
Establishing a Connection Between Graph Structure, Logic, and Language Theory

by

Alexis Hunt

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2015

c© Alexis Hunt 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144148542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The field of graph structure theory was given life by the Graph Minors Project of Robertson and Seymour,
which developed many tools for understanding the way graphs relate to each other and culminated in
the proof of the Graph Minors Theorem. One area of ongoing research in the field is attempting to
strengthen the Graph Minors Theorem to sets of graphs, and sets of sets of graphs, and so on.

At the same time, there is growing interest in the applications of logic and formal languages to graph
theory, and a significant amount of work in this field has recently been consolidated in the publication
of a book by Courcelle and Engelfriet.

We investigate the potential applications of logic and formal languages to the field of graph structure
theory, suggesting a new area of research which may provide fruitful.

iii

Acknowledgements

To properly thank everyone who got me to where I am today, I would have to embark on another project
as long as this thesis. The collective effort of everyone who helped me be ready to write it cannot be
understated. At the same time, there is one person who really helped me go from ready to write a thesis
to having written one: my supervisor. Thank you, Bruce, for getting me through this.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures vii

List of Symbols viii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 2
1.3 A Note About Abstract Expressions . 2

2 Well-Quasi-Ordering 4
2.1 Well-Quasi-Orders . 4
2.2 Derived WQOs . 5
2.3 Proving Existence of WQOs . 6

3 Graph Basics 8
3.1 Graphs . 8
3.2 Minors . 8
3.3 Labelings . 10
3.4 Tree-Decompositions . 11
3.5 Graph Minors Structure . 12

4 Abstract Algebras 13
4.1 Signatures & Terms . 13
4.2 Equational Sets . 14
4.3 Recognizable Sets . 16
4.4 The Filtering Theorem . 18

5 The HR Graph Algebra 19
5.1 Definition . 19
5.2 Relationship to Tree-width . 20

6 Tree Generators 22
6.1 Tree-Generators . 22
6.2 Ordering Tree-Generators . 24
6.3 Ideals of Labeled Trees . 25

7 Monadic Second-Order Logic 29
7.1 The Logic . 29
7.2 Representing Graphs . 31
7.3 Definable Graph Properties . 31

v

8 The Recognizability Theorem 33
8.1 Disjoint Union of Structures . 34
8.2 Quantifier-Free Operations . 34
8.3 Many-Sorted Algebras . 36
8.4 The Algebra of Relational Structures . 36
8.5 Completing the Proof . 37
8.6 Application to the HR algebra . 38

9 Tree-Generators and HR Equation Systems 41
9.1 HR Algebras for Labeled Graphs . 41
9.2 From Tree-Generators to HR . 41
9.3 From HR Systems to Tree-Generators . 43
9.4 Augmented Tree-Generators . 43

10 Describing Ideals with HR Equations 45
10.1 Minors of Connected Graphs . 45
10.2 Ideal Graphs . 46
10.3 Defining Ideals . 47
10.4 Cone Tree-width . 48
10.5 Second-Order Ideals . 49
10.6 Ideals of Bounded Obstruction-Width . 49

11 Conclusion 51

References 52

Index 54

vi

List of Figures

1 Example of a graph collapse . 9
2 Example of a Robertson Chain . 10
3 Example of a tree-decomposition . 11
4 A nice tree-decomposition version of Figure 3 . 12
5 Example of parallel composition . 20
6 Visualization of a tree-generator . 23
7 Visualization of a tree generated by a tree-generator . 23
8 Example of a cycle with a pendant vertex . 48

vii

List of Symbols

Notation Description Page
List

cl↓(X) Downwards closure of X 4
↓(Ω) Downwards-closed subsets of Ω 4
cl↑(X) Upwards closure of X 4
↑(Ω) Set of upwards-closed subsets of Ω 4

br(v) Branch rooted at v 8

chldrn(v) Children of v 8
4G Cone of G 45
fG Apex of 4G 45
G4 Cone graphs 46

G \ E Deletion of a set of edges 8
G \ e Deletion of an edge 8
G / E Contraction of a set of edges 8
G / e Contraction of an edge 8

F∪ Powerset signature of F 14
fga(G) Graph obtained from G by forgetting the a-

source, if any
19

forb(F) Ideal with obstruction set F 4

G Collection of all graphs 8
S(G) Set of all subgraphs of G 8
Gconn Collection of connected graphs in G 45

ι(G) Set of trees ideal-generated by G 23

JS Set of all finite graphs with sources in N 19
JSt Sorted algebra of graphs with sources 38

L(S) Least solution to S 15
L (v) Vertex label of v 10
LRT (Q) Set of rooted trees fully labeled from Q 26

MOD(φ) Set of all models of φ 30
M/∼ Quotient algebra of M 17
MS2 Monadic second-order logic of all RG formulas 31

obs(C) Obstruction set of C 4
ow(I) Obstruction-width of I 48

P(M) Powerset algebra of M 14
Pα(S) Generalized powerset of S 5

r(T) Root vertex of T 8

viii

Notation Description Page
List

rena↔b(G) Graph obtained from G by renaming the a- and
b-sources

19

RG Relational signature of graphs 31

STR Algebra of relational signatures 37
STR(R) Collection of all R-structures 29
STRpres Quasi-domain preserving subalgebra of STR 37

T(F) Set of all terms over F 14
τ(G) Set of trees generated by G 23
T G(Ω) Set of Ω-tree-generators 22
TG(G) Set of sub-tgs of G 22
TGα(G) Set of local sub-tgs of G at α 22
tw(G) Tree-width of G 11

valM(t) Value of t in M 13

⊗ Tree-generator self-reference 22
⊗n Tree-generator recursive reference 43

H �I G Componentwise minor relation 46
H �L G label-respecting minor relation 10
H �Lr G label-respecting rooted topological minor rela-

tion
10

H �Lt G label-respecting topological minor relation 10
H �m G Minor relation 8
G1 �G2 Parallel composition of G1 and G2 19
H �r G Rooted topological minor relation 9
H �t G Topological minor relation 9
S ∼hL T Logical congruence of height h 37
X �α Y Powerset ordering 5
G1 �τ G2 Tree-generator generated set relation 24

ix

1 Introduction

1.1 Motivation

The field of graph structre theory has grown considerably as a result of the Graph Minors Project of
Robertson and Seymour. Robertson and Seymour explored the structural properties and relationships
of graphs, and the fruits of their research have led to advances in other fields, one of which is the study
of fixed-parameter tractable algorithms in complexity theory.

Possibly the most famous result to come out of the project was the proof of Wagner’s Conjecture,
now called the Robertson-Seymour Theorem or simply the Graph Minor Theorem. The theorem states
that, under the minor relation, the collection of finite graphs is well-quasi-ordered [17]. That graphs are
a well-quasi-order implies a number of distinct yet equivalent properties, but perhaps the most striking
and well-known of these is that any minor-closed family of graphs is characterized by finitely minimal
excluded graphs.

Many interesting consequences follow from the Graph Minor Theorem. It is independently known
that, given a fixed graph G, there exists an O(n2)-time algorithm to test whether a graph H with n
vertices contains G as a minor [5]. It follows that for any minor-closed family of graphs, there is an
O(n2)-time algorithm to test membership in that class.

Explicitly writing such an algorithm requires, however, a characterization of the excluded minors,
and it is not always easy to find the excluded minors of a class of graphs. One well-studied minor-closed
class of graphs, called the Y∆Y -reducible graphs, are known to have over 68 billion excluded minors and
it is not known whether or not there are more [20]. There is no general way to find the set of excluded
minors of a class of graphs [3].

The Graph Minor Theorem provides deep insights into the structure of graphs, but it also naturally
raises further questions about the ordering properties of graphs. One can consider the ideals in the
powerset of the set of graphs—the minor-closed families—and order them by the inclusion relation. If
these form a well-quasi-order, then the process can be repeated with second-order ideals, and so on ad
nauseam. (Strictly speaking, this is not correct: there is no set of all graphs and we must instead choose
a representative of each isomorphism class to get a set. The additional pedanticism bears little benefit,
however.)

The Graph Minor Theorem is built upon a result of Kruskal which shows that the trees are well-quasi-
ordered under the topological minor relation (which is sometimes called homeomorphic embedding and
which coincides with the minor relation for graphs with maximum degree at most 3) [7]. Nash-Williams
showed that they are in fact better-quasi-ordered, in order to extend the result to infinite trees [12]. The
concept of better-quasi-ordering unfortunately does not admit nearly as simple a description as that of
well-quasi-ordering, but it is equivalent to, after suitable definitions for limit ordinals, the ideals of order
up to the first uncountable ordinal being well-quasi-ordered [10]. Thomas later used category theory to
extend the result to apply to larger classes of graphs. In particular, for any k, the class of graphs with
tree-width at most k is bqo [19].

Bqo is a more desirable property than wqo, because it is much more easily preserved by various
operations, and it is easier to perform inductions as a result. For instance, a simple counterexample due
to Rado shows that there exist instances of wqos whose ideals are not wqo, but the same cannot happen
for a bqo. In the context of graph minors, this leads us to an important problem: are the (finite) graphs
better-quasi-ordered by the minor relation? If not, where in the taking of ideals does this fail?

The purpose of this work is to study the structure of graphs using techniques from language theory
and logic. The intersection of these fields and graph theory is a growing area of study. Engelfriet and
Courcelle recently published a book [2] outlining many major results from their work in the area, and
it is this book which will serve as the basis for a lot of the present work. A large part of the work in
graph grammars consists of defining context-free graph equation systems (essentially a form of grammar,
although perhaps not as a language theorist might see it) and characterizing the sets defined by them.
Of particular interest are the HR equation systems, which are capable of defining any minor-closed class
of graphs of bounded tree-width.

The interest in this area comes from unpublished work of Christian, Richter, and Salazar. They

1

proved a novel well-quasi-ordering result on the ideals of labeled trees by recursive structures called
tree-generators. It will be shown that a tree-generator is in fact a form of HR equation system that
generates a particular ideal, and this observation forms the main motivation of this work. The interest in
such a generalization arises from the fact that any minor-closed class of graphs with bounded tree-width
can be generated by an HR equation system. This may be an avenue to find an alternate proof that the
ideals of minor-closed classes of bounded tree-width are well-quasi ordered.

Unforunately, as we will see, this is not so easy, as there are HR equation systems for which this fails.
Thus the present objective will be to generalize the result to some particular classes of HR grammars,
and determining how such generalizations apply in particular to minor-closed families of graphs. In
reality the bulk of this work is devoted to exposition, to tie the two branches of graph theory together,
and only baby steps are taken towards this objective.

1.2 Overview

We begin with exposition of the various fields and works which have led to this thesis. In Section 2, we
will cover the basics of quasi-ordering and well-quasi-ordering, which form the basis for the questions we
wish to answer. In Section 3, we cover our definitions for graphs and existing results in graph structure,
particularly those of Robertson & Seymour.

We then move away from the foundations to the work of Courcelle and Engelfriet with Sections 4 and
5, where we first present the abstract algebraic systems needed to understand the subsequent definition
of the JS algebra on graphs, a focal point of this work.

In Section 6, we present the results of Christian et al. pertaining to tree-generators, built from a more
understandable definition and with errors corrected from the original presentation. We then return to
the logical world of Courcelle and Engelfriet in Section 7, where we present a small bit of the framework
for doing formal logic with graphs.

Section 8 is devoted to a proof of the Recognizability Theorem, a powerful and deep theorem which
links the algebras defined in Section 4 to the formal logic of Section 7.

Finally, we will explore potential new directions. In Section 9, we will explore the connections between
tree-generators and the HR grammars, and in particular how the former arise as a special case of the
latter. Then, in Section 10, we will investigate ways to represent graph ideals in terms of formal logic.

The present author’s novel contributions to the area are found in Section 6, where defects in original
proofs were repaired and the entire work recast in fashion that is easier to work with, and in Sections 9
and 10, which are original research except where otherwise noted. The remainder of this thesis is
predominantly an elaboration of existing work.

1.3 A Note About Abstract Expressions

In much of modern mathematics, we make use of abstract expressions with variables without much of a
second thought. The notation f(x) = x2 + 3 is understood to mean that f is a function that squares its
argument and adds 3 to it. But it may not be immediately clear what x2 + 3 is, or whether it indeed
has any independent existence as a mathematical object.

There is a school of logical thought which holds that x2 + 3 is, on its own, merely a string in some
language with no inherent meaning. It is purely a syntactic construct. Mathematically, we can treat
this as an object on its own. By assigning meaning to the symbols used (x, 2, +, and 3), we can express
the semantics of the mathematical objects denoted by the expression.

One does not have to look far to see where the dichotomy proves useful. The definition f(x) = x2 +3
does not properly define a function because essential information is missing, most notably the domain of
the function. f(x) would be well-defined on any ring, for instance, and on many other objects besides.
Some mathematicians would probably consider it an abuse of notation to view f(x) as a function defined
on the space of 1× 1 matrices over the real numbers, yet they would have no difficulty interpreting 3 as
actually meaning the matrix [3].

By formally treating syntax and semantics separately, it becomes possible to talk about x2 + 3 as
an independent mathematical object, without relying on any additional context. Additional context

2

can be supplied as necessary and, importantly, it is possible to assign multiple different contexts as is
convenient. If we let E be the expression x2 + 3, then we could write fR(x) = E as a function on the
real numbers, and fN(x) = E as a function on the natural numbers. We could even define f1×1(x) = E
by officially interpreting 3 as meaning [3].

In this thesis, we will make use of this distinction in two different places. The first is with algebraic
terms (Definition 4.3), and the second is with logical formulas (Definition 7.3). These correspond to
expressions, which compute a value, and statements, which express a truth or a falsehood.

Unfortunately, to properly treat these syntactical objects, there is a very great deal of technical
machinery that is required. First off, every syntactic expression needs an associated set of variables.
The expression x2 + 3 is a different object when it is in the variables {x} from when it is in the variables
{x, y}—this is analogous to how the codomain of a function is a significant part of its definition. As an
example, two functions f : R → R and f ′ : R → C are always distinct mathematical objects, even if
f(x) = f ′(x) for all x ∈ R.

Secondly, the process of substituting one expression into another is fraught with difficulties. If we
have E1 = x+ y, E2 = 3x, and E3 = x2, what do we get by replacing x with E2 and y with E3 in E1?
Is it 3x+ x2 or 3x+ y2? In other words, are the x in E2 and E3 the same variable or not?

This question becomes difficult in first-order logic, where a quantification can change the meaning of
a sentence. If S1 = x ≥ 3 and S2 = ∀x.φ(x) is a logical statement, and we substitute S1 for φ in S2, the
result is ∀x.x ≥ 3, and now the variable x is captured in the quantification.

In this work, we shall gloss over the technical details, as we do not require their full versatility and
precision. Terms and formulas will be substituted in a way that is hopefully clear from the context. It
will be assumed that, unless otherwise indicated, all variables are distinct and no substitution leads to
a change of meaning as in these examples. This assumption carries with it no loss of generality, as we
can always rename variables in such a way that there is no repeated occurrences of the same variable in
different terms and thus no change of meaning.

3

2 Well-Quasi-Ordering

We begin with a brief survey of results and definitions pertaining to well-quasi-orders. Questions relating
to the quasi-ordering of graphs drove a lot of the development of graph structure theory; this is expanded
in more detail in Section 3.

Readers familiar with the field will likely recognize most of the results, however, some of the notation
and terminology used in this thesis is novel.

This section presents only a brief introduction to the rich theory of well-quasi-orders such as is
necessary to understand the rest of the thesis. Readers interested in learning more are directed to
Kruskal’s 1970 survey paper [8], which is still an excellent, if slightly dated, resource for the basics in
the area.

2.1 Well-Quasi-Orders

Definition 2.1. A relation Ω = (S,�) is a quasi-order (sometimes called a preorder) if it is reflexive
and transitive.

We write s ≺ t to mean that s � t but t 6� s.
Let Ω = (S,�) be a quasi-order. A subset C ⊆ S is upwards-closed if, for all x ∈ C and y ∈ S, if

x � y, then y ∈ C.
We denote by ↑(Ω) the set of upwards-closed subsets of S. We also denote by cl↑(X) the upwards

closure of X, which is the intersection of all upwards-closed sets that contain X.
Analagously, C is downwards-closed if, for all x ∈ C and y ∈ S, if y � x, then y ∈ C. We also say

that C is an ideal if C is downwards-closed and we have the corresonding sets ↓(Ω) and cl↓(X).

Definition 2.2. Let Ω = (S,�) be a quasi-order. An infinite sequence (si)
∞
i=1 in Ω is ascending , strictly

ascending , descending , or strictly descending if, respectively, for every i, si � si+1, si ≺ si+1, si+1 � si,
or si+1 ≺ si.

The sequence is bad if, for all 1 ≤ j < i, sj 6� si.
A quasi-order Ω = (S,�) is a well-quasi-order or wqo if it contains no bad sequences.

Theorem 2.3 (Higman, [4]). Let Ω = (S,�) be a quasi-order. Then the following are equivalent:

1. Ω is wqo.

2. Every non-empty subset of Ω contains at least one, but finitely many, minimal elements.

3. Every infinite sequence in Ω has an infinite ascending subsequence.

4. There are no infinite strictly descending sequences in Ω and no infinite sets of pairwise incomparable
elements.

5. If s1, s2, . . . is an infinite sequence in Ω, then there exist 1 ≤ j < i such that sj � si.

6. Every upwards-closed subset of Ω is the closure of a finite subset.

7. The upwards-closed subsets of Ω satisfy the ascending chain condition (every ascending sequence
I1 ⊆ I2 ⊆ I3 ⊆ . . . is eventually constant).

Corollary 2.4. Let Ω = (S,�) be a wqo and let C be an upwards-closed set in Ω. Then the set F of
minimal elements of C is the unique smallest set F ′ such that C = cl↑(F

′).

Proof. Suppose that F ′ is such that cl↑(F
′) = C. Since each element of F is minimal in C, F ⊆ F ′. It

follows that F is the smallest such set.

Definition 2.5. Let C ⊆ S be an ideal. Let F be the minimal set such that S \ C = cl↑(F).
F is called the obstruction set of C (sometimes also the hforbidden or excluded elements of C). We

write F = obs(C) and C = forb(F).

4

2.2 Derived WQOs

As one might expect, finite Cartesian products of wqos are themselves wqo:

Proposition 2.6. Let Ω1 = (S1,�1) and Ω2 = (S2,�2) be well-quasi-orders. Then Ω1×Ω2 = (S1×S2,�
) is a well-quasi-order, where (x1, x2) � (y1, y2) if and only if x1 �1 x2 and y1 �2 y2.

Of critical interest to us are orderings on the recursive powersets.

Definition 2.7. Let Ω = (S,�) be a quasi-order and let α be an ordinal. Given the usual notation that
P(S) is the power set of S, we begin by defining general powersets Pα(S) recursively:

1. P0(S) = S.
2. If α is the successor of β, then Pα(S) = P(Pβ(S)).
3. If α is a limit ordinal, then Pα(S) =

⋃
β<α Pβ(S).

We now wish to define, for each ordinal α, �α on Pα(S). Note that if δ is a limit ordinal and α < δ,
then Pα(S) ⊆ Pδ(S). It is more convenient to recursively define �δ first, and then define �α by taking
the restriction of �δ to Pα(S).

Definition 2.8. We set �0=�.
Let α be a limit ordinal. For X,Y ∈ Pα(S), there are least ordinals β and γ such that X ∈ Pβ(S)

and Y ∈ Pγ(S). Note that β and γ will always be either successors or 0, by the definition of Pβ(S). If
α is a successor, it may be the case that α is equal to either or both of β and γ.

We define �α recursively on β and γ:

1. If β > γ, then X 6�α Y .
2. If β = 0 and γ = 0, then X �α Y if and only if X � Y .
3. If β = 0 and γ > 0, then X �α Y if and only if there is a y ∈ Y such that X �α y.
4. If β � γ and β 6= 0, then X �α Y if and only if for every x ∈ X, there is some y ∈ Y such that
x �α y.

Finally, we define Pα(Ω) to be the quasi-order (Pα(S),�α).

Lemma 2.9. �α is well-defined when α is a successor ordinal.

