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Abstract

In this thesis, we study multi-robot path planning problems for persistent monitoring
tasks. The goal of such persistent monitoring tasks is to deploy a team of cooperating
mobile robots in an environment to continually observe locations of interest in the envi-
ronment. Robots patrol the environment in order to detect events arriving at the locations
of the environment. The events stay at those locations for a certain amount of time before
leaving and can only be detected if one of the robots visits the location of an event while
the event is there.

In order to detect all possible events arriving at a vertex, the maximum time spent by
the robots between visits to that vertex should be less than the duration of the events ar-
riving at that vertex. We consider the problem of finding the minimum number of robots to
satisfy these revisit time constraints, also called latency constraints. The decision version
of this problem is PSPACE-complete. We provide an O(log ρ) approximation algorithm for
this problem where ρ is the ratio of the maximum and minimum latency constraints. We
also present heuristic algorithms to solve the problem and show through simulations that
a proposed orienteering-based heuristic algorithm gives better solutions than the approx-
imation algorithm. We additionally provide an algorithm for the problem of minimizing
the maximum weighted latency given a fixed number of robots.

In case the event stay durations are not fixed but are drawn from a known distribution,
we consider the problem of maximizing the expected number of detected events. We
motivate randomized patrolling paths for such scenarios and use Markov chains to represent
those random patrolling paths. We characterize the expected number of detected events as
a function of the Markov chains used for patrolling and show that the objective function
is submodular for randomly arriving events. We propose an approximation algorithm for
the case where the event durations for all the vertices is a constant. We also propose a
centralized and an online distributed algorithm to find the random patrolling policies for
the robots. We also consider the case where the events are adversarial and can choose
where and when to appear in order to maximize their chances of remaining undetected.

The last problem we study in this thesis considers events triggered by a learning adver-
sary. The adversary has a limited time to observe the patrolling policy before it decides
when and where events should appear. We study the single robot version of this problem
and model this problem as a multi-stage two player game. The adversary observes the
patroller’s actions for a finite amount of time to learn the patroller’s strategy and then
either chooses a location for the event to appear or reneges based on its confidence in the
learned strategy. We characterize the expected payoffs for the players and propose a search
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algorithm to find a patrolling policy in such scenarios. We illustrate the trade off between
hard to learn and hard to attack strategies through simulations.

v



Acknowledgements

I would like to thank my advisor Professor Stephen Smith for his constant guidance
and support throughout the PhD program. I would like to express my sincere gratitude
for his patience, motivation and highly informative discussions during our meetings.

I would also like to thank the readers of this thesis — Professor Dylan Shell, Professor
Jun Liu, Professor Daniel Miller and Professor John Simpson-Porco — for their valuable
time.

Finally, I would like to express my gratitude to my family, particularly my mother and
my wife for their love and support.

vi



Table of Contents

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 7

2.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Decision and Optimization Problems . . . . . . . . . . . . . . . . . 7

2.1.2 Reductions and Complexity Classes . . . . . . . . . . . . . . . . . . 8

2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Hamiltonian Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Orienteering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Minimum Cycle Cover Problem . . . . . . . . . . . . . . . . . . . . 11

2.3 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Probability and Random Variables . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Some Distribution Functions . . . . . . . . . . . . . . . . . . . . . . 15

vii



3 Persistent Monitoring with Latency Constraints 17

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Multiple Robots on the Same Walk . . . . . . . . . . . . . . . . . . 20

3.3 Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 O(log ρ) Approximation . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Partitioned Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Recursive Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.4.4 Orienteering Based Greedy Algorithm . . . . . . . . . . . . . . . . . 26

3.5 Min Max Weighted Latency Problem . . . . . . . . . . . . . . . . . . . . . 28

3.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Patrolling an Environment . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.2 Persistent 3D Scene Reconstruction . . . . . . . . . . . . . . . . . . 32

3.6.3 Comparison with Existing Algorithms in Literature . . . . . . . . . 35

3.6.4 Patrolling Application . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Multi-Robot Stochastic Patrolling 39

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Patrolling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Evaluating the Objective Function . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Properties of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Non-Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



4.5 Approximation Algorithm for Fixed Event Duration . . . . . . . . . . . . . 58

4.6 Centralized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.1 Single Robot Solution . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6.2 Multi-Robot Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Online Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Local Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7.2 Adding and Removing Vertices . . . . . . . . . . . . . . . . . . . . 65

