation led to increased adenosine

levels in basal forebrain and cortex but not thalamus (Porkka-Heiskanen et al., 2000);

sleep deprivation is known to cause longer sleep periods, especially NREM3 (Huber

et al., 2000).

Together, these results support an indirect role for adenosine in changing thalamic

H-current, probably through basal forebrain cholinergic modulation of thalamus. Its

direct role in thalamus is possibly an auto-regulatory one—high neural activity builds

up adenosine from ATP use (since adenosine is a degradation product of used ATP),

leading to negative feedback on activity.

3.4.6 Other Studies of Sleep Architecture Control

A variety of different methods have revealed the presence of numerous centers that

can affect the initiation, maintenance, and termination of awake, NREM, and REM

arousal states (Weber and Dan, 2016). While the period of ultradian sleep oscilla-

tions generally correlates with brain size (Weber and Dan, 2016), the mechanisms
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determining these durations remain unknown. A recent review suggested that the

mutual inhibition between NREM- and REM-active neurons may create an oscillator

responsible for the ultradian period (Weber and Dan, 2016). While coupled inhibitory

oscillators are capable of producing synchronized and robust rhythms (Whittington

et al., 2000), it is not obvious how these antagonistic neural circuits create such long

timescales.

It is possible that brainstem centers and intrathalamic neuromodulation interact

to sculpt sleep architecture. For example, intrathalamic neuromodulation may serve

the role of depolarizing thalamus into a relay mode that is more receptive of brainstem

control for switching from NREM to REM or wakefulness.

3.4.7 Anesthetics

Finally, propofol anesthesia both directly and indirectly counteracts VIP modulation,

maintaining thalamus in a sustained burst mode unsupportive of consciousness (Alkire

et al., 2000).

Propofol Alpha Oscillation

A previous computational model (Ching et al., 2010) suggested that the anesthetic α

frequency depends on a thalamic resonance to the α band induced by the propofol-

mediated prolongation of the GABA-A decay time-constant; meanwhile, strong spec-

tral power is due to enhanced TRN-mediated rebound excitation in TC cells because

of augmented GABA-A conductance, causing TC synchronization. Importantly, the

paper noted that the model under high-dose propofol is actually in the spindling

regime, whose typical waxing-and-waning pattern is masked due to cortical excita-

tion. One key difference between the spindle α in the Ching model and the current

model (as well as previous models on which the Ching model was based (Destexhe

et al., 1996)) is that the Ching model TC cells are synchronized when engaged in the
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propofol α, discussed below.

Here, an alternative propofol α mechanism is proposed. α frequencies in this

model require reduced cortical drive to the thalamus, which occurs under propofol

due to augmented GABA-A conductance, as well as reduced brainstem inputs in vivo.

The loss of cortical excitation prevents synchronization of thalamus, permitting it to

enter anti-phase bursting at multi-unit α, single-unit δ.

Synchronous Propofol Alpha in Previous Models

Section 3.3.3 explained how synchrony is associated with the continuous δ bursts

while anti-synchrony characterizes the α spindles in this work’s thalamic model. An

early computational study reported that TC cells with 10 Hz α GABA-A synaptic

inputs could entrain to half the frequency at 5 Hz δ with lower GABA-A conduc-

tances (Destexhe et al., 1996); however, entrainment at α was possible by increasing

the GABA-A conductance. Since propofol increases the TRN→TC GABA-A con-

ductance, it makes sense that previous thalamic models of the propofol anesthetic

state describe a continuous synchronized α oscillation in TC cells (Ching et al., 2010;

Soplata et al., 2017).

In those studies, propofol was modeled as an increase in the GABA-A conductance

and decay time constant. The latter effect should not cause stabilization according

to the PRC results in Figure 3·24 showing that a slightly longer decay time constant

should still favor anti-synchrony; although the change in decay time was reported as

being important for the cortical α (Ching et al., 2010). Likewise, the larger GABA-A

conductance would be expected to also favor anti-synchrony as revealed by simulations

of varying degrees of noise and gGABAa. However, a strong excitatory cortical drive

would synchronize the TC cells, as revealed by the type 1 PRC for excitation in

Figure 3·23. In addition, Soplata et. al’s isolated thalamus only presented continuous

propofol α with a slight increase in tonic applied current—it is possible that this
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changed the PRC from type 2 to type 1, permitting a stable synchrony.

Dexmedetomidine

Dexmedetomidine is an α2-adrenergic receptor agonist that produces a neural state

similar to a constant NREM2 with few bursts and ample spindles, but not REM tran-

sitions (Huupponen et al., 2008). Dexmedetomidine is a weaker agent not typically

used alone in the surgical or critical care settings since patients tend to be too arous-

able. The α2-adrenergic inhibition is thought to harness the natural sleep pathways

in brainstem (Brown et al., 2010), which helps explain its weaker effect. Assuming

that dexmedetomidine’s predominant effect is in brainstem, it would withdraw neuro-

modulator activity from thalamus, which would bring thalamus into burst mode. Its

weaker efficacy would enable VIP to cause transition from the NREM3 to NREM2

excitation level. Presumably, direct inhibition of brainstem centers responsible for

REM would then prevent the NREM2 to REM transition, keeping the thalamocor-

tical circuit in a spindling regime. However, a sufficiently strong stimulus would be

able to overcome this brainstem inhibition, leading to positive feedback of excitatory

activity that would awaken a person.

3.4.8 Homeostasis From Intrathalamic Neuromodulation

A concept that unifies each of the results is that VIP provides a mechanism for

depolarizing thalamocortical (TC) neurons toward and across the burst-relay mode

border, when starting from burst mode. This depolarizing drive at different timescales

leads to the major results.

Taking a broader view, this unilateral VIP-mediated depolarization forms a home-

ostatic mechanism keeping thalamus near the burst/relay border (Figure 3·31). If the

thalamus starts deep in burst mode, intrinsic VIP slowly depolarizes thalamus, in-

creasing its burst rate. This forms a positive feedback since the faster bursting leads
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to more average VIP release. This continues until thalamus reaches the burst/relay

border. Thus, while weak cortical inputs might not be relayed initially, they would

be after thalamus depolarizes sufficiently. Conversely, if the thalamus starts in a

depolarized relay mode and excitation is withdrawn, it would hyperpolarize toward

the burst border. After crossing the border, VIP would act to depolarize cells back

across the border. The simulations here suggest that in the absence of high levels

of excitation, TC cells will attract toward the burst/relay border and subsequently

stably oscillate around the border.

Figure 3·31: VIP homeostatically keeps thalamus on the firing mode transition boundary. With the
withdrawal of excitatory input, thalamus will move from the relay mode (green) to the burst mode
(blue). VIP acts to keep thalamus near the boundary between the two firing modes. Oscillations
around the border occur since the silent depolarized state has no VIP activity, and tonic firing has
much less VIP activity than the burst mode. Hence, there is a tendency to drop back into burst
mode, and then rise again into relay mode. Right panel adapted from (Destexhe et al., 1993a).

3.4.9 Intrathalamic Neuromodulation in Recovery From Disorders of Con-

sciousness

One hypothesis about the role of thalamic homeostasis in a pathologic state is that it

may contribute to recovery from disorders of consciousness (DOC) after severe brain
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injury. Reduced levels of consciousness after brain injury is often associated with a

reduction in thalamocortical connectivity (Giacino et al., 2014), which would hyper-

polarize thalamus into the burst mode unsupportive of normal consciousness (Weyand

et al., 2001). VIP release during burst mode would eventually bring thalamus into

relay mode, permitting greater thalamocortical connectivity and conscious cognition.

Indeed, functional magnetic resonance imaging (fMRI) studies reveal greater thalam-

ocortical connectivity after recovery of consciousness post-brain injury (Laureys et al.,

2000). While this mechanism would improve functional connectivity, the most severe

injuries may require additional structural changes that can take even longer periods,

i.e. > weeks (Thengone et al., 2016).