Proof. Let δ and ε be limit ordinals with α < δ ≤ ε. For any X,Y ∈ Pα(S), when we define X �δ Y ,
we will pick β and γ to be at most α, since X,Y ∈ Pα(S). We will pick the same β and γ when defining
X �ε Y , and so, by transfinite induction on β and γ, the definitions coincide up to α.

The intent of this definition is to effectively reduce the question X �α Y to a question about each of
the members of X. Some difficulty arises in the limit ordinal case, because we may have, for instance,
that X ∈ P1(S) while Y ∈ P2(S). The effect of the definition is to “unwrap” the levels of each ordinal
successively until we make it back to S. Alternatively, we are comparing the recursive union of X and
Y , with the caveat that if X is wrapped deeper in powersets than Y is, then we have X 6�α Y .

Once we have established this definition for the limit ordinal case, it is easier to define the successor
ordinal case in terms of this, rather than creating a separate, but equivalent, definition for successor
ordinals.

Lemma 2.10. If Pα(Ω) is wqo, and β < α, then Pβ(Ω) is wqo.

Proof. Suppose that (si)
∞
i=1 is a bad sequence in Pβ(Ω). Let γ be the largest limit ordinal less than or

equal to α, or 0 if no such ordinal exists. Then α = γ + n for some n < ω.
Then for each i, let s′i be si with n layers of singleton sets around it (so that e.g. if n = 3 and si = x,

then s′i = {{{x}}}). Thus, s′i ∈ α, and then (s′i)
∞
i=1 is a bad sequence in Pα(Ω).

5

As noted above, a better-quasi-order, or bqo, is a strengthening of well-quasi-ordering to uncountable
analogues of sequences. There are a number of equivalent definitions, including combinatorial and
topological ones, but the one of greatest relevance for this present work is as follows: a bqo is a quasi-
order Ω such that Pω1(Ω) is well-quasi-ordered [10].

We will also need a powerset ordering on the set of all finite subsets of the underlying set.

Proposition 2.11. Let Ω = (S,�) be a quasi-order. Then Ω(<ω) = (S(<ω),�1) is a quasi-order, where
S(<ω) is the set of all finite subsets of S.

This next result allows us to limit our consideration of higher levels of quasi-ordering to the downwards-
closed ideals, and with a simpler relation on them:

Proposition 2.12. Let Ω = (S,�) be a quasi-order. Then P(Ω) is a wqo if and only if I = (↓(Ω),⊆)
is.

Proof. Suppose that P(Ω) is a wqo, and let (Ii)∞i=1 be a sequence in I . Since ↓(Ω) ⊆ P(S), there exist
i > j ≥ 1 such that Ij �1 Ii. So for each x ∈ Ij , there exists y ∈ Ii such that x � y. Since Ii is
downwards-closed, x ∈ Ii, and hence Ij ⊆ Ii. Thus I is a wqo.

Conversely, suppose that I is a wqo, and let (Xi)
∞
i=1 be a sequence in P(Ω). Define I1, I2, . . . in I

by Ii = cl↓(Xi). By the hypothesis, we can find i > j ≥ 1 such that Ij ⊆ Ii. Then, for any x ∈ Xj ,
it must be that x ∈ Ii, so there must be y ∈ Xi such that x � y. It follows that Xj �1 Xi, and hence
P(Ω) is a wqo.

2.3 Proving Existence of WQOs

Finally, we introduce the standard tool for proving the existence of a nontrivial wqo.

Definition 2.13. Let Ω = (S,�) be a quasi-order. A partial ranking of Ω is a coarser partial order �p

of S such that there are no infinite strictly descending sequences. In other words, if x �p y, then x � y,
but not necessarily the other way around.

Let f = (fi)
∞
i=1 and g = (gi)

∞
i=1 be sequences in S, and let �p be a partial ranking of Ω. We write

that f �∗p g (respectively f ≺∗p g) if g contains a subsequence (gji)
∞
i=1, with ji < ji+1, such that fi �p gji

(respectively fi ≺p gji).
A sequence f in S is called minimal bad with respect to �p if it is bad and there is no bad sequence

g in Ω such that g ≺∗p f .

Note that it is not necessarily true that if g �∗p f and g 6= f , then g ≺∗p f . Although the definitions
of �∗p and minimal bad do not actually require that �p be a partial ranking, and they work just as well
for any quasi-order, we will only use them with the hypothesis that �∗p is a partial ranking.

The intent of a partial ranking is to allow us to pick a relation on S that we can more easily reason
about. Usually we do this by taking the intersection of � and some other relation that we know more
about. We assume that Ω is not wqo, take a minimal bad sequence f by the following lemma, and then
build a contradiction by finding a bad sequence g such that g ≺∗p f .

Lemma 2.14 (Nash-Williams, reproduced by Thomas [19]). Let Ω = (S,�) be a quasi-order with no
strictly descending infinite sequences, and let f = (fi)

∞
i=1 be bad. Then, for any partial ranking �p of Ω,

there exists a minimal bad sequence g = (gi)
∞
i=1 such that g �∗p f .

Proof. Define g1 to be the first term of some bad sequence g′ �∗p f such that there is no q ≺p g1 with
the same property. This must exist as f �∗p f , and Ω has no infinite strictly descending sequences.

Then for i > 1, define gi+1 such that g1, . . . , gi+1 are the first i + 1 terms of some bad sequence
g′ �∗p f such that there is no q ≺p gi+1 with this property. Again, because we can pick gi = fi and there
are no strictly descending infinite sequences, this is always possible.

By construction, g �∗p f . Also, g is bad because, for any j < i, g1, . . . , gi is the prefix of some bad
sequence g′ and hence gj 6� gi. It remains to show that g is minimal bad.

6

Supppose there is a bad sequence h such that h ≺∗p g. Then there exists some j0 such that h1 ≺p gj0 ;
pick j0 to be as small as possible. We must have j0 > 1, as if j0 = 1, then h1 ≺p g1 and h is bad, which
contradicts the choice of g1.

Define k = g1, . . . , gj0−1, h1, h2, Because g and h are bad, either k is bad or there exists some `0
with 1 ≤ `0 < j0 and some i0 ≥ 1 such that g`0 �p hi0 . If the latter, then since h ≺∗p g, there exists a
sequence j1 < j2 < . . . such that, for all i ≥ 1, hi ≺p gji .

In particular, then, hi0 ≺p gji0 , which means g`0 �p hi0 ≺p gji0 . As j0 is least such that h1 ≺p gj0 ,
and h1 ≺p gj1 , it follows that j0 ≤ j1. Since i0 ≥ 1, j1 ≤ ji0 , and we get that `0 < j0 ≤ j1 ≤ ji0 . Since
g`0 ≺p gji0 , this contradicts the assumption that `0 and i0 exist. So k must be bad after all.

So kj0 = h1 �p gj0 and k is bad. This contradicts the choice of gj0 made while constructing g. So g
is minimal bad, as required.

7

3 Graph Basics

In this section, we review the basic definitions of graph theory used in this thesis, and introduce a number
of relations and labelling concepts that will be used later. A reader familiar with graph theory should
still read this section, as some of the structural relations will likely be novel, and the mechanisms we use
for graph labeling are important to understand.

We also touch on the basics of graph structure theory, including tree-decompositions and known
well-quasi-ordering results. Most of these originate in the work of Robertson and Seymour.

3.1 Graphs

Definition 3.1. We will assume that the reader is familiar with the basics of graph theory. In this
thesis, unless otherwise specified, all graphs will be finite, with loops and parallel edges permitted. We
will sometimes write e = uv if e is a uv-edge, and e = u` if e is a u-loop. Additionally, for the sake of
simplicity, we will assume that V (G) and E(G) are always disjoint.

A subgraph H of G is induced if E(H) is precisely the subset of E(G) containing all edges with both
ends in V (H). If V ′ ⊆ V (G), then G[V ′] denotes the subgraph induced by V ′: the induced subgraph of
G with vertex set V ′.

The collection of all graphs is denoted G. The set of all subgraphs of G is denoted S(G).

Definition 3.2. For any edge e or set E′ of edges of a graph G, G \ e and G \E′ are the subgraphs of
G obtained by deleting e or all edges of E′, respectively, and likewise G/e and G/E′ are the subgraphs
of G obtained by contracting them.

Note that if C,D ⊆ E(G) are disjoint, then G / C \D is isomorphic to G \D / C.

Definition 3.3. A rooted tree is a tree T with a single distinguished vertex r(T) called the root .
Given verices u, v ∈ V (T), we say that u is above v if v is in the (unique) path from r(T) to u,

including if v = u. The children chldrn(v) of v are the neighbours of v which are above it, and the
branch of v, denoted br(v), is the subgraph induced by all vertices above it.

Note that, for each vertex v of T , v is the root of br(v).

3.2 Minors

Definition 3.4. Let G and H be graphs. A collapse of G to H is an ordered pair (ηV , ηE) of injective
functions ηV : V (H)� S(G) and ηE : E(H)� E(G) such that:

1. for every v ∈ V (H), ηV (v) is connected;
2. for distinct v, u ∈ V (H), V (ηV (v)) and V (ηV (u)) are disjoint;
3. for every e ∈ E(H), ηE(e) is not a member of E(ηV (v)) for any v ∈ V (H); and
4. for every e = uv ∈ E(H), if ηE(e) = u′v′ ∈ E(G), then either u′ ∈ V (ηV (u)) and v′ ∈ V (ηV (v)) or

vice-versa.

Example 3.5. An example of a graph collapse can be see in Figure 1.

Definition 3.6. A graph H is a minor of a graph G, denoted H �m G, if there exists a collapse of G
to H.

A set downwards-closed under �m is called minor-closed .

The conventional definition of a graph minor is that H �m G if H can be obtained from G via a
sequence of contractions, deletions of edges, and deletions of isolated vertices. The subgraphs ηV (v) of
a collapse encode the edges to be contracted, and the edges ηE(e) are the edges to be retained, which
shows that the concepts are equivalent. The definition in terms of collapse is more readily extended to
hypergraphs and other structures, however, and this motivates its use.

8

b b

bc

a a d

c b

a d

Figure 1: Example of a graph collapse of G (left) to H (right). Vertices
with the same label and thick edges correspond to ηV (v) for some e ∈ V (H).
Regular edges correspond to ηE(e) for some e ∈ E(H). Other edges are dashed.
By contracting the thick edges and deleting the dashed edges, we retrieve H.

Theorem 3.7. The following are equivalent:

1. H �m G.

2. There exist disjoint C,D ⊆ E such that H ∼= G′, where G′ is obtained from G / C \D by deleting
any number of isolated vertices.

There is also a more restricted notion of a topological minor, defined here in terms of a novel kind
of collapse:

Definition 3.8. Let G and H be graphs. A topological collapse of G to H is an ordered pair η = (ηV , ηE)
of injective functions ηV : V (H)� V (G) and ηE : E(H)� S(G) such that:

1. for every e = uv ∈ E(H), ηE(e) is a νV (u)νV (v)-path in G; and
2. for every e, f ∈ E(H), ηE(e) and ηE(f) are internally disjoint.

A graph H is a topological minor of G, or is homeomorphically embeddable in G, denoted H �t G if
there exists a topological collapse of G to H.

We will generally avoid the term “homeomorphically embeddable” as potentially misleading, as
homeomorphism is normally an equivalence relation. Similarly to how graph minors are usually defined
by edge contraction and deletion, topological minors are usually defined in terms of graph subdivisions—
obtained from a smaller graph by adding vertices in the middle of edges. Evidently, there is a topological
collapse of G to H if and only if G contains a subgraph isomorphic to a subdivision of H. Moreover, by
contracting only edges incident with a vertex of degree 2, we have the following standard result.

Proposition 3.9. If H �t G, then H �m G.

In general, topological minors do not admit the rich quasi-ordering structures of true minors; however,
that does not mean that they are uninteresting.

Theorem 3.10. If G has maximum degree at most 3, then H �t G if and only if H �m G.

Definition 3.11. Let S and T be rooted trees. A rooted topological collapse of T to S is a topological
collapse η = (ηV , ηE) such that whenever ηV (v) is above ηV (u) in T , then v is above u in S.

If there exists a rooted topological collapse of G to H, then H is a rooted topological minor of G,
denoted H �r G.

9

Figure 2: The graph P4.

This slightly restricted notion of a rooted topological minor was used by Nash-Williams [12] as a
stepping-stone to prove that all trees are bqo under the topological minor relation. The definition
presented here is different from, but equivalent to, Nash-Williams’ original definition. This should not
be confused with a weaker concept of the same name used by Kühn [9].

This relation will be explored further in Section 6.

Theorem 3.12 (Nash-Williams [12]). The set of (possibly infinite) rooted trees is better-quasi-ordered
under �r.

This theorem implies the following:

Theorem 3.13 (Nash-Williams [12]). The set of (possibly infinite) trees is better-quasi-ordered under
�t.

Recent work also gives this result:

Theorem 3.14 (Liu, Theorem 1.4.4 of [11]). For every k ≥ 1, the class of graphs forb�t
(Pk) is wqo

under �t, where Pk is the Robertson chain of length k obtained from the path of length k by replacing
each edge with two parallel edges (see Figure 2).

3.3 Labelings

We will also need to label vertices:

Definition 3.15. A partial function from A to B is a mapping from A to B which is not necessarily
defined everywhere on A. If f is a partial function from A to B, we write f : A9 B.

Definition 3.16. Let G = (V,E), and let L be some set. Given a partial function L : V (G) 9 L, G is
labeled with labels from L with label function L . A vertex v has label L (v). If L is defined everywhere
on V (G), then G is fully labeled .

A particular class of labeled graphs will be quite important, as the basis later for the HR algebra:

Definition 3.17. An s-graph (short for graph with sources from C) is a graph labeled from some label
set C such that no two vertices get the same label. A labeled vertex is a source, a source labeled with
c ∈ C is a c-source, and a vertex that is not a source is internal .

Let G be an s-graph. Then the type of G is the set C such that the source labels of G are exactly C.
The set of all s-graphs of type C is denoted GC .

Note that a graph may be simultaneously labeled from multiple sets. In particular, a graph can both
have sources from C and have additional labels from another set L.

Definition 3.18. Let Ω = (Q,�) be a quasi-order and G and H be graphs fully labeled from Q by L G

and LH , respectively.
We write that:

• H �L G if there exists a collapse η = (ηV , ηE) of G to H such that, for each u ∈ V (H), there
exists v ∈ ηV (u) such that LH(u) � L G(v);

• H �Lt G if and only if there exists a topological collapse η = (ηV , ηE) of G to H such that, for
each u ∈ V (H), LH(u) � L G(ηV (u)); and

• H �Lr G if, additionally, H and G are rooted trees and η is rooted.

In any of these cases, we say that the ((rooted) topological) collapse η respects labels.

10

a b c

d e

f g h

a, b, d

b, d, e

b, c, e

d, e, g

e, g, h

d, f, g

Figure 3: A graph G and a tree-decomposition T of G. T has width 2, because
its largest bag has size 3.

3.4 Tree-Decompositions

Definition 3.19. Let G = (V,E) be a graph, and let T = (W,E′) be a tree fully labeled from P(V)
by the function f . For each v ∈ V , define W (v) = {w ∈ W : v ∈ f(w)}. Then the pair (T, f) is a
tree-decomposition of G if and only if:

1. for each v ∈ V , W (v) is nonempty and T [W (v)] is connected; and
2. for each edge e = uv ∈ V , there is some w ∈W such that u, v ∈ f(w).

The sets f(w) are called the bags of (T, f). For w,w′ ∈ W , we will write w ≡ w′ to mean that
f(w) = f(w′).

The width of (T, f) is max{|f(w)| : w ∈W}− 1. The tree-width tw(G) of G is the least width of any
tree-decomposition of G.

For any nonnegative integer k and class G of graphs, Gtw≤k = {G ∈ G : tw(G) ≤ k}.
The −1 term in the definition of width is so that a tree has tree-width 1, and not for any technical

reason. We will sometimes refer to the bags and vertices of T interchangeably where there is no ambiguity.

Example 3.20. Figure 3 shows an example of a tree-decomposition.

The lemma below allows the imposition of some structure on a tree-decomposition to make transfor-
mations easier.

Definition 3.21. A tree-decomposition (T = (W,E), f) is nice if we can root T such that, for each
w ∈W , exactly one of the following holds:

1. w is a leaf and f(w) is size 1.
2. w has exactly one child u, and f(w) can be obtained from f(u) by either adding or removing a

single element v, in which case w is an introduce node or a forget node, respectively.
3. w has exactly two children u1, u2, and w ≡ u1 ≡ u2, in which case w is a join node.

Lemma 3.22 (Lemma 13.1.3 in [6]). If G has a tree-decomposition of width k, then it has a nice
tree-decomposition of width at most k.

Proof Sketch. If T is a tree-decomposition of G of width k, then we can reduce every vertex to degree
at most 3 by replacing it by a tree of vertices with the same bag.

Then for any adjacent pair of vertices with different bag contents, we can insert a path in between
with nodes that forget and/or introduce the necessary vertices.

Example 3.23. Figure 4 shows a nice version of the earlier tree-decomposition.

The following is given without proof in [14]. The proof is straightforward: a tree-decomposition for
G readily provides one for its minor H.

Proposition 3.24. If tw(G) ≤ k, then tw(H) ≤ k for every minor H of G. Equivalently, for any k,
Gtw≤k is downwards closed under �m.

11

a, b, db, db, d, e

b, d, eb, eb, c, ec, ee

b, d, ed, ed, e, g

d, e, ge, ge, g, hg, hh

d, e, gd, gd, f, gf, gf

Figure 4: A nice tree-decomposition of the graph G from Figure 3 with the
same width as T . The top-right vertex (a, b, d) is the root. Join nodes are
double-struck and forget nodes are dotted. The remaining nodes are either
leaves or introduce nodes.

3.5 Graph Minors Structure

The following is the Graph Minors Theorem:

Theorem 3.25 (Robertson & Seymour [17]). (G,�m) is a well-quasi-order.

We are interested in collections of graphs having an upper bound to their treewidth, and we will be
referring to this property several times.

Definition 3.26. A set S of graphs has bounded treewidth if there exists k such that every G ∈ S has
tree-width at most k.

The notion of tree-width plays a crucial role in the proof of the Graph Minors Theorem. The theorem
is built upon the following results:

Theorem 3.27 (Robertson & Seymour [16]). (Gtw≤k,�m) is a wqo for all k.

Theorem 3.28 (Robertson & Seymour [15]). For any planar graph H, there exists k such that any
graph G which does not contain H as a minor has tree-width at most k.

Corollary 3.29. If J is a minor-closed class that does not contain all planar graphs, then J has
bounded tree-width.

If the reader is interested in the proofs of these results, they are directed to a survey paper by Richter
which presents them in a more digestible form [13].

The interest in the classes Gtw≤k towards strengthening the Graph Minors Theorem should thus be
apparent. Thomas obtained a general strengthening of Nash-Williams’ bqo result:

Theorem 3.30 (Thomas [19]). For any planar graph H0, (forb({H0}),�m) is bqo, even if we admit
infinite graphs.

Corollary 3.31. For any k, (Gtw≤k,�m) is bqo, even if we admit infinite graphs.

We would like to be able to apply logic and language theory to obtain similar results in this area of
graph structure.

12

4 Abstract Algebras

In this section, we present the basics of formal language theory over arbtirary algebras. While we are
only concerned with one particular algebra in this thesis, explored in the next section, it is both more
convenient and more interesting to present the more general version.

Formal language theory is, in its simplest form, the study of the structure of sets of strings over
a finite alphabet. This study can be generalized by taking an algebraic view of them (in the sense of
universal algebra). The set of strings over an alphabet is in fact just the free monoid over that same
alphabet. If we generalize the concepts by allowing the study of arbitrary algebras, including ones with
different operations, or that are not free, we discover that many of the concepts generalize well and that
there is indeed a rich theory to be discovered.

4.1 Signatures & Terms

In order to talk about abstract equation systems in an algebra, we must have a way to talk about
expressions with unknowns. We begin by defining an abstract algebraic language to work with, without
any reference to any concrete algebra. As discussed in Section 1.3, this allows us to treat expressions
such as x2 + 1 as distinct mathematical objects. At the same time, we define the actual algebras with
real elements and operations, and how these relate to the abstract language.

Definition 4.1. A functional signature F is a set of function symbol , each with an associated natural
number called its arity . We denote by ρ(f) the arity of f . Symbols of arity 0, 1, and 2 are called
constant , unary , and binary respectively.