4.8 Objective Functions for Adversarial Events . . . . . . . . . . . . . . . . . . 67

4.8.1 Adversarial Events with Given Probability of Arrival . . . . . . . . 68

4.8.2 Adversarial Events that Select Vertex . . . . . . . . . . . . . . . . . 69

4.9 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9.1 Problem Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9.2 Centralized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9.3 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Adversarial Events with Limited Observation Time 73

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 Attacker’s Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Defender’s Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Computing the Patrolling Strategy . . . . . . . . . . . . . . . . . . . . . . 81

5.4.1 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



6 Conclusions and Future Work 86

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Persistent Monitoring With Latency Constraints . . . . . . . . . . . 87

6.1.2 Multi-Robot Stochastic Patrolling . . . . . . . . . . . . . . . . . . . 88

6.1.3 Adversarial Events with Limited Observation Time . . . . . . . . . 88

References 90

x



List of Tables

5.1 Comparison of Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Comparison of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



List of Figures

1.1 Example of persistently monitoring an urban environment . . . . . . . . . 2

3.1 Equally spacing robots on a walk . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 A problem instance with an optimal set of walks that share vertices. . . . . 24

3.3 Example of a step of the greedy algorithm . . . . . . . . . . . . . . . . . . 25

3.4 Orienteering based greedy algorithm . . . . . . . . . . . . . . . . . . . . . 26

3.5 Environment used to generate random problem instances . . . . . . . . . . 32

3.6 Average runtimes of the algorithms . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Number of robots for each algorithm . . . . . . . . . . . . . . . . . . . . . 34

3.8 Walks to continually monitor a building . . . . . . . . . . . . . . . . . . . 36

3.9 Patrolling in downtown Toronto . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Example comparing random and deterministic paths . . . . . . . . . . . . 42

4.2 A problem instance requiring Ω(k) memory Markov chains . . . . . . . . . 44

4.3 Converting an edge weighted graph into an unweighted graph . . . . . . . 52

4.4 Problem instance for simulations . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Performance of the centralized algorithm . . . . . . . . . . . . . . . . . . . 71

4.6 Partitioned solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Hard to attack and hard to learn strategies . . . . . . . . . . . . . . . . . . 79

xii



Chapter 1

Introduction

Due to the rapid development in the field of mobile robotics, teams of robots can now
perform long term monitoring tasks. Examples of such tasks include infrastructure inspec-
tion [20] to detect presence of anomalies or failures; patrolling for surveillance [12, 10] to
detect threats in the environment; 3D reconstruction of scenes [84, 13] in changing en-
vironments; informative path planning [21] for observing dynamic properties of an area;
and forest fire monitoring [66]. The goal of the monitoring tasks is to deploy a team of
cooperating mobile agents or robots in the dynamically changing environment to contin-
ually observe locations of interest in the environment. With limited amount of resources,
stationary agents cannot persistently monitor all the regions of interest in a large environ-
ment, and therefore a team of mobile robots must patrol the environment to gather the
information. As the environment keeps evolving in persistent monitoring scenarios, the
locations in the environment need to be visited repeatedly by the team of robots. The
planning problem is to find actions for the team of robots such that the information gained
from the environment is maximized, or the staleness of the information is minimized. In
this thesis, we focus on finding patrolling paths for a team of robots in order to solve
persistent monitoring problems. Since we consider high-level path planning problems, we
do not discuss the dynamics and controls of the robots, and assume that the controllers for
actions such as collision avoidance are implemented on the robots, so that they can follow
a path or strategy returned by the algorithms presented in this work.

We represent the environment to be monitored as a graph where the vertices of the
graph represent the locations of importance in the environment and the edge weights give
the travel times between the vertices. The robots travel along these edges to monitor the
environment and to gather information from the locations of the environment. Different
monitoring scenarios and applications result in different variations of the persistent moni-
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Figure 1.1: Example of persistently monitoring an urban environment. The figure on left
shows an example of a UAV visiting locations to monitor regions in an urban environment.
The figure on right shows the simulated patrolling paths for multiple aerial robots visiting
areas in the environment to maximize the information gathered. The size of a vertex
represents the value of information at that vertex.

toring problem. The scenarios and applications that result in the variations studied in this
thesis are discussed below.

