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Abstract

Motivated by a number of security applications, among which
border patrolling, we study, to the best of our knowledge,
the first Security Game model in which patrolling strategies
need to be combined with responses to signals raised by an
alarm system, which is spatially uncertain (i.e., it is uncer-
tain over the exact location the attack is ongoing) and is af-
fected by false negatives (i.e., the missed detection rate of
an attack may be positive). Ours is an infinite–horizon pa-
trolling scenario on a graph where a single patroller moves.
We study the properties of the game model in terms of com-
putational issues and form of the optimal strategies and we
provide an approach to solve it. Finally, we provide an exper-
imental analysis of our techniques.

Introduction

The paradigm of Security Games, modeling the problem
of protecting physical environments as a non–cooperative
game between a Defender and an Attacker, is one of the suc-
cessful applications of game theory in the real world (Jain,
An, and Tambe 2012). Such paradigm aims at maximizing
the protection of targets by scheduling the Defender’s re-
sources (like canine units or guards) during time. A long–
standing literature focuses on a number of issues involved in
Security Games such as studying different observation mod-
els for the Attacker (An et al. 2013; Yang et al. 2014) and
incorporating realistic aspects of infrastructures to be pro-
tected (Blum, Haghtalab, and Procaccia 2014).

Besides scheduling mobile resources (a.k.a. patrolling),
real security settings can adopt sensors, capable to trigger
alarms when attacks are detected. This approach is of high
prominence in practice, since sensors can be cheap devices
that are deployed over the environment with high capillarity,
allowing remarkable improvements of the protecting task.
Indeed, it can be showed that patrolling strategies exploiting
an alarm system may be arbitrarily better than strategies that
do not and this pushed for considering this feature in Secu-
rity Games. With an alarm system, two questions must be
answered simultaneously: which is the best patrolling strat-
egy in absence of any alarm signal? and, which is the best
strategy to respond to an attack once an alarm signal has
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been raised? (Munoz de Cote et al. 2013) is the first at-
tempt to tackle this problem. Each sensor is affected by de-
tection uncertainty (i.e., false negatives and false positives)
and covers exactly one single target. The best strategy to re-
spond to an alarm signal is easily computable, reducing to
the rush to a target once its sensor detected an attack. On the
other hand, finding the best patrolling strategy is hard and
the proposed techniques to approximate the best patrolling
strategy are strongly intractable even with few targets (e.g.,
even with 5 targets). (Basilico and Gatti 2014) studies sen-
sors without detection uncertainty, but the single–target de-
ployment assumption is relaxed allowing sensors to be spa-
tially imperfect. This means that an alarm signal is raised
if and only if an attack is performed, but the Defender is
uncertain on the actual attacked location, as in border pa-
trolling (Agmon, Kraus, and Kaminka 2008). In this case,
the best patrolling strategy is easily tractable, being place-
ment based, i.e., place a guard in a location, wait for an
alarm signal, and then respond to it at best. Instead, find-
ing the best response to an alarm signal is computationally
hard. However, the proposed techniques scale with a high
number of targets (i.e., beyond 50). In the present paper, we
bridge together the above two approaches towards a more
general framework and propose the first security game that
combines sensors detection uncertainty together with spatial
imperfection, tackling the challenge of designing tractable
algorithms for real–life scenarios.

Original contributions We formalize our game model,
whose resolution’s complexity is APX–hard in the case
without false negatives (Basilico, De Nittis, and Gatti 2015)
and PSPACE–hard in the case without alarm systems (Ho
and Ouaknine 2015), and we prove that placement–based
strategies may be arbitrarily worse than patrolling–based
ones. This motivates the need for strategies in which the
Defender both patrols over some targets and responds at
best once an alarm signal is raised, thus requiring inno-
vative and more involved techniques w.r.t. the case with-
out false negatives. We formulate the problem of searching
for the best Defender’s strategy as a mixed–integer–non–
linear mathematical program whose resolution can be done
in practice only by means of local–search techniques based
on non–linear mathematical programming. Furthermore, if
non–Markovian patrolling strategies are used, the size of
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the mathematical program explodes, while if Markovian pa-
trolling strategies are used, the quality of the solution can be
very low (we prove indeed that Markovian strategies may be
arbitrarily worse than non–Markovian strategies). Motivated
by the hardness of the problem, we study its properties in
the attempt to design algorithms as efficient as it is possible.
Based on our study, we propose an anytime approach based
on two oracles in which we consider only deterministic (po-
tentially non–Markovian) patrolling strategies for the case
in which no alarm signal is present. We design an algorithm
searching for the optimal subset of targets over which the
patroller moves and, for each subset, we use an oracle to ver-
ify whether there exists a deterministic patrolling strategy. If
such strategy exists, we use an oracle to determine the best
response to the alarm signals. We propose three heuristics to
guide the search of our algorithm. Two heuristics are static,
enumerating the subsets of targets at time zero and keeping
such an order during all the search, and one heuristic is dy-
namic, changing the order on the basis of the information
got by the evaluation of the previous subsets. Finally, we
provide an experimental evaluation to assess the quality and
the scalability of our algorithms.

