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Abstract We investigate firing threshold manifolds in a mathematical model of an
excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory
rebound spiking due to propofol anesthesia and is adapted from McCarthy et al.
(SIAM J. Appl. Dyn. Syst. 11(4):1674–1697, 2012). Propofol modulates the decay
time-scale of an inhibitory GABAa synaptic current. Interestingly, this system gives
rise to rebound spiking within a specific range of propofol doses. Using techniques
from geometric singular perturbation theory, we identify geometric structures, known
as canards of folded saddle-type, which form the firing threshold manifolds. We find
that the position and orientation of the canard separatrix is propofol dependent. Thus,
the speeds of relevant slow synaptic processes are encoded within this geometric
structure. We show that this behavior cannot be understood using a static, inhibitory
current step protocol, which can provide a single threshold for rebound spiking but
cannot explain the observed cessation of spiking for higher propofol doses. We then
compare the analyses of dynamic and static synaptic inhibition, showing how the fir-
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ing threshold manifolds of each relate, and why a current step approach is unable to
fully capture the behavior of this model.

1 Introduction

Excitable neurons are typically at rest, but can fire action potentials in response to
certain forms of stimulation. Many textbooks refer to excitability as an all-or-none
response, i.e. a “subthreshold” synaptic input leads to a small graded postsynaptic
potential while a “superthreshold” input evokes an action potential. One then seeks
to find an action potential threshold, i.e., a particular voltage value that demarcates
the all-or-none response. However, this is a misconception. Using geometric analysis
of neural models, it was FitzHugh [10] who first noticed that a firing threshold, if it
exists, is never a number but a manifold.

Another characteristic feature of neurons is the existence of processes that evolve
on multiple time-scales. The interaction of ionic currents acting on different time-
scales is responsible for the creation of action potentials in neurons. This time-scale
feature leads to mathematical models of neurons often referred to as singular pertur-
bation problems. These models are particularly amenable to analysis using geometric
singular perturbation theory (GSPT) [9, 14] with the specific aim of giving predic-
tions of model dynamics based on singular limit observations. Threshold phenom-
ena are closely related to folded critical manifolds of such singularly perturbed neu-
ral problems. In the famous 2-dimensional singularly perturbed FitzHugh–Nagumo
model, it is the repelling middle branch of the folded (cubic-shaped) critical manifold
that forms the firing threshold manifold in the singular limit. In the full system, this
firing threshold manifold perturbs to a nearby repelling slow manifold.

In higher dimensional models with more than one slow variable, the geometry of
such singularly perturbed problems becomes quite intricate and folded singularities
play a prominent role. Folded singularities lie on a fold of the critical manifold where
stable and unstable branches of this (higher dimensional) manifold meet. Canards [2,
3, 8, 15, 21, 23, 24] are trajectories associated with folded singularities and connect
the stable and unstable branches of the critical manifold. These special solutions have
been identified as important objects in explaining complex oscillatory patterns known
as mixed-mode oscillations (MMOs) [4]. There now exists a substantial amount of lit-
erature on applications of canard theory, and we refer the interested reader to detailed
tables on relevant literature provided in a review on MMOs [5].

Canards form boundaries of different dynamic behavior—they are separatrices by
nature. More importantly, they encode slow time-scales, i.e., temporal information is
reflected in the geometry of a canard. In the two-dimensional case, Izhikevich [13]
clearly highlights the fact that canard trajectories and repelling slow manifolds pro-
vide the best approximation to the firing threshold manifold, hence giving a mathe-
matical “structure” to the famous No Man’s Land by R. FitzHugh [11]. More recently,
Desroches et al. [6] discuss the relationship between canards and excitability thresh-
olds in planar slow-fast systems by identifying inflection lines of the flow.

In the present study, we focus on a higher dimensional neural model and the spe-
cific role of folded saddle canards as firing threshold manifolds. We observe that
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varying one of the slow time-scales changes the boundaries of different dynamic be-
haviors. The slow time-scale is thus encoded in the position of the saddle canard sepa-
ratrix, and so, remarkably, a change in a slow time-scale can be “seen” in a geometric
object. Folded saddle canards have been shown to form firing threshold manifolds in
general Morris–Lecar/FitzHugh–Nagumo type neural models with dynamic current
input [25] and even in a climate model of the so-called “compost-bomb instability”
by Wieczorek et al. [26]. In both, under variation of a particular parameter, the po-
sition of a folded saddle canard varies explaining the excitability properties of the
model.

This geometric observation becomes important when we try to understand changes
in neural dynamics. Neurons constantly sense their environment, e.g., temperature,
acidity or glucose, and they encode fluctuations of these parameters by changing
their ion channel dynamics. The famous Hodgkin–Huxley model of the squid giant
axon [12] incorporates temperature changes through a Q10-temperature factor that
increases the speed of the ion channel gates with increasing temperature. If such
environmental changes are encoded in different speeds of slow ion channels, then we
expect this to be reflected in a change of the firing threshold manifold of the neuron.
Thus, identifying the cause of different neural dynamics through the specific position
of a canard in a singularly perturbed system becomes a valuable diagnostic tool to
understand this phenomenon, and it is the focus of this work.

2 Propofol and Rebound Spiking

As a case study, we investigate the role of the general anesthetic propofol on re-
bound spiking in the central nervous system [17]. Many general anesthetics, includ-
ing propofol, prolong the duration of GABAergic inhibitory postsynaptic currents
(IPSCs), and this action contributes to the behavioral properties of these drugs [1].
Mathematically speaking, propofol changes the slow time-scale of the deactivation of
the GABAa receptor channel. Paradoxically, low doses of propofol causes excitation
rather than sedation. This behavior can already be observed in an isolated single cell
model that receives GABAergic IPSCs [18]. We adapt this propofol neuron model
formulated in [18] slightly in order to more clearly emphasize the role of folded sad-
dle canards in the observed dynamic behavior. We note that only minimal adjustments
have been made in order to preserve the qualitative behavior of the model, namely
the observation of post-inhibitory rebound spiking for a window of GABAa synaptic
time-scale values. The modification consists of two parameter changes, the details
of which are given below. The essential difference is that this modification shifts the
resting membrane potential to a lower, more hyperpolarized, voltage value, allowing
a more uniform separation of time-scales over a range of GABAa time-scale values.
This modification enables us to make full use of the machinery of GSPT. More de-
tails of the relation between the two models can be found in the last section of the
paper.
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The modified propofol model is given as a six-dimensional conductance based
model with Hodgkin–Huxley type dynamics:

cm

dV

dt
= −INa − IK − IL − IM − Isyn + Iapp,

dx

dt
= (x∞(V ) − x)

τx(V )
, x = m,h,n,w,

ds

dt
= −s/τs,

(1)

where the ionic currents are defined as

INa = gNam
3h(V − ENa),

IK = gkn
4(V − Ek),

IL = gL(V − EL),

IM = gmw(V − Ek),

Isyn = gis(V − Ei).

(2)

The membrane currents consist of a fast sodium current, INa, a potassium current,
IK, and a leak current, IL, collectively referred to as the spiking currents, and a slow
muscarinic potassium M-current, IM. This model neuron receives GABAa IPSCs,
here modeled by the current Isyn. The applied current, Iapp, models tonic external
drive.

As is typical in Hodgkin–Huxley type conductance based models, gating activa-
tion and deactivation variables model changes in ion channel conductances. Each take
values restricted within the interval [0,1] reflecting opening probabilities. Here, m,
n, and w are gating activation variables, whereas h is a gating deactivation variable.
Similarly, the variable s is a gating variable for synaptic GABAa receptor channels.
The value of s corresponds to the inhibitory input the neuron receives. In order to
model inhibitory postsynaptic input in the absence of a network of neurons, the vari-
able s is set to s0 = 0.714 at the instantaneous activation of the GABAa receptor
channel. This s value is used as it most closely reflects the dynamic change in synap-
tic input within a network of coupled neurons. The deactivation of this channel is
then simply modeled by (slow) exponential decay with time constant τs ; see Fig. 1
for a comparison of the synaptic gating variable s and the synaptic inhibitory current
Isyn. Since propofol alters the deactivation time-scale of GABAa receptor channels,
we consider τs as our main study parameter.

The explicit forms of the steady state functions, x∞(V ), and the time-scale func-
tions, τx(V ), are given in the Appendix (see Fig. 15 for plots). The model constants
are given in Table 1. Note the two modifications from the original propofol model in
[18]: gi = 4 mS (originally gi = 0.04 mS) and the w-nullcline is shifted by 3 mV in
the direction of negative v.
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Fig. 1 The inhibitory gating variable, s and the inhibitory current, Isyn. The dimensionless modified
propofol model is simulated with inhibition modeled at t = 100. Here τs = 10. a A time-trace of s. The
dynamics of the gating variable s are decoupled from the rest of the system. The gating variable decays
exponentially with decay constant τs where the value of this decay constant is linked to the amount of
propofol present. b A time-trace of Isyn. Recall the synaptic current is given by Isyn = gis(V − Ei). At
the onset of dynamic behavior the synaptic current exhibits a rapid spike followed by an approximately
exponential decay. Note the small kink at approximately t = 180 due to the spike (action potential) in v

Table 1 Propofol neuron and
network model system
parameters

Parameter Value Description

Current balance equation constants

cm 1 µF Membrane capacitance

Iapp 1.81 µA Applied current

Maximal ion channel conductances

gNa 100 mS Voltage-gated Na+ channels

gk 80 mS Voltage-gated K+ channels

gL 0.1 mS Leak channels

gm 2 mS Slow acting voltage-gated K+ channels

gi 4 mS Synaptic GABAa receptor channels

Ionic current reversal potentials

ENa 50 mV Voltage-gated Na+ channels

Ek −100 mV Voltage-gated K+ channels

EL −67 mV Leak channels

Ei −80 mV Synaptic GABAa receptor channels

2.1 Dynamic Inhibition, but not the Current Step Protocol, Leads to Cessation of
Spiking with Increased Inhibition

Classically, an applied current step protocol has been used to understand rebound
spiking [13, 19]. However, as was pointed out in [18], we find here that it is necessary
to consider the dynamic interplay between the inhibitory synaptic current and the
slow potassium M-current in order to explain the observed behavior of spiking within
the modified propofol model (compare Figs. 2 and 3). Within the modified propofol
model, there exists a specific range of values of τs for which the system exhibits
spiking behavior. Outside this range, the system fails to spike (Fig. 2). This matches
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Fig. 2 Rebound spiking with dynamic inhibition. The dimensionless modified propofol model is simu-
lated for four different values of τs , 7, 8, 21, and 22. a τs = 7, b τs = 8, c τs = 21, d τs = 22. Voltage
time-traces are shown within each panel, and the corresponding time-traces of s are shown below. Note
that there exists a range of τs values for which rebound spiking occurs, specifically for τs ∈ [8,21]

well with the experimental observation that only low doses of propofol are able to
create the state of paradoxical excitation [20].

Using a traditional approach, the spiking behavior is studied with a step proto-
col. Here, an applied current is switched on, kept at a constant level, then removed.
By holding Isyn constant, the dynamics in s are lost, thus rendering the step proto-
col system five-dimensional as opposed to the six-dimensional dynamic inhibition
system (1). This step protocol is usually able to reproduce spiking patterns, while
simplifying input dynamics, and thus give insight into the associated spiking behav-
ior. However, applying a step protocol to the present model, we find a single transition
from inactivity to isolated spiking as τs is increased. As τs is further increased a tran-
sition from single spiking to a doublet, and then to a triplet of spikes is observed
(Fig. 3). A maximum of three spikes is observed despite further increases in dura-
tion of inhibition. The step protocol is unable to reproduce a cessation of spiking
for increased synaptic inhibition. It thus becomes apparent that there is a necessary
dynamic mechanism required to yield a specific range of spiking under variation of
synaptic inhibition time-scale.

In the present study, our aim is to identify firing threshold manifolds of the propo-
fol model, both with dynamic and with static inhibition, thus explaining the spiking
behavior under variation of propofol dosage and duration of current step inhibition,
respectively. Key to this aim is the use of GSPT for which a detailed analysis of
time-scales is necessary. This time-scale analysis is presented in Sect. 3. Identifying
multiple time-scales in system (1) implies a splitting of solution trajectories of (1)
into segments of fast and slow dynamics. These fast and slow dynamics are captured
by lower dimensional subsystems, termed the layer and reduced problems, respec-
tively. GSPT uses these lower dimensional subsystems, studied in Sect. 4, to provide
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Fig. 3 Rebound spiking with step inhibition. A classical current step protocol is applied to the dimension-
less modified propofol model. Here, the value of Isyn is held constant at 3.5 × 10−4, roughly mimicking
the slowly decaying portion of the dynamic inhibition current. The protocol is simulated for four differ-
ent durations, 10, 20, 50, and 200 ms. a Duration = 10 ms, b Duration = 20 ms, c Duration = 50 ms,
d Duration = 200 ms. Voltage time-traces are shown within each panel, and the corresponding time-traces
of −Isyn are shown below. As opposed to dynamic inhibition, here we observe no cessation of spiking
for prolonged inhibitory input. On the contrary, we observe an isolated couplet of spikes for prolonged
inhibition, and as the duration of the inhibitory step is further increased, we observe a triplet of spikes

insight into the geometric structures which govern the behavior of the model, and thus
to predict the dynamics of the full (higher dimensional) system (1). Results are given
in Sect. 5 for the case of dynamic inhibition. In particular, we identify a singular ca-
nard of folded saddle type as the separatrix that forms the firing threshold manifold.
In Sect. 6, a similar analysis is carried out for the case of static inhibition; again a
singular limit prediction of the spiking threshold manifold is identified. In both the
dynamic and static inhibition cases, a numerical confirmation of singular limit pre-
dictions is made by calculating the true firing threshold manifolds. This emphasizes
the predictive power of GSPT. We also point out that the firing threshold manifold in
the case of static inhibition is in fact the structure which the firing threshold manifold
in the case of dynamic inhibition approaches in the limit as τs → 0, i.e., in the transi-
tion from slow to fast synaptic GABAa inhibition decay rates. In Sect. 7, we discuss
the original and modified propofol models and their respective analyses. Finally, in
Sect. 8, we make some concluding remarks about canards and excitability in neural
models.

3 Time-Scales and Dimensional Analysis

By observation of the time traces in Figs. 2 and 3, it can be argued that there exists a
multiple time-scales structure within the typical solution trajectories of the modified
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propofol model (1). In order to investigate this behavior further, a dimensional anal-
ysis of the system is performed so as to roughly determine the time-scales on which
each variable evolves.

3.1 The Modified Propofol Model Has Three Distinct Time-Scales

As part of the nondimensionalization procedure, we introduce the three scaling con-
stants, kv , kt , and gmax. The membrane voltage is scaled according to V = vkv , where
kv is the typical range over which the modified propofol model trajectories evolve in
the V -direction. Time is scaled as t = τkt , where kt has units of ms and is deter-
mined below. The ion channel conductances are scaled according to gx = ḡxgmax,
where gmax = max{gNa, gk, gL,gm,gi}. This leads to a dimensionless form of the
modified propofol model (1),

cm

ktgmax

dv

dτ
= −ĪNa − ĪK − ĪL − ĪM − Īsyn + Īapp,

τx

kt

dx

dτ
= (x̃∞(v) − x)

τ̃x(v)
, x = m,h,n,w,

τs

kt

ds

dτ
= −s,

(3)

where the ionic currents are now defined as

ĪNa = ḡNam
3h(v − eNa),

ĪK = ḡkn
4(v − ek),

ĪL = ḡL(v − eL),

ĪM = ḡmw(v − ek),

Īsyn = ḡi s(v − ei).

(4)

The dimensionless steady state functions and time-scale functions are given as
x̃∞(v) = x∞(vkv) and τ̃x(v) = τx(vkv)/τx , respectively. Note that the function
τx(vkv) has been scaled by

τx = min
eK≤v≤eNa

τx(vkv)

in order to yield the dimensionless time-scale function τ̃x(v). Hence, the right-hand
sides in system (3) are all of order O(1) and we can identify roughly the typical
time-scales on the left-hand side:

τv := cm/gmax = 0.01 ms, τm = 0.03 ms (0.05 ms),

τh = 0.25 ms (0.5 ms), τn = 0.3 ms (0.7 ms),

τw = 38 ms (46 ms), τs ∈ [3,100] ms.

(5)
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Note that the τx , x = m,h,n,w values given in parentheses refer to the time-scale
functions for subthreshold v ≤ −0.5. The time-scale on which s evolves is given
directly by the value of τs .

It is now possible, based on the above numbers, to propose a hierarchy of variables
according to the time-scales on which they evolve. We classify the variables v and m

superfast, h and n fast, and w and s slow. Recall the value of τs directly determines
the time-scale on which s evolves. Accordingly, care should be taken in the following
singular perturbation analysis since it may no longer be valid to consider s slow as τs

becomes sufficiently small. (In [18], s is considered a fast variable when τs is small.)
Another way to check time-scales separation is to consider the maximum magni-

tude of the time derivative of each state variable over the course of a full spiking tra-
jectory; see Fig. 16. For τs = 8, we observe that the max{| dx

dt
|} for x = v,m,h,n,w, s

is roughly given by (10.2,6.4,3.3,2.1,0.025,0.089); compare these values with the
inverse of the time-scales given in (5). This suggests that our proposed time-scale
hierarchy with w and s slow is reasonable. As alluded to earlier, the specific insight
of this model is the interplay between the slow M-current and the inhibitory synaptic
current contributing to rebound spiking.