It should be noted that the results of a recent study appear on the surface to

conflict with this hypothesis (Magrassi et al., 2018). Thalamic spiking was recorded

extracellularly from patients with disorders of consciousness under sevoflurane general

anesthesia. The majority of recorded single units fired single spikes instead of bursts

of multiple spikes. Hence, the authors concluded that the majority of thalamus was

not in burst mode. One issue with this analysis is that low-threshold spike (LTS)

bursts can have 1 or more spikes. Thus, if these thalamic neurons fired only single

spikes during the bursts, they would be misclassified. Intracellular recordings would

be required for confirmation. Even if the single-spiking neurons were in relay mode,

there is still a complicating factor. The sevoflurane level used, although low for

a healthy patient with normal connectivity, may have hyperpolarized many of the

bursting cells into silence (Destexhe et al., 1993a), spuriously elevating the ratio of

cells in relay vs. burst mode.

3.4.10 Future Modeling Directions

There are several next steps to this line of research. They involve increasing com-

plexity within thalamus and adding more brain regions.
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Brainstem

One intriguing direction would be to explicitly model brainstem interactions with

the thalamocortical circuit during sleep and anesthesia. There are several existing

phenomenological models of sleep that could be combined with the thalamocortical

model described here (Booth and Diniz Behn, 2014). It would be especially interesting

to add thalamocortical feedback to these models and test hypotheses about brainstem

versus thalamic control of sleep architecture. The combined model could also be

used to study anesthesia by changing the relevant parameters for brainstem. The

brainstem is not typically modeled along with the thalamocortical circuit, so there

would be great value in examining this combination more closely.

Zona Incerta

Another brain region with strong influence to consider is zona incerta. This ex-

trathalamic nucleus sends inhibitory connections predominantly to the intralaminar

thalamus of interest here (Bartho et al., 2002). It would be modeled like TC cells but

without bursting currents, VIP, and TC feedback.

Conduction Delays

An additional feature to investigate is the impact of conduction delays since the

thalamocortical model spans large neural distances. Theoretical investigations have

demonstrated that conduction delays can affect synchronization and wave forma-

tion (Crook et al., 1997; Ermentrout and Kopell, 1998). This is especially relevant

for studying slow wave propagation and spindle synchronization in a larger model

(Bazhenov et al., 2002).
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Thalamic Interneurons

Thalamic interneurons have been most studied in the lateral geniculate nucleus of

thalamus related to visual processing, but are also found in other thalamic nuclei

(Jones, 2012). Since VIP has been found not just in TRN cell bodies, but also

within neurons of relay nuclei (Burgunder et al., 1999), it is most likely that there

are VIP-containing interneurons. It would be interesting to model neuromodulation

from these interneurons versus TRN and the consequent affects on oscillations.

Cortical Slow Waves

There is an extensive experimental and theoretical literature on the origins of sleep

slow waves, as well as the relative contributions of cortex and thalamus (Amzica

and Steriade, 1998; Crunelli and Hughes, 2009; David et al., 2013; Lemieux et al.,

2014; David and Schmiedt, 2014; Neske, 2015; Crunelli et al., 2015; Gent et al., 2018).

Notably, a recent human magnetoencephalographic (MEG) study found that spindles

occur at preferential phases of the cortical slow wave (Klinzing et al., 2016). It seems

that cortex is likely the main source of slow waves, but they can also be initiated

and modulated by thalamus (David et al., 2013; David and Schmiedt, 2014; Neske,

2015; Crunelli et al., 2015; Lewis et al., 2015; Gent et al., 2018). Thus, it would be

interesting to investigate the impact of thalamically-triggered cortical slow waves on

the VIP spindle mechanism and model the phase relationship between the cortical

slow waves and thalamic spindles. Furthermore, slow timescales of VIP modulation

could contribute to a thalamic pacemaker for the cortical slow oscillations.

Other cAMP Modulators

The explicit modeling of cAMP in this relay thalamus model enables the study of

other neuromodulators besides VIP since many converge on the cAMP pathway; e.g.,

adenosine, nitric oxide, serotonin, and norepinephrine (McCormick, 1992). Thus, this
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model provides a useful tool for future studies of thalamic neuromodulation (Figure

3·32).

Figure 3·32: A framework for future studies of thalamic neuromodulation using explicitly mod-
eled cAMP. Many neuromodulators converge on the calcium and cAMP pathways, and also affect
potassium leak channels.

It may also be useful to explicitly model adenylate cyclase and phosphodiesterase

in some cases. For example, adenylate cyclase isoforms are differentially modulated

by calcium, which is relevant for thalamic cells since they possess T-type calcium

channels. This approach was initially considered for the present work, but the addi-

tional complexity was not warranted for this preliminary study. Additional data may

be necessary though to constrain the additional kinetic terms needed.

3.4.11 Experimental Validation

There are several predictions of this model that may be tested experimentally to

validate the model’s main results:

• Seconds VIP: Antagonizing VPAC2 receptors in centromedial nucleus during

NREM2 spindles will reduce or prevent spindles (motivated by section 3.4.1).
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• Strong VPAC2 receptor agonism in centromedial nucleus during NREM3 should

lead to NREM2 spindling (motivated by section 3.4.2).

• 90 Minute VIP: Antagonizing VPAC2 receptors in centromedial nucleus during

NREM3 will prevent or delay transition to NREM2 (motivated by section 3.4.2).

• Hours VIP: Antagonizing VPAC2 receptors in centromedial nucleus will lead

to longer NREM periods and aberrant REM electrophysiology, or alternatively

prevent REM entirely (motivated by 3.4.5).

• Hours VIP: NREM3 delta oscillations in human thalamus will increase in fre-

quency with each successive NREM-REM cycle during sleep

• TRN optogenetic stimulation mimicking δ bursting will lead to short-term inhi-

bition followed by prolonged excitation. One can voltage clamp TC cells within

the H-current activation but below the T-current activation window to check

for a growing inward current.

3.5 Conclusions

Here, I use computational models to introduce the concept of intrathalamic neuro-

modulation control of NREM sleep architecture and demonstrate that its homeostatic

mechanism is counteracted by general anesthesia. This new hypothesis motivates new

experimental studies that could help improve understanding of sleep architecture con-

trol, relevant to many human sleep disorders.

These results also demonstrate the utility of computational models for testing in

vivo hypotheses based on in vitro data. Furthermore, the models permit interrogation

of various time-varying biophysical parameters that would impossible or difficult to

measure empirically.
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3.6 Methods

3.6.1 Thalamocortical Model Simulation

To explore the role intrathalamic VIP in a thalamocortical circuit, a computational

model of single compartment conductance-based Hodgkin-Huxley-type point neurons

was simulated using the DynaSim toolbox for MATLAB (Sherfey et al., 2018). These

models are conductance-based because neurons are modeled as electrical RC circuits:

the membrane acts as a capacitor, storing charge; each ion channel is represented by

a resistor and voltage source, with resistance equal to the inverse of the ion channel’s

conductance and voltage equal to the ionic reversal potential. These models possess

greater biophysical realism than other commonly used models such as integrate-and-

fire and mean-field models, since each parameter represents a biophysical correlate

that can be measured experimentally. These models are scalable in size and complex-

ity while remaining computationally tractable to simulate.

The actual substrate of the model is a system of ordinary differential equations

that must be solved numerically. Numerical integration is performed using a 2nd-order

Runge-Kutta method with a fixed time step of 0.005 ms. Some results derive from

simulations of the isolated thalamic submodule, as indicated in the results section.

The model is comprised of 2 or 20 neurons of each neuronal population as indicated

in the text. The model with 2 cell populations represents two highly synchronized

subpopulations of each neural type and is useful for demonstrating synchrony vs.

anti-synchrony. The larger models permit more phase differences between cells and

captures the behavior of a more realistic network with greater heterogeneity and noise.

Compression of Simulation Timescale

The physical timescales modeled here range 8 orders of magnitude, from spiking at

10−4 seconds to sleep at 104 seconds. Furthermore, there is a bimodal distribution of
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timescales with most being very fast, and a couple VIP ones being far slower. This

large separation of timescales means that one can speed up the slow VIP timescales

by several orders of magnitude and still have similar qualitative results, which has

great advantages for reducing computation time. Thus, an 8-hour night’s sleep is

represented by approximately 2 minutes of model time. This time compression follows

that of other sleep models using spiking neurons (Krishnan et al., 2016).

3.6.2 Conductance-Based Model Specification

Single compartment conductance-based Hodgkin-Huxley-type point neuron models

were used a typical equation structure as follows.