Problem formulation

We study a patrolling scenario modeled as a turn–based
extensive–form game with infinite horizon and imperfect
information between two agents: an Attacker A and a De-
fender D. The environment is formally described by an undi-
rected connected graph G = (V,E). Each edge (i, j) ∈ E
requires one turn to be traversed, while we denote with ω∗

i,j
the temporal cost (in turns) of the shortest path between any
i and j ∈ V . We call targets the subset T ⊆ V that are rele-
vant to A and D. Each target t ∈ T has a value π(t) ∈ (0, 1]
and a penetration time d(t) ∈ N measuring the number of
turns needed to successfully complete an attack over t. Fi-
nally, a spatially uncertain alarm system is available to D,
modeled as a pair (S, p) where S = {s0, s1, · · · , sm} with
m ≥ 1 is a set of signals and p : S×T → [0, 1] specifies the
probability of having the system generating a signal s given
that target t has been attacked. With s0 we denote the null
signal corresponding to the case in which no signal has been
generated due to a false negative. For simplicity, we assume
that p(s0 | t) = α for every t.

At each turn of the game, agents A and D play simultane-
ously: if A has not attacked in the previous turns, it observes
the position of D in the graph and decides whether to attack
a target1 or to wait for a turn, while D observes whether or
not a signal has been generated by the alarm system and de-
cides the next vertex to patrol among all those adjacent to
the current one. If D patrols a target t that is under attack
of A before d(t) turns, A is captured. The game is constant
sum (then equivalent to a zero–sum game): if A is captured,
D receives a utility of 1 and A receives 0, while, if an at-
tack over t has success, D receives 1− π(t) and A receives
π(t); finally, if A waits forever, D receives 1 and A receives
0. The appropriate solution concept is the leader–follower

1As is customary, we assume that A can instantly reach the target of its attack.
This assumption can be easily relaxed as shown in (Basilico, Gatti, and Rossi 2009).

equilibrium. The game being constant sum, the best leader’s
strategy is its maxmin/minmax strategy.

We denote by σA and σD the strategies of A and D, re-
spectively. For the sake of simplicity, we denote by σD

a the
strategy of D once an alarm signal si with i ≥ 1 has been
raised (the response component) and by σD

p the strategy of
D in absence of any alarm signal (the patrolling component).

Problem analysis

We start by providing a theoretical analysis that will moti-
vate our algorithmic approach to the problem. While with
α = 0 the best patrolling strategy prescribes that the pa-
troller places in a vertex waiting for an alarm signal and then
responds at best to it (Basilico, De Nittis, and Gatti 2015),
this is no longer true even when α is small, as stated by the
following proposition.

Proposition 1 There exist instances with α > 0 in which
the best placement–based strategy is not optimal.

The weakness of placement–based strategies is even
stronger, as stated in the following proposition.

Proposition 2 There exist instances with α > 0 in which
the best placement–based strategy is arbitrarily worse w.r.t.
the best patrolling–based strategy.

The above results show that placement–based strategies
do not suffice and patrolling–based strategies are necessary.

In terms of computational complexity, we already know
that the problem of finding the D’s maxmin strategy is
APX–hard from the analysis of the case in which α = 0,
now we can prove that the problem is hard also in terms of
spatial complexity, as stated in the following.

Theorem 1 The problem of deciding whether there is a D’s
strategy giving a utility of at least k is PSPACE–hard.

