715 research outputs found

    Survey and comparison of petroleum well electrologging tools

    Get PDF
    The principles used in the design of electrologging tools used in the petroleum industry are reviewed. Examples of tools and methods are taken from Gearhart Industries, Schlumberger Ltd and Western Atlas Ltd who are the three major electrologging companies accounting for 93% of the world market share. The survey and comparison of the tools in each of the category used both during the exploration and development stage of a well and reservoir are made. The results are presented and discussed. Furthermore an insight to the future of this industry is presented

    Study on Low-Power Image Processing for Gastrointestinal Endoscopy

    Get PDF

    Modeling and applications of the focus cue in conventional digital cameras

    Get PDF
    El enfoque en cámaras digitales juega un papel fundamental tanto en la calidad de la imagen como en la percepción del entorno. Esta tesis estudia el enfoque en cámaras digitales convencionales, tales como cámaras de móviles, fotográficas, webcams y similares. Una revisión rigurosa de los conceptos teóricos detras del enfoque en cámaras convencionales muestra que, a pasar de su utilidad, el modelo clásico del thin lens presenta muchas limitaciones para aplicación en diferentes problemas relacionados con el foco. En esta tesis, el focus profile es propuesto como una alternativa a conceptos clásicos como la profundidad de campo. Los nuevos conceptos introducidos en esta tesis son aplicados a diferentes problemas relacionados con el foco, tales como la adquisición eficiente de imágenes, estimación de profundidad, integración de elementos perceptuales y fusión de imágenes. Los resultados experimentales muestran la aplicación exitosa de los modelos propuestos.The focus of digital cameras plays a fundamental role in both the quality of the acquired images and the perception of the imaged scene. This thesis studies the focus cue in conventional cameras with focus control, such as cellphone cameras, photography cameras, webcams and the like. A deep review of the theoretical concepts behind focus in conventional cameras reveals that, despite its usefulness, the widely known thin lens model has several limitations for solving different focus-related problems in computer vision. In order to overcome these limitations, the focus profile model is introduced as an alternative to classic concepts, such as the near and far limits of the depth-of-field. The new concepts introduced in this dissertation are exploited for solving diverse focus-related problems, such as efficient image capture, depth estimation, visual cue integration and image fusion. The results obtained through an exhaustive experimental validation demonstrate the applicability of the proposed models

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Holography

    Get PDF
    Holography - Basic Principles and Contemporary Applications is a collection of fifteen chapters, describing the basic principles of holography and some recent innovative developments in the field. The book is divided into three sections. The first, Understanding Holography, presents the principles of hologram recording illustrated with practical examples. A comprehensive review of diffraction in volume gratings and holograms is also presented. The second section, Contemporary Holographic Applications, is concerned with advanced applications of holography including sensors, holographic gratings, white-light viewable holographic stereograms. The third section of the book Digital Holography is devoted to digital hologram coding and digital holographic microscopy

    An FPGA Based Hardware Accelerator for Remote Surveillance Cameras

    No full text
    The Blackeye II camera, produced by Kinopta, is used for remote security, conservation and traffic flow surveillance. The camera uses an image sensor to acquire photographs which undergo image processing and JPEG encoding on a microprocessor. Although the microprocessor performs other tasks, it is the processing and encoding of images that limit the frame rate of the camera to 2 frames per second (fps). Clients have requested an increase to 12.5 fps while adding more image processing to each photograph. The current microprocessor-based system is unable to achieve this. Custom digital logic systems perform well on processes that naturally form a pipeline, such as the Blackeye II image processing system. This project develops a digital logic system based on an FPGA to receive images from the image sensor, perform the required image processing operations, encode the images in JPEG format and send them on to the microprocessor. The objective is to implement a proof of concept device based upon the Blackeye II’s existing hardware and an FPGA development board. It will implement the proposed pipeline including one example of an image processing operation. A JPEG encoder is designed to process the 752 × 480 greyscale photographs from the image processor in real time. The JPEG encoder consists of four stages: discrete cosine transform (DCT), quantisation, zig-zag buffer and Huffman encoder. The DCT design is based upon the work of Woods et al. [1], which is improved on. An analysis of the relationship between precision and accuracy in the DCT and quantisation stages is used to minimise the system’s resource requirements. The JPEG encoder is successfully tested in simulation. Input and output stages are added to the design. The input stage receives data from the image sensor and removes breaks in the data stream. The output stage must concatenate the data from the JPEG encoder and transmit it to the microprocessor via the microprocessor’s ISI (image sensor interface) peripheral. An image sharpening filter is developed and inserted into the pipeline between the input and JPEG encoder. Because remote surveillance cameras are battery powered, the minimisation of power consumption is a key concern. To minimise power consumption a mechanism is introduced to track those modules in the pipeline that are in use at any time. Any not in use are paused by gating the module’s clock source. Once the system is complete and tested in simulation it is loaded into hardware. The FPGA development board is attached to the image sensor board and microprocessor board of the Blackeye II camera by a purpose-built breakout board. Plugging the microprocessor board into a PC provides a live stream of images proving the successful operation of the FPGA system. The project objectives were exceeded by increasing the frame rate of the Blackeye II to 20 fps, which will not decrease with additional image processing operations. The project was viewed as a success by Kinopta, who have committed to its further development

    Profile-directed specialisation of custom floating-point hardware

    No full text
    We present a methodology for generating floating-point arithmetic hardware designs which are, for suitable applications, much reduced in size, while still retaining performance and IEEE-754 compliance. Our system uses three key parts: a profiling tool, a set of customisable floating-point units and a selection of system integration methods. We use a profiling tool for floating-point behaviour to identify arithmetic operations where fundamental elements of IEEE-754 floating-point may be compromised, without generating erroneous results in the common case. In the uncommon case, we use simple detection logic to determine when operands lie outside the range of capabilities of the optimised hardware. Out-of-range operations are handled by a separate, fully capable, floatingpoint implementation, either on-chip or by returning calculations to a host processor. We present methods of system integration to achieve this errorcorrection. Thus the system suffers no compromise in IEEE-754 compliance, even when the synthesised hardware would generate erroneous results. In particular, we identify from input operands the shift amounts required for input operand alignment and post-operation normalisation. For operations where these are small, we synthesise hardware with reduced-size barrel-shifters. We also propose optimisations to take advantage of other profile-exposed behaviours, including removing the hardware required to swap operands in a floating-point adder or subtractor, and reducing the exponent range to fit observed values. We present profiling results for a range of applications, including a selection of computational science programs, Spec FP 95 benchmarks and the FFMPEG media processing tool, indicating which would be amenable to our method. Selected applications which demonstrate potential for optimisation are then taken through to a hardware implementation. We show up to a 45% decrease in hardware size for a floating-point datapath, with a correctable error-rate of less then 3%, even with non-profiled datasets

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Expression, functions, and new target genes of the transcription factor SOX10 in human melanoma

    Get PDF
    corecore