We set kv = 100 mV as a typical voltage scale for a spiking neuron and kt = 1 ms
as a typical fast time-scale of the “fast” variables (n,h). Thus, system (3) becomes

δ
dv

dτ
= −ĪNa − ĪK − ĪL − ĪM − Īsyn + Īapp =: f1(v,m,h,n,w, s),

δ
dm

dτ
= cm

τmgmax
· (m̃∞(v) − m)

τ̃m(v)
=: f2(v,m),

dh

dτ
= kt

τh

· (h̃∞(v) − h)

τ̃h(v)
=: f3(v,h),

dn

dτ
= kt

τn

· (ñ∞(v) − n)

τ̃n(v)
=: f4(v,n),

dw

dτ
= ε

(w̃∞(v) − w)

τ̃w(v)
=: εg1(v,w),

ds

dτ
= ε

(
−τw

τs

s

)
=: εg2(s),

(6)

where δ := cm/(ktgmax) = 0.01 � 1 measures the time-scale separation between the
fast variables (h,n) and the superfast variables (v,m) while ε := kt/τw = 0.025 � 1
measures the time-scale separation between the fast variables (h,n) and the slow
variables (w, s). Thus, the dimensionless system (6) is a singularly perturbed prob-
lem with singular perturbation parameters δ � 1 and ε � 1. This suggests an inher-
ent three time-scales problem. The specific insight of the model and, therefore, the
corresponding analysis should focus on the interplay of the slow M-current and the
inhibitory synaptic current contributing to rebound spiking. We therefore group the
fast and superfast variables together into one “fast” pool and consider system (6) a 4-
fast/2-slow (v,m,h,n)/(w, s) problem. In doing so, we choose ε as the main singular
perturbation parameter and keep δ fixed.
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4 Geometric Singular Perturbation Theory

The identification of distinct fast and slow time-scales in the modified propofol model
allows us to utilize the methods of GSPT to identify the key differences in geomet-
ric structure that account for the differences in spiking dynamics between static and
dynamic inhibition. Thus, we proceed to identify two lower dimensional subsystems
that govern the fast and slow dynamics in order to give us insight into the behavior of
the full higher dimensional system.

4.1 Layer Problem

In the limit as ε → 0 of system (6), we derive the layer problem, which approximates
the fast components (v,m,h,n) of the full system dynamics:

δv̇ = f1(v,m,h,n,w, s),

δṁ = f2(v,m),

ḣ = f3(v,h),

ṅ = f4(v,n),

ẇ = 0,

ṡ = 0,

(7)

where ẋ denotes the derivative of x with respect to the fast time-scale, tfast = τ . Note
that the slow variables (w, s) are considered parameters in the layer problem. An
important geometric object is the critical manifold, which is defined as the set of
equilibria of the layer problem:

S0 = {
(v,m,h,n,w, s) ∈ R

6|f1 = f2 = f3 = f4 = 0
}

= {
(v,m,h,n,w, s) ∈ R

6|f1
(
v, m̃∞(v), h̃∞(v), ñ∞(v),w, s

) = 0
}
. (8)

Note here that f2 = f3 = f4 = 0 can be solved for x = x̃∞(v), x = m,h,n, yield-
ing a single expression for the critical manifold in (v,w, s)-space. This allows for
a projection of the critical manifold into three-dimensional space, shown in Fig. 4.
Under variation of w and s, the two-dimensional critical manifold contains an upper
and lower set of fold or saddle-node bifurcations, F+ and F−, respectively. These
fold lines contain equilibria with a single zero eigenvalue and, in effect, partitions S0
into three surfaces of equilibria. The lowermost surface of S0 is denoted S−

a and is
an attracting surface of equilibria, i.e., all equilibria have four eigenvalues with neg-
ative real parts. The surface bound between the two fold curves, S−

r , is a repelling
surface of equilibria with a single eigenvalue with positive real part. Above the upper
fold lies a second repelling surface of equilibria, S+

r , containing equilibria with two
eigenvalues with positive real part.

Moving further up on the uppermost surface there exists a line of Hopf bifurca-
tions, H+, indicating the boundary between S+

r and a second attracting surface of
equilibria, S+

a . Stable limit cycles emanate from the Hopf line through supercritical
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Fig. 4 Critical manifold in (v,w, s)-space. The critical manifold, S0, is the set of stationary equilibria
within the layer problem, (7). This surface defines the interface between fast and slow dynamics: the layer
problem describes rapid movement toward or away from S0, the reduced problem describes slower dy-
namics on the manifold itself. Within a physiologically relevant domain, S0 has a roughly cubic structure,
consists of upper and lower fold curves, F+ and F− respectively, and three sheets of stationary equilib-
ria. There exists a single lower attracting sheet, S−

a , and upper and lower repelling sheets, S+
r and S−

r ,
respectively. On the uppermost surface lies a line of Andronov–Hopf bifurcations from which a family of
limit cycles emanate. The line of Andronov–Hopf bifurcations lies out of range while the family of limit
cycles terminate within (not shown). Note the shape and stability properties of the critical manifold are
independent of τs

Hopf bifurcations and terminate in homoclinic cycles, which are homoclinic to the
lower fold curve, F− (this bifurcation structure is known as a saddle node on invari-
ant cycles, or SNIC, bifurcation). The Hopf line lies outside the physiological range
of interest (i.e., w < 0); however, the associated limit cycles emanate from outside
this region of interest and terminate just within. Thus, the layer problem contains two
stable attractors; the lower branch of the critical manifold and the set of stable limit
cycles.

4.2 Reduced Problem

The reduced problem describes the dynamics of the slow variables (w, s) on the
critical manifold. Time is first scaled by ε to obtain the following slow system:

εδv′ = f1(v,m,h,n,w, s),

εδm′ = f2(v,m),

εh′ = f3(v,h),

εn′ = f4(v,n),

w′ = g1(v,w),

s′ = g2(s),

(9)

where x′ denotes the derivative of x with respect to the slow time-scale, tslow = ετ . In
the limit as ε → 0 of system (9), we derive the reduced problem, which approximates
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the slow components (w, s) of the full system dynamics

0 = f1(v,m,h,n,w, s),

0 = f2(v,m),

0 = f3(v,h),

0 = f4(v,n),

w′ = g1(v,w),

s′ = g2(s).

(10)

The reduced problem is a two-dimensional differential algebraic equation. Within
(10), the first four equations dictate that the dynamics occur on the critical mani-
fold S0, and the last two equations describe the dynamics of the slow variables w

and s thereon. Note the algebraic equation defining S0, f1(v, m̃∞(v), h̃∞(v), ñ∞(v),

w, s) = 0, can be solved for w = w(v, s) respectively s = s(v,w), but not for v re-
flecting the folded geometry of the manifold; see Fig. 4. Hence, it suffices to study the
flow on the critical manifold S0 in one single coordinate chart, either the (v, s)-chart
or the (v,w)-chart where S0 is defined as a graph.

By definition, the reduced vector field is in the tangent bundle of the critical man-
ifold S0. This condition is encoded in the total time derivative of f1 = 0, i.e.,

f ′
1

(
v, m̃∞(v), h̃∞(v), ñ∞(v),w, s

) = Φ(v,w, s)v′ + ∂f1

∂w
w′ + ∂f1

∂s
s′ = 0, (11)

where, once again, a prime denotes a derivative with respect to slow time and

Φ(v,w, s) := ∂f1

∂v
+ ∂f1

∂m

dm̃∞
dv

+ ∂f1

∂h

dh̃∞
dv

+ ∂f1

∂n

dñ∞
dv

. (12)

Projecting the reduced problem onto the (v, s)-chart gives

−Φ
(
v,w(v, s), s

)
v′ = ∂f1

∂w
g1

(
v,w(v, s)

) + ∂f1

∂s
g2(s),

s′ = g2(s),

(13)

while projecting the reduced problem onto (v,w)-chart gives the equivalent system

−Φ
(
v,w, s(v,w)

)
v′ = ∂f1

∂w
g1(v,w) + ∂f1

∂s
g2

(
s(v,w)

)
,

w′ = g1(v,w).

(14)

Both systems are singular along the fold curves, that is, where Φ(v,w, s) = 0. The
singularity can be removed by rescaling time by −Φ(v,w, s). This yields the desin-
gularized reduced system

v′ = ∂f1

∂w
g1

(
v,w(v, s)

) + ∂f1

∂s
g2(s),

s′ = −Φ
(
v,w(v, s), s

)
g2(s),

(15)
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respectively,

v′ = ∂f1

∂w
g1(v,w) + ∂f1

∂s
g2

(
s(v,w)

)
,

w′ = −Φ
(
v,w, s(v,w)

)
g1(v,w).

(16)

The flow described by (15), respectively (16), is equivalent to that of (13), respec-
tively (14), on the attracting surface, S−

a , and the repelling surface, S+
r , while reversed

on the repelling surface, S−
r . This is due to the rescaling of time by −Φ(v,w, s),

which is positive on S−
a and S+

r and negative on S−
r .

4.2.1 Canards Form a Separatrix for Solutions of the Reduced Problem

Here, we aim to use the geometry of the reduced system in order to identify a mani-
fold that separates the trajectories of the reduced problem into two distinct behaviors:
those that return to an equilibrium or rest state and those that proceed to the fold curve
where the fast dynamics again become important in establishing a spiking solution.
Important to the identification of this manifold is finding folded singularities. We find
a folded saddle equilibrium; the canard solution of which is the relevant manifold that
separates the behavior of the reduced trajectories.