Voltage changes over time were calculated using the following standard cable equa-

tion:

Cm
dV
dt

= −
∑

(Iint + Isyn) + Iapp

Membrane and synaptic currents used a Hodgkin-Huxley-type conductance:

I = ḡmnhk(V − Erev)

For the full model specification including equations and parameter values, see

appendix A on page 145. For a more thorough exposition on this type of model-

ing method in the thalamocortical circuit, consult the monograph Thalamocortical

Assemblies by Alain Destexhe and Terry Sejnowski (Destexhe and Sejnowski, 2001).

3.6.3 Thalamocortical Relay Nucleus Model

The thalamic model was based on the canonical Destexhe thalamic model, which is

constrained by ferret thalamic slice experimental data (McCormick and Huguenard,

1992; Destexhe et al., 1993a; Destexhe et al., 1996). As is commonly practiced, the

thalamic model incorporates a non-specific relay nucleus and the thalamic reticular

nucleus (TRN). The relay nucleus is not typically specified in modeling papers since

the measured intrinsic properties of the thalamocortical (TC) neurons have surpris-
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ingly little diversity across many thalamic nuclei (Destexhe and Sejnowski, 2001).

In the current context, the relay nucleus is considered a higher-older thalamic region

relevant to arousal, specifically the centromedial nucleus of the intralaminar thalamus

(Van der Werf et al., 2002; Baker et al., 2014).

The TC neurons of the relay thalamus contain the standard sodium and potas-

sium spiking currents of the Hodgkin-Huxley formalism along with potassium leak-

age currents. The unique currents are the H- and T-currents. The H-current is

hyperpolarization-activated non-selective cation channel. The T-type calcium cur-

rent is activated around the reversal potential for the H-current. If a TC neuron

is hyperpolarized, the T-current is de-inactivated, while the H-current serves as a

pacemaker current that raises the membrane potential to the T-current activation

threshold, which then initiates a barrage of low-threshold spikes (LTS), initiating

the thalamic burst mode. Like previous models, this model contains dynamics for

calcium representing a thin shell inside the membrane, driven by the inward T-type

calcium current. These transients local to the membrane are hypothesized to be most

relevant for modulating the membrane HCN channels. Hence, general cytoplasmic

calcium and endoplasmic reticulum calcium stores are not considered.

Two Types of H-Current Modulation

As diagramed in Figure 3·13, two sources of H-current modulation are considered

here: VIP and calcium. As discussed in section 3.2.7, direct calcium modulation is

a simplification of its indirect actions on HCN channels. In reality, both pathways

ultimately modify cAMP, as described in section 3.2.2 and outlined in Figure 3·1.

H-Current Modulation By Calcium

The original Destexhe model featured closed, open, and calcium-bound open states for

the H-current. The calcium-bound state featured a modifier that doubled the increase
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in H-current conductance (gH). This calcium-bound state is what terminated spindles

after a period of time. However, the slow receptor kinetics made spindles occur only

every ≈30 sec. The calcium-modulated H-current mechanism corresponding to Figure

3·13B was only used for results in section 3.3.1.

To reduce simulation time and reproduce more realistic interspindle intervals,

the kinetics were sped up. This modification also permitted a larger interspindle

interval range with spindles recurring every few seconds to a minute, depending on

the maximal H conductance. This kinetic change did not impact the relevant results

in section 3.3.1.

H-Current Modulation By VIP

In addition to the calcium mechanism, VIP augmentation of H-current was explored

here (Figure 3·13A). As detailed in appendix A, gH modulation by VIP is via an ad-

ditive term. This is a simpler formalism than including a separate second-messenger-

bound HCN state as with calcium in the original Destexhe model, described above.

The separate state formalism would require an additional kinetic time constant that

lacks adequate constraint. Since both VIP modulation forms yielded similar quali-

tative results for spindle production as in section 3.3.1, the more parsimonious form

was chosen for the results presented here.

3.6.4 Thalamic Reticular Nucleus Model

The reticular thalamus model is very similar to the TC model. A key difference is

that it lacks the HCN pacemaker current. Secondly, its T-current differs from that in

TC neurons, as revealed by experimental data (Huguenard and McCormick, 1992).

This T current inactivates more slowly and does so in a mostly voltage-independent

manner. Hence, it is referred to as Ts.

The different T channel kinetics lead to different intrinsic low threshold spiking
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properties between TC and TRN cells. Experimentally, TC cells burst with 2-10

spikes over a period of 8 ms, while TRN cells fire bursts of many action potentials

over an early 50-100 ms period with spike frequency modulation followed by tonic

firing for up to hundreds of ms (Domich et al., 1986).

3.6.5 Cortical Model

The cortical model contains two neuronal populations, based on the excitatory (E)

regular spiking (RS) pyramidal neurons and inhibitory (I) parvalbumin-positive fast-

spiking (FS) interneurons from (McCarthy et al., 2008). Both RS and FS cells contain

the sodium and potassium spiking currents as well as potassium leak currents. In

addition, the RS neuron model has a slow depolarization-activated potassium M-

current, responsible for spike-frequency adaptation. It is named “M” because in

physical neurons the activity of the muscarinic acetylcholine receptor inhibits it—

this effect is not modeled here.

3.6.6 Synaptic Connectivity

The thalamocortical model synaptic connectivity is diagramed in Figure 3·33 and

based on two prior models (Destexhe et al., 1996; Destexhe et al., 1998). Connectivity

is all-to-all for each type of connection unless otherwise stated.

Thalamic Connectivity

The relay thalamus is the sole source of outgoing signals from the thalamus, whereas

the reticular thalamus makes only intrinsic thalamic synapses. Connectivity within

the thalamus between the TC and TRN cells is the same as the canonical model

(Destexhe et al., 1996), with the addition of the VIP neuromodulator. TC cells

form excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) con-

nections onto TRN cells and cortical RS cells.
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Figure 3·33: Model Synaptic Connections. (A) Connections with the thalamus. (B) Connections
within the full thalamocortical model network graph. Cortical E cells make AMPA connections.
Cortical I cells make GABA-A connections.
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The model TRN forms γ-aminobutyric acid (GABA) synapses both with itself

(including autapses) and TC cells. The autapses are present since each model neuron

symbolizes the activity of a small synchronized local population of neurons. Self-

connections have GABA-A receptors, while synapses with TC cells have both GABA-

A and longer acting GABA-B receptors. GABA-A receptors have a similar timescale

to AMPA receptors, ≈10 ms. GABA-B receptors are modeled with cooperativity,

so they are mostly active during bursting, and provide a delta frequency (≈4 Hz)

timescale.

Connectivity within reticular thalamus has a rich literature of different and some-

times contradictory findings across species. The reticular thalamus is known to have

dendro-dendritic synapses and self-collaterals within the nucleus (Landisman et al.,

2002; Deschenes et al., 1985; Yen et al., 1985; Pinault et al., 1997). Asymmetric exci-

tatory chemical synapses have been described from electron microscopy investigations

(Pinault et al., 1997). Intra-TRN GABA-A connections have also been identified

(Deschenes et al., 1985; Yen et al., 1985), as well as weak GABA-B—the GABA-B

is ignored here due to its weakness (Ulrich and Huguenard, 1996), although it has

been studied in computational models previously (Golomb et al., 1994). Further-

more, electrical synapses have been found between pairs of TRN neurons (Landisman

et al., 2002). As has been done in previous computational models to incorporate

the complexity of intra-TRN connectivity in a parsimonious fashion (Destexhe et al.,

1996), this work uses solely intra-TRN GABA-A synapses that tend to be excitatory,

which has been empirically observed (Bazhenov et al., 1999). As noted by Destexhe

and Sejnoswki, this makes the model more stable by inhibiting activity if it is too

high; i.e., average membrane potential increases above GABA-A reversal potential

(Destexhe and Sejnowski, 2001). Since these neurons are capable of bursting when

hyperpolarized by either excitatory or inhibitory PSPs, the excitatory GABA-A does
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not affect the results here.

Cortical Connectivity

Cortical RS cells have AMPA synapses to other RS cells and FS interneurons, as well

as thalamic TC and TRN cells. FS cells only have GABA connections to RS cells

(containing GABA-A receptors). Synaptic connectivity between thalamus and cortex

is similar to (Destexhe et al., 1998), except there are no TC to FS AMPA connections.

