1,211,836 research outputs found

    Moduli spaces of hyperbolic 3-manifolds and dynamics on character varieties

    Full text link
    The space AH(M) of marked hyperbolic 3-manifold homotopy equivalent to a compact 3-manifold with boundary M sits inside the PSL_2(C)-character variety X(M) of \pi_1(M). We study the dynamics of the action of Out(\pi_1(M)) on both AH(M) and X(M). The nature of the dynamics reflects the topology of M. The quotient AI(M)=AH(M)/Out(\pi_1(M)) may naturally be thought of as the moduli space of unmarked hyperbolic 3-manifolds homotopy equivalent to M and its topology reflects the dynamics of the action

    Modeling Concept Combinations in a Quantum-theoretic Framework

    Full text link
    We present modeling for conceptual combinations which uses the mathematical formalism of quantum theory. Our model faithfully describes a large amount of experimental data collected by different scholars on concept conjunctions and disjunctions. Furthermore, our approach sheds a new light on long standing drawbacks connected with vagueness, or fuzziness, of concepts, and puts forward a completely novel possible solution to the 'combination problem' in concept theory. Additionally, we introduce an explanation for the occurrence of quantum structures in the mechanisms and dynamics of concepts and, more generally, in cognitive and decision processes, according to which human thought is a well structured superposition of a 'logical thought' and a 'conceptual thought', and the latter usually prevails over the former, at variance with some widespread beliefsComment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1311.605

    A Quantum-Conceptual Explanation of Violations of Expected Utility in Economics

    Get PDF
    The expected utility hypothesis is one of the building blocks of classical economic theory and founded on Savage's Sure-Thing Principle. It has been put forward, e.g. by situations such as the Allais and Ellsberg paradoxes, that real-life situations can violate Savage's Sure-Thing Principle and hence also expected utility. We analyze how this violation is connected to the presence of the 'disjunction effect' of decision theory and use our earlier study of this effect in concept theory to put forward an explanation of the violation of Savage's Sure-Thing Principle, namely the presence of 'quantum conceptual thought' next to 'classical logical thought' within a double layer structure of human thought during the decision process. Quantum conceptual thought can be modeled mathematically by the quantum mechanical formalism, which we illustrate by modeling the Hawaii problem situation, a well-known example of the disjunction effect, and we show how the dynamics in the Hawaii problem situation is generated by the whole conceptual landscape surrounding the decision situation.Comment: 9 pages, no figure

    An Efficient and Accurate Car-Parrinello-like Approach to Born-Oppenheimer Molecular Dynamics

    Full text link
    We present a new method which combines Car-Parrinello and Born-Oppenheimer molecular dynamics in order to accelerate density functional theory based ab-initio simulations. Depending on the system a gain in efficiency of one to two orders of magnitude has been observed, which allows ab-initio molecular dynamics of much larger time and length scales than previously thought feasible. It will be demonstrated that the dynamics is correctly reproduced and that high accuracy can be maintained throughout for systems ranging from insulators to semiconductors and even to metals in condensed phases. This development considerably extends the scope of ab-initio simulations.Comment: 4 pages, 3 figures; Accepted by Phys. Rev. Lett. for publicatio

    Inhibition causes ceaseless dynamics in networks of excitable nodes

    Full text link
    The collective dynamics of a network of excitable nodes changes dramatically when inhibitory nodes are introduced. We consider inhibitory nodes which may be activated just like excitatory nodes but, upon activating, decrease the probability of activation of network neighbors. We show that, although the direct effect of inhibitory nodes is to decrease activity, the collective dynamics becomes self-sustaining. We explain this counterintuitive result by defining and analyzing a "branching function" which may be thought of as an activity-dependent branching ratio. The shape of the branching function implies that for a range of global coupling parameters dynamics are self-sustaining. Within the self-sustaining region of parameter space lies a critical line along which dynamics take the form of avalanches with universal scaling of size and duration, embedded in ceaseless timeseries of activity. Our analyses, confirmed by numerical simulation, suggest that inhibition may play a counterintuitive role in excitable networks.Comment: 11 pages, 6 figure

    Ab-Initio Molecular Dynamics

    Full text link
    Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.Comment: 13 pages, 3 figure
    corecore