The desingularized system (15), respectively (16), possesses, in general, two types
of equilibria: ordinary singularities and folded singularities,

QO = {
(v,m,h,n,w, s) ∈ S0 \ F |g1(v,w) = g2(s) = 0

}
,

QF =
{
(v,m,h,n,w, s) ∈ F

∣∣∣∂f1

∂w
g1(v,w) + ∂f1

∂s
g2(s) = 0

}
.

(17)

Ordinary singularities (g1 = g2 = 0) are equilibria of the desingularized flow (15),
respectively (16), of the reduced flow, (10), and of the original system, (9). Folded
singularities, (Φ = 0,

∂f1
∂w

g1 + ∂f1
∂s

g2 = 0) on the other hand are generally not equilib-
ria of the reduced flow or the original system.

Within (15), respectively (16), we find three stable nodes, eq1, eq2 and eq3, which
constitute the set of ordinary singularities, QO . Note that eq1 lies on S+

r , eq2 lies on
S−

r and eq3 lies on S−
a . The position and stability of these equilibria are independent

of the value of the parameter τs .
We also find folded singularities on both the upper and lower folds of S0. In con-

trast to the set of ordinary singularities, the position and stability properties of the
folded singularities are highly dependent on τs . Only singularities on the lower fold
curve are expected to influence the dynamics significantly within the reduced prob-
lem as only this fold lies near a physiologically relevant attracting sheet of equilibria.
For all values of τs here considered, there exists a single folded saddle, pfs, on the
lower fold curve of S0 in the physiologically relevant range, s ∈ [0,1]. The local
geometry of a folded saddle singularity is illustrated within Fig. 5. Recall that we re-
verse the direction of the desingularized flow on the repelling middle branch of S0 to
obtain the correct reduced flow (Fig. 5b). We identify singular folded saddle canards
as trajectories on S0, which pass through the folded singularity, pfs, from the attract-
ing critical manifold surface, S−

a , and follow the repelling critical manifold surface,
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Fig. 5 Folded saddle geometry and associated trajectories. The geometry of a generic folded saddle. The
folded saddle (purple) is denoted pfs, while the fold curve (black dashed) is denoted F . a Folded saddle
geometry according to the singular reduced problem. The folded singularity resembles an ordinary saddle
equilibrium with stable and unstable invariant manifolds (red). The trajectories (blue) follow these invari-
ant manifolds moving away from the stable manifold and toward the unstable. b Within the desingularized
reduced problem the dynamics on the repelling surface, Sr , are reversed due to the rescaling of time (desin-
gularization). Trajectories may pass through the folded saddle with non-zero velocity traveling either of
the invariant manifolds. These trajectories correspond to singular canards; the stable invariant manifold to
the true canard and the unstable invariant manifold to the faux canard. c Folded saddle geometry in 3D.
The true canard acts as a separatrix on the attracting surface, Sa . If a trajectory lands within the region
enclosed by the true and faux canards, then it is bound away from the fold curve. However, if the trajectory
lands within the region enclosed by the fold curve and true canard it travels toward the fold curve. Here,
the trajectory “jumps off” due to a blow up in finite time of the desingularized reduced problem, where
subsequent dynamics are dictated by the layer problem. The region within which trajectories necessarily
‘jump off’ the critical manifold is indicated (purple shaded)

S−
r , for a considerable amount of time. Here, we find two canard trajectories; the true

canard, ξt , and the faux canard, ξf . The faux canard is the particular solution tra-
jectory that lies initially on the repelling surface of the manifold, passes through the
folded singularity and onto the attracting surface of the manifold (cf. Figs. 5 and 6).
These canards correspond to the global invariant manifolds of the folded singular-
ity, i.e., ξt = Ws(pfs) and ξf = Wu(pfs). A diagram of the reduced problem, around
F−, is given for τs = 15 in Fig. 6. The basic structure of the reduced problem, under
variation of the parameter τs , is stretched further along the fold curve in the positive
s-direction for larger τs and contracts toward s = 0 for smaller τs values.

The folded saddle canard Ws(pfs) is a separatrix and effectively organizes the
solution trajectories of the reduced problem. Depending on which side of Ws(pfs) the
trajectory is initially, solution trajectories of (15) travel along Ws(pfs) and either meet
the fold curve for s > sfs or move toward, later traveling along, Ws(pfs). In the former
case, the trajectory is no longer accurately approximated by the reduced problem at
the fold due to a finite time blow up of system (15) and subsequent dynamics are
dictated by the layer problem. In the latter case, the solution trajectory terminates at
eq3, prevented by Ws(pfs) from approaching F−. Compare Figs. 5 and 6.
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Fig. 6 The desingularised reduced problem. The desingularized reduced problem, (15), near the lower
fold is projected onto (v, s)-space. Here, τs = 15, although the basic structure shown here is common
to all values of τs analyzed. The lower fold curve, F− (gray dashed), is indicated. The folded saddle,
pfs (purple), lies on the fold curve and gives rise to two invariant manifolds: a stable invariant manifold,
Ws(pfs) (red), and an unstable invariant manifold, Wu(pfs) (blue). The dynamics in (v, s)-space above
F− are reversed, and so the stable and unstable manifolds have reversed stability properties above F− .
Arrows indicate motion along the invariant manifolds. Each manifold terminates at a stable node equilib-
rium, within the reduced flow. The stable manifold terminates at eq2 on S−

a (orange) and the unstable
manifold terminates at eq3 on S−

r (green). Note, if a singular trajectory lands onto the shaded region of
S0, it eventually undergoes a rebound spike. Inset: A magnification of the desingularized reduced problem
near the folded saddle

5 Firing Threshold Manifolds and Dynamic Inhibition

Using information from the reduced and layer flows, we are able to give a singular
limit prediction of post-inhibitory rebound spiking as observed in system (1). Re-
call that the critical manifold is given by the set of equilibria of the layer problem.
Trajectories of the layer problem approach this set along so-called fast fibres. In this
context, the critical manifold forms the set of base points of these fast fibers. Hence,
base points allow for a connection between the flows of the layer and reduced prob-
lems. In particular, the relationship between the base point of the fast fibre through
the initial condition due to inhibition and the singular canard solution determines
whether a trajectory goes on to spike or not; see Fig. 9.

Singular global trajectories are constructed as continuous concatenations of re-
duced problem and layer problem solution trajectories. These concatenated dynam-
ics are presented in (v,w, s)-space in Fig. 7. In modeling post-inhibitory rebound
spiking, the state point is initially set at eq3. This stable node equilibrium simulates
the resting membrane potential of the neuron. To model a pulse of inhibitory synap-
tic input, the trajectory undergoes an instantaneous shift in the s-direction such that
s0 = 0.714. Recall that this shift simulates a GABAergic IPSC within a network of
neurons. From this point, the dynamics of the system take effect. This synaptic in-
put necessarily translates the trajectory (instantaneously) to a position not on S0 due
to the shape of the manifold. Hence, the layer problem describes the initial motion
from this point. Here, the trajectory rapidly approaches an attracting surface of the
critical manifold, invariably S−

a , along a fast fibre through this initial condition. This
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Fig. 7 Singular global trajectories in (v,w, s)-space. The desingularized reduced problem is projected
onto the critical manifold near the lower fold (gray dashed) for τs = 15. Singular solution trajectories
from the layer problem, (7), and the reduced problem, (15), are concatenated to produce singular global
trajectories (black). a From the initial condition (IC), the layer problem dictates that the singular trajectory
falls onto S−

a . Since the singular trajectory base point lies within the region bound between the canard
separatrix and F− , the reduced problem dictates that the trajectory evolves toward the fold curve. At
the fold, due to a singular blow up of the reduced problem, the trajectory undergoes fast oscillations
within the layer problem. This trajectory corresponds to a successful post-inhibitory rebound spike. b The
corresponding system projected onto (v, s)-space. c The three-dimensional system from a different angle.
Note the initial approach of the trajectory onto the critical manifold. d The corresponding system projected
onto (v,w)-space. Note, this view provides a clear delineation between the singular canard and singular
trajectories while the others do not. Hereafter, this projection is used when comparing canards and their
respective trajectories

initial fast motion of the singular solution trajectory toward the manifold is best seen
in Fig. 7c.