An F -algebra M is a set M (the underlying set) and, for each f ∈ F , a function fM : Mρ(f) → M
called the interpretation of f . Here, Mn is the Cartesian product of M with itself n times.

Example 4.2. Consider the signature R = (0, 1,−,+, ·), where ρ(0) = ρ(1) = 0, ρ(−) = 1, and
ρ(+) = ρ(·) = 2. This signature is the signature used to define an abstract ring.

Any ring is an R-algebra, but the converse is not necessarily true. For example, if M is some
nonempty set, pick a constant 0M = 1M ∈ M , and interpret −, +, and · as constant functions so that
−a = a+ b = a · b = 0M . The result would be a valid R-algebra but not a ring.

Our language has several purely syntactic operations. We define substitution of terms, where each
ocurrence of an unknown is replaced by another term, and evaluation, where we take a concrete algebra
and apply the functions corresponding to the function symbols in the term.

Definition 4.3. Let F be a functional signature and let X be some set of indeterminates, or variable.
We will recursively define the F -terms as follows:

1. For any x ∈ X, x is an F -term; and

2. For any f ∈ F with arity r, for any F -terms e1, . . . , er, f(e1, . . . , er) is an F -term.

The immediate subterms of a term of the form f(e1, . . . , er) are {e1, . . . , er}; a term in X has no
subterms. The subterms of a term are itself and all the subterms of its immediate subterms.

The term x contains the variable x; the term f(e1, . . . , er) contains the union of the variables
contained in each of e1, . . . , er.

If x1, . . . , xn are variables, and t1, . . . , tn are F -terms, then t(x1/t1, . . . , xn/tn) is the term obtained
from t by substituting each occurrence of xi in t and its subterms with ti.

Let M be an F -algebra over M and t an F -term. Let x1, . . . , xn be a list of variables including
all variables contained in t, and possibly others. For any a1, . . . , an ∈ M , we define the value of t at
a1, . . . , an as:

valM(t)(x1/a1, . . . , xn/an) =

{
ai : x = xi for some 1 ≤ i ≤ n
x : otherwise

valM(f(e1, . . . , er))(x1/a1, . . . , xn/an) = fM(valM(e1)(x1/a1, . . . , xn/an), . . . , valM(er)(x1/a1, . . . , xn/an))

13

Where the variables x1, . . . , xn are clear from context, we will abbreviate and write t(t1, . . . , tn) and
valM(t)(a1, . . . , an) for t(x1/t1, . . . , xn/tn) and valM(t)(x1/a1, . . . , xn/an), respectively.

We denote by T(F) the set of all terms over F .

Example 4.4. Let t = x1 + (x2 ∗ −x3) in the signature of rings. Then t’s immediate subterms are
{x1, x2 ∗ −x3} and its subterms are {t, x1, (x2 ∗ −x3), x2,−x3, x3}.

t contains the variables x1, x2, and x3. If t2 = −x2, then t(x1/t2) = −x2 + (x2 ∗ −x3).
Trying to evaluate in different rings, we get that valR(t)(x1/3, x2/5, x3/7) = 3 + (5 ∗−7) = −32. But

if we let GF(11) denote the finite field of order 11, then valGF(11)(t)(x1/3, x2/5, x3/7) = 3+(5∗−7) = 1.

Note that if c is a constant symbol in F , then c() is a valid F -term. We will usually omit the
parentheses and simply write c.

We must be careful to avoid assuming associativity when we are working with abstract terms—the
terms (e1 + e2) + e3 and e1 + (e2 + e3) are different, so we cannot write e1 + e2 + e3 without introducing
ambiguity. The same concern applies to precedence between different operators. When we are working in
concrete algebras known to be associative, then we will write e1 +e2 +e3, or the like, with the knowledge
that it can represent (e1 + e2) + e3 or e1 + (e2 + e3) and the distinction is immaterial.

Example 4.5. Let R = (0, 1,−,+, ·) be the signature of a ring, as defined above. Then if x, y, and z
are variables (in that order), x, x+ y, −x · (y + z), and x+ (1 + (x+ 0)) are all R-terms.

The expressions x + y + z and x + y · z are not, formally, R-terms, because we do not have defined
associativity or precedence.

Let t1 = −x · (y + z) and t2 = x + y. Then t1(0, 1, t2) = −0 · (1 + (x + y)). If we now consider the
real numbers as an R-algebra, then t1(3, 4, 2) = −3 · (4 + 2) = −18.

4.2 Equational Sets

There are two very important classes of sets we care about when dealing with algebras. The first concept
is that of an equational set—effectively a recursion set in an algebra.

In order to formalize this notion, we extend an algebra M to one on its powerset:

Definition 4.6. Let F be a functional signature. Then the signature F∪ is F with an added binary
(that is, arity 2) symbol ∪̇ and a constant symbol ∅̇.

Let M be an F -algebra over M . Then its powerset algebra P(M) is an F∪-algebra with underlying
set P(M).

For each nonconstant function symbol f of F , fP(M)(L1, . . . , Ln) is defined to be the image of L1 ×
. . .×Ln under fM. In the case of a constant symbol c, we instead set cP(M) = {cM}, the singleton of the

constant. We define ∅̇P(M) = ∅, and L1 ∪̇P(M) L2 = L1 ∪ L2—the empty set and the union, respectively.

The powerset algebra formalizes the natural notion of applying a function to a set, and adds unions
and an empty set. This allows us to reason about the relationship between sets and their images under
an equation set. The union is associative, so for our purposes we do need to add brackets when using
multiple unions.

Definition 4.7. Let F be a functional signature. Then a monomial is an F -term, and a polynomial is
either ∅̇ or else t1 ∪̇ t2 ∪̇ . . . ∪̇ tn, where each ti is a monomial (it may be that k = 1 in which case the
polynomial is simply t1). A polynomial is thus an F∪-term.

The terms monomial and polynomial are analogous to those used in numerical algebra, where a
monomial such as 4x2y7 is obtained by multiplying variables or constants, and a polynomial such as
x2 + 4yx− 4 is a (possibly empty) finite sum of monomials.

While it is not the case that every F∪-term is a polynomial, we do have the following:

Proposition 4.8 ([2]). Let F be a functional signature and M an F -algebra over M . If t is an F∪-
term, there is a polynomial p over F∪ such that, for any A1, . . . , Ak in P(M), valP(M)(t)(A1, . . . , Ak) =
valP(M)(p)(A1, . . . , Ak).

14

Proof. Let Mon(t), the set of monomials defining t, be defined recursively as follows:

Mon(x) = {x} for a variable x

Mon(∅̇) = ∅
Mon(t1 ∪̇ t2) = Mon(t1) ∪Mon(t2)

Mon(f(t1, . . . , tk)) = {f(m1, . . . ,mk) : mi ∈Mon(ti), 1 ≤ i ≤ k}

By an easy induction, we get:

valP(M)(t)(A1, . . . , An) =
⋃
{valP(M)(m)(A1, . . . , An) : m ∈Mon(t)}

Thus p =
⋃̇
Mon(t) is the desired polynomial.

We now proceed to define an equation system, which relates several equations together. The rela-
tionship between the equations and the variables in them is not immediately obvious from the definition,
but we will use a descriptive notation to make the relationship clear.

Definition 4.9. Let x1, . . . , xk be an ordered tuple of variables. Then an equation system S over F is
an ordered tuple of polynomials (p1, . . . , pk) containing no variables other than x1, . . . , xk.

We will also write:

x1 = p1(x1, x2, . . . , xk)

x2 = p2(x1, x2, . . . , xk)

...

xk = pk(x1, x2, . . . , xk)

to mean the equation system (p1, . . . , pk).
We say that S has size k.

In the definition of an equation system, it is possible that a polynomial pi does not contain all
variables x1, . . . , xk. Recall that when we write pi(x1, . . . , xk), we mean to always substitute for the
appropriate variables. So if pi only contains x2, then pi(S1, S2) is a shorthand for pi(x1/S1, x2/S2), and
thus means to substitute S2 for x2 and not for x1.

Using the machinery of the powerset algebra, we can now easily define what a solution to an equation
system is and, hence, the equational sets.

Definition 4.10. Let M be an F -algebra over M , and let S = (p1, . . . , pk) be an equation system over
F of size k. Then a solution to S in M is a k-tuple of sets L = (L1, . . . , Lk) ∈Mk such that, for each i,
Li = valP(M)(pi)(L1, . . . , Lk).

If L = (L1, . . . , Lk) is a solution such that, for any solution L′ = (L′1, . . . , L
′
k) and for 1 ≤ i ≤ k,

Li ⊆ L′i, then L is least and we write L = L(S). The sets L1, . . . , Lk are equational in M and generated
by S, denoted Li = L(S, xi).

Example 4.11. Using the signature R = (0, 1,−,+, ·) of rings, consider the following equation system
E:

S1 = 1 ∪ (S2 ∗ S3)S2 = 1 + 1 ∪ −S3S3 = 0 ∪ (S2 + 1)

In Z, the ring of integers, the following is a solution to E:

L1 = {−9,−4,−3,−1, 0, 1, 2, 6}L2 = {−3,−1, 0, 2}L3 = {−2, 0, 1, 3}

We can verify that this is indeed a solution by evaluating each monomial with each possible substition
of Si by an element of Li. For instance, for S2, 1 + 1 = 2 ∈ L2, and for each e ∈ L3, −e ∈ S2.

15

The following result is very important, and arises as an instance of a general least fixed-point theorem
on partial orders:

Proposition 4.12. Let S = (p1, . . . , pk) be an equation system over F . Then S has a unique least
solution.

Proof. Let L0 = (L0
1, L

0
2, . . . , L

0
k) = (∅, ∅, . . . , ∅). For each positive n, let Lni = valP(M)(pi)(L

n−1)∪Ln−1
i ,

and Ln = (Ln1 , . . . , L
n
k). To get our solution, set Li =

⋃∞
j=0 L

j
i . Then take L = (L1, . . . , Lk).

Now suppose we have some x = ({x1}, . . . , {xk}) with xi ∈ Li for 1 ≤ i ≤ k. There must be some j
such that, for all 1 ≤ i ≤ k, xi ∈ Lji . It follows that for any 1 ≤ i ≤ k, we have valP(M)(pi)(x) ⊆ Lj+1

i ⊆
Li. Hence valP(M)(pi)(L) ⊆ Li.

Moreover, for each i with 1 ≤ i ≤ k, there must be some yi ∈ Lj1 × . . . × Ljk such that xi ∈
valP(M)(pi)(yi). We can regard yi as an element of L in the natural way, giving that xi ∈ valP(M)(pi)(L).
So Li ⊆ valP(M)(pi)(L).

Thus, Li = valP(M)(pi)(L), and so L is a solution to S. We wish to show that it is minimal.
Now suppose that L′ = (L′1, . . . , L

′
k) is a solution to S. Then for any i, ∅ = L0

i ⊆ L′i, and hence it

follows inductively that for any j, Lji ⊆ valP(M)(pi)(L
′) = L′i. So Li ⊆ L′i for each i, meaning that L′

contains L. Hence L is in fact a minimal solution.

As a result, we will often refer to the least solution of an equation system as the solution. Readers
familiar with language theory should easily recognize that the equational sets of a free monoid over a
finite alphabet are the context-free languages over that alphabet.

Definition 4.13. Let F be a functional signature. A subsignature of F is a functional signature F ′

such that F ′ ⊆ F and, for each f ∈ F ′, ρF ′(f) = ρF (f).
Let M be an F -algebra. Then the F ′-algebra induced by M is the algebra MF ′ obtained by taking

the same underlying set and interpreting each symbol of F ′ identically as in M.

Lemma 4.14. Let F be a functional signature and let M be an F -algebra.
If a set E is equational in M, then there exists a finite subsignature F ′ of F such that E is equational

in MF ′ .

Proof. Pick some equation system S defining E and let F ′ consist of all symbols appearing in S. Since
S is finite, F ′ is too.

4.3 Recognizable Sets

The second, less concrete classification of sets that we use is that of a recognizable set. Intuitively,
a set is recognizable if there is a way to identify its members using a process that admits a finite
description. There are several equivalent characterizations, but the simplest to state is in terms of algebra
homomorphisms, which are defined in the obvious way. It is worth noting that one characterization is
in terms of automaton theory. Under this characterization, the recognizable sets are those accepted by
a class of finite automata obtained by generalizing determinisitic finite automata (DFAs) for terms of
arity more than 1.

Definition 4.15. Let F be a functional signature and let M and W be F -algebras over M and W ,
respectively. A function h : M → W is an F -homomorphism if, for all symbols f of F and all elements
e1, . . . , eρ(f) ∈M , h(fM(e1, . . . , eρ(f))) = fW(h(e1), . . . , h(eρ(f))).

If h : M →W is a F -homomorphism, we write h : M→W.

Definition 4.16. Let F be a functional signature, M an F -algebra over M , and R ⊆ M . We say that
R is recognizable if there exists an F -algebra A over a finite set A and a homomorphism h : M→ A such
that, for some C ⊆ A, R = h−1(C).

In this case h witnesses the recognizability of R.

16

Lemma 4.17. Let F be a functional signature and F ′ a subsignature of F . Let M be an F -algebra. If
R is recognizable in M, then it is recognizable in MF ′ .

Proof. Any F -homomorphism h : M→ A is also an F ′-homomorphism MF ′ → AF ′ .

We will directly work with one other characterization of recognizability, in terms of equivalence
relations. Over regular languages of strings, this characterization is due to Myhill and Nerode and leads
to several deep results.

Definition 4.18. Let F be a functional signature, M an F -algebra over M , and ∼ an equivalence
relation on M . Let R be a subset of M , and let f : Mr →M . Then:

1. R is saturated by ∼ if R is a union of ∼-equivalence classes.

2. fM respects ∼ if, for all m1, . . . ,mr and m′1, . . . ,m
′
r such that mi

∼= m′i, the following holds:

fM(m1, . . . ,mr) ∼ fM(m′1, . . . ,m
′
r)

3. ∼ is a congruence on M if, for every function symbol f in F , the function Mf respects ∼.

4. If ∼ is a congruence, then the quotient algebra M/∼ is an F -algebra with underlying set the set
of equivalence classes of ∼. Each constant cM/∼ is defined as the equivalence class [cM] containing
cM, and each operation fM/∼ is defined by:

fM/∼([m1], . . . , [mρ(f)]) = [fM(m1, . . . ,mρ(f))]

That ∼ is a congruence is necessary and sufficient for the quotient algebra to be well-defined, in a
manner similar to the way quotients are defined over other algebras such as vector spaces and groups.

Lemma 4.19. The natural map h∼ : m 7→ [m] is an F -homomorphism M→M/∼.

The relation between congruences and recognizability is a bit startling when seen at first, but helps
to explain why recognizability is a very natural concept:

Proposition 4.20. Let M be an F -algebra over M , and let L be a subset of M . Then L is recognizable if
and only if there exists an M -congruence ∼ with finitely many equivalence classes such that ∼ saturates
L.

Proof. Suppose that ∼ exists as described. Then h∼ witnesses L’s recognizability, because M/∼ has
finitely many elements and there exists a set C of equivalence classes such that L is the union of C.
From the definition of h∼, L = h−1

∼ (C).
Conversely, if L is recognizable with witness h, define m ∼ m′ if and only if h(m) = h(m′). Then,

since h is a homomorphism, ∼ is a congruence, and since the codomain of h is finite, there are only
finitely many equivalence classes.

This theory can be explored further. For a given set L ⊆ M , it is possible to define a canonical
congruence that saturates it. In language theory, it is referred to as the Myhill-Nerode equivalence class.
All congruences saturating L are refinements of the canonical one, and this congruence gives rise to the
simplest automaton recognizing L. For more exploration of this, the reader should look to section 3.4.3
of [2] or, for applications in formal language theory, [18].

17

4.4 The Filtering Theorem

The Filtering Theorem expresses the major relationship between recognizable and equational sets, and
it plays an important role in Section 10. We provide a sketch of the proof here; for the full proof, the
reader is directed to [2].

Theorem 4.21 (Filtering Theorem [2]). Let M be an F -algebra. Let R and E be a recognizable set and
and equational set, respectively, in M. Then R ∩ E is equational in M .

Proof Sketch. Let F ′ be a finite subsignature of F such that E is equational in MF ′ . Then R is recog-
nizable in MF ′ by 4.17.

The terms over F ′ form an algebra T(F ′) in their own right, where each term is interpreted as
itself. Then E corresponds to a T(F ′)-equational set E′ with the same equation system. Since val is
a homomorphism T(F ′) → MF ′ , composing that with the witness h to R’s recognizability shows that
R′ = val−1

M (R) is recognizable in T(F ′).
As F ′ is finite, it can be shown that the equational sets over MF ′ are exactly those described by

equational sets of terms. Furthermore, E ∩R = valM(E′ ∩R′).
Using a construction involving automata on terms, which is beyond the scope of this work, we can

show that, as F ′ is finite, the equational and recognizable sets over T(F ′) coincide.
By combining two homomorphisms into a homomorphism onto a Cartesian product of the codomains,

it follows that the intersection of any two recognizable sets is itself recognizable. Hence E′ ∩ R′ is
recognizable and hence equational in T(F ′).

Finally, the image of an equational set of terms is also equational with the same equation system,
and so it follows that E ∩R is equational in MF ′ and hence in M.

Readers familiar with language theory will recognize that, in the special case language of strings, the
equational sets are the context-free languages, and the recognizable sets are the regular languages. The
Filtering Theorem is thus a generalization of the theorem that the intersection of a context-free language
with a regular language is context-free.

It is a standard result that every regular language is context-free, and so a reader might expect that,
in the general case, every recognizable set is equational. This is not true, however. Consider the example
of a signature with no function symbols. In this case, the only equational sets are the empty set and the
entire underlying set, but every set is recognizable since any constant function is a homomorphism.

18

5 The HR Graph Algebra

In this section, we describe the algebra which forms the focus of much of this thesis. The so-called HR
algebra is an algebra on graphs—that is, its elements are graphs—which has some deep connection to
graph structure and, in particular, tree-width.

The HR algebra was first explored as a grammar on hypergraphs, where graphs are rewritten by
replacing hyperedges with larger hypergraphs. This mechanism is still somewhat visible in the parallel
composition operation, but the presentation as an abstract algebra is preferred so as to gain access to
the theoretical framework explored in the previous section.

5.1 Definition

Definition 5.1. Let n ∈ N. Then [n] = {0, 1, . . . , n}.

Definition 5.2. The HR signature HR consists of the following symbols (denoted symbol : arity):

∅ : 0

a : 0 a ∈ N
a` : 0 a ∈ N
ab : 0 a, b ∈ N, a 6= b

fga : 1 a ∈ N
rena↔b : 1 a, b ∈ N, a 6= b

� : 2

The HR algebra or the algebra of graphs with sources, JS, is the HR-algebra over the set JS of all
finite graphs with sources in N where we interpret the symbols as follows:

• ∅ the null graph with no vertices;

• a the graph containing a single a-source and no edges;

• a` the graph containing a single a-source and a loop on that vertex;

• ab the graph containing an a-source and a b-source and an edge between them;

• fga(G) the graph obtained from G by converting its a-source, if any, to an internal vertex
(forgetting the a-source);

• rena↔b the graph obtained from G by converting its a-source, if any, into a b-source, and vice-
versa (renaming the a- and b-sources); and

• G1 �G2 the parallel composition of G1 and G2: the graph obtained from the disjoint union
G1 ⊕G2 by identifying each pair of sources with same label.

The notation JS originates from [2], where they used J to denote the collection of all multigraphs,
and G to denote the collection of all simple graphs. Because we use I and J to denote ideals in various
orderings, we use G to denote the set of all multigraphs. We have retained the use of the notations JS
and JS for s-graphs and the HR algebra, however.

Note that we restrict ourselves here to s-graphs with labels in N. This restriction is by no means
necessary, and the algebra works perfectly fine if any other infinite set is chosen. For our purposes,
however, it is slightly simpler to restrict ourselves to the natural numbers, and we lose no generality by
doing so. We will use bold-face numerals (e.g. 0 rather than 0) to denote source labels.

Additionally, the operation � is associative, so the notation G1 �G2 �G3 is unambiguous.

Example 5.3. An example of a parallel composition can be see in Figure 5.