The problem of finding the maxmin strategy can be for-
mulated as follows. We define σD

p as a function σD
p : H ×

V → [0, 1], retuning the probability to move at the next turn
to an adjacent vertex v ∈ V given a history of visits over
vertices h ∈ H , where H is the set of (potentially infinite–
length) histories. We define a route r ∈ R as a sequence
of potentially non–adjacent vertices and targets such that
r(0) ∈ V and r(i) ∈ T with i > 0. We say that a route
r is covering if the first arrival in a target t ∈ r starting from
r(0) is accomplished not later than d(t). That is, if D starts
from t and follows r, then it can cover in time all the targets
t ∈ r. We define σD

a as a function σD
a : S × R → [0, 1],

returning the probability to move along route r ∈ R start-
ing from r(0) once alarm signal s ∈ S has been raised. The
actions available to A are attack–when(t, h), meaning that
A attacks target t after observing history h of D. For the
sake of simplicity, we report the mathematical programming
formulation when histories h are composed of only one ver-
tex, corresponding to the last visited vertex by D (hence, the
strategy is Markovian).
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min u (1)

u ≥ E[U(attack–when(t, v))] − 1 + Iv ∀t ∈ T, v ∈ V (2)

Iv ≥ Psteady(v, σ
D
p ) ∀v ∈ V (3)

Iv ∈ {0, 1} ∀v ∈ V (4)

σ
D
a is well defined (5)

σ
D
p is well defined (6)

where Psteady(v, σ
D
p ) is the steady state probability that D is

at v given strategy σD
p and

E[U(attack–when(t, v))] =

[
απ(t)

(
1 − Pcapture(t, v, σ

D
p )

)
+

π(t)
∑

s∈S\{s0}
p(s | t)

(
1 −

∑
r:r(0)=v,t∈r

σ
D
a (r, s)

)]
(7)

with Pcapture(t, v, σ
D
p ) the probability that t is visited by

d(t) turns starting from v given σD
p . Notice that Iv is equal

to 0 only if Psteady(v, σ
D
p ) = 0 and it is necessary in

the formulation to enable/disable Constraints (2)—the ra-
tionale is that, if a vertex v is never visited, all the actions
attack–when(t, v) must be disabled. The above mathemat-
ical program is mixed integer (due to Iv) non–linear non–
convex (due to Psteady(v, σ

D
p ) and Pcapture(t, v, σ

D
p )). When

using histories of length longer than 1, the program has the
above structure except that the number of variables and con-
straints rises exponentially in the length.

Many issues are related to Problem (1)–(6). Specifically,
the size explodes as the length of the histories is larger than
1, making de facto only Markovian strategies usable. How-
ever, Markovian strategies may be arbitrarily worse than
non–Markovian ones, as stated in the following.

Proposition 3 Markovian patrolling strategies are arbitrar-
ily worse than the optimal non–Markovian ones.

Furthermore, Problem (1)–(6) can be solved exactly only
by means of global optimization tools, e.g. (Cook et al.
2011). However, these tools can deal only with extremely
small programs (e.g., with about 20/30 variables) and there-
fore they are inapplicable even in toy instances. When non–
linear mathematical programming tools (Bertsekas 1999)
are adopted, two issues arise: integer variables cannot be ef-
fectively handled and only locally optimal solutions can be
found. Finally, differently from the case without false nega-
tives, Problem (1)–(6) cannot be separated into two indepen-
dent programs, one searching for the best σD

a and another for
the best σD

p , and thus, from its resolution, we would obtain
sub–optimal strategies both for responding to alarm signals
and for patrolling in absence of raised signals.

Our approach

Tackling the resolution of Problem (1)–(6) in its original for-
mulation would be, as discussed above, prohibitive in terms
of computational effort and would require to limit the struc-
ture of the strategies by fixing a history length, incurring in
potentially large losses of utility. Our objective is to address

the resolution of this problem in an anytime fashion, provid-
ing an algorithmic method whose convergence to an optimal
solution progresses with time. We start by introducing the
notion of support graph.