3.6.7 Simplified Non-Spiking Sleep Model

A simplified non-spiking model was used to demonstrate the utility of the two slower

VIP timescales for shaping sleep architecture using the hours-long biological timescale

as the model timescale. This model is based on the thalamic module of the full spiking

model, but with slower time constants to match the correct timescales for an ≈8 hour

human night’s sleep.

Another key difference from the spiking model is the addition of post-REM exci-

tation from brainstem acetylcholine. This excitation more realistically replicates the

post-rem transition from NREM2 to NREM3 before transition back to NREM2. In

the spiking model, NREM3 immediately follows REM without a NREM2 interme-

diary since there is no post-REM source of excitation added to the model. This is

discussed more fully in discussion section 3.4.4.
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Chapter 4

GIMBL-Vis: a Graphical Interactive

Multi-dimensional extensiBLe

Visualization Toolbox for Matlab

4.1 Abstract

Computational models of neural circuits exhibit diverse behaviors, including many

that are unexpected or difficult to predict. Numerical simulations are useful for char-

acterizing the dynamics of these high-dimensional systems. An increasingly vexing

issue is the difficulty in visualizing and analyzing how properties of these models

change as multiple independent parameters are varied in simulations. Here, I in-

troduce GIMBL-Vis, a Matlab toolbox for visualization of such multi-dimensional

datasets. This toolbox simplifies the process of exploring multi-dimensional data in

Matlab by providing a graphical interface for visualization and analysis. The interface

features sliders for each data dimension, controlling dynamic slicing through 2D and

3D slices of a dataset to reveal the effects of varying specific parameters. The toolbox

is a useful complement for neural simulators, including our group’s recently devel-

oped Dynamic Neural Simulator (DynaSim). Furthermore, since it supports datasets

in table form, it may be used for diverse sources of data.
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4.2 Introduction

4.2.1 Big Data

Since technological advances have made it possible to collect data on a scale previ-

ously unimaginable, the twenty-first century has been deemed the era of “big data”.

Neuroscience is no exception. For example, multi-electrode arrays and calcium imag-

ing make it possible to record from hundreds to thousands of neurons simultaneously.

In addition to experimental datasets, modern computing clusters have enabled the

generation of comparably enormous in silico datasets. The data size will continue to

increase as groups continue to push toward simulating entire brains at the individual

neuron level. Computational methods are essential for deriving insights from this

deluge of data overwhelming scientists.

4.2.2 Neural Circuit Simulation

While theoretical computational methods are important, the engineering of tools

both physical and virtual is also crucial. For the field of computational neural circuit

modeling (see section 1.3.1), many choose to use a neural simulator software pack-

age. There are several common neural simulation environments (Brette et al., 2007),

including NEURON (Hines and Carnevale, 1997), NEST (Diesmann and Rechnen,

2001), GENESIS (Wilson and Bhalla, 1989), and Brian 2 (Stimberg et al., 2013).

Since none were available for Matlab, our research group created the Dynamic Neural

Simulator (DynaSim), a Matlab modeling and simulation toolbox for solving systems

of differentials equations, especially those of Hodgkin-Huxley style conductance-based

point neurons (Sherfey et al., 2018).
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Computational Modeling Datasets

Neural circuit models exhibit diverse behaviors, including many that are unexpected

or difficult to predict. Hence, during the process of developing circuit models, it is

important to test a range of values for different parameters, both to explore different

regimes of dynamics and to check the robustness of findings. Even “tiny” models with

only a few cells can possess hundreds of parameters and generate terabytes of data

when simulating over combinations of varying parameters. For example, simulating

the Cartesian product (i.e., every combination in a lattice grid) of 5 parameters with

10 values each yields a 5D dataset of 105 = 10, 000 simulations.

Modeling Case Studies: Stomatogastric Ganglion Neurons and Networks

Several notable modeling studies that highlight the importance of checking multiple

parameters are from Eve Marder’s group.

One study looked at 600 thousand parameterizations over 17 dimensions of a

stomatogastric ganglion lateral pyloric (LP) neuron (Taylor et al., 2009). 1300 of

these models fit the experimentally measured electrophysiological properties well. A

key questions was whether the parameters were correlated with one another. One

technique the paper uses to describe the dataset was 2D histograms of pairwise cor-

relations between parameters.

Another paper examined 20 millions parameterizations over 10 dimensions of a

simplified 3-cell network model of the stomatogastric ganglion (Prinz et al., 2004).

About 2% of the models generated output resembling empirical findings according to

15 features. These plausible models varied tremendously, including different synaptic

connectivities. The data was summarized with histograms for each feature.
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DynaSim

A key strength of DynaSim is that it simplifies the process of exploring a large param-

eter space with massively parallel simulation, such that a batch of 10,000 simulations

run in parallel on a computing cluster is not atypical. This presents a data visu-

alization problem, as each simulation has several parameter dimensions of interest.

For example, viewing the voltage over time or ion channel conductance over time is

often desired. Furthermore, different views or functions of these variables are also

informative, including spike rastergrams and power spectrums. These goals motivate

the need for visualization tools.

4.2.3 Existing Visualization Solutions

There are many options for data visualization, and the toolset differs for each of

the commonly used data science languages, i.e. R and Python. Each tool offers

varying degrees of integration into common workflows, as well as different levels of

automation.

Simple solutions involve manually creating plots. A popular option is ggplot2 for R

(Wickham, 2016), an implementation of Wilkinson’s grammar of graphics (Wilkinson,

2011), which also has ports for Python. Interactive plots can be made easily with

tools like Shiny from RStudio (Racine, 2011), or the Jupyter Notebook for Python

(Ragan-Kelley et al., 2014).

A recent trend is the creation of tools that automate the creation of plots. Typ-

ically these use either a series of heuristic rules or an artificial neural network in

the background to generate visualization recommendations. Examples include Vega

Voyager (Wongsuphasawat et al., 2017) and data2Vis (Dibia, 2018) for Python.
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Matlab Standard Library Options

While there are numerous solutions for visualizing rich datasets in the open-source

languages R and Python favored by the data science industry, there is a paucity of

visualization tools for Matlab, commonly used in many research settings. In particu-

lar, Matlab provides neither a rapid nor simple solution for visualizing >3D datasets,

including the multi-dimensional neural datasets mentioned previously. The closest

option is the slice function of the Matlab standard library (Figure 4·1). The slice

tool creates a static view and is labor-intensive, requiring manual specification of the

data as a numeric matrix (listing 4.1). It is highly cumbersome to use with a >3D

dataset, if one wishes to change the slice positions, or with non-numeric data.

Listing 4.1: Slice function example code from Matlab documentation for Figure 4·1

[X,Y,Z] = meshgrid ( -2:.2:2);

V = X.*exp(-X.^2-Y.^2-Z.^2);

xslice = [ -1.2 ,0.8 ,2];

yslice = [];

zslice = 0;

slice(X,Y,Z,V,xslice ,yslice ,zslice)

MatImage Toolbox

As for user-created visualization tools for multi-dimensional data, only one was easily

found: the MatImage toolbox (https://github.com/mattools/matImage). Intended

for use with medical and scientific imaging data, it provides a library of image pro-

cessing functions as well as three interactive tools. Each tool appears in a different

figure window (Figure 4·2). The Slicer tool contains the main graphical user interface

(GUI) with various functions accessible by dropdown menus from the toolbar. The

main Slicer interface provides a slider for slicing through a 3D image with a single

2D plane. The orthoSlices window expands on the built-in slice function, permitting

dynamic slicing by clicking and dragging the planes. Finally, the OrthoSlicer3d win-
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Figure 4·1: Matlab slice function view output

dow shows three 2D slice planes. Crosshairs on any of the planes may be dragged to

change the views in the other planes. A bonus feature is the capability to render the

3D image into an isosurface. Like the Matlab slice function, the toolbox is limited to

a single 3D numerical dataset.