If the purpose is to minimize the maximum staleness of information, then the problem is
to find patrolling paths for the robots to minimize the maximum time spent away from any
location. A simple single robot instance of this problem is where all the vertices are equally
important. The optimal strategy for this case is for the robot to follow the solution of the
Travelling Salesman Problem (TSP) [56] on the given graph as shown in [24]. The single
robot problem becomes more challenging when the importance of information gathered
from different vertices varies [6]. The multi-robot problem to minimize the maximum
staleness of information is one of the problems studied in this thesis.

In security and surveillance oriented scenarios [2, 4, 80, 57], one of the requirements
can be that the team of robots should not stay away from any of the locations more than
a specified amount of time. We refer to this time constraint as latency constraint for
a location. Such latency constraints can also be used in environmental monitoring and
sampling scenarios [79, 33, 83], where the frequency of sampling or the rate of change of
the properties of environment can dictate the latency constraints. The problem of finding a
set of paths for a team of robots that can continually visit the locations of the environment
while satisfying the latency constraints is also considered in this thesis.

The problem of finding paths to satisfy latency constraints can also be used in applica-
tions where events arrive at locations of the environment and need to be detected within a
specified time after their arrival. Such applications may include forest fire monitoring [18]
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where fires can start randomly at different locations with different probabilities, but need to
be detected early for better decision making. Another such application is wildlife monitor-
ing [45] where animals can appear at locations of interest such as ponds and stay there for
some time before leaving. To observe all the events arriving in the environment, the time
that an event stays at a location before leaving should be known for all the locations, and
a minimum number of robots is required so that the path planning problem with latency
constraints can be solved. Otherwise, when the exact event durations are not known, or if
the number of robots is constrained, we consider the problem of finding patrolling paths
for a team of robots to maximize the expected number of observed events. Moreover, we
also consider adversarial events that can choose the location and time to appear in order
to maximize their chances of remaining undetected. Such events can be used to model
intruders in security applications. In order for an adversarial event to decide where and
when to appear, it must know the patrolling policy of the robots. We not only consider
the case where such events know the patrolling policy beforehand, but also consider events
that have a limited time to observe and learn the patrolling policy before devising their
strategy.

1.1 Literature Survey

In this section we review the literature related to multi-robot path planning and persistent
monitoring problems. A more detailed review of the literature related to a specific problem
is presented in the corresponding chapter.

Persistent monitoring problems have been extensively studied in the literature and there
is a substantial amount of work dedicated to finding patrolling paths for the monitoring of
environments [46, 87, 70, 35]. For a single robot, cyclic patrolling paths to detect randomly
arriving events are studied in [95]. Different ways of randomizing a Travelling Salesman
Path are considered in [85] to empirically show that randomizing the paths can help in
detecting intrusions. In [6], the problem of minimizing the maximum revisit time is consid-
ered and an approximation algorithm is proposed for the problem. Distributed algorithms
to minimize refresh times are given in [77]. Two heuristic approaches of minimizing the
maximum staleness of information are compared in [71]. In contrast to these works, we
consider the multi-robot problem for minimizing the maximum revisit time and provide an
algorithm with upper bound on the cost of the solution.

In [73], persistent coverage using multiple robots in a continuous environment is con-
sidered. The coverage level of locations decay with time and robots must keep visiting

3



the locations to maintain a desired coverage level. This scenario of coverage quality de-
teriorating with time is also considered in [75] where equitable partitions of a continuous
non-convex environment are found, and then paths covering the partition for each robot are
computed. In [74], the coverage of a location increases depending on the time a robot stays
at that location, and the task is to find optimal staying times for robots. In [98, 97, 100]
a similar problem of determining a visit sequence for a discrete set of locations along with
the time spent at each location to gather information is considered from an optimal con-
trol perspective. Instead of considering decaying coverage levels at the locations of the
environment, the problems studied in this thesis seek to detect events that arrive at the
locations and leave after some time.

The robots performing persistent monitoring tasks in an environment stay active for
very long times and therefore, they need to be refueled. The authors in [65] find routes for
dedicated charging robots that rendezvous with the patrolling UAV’s in order to replenish
their batteries. In [63] the problem of monitoring a terrain using heterogeneous robots with
charging constraints is considered. The problem of scheduling spare drones to take place
of the drones that need recharging is considered in [42]. In this thesis, we do not consider
the charging constraints of the robots and mention the possible ways to incorporate those
constraints along with the associated challenges in the discussion about future work.