The specific base point of the fast fibre through the initial condition acts then as
an initial condition for the reduced system dynamics. This base point is indepen-
dent of τs due to the lack of s dynamics within the layer problem. As determined
above, there exists a general organizing structure within the reduced problem that
determines the subsequent motion of a given trajectory. This structure, termed the
canard separatrix, is the portion of the singular canard, ξt , which lies on S−

a . The
position of the separatrix varies according to the value of τs while the specific base
point on S0 remains constant. If the base point of the solution trajectory falls within
the region on S−

a bound by ξt and F−, i.e., the shaded region in Figs. 5 and 6, then
the trajectory evolves toward the fold curve at which point the dynamics of the tra-
jectory are described by the layer problem. Here, the layer problem dictates that the
trajectory undergoes a (fast) oscillation. We observe that the trajectory oscillates only
once, during which the reduced problem dictates an average shift in the direction of
positive w, and positive s. This shift causes the trajectory to “fall off” the oscilla-
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Fig. 8 Singular limit spiking activity transitions. Singular solution trajectories from the layer problem,
(7), and the reduced problem, (15), are concatenated to produce singular global trajectories (black). The
singular limit predicts a range of τs values for which rebound spiking occurs; τs ∈ [5,24]. The layer
problem dictates that the trajectory has a base point on S−

a independent of τs . Once on the manifold, the
reduced problem dictates that the trajectory remains to one side of the canard separatrix. a The singular
trajectory for τs = 24 in (v,w)-space. Since this trajectory lies to the right of the separatrix, it evolves in
time toward the fold curve, F− (gray dashed), at which point the layer problem describes the onset of
oscillatory behavior. This singular prediction corresponds to a successful rebound spike. b The singular
trajectory for τs = 25 in (v,w)-space. This trajectory lies to the left of the separatrix and evolves in time
toward eq3 (green). This singular prediction corresponds to an unsuccessful rebound spike. An animation
of this figure under variation of τs is given within Additional file 1

tory regime and return to S−
a on the other side of the canard separatrix. According to

the reduced problem, the trajectory finally comes to rest at eq3. This singular global
trajectory corresponds to a successful post-inhibitory rebound spike. If, however, the
base point falls within the region on S−

a bound by ξt and ξf and characterized by
smaller s-values, the solution trajectory is guided along the true and then the faux ca-
nard, coming to rest at eq3 without any fast oscillatory behavior. This singular global
trajectory corresponds to a failure to spike after inhibition. The upper transition of
spiking behavior is illustrated in Fig. 8.
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Fig. 9 Singular limit prediction of spiking. Within the singular limit, the position of the base point deter-
mines whether a singular trajectory results in a rebound spike. We plot the s-value of the trajectory initial
condition (black dashed), which coincides with the base point on the critical manifold. Note that the initial
condition, and thus the base point is independent of τs . For integer values of τs , the s-value at which the
corresponding canard separatrix crosses the v-value of the base point (red/blue points) is plotted. Thus, if
an initial condition lies at a higher s-value than the corresponding canard separatrix (red), the trajectory
falls onto the region of S−

a , for which a trajectory rebound spikes. Otherwise, if the initial condition lies
at a lower s-value than the corresponding canard separatrix (blue), the trajectory does not go on to spike.
A linear interpolation shows the roughly parabolic shape, which gives rise to two rebound spiking tran-
sitions, and thus a single range of τs for which there exists rebound spiking. An animation of this figure
under variation of τs is given within Additional file 1

The Singular Limit Predicts a Window of Rebound Spiking with Increasing GABAa
Inhibition We obtain a singular limit prediction of post-inhibitory rebound spiking
by simply identifying the position of the base point of the initial condition relative
to the position of the singular canard under variation of τs . Figure 9 shows that re-
bound spiking is predicted for τs ∈ [5,24]. This is a good approximation to the range
of rebound spiking within the full six-dimensional system; τs ∈ [8,21]. An addi-
tional movie file illustrates this shifting of the folded-saddle canard and its effect on
spiking behavior in the singular limit [see Additional file 1]. Looking at Fig. 9, the
corresponding shift in the s-value falls within the order of the singular perturbation
parameter ε, as expected by a singular perturbation analysis.

5.1 Nonsingular Canards: The True Threshold Manifolds for Spiking Activity

An important result from GSPT is that a singular canard of folded saddle type per-
turbs to a nearby canard for the full model problem [21]. Consequently, the perturbed
canard forms the true firing threshold manifold of the full system (1). In the follow-
ing, we confirm numerically this firing threshold manifold by calculating the canard.
We note here that due to numerical challenges in calculating canards for systems
in R

n, n > 3 with more than one fast variable, we consider a reduction of the six-
dimensional modified propofol model. Resolving this issue is left as a point of focus
for future work. By setting each of m, h and n to their respective steady-state val-
ues, we derive a three-dimensional reduction of our original system. This reduction
is valid as we have determined that m, h and n evolve on a fast time-scale; this sys-
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tem simply approximating this fact by having these processes act instantaneously.
Within this reduced system the range of τs values for which spiking occurs is similar
to the original with τs ∈ [9,21]; however, the spiking mechanism is partially disabled
and the trajectory is unable to fully reset. At least 2 fast variables are necessary to
provide the necessary repolarization mechanism. We note that this does not affect
sub or perithreshold dynamics, and consequently does not affect the onset of spiking.
Hence, a model reduction to 1 fast variable locally near the fold is justified.

Using the continuation package AUTO [7], and closely following the techniques
outlined in [5], the nonsingular canard, Ξt , is found for τs = 15 and is then continued
in τs . The nonsingular canards of the modified propofol model lie at the intersection
of the attracting and repelling slow manifolds, Sa

ε and Sr
ε , respectively. These mani-

folds correspond to S−
a and S−

r , respectively, for ε > 0. The attracting and repelling
manifolds of the perturbed system are calculated using the homotopy continuation of
solution trajectories to a suitable boundary value problem. Here, we make use of the
normal hyperbolicity of the critical manifold S0. Namely, for small ε > 0, the slow
manifolds Sa

ε and Sr
ε are smooth perturbations of the critical manifold S0, away from

the fold curve F where normal hyperbolicity is lost. A detailed description of slow
invariant manifold calculations and canard detection and continuation is provided for
the self-coupled FitzHugh–Nagumo system within the AUTO manual, demo fnc.

Within Fig. 10, we find that the nonsingular canard accurately forms the boundary
of the spiking and nonspiking behavior within the three-dimensional modified propo-
fol model. We thus confirm that the canard does in fact form the threshold manifold
of spiking activity. This nonsingular analysis confirms our geometric understanding
of the singular limit prediction on both interval boundaries.

6 Firing Threshold Manifolds and the Classical Step Protocol

We have thus far shown that it is necessary to consider the effects of dynamic inhi-
bition in order to understand the cessation of spiking for large τs . Here, we analyze
the current step protocol and seek to understand why only a single transition of activ-
ity can be found. We again use singular perturbation analysis to identify the spiking
threshold manifold. In the singular limit, this manifold is given by the concatena-
tion of the middle branch of the one-dimensional critical manifold and the fast fibre
through a fold point when Iapp = 0 (see Fig. 11).

6.1 Singular Perturbation Analysis

In a singular perturbation analysis similar to that above, we consider four fast vari-
ables, (v,m,h,n), and a single slow variable, w. Note that s dynamics are no longer
considered in a current step protocol; Isyn, and thus dependence on s, is here replaced
by a constant value. In the singular limit, the layer problem defines a one-dimensional
cubic-shaped critical manifold in (v,w)-space. As per the above analysis, only the
lower branch of the critical manifold is an attracting branch; the upper two branches
being unstable. While the shape and stability properties of the critical manifold are
independent of the value of Isyn, the position of the critical manifold is shifted in
the direction of negative w as the synaptic current is set to Isyn = 3.5 × 10−4 dur-
ing inhibition (otherwise Isyn = 0; see Fig. 11). Note that here the critical manifold
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Fig. 10 Nonsingular canards and global trajectories. The true nonsingular canard (blue) for the three-di-
mensional modified propofol model is located for τs = 15. This canard is then continued in τs using a
suitable boundary condition problem. We thus obtain the true canard for any value of τs . This true canard
is compared to the corresponding trajectory (black) of the three-dimensional modified propofol model.
Here, we see that the true nonsingular canard correctly bounds the trajectories into spiking and quiescent
regimes. The folded singularity (purple) and eq3 (green) are indicated. a The nonsingular trajectory and
associated canard for τs = 8 in (v,w)-space. b The nonsingular trajectory and associated canard for τs = 9
in (v,w)-space

for Isyn = 0 is precisely the section defined by {s = 0} through the critical manifold
derived above, i.e., the critical manifold for Isyn = 0 is here given by S0 ∩ {s = 0}.
Once on the critical manifold, dynamics are described by the reduced problem; here
formulated as (10) with s′ = 0 and Isyn adjusted as per the step protocol. The reduced
problem reveals, as before, the existence of three stable node equilibria, one on each
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Fig. 11 Singular limit analysis of step inhibition. A classical current step protocol is applied to the di-
mensionless modified propofol model. A geometric singular perturbation analysis is then performed on
this system. The synaptic current is held at Isyn = 3.5 × 10−4 to simulate inhibition. We compare the
critical manifold for each value of Isyn. On each manifold, the lower branch (magenta) is linearly stable,
the upper branch (gray) linearly unstable. The stable node equilibria (green), eq3 and eq3, and saddle
equilibrium (orange), eq3 are indicated. Initially, the system starts at rest on the node equilibrium of the
Isyn = 0 critical manifold. At the onset of inhibition, the critical manifold is shifted in the direction of
negative w. In the singular limit, the layer problem dictates that the trajectory falls to the lower branch
of the critical manifold. Once on the manifold, the reduced problem dictates that the trajectory slowly
approaches eq3. Once the inhibitory current is removed, the manifold shifts back to its original position,
at which point the layer problem determines that the trajectory shoots upward in the direction of positive
v. In the singular limit, the threshold manifold (blue dashed) is the concatenation of the middle branch of
the critical manifold with the fast fibre through the lower fold of the critical manifold. If the singular limit
trajectory passes this manifold, the singular limit predicts a spike event

branch of the critical manifold. We label the equilibria as before for Isyn = 0, whereas
the equilibria on the shifted critical manifold, i.e., for Isyn = 3.5 × 10−4, are denoted
eqi , i = 1,2,3.