Visualizing Simulation Results

To visualize simulation results, a typical solution in our group is to view a linear list of

pre-generated figures. This is tediously inefficient and slow for hundreds or thousands

of simulations, different figure types, or lattice sweeps over multiple parameters. The

latter is especially problematic since multi-dimensional data often has structure across

dimensions which leads to repeating patterns during a linear viewing that can be hard

to interpret correctly. In summary. an increasingly vexing issue is the difficulty in

visualizing and analyzing how properties of computational models change as multi-

ple independent parameters are varied in simulations. There is an urgent need for

visualization software that simplifies the process of viewing multi-dimensional data

rapidly.
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Figure 4·2: MatImage toolbox for Matlab

The MatImage toolbox is useful for basic imaging applications, but is ill-suited

for the multi-dimensional datasets generated by simulations or electrophysiological

recordings, which often require multiple different views of not just the raw data but

also functions of the data. In general, it is difficult to overcome the reality that

humans tend to think and see in 3D. One common solution is to employ techniques

of multidimensionality reduction, mapping a high-dimensional dataset into a lower

dimensional space (Cunningham and Yu, 2014). However, this is not possible for

many dataset (e.g., non-numeric data) and is not always desired. An example of

the former is when one desires preservation of the original axes, as in the case when

the dimensions have a physical meaning that would be obfuscated by combining

dimensions.
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4.2.4 The GIMBL-Vis Solution

When I began my modeling work, there did not yet exist an efficient Matlab work-

flow for visualizing the results of model simulations when varying over multiple

parameters (section 4.2.3). To solve this problem, I created GIMBL-Vis (GV):

a Graphical Interactive Multi-dimensional extensiBLe Visualization toolbox for

Matlab (Roberts, 2017). This toolbox simplifies the process of exploring multi-

dimensional data in Matlab by providing a graphical interface for visualization and

analysis. Notably, it is built with an extensible plugin system at its core, enabling

customization for specific projects and the addition of new features over time from

the user base. The current plugins, described in section 4.3 below, provide an indis-

pensable toolkit for working with multi-dimensional data.

4.3 Design

4.3.1 Design Philosophy

A disadvantage with proprietary black-box scientific software is the inability to adapt

it to one’s particular usage case as well as the inability to fix bugs oneself when

they arise. In contrast, GIMBL-Vis is free and open-source software (FOSS) with a

liberal license, meaning that users are welcome to adapt it to their needs. Hosted on

GitHub, users can submit new features and bug fixes, providing a software experience

mirroring the culture of academia more broadly.

Free, open-source scientific software is a beautiful concept that when implemented

well is appreciated by academics everywhere (Prlić and Procter, 2012). Unfortunately,

practical considerations such as lack of funding or software experience of the “devel-

opers” conspire to render many field-specific packages lackluster at best, unusably

plagued by bugs at worst. An approach that mitigates some of these issues is to build

on a stable software foundation that has an experienced, committed developer base,
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such as Python or Matlab. This approach was adopted for DynaSim and GIMBL-Vis.

4.3.2 GV Class

GIMBL-Vis is implemented in a series of different classes to permit the use of an

object-oriented programming paradigm, an advanced feature of Matlab seldom used.

The application is accessed through the gv class. Simply calling gv will call the

constructor and will return an object of the gv class. To open the GUI window and

use the interactive graphical mode, it requires calling the run object method on an

existing object, or the Run class method (listing 4.2). The gv constructor can also

take arguments as a shortcut to load data from the workspace, a file, or a directory

containing a single data file.

Listing 4.2: Opening the GV application

%--Open GV GUI without an explicit data source --

% 3 ways:

% 1) Using constructor followed by method call

gvObj = gv;

gvObj.run();

% 2) Using class method

gv.Run; % or `gvObj = gv.Run;`
gvr; % or `gvObj = gvr;`

% 3) using constructor with simultaneous method call

gv().run; % or `gvObj = gv().run;`

4.3.3 Data

Data Sources

GIMBL-Vis is not limited to use with neural simulators like DynaSim or neurosci-

entific electrophysiological datasets. Since GV can import any dataset that can be
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represented in table form (e.g., a CSV or Microsoft Excel file), it may be used with

diverse sources of data.

Data Model

GV’s data model is depicted in Figure 4·3. At the lowest level, GV data is ultimately

stored in an array—a multi-dimensional array for numeric data, or a cell array for

mixed and non-numeric data. Non-lattice data is supported with NaN (not-a-number)

entries for numeric arrays, or empty cells for cell arrays. One level up, the data array

is contained inside a gvArray object. The class inherits from the Multidimensional

Dictionary (MDD) data structure, created by our group to store multi-dimensional

data along with axis information and metadata to facilitate multi-dimensional vi-

sualization. MDD objects contain many useful low-level data wrangling methods,

including those for slicing data subsets and merging data. The subclass inheritance

permits extension of the MDD class with GV-specific methods and variables. Finally,

the gvArray value object is wrapped in a gvArrayRef handle object. This enables

flexibility in passing the data object around and modifying without copying it. Fi-

nally, this data object is abstracted from the user’s point of view as a hypercube

multi-dimensional data object.

DynaSim Integration

GV works seamlessly with DynaSim. Since the raw DS datasets can be terabytes

in size, the preferred workflow for visualization involves two branches of compressing

the data into a useful form.

The first involves pre-computing a scalar numeric or categorical value for each

simulation from DS analysis functions. Thus, the data from each single simulation

with potentially hundreds of dimensions is compressed into a set of scalars. GV auto-

matically imports the analysis result values into a GV hypercube, storing the relevant
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Figure 4·3: Data model

metadata. The analysis functions themselves along with the simulation number be-

come values on a prepended datatype dimension called “analysisFn” by default (di-

mension 1 in Figure 4·9). There are then viewed in the Plot Window Plugin window,

as detailed in section 4.3.4.

A second way to compress the data is to pre-compute plots of different types

indexed to simulation number. These are viewed in the Image Window Plugin win-

dow, and are dynamically changed by highlighting points in the Plot Window Plugin

window corresponding to each simulation (described in section 4.3.4).

A third option is to load the raw simulation data and call plotting functions from

within GV. This makes use of the dsPlot Window Plugin discussed in section 4.3.4.

Importing Data

There are several ways to import data into GV using the Matlab command window

(listing 4.3).

Listing 4.3: Importing data into GV using the Matlab command window

% src can be a dataVariable in workspace or the path to

a data file
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src = dataVariable;

% or

src = fullfile('path','to','file');

% Import data using class call

gv(src);

gv.Load(src);

% Import data into existing object

gvObj = gv();

gvObj.load(src);

There are also a several ways using the GV toolbar menus found in the main

window. From the File menu, there are automatic import options and manual ones.

The automatic ones search for a mat data file in the current working directory and

either load the gvArray object or import the Matlab array. The manual ones open

a loading window for selection of a file to import. From the Model menu, there is

an option to import data from the workspace, which brings up a selection box from

which one can choose one or more workspace variables to import into GV.

For DynaSim users, a quick way to automatically import DS data is to run GV

(using an option from listing 4.2, e.g. gv) starting from inside of a DS study directory

(containing the studyinfo.mat file)—the data is automatically imported and a GV-

specific data file is saved for faster reloading in future calls.

4.3.4 Plugins

Main Window Plugin

The main window plugin provides the core GIMBL-Vis interface. As shown in Figure

4·4, the window features a top toolbar with dropdown menus to access different

methods. Below this are tabs for each of the actively loaded plugins. Next is a data

panel for changing the active hypercube if multiple ones have been imported. Lastly
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is a scrollable panel of all plugins found in the “plugins” directory.

Figure 4·4: Main Window

Plot Window Plugin

The current set of plugins implement three methods of visualization. The first is the

Plot Window Plugin, a meta plot of scalar functionals for every simulation (Figure

4·5). A typical functional is the average firing rate or the peak spectral power. The

number of visible dimensions can be set from 1-8, with >3D selections showing 2D

and 3D projections of the hypercube as subplots in the figure window. Using the

select plugin (Figure 4·9), one may use the mouse wheel to scroll through the 2D and

3D slices of the dataset to reveal the effects of varying specific parameters.

There are multiple view types for 1D, 2D, and 3D panels. These options can be
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Figure 4·5: Plot Panel

changed in the plot panel of the main window, or with the shortcut keys 1, 2, and 3,

respectively. For a 1D slice, options include a line plot with the y-axis representing

the value of the scalar, and a linear point plot with the value encoded in the point

color. For 2D slices, a point plot or color grid plot (like imagesc or pcolor) is available.