19

1

2

3

4 �

1

2

3

5 =

1

2

3

5

4

Figure 5: Example of parallel composition. The thin and thick edges corre-
spond to edges of the first and second graphs, respectively.

Definition 5.4. For a positive integer n, we define:

1. HRn is the signature consisting of those symbols in HR which include only natural numbers in [n];
2. JSn is the set of graphs with sources in [n]; and
3. JSn is the HRn-algebra over JSn, whose functions are the restrictions of the corresponding oper-

ations in JS.

5.2 Relationship to Tree-width

The following theorem is a very important characterization of the HR algebra. It provides a complete
description of the power of HR equations, and, while it is restricted in that it limits the applicability of
the HR algebra to sets of graphs of bounded tree-width, it will later provide the basis for an assertion
that, assuming we are willing to limit ourselves to graphs of bounded tree-width, the HR algebra is
extremely rich and powerful.

Theorem 5.5 ([2]). Let G = (V,E) be a graph. Then tw(G) ≤ k if and only if there is a term
t ∈ T(HRk) such that valJSk(t) ∼= G.

Proof. First, suppose that tw(G) ≤ k. By Lemma 3.22, there is a nice tree-decomposition T =
((W,E′), f) of G with width at most k. We will build a new tree-decomposition T ′ = ((W ′, E′′), f ′)
from T , and use that to construct t.

For each v ∈ V with a loop, we add to T a new vertex b(v) and set f ′(b(v)) = {v}. Likewise, for
each pair of adjacent vertices u and v, we add a vertex b(u, v) and set f ′(b(u, v)) = {u, v}.

For each such added vertex b(v) or b(u, v), we pick some vertex w such that v ∈ f(w) or u, v ∈ f(w),
as the case may be. We add a new vertex j in between w and its parent, with j ≡ w. Finally, we add a
sequence of introduce nodes between b(v) or b(u, v) and j, such that j is a join node. Then T ′ is nice,
except that the vertices b(u, v) have two, rather than one, vertices in their bags.

For each w ∈W ′, we recursively define an HRk-term t(w), and a mapping sw : w → [k], which tracks
which vertices of G correspond to which sources, as follows. In order to understand what is going on
here, recall that, for each vertex v ∈ V (G), we know that it occurs in the bags of a contiguous subtree
T ′[W (v)] of T ′. Each leaf w of T ′[W (v)] is either a leaf of T ′ or a node that introduces v, and at each
of these nodes, v will correspond to a source sw(v).

For each non-leaf node w of T ′[W (v)], it is either a forget or introduce node with child u, or a join
node with children u1 and u2. If it is an introduce or forget node, we will have sw(v) = su(v) since
v must occur in both bags. If it is an introduce node, then the sw(v)-source in t(w) will be obtained
by identifying—through the permutation h below—the su1

(v)-source in t(u1) with the su2
(v)-source in

t(u2). In this way, we keep track of v throughout all of T ′[W (v)].
We will use �n(G) to mean G � . . . �G with n copies of G.

• If w = b(v), then t(w) = �n(0`) and sw(v) = 0, where v has n loops.

20

• If w = b(u, v), then t(w) = �n(01), sw(v) = 0, and sw(u) = 1, where there are n parallel edges
between u and v.

• If w is a leaf with f ′(w) = {v}, then t(w) = 0 and sw(v) = 0.

• If w v to node u, then let m be distinct from sw(v′) for any v′ ∈ f ′(u). Then t(w) = m � t(u),
sw(v) = m, and sw(v′) = su(v′) for any v′ ∈ f ′(u).

• If w forgets vertex v from node u, then t(w) = fgsu(v)(t(u)) and sw is the restriction of su to w.

• If w is a join node with children u1 and u2, then t(w) = renh(u1) � u2, and sw(v) = su2
(v), where

h is a permutation of [k] such that h(su1
(v)) = su2

(v) for any v ∈ f ′(w), and renh is a composition
of rename operations (each of which operates as a single transposition) whose effect is to permute
the labels as per h.

Claim 5.5.1. For each v ∈ V , in the final product valHRk(t(r(T ′))), there is a single vertex corresponding
to v.

Proof. By construction, all nodes of T which have sources corresponding to v are eventually fused by
parallel composition into one vertex at r = r(T ′[W (v)]).

If r 6= r(T ′), then r must have a parent p, and v is not in the bag f ′(w(p)). So p must be a node that
forgets v with corresponding term t(p) = fgsr(v)(t(r)), so the source sr(v) corresponding to v becomes
an internal vertex. Since the operations of JS leave internal vertices untouched, v will not be further
changed.

Alternatively, r = r(T ′), and so v corresponds to the source sr(v) in t(r).

For each edge e = uv in E(G), we have a corresponding leaf b(v) or b(u, v). The term corresponding
to b(v) or b(u, v) introduces e’s parallel class into t(w). Since there is only one such vertex for the loops
of each vertex, and one bag for the edges between any given pair of vertices, this means that the edges
of valHRk(t(r(T ′))) correspond exactly with the edges in G.

Thus valHRk(t(r(T ′))) ∼= G.
Conversely, suppose that G ∼= valJSk(t). Then it is sufficient to prove that G′ = valJSk(t) = (V,E)

has tree-width at most k.
We define a tree-decomposition T = (W,E′) of G′ as follows. W is the set of all subterms of t. Each

node u is adjacent to each of its immediate subterms, and contains the vertices which are sources of
valJSk(u). T is a tree by construction.

Each v ∈ V (G) is obtained by identifying together a number of sources into a single vertex. Since
internal vertices can never be fused together by a parallel composition, the terms where v occurs as a
source must be connected in T . Every edge e = uv of G must be introduced somewhere as a term uv,
and so there will be a bag containing both u and v. So T is in fact a tree-decomposition.

HRk has only k + 1 source labels and there is at most one vertex with each label at a given stage.
By construction, each bag contains only sources, so each bag contains at most k + 1 vertices. Thus T
has width at most k and is our desired decomposition.

Lemma 5.6. Let E be an equational set in JS. Then there exists k such that E is equational in JSk.

Proof. E is defined by some finite HR equation system S. Let k be the largest label occurring in S.
Then S is also an equation system in HRk, and so E is equational in JSk.

Corollary 5.7. Let E be an equational set in JS. Then E has bounded tree-width.

Proof. Let k be such that E is equational in JSk. Then every graph in E can be expressed as a term in
JSk, so it has tree-width at most k.

21

6 Tree Generators

In this section, we present Christian et al.’s notion of tree generators and the labeled tree wqo result
they obtained using this construction [1]. The definition presented here is not the original definition of
Christian et al., but an alternate definition which makes the proofs easier to write and understand.

These results are largely reproductions of proofs in Christian et al.’s unpublished work, but during
the process of rewriting them to the alternate definition, a defect was discovered. The present author, in
correspondence with Richter and Salazar, identified a unstated assumption and has added the definition
of a subtree-extending collection in order to make the assumption explicit and repair the defect.

6.1 Tree-Generators

Definition 6.1. Let Ω = (Q,�) be a quasi-order. Let N∗ = N ∪ {ω} = ω + 1.
We define the set of Ω-tree-generators T G(Ω) inductively as follows:
Set T G0(Ω) = {∅}.
Let Fi+1(Ω) be the set of functions (T Gi(Ω) ∪ {⊗}) \ {∅} → N∗ which are nonzero on only finitely

many points. In this case, ⊗ is a special symbol with no intrinsic meaning.
Then we define:

T Gi+1(Ω) = T Gi ∪ (↓(Ω)× Fi+1(Ω))
(<ω)

where, as earlier, S(<ω) means the finite subsets of S.
Then we take T G(Ω) =

⋃
n∈N T Gn(Ω). If G ∈ T G(Ω), we say that the height of G is the least k such

that G ∈ T Gk(Ω).
Given a tree-generator G, we define its set of sub-tree-generators (usually sub-tgs) TG(G) = {H :

(Q, f) ∈ G, f(H) > 0}. If G = {(Jα, fα) : α ∈ IG} for some index set IG, we also define TGα(G) = {H :
fα(H) > 0} to be a set of local sub-tree-generators.

The removal of the empty tree-generator {∅} in the definition of Fi+1(Ω) is to simplify the induc-
tive properties somewhat, and without having to fudge over the empty tree generator. The inductive
definition ensures that tree-generators are finite in nature.

The special symbol ⊗ is used for a tree-generator to refer to itself. This allows a tree-generator, which
has a finite structure, to generate arbitrarily large trees without losing the ordering properties that we
would like it to have. As we will see, this limitation to recursion is quite important. Note that as a result
of ⊗, not every sub-tree-generator of G is itself a tree-generator, since ⊗ may be a sub-tree-generator.

Much like a grammar in language theory, a tree generator is used as a concise and structured de-
scription of a set of trees. We can generate trees using a generator in a fairly straightforward manner:

Example 6.2. Let Ω be a wqo and let Ja, Jb, Jc, and Jd be arbitrary ideals in Ω.
Let G1 = {(Ja, fa), (Jb, fb)}, G2 = {(Jc, fc)}, and G3 = {(Jd, fd)} as follows:

fa(H) =

1 : H = ⊗
1 : H = G2

0 : otherwise

fb(H) =

{
ω : H = G3

0 : otherwise

fc(H) = 0 fd(H) =

{
2 : H = G2

0 : otherwise

To build a tree through G1, we select either a or b, since IG1
= {a, b}. We start with a root node

labeled with Ja or Jb, as appropriate.
As the children of the root node, if we picked a, we will allow up to one child generated by G1 and

one child generated by G2. We will always allow fewer children than are indicated—so our root could
have no children, or only one child.

22

Ja

⊗ G2

Jb

G3 G3ω Jc

Jd

G2 G2

Figure 6: Four trees Tα, each corresponding to a pair (Jα, fα). The root is
labeled with Jα, and for each H, there are fα(H) children of the root labeled
H (note that, as fb(G3) = ω, Tb is actually an infinite tree with ω children
labeled G3).

Ja

⊗ G2
=⇒

Ja

Jb Jc

G3 G3ω
=⇒

Ja

Jb Jc

Jd G2

Figure 7: To generate a graph from a tree-generator G, pick Tα corresponding
to some (Jα, fα) ∈ G. Delete a selection of children of the root so that finitely
many remain, and then for each remaining child with label H, replace that
vertex with a tree generated by H (or by G if H = ⊗), so that the root of
the tree inserted is adjacent to the root of the larger tree. Repeat this process
until it terminates. In the diagram, the last step of replacing the remaining
G2 node with a Jc node has been omitted to preserve space.

If we picked b instead, then we could have any finite number of children—finite because we are dealing
only with finite trees—each one generated by G3.

We recurse into each child and repeat the process by choosing a member of IGi , labeling the vertex,
and then generating its children. In this instance, a child generated by G2 can have no children, and a
child generated by G3 can have up to two children generated by G2.

This process could go indefinitely, by continually picking a and then adding a G1 child, but again,
we require a finite tree, so the process must halt in order to get a tree.

Figures 6 and 7 illustrate this graphically.

The formal definition is as follows:

Definition 6.3. Let G = {(Jα, fα) : α ∈ IG} be an Ω-tree generator.
We define the set ι(G), the set of trees ideal-generated by G, to contain all rooted trees T where

there exists an α ∈ IG and an injective function g : chldrn(r(T))� TG(G) such that:

• the root r of T is labeled with Jα;
• for any H ∈ TG(G), |{u ∈ chldrn(r(T)) : g(u) = H}| ≤ fα(H); and
• for each u ∈ chldrn(r(T)), br(u) ∈ ι′(g(u)), where we say that ι′(⊗) = ι(G), and otherwise
ι′(H) = ι(H).

We say that T is generated via (Jα, fα).
As a special case, we define ι to be empty on the empty tree-generator; that is, ι({∅}) = ∅
We also define the set τ(G), the set of trees generated by G, to contain all trees T such that T is

obtained from some T ′ ∈ ι(G) by replacing each node label with one of its elements.

Note that:

• the recursive definition that results from the use of ι′(⊗) is still well-defined, as it could be defined
inductively on the size of T ;

23

• when fα(H) = ω, then we are saying that there can be an unbounded number of subtrees generated
by H;

• while the condition #H ≤ fα(H) would allow for infinite subtrees in this case, we have restricted
our definition to finite graphs;

• the trees in ι(G) and τ(G) are fully labeled from ↓(Ω) and Ω, respectively;

• the empty tree-generator always ideal-generates (and hence generates) the empty set, since we
cannot label the root; and

• the empty tree is generated by every non-empty tree-generator.

The notion of ι(G) was not present in Christian et al.’s original work on tree generators, but it will
be useful later.

6.2 Ordering Tree-Generators

The natural order on tree generators is by inclusion of the generated sets. We also define a structural
property on collections of tree-generators which allows us to achieve our ordering results. This property
was conceived of after discussion with Richter and Salazar to repair a defect in their original proof of
Lemma 6.6, which attempted to prove 6.6 for all tree-generators.

Definition 6.4. Let Ω be a quasi-order. If G1 and G2 are Ω-tree generators, then G1 �τ G2 if and only
if τ(G1) ⊆ τ(G2).

Definition 6.5. Let Ω be a quasi-order and let G be an Ω-tree generator. We say that G is subtree-
generating if, for every H ∈ TG(G) \ ⊗, τ(H) ⊆ τ(G) and, inductively, H is subtree-generating.

Let T be a collection of Ω-tree generators. We say that T is subtree-extending if, for every G ∈ T ,
G is subtree-generating and, if H is a sub-tg of G, then H ∈ T .

Recall that if T and T ′ are rooted, labeled trees, then T �Lr T
′ means that there exists a label-

respecting rooted topological collapse from T ′ to T (see Definition 3.18).

Lemma 6.6. Let Ω = (�, S) be a wqo such that P1(Ω) is also wqo, and let T be a subtree-extending
collection of Ω-tree-generators such that, for every G ∈ T , τ(G) is downwards-closed under �Lr. Then
(T ,�τ) is a wqo.

Proof. First, let G,H ∈ T . We will say that H �p G if H �τ G and H is of equal or lesser height
than G. By definition, �p is a partial ranking of T with respect to �τ . Moreover, it has no infinite
descending sequences since such a sequence would have infinite descending height, and tree-generator
height is always finite and positive.

Suppose that (Gi)
∞
i=1 is a bad sequence in (T ,�τ). We may assume that this sequence is minimal

bad with respect to �p by Theorem 2.14.
Define H =

⋃∞
i=1 TG(Gi) \ {⊗} to be the set of all sub-tgs of the tree generators Gi, less the special

symbol ⊗.

Claim 6.6.1. (H,�τ) is wqo.

Proof. We know that, as T is subtree-extending, H ⊆ T . Let us suppose that there exists a bad sequence
(Hi)

∞
i=1 in (H,�τ). Inductively, we will create a subsequence (Hij)

∞
j=1 of H such that (Hij)

∞
j=1 �∗p

(Gi)
∞
i=1, contradicting the assumption that (Gi)

∞
i=1 is minimal.

Set i1 = 1, and let k1 be smallest such that Hi1 is a sub-tg of Gk1 . Then for j ≥ 1, pick ij+1 and kj+1

such that ij+1 > ij , kj+1 > kj , and Hij+1
is a sub-tg of Gkj+1

. This is possible because every Hi is a
sub-tg of some Gk, and at each step the requirement that we move further along the sequences excludes
only finitely many choices.

Then for each j, since Hij is a sub-tg of Gkj , it must have lesser height. Moveover, since T is
subtree-extending, we must have that Hij �τ Gkj . It follows that Hij ≺p Gkj , so (Hij)

∞
j=1 is the desired

subsequence.

24

Define F to be the set of functions H ∪ {⊗} → N∗ that are nonzero on a finite set (compare to the
definition of Fi(Ω) in Definition 6.1).

Each tree-generator Gi is naturally identified with an element of (↓(Ω) × F)(<ω). We do this by
identifying each function f : (T Gj(Ω) ∪ {⊗}) → N∗ occuring in Gi with the corresponding function
f ′ ∈ F where f ′(H) = f(H) if this is well-defined and f ′(H) = 0 otherwise.If f(H) is nonzero, then
H ∈ H ∪ {⊗}, so f ′(H) is well-defined. All we have really done is changed the domain of the functions
by adding and removing zeroes.

By showing that (↓(Ω)×F)(<ω) is a well-quasi-order, we will contradict the assumption that (Gi)
∞
i=1

is bad.
Given f, g ∈ F , we write that f �F g if, for any H ∈ H ∪ {⊗}, there exists H ′ ∈ H ∪ {⊗} such that

H �′τ H ′ and f(H) ≤ g(H ′), where ⊗ �′τ ⊗ and otherwise H �′τ H ′ if and only if H �τ H ′.
Recall that one definition of a function f : A→ B is as a subset of A×B where, if (a1, b1), (a2, b2) ∈ f ,

then a1 = a2 implies b1 = b2, and the ais are unique. Using this definition, we can consider a function
f ∈ F to be a subset of (H ∪ {⊗})× N∗. We will then define Z(f) = {(H,n) ∈ f : n > 0}.

This gives rise to an equivalent formulation of �F . We can write that f �F g by viewing ((H ∪
{⊗}),�′τ) as one wqo, and (N∗,≤) as another, and then using the usual orderings on Cartesian product
(recall Definition 2.6) and subsets (the powerset ordering of Definition 2.8). It follows that �F is wqo,
since Cartesian product and finite subsets preserve wqo.

We similarly define �G on G by using �F and the orderings on Cartesian product and subsets. Since
�F is wqo on F , �G is wqo on G.

It remains to be seen that if Gi �G Gj , then τ(Gi) ⊆ τ(Gj). If Gi = {(Jα, fα) : α ∈ Ii} and
Gj = {(Jβ , gβ) : β ∈ Ij}, then for any tree T generated by Gi via (Jα, fα), by the definition of �G,
there must be (Jβ , gβ) such that Jα ⊆ Jβ and fα �F gβ . L (r(T)) ∈ Jα. It follows that L (r(T)) ∈ Jβ .
Moreover, since fα �F gβ , if a sub-tg H is used k times to generate k branches of T in Gi, then surely we
can also use H at least k times to generate those same branches in Gj . Thus Gj generates T , completing
the proof.

6.3 Ideals of Labeled Trees

The next few lemmas will show us that we can represent every ideal of labeled trees with some tree-
generator, which is critical to developing the well-quasi-ordering argument.

Lemma 6.7 (Christian, Richter, & Salazar). Let Ω be a quasi-order and G and H Ω-tree generators.
Then there is an Ω-tree generator G ∩H such that τ(G ∩H) = τ(G) ∩ τ(H).

Moreover, if G and H are subtree-generating, so is G ∩H.

Proof. We proceed by strong induction on the sum of the heights of G and H. If G or H is empty, then
G ∩H is empty too and we are done.

Suppose that G = {(Jα, gα) : α ∈ IG} and H = {(Jβ , hβ) : β ∈ IH}. We assume as the inductive
hypothesis that the intersection is defined on TG(G) ∪ TG(H).

We define for the sake of this that G′ ∩⊗ = G′ ∩H, ⊗∩H ′ = G ∩H ′, and ⊗∩⊗ = ⊗. If we define
that T G(⊗) = T G(G) when it occurs on the left-hand side of an intersection and T G(⊗) = T G(H) when
it occurs on the right-hand-side, this extends the inductive hypothesis to include ⊗.

Let α ∈ IG and β ∈ IH . We define Kα,β to be the set of all bipartite graphs with bipartition
(TGα(G),TGβ(H)) and where, for all K ∈ Kα,β :

• for every G′ ∈ TGα(G), degK(G′) ≤ gα(G′);
• for every H ′ ∈ TGβ(H), degK(H ′) ≤ hβ(G′); and
• if gα(G′) = hβ(H ′) = ω, there are no edges between G′ and H ′.

Note that multiple edges are permitted.
Then for K ∈ Kα,β , G′ ∈ TGα(G), and H ′ ∈ TGβ(H), we define #(K,G′, H ′) to be the number of

edges between G′ and H ′ in K. We then create a function fK : T G → N∗ by setting fK(Γ) as follows:

• if there exist G′ and H ′ such that gα(G′) = hβ(H ′) = ω and Γ = G′ ∩H ′, then fK(Γ) = ω;

25

• otherwise, fK(Γ) =
∑

(G′,H′) #(K,G′, H ′), where the sum ranges over all pairs of G′ ∈ TGα(G)

and H ′ ∈ TGβ(H) such that G′ ∩H ′ = Γ; and
• otherwise, fK(Γ) = 0.