Definition 1 (Support graph of a patrolling strategy)
The support graph of a patrolling strategy σD

p is a

pair Gσ = (V σD
p , EσD

p ), where V σD
p = {v ∈

V | Psteady(v, σ
D
p ) > 0} is called support, and

EσD
p = {(i, j) ∈ E | ∃hi σD

p (hi, j) > 0} in which
hi is a history of visits whose last vertex is i.

In general, the support of the optimal patrolling strat-
egy may be a strict subset of V . This is primarily due to
the alarm system, whose presence enables the protection of
non–patrolled targets via signal responses. We can leverage
this in building a simple enumeration Multi–NLP scheme
where each sub–problem is obtained from (1)–(6) by fixing
Iv under a given support (this removes the integer variables
from the optimization problem). Despite this would obvi-
ously require to enumerate O(2|V |) subproblems, working
in the space of supports introduces advantages. Indeed, by
studying the properties of support graphs we can speedup
enumeration by pruning those supports we a priori know not
to be optimal. We start by showing that not all the supports
must be enumerated in order to guarantee optimality.

Theorem 2 The support of the optimal patrolling strategy
will either be a singleton or will contain at least two targets.

From Theorem 2 we know that we can save the time
needed by enumerating all the supports with less than two
targets by enumerating the O(|V |) singleton ones. Let us
focus our attention to the other supports to be enumerated,
namely those containing at least two targets.

Consider a subset of targets T ′ with |T ′| ≥ 2. We drive
our attention to support V ′ ⊇ T ′, defined as the one among
all supports covering only targets T ′ that provides D with
the lowest (best) expected utility as per Problem (1)–(6). Our
aim is to derive some information about the non–target ver-
tices composing V ′. The following result shows how opti-
mality induces a structural property, which can be exploited
to derive some insights on supports with two or more targets.

Theorem 3 The support graph of the optimal patrolling
strategy does not contain non–target terminal vertices (ver-
tices with degree 1).

The previous results convey the idea that if the optimal
support does not encode a static placement, then it will
be composed by two or more targets (Theorem 2) and, for
each pair of them, by a number of (not necessarily shortest)
acyclic paths of non–target vertices connecting them (Theo-
rem 3). The key advantage that such properties enable is that
they ease the task of guessing the vertices contained in the
support. While guessing which vertices will be contained in
the optimal support can be a very difficult task, guessing the
non–target vertices connecting a given subset of targets in
the support is relatively feasible by means of heuristics. So,
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if |T | is the number of targets, our approach is to perform a
O(|V |−|T |−1+2|T |) ≈ O(2|T |) search, substantially enu-
merating subsets of targets instead of subset of vertices in
O(2|V |) (recall that, by definition, |V | ≥ |T |). For each sub-
set of targets, our approach is to guess the remaining vertices
composing the support by querying an oracle that searches
for a covering cycle on them.

Definition 2 (Covering cycle for a subset of targets) Given
a subset of targets T ′ ⊆ T , a covering cycle on them is
the shortest finite cyclic walk on graph G such that when
repeatedly following it, two subsequent visits to any t ∈ T ′
have a temporal delay not greater than d(t).

Given a subset of targets, if a covering cycle on them is
found, then we adopt such cycle as patrolling strategy and
the covered vertices as the relative support. Searching for
a covering cycle on a subset of targets seems to be a good
heuristic for two main reasons. First, if found, no better pa-
trolling strategy can be given for the same support. Indeed, a
covering cycle guarantees capture for any covered target in
presence of a missed detection. Second, by applying Defini-
tion 2, we are implicitly assuming to connect targets along
shortest paths which, despite not being the optimal choice in
general, in several realistic settings it configures as the only
non–dominated scheme to connect targets.

Our approach can then be synthesized as follows (see Fig-
ure 1 for a graphical representation):

1. select a subset of targets T ′;
2. query a Covering Cycle Oracle (CCO) which returns a

covering cycle C on T ′ if found and answers “NO” oth-
erwise;

3. if a cycle was found, query a Signal Response Oracle
(SRO) which computes the optimal signal response strat-
egy (as per Problem (1)–(6)) assuming that C is the pa-
trolling strategy and that the vertices covered by C con-
stitute its support;

4. store the strategy and its value in a list;
5. repeat from Step 1 until a timeout expires and, in that

case, select the strategy yielding the minimum (best for
D) value among those stored.
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Figure 1: Algorithmic approach.