For 3D, there is a point plot (i.e., plot3 function) or a view with three orthogonal

slices (i.e., slice function).

Image Window Plugin

The second visualization is found in the Image Window Plugin (Figure 4·6). This

permits visualization of pre-created images from the simulations, by using the mouse

to highlight points in the plot window. For example, one may make images of the

voltage trace and spectral power during each simulation. Using image files is faster

than loading the data and consumes far less storage space. Thus, 1 terabyte of

simulation data could be compressed into a few 100 megabytes of metadata and

images for rapid visualization.
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Figure 4·6: Image Panel

dsPlot Window Plugin

The third visualization requires access to the original simulation data. In this dsPlot

Window Plugin 4·7, one may click on the points in the plot window to load the data

and apply any plotting function to the data. This is slower than using the image

window but allows for post hoc visualization and the use of Matlab figure tools.

Analysis Plugin

The Analysis Plugin is the first mentioned that is not associated with a separate win-

dow, although it does have its own panel in the main window (Figure 4·8). It enables

one to apply a function to the data of a given hypercube. The output can be merged

back into the source hypercube, stored as a new hypercube, stored as as workspace

variable, or saved to a new mat file. Since GIMBL-Vis has been used mainly for

visualization so far, the analysis plugin is the first of its kind, and demonstrates what

is possible with the flexibly extensible GV core.
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Figure 4·7: dsPlot Panel

4.3.5 Advantages and Disadvantages

Advantages

• Free, open-source toolbox with an extensible plugin architecture for develop-

ment by the community

• Visualize >3D data while maintaining the original dimensions

• Works with mixed types of data, including numeric and categorical

• Different view types for 1D, 2D, and 3D slices

• Configuration file for customizing the user experience

Disadvantages

• Runs within Matlab only



137

Figure 4·8: Analysis Panel
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• Plot Window Plugin optimized for use with compressions of time series data,

i.e. images and scalar functions of the original data

• No plugin yet for microscopy or medical data

4.4 Usage Example

4.4.1 Simulating a Simple Model with DynaSim and Running GIMBL-

Vis

To demonstrate the power of the DynaSim + GIMBL-Vis workflow, what follows

is the code and relevant snapshots from the workflow to simulate a single Izhike-

vich spiking neuron model. As Izhikevich writes, the model “reproduces spiking and

bursting behavior of known types of cortical neurons...[and] combines the biologi-

cally plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency

of integrate-and-fire neurons” (Izhikevich, 2003). The code to simulate the model in

DS, start GV, and import the data follows in listing listing 4.4.

Listing 4.4: Simulating and visualizing 5D data from 1125 simulations of an Izhikevich neuron

%--Simulate using DynaSim --

% simulation time limits

options.time_limits = [0 2e3]; % ms, [beg end]

% simulate on supercomputer

options.cluster_flag = 1;

% choose directory to save simulation results

options.study_dir = 'Izh_sims ';

% instantiate model structure

s = struct ();

% add applied current and noise

s.populations.mechanism_list = {'stim', 'noise '};



139

% add parameter ranges to vary over

P='pop1'; % default name of population

options.vary={

{P, 'I', linspace( -65, 80, 5)};

{P, 'a', linspace (-.026, .03, 5)};

{P, 'b', linspace( -1, 1.5, 5)};

{P, 'c', linspace( -65, -45, 3)};

{P, 'd', linspace( 0, 8, 3)};

};

% Known Parameters for Behaviors:

% tonic bursting

% {'a', .02; 'b', .2; 'c',-50; 'd',2; 'I', 15}

% spike frequency adaptation

% {'a', .01; 'b', .2; 'c',-65; 'd',8; 'I', 30}

% spike latency

% {'a', .02; 'b', .2; 'c',-65; 'd',6; 'I', 7}

% rebound burst

% {'a', .03; 'b' ,.25; 'c',-52; 'd',0; 'I', 0}

% bistability

% {'a', 1; 'b' ,1.5; 'c',-60; 'd',0; 'I',-65}
% accomodation

% {'a', .02; 'b', 1; 'c',-55; 'd',4; 'I', 1}

% inhibition -induced spiking

% {'a', -.02;'b',- 1; 'c',-60; 'd',8; 'I', 80}

% inhibition -induced bursting

% {'a',-.026;'b', -1; 'c',-45; 'd',0; 'I', 70}

% define plot and analysis functions

options.plot_functions = {@ dsPlot }; % voltage plot

options.analysis_functions = {dsResult_muaFR }; %

calculate average firing rate for entire simulate

% use predefined Izhikevich neuron model
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% (part of DS model library)

s.populations.equations = 'Izh';
s.populations.parameters = {'stim_amp ', 200,

'noise_amp ',2e4};

dsPlot(dsSimulate(s, options);

%--Visualize using GIMBL -Vis --

% change working directory to simulation study directory

cd( options.study_dir );

% run GV application

gvr(src);

4.4.2 Using GIMBL-Vis to View the Simulation Data

After running that code, the main GV window appears. The corresponding select

panel is shown in Figure 4·9. The first dimension shows that the firing rate analysis

function results will be viewed. Clicking the view checkboxes chooses which dimen-

sions will be represented in the plot window (top of Figure 4·10). By checking all 5

viewable dimensions to plot, the plot window creates subplots for each 2D and 3D

slice of the data. The slice view can be changed dynamically by moving the sliders

or entering a value in the value box.

Moving the mouse over the plot points for different simulations triggers the cor-

responding simulation’s voltage trace image to appear in the image window (bottom

half of Figure 4·10).

4.5 Conclusion

While Eve Marder’s work with high-dimensional parameter sweeps of models (intro-

duced in section 4.2.2) has highlighted the need to explore different model parame-
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Figure 4·9: Select Panel
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Figure 4·10: Example dataset in GV. The top dsPlot window plots the average firing rate of
each simulation in 2D and 3D slices of 5D parameter space for 1125 different parameterizations of
an Izhikevich neuron. The bottom image window shows pre-created voltage trace images for each
simulation, by mousing over the corresponding point in the dsPlot window.
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terizations, until now there did exist an efficacious tool for interpreting the results of

such explorations, especially in Matlab.

GIMBL-Vis provides a unique Matlab solution to the problem of visualizing and

analyzing multi-dimensional data. Importantly, it provides an extensible open plat-

form for distributed development by the community, in order to adapt to future

needs.

4.5.1 Future Directions

There are nearly endless potential extensions for GIMBL-Vis. It features a flexible

core structure for building GUI apps. The best direction for future development is

whatever the current needs of the users are.

For visualization, the next feature to create is a multi-panel image window plugin.

This would be similar to the current Image Window Plugin, but would enable the

tiling of multiple pre-generated images to be viewed simultaneously while surfing

through the simulations in the plot window. For example, the voltage trace, an

ion channel time-series, spike rastergram, and power spectrogram could be viewed

simultaneously.

From the analysis perspective, an important next step is to create an explicit

dimensionality reduction plugin that facilitates using the built-in Matlab functions.

It would also be interesting to connect GV with the DataHigh toolbox (Cowley et al.,

2013), that embeds neural population activity into lower-dimensional spaces.
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Chapter 5

Conclusions

Here, the concept of local neuromodulation exerting a powerful influence on global

cortical rhythms is explored through two projects, one experimental and one com-

putational. While empiricism is the cornerstone of modern science, experimental

investigations often yield surprising or unexpected results with unclear mechanisms.

Biophysical computational model can provide desirable explanatory power for these

elusive mechanisms. Thus, an effective way to study scientific problems is to use an

collaborative dual process of empirical studies and computational models informing

one another with their complementary strengths. Both investigations described here

followed this process. However, as the problems investigated by these methods con-

tinue to increase in complexity and technology enables larger datasets, the problem

of visualization and analysis of data to make conclusions becomes ever more difficult.

Hence, the final work discussed is the creation of a Matlab tool for visualizing and

analyzing such multi-dimensional datasets.
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Appendix A

Model Specification

A.1 Spiking Model

Single compartment conductance-based Hodgkin-Huxley-type point neuron models

were used with a typical equation structure as follows.

Voltage changes over time were calculated using the following standard cable equa-

tion:

Cm
dV
dt

= −
∑

(Iint + Isyn) +N (Iapp, I
2
std), in which Cm is the membrane capacitance,

Iint are the intrinsic ionic currents, Isyn are the synaptic currents, Iapp is the mean

applied current, and Istd is the standard deviation of the gaussian current noise.