The effect of K and fK is to encode the various ways of “pairing up” the sub-tgs of G and H. For a
graph to be generated by G∩H, each branch must be generated by G′ ∩H ′ for sub-tgs G′ and H ′ of G
and H, respectively. G′ and H ′ can be used gα(G′) and hβ(H ′) times. The structure of K handles the
case where gα(G′) and hβ(H ′) are finite by imposing a limit on the corresponding degree of G′ or H ′,
and then fK is defined so as to respect this limit while also accounting for the ω case, where there can
be an unlimited number of edges. The sum in the finite case arises because we have have multiple ways
of writing Γ = G′ ∩H ′.

We then finally define:

G ∩H = {(Jα ∩ Jβ , fK) : α ∈ IG, β ∈ IH ,K ∈ Kα,β}

We now need to show that τ(G ∩H) = τ(G) ∩ τ(H).
Suppose that some T is generated by G and by H. Then there are α ∈ IG and β ∈ IH such that T

is generated via (Jα, gα) and via (Jβ , hβ).
Let v = r(T). For each u ∈ chldrn(v), there are tree-generators Gu ∈ TGα(G) and Hu ∈ TGβ(H)

such that br(u) is generated by Gu and Hu (or by G or H itself, if Gu or Hu is ⊗).
Let K be the bipartite graph with bipartition (TGα(G),TGβ(H)), where for each u ∈ chldrn(v), if

gα(Gu) 6= ω or hβ(Hu) 6= ω, we have a distinct edge between Gu and Hu in K. Since Gu is only used
at most gα(Gu) times, degK(Gu) ≤ gα(Gu); similarly degK(Hu) ≤ hβ(Hu). If gα(Gu) = hβ(Hu) = ω,
there is no edge between Gu and Hu in k. So K ∈ Kα,β . It follows that, T is generated via (Jα∩Jβ , fK).
So T ∈ τ(G ∩H), hence τ(G) ∩ τ(H) ⊆ τ(G ∩H).

Conversely, suppose that T is generated by G ∩ H. Then there is α ∈ IG, β ∈ IH , and K ∈ Kα,β
such that T is generated via (Jα ∩ Jβ ,K). Let v = r(T). Then for each child u of v, br(u) is generated
by Gu ∩Hu, and by induction it is generated by Gu and by Hu.

The total number of br(u) that are generated by a given Gu is limited to gα(Gu) by the definition of
Kα,β , and similarly, the number generated by a given Hu are limited to hβ(Hu). If there exist multiple
distinct possible Gu and/or Hu with the same intersection, then we can arbitrarily assign different Gu
and Hu to each vertex in a way that ensures that the limits are respected, because of the sum in the
definition of fK(Gu ∩Hu).

It follows immediately that T is generated via both (Jα, gα) and (Jβ , hβ), and hence T ∈ τ(G)∩τ(H).
Thus τ(G ∩H) ⊆ τ(G) ∩ τ(H) and we have equality.

Finally, as every sub-tree-generator of G ∩H other than ⊗ is of the form G′ ∩H ′ for G′ ∈ TG(G)
and H ′ ∈ TG(H), it follows by induction that G ∩H is subtree-generating.

Definition 6.8. We denote by LRT (Q) the set of rooted trees fully labeled from Q.

Lemma 6.9 (Christian, Richter, & Salazar). Let Ω = (Q,�) be a wqo. Then for any rooted tree T fully
labeled from Q by L , there is a subtree-generating Ω-tree generator GT such that τ(GT) = forb�Lr

({T}).

Proof. If we can define GT , it will necessarily be subtree-generating, since if S is a subtree of T , then
S �Lr T . Hence GT will generate all graphs generated by GS .

We proceed by induction on |V (T)|. If T is empty, then its forbidden set—which is empty—is
generated by the empty tree-generator.

Otherwise, let q = L (r(T)) and Q′ = forb�(q). Let the children of r(T) be x1, . . . , xk, and define
Ti = br(xi).

By induction, there exists Ω-tree-generators GTi such that τ(GTi) = forb�Lr({Ti}).

26

For each K ⊆ [k] nonempty, define fK by setting:

fK(⊗) = |K| − 1

fK

(⋂
i∈K

GTi

)
= ω

and fK is zero everywhere else.
Additionally, we define f⊗(⊗) = ω and f⊗ is zero everywhere else.
Then we define:

GT = {(Q′, f⊗)} ∪ {(Q, fK) : K ⊆ [k],K 6= ∅}

Claim 6.9.1. Let S ∈ τ(GT) and let v ∈ V (S) be such that q � L (v). Suppose there is a label-respecting
rooted topological collapse η = (ηV , ηE) of S to T such that ηV (r(T)) = v. Then br(v) ∈ τ(GT).

Proof. If v = r(S), then br(v) = S ∈ τ(GT).
Otherwise, let u be the child of r(S) such that v ∈ V (br(u)). Since ηV (r(T)) = v, the range of ηV

must be entirely in br(v). Thus, for each i, we have Ti �Lr T �Lr br(v) �Lr br(u), the first and last
relations coming because Ti is a subgraph of T and br(v) is a subgraph of br(u), respectively.

It follows that v cannot be in a subtree generated by GTi for any i, and hence not in
⋂
i∈K GTi for

any K ⊆ [k]. So br(u) is generated via ⊗, and hence br(u) ∈ τ(GT). η is also a label-respecting rooted
topological collapse of br(u) to T , so by induction on the distance from v to u, br(v) ∈ τ(GT).

Claim 6.9.2. Let S ∈ τ(GT) such that q � L (r(S)). Then there does not exist a label-respecting rooted
topological collapse η = (ηV , ηE) of S to T such that ηV (r(T)) = r(S).

Proof. Since, by assumption, L (r(S)) /∈ Q′, S cannot be generated via (Q′, f⊗). If we look at the
branches of the children of r(S), it follows that there is some K ⊆ [k] nonempty such that at most
|K| − 1 of them are generated via ⊗, and the rest are generated via

⋂
i∈K GTi .

Consider the |K| trees {Ti : i ∈ K}. Each of them must by mapped by η into the branch of
a different child of r(K). But at most |K| − 1 of them are mapped to trees generated by ⊗, so at
least one is mapped into a tree generated by

⋂
i∈K GTi . This contradicts the inductive hypothesis that

τ(GTi) = forb�Lr
({Ti}).

Since, in any label-respecting rooted topological collapse η = (ηV , ηE) of some S ∈ τ(GT) to T , it
would have to be the case that q � L (ηV (r(T))), it follows from the claims that no such collapse exists.
Thus it is always the case that T 6�Lr S, and hence τ(GT) ⊆ forb�Lr({T}).

Conversely, let S ∈ forb�Lr({T}). We will show that GT generates S by induction on the number of
vertices in S.

If S has one vertex v, then either T has two or more vertices, in which case GT generates S via
(Q, fK) for any K, or T has a single vertex labeled with q, and so q 6� L (v), giving that GT generates
S via (Q′, f⊗).

When S has more than one vertex, take v = r(S), u1, . . . , um to be the children of v, and Si = br(ui).
Note that Si ∈ forb�Lr({T}), as Si �Lr S, and so by induction Si ∈ τ(GT). If q 6� L (v), then S is
generated by the [Q′, (⊗∗)] branch of GT . So we may assume that q � L (v).

LetH be the bipartite graph with vertex set {T1, . . . , Tk}∪{S1, . . . , Sn} where Ti and Sj are adjacent if
and only if Ti �Lr Sj . If H had a matching saturating the vertices Ti, then we could take ηj = (ηV,j , ηE,j)
to be the label-respecting rooted topological collapse of Ti to Sj , and then define η = (ηV , ηE) as follows:

ηV (w) =

{
v : w = r(T)

ηV,j(w) : w ∈ V (Ti)

ηE(e) =

{
Pj : e = r(T)xj

ηE,j(e) : e ∈ E(Ti)

27

where x1, . . . , xk are the children of r(T) (as above), and Pj is the path from r(S) to ηV,j(r(Ti)) in S.
Then η is a label-respecting rooted topological collapse of T to S, a contradiction.

In a beautiful application of Hall’s bipartite matching theorem, there must thus exist some nonempty
K ⊆ [k] such that the vertices {Ti : i ∈ K} of H have at most |K| − 1 distinct neighbours. This means
that there are at most |K| − 1 different j such that Sj /∈ forb�Lr

({Ti : i ∈ K}).
For each such j, we can generate Sj by ⊗, and for every other j, we can generate Sj by

⋂
i∈K GTi .

We thus can generate S via (Q, fK), and so S ∈ τ(GT). It follows that forb�Lr({T}) ⊆ τ(GT) and that
the sets are therefore equal.

This key corollary is essentially due to Christian, Richter, & Salazar, although their original statement
did not require that T be subtree-extending and so was too weak to prove Theorem 6.11.

Corollary 6.10. Let Ω = (Q,�) be a wqo. Then there exists a subtree-extending collection of Ω-tree
generators T such that {τ(G) : G ∈ T } = ↓(LRT (Q),�Lr).

Proof. Let I ∈ ↓(LRT (Q),�Lr). Take:

GI =
⋂

T∈obs(I)

GT

where GT is the tree-generator found in Lemma 6.9
Clearly, τ(GI) = I. If we set T = {GI : I ∈ ↓(LRT (Q),�Lr)}, then we just need to show that T is

subtree-extending.
From the construction in Lemma 6.7, each proper sub-tg of G ∩ H, other than ⊗, is G′ ∩ H ′ for

some sub-tgs G′ of G and H ′ of H. Similarly, from the construction in Lemma 6.9, every sub-tg of GT ,
other than ⊗, is of the form

⋂
i∈K GTi . It follows that every proper sub-tg of GI is going to be GJ

for some J ∈ ↓(Ω), since the intersection of two ideals is an ideal. Since all the trees are additionally
subtree-generating, it follows that GI is subtree-generating.

Theorem 6.11 (Christian, Richter, & Salazar). Let Ω = (Q,�) be a wqo such that P1(Ω) is also a
wqo. Then (↓(LRT (Q),�Lr),⊆) is a wqo.

Proof. Let T be the collection of tree-generators from Corollary 6.10.
Suppose that (Ii)∞i=1 is a bad sequence of ideals in ↓(LRT (Q)). We apply Lemma 6.6 to the tree

generators GIi in T , and find that there are 1 ≤ i < j such that GIi �τ GIj . But then, by definition,
Ii = τ(GIi) ⊆ τ(GIj) = Ij , a contradiction.

So (↓(LRT (Q),�Lr),⊆) has no bad sequences and is hence a wqo.

28

7 Monadic Second-Order Logic

The other area of mathematics important for understanding our graph algebra and what we can do with
it is that of formal logic, and that is what we explore in this section. While there exists a very large
body of work by Courcelle and others exploring the intersection of graph theory and logic, our treatment
here will be focused specifically on one type of logic—monadic second-order logic—and one particular
way of modeling graphs using it.

Our treatment of monadic second-order logic is similar to the standard presentation of a formal logic,
and echoes the way we defined algebras in Section 4.

7.1 The Logic

Our first step is to establish the definition of a relational signature, which is very similar in principle
to the definition of a functional signature, with relations in place of functions. Much as an algebra is
obtained by replacing the symbols with actual operations, a logic is obtained by replacing the symbols
with actual relations.

The logic we use here is called monadic second-order logic, which is more expressive than first-order
logic. In monadic second-order logic, there are, in addition to the first-order variables that range over
individual elements, set variables which range over sets of elements. Quantifications are permitted over
sets.

Monadic second-order logic is less expressive than second-order logic, which permits quantification
over arbitrary relations (e.g. ∀ ∼ .∃x.∀y.x ∼ y), but it has the advantage that the monadic second-order
theories are less complicated, and thus less difficult to work with, than second-order theories.

Definition 7.1. A relational signature R is a finite set of symbols such that each symbol R ∈ R has
an arity ρ(R). We denote by Ri the set of symbols of arity i.

A symbol in R with arity 0 is a constant symbol ; any other symbol is a relation symbol . We define
the set of relation symbols R+ = R \R0, and denote by ρ(R) the maximum arity of a symbol in R.

Analagously to F -algebras, we define R-structures.

Definition 7.2. Let R be a relational signature. An R-structure S consists of an underlying set D,
called the domain, together with interpretations of each of the symbols in R.

For each constant symbol c ∈ R0, its interpretation cS is a single element of D.
For each relation symbol R ∈ R+, its interpretation RS is a relation on D with arity ρ(R). In other

words, RS is simply a subset of Dρ(R).
We denote by STR(R) the collection of all R-structures.

Exactly as with functional signatures and algebras, the relational structures provide different possible
interpretations of a given signature. In this context, however, we are interested in logical formulas, using
the relations of a signature to construct terms. As is typical, we will first define the formulas purely
syntactically.

Definition 7.3. Let R be a relational signature.
Let v̄ and V̄ be countably infinite sets of variables, respectively the first-order variables and set

variables. A first-order term is either some first-order variable v ∈ v̄ or a constant symbol c ∈ R0.
The atomic R-formulas are:

• True;
• False;
• s = t, where s and t are first-order terms;
• R(t1, . . . , tρ(R)), where R is a relation symbol in R+ and t1, . . . , tρ(R) are first-order terms; and
• t ∈ V , where t is a first-order term and V is a set variable in V̄ .

Then the R-formulas are recursively defined as:

29

• Any atomic R-formula;
• ¬φ, where φ is an R-formula;
• φ ∧ ψ, where φ and ψ are R-formulas; and
• ∃x.φ, where x is a variable in v̄ ∪ V̄ and φ is an R-formula.

When a (first-order or set) variable x occurs in a formula φ, it is said to be a bound ocurrence if
it occurs inside a quantification ∃x.ψ of the same variable, and a bound occurrence otherwise. A free
variable is a variable with at least one free occurrence. A formula φ is a sentence if it has no free
variables, and is quantifier-free if it contains no quantifications ∃x.φ.

We will use several common shorthands (and we may mix them in ways not explicitly described
here):

• x /∈ X for ¬(x ∈ X)

• X ⊆ Y for ∀x.x ∈ X ⇒ x ∈ Y

• X 6⊆ Y for ¬(X ⊆ Y)

• φ ∨ ψ for ¬(¬φ ∧ ¬ψ)

• φ⇒ ψ for (¬φ) ∨ ψ

• φ⇔ ψ for (φ⇒ ψ) ∧ (ψ ⇒ φ)

• ∃(x1, . . . , xn).φ for ∃x1.∃x2.∃xnφ

• ∃(x ∈ X).φ for ∃x.(x ∈ X ∧ φ)

• ∃(X ⊆ Y).φ for ∃X.(X ⊆ Y ∧ φ)

• ∀x.φ for ¬∃x.¬φ

• ∀(x ∈ X).φ for ∀x.(x ∈ X ⇒ φ)

• ∀(X ⊆ Y).φ for ∀X.(X ⊆ Y ⇒ φ)

By convention, the first-order variables will always be lowercase and the set variables will always be
uppercase. When referring to a formula φ “in k variables”, “in the variables x1, . . . , xn”, or the like, we
mean to say that the variables of φ are at most k variables or are a subset of x1, . . . , xn, or similar. In
particular, φ does not need to use all of its variables. Finally, we will assume that, in all formulas, a
variable never has both a bound and a free occurrence—if such a situation would arise, we can simply
rename one of the bound occurrences to avoid such a collision.

Definition 7.4. Let S be an R-structure and let φ be an R-formula in the set variables X1, . . . , Xn,
and first-order variables x1, . . . , xm.

Given sets E1, . . . , En ⊆ D and elements d1, . . . , dm ∈ D, we write that:

S |= φ(X1/E1, . . . , Xn/En, x1/d1, . . . , xm/dm)

if φ′ is true, where φ′ is the logical statement obtained from φ by replacing each free occurrence of a
set variable Xi with the corresponding set Ei, replacing each free occurrence of a first-order variable xj
with the corresponding element dj , and interpreting the relation symbols of R as in the structure S.

If φ is a sentence, and therefore n = m = 0, we may write S |= φ in place of S |= φ(), and if this is
the case we say that S models φ. We denote by MOD(φ) all the models of φ.

As before, when we have established that φ(X1, . . . , Xn, x1, . . . , xm) is a formula in the set variables
X1, . . . , Xn and first-order variables x1, . . . , xm, we will write S |= φ(E1, . . . , En, d1, . . . , dm) to mean
S |= φ(X1/E1, . . . , Xn/Em, x1/d1, . . . , xm/dm).

The final important logical concept is that of definability. This is how we associate a set or notion
in the larger mathematics with a formal logical object.

30

Definition 7.5. Let L be some logical language (in this thesis, it will always be monadic second-order
logic over a specific signature R). Let C be a collection of R-structures. We say that C is L-definable if
there exists a sentence φ in L such that MOD(φ) = C.

We will often implicitly assume some universe of R-structures, usually graphs of a certain nature.
If U is our universe, then when considering the definability of a collection C, we only really care that
C = MOD(φ) ∩ U .

We will occasionally abuse terminology and say that some property is definable to mean that the
collection of all structures having that property is definable. For instance, we might say that being
connected is definable when we mean that the collection of all connected graphs is definable.

7.2 Representing Graphs

Naturally enough, we wish to create relational signatures that define graphs. The most natural way to
do so arises directly from one of the common ways of defining graphs: we use a signature consisting of
a single binary relation symbol, adj(u, v), to mean that u and v are adjacent vertices.

This signature, unfortunately, has a critical limitation. We can indicate a loop with adj(u, u), but
we cannot indicate multiple edges. Two vertices with a single edge between them are indistinguishable
from two with a thousand edges between them. We also cannot create relations adj1(u, v), adj2(u, v), . . .
to mean that there are n edges between u and v, because we may only have finitely many symbols.

The precise resolution of the issue with multigraphs is not of major importance, because all that
matters is that we pick a signature for which the operations of JS are easily expressed by logic (in a
sense that will be made formal in the next section). So we pick a very straightforward manner.

Definition 7.6. Let RG be the relational signature consisting of a single binary relation in(v, e). We
will refer to the monadic second-order logic of all RG-formulas as MS2.

For any graph G, we define an RG-structure dGe whose domain is V (G) ∪ E(G), and where in(v, e)
is true if and only if v ∈ V (G), e ∈ E(G), and v is incident to e.

Recall that an s-graph of type C is an s-graph whose sources are exactly the elements of C.

Definition 7.7. Let C ⊆ N be finite. We define RGC to be the relational signature consisting of a single
binary relation in(v, e), and, for each c ∈ C, a single constant symbol c.

For any s-graph G of type C, we augment the RG-signature dGe into an RGC-structure, also called
dGe, where the constant cdGe is G’s c-source.

Note that we cannot directly distinguish between an edge and a vertex in this logic. However, any
edge is always incident to two vertices, so the formula ∃v. in(v, e) is true if and only if e is an edge. We
can then define the formula φadj(u, v) to mean ∃e. in(u, e)∧in(v, e). We will also write φe(e) = ∃v. in(v, e)
and φv(v) = ¬φe(v).

If G is a collection of graphs, or a collection of s-graphs all of the same type, we will often implicitly
identify G with the collection of structures {dGe : G ∈ G}.

7.3 Definable Graph Properties

We now have a logical language, MS2, which allows us to express properties of multigraphs. The full
expressive power of this language may not, however, be immediately clear.

Example 7.8. For instance, suppose we want to express the property “there exists a path between u
and v” in MS2. The natural approach would be to try to define some sort of formula expressing the
existence of vertices u = v0, v1, . . . , vm = v, with vi−1 ∼ vi.

Unfortunately, we can only use finitely many quantifications, and the length m of a uv-path in
G could be unbounded. If we attempt to quantify v1, . . . , vm−1 as first-order variables, then a single
formula φ can only detect paths of length no longer than k, where k depends on φ. If we instead try to

31

use set quantifications, we run into the problem that we cannot distinguish between the vertices of our
quantified set X in such a way as to get the ordering v1, . . . , vm.

There is an alternative approach, however! We may instead rely on the basic fact that u and v have
a path between them if and only if they lie in the same connected component.

