12 research outputs found

    DIVE on the internet

    Get PDF
    This dissertation reports research and development of a platform for Collaborative Virtual Environments (CVEs). It has particularly focused on two major challenges: supporting the rapid development of scalable applications and easing their deployment on the Internet. This work employs a research method based on prototyping and refinement and promotes the use of this method for application development. A number of the solutions herein are in line with other CVE systems. One of the strengths of this work consists in a global approach to the issues raised by CVEs and the recognition that such complex problems are best tackled using a multi-disciplinary approach that understands both user and system requirements. CVE application deployment is aided by an overlay network that is able to complement any IP multicast infrastructure in place. Apart from complementing a weakly deployed worldwide multicast, this infrastructure provides for a certain degree of introspection, remote controlling and visualisation. As such, it forms an important aid in assessing the scalability of running applications. This scalability is further facilitated by specialised object distribution algorithms and an open framework for the implementation of novel partitioning techniques. CVE application development is eased by a scripting language, which enables rapid development and favours experimentation. This scripting language interfaces many aspects of the system and enables the prototyping of distribution-related components as well as user interfaces. It is the key construct of a distributed environment to which components, written in different languages, connect and onto which they operate in a network abstracted manner. The solutions proposed are exemplified and strengthened by three collaborative applications. The Dive room system is a virtual environment modelled after the room metaphor and supporting asynchronous and synchronous cooperative work. WebPath is a companion application to a Web browser that seeks to make the current history of page visits more visible and usable. Finally, the London travel demonstrator supports travellers by providing an environment where they can explore the city, utilise group collaboration facilities, rehearse particular journeys and access tourist information data

    Deployment issues for multi-user audio support in CVEs

    Get PDF

    Supporting a Closely Coupled Task between a Distributed Team: Using Immersive Virtual Reality Technology

    Get PDF
    Collaboration and teamwork is important in many areas of our lives. People come together to share and discuss ideas, split and distribute work or help and support each other. The sharing of information and artefacts is a central part of collaboration. This often involves the manipulation of shared objects, both sequentially as well as concurrently. For coordinating an efficient collaboration, communication between the team members is necessary. This can happen verbally in form of speech or text and non-verbally through gesturing, pointing, gaze or facial expressions and the referencing and manipulation of shared objects. Collaborative Virtual Environments (CVE) allow remote users to come together and interact with each other and virtual objects within a computer simulated environment. Immersive display interfaces, such as a walk-in display (e.g. CAVE), that place a human physically into the synthetic environment, lend themselves well to support a natural manipulation of objects as well a set of natural non-verbal human communication, as they can both capture and display human movement. Communication of tracking data, however, can saturate the network and result in delay or loss of messages vital to the manipulation of shared objects. This paper investigates the reality of shared object manipulation between remote users collaborating through linked walk-in displays and extends our research in [27]. Various forms of shared interaction are examined through a set of structured sub tasks within a representative construction task. We report on extensive user-trials between three walk-in displays in the UK and Austria linked over the Internet using a CVE, and demonstrate such effects on a naive implementation of a benchmark application, the Gazebo building task. We then present and evaluate application-level workarounds and conclude by suggesting solutions that may be implemented within next-generation CVE infrastructures

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Scaleable audio for collaborative environments

    Get PDF
    This thesis is concerned with supporting natural audio communication in collaborative environments across the Internet. Recent experience with Collaborative Virtual Environments, for example, to support large on-line communities and highly interactive social events, suggest that in the future there will be applications in which many users speak at the same time. Such applications will generate large and dynamically changing volumes of audio traffic that can cause congestion and hence packet loss in the network and so seriously impair audio quality. This thesis reveals that no current approach to audio distribution can combine support for large number of simultaneous speakers with TCP-fair responsiveness to congestion. A model for audio distribution called Distributed Partial Mixing (DPM) is proposed that dynamically adapts both to varying numbers of active audio streams in collaborative environments and to congestion in the network. Each DPM component adaptively mixes subsets of its input audio streams into one or more mixed streams, which it then forwards to the other components along with any unmixed streams. DPM minimises the amount of mixing performed so that end users receive as many separate audio streams as possible within prevailing network resource constraints. This is important in order to allow maximum flexibility of audio presentation (especially spatialisation) to the end user. A distributed partial mixing prototype is realised as part of the audio service in MASSIVE-3. A series of experiments over a single network link demonstrate that DPM gracefully manages the tradeoff between preserving stable audio quality and being responsive to congestion and achieving fairness towards competing TCP traffic. The problem of large scale deployment of DPM over heterogeneous networks is also addressed. The thesis proposes that a shared tree of DPM servers and clients, where the nodes of the tree can perform distributed partial mixing, is an effective basis for wide area deployment. Two models for realising this in two contrasting situations are then explored in more detail: a static, centralised, subscription-based DPM service suitable for fully managed networks, and a fully distributed self-organising DPM service suitable for unmanaged networks (such as the current Internet)

    Scaleable audio for collaborative environments

    Get PDF
    This thesis is concerned with supporting natural audio communication in collaborative environments across the Internet. Recent experience with Collaborative Virtual Environments, for example, to support large on-line communities and highly interactive social events, suggest that in the future there will be applications in which many users speak at the same time. Such applications will generate large and dynamically changing volumes of audio traffic that can cause congestion and hence packet loss in the network and so seriously impair audio quality. This thesis reveals that no current approach to audio distribution can combine support for large number of simultaneous speakers with TCP-fair responsiveness to congestion. A model for audio distribution called Distributed Partial Mixing (DPM) is proposed that dynamically adapts both to varying numbers of active audio streams in collaborative environments and to congestion in the network. Each DPM component adaptively mixes subsets of its input audio streams into one or more mixed streams, which it then forwards to the other components along with any unmixed streams. DPM minimises the amount of mixing performed so that end users receive as many separate audio streams as possible within prevailing network resource constraints. This is important in order to allow maximum flexibility of audio presentation (especially spatialisation) to the end user. A distributed partial mixing prototype is realised as part of the audio service in MASSIVE-3. A series of experiments over a single network link demonstrate that DPM gracefully manages the tradeoff between preserving stable audio quality and being responsive to congestion and achieving fairness towards competing TCP traffic. The problem of large scale deployment of DPM over heterogeneous networks is also addressed. The thesis proposes that a shared tree of DPM servers and clients, where the nodes of the tree can perform distributed partial mixing, is an effective basis for wide area deployment. Two models for realising this in two contrasting situations are then explored in more detail: a static, centralised, subscription-based DPM service suitable for fully managed networks, and a fully distributed self-organising DPM service suitable for unmanaged networks (such as the current Internet)

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore