38 research outputs found

    The cyclic-routing UAV problem is PSPACE-complete

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Consider a finite set of targets, with each target assigned a relative deadline, and each pair of targets assigned a fixed transit flight time. Given a flock of identical UAVs, can one ensure that every target is repeatedly visited by some UAV at intervals of duration at most the target’s relative deadline? The Cyclic-Routing UAV Problem (cr-uav) is the question of whether this task has a solution. This problem can straightforwardly be solved in PSPACE by modelling it as a network of timed automata. The special case of there being a single UAV is claimed to be NP-complete in the literature. In this paper, we show that the cr-uav Problem is in fact PSPACE-complete even in the single-UAV case

    Cyclic-routing of Unmanned Aerial Vehicles

    Get PDF
    © 2019 Various missions carried out by Unmanned Aerial Vehicles (UAVs) are concerned with permanent monitoring of a predefined set of ground targets under relative deadline constraints, i.e., the targets have to be revisited ‘indefinitely’ and there is an upper bound on the time between two consecutive successful scans of each target. A solution to the problem is a set of routes—one for each UAV—that jointly satisfy these constraints. Our goal is to find a solution with the least number of UAVs. We show that the decision version of the problem (given k, is there a solution with k UAVs?) is PSPACE-complete. On the practical side, we propose a portfolio approach that combines the strengths of constraint solving and model checking. We present an empirical evaluation of the different solution methods on several hundred randomly generated instances

    A Security Game Combining Patrolling and Alarm-Triggered Responses Under Spatial and Detection Uncertainties

    Get PDF
    Motivated by a number of security applications, among which border patrolling, we study, to the best of our knowledge, the first Security Game model in which patrolling strategies need to be combined with responses to signals raised by an alarm system, which is spatially uncertain (i.e., it is uncertain over the exact location the attack is ongoing) and is affected by false negatives (i.e., the missed detection rate of an attack may be positive). Ours is an infinite-horizon patrolling scenario on a graph, where a single patroller moves. We study the properties of the game model in terms of computational issues and form of the optimal strategies and we provide an approach to solve it. Finally, we provide an experimental analysis of our techniques

    Multi-Robot Path Planning for Persistent Monitoring in Stochastic and Adversarial Environments

    Get PDF
    In this thesis, we study multi-robot path planning problems for persistent monitoring tasks. The goal of such persistent monitoring tasks is to deploy a team of cooperating mobile robots in an environment to continually observe locations of interest in the environment. Robots patrol the environment in order to detect events arriving at the locations of the environment. The events stay at those locations for a certain amount of time before leaving and can only be detected if one of the robots visits the location of an event while the event is there. In order to detect all possible events arriving at a vertex, the maximum time spent by the robots between visits to that vertex should be less than the duration of the events arriving at that vertex. We consider the problem of finding the minimum number of robots to satisfy these revisit time constraints, also called latency constraints. The decision version of this problem is PSPACE-complete. We provide an O(log p) approximation algorithm for this problem where p is the ratio of the maximum and minimum latency constraints. We also present heuristic algorithms to solve the problem and show through simulations that a proposed orienteering-based heuristic algorithm gives better solutions than the approximation algorithm. We additionally provide an algorithm for the problem of minimizing the maximum weighted latency given a fixed number of robots. In case the event stay durations are not fixed but are drawn from a known distribution, we consider the problem of maximizing the expected number of detected events. We motivate randomized patrolling paths for such scenarios and use Markov chains to represent those random patrolling paths. We characterize the expected number of detected events as a function of the Markov chains used for patrolling and show that the objective function is submodular for randomly arriving events. We propose an approximation algorithm for the case where the event durations for all the vertices is a constant. We also propose a centralized and an online distributed algorithm to find the random patrolling policies for the robots. We also consider the case where the events are adversarial and can choose where and when to appear in order to maximize their chances of remaining undetected. The last problem we study in this thesis considers events triggered by a learning adversary. The adversary has a limited time to observe the patrolling policy before it decides when and where events should appear. We study the single robot version of this problem and model this problem as a multi-stage two player game. The adversary observes the patroller’s actions for a finite amount of time to learn the patroller’s strategy and then either chooses a location for the event to appear or reneges based on its confidence in the learned strategy. We characterize the expected payoffs for the players and propose a search algorithm to find a patrolling policy in such scenarios. We illustrate the trade off between hard to learn and hard to attack strategies through simulations

    The Unmanned Aerial Vehicle Routing and Trajectory Optimisation Problem, a Taxonomic Review

    Get PDF
    Over the past few years, Unmanned Aerial Vehicles (UAVs) have become more and more popular. The complexity of routing UAVs has not been fully investigated in the literature. In this paper, we provide a formal definition of the UAV Routing and Trajectory Optimisation Problem (UAVRTOP). Next, we introduce a taxonomy and review recent contributions in UAV trajectory optimisation, UAV routing and articles addressing these problems, and their variants, simultaneously. We conclude with the identification of future research opportunities.<br/
    corecore