142 research outputs found

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    K4-free graphs as a free algebra

    Get PDF
    Graphs of treewidth at most two are the ones excluding the clique with four vertices (K4) as a minor, or equivalently, the graphs whose biconnected components are series-parallel. We turn those graphs into a finitely presented free algebra,answering positively a question by Courcelle and Engelfriet, in the case of treewidth two. First we propose a syntax for denoting these graphs: in addition to parallel composition and series composition, it suffices to consider the neutral elements of those operations and a unary transpose operation. Then we give a finite equationa lpresentation and we prove it complete: two terms from the syntax are congruent if and only if they denote the same graph

    The monadic second-order logic of graphs I. Recognizable sets of Finite Graphs

    Get PDF
    The notion of a recognizable sef offinite graphs is introduced. Every set of finite graphs, that is definable in monadic second-order logic is recognizable, but not vice versa. The monadic second-order theory of a context-free set of graphs is decidable. 0 19W Academic Press. Inc. This paper begins an investigation of the monadic second-order logic of graphs and of sets of graphs, using techniques from universal algebra, and the theory of formal languages. (By a graph, we mean a finite directed hyperedge-labelled hypergraph, equipped with a sequence of distinguished vertices.) A survey of this research can be found in Courcelle [ 111. An algebraic structure on the set of graphs (in the above sense) has been proposed by Bauderon and Courcelle [2,7]. The notion of a recognizable set of finite graphs follows, as an instance of the general notion of recognizability introduced by Mezei and Wright in [25]. A graph can also be considered as a logical structure of a certain type. Hence, properties of graphs can be written in first-order logic or in secondorder logic. It turns out that monadic second-order logic, where quantifications over sets of vertices and sets of edges are used, is a reasonably powerful logical language (in which many usual graph properties can be written), for which one can obtain decidability results. These decidability results do not hold for second-order logic, where quantifications over binary relations can also be used. Our main theorem states that every definable set of finite graphs (i.e., every set that is the set of finite graphs satisfying a graph property expressible in monadic second-order logic) is recognizable. * This work has been supported by the “Programme de Recherches Coordonntes: Mathematiques et Informatique.

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page

    Establishing a Connection Between Graph Structure, Logic, and Language Theory

    Get PDF
    The field of graph structure theory was given life by the Graph Minors Project of Robertson and Seymour, which developed many tools for understanding the way graphs relate to each other and culminated in the proof of the Graph Minors Theorem. One area of ongoing research in the field is attempting to strengthen the Graph Minors Theorem to sets of graphs, and sets of sets of graphs, and so on. At the same time, there is growing interest in the applications of logic and formal languages to graph theory, and a significant amount of work in this field has recently been consolidated in the publication of a book by Courcelle and Engelfriet. We investigate the potential applications of logic and formal languages to the field of graph structure theory, suggesting a new area of research which may provide fruitful

    Monadic second-order definable graph orderings

    Full text link
    • …
    corecore