Several vehicle routing problems are closely related to persistent monitoring problems.
The basic vehicle routing problem is a generalization of the Traveling Salesman Problem
and seeks to find optimal set of routes for a group of vehicles to serve a set of customers [90].
In the Vehicle Routing Problem with Time Windows [16], customers have to be served
within their time windows by several vehicles with limited capacity. The goal is to mini-
mize the number of vehicles required. Since the problem does not require repeated visits,
the length of the resulting tour is polynomially bounded, and thus the problem is in NP.
In the Deadline-TSP [91], the vertices have deadlines for first visits. In the Period Vehicle
Routing Problem [26], the problem is to design routes for each day of a given period where
each customer may require a number of visits (in a given number of allowable combina-
tions) during this period. In the Orienteering Problem [37], the robot or vehicle has to visit
as many locations as possible within a given time budget. The problem can be generalized
to consider vertices with weights and the objective is to maximize the weight of the visited
vertices. In the multi-robot version of the problem called the Team Orienteering Prob-
lem [22], the total weight collected by the team of robots is to be maximized. In the Team
Orienteering Problem With Time Windows, score can only be collected from the vertices
if they are visited within their specified time windows. A general framework for solving
such routing and planning problems for multiple robots is given in [47], where the task
allocation for robots is encoded as a Boolean Satisfiability problem and the path planning
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problem is encoded as a Traveling Salesman Problem. The main difference between these
problems and the persistent monitoring problems studied in this thesis is that we consider
the problems where the locations need to be visited repeatedly and indefinitely.

1.2 Contributions and Organization

The organization and contributions of this thesis are as follows.

Chapter 2 The mathematical preliminaries and background along with some definitions
and notation are given in this chapter.

Chapter 3 This chapter considers the persistent monitoring problem of finding the min-
imum number of robots to satisfy latency constraints (maximum allowed time between
two consecutive visits to a location). We present an O(log ρ) approximation algorithm
for the problem where ρ is the ratio of the maximum and minimum latency constraints.
We also provide an orienteering-based heuristic algorithm to solve the problem and show
through simulations that the heuristic algorithm gives better solutions than the approxi-
mation algorithm. We also compare our algorithms with an existing solver on benchmark
instances. Moreover, we also provide an algorithm for the problem of minimizing the
maximum weighted latency for a given number of robots.

Some of the algorithms and results provided in this chapter are presented in the fol-
lowing publication.

• Ahmad Bilal Asghar, Stephen L. Smith, and Shreyas Sundaram. Multi-Robot Rout-
ing for Persistent Monitoring with Latency Constraints. In American Control Con-
ference, pages 2620–2625, 2019.

Chapter 4 In this chapter we consider the problem of finding patrolling paths for a given
number of robots to maximize the expected value of the events observed. We motivate the
use of Markov chains as patrolling policies and characterize the expected value of observed
events as a function of the patrolling policy. We show that if the arrival of events is
stochastic, the objective function is submodular. We give an approximation algorithm for
the case where the event durations are fixed. We also present a centralized local search and
an online distributed algorithm to solve the general problem. Finally we study adversarial
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events that can choose their vertex and time to appear in order to minimize the expected
reward of patrolling robots.

The work presented in this chapter is based on the following publication.

• Ahmad Bilal Asghar and Stephen L. Smith. Stochastic Patrolling in Adversarial
Settings. In American Control Conference, pages 6435–6440, 2016.

Chapter 5 This chapter models events as intelligent intruders that can observe the
patrolling policy of the robots for a limited amount of time before deciding where and
when to appear in the environment to maximize their chances of remaining undetected.
We model the scenario as a game and present a strategy for a rational intruder. We
characterize the expected payoffs for the players. We set up the problem as a linearly
constrained non-convex, non-smooth optimization problem and show that the objective
function is locally Lipschitz so that direct search methods guarantee convergence to a
Clarke Stationary point.

The work presented in this chapter is based on the following publication.

• Ahmad Bilal Asghar and Stephen L. Smith. A Patrolling Game for Adversaries with
Limited Observation Time. In IEEE Conference on Decision and Control, pages
3305–3310, December 2018.

Chapter 6 The summary of the work presented in this thesis, and potential directions
for future work are given in this chapter.

Other Publications I have also collaborated on the following publications during my
PhD. However, this work is not presented in this thesis.

• Armin Sadeghi, Ahmad Bilal Asghar, and Stephen L. Smith. On Minimum Time
Multi-Robot Planning with Guarantees on the Total Collected Reward. In IEEE In-
ternational Symposium on Multi-Robot and Multi-Agent Systems, pages 16–22, 2019.