Initially, the state point is held at rest at eq3 with Isyn = 0. At the onset of synaptic
inhibition the critical manifold shifts, and so defines a new stable equilibrium, eq3.
In the singular limit (Fig. 11), the trajectory falls instantaneously, traveling along a
vertical fast fibre, onto the stable branch of the shifted critical manifold. This base
point is thus a projection of eq3 onto the shifted critical manifold. The singular tra-
jectory is then described by the reduced problem, slowly moving along this lower
branch toward eq3. Once synaptic inhibition is removed, the critical manifold shifts
back to its original position. At this point, the layer problem dictates a rapid verti-
cal ascent; the trajectory no longer remains on the critical manifold. The subsequent
dynamics are thus dependent on the length of the applied constant synaptic inhibi-
tion. If the duration of inhibition is relatively short, at the removal of inhibition, the
trajectory simply returns to the now overhead lower branch of the critical manifold.
This corresponds to an unsuccessful post-inhibitory rebound spike. If; however, the
duration of inhibition allows the trajectory time enough to sufficiently approach eq3
then, at the removal of inhibition, the trajectory undergoes a spike in v. This behavior
corresponds to a successful post-inhibitory rebound spike. The associated threshold
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manifold is given as the concatenation of the middle branch of the critical manifold
and the fast fiber through the lower fold point, shown in Fig. 11.

6.1.1 The Singular Limit Predicts Only One Spiking Transition with Increasing
Duration of Inhibition

We here determine that the singular limit predicts the minimum duration of inhibi-
tion such that a trajectory is still able to spike is 6 ms. Since the layer problem acts
instantaneously, this value is determined solely according to the dynamics within the
reduced problem. We simulate the singular reduced problem along the lower branch
of the critical manifold, noting the time at which the singular trajectory passes the w-
value of the lower fold. Note here we use the singular problem to avoid the distortion
of time within the desingularized problem due to a position dependent rescaling of
time in the process of desingularization.

6.2 Nonsingular Firing Threshold Manifold

Here, as expected, the singular limit accurately mimics the behavior of the nonsin-
gular system (compare Figs. 11 and 12). As per the singular limit prediction, the
duration of inhibition determines whether or not a given trajectory spikes in the non-
singular system (Fig. 12). We observe that for short step protocols, the corresponding
trajectory makes only a small excursion down toward the shifted critical manifold
without reaching it. Once synaptic inhibition is released the trajectory returns to eq3
shortly after. In a voltage time-trace, this behavior manifests in a short dip in v before
a return to the resting membrane potential (Fig. 3a). As the step protocol is length-
ened, the trajectory reaches the shifted critical manifold, afterward slowly moving
toward eq3 (Fig. 12a). For synaptic inhibition lasting longer than 14 ms, when inhibi-
tion is removed, the local attractor is found within a fast oscillatory regime. Here, we
observe a small dip in v followed by a spike within the voltage time-trace (Fig. 3b).

6.2.1 A Canard Solution Forms the Nonsingular Separatrix Between Spiking and
Nonspiking Solutions

As per the analysis of dynamic inhibition above, we again find a geometric ob-
ject which demarcates the boundaries of trajectories with different spiking behavior.
Within the nonsingular system the perturbed separatrix is located using a shooting
method, in backward time, from the stable node eq2. As before, the propofol model
used to calculate this separatrix requires the reduction x̃ = x̃∞(v), for x = m,h,n,
in order to allow calculation along an unstable manifold. Here, we see that the non-
singular separatrix forms the boundary of spiking and nonspiking behavior (compare
Figs. 12a and 12b). We note here that the threshold manifold is a canard, as per the
dynamic inhibition analysis. Accordingly, we find that trajectories, which begin ex-
ponentially close to this structure follow it for a significant amount of time, even onto
a repelling portion of the associated critical manifold, such as that in Fig. 12b near the
fold point. The deviation of the perturbed threshold manifold compared with that of
the singular analysis near the critical manifold lower fold is explained by a fold anal-
ysis within singular perturbation theory (compare Figs. 11 and 12). Here, we expect,
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Fig. 12 Non-singular analysis of step inhibition. A classical current step protocol is applied to the dimen-
sionless modified propofol model for 40 ms, and 250 ms. We compare the critical manifolds (v-nullclines)
for Isyn = 0 and Isyn = 3.5 × 10−4. On each manifold, the lower branch (magenta) is linearly stable,
the upper branch (gray) linearly unstable. The corresponding stable node equilibria (green), eq3 and eq3,
and saddle equilibrium (orange), eq2, are indicated. Initially, the system starts at rest at the node equilib-
rium of the Isyn = 0 critical manifold. At the onset of inhibition, the manifold is shifted in the direction
of negative w. The trajectory falls to the lower branch of the shifted manifold, slowly approaching eq3.
Once the inhibitory current is removed, the critical manifold shifts back to its original position, at which
point the trajectory rapidly shoots in the direction of positive v. The threshold manifold for trajectory spik-
ing is indicated (orange dashed). a If the trajectory passes this separatrix, when released from inhibition,
the system spikes. The trajectory is reset with a net shift in the direction of positive w. Upon resetting,
the trajectory lies to the left of the separatrix and falls within the basin of attraction of the stable node
equilibrium. b As the length of inhibition is increased, the trajectory evolves closer toward the shifted
equilibrium position. Here, the trajectory undergoes three spikes before being reset to the left of the sep-
aratrix and finally coming to rest. Note the system used here to calculate the threshold manifold makes
use of the reduction x̃ = x̃∞(v), for x = m,h,n, in order to allow calculation along the repelling middle
branch. Locally (for sub and perithreshold regimes) this reduced system well approximates the modified
propofol model, despite being unable to repolarize after a spiking event



Page 24 of 32 J. Mitry et al.

and indeed find, that the nonsingular manifold perturbs a distance which is O(ε2/3)

from the fold [16, 22]. Hence, we have identified the non-singular threshold manifold
for the current step protocol.

6.2.2 Explanation of a Finite Number of Rebound Spikes as Inhibition Time Is
Increased

As the duration of the step protocol increases, the number of rebound spikes increases
steadily to a maximum of three spikes (compare Figs. 3d and 12b). This observation
is explained by a limited reset in the direction of w during each rebound spike. After
a single spike, as seen in Fig. 12b, the corresponding trajectory remains to the right
of the threshold manifold. Three consecutive rebound spikes are required before the
trajectory returns to an excitable resting state at eq3, having moved past the thresh-
old manifold. At this point, we see that further prolonging the duration of synaptic
inhibition has no additional effect. Once the trajectory is sufficiently close to eq3 dur-
ing synaptic inhibition, regardless of the actual duration of inhibition, the subsequent
dynamics remain unchanged. This results in a maximum number of rebound spikes.
This maximum spike number is encoded within the time-scale separation between
the fast and slow dynamics, i.e., within ε. For fixed ε, the maximum spike number
is set according to the average shift in the slow dynamics per (fast) spike event. As
ε → 0, we observe that the maximum spike number increases as the reset in w re-
duces per spike (work not shown). The singular limit picture confirms this finding,
here showing no net shift in w per spike for ε = 0.

6.3 The Folded Saddle Canards of the Dynamic Protocol Converge Toward the
Spiking Threshold Manifold of the Current Step Protocol as τs → 0

In the modified propofol model, we are able to explain both spiking transitions
through identification of the firing threshold manifold in a 4-fast/2-slow time-scale
separation setting—the threshold manifold being the folded saddle canard. Using
the software package AUTO, we continue this folded saddle canard toward small
τs values. Figure 13 shows the firing threshold of the modified propofol model for
1 ≤ τs ≤ 15 (solid purple) as well as the firing threshold manifold of the current step
protocol (dashed orange). Clearly, the folded saddle canards converge toward the fir-
ing threshold manifold of the current step protocol as τs → 0. We note that as τs → 0
we consider s a fast variable within a GSPT analysis. Given that the s dynamics are
decoupled from the rest of the system, we can easily identify the stable equilibrium
state; s = 0. Thus, in the limit as τs → 0, the system dynamics and, therefore, the fir-
ing threshold manifold more closely represents that of a system where the s-dynamics
rapidly equilibrate to s = 0; i.e., the step protocol where Isyn = 0. Hence, we show the
intimate relationship between the two identified distinct firing threshold manifolds in
the modified propofol model, the folded saddle canard, and the stable manifold of the
saddle equilibrium.
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Fig. 13 Firing threshold manifolds: dynamic vs. static inhibition. Firing threshold manifolds of dynamic
inhibition and static inhibition are here plotted together. Recall the firing threshold manifolds for dynamic
inhibition are the nonsingular canards, here shown for odd values of τs between 1–15 (solid purple). The
firing threshold manifold for static inhibition is the stable manifold of eq2 (orange dashed) shown earlier
in Fig. 12. For decreasing values of τs (darker shades of purple), the nonsingular canards more closely
resemble the static inhibition threshold manifold. Note each system (dynamic or static inhibition) used
to calculate a threshold manifold required the reduction x̃ = x̃∞(v), for x = m,h,n, to allow calculation
along repelling manifolds

7 Comparison of the Original and Modified Propofol Models

The propofol network model presented here is a modified form of the propofol neuron
network model in [18]. The propofol model is the same 6–dimensional system of
equations (Eqs. (1) and (2)) as the modified propofol model but with two parameter
changes. The modified propofol model is phenomenologically similar to the original
propofol model, which shows rebound spiking only for values of τs between 8 and
48 ms (compared with the modified model: 8–21 ms) and was also examined using
geometric singular perturbation theory [18]. In particular, a canard of folded saddle
type was identified as a firing threshold manifold. In Sects. 7.1–7.3, we detail our
reasons for modifying the original propofol model.