We define:

φsep(X) = ∀(x ∈ X, y /∈ X).(φv(x) ∧ ¬ adj(x, y))

φconn(X) = φsep(X) ∧ (∀(Y ⊆ X).(Y = X ∨ ¬φsep(Y)))φpath(u, v) = ∃X.(φconn(X) ∧ u ∈ X ∧ v ∈ X)

It should be clear after a little thought that φsep(X) holds in G if and only if X is a separation—there
are no edges between X and V (G) \ X. Then φconn(X) holds if and only if X is a separation, and it
properly contains no separation. This is true if and only if X is a connected component. We then define
φpath(u, v) to hold if and if there exists a connected component containing u and v—equivalently if u
and v are joined by a path.

We require in φsep(X) and φconn(X) that X be a set containing only vertices. We do not require this
explicitly in φpath(u, v), since u, v ∈ X and X contains only vertices.

This example gives rise to the following:

Proposition 7.9. The collection of all connected graphs is MS2-definable.

Proof. The collection is defined by the formula:

∀X.φconn(X)⇒ (∀x.(φv(x)⇒ x ∈ X))

which states that the only connected component of X contains all vertices.

Given the subject-matter of this thesis, an astute reader may immediately leap to the question “Is
�m definable in MS2?” This does not quite work, since �m is not a collection of graphs.

We could, if we wanted, develop a new logic for pairs of graphs and attempt to determine if �m is
definable in that context. But there is an alternative approach of interest.

We shall fix a given graph H and ask the question “Is containing H as a minor definable?” In other
words, given a graph H, we seek to know if there is a formula φ such that MOD(φ) = {G : H �m G}
(note that the inverse question, “Is being a minor of H definable?” is trivially true as H has finitely
many minors).

The answer, perhaps surprisingly, is yes. A fully technical proof won’t be given here, but an English-
language sketch of the logical formulas can be written quite easily.

Theorem 7.10. Given a fixed graph H, there exists a formula φHm such that G |= φHm if and only if
H �m G.

Proof Sketch. Let v1, . . . , vn be the vertices of H, and e1, . . . , em the edges. Then φHm asserts the exis-
tence, in G, of disjoint sets X1, . . . , Xn and distinct elements f1, . . . , fm such that, for all 1 ≤ i ≤ n and
1 ≤ j ≤ m:

1. Xi is a connected set of vertices;

2. fj is an edge; and

3. if ej = uaub, then there are v ∈ Xa and w ∈ Xb such that fj = vw.

This is directly requiring that there exist a collapse of G to H, so φHm will be true for G if and only
if H �m G.

We will later expand on this result to higher-order ideals of �m.

32

8 The Recognizability Theorem

The major result linking the monadic second-order logic to our HR algebra is very similar to the following
statement

Pipe Dream 8.1 (Recognizability Theorem for the HR Algebra). Let D be a MS2-definable set of
s-graphs. Then D is recognizable in JS.

Sadly, this is not true. Instead, however, we will prove a slightly weakened form with a very similar
algebra JSt, defined later in this section.

Theorem 8.2 (Recognizability Theorem for the Sorted HR Algebra, [2]). Let D be a MS2-definable set
of s-graphs. Then D is recognizable in JSt.

Corollary 8.3. Let D be a MS2-definable set of s-graphs. Then D is equational in JS if and only if it
has bounded tree-width.

Proof. If D is equational, then it is of bounded tree-width by Corollary 5.7.
If D is of bounded tree-width, there is some k such that D∩Gtw≤k = D. The set Gtw≤k is equational

for all k, and D is recognizable by Theorem 8.2, so it follows by the Filtering Theorem (Theorem 4.21)
that D is equational.

The Recognizability Theorem does not hold for JS if we allow sets of unbounded tree-width. If,
instead, we use the many-sorted variant of JS (which will be defined later in this section) we can remove
this restriction. As was shown earlier, however, the requirement of bounded tree-width is necessary for
equational sets. The upside to this is that, in the case of MS2-definable sets, bounded tree-width is also
sufficient for a set to be recognizable.

The proof of the Recognizability Theorem is long and technical, as presented in Section 5.3 of [2]. In
this section, we will present a simplified sketch of the proof, leaving out many of the technical arguments.
Rather than prove only the special case, however, most of the generality will be presented so as to give
the reader an impression of the full power of the theorem. Throughout this section, if no proof is provided
of a result or claim, the reader can find it in [2].

Two concessions will be made to avoid the complexity of a more general result. The first is that we
will refer to a slightly weaker logical language than in the original presentation, which adds cardinality
predicates. The proof itself is effectively unchanged in this regard. The second is that we will only prove
the theorem with respect to a subalgebra of STR. This subalgebra, STRpres, is defined below. The more
general statement of Theorem 8.2 can be proven by an additional step, but it adds even more technical
work, and is any case not necessary for our application of the Recognizability Theorem to JS.

The proof works by creating an algebra STRpres whose elements are finite relational structures. The
constants will be single-element structures. Given any element S ∈ STRpres, we can express S in terms
of the constants and operations of S.

The large amount of technical work comes with showing that we can decompose a logical sentence
about S into a series of equivalent sentences on each of the constants used to build S. From this, we can
build a finite congruence on STRpres based on the equivalence of logical formulas. It follows that any
definable set is saturated by this congruence, and such a set is recognizable. This will prove the general
case of the theorem.

Since recognizability is preserved by taking subalgebras, to get the special case for the algebra JS,
it suffices to show that JS is in some sense a subalgebra of STRpres. Other useful algebras arise as
subalgebras of STRpres in a similar fashion, which shows the true power of the theorem.

We shall begin with a technical definition from logic, which will be used throughout this section.

Definition 8.4 (Informal). Let φ be any logical formula. Then the quantifier height of φ is the greatest
number of quantifiers appearing around a single atomic term.

For instance, the quantifier height of (∃x.x)∧(∀y.y) is 1, and the quantifier height of ∃x.(∀y(x∨y))∧x
is 2. Quantifier height is formally defined recursively over the structure of the formula.

33

8.1 Disjoint Union of Structures

There are two kinds of operations in the algebra STRpres. The first is the binary operations, all of which
are expressed as taking the disjoint union of two relational structures.

Definition 8.5. The relational structures R and R′ are compatible if:

1. they do not share any constant symbols, that is, R0 ∩R′0 = ∅;
2. they share all their relation symbols, that is, R+ = R′+; and
3. for every relation symbolR ∈ R+, the arity ofR agrees in both signatures, that is, ρR(R) = ρR′(R).

Let R and R′ be compatible signatures. Let S be an R-algebra over D, and let S′ be an R′ algebra
over D′. We assume that D and D′ are disjoint by possibly picking isomorphic algebras with disjoint
domains.

We define the disjoint union of S and S′ to be a new (R∪R′)-algebra S⊕S′ over D∪D′, where we
interpret the symbols as in the original algebras:

1. for a constant symbol c ∈ R0, cS⊕S′ = cS ;
2. for a constant symbol c ∈ R′0, cS⊕S′ = cS′ ; and
3. for a relation symbol R ∈ R+, RS⊕S′ = RS ∪RS′ .

In particular, note that elements of S ∪ S′ are not related by any relation R ∈ R+ unless they are
either all in S or all in S′.

The Splitting Theorem of [2], of which we present a special case, allows us to decompose any logical
statement φ about a disjoint union S⊕T into one about S and one about T . Ideally this decomposition
would not depend on S and T , but only on φ, but such a strong result does not hold generally. We can,
however, limit ourselves to finitely many choices.

Theorem 8.6 (Special Case of the Splitting Theorem for Disjoint Union). Let R and R′ be compatible
relational signatures and let φ be a (R ∪ R′)-sentence. Then there exists (R)-sentences θ1, . . . , θp and
(R′)-sentences ψ1, . . . , ψp such that, for all R-signatures S and R′-signatures T , S ⊕ T |= φ if and only
if there exists some i such that S |= θi and T |= ψi. Moreover, the formulas θi and ψi have quantifier
height no greater than φ does.

The proof of this theorem is technical and not particulary illuminating. It amounts to complex case
analysis in an induction over the structure of φ.

8.2 Quantifier-Free Operations

The unary operations of the algebra STRpres are defined in a fairly natural, if technical, fashion. The
objective is to encode a mapping between structures in logical language. For technical reasons, we must
restrict ourselves to the quantifier-free formulas.

This restriction to quantifier-free formulas is in some sense fundamental (quantifiers are, after all,
what separates propositional logic from the much stronger first-order logic), and may seem at first blush
to be overly limiting. In our application, however, we can still get the necessary mileage inside this
constraint.

The actual definition we need is quite technical, as we need to jump through some hoops to express
things correctly. The basic idea is to establish a definition scheme; a collection of logical formulas which
describe the desired map.

Definition 8.7. Let R and R′ be relational signatures.
A quantifier-free operation definition scheme (or QFO definition scheme, for short) D of typeR → R′

comprises the following quantifier-free R-formulas:

1. a single formula δ(x) in a single first-order variable;
2. for each relation symbol R ∈ R′+, a formula θR(x1, . . . , xρ(R)) in ρ(R) first-order variables; and

34

3. for each constant symbol c ∈ R0 and each constant symbol d ∈ R′0, a sentence κc,d.

These formulas must satisfy the constant mapping constraint : for each R-structure S and for each
d ∈ R′0, there is exactly one c ∈ R0 such that S |= κc,d, and moreover, S |= δ(c).

Our goal is to use this definition scheme to define a map D̂ : STR(R) → STR(R′) (recall that
STR(R) is the collection of R-structures), purely in terms of the logical formulas in D.

Given an R-structure S, the first step in evaluating D̂(S) is to determine the domain DD̂(S). We

shall require that it be a subset of DS , to avoid introducing new elements with logical formulas. It is
important, however, to allow for the possibility of DD̂(S) being a proper subset of DS .

To this end, the first formula is δ(x), used to define which elements of DS are retained in DD̂(S). For

any e ∈ DS , e ∈ DD̂(S) if and only if S |= δ(e).

Next, for each relation symbol R ∈ R′+, we define its interpretation RD̂(S) using the formula

θR(x1, . . . , xρ(R)): for e1, . . . , eρ(R) ∈ DD̂(S), RD̂(S)(e1, . . . , eρ(R)) holds if and only if S |= θR(e1, . . . , eρ(R)).

The technical difficulty comes in with the constant symbols. We must interpret each constant symbol
d ∈ R′0 as a single element dD̂(S) ∈ DD̂(S). Expressing it directly is not easy, so we will simplify the

requirements a little by requiring that dD̂(S) be a constant of S (though not necessarily dS ; it may be a

different constant).
For every constant c ∈ R0 and d ∈ R′0, we have a sentence κc,d which, when modeled by S, is taken

to mean that dD̂(S) = cs. For this to work properly, we need the constant mapping constraint defined

above: the c such that S |= κc,d is unique, and it must actually exist in DD̂(S).

This interpretation of the definition scheme leads to the following formal definition:

Definition 8.8. Let D be a QFO definition scheme. The corresponding quantifier-free operation (or

QFO) is a mapping D̂ : STR(R)→ STR(R′) defined by:

DD̂(S) = {e ∈ DS : S |= δ(e)}

RD̂(S) = {(e1, . . . , eρ(R)) ∈ D
ρ(R)
S : S |= θR(e1, . . . , eρ(R)) ∧ δ(e1) ∧ . . . ∧ δ(eρ(R))}

dD̂(S) = the unique cS such that S |= κc,d

The full algebra STR includes all quantifier-free operations. It easier, however to work with a re-
stricted class, giving the algebra STRpres. As mentioned earlier, the Recognizability Theorem can be
proven without this restriction, but the extra work to do so is beyond the scope of this thesis.

Definition 8.9. A QFO definition scheme D : R → R′ and its corresponding QFO D̂ are domain-
preserving if, for all S ∈ STR(R), D̂(S) has the same domain as S.

D : R → R′ and D̂ are quasi-domain-preserving if, for all S ∈ STR(R), the domain of D̂(S) is
obtained from that of S by possibly deleting constants, but no other elements.

We write DP-QFO and QDP-QFO as shorthand for “domain-preserving QFO” and “quasi-domain-
preserving QFO”, respectively.

Equivalently, a QFO definition scheme is domain-preserving if δ is equivalent to the formula True,
and it is quasi-domain preserving if it is equivalent to some formula of the form

∧
c∈R0

(αc ⇒ x 6= c), for
a quantifier-free sentence αc.

The next key theorem is similar to the Splitting Theorem, this time for QDP-QFO operations:

Theorem 8.10 (Special Case of the Backwards Translation Theorem). Let D be a QDP-QFO definition
scheme of type R → R′, and let φ be an R′-sentence. Then there exists an R-sentence ψ of quantifier
height no greater than φ’s such that, for all S ∈ STR(R), S |= ψ if and only if D̂(S) |= φ.

As with the Splitting Theorem, the proof of this theorem is mostly technical work and does not offer
any great insight. It is somewhat simpler than the Splitting Theorem, though, since we produce only
one formula ψ rather than a large number of formulas.

35

8.3 Many-Sorted Algebras

There is one problem with our approach towards the STR algebra so far. We wish to use QFOs as our
operations, but a given QFO is not defined over all relational structures. So far, we have been avoiding
this issue to simplify the definition of an algebra, but we cannot put this off any longer.

The basic idea is to partition the underlying set of the algebra into sets, each one identified as a sort.
The domain of each function is limited so as to operate only between specified sorts, and similarly each
constant is required to be of a given sort.

Definition 8.11. Let Z be an arbitrary index set. The elements of Z are called sorts.
A functional Z-signature is a collection of function symbols where each symbol f has an arity ρ(f),

an input type α(f) ∈ Zρ(f) and an output type σ(f) ∈ Z. Constant symbols, having arity 0, receive the
input type ().

An F -algebra M has, rather than a single domain M , one domain MZ for each sort Z ∈ Z. The
domains must be pairwise disjoint.

For a function symbol f with input type α(f) = (Z1, . . . , Zρ(f)), the corresponding interpretation fM
is, rather than a function Mρ(f) →M , a function from MZ1

×MZ2
× . . .×MZρ(f) → σ(f).

Most of the definitions and results already presented about single-sorted algebras are still applicable to
many-sorted algebras, and we will not spend the time to go over the precise details of the generalizations
here.

There is one particularly critical exception, however, that is used in the proof of the Recognizability
Theorem:

Definition 8.12. Let F be a functional Z-signature and let A be an F -algebra over domains AZ (for
Z ∈ Z). A is locally finite if, for each sort Z ∈ Z, the corresponding domain AZ is finite.

Let M be an F -algebra and let R ⊆ M . We say that R is recognizable if there exists a locally finite
F -algebra A and a homomorphism h : M → A (a homomorphism between many-sorted algebras must
be sort-preserving) such that, for some C ⊆ A, R = h−1(C).

The critical difference between this definition and the definition for a single-sorted algebra is that in
a many-sorted algebra we relax the restriction that A be finite to requiring that A be locally finite. On
a single-sorted algebra, or indeed any algebra with only finitely many sorts, the notions coincide, so the
distinction would have been academic in the earlier discussion.

The reason for this relaxation, which allows A to be infinite, is not immediately obvious nor is it
easily explained. The technical reason is that this relaxation allows sufficient expressive power without
removing the fact that, in the algebra T(F) discussed in the proof of the Filtering Theorem, the equational
and recognizable sets coincide. The intuitive reason is that, given an element, we know its sort, and so
when trying to identify members of R using the homomorphism h, we need only consider the members
of C which share a sort. As long as there are only finitely many of those, we can still recognize elements
of R.

We can and will do precisely the same loosening for the characterization of recognizability in terms
of congruences:

Definition 8.13. Let F be a functional Z-signature and let M be an F -algebra. Take M =
⋃
Z∈ZMZ .

An equivalence relation ∼ on M is sort-preserving if x ∼ y implies that x and y have the same sort
(that is, they are both in MS for some S ∈ Z). It follows that every equivalence class of ∼ has a single
sort. ∼ is locally finite if there are only finitely many equivalence classes of each sort.

Proposition 8.14. Let M be a many-sorted algebra. Then M is recognizable if and only if it is saturated
by a locally finite congruence on M.

8.4 The Algebra of Relational Structures

We now have all of the pieces necessary to define our algebra STR.

36

Definition 8.15. Let Z be the collection of all relational signatures. We define the Z-sorted algebra
STR as having the following properties:

1. For each relational signature R ∈ Z, the corresponding domain is STR(R).

2. For each QFO D̂ with type R → R′, there is a unary function D̂ with type R → R′.

3. For each pair of compatible signatures R and R′, there is binary function] with type R×R′ →
(R∪R′), defined as the disjoint union.

4. For each signature R with no constant symbols, a single constant ∅R of type R denoting the empty
structure.

5. For each signature R and set B with R0 ⊆ B ⊆ R, a constant �B,R denoting the structure with
a single element ∗ where, for each constant c ∈ R0, c�B,R = ∗ and, for each relation R ∈ R+,
R(∗, . . . , ∗) holds if and only if R ∈ B.

6. There are no other functions or constants.

We define STRpres to be the subalgebra of STR obtained by restricting the binary functions to the
QDP-QFOs, rather than all QFOs.

8.5 Completing the Proof

To complete the proof of the Recognizability Theorem, we need a few more auxiliary definitions.

Definition 8.16. Let h ∈ N. We define the equivalence relation ∼hL, the logical congruence of height
h, on STR by S ∼hL T if and only if there is a relational signature R such that S and T are both
R-structures and, for all R-sentences φ of quantifier height at most h, S |= φ if and only if T |= φ.

Lemma 8.17. The relation ∼hL forms a congruence on STRpres.

Proof. First, let R be a relational signature and let S and S′ be R structures such that S ∼hL S′. Let D̂
be any QDP-QFO of type R → R′.

Let φ be an R′ formula of quantifier height at most h. Then by the Backwards Translation Theo-
rem 8.10, there is a formula ψ of quantifier height at most h such that, for all R-structures T , T |= ψ if

and only if D̂(T) |= φ. S |= ψ if and only if S′ |= ψ, so D̂(S) |= φ if and only if D̂(S′) |= φ.

Hence D̂ respects ∼hL.
The proof that the disjoint union respects ∼hL is done similarly, using the Splitting Theorem, but is

more technical because the Splitting Theorem does not guarantee a unique pair of formulas θ and ψ.

Theorem 8.18 (Recognizability Theorem for STRpres). Let R be a relational signature, and let φ be a
R-formula. Then the set M of models of φ is recognizable in STRpres.

Proof. Let h be the quantifier height of φ.
By the lemma, ∼hL is a congruence on STRpres.
∼hL is locally finite because for any relational signatureR′, there are, up to logical equivalence, finitely

many R′-formulas. This is intuitively seen by considering that there are finitely many statements that
can be expressed about h quantified variables and the finitely many constants of R′.

Lastly, ∼hL saturates M because S ∼hL T implies that S |= φ if and only if T |= φ.
It follows that ∼hL is a locally finite congruence on STRpres which saturates M , and hence M is

recognizable.

37

8.6 Application to the HR algebra

In order to get the Recognizability Theorem for the JS algebra, we only need to show that JS is a
“subalgebra” of STRpres. In order to do so, the first step is to define the many-sorted version of JS.

Definition 8.19. We define a many-sorted algebra JSt by letting the set of sorts be the finite subsets
of N, and the sort of an s-graph G ∈ JS is its type (recall that G’s type is the set of numbers which
appear as source labels in G).

For each of the constant symbols a, ab, and a`, the corresponding sorts are {a}, {a, b}, and {a}.
We replace the function fga with functions fga,C for every finite C ⊆ N with a ∈ C. fga,C is defined

as the restriction of fga to the graphs of type C. The resulting graph always has type C − a.
Similarly, we replace the function rena↔b with a function fga↔b,C for every finite C ⊆ N with a ∈ C.

We then define rena↔b,C as the restriction of rena↔b to the graphs of type C. The output type will be
(C − a) ∪ {b}.

Finally, we replace the function � with a function �C,D for every finite C,D ⊆ N, defined by the
natural restriction to graphs of type C and type D. The resulting graph always has type C ∪D.

This is a very natural typing scheme, and it should be clear that we have not lost much expressive
power. If we write out a graph as a JSt term, then for each instance of fga or rena↔b in the expression,
we can either replace it with a corresponding sorted instance, or else remove it entirely because it is the
identity function in that case.

The algebra JSt is not a subalgebra of STRpres in the traditional sense, because it does not have
nearly the same richness of operations. We need define a more general notion in order to avoid this.