• Ahmad Bilal Asghar, Syed Talha Jawaid, and Stephen L. Smith. A Complete Greedy
Algorithm for Infinite-Horizon Sensor Scheduling. In Automatica, volume 81, pages
335—341, 2017.
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Chapter 2

Preliminaries

In this chapter we provide some mathematical background and notation for the thesis. In
Section 2.1 we review complexity theory. Some basic definitions from graph theory are
given in Section 2.2. In Section 2.3 we present Markov chains. We present some concepts
related to probability and random processes in Section 2.4. The discussion on complexity
theory is from [28] and [27]. The definitions related to probability and random processes
are from [39]. The background on Markov chains is from [51, 39] and the definitions for
graph theory are from [68].

2.1 Complexity Theory

Classifying the computational complexity of a problem is an important step in attempting
to design algorithms to solve the problem. For example, if problem A is NP-hard (defined
below), then no polynomial time algorithm for problem A exists unless P = NP , which
is a well-known open problem. Therefore, one can either try to devise a super-polynomial
time algorithm that solves the problem optimally, or find polynomial time algorithms that
give approximate or heuristic solutions to the problem.

2.1.1 Decision and Optimization Problems

The problems discussed in this thesis are optimization problems that look to minimize or
maximize an objective which is a function of the problem variables. Decision problems are
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problems with a yes or no answer. The decision version of a minimization (or maximiza-
tion) problem A can be formulated by asking whether a solution exists for A with objective
value at most (or at least) c. A search problem is a decision problem that also seeks the
solution if the answer to the above mentioned decision problem is yes. For example, the
optimization problem for the Travelling Salesman problem is to find the shortest tour vis-
iting all the locations, whereas the decision version of the problem is whether a tour exists
visiting all the vertices of distance at most c. A search problem is to find a tour of cost at
most c if it exists.

2.1.2 Reductions and Complexity Classes

A reduction translates an instance of one problem to an instance of some other problem.
A search problem A can be reduced to a search problem B by finding two polynomial
time algorithms f and h such that algorithm f transforms an instance I of problem A to
instance f(I) of problem B and algorithm h maps the solution S of f(I) into a solution
h(S) of instance I. Hence, by reducing problem A to problem B, we can solve problem A
using a solver for problem B, which means that problem B is at least as hard as problem
A.

Now we define some complexity classes. The complexity class P is the class of search
problems that can be solved in time that is polynomial in the size of input to the problem.
The class NP consists of problems for which a solution can be verified in polynomial time.
Problem A is in class NP-hard if all the problems in NP can be reduced to A in polynomial
time. A problem is in class NP-complete if it is in NP and NP-hard. If any NP-complete
problem can be solved in polynomial time, then every NP-complete problem can be solved
in polynomial time. Another class of problems that we refer to in this thesis is PSPACE-
complete. The class PSPACE is the class of problems that can be solved using memory
that is polynomial in the input size. Similarly a problem is PSPACE-complete if it in class
PSPACE and if every other problem in PSPACE can be reduced to this problem.

2.2 Graphs

A graph G is defined as a pair G = (V,E), where V represents the set of vertices or nodes
of the graph and E represents the set of edges connecting the vertices of the graph. The
vertices u, v ∈ V are connected if {u, v} ∈ E. The vertices connected to a vertex i by an
edge are called the neighbors of vertex i and are denoted as N (i).
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Definition 2.2.1 (Directed Graph). A graph is called a directed graph if edges are directed
from one vertex to the other. In this case, each edge is an ordered pair of the form (u, v)
which means that the edge points from u to v. So, E ⊆ V × V .

Definition 2.2.2 (Weighted Graph). A graph is weighted if there is a function ` : E → R
assigning lengths to edges of the graph.

In this thesis we may also treat the weights on the edges as a matrix L = [`ij] where
the element `ij gives the length on the edge {i, j} or (i, j). We will only deal with graphs
that have non-negative edge weights.

Definition 2.2.3 (Metric Graph). A weighted graph G = (V,E) with edge lengths given
by ` : E → R is called a metric graph if the edge lengths satisfy triangle inequality, i.e., for
edges (i, j), (j, k) and (i, k), `ik ≤ `ij + `jk.

Definition 2.2.4 (Subgraph). A subgraph H = (VH , EH) of G is a graph with VH ⊆ V
and EH ⊆ E.