The covering cycle oracle (CCO)

The CCO takes as input a subset of targets T ′ and searches
for a covering cycle (as per Definition 2). The oracle re-
turns the covering cycle if found or a “NO” answer in the
other case. This problem is PSPACE–hard as we know
from Theorem 1, so no exact efficient method can be de-
signed. We resort to the approach of (Basilico, Gatti, and
Amigoni 2012), where an algorithm for such problem is
provided with correctness guarantees. It poses a limit to the
length of the solution (say, k|V | where k is a parameter) and
applies a backtracking search. Although even with a fixed
k the algorithm has exponential complexity, the algorithm
demonstrated very good performance on realistic settings,
even with a huge number of targets.

The signal response oracle (SRO)

The SRO takes as input a covering cycle C and computes the
optimal signal–response strategy from every vertex in the
support. We solve this problem separately for each vertex in
the support since we work under the assumption that σD

p is
fixed and equal to the covering cycle C. That is, by searching
for the optimal response we account for the fact that each
target in the support of σD

p will be fully protected upon a
missed detection. This is immediately verified by the fact
that Definition 2 implies the capture probability Pcapture (see
Constraint 7) equal to 1 for any target visited by the covering
cycle C. The problem we obtain from (1)–(6) by casting σD

p
to C is an LP, and therefore we are able to find the optimal
response strategy σD

a efficiently.
Our implementation of SRO is based on the exact and ap-

proximate algorithms presented in (Basilico, De Nittis, and
Gatti 2015). In particular, we will adopt two algorithms:

• Exact–DP: an exact method based on dynamic program-
ming that runs in O(2|T |);

• Approx–DP: an approximate method based on dynamic
programming and l random restarts that runs in O(l|T |3).

Once each response strategy has been computed, the overall
value of the strategy is simply given by the response that
provides A with the highest expected utility.

Heuristics for selecting the targets in the support

As we explained in previous sections, by showing some
structural properties of the optimal support, we are able to
devise an algorithmic approach that requires implementa-
tion of two oracles (CCO and SRO) to map the process of
computing the optimal strategy to a search in the power set
of targets. The problem of refining such oracles or to de-
vise better implementations remains open and lies outside
the scope of this paper, whose aim is primarily the presen-
tation of our analysis, approach, and experimental valida-
tion. However, we underline that our modular scheme can,
in principle, integrate any implementation for such oracles
leaving it open to possible future improvements. Moving
to an enumeration on the power set of targets, which usu-
ally are less than the total number of vertices, we can obtain
some computational advantages by means of a reduction of
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the search space. However, we are still dealing with an expo-
nentially large size and the design of good heuristics to drive
the search can be of critical importance. In this section, we
describe the three heuristic methods we propose to effec-
tively drive our enumeration of subsets of targets. The first
one follows a dynamic approach in the sense that the rank-
ing of possible solutions to explore changes as new subsets
are explored. The last two, on the other side, follow a static
approach, meaning that the order of preference between the
candidate solutions is fully determined by the problem in-
stance and does not vary during the search process.

Dynamic method based on Attacker responses (H1)
The first mechanism to drive the search leverages the fol-
lowing rationale: if we searched subset T ′ and we obtained
strategy σ′, then constructing a T ′′, obtained by including in
T ′ targets that provide A with large expected utilities under
σ′ and searching it, might result in a better strategy σ′′. With
this method, we progressively include in the support targets
that are the most strategically appealing to the Attacker. (No-
tice that to assess how much a target can be appealing we
cannot simply consider static parameters like its value or its
penetration time, but we need to solve for a game–theoretic
equilibrium. The approach is inspired to the double–oracle
method commonly used in Operations Research and Secu-
rity Games (Kiekintveld et al. 2009).)

Specifically, our method first searches among the single-
ton supports the one that represents the best static placement.
Then, new targets are added to this base support by consid-
ering A’s actions ranked according to their expected utility,
from the best response to other non–optimal responses. The
algorithm is essentially a greedy search. Formally:

1. compute the optimal σ prescribing a static placement w∗
and set U = {w∗};

2. sort targets not included in U according to the best ex-
pected utility value A can get by attacking them, calling
T (i) the set of targets that, if attacked, will yield the i–th
largest of such expected utilities;

3. for i = 1, 2, . . . enumerate subsets Qi, where Qi ⊆
U ∪ T (i) and Qi 
⊆ U ; for each of them, compute σ by
exploiting the two oracles (Figure 1);

4. repeat this procedure from Step 2 for each computed σ by
setting U = Qi.