7.1 Modifying the Propofol Model: Increasing the Time-Scale Separation Allows
for a more Accurate Singular Limit Trajectory Approximation

Both models, the original and the modified propofol model, have a global stable equi-
librium that plays the role of the resting membrane potential. We note that this stable
equilibrium (v-value of −63.6 mV) of the original propofol model lies quite close to
the fold curve, F−. Additionally, we observe that the fold-curve F− has an almost
constant v-value (v ≈ −63 mV along F−). Given the fairly uniform structure of the
critical manifold S0 in the direction of s near F−, the position of the stable equi-
librium ensures a proximity of the post-inhibitory initial condition and thus of the
post-inhibitory dynamics to F−.

This proximity to a fold structure is known to affect the time-scale separation
of variables within a singularly perturbed problem. More specifically, near normally
hyperbolic equilibria, fast and slow dynamics within a singularly perturbed system
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evolve as O(1) and O(ε), respectively. Within a neighborhood of a fold structure,
at which normal hyperbolicity is lost, the original fast/slow splitting does not persist
and the fast and slow dynamics evolve predominantly on an intermediate time-scale
O(ε1/3) and a slow time-scale O(ε) [22]. This explains why we find an appreciable
deviation between the singular and nonsingular trajectories in the original propofol
model (Fig. 14a).

Thus, we propose the modified propofol model of post-inhibitory rebound spik-
ing. This modified propofol model retains the basic phenomenological and geometric
features of the propofol model while the position of the stable equilibrium has been
moved away from the fold curves. This modification allows for a more marked sep-
aration of time-scales during the early dynamics, and thus describes a system more
accurately approximated by a singular limit prediction (Fig. 14b).

To formulate the modified propofol model the steady-state function w∞(v) is
shifted by 3 mV in the direction of negative v. This results in a lower global stable
equilibrium point (v-value of −65.8 mV), and thus a lower resting membrane po-
tential. However, this modification also makes it more difficult to generate a rebound
spike. In order to counter this effect, the value of the maximal synaptic conductance
gi is increased so as to effectively increase the strength of synaptic inhibition. Here,
we set gi to 4 mS, i.e., ḡi = 0.04.

As previously noted, the behavior of the modified propofol model is similar to
the original propofol model in that post-inhibitory rebound spiking occurs only for
intermediate values of τs (Fig. 2). Thus, by our modifications, we have not lost the
rebound-spiking “window” and we have gained a more accurate geometrical repre-
sentation of nonsingular trajectories by their singular limit. However, even more im-
portantly, the modified model allows us to use the same fast/slow decomposition to
predict the spiking transition at both interval boundaries (τs small and τs large). This
was not possible in the original propofol model. We describe this in more detail next.

7.2 Discrepancies Between the Singular and Nonsingular Trajectories in the
Propofol Model

Although the singular limit of the original propofol model provides a good approxi-
mation for cessation of spiking when τs is large (52 ms for the singular limit versus
48 ms for nonsingular trajectories), when we compare singular global trajectories
with the nonsingular trajectories of the propofol model, we find that the geometry of
the singular limit trajectories does not accurately predict the geometry of the non-
singular trajectories (Fig. 14). In particular, the early dynamics of the singular limit
trajectories do not accurately mimic those of the nonsingular trajectories using the
proposed slow/fast splitting. As mentioned before, this poor predictive power of ge-
ometric singular perturbation theory can be explained by the proximity of the trajec-
tory near the fold F−, throughout its evolution. The time-scale splitting of the “fast”
(v,m,h,n) and “slow” (w, s) variables away from the fold F− does not hold any-
more in a neighborhood of the fold F−. Without this time-scale splitting, and thus
the identification of a singularly perturbed problem, regular GSPT analysis does not
yield a reliable prediction of system dynamics.

We thus conclude that while the singular limit analysis still provides a good pre-
diction for the large τs spiking transition in the original propofol model, the particular
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Fig. 14 Singular and nonsingular trajectories of the original and modified propofol model. Singular global
trajectories (black, solid) are here overlaid with their corresponding nonsingular propofol model trajecto-
ries (black, dashed). Here, we compare the original and modified propofol model solution trajectories and
singular limit predictions for τs = 20 ms (spiking occurs in both models for this value). a Within the orig-
inal propofol model, solution trajectories are kept in close proximity to the lower fold curve. Near the
fold, normal hyperbolicity is lost and the time-scale separation between fast and slow variables breaks
down. Hence, the singular trajectory does not accurately describe the fast approach onto the critical man-
ifold. This results in a substantial deviation of solution trajectories from the singular limit prediction of
subsequent slow dynamics; note, for example, the discrepancy between the s-values at which the non-sin-
gular and singular trajectories spike. b The modified propofol model solution trajectories are no longer
constrained near the fold curve, and thus the time-scale separation is preserved. This results in a more
accurate singular limit prediction of nonsingular trajectories

geometry of this system distorts the time-scale separation, and thus requires an alter-
native approach of geometric singular perturbation theory using a blow-up analysis
along the fold-curve [22] followed by a blow-up of the folded saddle singularity [21,
24]. This two-step approach is left for future work.
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7.3 In the Original Propofol Model, Considering s Slow or Fast Does not Explain
the Spiking Transition when τs Is Small

In the original propofol model, considering s as a slow variable cannot predict the
spiking transition when τs is small; see Fig. 10 in [18]. Similarly, considering s as a
fast variable cannot predict the spiking transition when τs is small either; see expla-
nation on p. 13 in [18]. Hence, using geometric singular perturbation theory in the
context of either a 4-fast/2-slow time-scales or a 5-fast/1-slow time-scales separation
does not predict the transition between spiking and nonspiking when τs is small in the
original propofol model. The answer to this “riddle” about the appropriate dynamics
of s for small τs in the original propofol model lies in an intermediate time-scale of
order O(εα), 0 < α < 1. Such an intermediate time-scale reveals itself when using
a (cylindrical) blow-up analysis of the fold, F− [22, 24]. As mentioned above, we
leave this blow-up analysis of the original propofol model for future work.

7.4 Comparison of Geometric Structures in the Original and Modified Propofol
Model when τs Is Small

In [18], the authors use a 5-fast/1-slow time-scale separation to examine the geometry
of the spiking transition when τs is small. Interestingly, this results in the same rest-
ing state (Isyn = 0) singular limit geometry as the 4-fast/1-slow time-scale problem
used here to analyze the current step protocol (Fig. 12). This makes sense because
considering s fast allows the manifold {s = 0} to be reached on a fast time-scale,
and thus the system reduces to the same 4-fast/1-slow time-scale problem used here.
As shown in [18], when s is considered one of the fast variables, as in the orig-
inal propofol model, the stable manifold of eq2 in Fig. 12 approximates well the
threshold for spiking. Recall that this is shown in Fig. 13, i.e., as τs → 0 the canard
separatrix is well approximated by the firing threshold manifold of the current step
protocol. Hence, by changing parameters to allow the construction via geometric sin-
gular perturbation theory of canards, this paper clarifies the underlying geometry of
the original propofol model.

8 Concluding Remarks

An important feature of most physiological systems is that they evolve on multi-
ple time-scales. The theory of differentiable dynamical systems for two time-scales
(slow/fast) has a successful history in explaining a wide range of physiological be-
havior such as electrical spiking and bursting in neurons [13]. Complex pattern gen-
eration in such slow/fast systems is almost exclusively related to loss of normal hy-
perbolicity of invariant critical manifolds, which is associated with bifurcation sets in
the fast subsystem. In particular, folded critical manifolds are ubiquitous in such sys-
tems (see, e.g., Fig. 4). Canard theory deals exactly with these slow/fast time-scales
systems where loss of normal hyperbolicity occurs, and its theory is applicable to
problems with arbitrary dimensions [2, 3, 8, 15, 16, 21, 23, 24]. A recent success
story of canard theory is that it provides an explanation for mixed-mode oscilla-
tions (MMOs), a frequently observed mix of small and large amplitude oscillation
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patterns in slow/fast time-scale physiological models. Canards of folded node and
folded saddle-node type play a key role in explaining these patterns. The interested
reader is referred to the current review on MMOs [5], and the extensive reference list
to applications therein.