Definition 8.20. Let F be an Z-signature and F ′ an Z ′-signature, where Z ′ ⊆ Z. Let A be an
F -algebra and B an F ′-algebra.

B is a derived subalgebra if:

1. for each Z ∈ Z ′, BZ ⊆ AZ ;

2. for each operation fB of B with arity ρ, there exists some F -term t in ρ variables such that
fB(x1, . . . , xn) = valA(t)(x1, . . . , xn) on the domain of fB.

In other words, we must have some way of composing the operations of A in order to make each of
the operations of B.

Example 8.21. Let A be the real numbers with constants 0 and 1, and two operations: addition,
multiplication, and additive inverse.

Let B be the integers with constant 0 and two operations: subtraction and taking the square.
Then B is a derived subalgebra of A. We can define subtraction in terms of the operations of A as

a − b = a + (−b). Similarly, we can define squaring as x2 = x · x. This is legal, because we allow a
variable to appear more than once in the term t.

Recall that every s-graph G of type C corresponds to a RC-structure, where RC is a relational
signature containing the binary relation ‘in’ and one constant for every element of C. For the remainder
of this section, we shall not draw a distinction between a (many-sorted) HR-term t, its valueG = valJSt(t),
and the relational structure dGe.
Theorem 8.22. The algebra JSt is a derived subalgebra of STRpres.

Proof. Each of the constants of JSt is a relational structure, and therefore in STRpres.
For the unary operation fga,C , we will create a corresponding QFO definition scheme Da,C of type

RC → RC−a (recall Definition 8.7), as follows, where c and d range over all constants of RC and RC−a,
respectively:

δ(x) = True

θin(x1, x2) = in(x1, x2)

κc,d =

{
True : c = d

False : c 6= d

38

This definition may seem pointless, as it appears to do nothing at all. However, since a is not a

constant symbol of RC−a, there are no formulas κc,a, and the effect of the corresponding operation D̂a,C

is to drop the constant symbol a—precisely what we need to get fga,C . Since δ(x) = True for all x, D̂a,c

is domain-preserving and hence quasi-domain-preserving. Note that δ(a) = True, because if δ(a) were

False, then D̂a,c would remove a from the underlying set altogether, rather than only forgetting that it
is a constant.

For the unary operation rena↔b,C , we will similarly create a QFO definition scheme Da↔b,C of type
RC → RC . The definition is as follows, where c and d range over all constants of RC other than a and
b:

δ(x) = True

θin(x1, x2) = in(x1, x2)

κa,b = κb,a = True

κa,c = κb,c = κc,a = κc,b = False

κc,d =

{
True : c = d

False : c 6= d

The effect of D̂a↔b,C is to swap the constants a and b, exactly as desired, giving us the operation
rena↔b,C . It is again domain-preserving.

The final step is to define G �H in terms of disjoint union and QDP-QFOs. Say that G has type C
and H has type D. If C and D are not disjoint (which will often be the case, to make things interesting!),
they are not compatible, so we cannot take the disjoint union as is.

To work around this, we pick some type D′ ⊆ N with |D′| = |D| such that D′ and C are disjoint,
and (D′ ∩D) ∪ (C ∩D) = D. This is the type of D after renaming the sources duplicated in C. Using
applications of ren, we can turn H into an s-graph H ′ of type D′. If a ∈ C ∩D, we denote by a′ the new
label assigned to H’s a-source in this relabeling. We will denote the composed renaming operations as
renD, so that H ′ = renD(H).

Now that C and D′ are disjoint, we can take the disjoint union G′ = G]H ′. All that remains is to
fuse a with a′ for each a ∈ C ∩D.

To fuse a with a′, we apply the QFO defined as follows:

δ(x) = x 6= a′

θin(x1, x2) = in(x1, x2) ∨ (x1 = a ∧ in(a′, x2)

κc,d =

{
True : c = d ∨ (c = a′ ∧ d = a)

False : c 6= d ∧ (c 6= a′ ∨ d 6= a)

The effect of this operation is precisely to merge a and a′ into a single vertex labeled with a, and
have no other effects. Thus by fusing each a ∈ C ∩D with a′, we transform G′ into G �H, using only
QDP-QFOs and disjoint union. This shows that JSt is in fact a derived subalgebra of STRpres.

The following lemma is the final piece of the puzzle:

Lemma 8.23. Let N be a derived subalgebra of M. Then if L is recognizable in M, it is recognizable in
N.

Proof. Any congruence ∼ on M is a congruence on N, since the operations of the latter are defined in
terms of the former. Whether or not ∼ is locally finite and whether or not L is saturated by ∼ are
independent of the choice of algebra. Thus a locally finite congruence on M which saturates L is also a
locally finite congruence on N which saturates L.

This completes the proof of the Recognizability Theorem for JSt.

39

Theorem 8.2 (Recognizability Theorem for the Sorted HR Algebra, [2]). Let D be a MS2-definable set
of s-graphs. Then D is recognizable in JSt.

Proof. By Theorem 8.22, JSt is a derived subalgebra of STRpres. By Theorem 8.18, D is recognizable in
STRpres. The theorem follows from the lemma.

40

9 Tree-Generators and HR Equation Systems

In our first true foray into new mathematics, we investigate the representation of tree-generators as
a particular class of labeled HR equation systems. The ultimate goal would be to get an analog of
Theorem 6.11 with applicability to general graph ideals. While this is promising, there is some theoretical
machinery that still needs to be developed.

Once that technical machinery has been developed, we hope that it will be possible to extend the
results of Section 6 to a more general class of tree-generators introduced here. It is clear that these
results do not extend to HR-equational sets generally, and so there is a significant question of how far,
exactly, we can extend the notion of a tree-generator until we lose those results. We present one concrete
conjecture in this area and open the door to further investigation in the area.

9.1 HR Algebras for Labeled Graphs

First, in order to attach ideals to the vertices of graphs generated by HR equation systems, as is done
with tree-generators, we need to extend the algebra JS to allow labeled graphs. Effectively, what we do
is allow labels to be introduced on constants without affecting the structure of equation systems.

When we parallel-compose two graphs together and identify vertices, we need some way to combine
the labels, so we require that they be a commutative monoid.

This definition is similar, but not identical to the one used by Courcelle and Engelfriet in [2] to handle
labeled graphs: their definition did not allow for arbitrary commutative monoids and also accounted for
edge labels. The choice of definitions is therefore mostly cosmetic.

Definition 9.1. Let L = (S, ·) be a commutative monoid—that is, · is a commutative and associative
binary operation on S with an identity element. Denote the identity element by e.

The L-labeled HR signature HRL is the same as HR, except that each constant symbol a is replaced
with the family of symbols {as : s ∈ S}.

The L-labeled HR algebra JSL is an HRL-algebra over the set JSL of all s-graphs labeled from L.
The graphs in the underlying set have two separate labelings: the source labeling, from N, and the other
labeling, from L. Unless otherwise specified, when referring to such a graph, the function L will refer
to the label from L and not the source label.

The symbols are interpreted as in the unlabeled HR algebra JS, with the following differences:

• as the vertex introduced by this constant is labeled with s;

• a` the vertex introduced by this constant is labeled with the identity element e;

• ab the vertices introduced by this constant are labeled with e;

• G1 �G2 when two vertices u and v are identified by the parallel composition to give w, we set
L (w) = L (v) ·L (u), applying the operation of the commutative monoid.

We define JSkL analagously to JSk.

9.2 From Tree-Generators to HR

Proposition 9.2. Let Ω = (Q,�) be a quasi-order and let G = {(Jα, fα) : α ∈ IG} be an Ω-tree-
generator. Then there exists a labeled JSL equation system EQ(G) such that L(EQ(G), S1) (recall Defi-
nition 4.10) is equal to ι(G), if we consider the root of T ∈ ι(G) to be the 0-source of the corresponding
graph of L(EQ(G), S1).

Proof. We set G1 = G, and let G2, . . . , Gk be the sub-tgs of G other than ⊗. We will let our variable
set be {S1, . . . , Sk} ∪ {S∗1 , . . . , S∗k} ∪ {S?

1 , . . . , S
?
k}.

For 1 ≤ i ≤ k, we will define HR2 equations for Si, S
∗
i , and S?

i in the powerset algebra. Si corresponds
to a single graph generated by Gi, S

?
i to zero or one such graphs, and S∗i to any number of such graphs.

41

We can obtain the polynomials required for a valid equation system by applying Proposition 4.8. Suppose
that Gi = {(Jα, fα) : α ∈ IG}.

We define EQ(G) as the following equation system:

Si =
⋃
α∈IG

0Jα � S�fα(⊗)
i � �

j 6=i

S
�fα(Gj)
j

S?
i = ∅ ∪ fg1(ren0↔1(Si � 01))

S∗i = ∅ ∪ (S?
i � S∗i)

where for 1 ≤ j ≤ k (including when j = i), we define S
�`
j to mean S∗j if ` = ω, and

` times︷ ︸︸ ︷
S?
j � S?

j � . . . � S?
j

otherwise.
Now we need to show that EQ(G) has the desired properties. First, suppose that T ∈ L(EQ(G), S1).
Then we wish to show that there exists some α ∈ IG and an injective function g : chldrn(r(T)) �

TG(G) satisfying the constraints in Definition 6.3.
However, we have the following equation in EQ(G):

S1 =
⋃
α∈IG

0Jα � S�fα(⊗)
1 � �

j 6=1

S
�fα(Gj)
j

T will be generated by some element of the union, so set α such that T can be generated by:

0Jα � S�fα(⊗)
1 � �

j 6=1

S
�fα(Gj)
j

The root of T will be generated by 0Jα , satisfying the requirement that the root of r be labeled with
Jα. If this is the only vertex of T , we are done. Otherwise, we can proceed inductively on the height of
T .

Let EQ(G) be the equation system for G whose existence is guaranteed by Proposition 9.2. Let
G1, . . . , Gk be the sub-tgs of G other than ⊗, such that Si is the equation in EQ(G) generating Gi.

Since every sub-tg of Gi is also a sub-tg of G, each equation in EQ(Gi) is also an equation of EQ(G),
after renaming the indices. It follows that L(EQ(G), Si) = L(EQ(Gi), S1). Thus, as our inductive
hypothesis, if Gi is a proper sub-tg of G, then L(EQ(G), Si) = ι(Gi).

By inspection, L(EQ(G), S?
i) contains exactly the graphs obtained from a graph of ι(Gi) by making

the root and adding a new 0-source adjacent to only the root, plus the empty graph. Furthermore,
L(EQ(G), S∗i) contains the parallel composition of any number of such graphs, such that the 0-source is
adjacent to the root of any number of graphs of ι(Gi).

Si is obtained by taking the parallel composition of 0Jα with a number of terms of the form S
�k
j .

Each child of the root is thus obtained from one of these terms. Thus, for any child u of r(T), define

g(u) to be the Gj such that u was obtained from the S
�k
j term.

By construction, for any H ∈ TG(G), |{u ∈ chldrn(r(T)) : g(u) = H}| ≤ fα(H). By the inductive hy-
pothesis, for any u ∈ chldrn(r(T)), br(u) ∈ ι′(g(u)) (where ι′ has the same meaning as in Definition 6.3).
Thus T ∈ ι(G).

Conversely, if T ∈ ι(G), then let α be such that T is generated via (Jα, fα), and let g be the function
guaranteed by Definition 6.3. Then each child of r(T) will be generated in some sub-tg Gi of G. We
perform the same induction, and so it is generated in L(EQ(Gi), S1). When we take {br(u) : u ∈
chldrn(r(T))} and join them all together with a single vertex, this gives us T , and we only need the Si
branch of the equation S1 at most fα(Gi) times.

42

This equation system provides a nice way to go from tree-generators to HR equations, but can we
go in the opposite direction? We cannot do so generally, because tree-generators generate trees while
HR-equational sets can contain graphs of arbitrary tree-width. The natural restriction is to HR2, where
all the equational sets are sets of trees, but this alone is not enough.

9.3 From HR Systems to Tree-Generators

Proposition 9.3. There exists an HR2-equational set which is not ι(G) for any tree-generator G.

Proof. Let Ω be a nonempty wqo, and consider the following HR2 equation system E, for some nonempty
a, b ∈ ↓(Ω):

S1 = 0a ∪ fg1(0{a} � 01 � ren0↔1(S2))

S2 = 0b ∪ fg1(0{b} � 01 � ren0↔1(S1))

The set L(E,S1) is equational by definition, and is exactly the paths with alternating labels a and
b, where at least one of the endpoints is labeled with an a. It should be clear that each of these paths
is in L(E,S1), and because of the requirement that we pick the minimal solution, we cannot introduce
any additional, unnecessary graphs.

But now, in order to have a tree-generator that ideal-generates G(E,S1), it cannot use the symbol
⊗, as that would require two consecutive vertices with the same label. As such, the paths it could
generated would have bounded length, since a tree-generator must be finite, and this is not enough to
create G(E,S1).

It seems to us that this difference in expressive power originates because of the more powerful, general
recursion available in general equation systems than in tree-generators. In a tree-generator, the only way
it can refer to itself is immediately, using ⊗. No other sub-tg can refer back to the original. In contrast,
an equation system can go arbitrarily deep.

9.4 Augmented Tree-Generators

We now present a more powerful alternative tree-generator which express do arbitrarily deep recursion.
This allows us to overcome the first difficulty in relating HR equations with tree-generators.

Definition 9.4. Let Ω = (Q,�) be a quasi-order, and let k ≥ 0.
We define the set of k-recursive Ω-tree-generators T Gk(Ω) inductively as follows:
Set T Gk0(Ω) = {∅}.
Let Fi+1(Ω) be the set of functions (T Gk+1

i (Ω)∪{⊗0,⊗1, . . . ,⊗k}) \ {∅} → N∗ which are nonzero on
only finitely many points. As before, the symbols ⊗j have no intrinsic meaning.

Then we define:

T Gki+1(Ω) = T Gki ∪ (↓(Ω)× Fi+1(Ω))
(<ω)

where, as earlier, S(<ω) means the finite subsets of S.
Then we take T Gk(Ω) =

⋃
n∈N T G

k
n(Ω).

An augmented Ω-tree-generator is a 0-recursive tree-generator, that is, an element of T G0(Ω) =⋃
n∈N T G

0
n(Ω). Its recursion depth is the greatest k such that ⊗k appears as a sub-tg.

The symbols ⊗k represent recursion to k levels: when generating, if we encounter such a symbol,
then rather than substituting a tree generated by the tree-generator immediately at hand, as with ⊗,
we instead substitute a tree generated by the tree-generator k levels up. Thus, ⊗0 indicates the current
tree-generator, ⊗1 indicates its immediate parent, and so on.

Note that an augmented tree-generator of recursion depth 0 is just a tree-generator.

43

Definition 9.5. Let G = {(Jα, fα) : α ∈ IG} be a k-recursive Ω-tree generator.
We define the set ι[G1, . . . , Gk](G) analogously to the definition of ι(G) for a plain tree-generator G.
ι[G1, . . . , Gk](G) contains all rooted trees T where there exists an α ∈ IG and an injective function

G : chldrn(r(T))� TG(G) such that:

• the root r of T is labeled with Jα;
• for any H ∈ TG(G), |{u ∈ chldrn(r(T)) : g(u) = H}| ≤ fα(H); and
• for each u ∈ chldrn(r(T)), br(u) ∈ ι′(g(u)), where we say that ι′(⊗j) = ι[Gj+1, . . . , Gk](Gj) (with
G0 = G), and otherwise ι′(H) = ι[G,G1, . . . , Gk](H).

As before, we say that T is generated via (Jα, fα), and we define a special case ι[...]({∅}) = ∅. For
augmented tree-generators (when k = 0), we also define τ(G) to contain all trees T such that T is
obtained from some T ′ ∈ ι[](G) by replacing each node label with one of its elements.

The purpose of adding the [G1, . . . , Gk] to the notation of ι(G) is to track the higher levels of tree-
generators. When we descend to a lower level we add G to the list, and when we encounter ⊗j , we jump
back up by j levels. This additional context is not required when k = 0.

Now, returning to the above example, we can easily make an augmented tree-generator (of recursion
depth 1) which generates alternating paths. The construction of Proposition 9.2 extends naturally to
augmented tree-generators. The converse, however, is still not true in general, because, for instance, there
is no augmented tree-generator which generates only graphs of size at least 2. There is much work to be
done in characterizing which HR equation systems can be represented by (augmented) tree-generators.

It is unfortunately not immediately apparent how to extend the definition of a subtree-extending
collection (Definition 6.5) to augmented tree-generators. We believe that this is the most important step
in solving the following:

Conjecture 9.6. Let Ω = (�, S) be a wqo such that P1(Ω) is wqo, and let T be a subtree-extending
collection of tree-generators such that:

• for every G ∈ T , T G(G) is downwards-closed under �; and
• there exists k such that, for every G ∈ T , G has recursion-depth at most k.

Then (T ,�τ) is a wqo.

This analog of Lemma 6.6 would be critical in developing new quasi-ordering results on generated
sets, and we expect that there is more to be found in this area.

Another potential avenue of research is to reformulate the proof of Theorem 6.11 in terms of HR
grammars directly, and thus bypass the need for tree-generators at all. Attempting to generalize such a
proof may also lead to new results.

When posed as a statement about HR equation systems, Theorem 6.11 introduces many assump-
tions, included bounded recursion-depth and that the generated graphs are all trees (have tree-width 1).
Ultimately, determining how we can weaken these assumptions while still preserving this result is likely
a worthwhile endeavour.

44

10 Describing Ideals with HR Equations

Our other area of new work is in describing graph ideals using logic and, thus, HR equation systems.
We describe a way, using the obstruction set, to encode the relationship of graph ideal inclusion in terms
of a MSO-definable relation on graphs. We then investigate its consequences, including a new width
parameter on graph ideals.

Our work was initially motivated as an attempt to find an alternate proof that, for any k, the graph
ideals of width at most k are well-quasi-ordered. We discovered, however, that this logical technique is
not well-suited to this problem. Instead, we describe a new width parameter on graph ideals specifically,
and formulate a conjecture about well-quasi-ordering graph ideals bounded in this parameter.

10.1 Minors of Connected Graphs

Given a graph ideal I, we wish to encode it into a graph G(I). The ideal has a finite representation in
its obstruction set obs(I). We cannot, however, simply take ⊕ obs(I), as there may be a disconnected
obstruction, and we would lose the ability to tell if two components came from the same original graph,
or from different ones.

We will show that we can reduce our consideration to connected graphs. Given a collection of graphs
G, we denote by Gconn the connected graphs in G.

Definition 10.1. Let 4G denote the cone of G, created from G by adding a new vertex fG, called the
apex , and one edge from fG to each vertex of G.

Note, in particular, that 4G is always connected.

Lemma 10.2. Given graphs G,H, H ≺m G if and only if 4H ≺m 4G.

Proof. If H ≺m G, take a collapse η = (ηV , ηE) of G to H. Create a collapse 4η = (4ηV ,4ηE) of 4G
to 4H as follows:

4ηV (v) =

{
fG : v = fH

ηV (v) : otherwise

4ηE(e) =

{
(fG)ηV (u) : e = (fH)u

ηE(e) : otherwise

Note that this is well-defined as fH has no loops. This demonstrates that 4H ≺m 4G.
Conversely, suppose that 4H �m 4G. Let 4η = (4ηV ,4ηE) be a collapse of 4G to 4H. We will

construct a collapse η = (ηV , ηE) from G to H. If there is no u ∈ V (H) such that fG ∈ 4ηV (u), then
we can take ηV to be the restriction of 4ηV to V (H) and likewise with ηE , and the result is the desired
collapse.

Otherwise, there is some u ∈ V (H) such that fG ∈ 4ηV (u). We take U = 4ηV (fH), and then for
any v ∈ V (H), 4ηE((fH)v) must go from some vertex in 4ηV (v) to some vertex in U . We can then
set:

ηV (v) =

{
U : v = u

4ηV (v) : otherwise

ηE(e) =

{
4ηE((fH)v) : e = uv

4ηE(e) : otherwise

For any v ∈ V (H), ηV (v) will be connected in G, either because v 6= u and ηV (v) = 4ηV (v), or
because ηV (v) = U = 4ηV (fH). In either case, 4ηV is a connected subgraph of 4G not containing
fG, and hence is a connected subgraph of G.

Thus η is the desired collapse.