This enumeration scheme is complete since, in the end, the
optimal subset will be evaluated.

Static method based on targets values (H2) This method
evaluates supports by considering the cumulative value of
targets belonging to it. Thus, we adopt a static parameter
(the value) to estimate the likelihood of having a target in the
support. The rationale is that most valuable targets are more
likely to be attacked. Thus, providing them with some ex-
tra protection given by the patrolling strategy can be a good
choice. In practice, the method tries to search first the sup-
ports with an high cumulative value and with few targets.
Formally:

1. rank targets according their value π(·), denote with T (i)

the group of targets with the i–th highest value, set U =

T (1) and u = 1;
2. enumerate subsets Q, where Q ⊆ U and, if u > 1,

Q 
⊆ ∪i∈{1,...,u−1}U i; for each of them, compute σ by
exploiting the two oracles (Figure 1);

3. set U = U ∪ U (u+1), u = u+ 1 and repeat from Step 2.

Static method based on targets distances (H3) The last
method tries to privilege the subset of targets where the
shortest distance between any pair of included ones in not
above some given threshold. Here are the steps of the
distance–based method:

1. set a threshold value τ = 1;
2. enumerate all the subsets of targets T ′ such that for any

t1, t2 ∈ T ′ it holds that d(t1, t2) ≤ τ ;
3. repeat from Step 2 after setting τ = τ + 1.

Experimental evaluation

Experimental setting We generate the worst–case in-
stances for our problem from the instances of HAMILTO-
NIAN PATH, with graphs where all the nodes are targets,
edges are unitary, and, for each target, π(t) ∈ (0, 1] and
d(t) = |T | − 1. There is one single signal covering all
the targets. We shall denote with ε the instance edge den-
sity defined as ε = |E|/ |T |(|T |−1)

2 . Setting a timeout (in our
case one hour) implicitly poses a limit on the maximum size
(number of targets) of instances whose resolution can be
completed. We implemented our algorithms in Matlab and
we run them on a UNIX computer with 2.33GHz CPU and
16GB RAM.

CCO tuning One of the critical components of our reso-
lution approach is the covering cycle oracle (CCO). As we
explained above, we need to upper bound with k|V | the solu-
tion length (the number of vertex visits made by the cycle) to
trade off completeness for a lower computational effort (re-
call that the problem is PSPACE–hard). Small values for k
result in faster executions of the CCO due to the shrinkage
induced on the solution space, but they could discard effec-
tive solutions. The experiment summarized in Fig. 2 shows
this tradeoff with k ∈ {0.5, 1, 2}. For each value of k we re-
port the number of covering cycles with at most k|V | visits
we are able to find in one hour (we enumerate subsets of ver-
tices for increasing cardinalities checking for the existence
of covering cycles with no more than k|V | visits).
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Figure 2: Number of covering cycles found in one hour with
solution length upper bounded to k|V |.
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The trends suggest k = 1 as acceptable bounding level
when |T | ≤ 10 and k = 0.5 when |T | > 10. Indeed, when
k is larger, extremely few cycles are returned since CCO
spends too long time in searching for a single a covering cy-
cle and therefore not exploring a sufficient number of cycles.
Interestingly, with k = 2 the number of returned covering
cycles is close to 0.

Optimal SRO We set k as discussed above and we start by
assessing the applicability extent of the exact SRO (Exact–
DP algorithm). We do this by evaluating, at the same time,
the impact of the false negative rate α on the optimal game
value. In Fig. 3, we report results obtained within a one hour
timeout averaged over 50 instances. The graphs suggest how
such limit is 10 targets when employing the exact version of
SRO in the game resolution process. Due to the time limit,
one hour, such approach never terminates for instances com-
posed of 12 targets. Furthermore, as intuition suggests, for
increasing values of α the game’s optimal value has a nega-
tive trend (approximately) linear in α. Fig. 3(a) depicts this
behavior for instances with ε = 0.25 (the same can be ob-
served for higher ε). Also, it can be noticed how with more
targets, the game value decreases (about exponentially in
|T |), confirming that more targets correspond to more dif-
ficult environments to protect. (Fig. 3(b) shows the same
trends w.r.t. |T |). We applied this approach also to realistic
instances, built taking π(t) from a uniform random distribu-
tion on the inteval (0, 1] while d(t) and ω∗