Most membrane and synaptic currents used a Hodgkin-Huxley-type conductance:

I = ḡmnhk(V −Erev), in which ḡ is the maximal conductance, m and h are different

gates (fraction of channels open), and Erev is the reversal potential.

Each of the gates evolved in time according to one of three forms: dm
dt

= 1−m
τr
−m

τd
=

m∞(V )−m
τm

= αm(V )(1−m)− βm(V )m

In the full thalamocortical model, E→TC and E→TRN synapses during NREM2

were silenced to reduce synchronization, permitting anti-synchronous alpha frequen-

cies. This merely impacts frequency, not timing.
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A.1.1 Spiking Model Equations

Cells Scope Equation
[TC

&

TRN]

Na iNa = gNa ∗mNa3 ∗ hNa ∗ (V − ENa)

” ” αm = .32∗ (13− (V +V shift))/(exp((13− (V +V shift))/4)−1)
” ” βm = .28∗ ((V +V shift)−40)/(exp(((V +V shift)−40)/5)−1)
” ” αh = .128 ∗ exp((17− (V + V shift))/18)
” ” βh = 4/(1 + exp((40− (V + V shift))/5))
” K iK = gK ∗ nK4 ∗ (V − EK)
” ” αn(V ) = 0.032 ∗ (15 − (V + V shift))/(exp((15 − (V +

V shift))/5)− 1)
” ” βn(V ) = 0.5 ∗ exp((10− (V + V shift))/40)
” CaBuffer CaBuffer′ = max(((−10 ∗ iT (t))/(2 ∗ 96485.3)), 0) −

(CaBuffer − 0.00024)/5
” Leak iLeak = −gLeak ∗ (V − ELeak)
” Pois iPois = −gPois ∗ s ∗ (V − Epois)
” ” s(t+ 1) := s(t) ∗ Pois(λ) ∗ exp(−dt/tauPois)
TC T iT = gT ∗Minf(V )2 ∗ hT ∗ (V − ET (V ))
” ” hT ′ = (Hinf(V )− hT )/tauH(V )
” ” ET (V ) = 1000 ∗ (8.31441 ∗ 309.15)/(2 ∗ 96485.3) ∗

log(2/CaBuffer(t))
” ” Minf(V ) = 1/(1 + exp((−(V + 57 + V shift))/6.2))
” ” Hinf(V ) = 1/(1 + exp((V + 81 + V shift)/4))
” ” tauH(V ) = (30.8 + (211.4 + exp((V + 113.2 + V shift)/5))/(1 +

exp((V + 84 + V shift)/3.2)))/3.737
” H iH = gH∗(OPENone+caCoop∗OpenCaLocked+campMult1∗

campModNorm1(V ) + campMult2 ∗ campModNorm2(V ) +

campMult3 ∗ campModNorm3(V )) ∗ (V − EH)
” ” OPENone′ = k4∗OpenCaLocked−k3∗(Pca/Pc)∗OPENone−

βh(V ) ∗OPENone+ αh(V ) ∗ Cone
” ” OpenCaLocked = 1− Cone−OPENone
” ” Cone′ = βh(V ) ∗OPENone− αh(V ) ∗ Cone
” ” Pzero′ = k2 ∗ Pca− k1 ∗ ((CaBuffer(t)/cac)nCa) ∗ Pzero
” ” Pca = 1− Pzero



147

Cells Scope Equation
” ” αh(V ) = Hinf(V )/tauH(V )
” ” βh(V ) = (1−Hinf(V ))/tauH(V )
” ” tauH(V ) = tauMin+1000/(exp((V +71.5)/14.2)+exp((−(V +

89))/11.6))
” ” Hinf(V ) = 1/(1 + exp((V + 75)/5.5))
” ” campModNorm1(t) = campGate1(t)/campScale
” ” campModNorm2(t) = campGate2(t)/campScale
” ” campModNorm3(t) = campGate3(t)/campScale
” cAMP camp1′ = remBool(t) ∗ sV IP ∗ (1 − camp1)/tauCAMP1 −

camp1/(tauCAMP1 ∗ (1 − (sV IP < 1e − 4) ∗

tauCAMP1PropReduce))
” ” camp2′ = remBool(t) ∗ sV IP ∗ (1 − camp2)/(tauCAMP2 −

remBool(t) ∗ tauCAMP2RemPropReduce ∗

tauCAMP2) − camp2/(tauCAMP2 − remBool(t) ∗

tauCAMP2RemPropReduce ∗ tauCAMP2)
” ” camp3′ = remBool(t) ∗ sV IP ∗ (1 − camp3)/tauCAMP3 −

camp3/tauCAMP3
” ” campGate1 = (2 ∗ camp1 ∗ netcon)/scalingFactor
” ” campGate2 = (2 ∗ camp2 ∗ netcon)/scalingFactor
” ” campGate3 = (2 ∗ camp3 ∗ netcon)/scalingFactor
TRN Tslow iTslow = gT ∗mT 2 ∗ hT ∗ (V − ET (V ))
” ” mT ′ = (Minf(V )−mT )/tauM(V )
” ” hT ′ = (Hinf(V )− hT )/tauH(V )
” ” Minf(V ) = 1/(1 + exp(−(V + 50 + V shift)/7.4))
” ” tauM(V ) = (0.999 + (0.333/(exp((V + 25 + V shift)/10) +

exp(−(V + 100 + V shift)/15))))
” ” Hinf(V ) = 1/(1 + exp((V + 78 + V shift)/5))
” ” tauH(V ) = (28.307 + (0.333/(exp((V + 46 + V shift)/4) +

exp(−(V + 405 + V shift)/50))))
” ” ET (V ) = 1000 ∗ (8.31441 ∗ 309.15)/(2 ∗ 96485.3) ∗

log(2/CaBuffer(t))
E&I Na iNa = −gNa ∗m3 ∗ h ∗ (X − ENa)
” ” m′ = 0.32 ∗ (V + 54)/(1− exp(−(V + 54)/4)) ∗ (1−m)− 0.28 ∗

(V + 27)/(exp((V + 27)/5)− 1) ∗m
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Cells Scope Equation
” ” h′ = 0.128 ∗ exp(−(V + 50)/18) ∗ (1 − h) − 4/(1 + exp(−(V +

27)/5)) ∗ h
” K iK = −gK ∗ n4 ∗ (V − EK)
” ” n′ = 0.032 ∗ (V + 52)/(1 − exp(−(V + 52)/5)) ∗ (1 − n) − 0.5 ∗

exp(−(V + 57)/40) ∗ n
” Leak ILeak = −gLeak ∗ (V − ELeak)
E M w′ = (Q10∗0.0001∗ (V −V half)/(1− exp(−(V −V half)/9)))∗

(1−w)+Q10∗0.0001∗(V −V half)/(1−exp((V −V half)/9))∗w
Syn Any scalingFactor = max(sum(netcon, 1), 1)
” ” netcon = rand(Npre,Npost) <= probcxn
” AMPA iAMPA = gAMPA/scalingFactor ∗ (s ∗ netcon) ∗ (V post −

EAMPA)
” ” s′ = (1+tanh(V pre/4))∗(1−s)/2/tauRAMPA−s/tauDAMPA
” GABAa iGABAA = spm∗ gGABAA/scalingFactor ∗ (s∗netcon)∗ (V −

EGABAA)
” ” s′ = (1 + tanh(V pre/4))/2 ∗ (1 − s)/tauRGABAA −

s/(tauDGABAA ∗ spm)
” GABAb iGABAB = gGABAB/scalingFactor ∗ ((gg4/(gg4 + Kd)) ∗

netcon) ∗ (V − EGABAB)
” ” r′ = (1 + tanh(Vpre/4))/2 ∗ (1 − r)/rTauRGABAB −

r/rTauDGABAB
” ” gg′ = r/gTauRGABAB − gg/gTauDGABAB
” VIP sV IP ′ = (1 + tanh(V pre/4)) ∗ (1 − sV IP )/2/tauRvip −

sV IP/tauDvip
Misc [spindle

Timer]

spindleT imer′ = remBool(t) ∗ (−spindleT imer) ∗

timerKineticMult + spindleAccumBool ∗ (1 −

spindleT imer)/tauT imerD
” [rem

Timer]

remTimer′ = remBool(t) ∗

(−remTimer/tauRemD) + remBool(t) ∗ (1 − remTimer) ∗

remKineticMult
” [spindle

InitBool]

spindleInitBool := remBool(t) && (t - tLastRemStart) >

5e3 && (allTcVoltagesLast500ms > modeThresh) && noTc-

SpikesInLast500ms && (remTimer(t) > .9)