45

Definition 10.3. Let R1 = (S1,∼1) and R2 = (S2,∼2) be relations. Then an embedding of R1 into R2

is an injective map f : S1 � S2 such that f(s) ∼2 f(t) if and only if s ∼1 t. Equivalently, the image of
f is a subset of R2 isomorphic to R1.

Corollary 10.4. The mapping G 7→ 4G is an injective embedding of (G,≺m) into (Gconn,≺m).

The identity mapping forms an embedding in the other direction, giving:

Corollary 10.5. For any ordinal α, Pα(G,�m) is wqo if and only if Pα(Gconn,�m) is wqo.

Proof. Any bad sequence in Pα(Gconn,�m) is also a bad sequence in Pα(G,�m), proving one direction.
For the other direction, for each ordinal α, recursively define maps 4α : Pα(G) → Pα(Gconn) as

follows:

1. 40 = 4;
2. For each ordinal α which is the successor of an ordinal β, 4α(X) = {4β(Y) : Y ∈ X}.
3. For each ordinal α which is a limit ordinal:

4α(X) = {4β(Y) : Y ∈ X,β is the least ordinal such that Y ∈ Pβ(G)}

By induction, we show that α is an embedding of Pα(G) into Pα(Gconn). The zero case is Corol-
lary 10.4.

For α a successor of β, by induction, 4β is an embedding. It follows directly that 4α is too.
Similarly for α a limit ordinal, by induction, for all β < α, 4β is an embedding. Thus it follows

directly again that 4α is an embedding.

This allows us to extend any ordering results on Gconn to G in general, which is potentially quite
powerful.

10.2 Ideal Graphs

The cone construction is a natural encoding of graphs into connected graphs, with which we can work
more easily. We will begin with a little bit of notation:

Definition 10.6. A graph ideal is an ideal in (G,�m).
The set G4 is defined as the set of all graphs which are cones.
Given a graph ideal I, the corresponding cone ideal is defined as 4I = cl↓({4G : G ∈ I}), where

the closure is taken with respect to (G4,�m).

Note, however, that for some graph ideal I, forb(I) may not bear any obvious relation to the
corresponding set forb(4I). However, either obstruction set will serve to uniquely identify I, which is
a critical property.

Lemma 10.7. Let I and J be graph ideals. If 4I = 4J , then I = J .

Proof. Suppose that 4I = 4J but I 6= J . Without loss of generality, we may assume that there is a
graph H ∈ I but H /∈ J .

Since 4H ∈ 4I = 4J , by definition of 4J there must be some G ∈ J such that 4H �m 4G.
But then H �m G, and J is an ideal, so H ∈ J , contradiction.

Definition 10.8. Let I be a graph ideal. The obstruction graph G(I) of I is defined to be
⊕

forb(4I).
We define a relation �I on G as follows: H �I G if and only if, for every component G′ of G, there

is some component H ′ of H such that H ′ �m G′.

Lemma 10.9. Let I and J be graph ideals. Then J ⊆ I if and only if G(J) �I G(I).

46

Proof. Recall that I is the complement of cl↑(forbG(I)) and similarly for J . It follows that J ⊆ I if
and only if cl↑(forbG(I)) ⊆ cl↑(forbG(J)).

This will occur exactly when, for every graph G ∈ forbG(I), there is some graph H ∈ forbG(J) such
that H �m G. Equivalently, since 4 is an embedding, for every graph G′ ∈ forbGconn(4I), there is
some graph H ′ ∈ forbGconn(4I) such that H ′ �m G′.

Since all of the graphs in forbGconn(4I) and forbGconn(4J) are connected, this is exactly when
G(J) �I G(I).

10.3 Defining Ideals

We can now tie logic into this by using our logic to identify ideals contained in other ideals:

Lemma 10.10. Let H be a fixed graph. Then the collection of all graphs G such that H �I G is
MS2-definable.

Proof. Let H1, . . . ,Hk be the connected components of H. Recall from Theorem 7.10 and Example 7.8
that for any fixed H ′, the collection of graphs G such that H ′ �m G is definable, as is the statement “X
is the vertex set of a connected component of G”.

We can encode the desired logical statement about a graph G as follows: “For all X ⊆ V (G), if X is
a connected component, then H1 �m X or H2 �m X or H3 �m X or ... or Hk �m X.” Since k is fixed
by H, this logical statement is of finite length and therefore well-defined.

The combination of these two lemmas tells us that:

Proposition 10.11. Let J be a fixed graph ideal. Then there is a definable set of graphs S such that,
for any graph ideal I, J ⊆ I if and only if G(I) ∈ S .

Proof. Let S be obs�I
({G(J)})—that is, the set of all graphs G such that G(J) �I G. S is definable

and has the desired properties.

Note, unfortunately, that we cannot say that the set {G(I) : J ⊆ I} is definable, as S will in general
contain graphs which are not G(I) for some ideal I. A graph will be expressible as such if and only if
every component is a cone and no two components are minors of each other. The former condition is
easily expressed in MS2, but the latter condition is not expressible:

Theorem 10.12. The property P , defined as “G contains two components, one of which is a minor of
the other,” is not MS2-definable.

Proof Sketch. Consider the monoid Σ∗ of strings over the alphabet Σ = {a, b}. The elements are all
finite sequences of symbols a and b and the only operation is concatenation. It is a standard result in
language theory that the language (set) L = {anbm : n ≤ m} is not regular (recognizable). We will
assume that P is MS2-definable and thereby create a contradiction by proving that L is regular. For the
remainder of this proof, we will assume that MS2 is the logical language being used.

Let L′ = {anbm : n,m ∈ N}. Let RΣ be the relational signature consisting of two unary symbols L a

and L b and a single binary symbol ‘adj’.
For each string w ∈ Σ∗, we denote by |w| the length of w (the number of symbols). We then define

a relational structure dwe with |w| elements, corresponding to each of the positions in the string. For
each element e, L a(e) is true if the eth element is a, and similarly for L b and b. For two elements e
and f , adj(e, f) is true if e comes immediately before f in the string.

We let C ′k denote the graph obtained from the cycle Ck by adding a pendant edge (see Figure 8), and
define a map f : L′ → G by f(anbm) = Cn ⊕C ′m (where ⊕, as before, denotes disjoint union of graphs).

For any w = anbm ∈ L′, then the property P is true for f(w) if and only if the Cn component is a
minor of the C ′m component, since the C ′m component cannot be a minor of the Cn component. This
occurs if and only if n ≤ m. Hence P is true for f(w) if and only if w ∈ L.

At this point, we hit a roadblock, because we do not have the machinery to define f in a way that we
can use. We cannot define it in a quantifier-free manner (or, more accurately, our attempts were met with

47

Figure 8: The graph C ′6.

failure). What we need is a more general theory of transformations: a generalization of Definition 8.7
and the Backwards Translation Theorem 8.10, applicable to f . The necessary generalizations can be
found in Section 7 of [2].

The logical formulas defining f are straightforward once we have quantfiers. The formula φ(e) =
@f. adj(f, e), for instance, asserts that e is the first element of the string, and ψ(e) = L a(e)∧∃f.(adj(e, f)∧
L b(f)) asserts that e is the last a.

Since L′ is a definable subset of Σ∗, we can extend f to a map f ′ : Σ∗ → G by setting f ′(w) = f(w)
if w ∈ L′, and f ′(w) = f(ab) otherwise. Then P holds for f ′(w) if and only if w ∈ L as desired.

Finally, we need to find a structure in which f ′(L) is definable, in order to apply the Backwards
Translation Theorem. But the range of f ′ is a subset of G′ = {Cn ⊕C ′m : n,m ∈ N}, so we can actually
just consider f ′ to be a map Σ∗ → G′. Then, since P is definable, and since f ′(L) is exactly the subset
of G′ for which P holds, f ′(L) is definable and hence so is L.

Finally, since L is a definable subset of Σ∗, by the full Recognizability Theorem (of which Theo-
rem 8.18 is a special case), it is recognizable, giving us the desired contradiction.

We are not aware of any ocurrences of this proof in the literature, although the technique is standard.
This proof was provided to us by Courcelle in private correspondence.

This result tells us that in order to restrict ourselves to the graphs of the form G(I), we must do so
as a post-processing step. We do not see any major obstacles in this, however, as we can simply regard
the presence or absence of other graphs in S as irrelevant information.

10.4 Cone Tree-width

Turning to the implications for graph structure, we wish to generate equation systems which define
sets of graphs analogous to S above. As with graphs in general, we are limited fundamentally by the
requirement that all equational sets have bounded tree-width.

In this case, however, the limitation on tree-width is not on the ideals I themselves, because we are
not attempting to describe them. Rather, our definability result is on the obstruction graphs. As a
result, we are actually talking about a different criterion:

Definition 10.13. Let I be a graph ideal. The obstruction-width ow(I) is max{tw(G)+1 : G ∈ obs(I)}.
As a special case, we define ow(G) = 0, since the obstruction set of all graphs is empty.

We will also need a lemma about the tree-width of cones:

Lemma 10.14. Let G = (V,E) be any graph. Then tw(4G) = tw(G) + 1.

Proof. Given a tree-decomposition of G, we can turn it into a tree-decomposition of 4G by adding fG
to every bag, so tw(4G) ≤ tw(G) + 1.

Suppose T = (W,E′) is a minimum-width decomposition of 4G, and assume towards a contradiction
that there exists w ∈ W such that f(w) is largest, but does not contain fG. Assume without loss of
generality that w is not labeled the same as any of its neighbours; that is, it has a bag distinct from its
neighbours.

Only one component S of T − w can contain bags with fG, by the connectivity condition. As T is
a tree, there is a unique neighbour w′ of w which is in S. But f(w′) 6= f(w) and f(w) is of largest size,
so there is v ∈ f(w) with v /∈ f(w′).

48

It follows that v is not in any bag in S, but then v and fG never share a bag, which is a contradiction
since v ∼ fG by definition.

Accordingly, for every minimum-width tree-decomposition of 4G, fG is in every bag of largest size.
So by removing fG from every bag, we get a tree-decomposition of G of width tw(4G) − 1, proving
that tw(4G) ≥ tw(G) + 1.

10.5 Second-Order Ideals

Now we wish to use HR equation systems to describe sets of ideals by describing their obstruction graphs.
We will first observe that we cannot properly describe any second-order ideal (ideal of ideals) using this
technique, however. This limitation seems somewhat arbitrary, and may be indicative of some deeper
logic. It deserves more investigation.

Proposition 10.15. Let J be a graph ideal and let k ≥ ow(J). Then there exists a graph ideal I such
that J ⊆ I and ow(I) = k.

Proof. Let G be a graph in obs(J) of highest tree-width. We define F = {4k−jG} ∪ {H ∈ obs(J) :
H 6�m 4k−jG}, where 4iG is obtained from G by applying the cone operations i times, and j = ow(J).

In other words, F is obtained from obs(J) by increasing the tree-width of one of the graphs until it
is k.

By construction, the graphs in F are all unrelated by the minor relation. It follows that taking
I = forb(F) is well-defined and gives us the desired obstruction width. Every graph in obs(J) is either
in {H ∈ obs(J) : H 6�m 4k−jG}. Thus, every graph which is a minor of a graph in obsJ is also a
minor of a graph in F , and so J ⊆ I.

Corollary 10.16. Let J be a graph ideal. Then there is no equational set of graphs containing {G(I) :
J ⊆ I}.

It doesn’t seem to us that this result is very dependent on the particular representation G(I). Even
if we find some other way to encode graph ideals into this algebra, the potentially unbounded tree-width
of graphs in the obstruction set will likely be limiting.

10.6 Ideals of Bounded Obstruction-Width

We recall Thomas’ result on graph ideals:

Theorem 10.17 (Thomas, [19]). Let G0 be a planar graph. Then the graphs not containing G0 are bqo
under taking of minors. In other words, (obs(G0),�m) is bqo.

This is a fairly powerful result, and it is not immediately clear that there is hope of coming close to
it from this logic-based approach to first-order ideals. Any wqo result on first-order ideals must, in order
to truly progress on the broader problem of graph ideals, find a way beyond this restriction of excluding
a planar graph, because this result excludes ideals containing all planar graphs.

However, the notion of obstruction-width presents an alternate approach. Wagner’s Theorem is well
known and tells us that the set of all planar graphs is forb(K3,3,K5), which means that the planar graphs
have obstruction-width 5. This leads us to the following conjecture:

Conjecture 10.18. For each k ∈ N, the collection of graph ideals with obstruction-width at most k is
wqo under containment.

Since ow(G) = 0, the set G of all graphs is always in this collection, and hence this conjecture is not
implied for any k by Thomas’ theorem. Proving it would represent a new advance. It is our belief that,
by further development of logic and grammar-based techniques, this conjecture ought to be provable,
and this may represent novel progress towards a result on all graph ideals.

We also believe that the technique of using cone graphs to define and make recognizable all the graph
ideals represents a significant step towards higher-order ideals. The technique should extend readily to

49

ideals of any finite order, by simply taking more cones and defining an equivalent of �I at the higher
levels. We could then define an obstruction-width property on each of the ideals of higher order, and
attempt to prove the analog of this conjecture at that level. We leave this to future work, however.

50

11 Conclusion

The field of graph structure theory owes a lot of its development to the work of Robertson and Seymour
in their attempt to prove the Graph Minors Theorem. Graph structure has found application in a
number of fields, and has even led to development of entirely new areas of study, such as fixed-parameter
tractable algorithms. It is unclear what applications may arise from the study of higher-order ideals of
graphs, but that is of course no reason not to study them. We never know what we may find.

On the other side of things, the work of Courcelle and Engelfriet in graph logic and graph grammars
is still a relatively isolated area of study. But as we have seen, the application of techniques from other
areas of mathematics has given us a rich framework with which to begin a new attack on graph structure.

We have taken the tree-generators of Christian et al., shown that they arise as special cases of HR
grammars, and proposed a way of generalizing them in hopes of strengthening existing well-quasi-ordering
results to HR grammars. We have shown how to apply logical techniques to obtain new descriptions of
graph ideals, including a width parameter on graph ideals which bears further investigation.

Most importantly, however, we hope that this thesis will serve as a basis for new and exciting
developments where these two rich fields intersect. Each of these fields is complex and its own right,
and so we also hope that this thesis can serve as an introduction to someone new to this area of graph
theory. There is much, much more to be discovered here, and hopefully it will in fact be discovered!

51

References

[1] Robin Christian, R. Bruce Richter, and Gelasio Salazar. Tree generators. Unpublished research
notes.

[2] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Number 138 in Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, 2012.

[3] M. R. Fellows and M. A. Langston. On search decision and the efficiency of polynomial-time
algorithms. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing,
STOC ’89, pages 501–512, New York, NY, USA, 1989. ACM.

[4] Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathe-
matical Society, s3-2(1):326–336, 1952.

[5] Ken ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424 – 435, 2012.

[6] Ton Kloks. Treewidth - Computations and Approximations. Number 842 in Lecture Notes in
Computer Science. Springer-Verlag Berlin Heidelberg, 1994.

[7] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Transactions of
the American Mathematical Society, 95(2):pp. 210–225, 1960.

[8] Joseph B Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Journal of
Combinatorial Theory, Series A, 13(3):297 – 305, 1972.

[9] Daniela Kühn. On well-quasi-ordering infinite trees: Nash-williams’s theorem revisited. Mathemat-
ical Proceedings of the Cambridge Philosophical Soceity, 130(3):401–408, 2001.

[10] Richard Laver. On fraisse’s order type conjecture. Annals of Mathematics, 93(1):pp. 89–111, 1971.

[11] Chun-Hung Liu. Graph Structures and Well-Quasi-Order. PhD thesis, Georgia Institute of Tech-
nology, 2014.

[12] C. St. J. A. Nash-Williams. On well-quasi-ordering infinite trees. Mathematical Proceedings of the
Cambridge Philosophical Society, 61(03), 7 1965.

[13] R. Bruce Richter. Graph minors: generalizing kuratowski’s theorem. In Lowell W. Beineke and
Robin J. Wilson, editors, Topics in topological graph theory, number 128 in Encyclopedia of Math-
ematics and Its Applications, chapter 5, pages 81–110. Cambridge University Press, 2013.

[14] Neil Robertson and Paul Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309–322, 1986.

[15] Neil Robertson and Paul Seymour. Graph minors. v. excluding a planar graph. Journal of Combi-
natorial Theory, Series B, 41(1):92–114, 1986.

[16] Neil Robertson and Paul Seymour. Graph minors. iv. tree-width and well-quasi-ordering. Journal
of Combinatorial Theory, Series B, 48(2):227–254, 1990.

[17] Neil Robertson and Paul Seymour. Graph minors. xx. wagner’s conjecture. Journal of Combinatorial
Theory, Series B, 92(2):325–357, 2004.

[18] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge University
Press, 9 2008.

52

[19] Robin Thomas. Well-quasi-ordering infinite graphs with forbidden finite planar minor. Transactions
of the American Mathematical Society, 312:279–313, 1989.

[20] Yaming Yu. More forbidden minors and wye-delta-wye reducibility. The Electronic Journal of
Combinatorics, 2006.

53

Index

above, 8
algebra, 13
algebra of graphs with sources, 19
apex of a cone, 45
arity, 13
ascending sequence, 4
atomic formula, 29
augmented tree-generator, 43

bad sequence, 4
bag, 11
binary symbol, 13
bound occurrence, 30
bound ocurrence, 30
bounded treewidth, 12
branch, 8

children, 8
collapse, 8
compatible structures, 34
cone graph, 45
cone ideal, 46
congruence, 17
constant mapping constraint, 35
constant symbol, 13, 29
contains, 13

definable set, 31
derived subalgebra, 38
descending sequence, 4
disjoint union of structures, 34
domain, 29
domain-preserving QFO definition scheme, 35
downwards-closed set, 4
DP-QFO, 35

embedding of relations, 46
equation system, 15
equational set, 15
excluded elements, 4

first-order term, 29
first-order variable, 29
forbidden elements, 4
forget node, 11
forgetting, 19
formula, 29
free variable, 30
fully labeled graph, 10
functional signature, 13, 36
functional symbol, 13

generated set, 15, 23
generated via, 23
graph ideal, 46
graph with sources, 10

height, 22
homeomorphically embeddable, 9
homomorphism, 16
HR algebra, 19
HR signature, 19

ideal, 4
ideal-generated set, 23
immediate subterm, 13
induced subalgebra, 16
induced subgraph, 8
input type, 36
interpretation, 13
interval vertex, 10
introduce node, 11

join node, 11

label function, 10
labeled graph, 10
labeled HR algebra, 41
labeled HR signature, 41
least solution, 15
local sub-tree-generator, 22
locally finite algebra, 36
locally finite relation, 36
logical congruence, 37

minimal bad sequence, 6
minor-closed set, 8
models, 30
monadic second-order logic, 29
monomial, 14

nice tree-decomposition, 11

obstruction graph, 46
obstruction set, 4
obstruction-width, 48
output type, 36

parallel composition, 19
partial function, 10
partial ranking, 6
polynomial, 14
powerset algebra, 14
preorder, 4

54

QDP-QFO, 35
QFO definition scheme, 34
quantifier height, 33
quantifier-free formula, 30
quantifier-free operation, 35
quantifier-free operation definition scheme, 34
quasi-domain-preserving QFO definition

scheme, 35
quasi-order, 4
quotient algebra, 17

recognizable set, 16, 36
recursion depth, 43
recursive tree-generator, 43
relation symbol, 29
relational signature, 29
renaming, 19
respects, 17
respects labels, 10
root, 8
rooted topological collapse, 9
rooted topological minor, 9
rooted tree, 8

s-graph, 10
saturated relation, 17
sentence, 30
separation, 32
set variable, 29
size, 15
solution, 15

sort, 36
sort-preserving relation, 36
source, 10
strictly ascending sequence, 4
strictly descending sequence, 4
structure, 29
sub-tg, 22
sub-tree-generator, 22
subsignature, 16
subterm, 13
subtree-extending collection, 24
subtree-generating tree-generator, 24

topological collapse, 9
topological minor, 9
tree-decomposition, 11
tree-generator, 22
tree-width, 11
type, 10

unary symbol, 13
underlying set, 13
upwards closure, 4
upwards-closed set, 4

value, 13
variable, 13

well-quasi-order, 4
width, 11
witness of recognizability, 16
wqo, 4

55