i,j are extracted
from a uniform random distribution on the interval (0, δ],
where δ is the diameter of the graph. As for the hard in-
stances, T = V and there is one single signal s that covers
each target. Regarding these instances, within the time limit
the algorithm solves graphs with up to 12 targets.
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Figure 3: Optimal game value with Exact–DP SRO.

Approximate SRO Despite several common single–
defender reality scenario can fit in the limit of 10 targets
(e.g., when targets can be associated with large sub–areas),
some others are characterized by a higher number of targets
(e.g., when attackers can act on a fine discretization of the
environment). This is what justified our choice to introduce
an approximate method, moving the focus of the problem
from scalability to solution’s quality. As reported above, our
SRO implementation based on the Approx–DP algorithms
has a worst–case complexity of O(|T |3). This allowed us
to process, within the one hour timeout, instances with up to
50 vertices (possibly scaling further for larger timeouts). The

main questions here are two. First, we would like to assess
the gap (in terms of utility) between the strategy we compute
with our method and the best placement. Second, we want
to compare the different heuristic methods we proposed in
order to identify which one is the more suitable.

Fig. 4.(a)–(b) depict a representative example of what
we observed during our simulations with l = 10 random
restarts. Here we report results averaged over 50 instances
each with 20 targets for two density values (ε = 0.25 can
be thought as representative of indoor cluttered environment
while ε = 0.75 could correspond to outdoor, highly inter-
connected, areas). Among the three heuristic methods, H1
(dynamic) is the only one yielding a competitive gap within
the time limit w.r.t. the best placement strategy (up to about
+10% with ε = 0.25 and +35% with ε = 0.75). H3 (dis-
tance) provided marginal improvements while H2 (value)
very rarely outperformed the best placement. Notice how,
as α gets close to 0, all the heuristics tend to yield the best
placement value. Such results suggest that H1 (including
the strategic component in ranking targets) is right direction
to obtain better results in reasonable time. Surprisingly, the
heuristic based on the targets’ values (H2) performed rather
poorly despite often used in reality as an evaluation princi-
ple. Due to the previous analysis, we made further experi-
ments on H1, reported in Fig. 4 (c)–(f). Specifically, Fig. 4
(c)–(d) depicts the results with l = 1 as the number of targets
vary, while Fig. 4.(e)–(f) do the same with l = 10, showing
that with |T | ≥ 40 all the heuristics do not improve the qual-
ity of the best placement (requiring thus a time longer than
one hour). On the other side, it can be seen that l = 10 are
useful in one hour with |T | ≥ 20, allowing one to find better
responses to the alarms, but they degrade the quality solution
when |T | > 20 since the SRO takes too long time.

Conclusions and future research

In real–life scenarios, alarm systems play a crucial role for
protecting complex environments and infrastructures. De-
spite the fact that security games constitute one of the most
important application of multi–agent systems in real world,
very few works deal with them. In the present work, we
study, to the best of our knowledge, the first Security Game
model in which patrolling strategies are combined with re-
sponses to signals raised by an alarm system, which is spa-
tially uncertain and is affected by false negatives. We study
the properties of our model and we exploit them to design
an anytime algorithm based on two oracles and incorporat-
ing three heuristics, one dynamic and two static. Our algo-
rithm searches strategies in which the patroller deterministi-
cally patrols a subset of targets in absence of any alarm and
then responds at best to it as soon as the alarm is triggered.
Our experimental evaluation shows that the dynamic heuris-
tic outperforms the other two heuristics in terms of game
value for the Defender.

In future, a thorough experimental evaluation of our algo-
rithms could provide the best tradeoff between the param-
eters of the oracles once a time limit is given. The study of
false positives, multi–attacker and multi–defender scenarios,
is one of the most interesting topics to investigate in future.
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Figure 4: Approximate game value with different heuristics.
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