Canard theory provides also a new direction for understanding transient dynam-
ics of biological systems that have multiple time-scales. The propofol model studied
here is a prime example. We demonstrate here the use of canard theory to explain the
dynamics of rebound spiking for a specific range of propofol doses. In the context
of neuronal excitability, we identify canards of folded saddle type as firing threshold
manifolds. It is remarkable that dynamic information such as the temporal evolution
of an external drive (GABAergic inhibition in this study) is encoded in the location of
an invariant manifold—the canard. It is the variable positioning of the canard separa-
trix that explains the observed rebound spiking for a specific range of propofol doses
(Fig. 9). The same role of folded saddle canards as firing threshold manifolds was
recently identified in a class of Morris–Lecar/FitzHugh–Nagumo type models with
dynamic external drive [25]. Since mathematical models of physiological phenomena
(both neuronal and nonneuronal) frequently show abrupt transitions in behavior and
have dynamics which are encoded by multiple time-scales, the methods of GPST and
canard theory are likely applicable to a much broader range of problems within the
biological sciences.
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Appendix: Steady State and Time-Scale Functions

The formulations for the steady state functions (m∞(V ),h∞(V ),n∞(V )) and time-
scale functions (τm(V ), τh(V ), τn(V )) are taken from [18]. The steady state function
and time-scale function for w are here modified. These functions take the respective
forms

x∞(V ) = αx(V )

αx(V ) + βx(V )
,

τx(V ) = αx(V )

αx(V ) + βx(V )

(18)
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Fig. 15 Gating variable steady-state and time-scale functions. a The four gating variable steady-state
functions, m∞(V ) (red), h∞(V ) (orange), n∞(V ) (green), and w∞(V ) (blue). These functions give the
opening probability of their respective ion channels for a given value of the membrane voltage, V . b The
four gating variable time-scale functions, τm(V ) (red), τh(V ) (orange), τn(V ) (green), and τw(V ) (blue).
These functions describe the rough time-scales on which each gating variable evolves for a given value of
the membrane voltage. c A closer look at panel b reveals that τm(V ), τh(V ) and τn(V ) evolve on much
smaller time-scales than τw(V )

for x = m,h,n,w. The constituent functions αx(V ) and βx(V ) are given by

αm(V ) = 0.32(V + 54)

1 − exp[−(V + 54)/4] ,

βm(V ) = −0.28(V + 27)

1 − exp[(V + 27)/5] ,

αh(V ) = 0.128 exp
[−(V + 50)/18

]
,
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Fig. 16 Variable time-scales. The time derivatives of each variable are plotted over a spike event; v (red),
m (orange), h (green), n (blue), w (purple), and s (gray). We find that there is a clear order of magnitude
difference between the time derivatives of the variables v, m, h, n, and w, s. Inset: A magnification of the
derivative time-traces; here the relative magnitudes of dw

dt
and ds

dt
can be seen

βh(V ) = 4

1 + exp[−(V + 27)/5] ,
(19)

αn(V ) = 0.032(V + 52)

1 − exp[−(V + 52)/4] ,

βn(V ) = 0.5 exp
[−(V + 57)/40

]
,

αw(V ) = 3.209 · 10−4(V + 33)

1 − exp[−(V + 33)/9] ,

βw(V ) = 3.209 · 10−4(V + 33)

1 − exp[(V + 33)/9] .

The gating variable steady-state and time-scale functions are plotted in Fig. 15. The
time derivative of each variable over the course of a single spike is given in Fig. 16.
This figure indicates the actual time-scale separation and is used, in part, to justify a
time-scale splitting as detailed in Sect. 3.

References

1. Bai D, Pennefather PS, MacDonald JF, Orser BA: The general anesthetic propofol slows deactiva-
tion and desensitization of GABAA receptors. J Neurosci 1999, 19(24):10635-10646.

2. Benoît E: Systèmes lents-rapides dans R
3 et leur canards. Astérisque 1983, 109–110:159-191.

3. Benoît E, Callot J, Diener F, Diener M: Chasse au canard. Collect Math 1981, 31–32:37-119.
4. Brøns M, Kaper T, Rotstein H: Introduction to focus issue: mixed mode oscillations: experiment,

computation, and analysis. Chaos 2008, 18:015101.
5. Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga H, Wechselberger M: Mixed-mode

oscillations with multiple time-scales. SIAM Rev 2012, 54:211-288.



Page 32 of 32 J. Mitry et al.

6. Desroches M, Krupa M, Rodrigues S: Inflection, canards and excitability threshold in neuronal
models. J Math Biol 2013, 67(4):989-1017.

7. Doedel EJ: AUTO: a program for the automatic bifurcation analysis of autonomous systems.
Congr Numer 1981, 30:265-284.

8. Dumortier F, Roussarie R: Canard cycles and center manifolds. Mem Am Math Soc 1996, 121:577.
9. Fenichel N: Geometric singular perturbation theory. J Differ Equ 1979, 31:53-98.

10. FitzHugh R: Mathematical models of threshold phenomena in the nerve membrane. Bull Math
Biophys 1955, 7:252-278.

11. FitzHugh R: Impulses and physiological states in theoretical models of nerve membrane. Biophys
J 1961, 1(6):445-466.

12. Hodgkin AL, Huxley AF: A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol 1952, 117:500-544.

13. Izhikevich EM: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
Cambridge: MIT Press; 2007.

14. Jones CKRT: Geometric singular perturbation theory. In Dynamical Systems; 1995:44-120.
[Springer Lecture Notes Math., vol 1609.]

15. Krupa M, Szmolyan P: Relaxation oscillations and canard explosion. J Differ Equ 2001, 174:312-
368.

16. Krupa M, Szmolyan P: Extending geometric singular perturbation theory to nonhyperbolic
points—fold and canard points in two dimensions. SIAM J Math Anal 2001, 33(2):286-314.

17. McCarthy MM, Brown EN, Kopell N: Potential network mechanisms mediating electroencephalo-
graphic beta rhythm changes during propofol-induced paradoxical excitation. J Neurosci 2008,
28(50):13488-13504.

18. McCarthy MM, Kopell N: The effect of propofol anaesthesia on rebound spiking. SIAM J Appl
Dyn Syst 2012, 11(4):1674-1697.

19. Rush ME, Rinzel J: The potassium A-current, low firing rates and rebound excitation in
Hodgkin–Huxley models. Bull Math Biol 1995, 57:899-929.

20. Schwartz RS, Brown EN, Lydic R, Schiff ND: General anesthesia, sleep, and coma. N Engl J Med
2010, 363(27):2638-2650.

21. Szmolyan P, Wechselberger M: Canards in R
3. J Differ Equ 2001, 177:419-453.

22. Szmolyan P, Wechselberger M: Relaxation oscillations in R
3. J Differ Equ 2004, 200:69-104.

23. Wechselberger M: Existence and bifurcation of canards in R
3 in the case of a folded node. SIAM

J Appl Dyn Syst 2005, 4:101-139.
24. Wechselberger M: À propos de canards (Apropos canards). Trans Am Math Soc 2012, 364:3289-

3309.
25. Wechselberger M, Mitry J, Rinzel J: Canard theory and excitability. In Random and Nonau-

tonomous Dynamical Systems in the Life Sciences; 2013, in press.
26. Wieczorek S, Ashwin P, Luke CM, Cox PM: Excitability in ramped systems: the compost-bomb

instability. Philos Trans R Soc A, Math Phys Eng Sci 2011, 467(2129):1243-1269.


	Excitable Neurons, Firing Threshold Manifolds and Canards
	Abstract
	Introduction
	Propofol and Rebound Spiking
	Dynamic Inhibition, but not the Current Step Protocol, Leads to Cessation of Spiking with Increased Inhibition

	Time-Scales and Dimensional Analysis
	The Modified Propofol Model Has Three Distinct Time-Scales

	Geometric Singular Perturbation Theory
	Layer Problem
	Reduced Problem
	Canards Form a Separatrix for Solutions of the Reduced Problem


	Firing Threshold Manifolds and Dynamic Inhibition
	The Singular Limit Predicts a Window of Rebound Spiking with Increasing GABAa Inhibition
	Nonsingular Canards: The True Threshold Manifolds for Spiking Activity

	Firing Threshold Manifolds and the Classical Step Protocol
	Singular Perturbation Analysis
	The Singular Limit Predicts Only One Spiking Transition with Increasing Duration of Inhibition

	Nonsingular Firing Threshold Manifold
	A Canard Solution Forms the Nonsingular Separatrix Between Spiking and Nonspiking Solutions
	Explanation of a Finite Number of Rebound Spikes as Inhibition Time Is Increased

	The Folded Saddle Canards of the Dynamic Protocol Converge Toward the Spiking Threshold Manifold of the Current Step Protocol as taus ->0

	Comparison of the Original and Modified Propofol Models
	Modifying the Propofol Model: Increasing the Time-Scale Separation Allows for a more Accurate Singular Limit Trajectory Approximation
	Discrepancies Between the Singular and Nonsingular Trajectories in the Propofol Model
	In the Original Propofol Model, Considering s Slow or Fast Does not Explain the Spiking Transition when taus Is Small
	Comparison of Geometric Structures in the Original and Modified Propofol Model when taus Is Small

	Concluding Remarks
	Competing Interests
	Authors' Contributions
	Acknowledgements
	Appendix: Steady State and Time-Scale Functions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