A subgraph of G induced by vertices VH ⊆ V is a subgraph H = (VH , EH) where EH
consists of all the edges in E that have both endpoints in VH .

Definition 2.2.5 (Path). A path in a graph G = (V,E) is a subgraph

P = ({v1, v2, . . . , vk+1}, {e1, e2, . . . , ek})

such that vi 6= vj,∀i 6= j and ei = {vi, vi+1}.

The distance dist(i, j) between two vertices i and j of a graph is the length of the
shortest path from i to j. A graph is calledmetric if the distances satisfy triangle inequality,
i.e., dist(i, k) ≤ dist(i, j) + dist(j, k), for all i, j, k ∈ V .

Definition 2.2.6 (Simple Walk). A simple walk in graph G = (V,E) is defined as a
sequence of vertices (v1, v2, . . . , vk) such that (vi, vi+1) ∈ E for each 1 ≤ i < k.

In this thesis, we often refer to a path as just a sequence of vertices or a walk in the
graph. In this context a random path on a graph is just a random sequence of vertices of
the graph.

Definition 2.2.7 (Cycle). A cycle is a simple walk that starts and ends at the same vertex
with no other vertex appearing more than once.
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Definition 2.2.8 (Tour). A tour is a simple walk with no repeating edges.

Definition 2.2.9 (Infinite Walk). An infinite walk is a sequence of vertices (v1, v2, . . .)
such that (vi, vi+1) ∈ E for each i ∈ N.

Given walks W1 and W2, [W1,W2] represents the concatenation of the walks. Given a
finite walk W , an infinite periodic walk is constructed by concatenating infinite copies of
W together, and is denoted by ∆(W ).

In general, a walk can stay for some time at a vertex before traversing the edge towards
the next vertex. Therefore we define a timed walk as follows.

Definition 2.2.10 (TimedWalk). A timed walkW in graph G is a sequence (o1, o2, . . . , ok),
where oi = (vi, ti) is an ordered pair that represents the holding time ti that the walk W
spends at vertex vi, such that (vi, vi+1) ∈ E for each 1 ≤ i < k.

The definitions of infinite walk and periodic walk can be extended to infinite timed
walk and periodic timed walk. A walk with ordered pairs of the form (vi, 0) becomes a
simple walk. The vertices traversed by walk W are denoted by V (W ) and the length of
walk W = ((v1, t1), (v2, t2), . . . , (vk, tk)) is denoted by `(W ) =

∑k−1
i=1 `(vi, vi+1) +

∑k
i=1 tk.

Since we are considering multi-robot problems, synchronization between the walks is
important. Given a set of walks W = {W1,W2, . . . ,Wk} on graph G, we assume that at
time 0, each robot i is at the first vertex vi1 of its walk Wi, and will spend the holding time
ti1 at that vertex before moving to vi2.

Now we discuss some combinatorial problems related to graph theory that we will be
referring to in the thesis.

2.2.1 Hamiltonian Cycle

Given an unweighted undirected graph G = (V,E), the Hamiltonian Cycle Problem is to
find a cycle in G that visits each vertex of the graph exactly once.

2.2.2 Orienteering Problem

The Orienteering Problem [37] is a variant of the traveling salesman problem. The
input to the problem is a weighted directed or undirected graph G = (V,E) with edge
weights `(e) for e ∈ E, two vertices s, t ∈ V , and a time limit Tmax. Each vertex i ∈ V has
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a score ψi associated with it. The problem is to find an s− t walk (a walk originating from
s and arriving eventually at t) of length not exceeding Tmax which maximizes the total
score obtained by visiting the vertices. If a vertex is visited more than once in the walk,
its score is counted only once.

A straightforward reduction from TSP renders the orienteering problem NP-hard.
Chekuri et al. [23] give a (2 + ε) approximation algorithm for the problem. The exist-
ing exact and approximation algorithms are discussed and compared in [40].

We will also refer to a slight variation of the Orienteering Problem in Chapter 4 where
instead of finding an s− t walk, the objective is to find any cycle in the graph of length at
most Tmax maximizing the collected score. So, the input to the problem does not contain
the vertices s and t.

2.2.3 Minimum Cycle Cover Problem

Given a graph G and length λ, the Minimum Cycle Cover Problem (MCCP) is to find
minimum number of cycles that cover the whole graph such that the length of the longest
cycle is at most λ. This problem is NP-hard and a 14/3-approximation algorithm for
MCCP is given in [96].