149

Cells Scope Equation
” [spindle

Accum

Bool]

spindleAccumulateBool := (spindleInitiateBool || spindleAccu-

mulateBool) && !remBool(t)

” remBool remBool := spindleT imer(t) > 0.9

Table A.1: Spiking Model Equations

A.1.2 Spiking Model Parameters

Cells Scope Param Value Unit
TC Cell I app 0 µA/cm2

” ” I app REM 5 µA/cm2

” ” I std 1.5 µA/cm2

” ” V 0 -75 mV
” ” V 0 std 0 mV
” ” Cm 1 µF/cm2

” Na gNa 90 mS/cm2

” ” ENa 50 mV
” ” Vshift 25 mV
” K gK 10 mS/cm2

” ” EK -100 mV
” ” Vshift 25 mV
” T gT 2 mS/cm2

” ” Vshift 2 mV
” H gH 0.05 mS/cm2

” ” EH -40 mV
” ” nCa 4 none
” ” caCoop 2 none
” ” cac 0.002 mM
” ” k1 0.002 ms−1

” ” k2 0.002 ms−1

” ” k3 0.003 ms−1 ∗mM−1

” ” k4 0.003 ms−1

” ” Pc 0.01 none
” ” tauMin 20 ms
” ” campMult1 0.5 none
” ” campMult2 0.64444 none
” ” campMult3 3.5556 none
” ” campScale 0.25 none
” cAMP tauCAMP1 1000 ms
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Cells Scope Param Value Unit
” ” tauCAMP2 10000 ms
” ” tauCAMP3 60000 ms
” ” tauCAMP1PropRed 0.50 none
” ” tauCAMP2RemPropRed 0.99 none
” Leak gLeak 0.02 mS/cm2

” ” Eleak -85 mV
” CaBuffer CaBuffer 0 0.00024 mM
TRN Cell I app 0 µA/cm2

” ” I app REM 5 µA/cm2

” ” I std 2 µA/cm2

” ” V 0 -90 mV
” ” V 0 std 0 mV
” Na gNa 200 mS/cm2

” ” ENa 50 mV
” ” Vshift 55 mV
” K gK 20 mS/cm2

” ” EK -100 mV
” ” Vshift 55 mV
” Tslow gT 3 mS/cm2

” ” Vshift 2 mV
” Leak gLeak 0.05 mS/cm2

” ” Eleak -90 mV
” Ca buffer CaBuffer 0 0.00024 mM
E Cell I app 0 µA/cm2

” ” I std 4 µA/cm2

” ” V 0 -71 mV
” ” V 0 std 2 mV
” Na gNa 100 mS/cm2

” ” ENa 50 mV
” K gK 80 mS/cm2

” ” EK -100 mV
” M gM 1.3 mS/cm2

” ” EK -100 mV
” ” Q10 3.209 none
” ” V half -30 mV
” ” w 0 0.025 none
” Leak gLeak 0.1 mS/cm2

” ” Eleak -67 mV
I Cell I app 0 µA/cm2

” ” I std 2 µA/cm2

” ” V 0 -67 mV
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Cells Scope Param Value Unit
” ” V 0 std 2 mV
” Na gNa 100 mS/cm2

” ” ENa 50 mV
” K gK 80 mS/cm2

” ” EK -100 mV
” Leak gLeak 0.1 mS/cm2

” ” Eleak -67 mV
TC & TRN Pois gPois 0.7 mS/cm2

” ” λ 0.8 none
” ” Epois 0 mV
” ” tauPois 2 ms
Any AMPA EAMPA 1 mV
” ” tauRAMPA 0.1 ms
” ” tauDAMPA 2 ms
” GABAa EGABAA 1 mV
” ” tauRGABAA 0.25 ms
” ” tauDGABAA 5 ms
” GABAb EGABAB -95 mV
” ” Kd 100 µm4

” ” rTauRGABAB 2 ms
” ” rTauDGABAB 833 ms
” ” gTauRGABAB 5.5556 ms
” ” gTauDGABAB 29.4118 ms
TC→TRN AMPA gAMPA 1.4022 mS/cm2

TRN→TC GABAa gGABAA 0.0691 mS/cm2

” GABAb gGABAB 0.012 mS/cm2

” VIP tauRvip 1 ms
” ” tauDvip 5 ms
TRN→TRN GABAa gGABAA 1.4022 mS/cm2

TC→E AMPA gAMPA 0.2 mS/cm2

E→TC AMPA gAMPA 0.2 mS/cm2

E→TRN AMPA gAMPA 0.2 mS/cm2

E→I AMPA gAMPA 0.1 mS/cm2

I→E GABAa gGABAA 0.1 mS/cm2

E→E AMPA gAMPA 0.1 mS/cm2

Misc spindleTimer tauTimerD 5000 ms
” ” timerKineticMult 5 none
” remTimer tauRemD 1000 ms
” ” tauRemMult 3 none
” ” modeThresh -76 mV
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Cells Scope Param Value Unit
” ” remKineticMult 5 none

Table A.2: Spiking Model Parameters

A.2 Simplified Non-Spiking Model

A simplified non-spiking model was used to demonstrate the utility of the two slower

VIP timescales for shaping sleep architecture using the hours-long biological timescale

as the model timescale. This model is based on the thalamic module of the full spiking

model, but with slower time constants to match the correct timescales for an ≈8 hour

human night’s sleep.

A.2.1 Non-Spiking Model Equations

Scope Equation
V V ′ = (iLeak(V ) + iH(V )) ∗ 3.6e5
Leak iLeak = −gLeak ∗ (V − ELeak)
H iH = −gH ∗ gHmod ∗Hinf ∗ (V − EH)
” gHmod = min(campSlowMult ∗ campSlowGate + campMult ∗

campGate+ achGate ∗ achMult, .8)
” Hinf = 1./(1 + exp((V + 75)./5.5))
” campGate = (camp/maxCAMP )nCamp
” campSlowGate = (campSlow/maxCAMP )
cAMP camp′ = remBool ∗ burstV ipAvgS. ∗ (1 − camp)./tauCamp −

camp./tauCamp
campSlow′ = remBool ∗ burstV ipAvgS. ∗ (1 −

campSlow)./tauCampSlow − campSlow./tauCampSlow
maxCAMP = burstV ipAvgS/(1 + burstV ipAvgS)

ACh ach′ = (remBool). ∗ (1− aCh)./tauACh− aCh./tauACh
” achGate = adenoMult ∗ aCh/maxAch
Adenosine adenoMult = (adeno+ .65)/1.65
” adeno = (tF inal − t)/tF inal
REM remTimer′ = remBool ∗ (−remTimer/tauRemD) + remBool ∗ (1−

remTimer) ∗ 5
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Scope Equation
” tauRemD = tauRemDRange(1)+sign(diff(tauRemDRange))∗ (1−

adeno) ∗ range(tauRemDRange)
” remBool = (t - tLastRemStart) > 30/60 && burstModeBool && rem-

Timer > .9

” burstModeBool = (V <= modeThresh)

Table A.3: Non-Spiking Model Equations

A.2.2 Non-Spiking Model Parameters

Scope Parameter Value Unit
Leak gLeak 0.01 mS/cm2

” Eleak -90 mV
H gH 0.01 mS/cm2

” EH -40 mV
cAMP tauCamp 40/60 hours
” campMult 1 none
” burstVipAvgS 0.15 none
” nCamp 4 none
” campSlowMult 1 none
” tauCampSlow 8 hours
ACh achMult 0.5 none
” maxAch 0.5 none
” tauACh 10/60 hours
Adenosine tFinal 8 hours
REM tauRemDRange [10 50]/60 hours
” modeThresh -76 mV

Table A.4: Non-Spiking Model Parameters
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