2.3 Markov Chains

We will be using Markov chains to model random patrolling paths. This section gives the
necessary background on Markov chains.

A Markov chain is a discrete stochastic process X = {X0, X1, . . .} where Xi takes values
in a countable set S called the state space.

Definition 2.3.1 (Markov Chain). A Markov chain is random process X that satisfies the
Markov condition

P [Xn = s|X0 = x0, X1 = x1, . . . , Xn−1 = xn−1] = P [Xn = s|Xn−1 = xn−1]

for all n ≥ 1 and for s, x0, x1, x2, . . . , xn−1 ∈ S.
Definition 2.3.2 (Homogeneous Markov Chain). A Markov chain is called homogeneous
if the transition probability from one state to another is independent of time, i.e.

P [Xn+1 = j|Xn = i] = P [X1 = j|X0 = i]

for all n ≥ 1 and for all i, j ∈ S.
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Definition 2.3.3 (Transition Matrix). The transition matrix of a homogeneous Markov
chain P is the |S| × |S| matrix of the transition probabilities. So,

pij = P [Xn+1 = j|Xn = i] .

We will only be considering homogeneous Markov chains and we will use notation P
generally for the transition matrix.

The transition matrix is a row stochastic matrix, i.e.,

• pij ≥ 0, for all i, j.

•
∑

j pij = 1 for all i.

Definition 2.3.4 (Recurrent State). A state i ∈ S is called recurrent if the probability of
eventually visiting state i, starting from state i is 1. If this probability is less than 1, then
the state is called transient.

In the following definition, the notation p
(n)
ij will represent the element in the ith row

and jth column of the matrix P n.

Definition 2.3.5 (Communication). We say that state i communicates with state j, if
p

(m)
ij > 0 for some m > 0. The states i and j intercommunicate with each other if i
communicates with j and j communicates with i.

Definition 2.3.6 (Communicating Class). A set of states C is called a communicating
class if states i and j intercommunicate with each other for i, j ∈ C and no state in C
communicates with any state not in C.

Notice that if a Markov chain has more than one communicating class, we can decom-
pose the chain into two independent Markov chains. Hence, we will not be considering
Markov chains with more than one communicating class in this thesis. However, a Markov
chain with one communicating class can have a set of transient states as well. Once, the
chain leaves the set of transient states and moves into the communicating class, it will not
return to those states.

Definition 2.3.7 (Irreducible Chain). A Markov chain is called irreducible if states i and
j intercommunicate with each other, for all i, j ∈ S.

Definition 2.3.8 (Regular Markov Chain). A Markov chain is called regular if all suffi-
ciently high powers of the transition matrix have only positive elements.
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Definition 2.3.9 (Stationary Distribution). The vector π ∈ R1×|S| is called the stationary
distribution of Markov chain if

1. πj ≥ 0, for all j;

2.
∑

j πj = 1;

3. πP = π.

Definition 2.3.10 (First Passage Time, [78, 51]). Let Tj denote the number of transitions
after which the chain reaches state j for the first time, i.e. Tj = min{k ≥ 1 : Xk = j}.
Then the conditional mean of this time mij = E [Tj|X0 = i] is called the first passage time
from state i to state j.

The mean first passage time can be written as

mij = pij +
∑
k 6=j

pik(mik + 1).

Theorem 2.3.11 (Kemeny Constant, [51]). The quantity
∑

jmijπj is independent of the
starting state i for a regular Markov chain.

Definition 2.3.12. The quantity
∑

jmijπj represents the expected first passage time from
state i to a random state selected according to the stationary distribution π, and is called
the Kemeny constant of the Markov chain.

For the Markov chains, where all the transitions do not take equal amount of time, the
above defined first passage times will refer to the number of transitions instead of the time
taken in going from one state to the other. Let wij be the time spent in the transition from
state i to state j. Then the first passage time nij will be given by [3]

nij = pij(wij) +
∑
k 6=j

pik(nkj + wkj).

This concept of first passage times for weighted graphs is used in [3] to find Markov
chains with minimal first passage times.
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2.4 Probability and Random Variables

2.4.1 Random Variables

Random variables can be thought of as consequences related to the outcomes of the exper-
iments.

Definition 2.4.1 (Probability Space). A probability space is a triple (Ω,F ,P) where:

• Ω is called the sample space and is the set of all possible outcomes of an experiment.

• F ⊆ 2Ω such that

1. Ω ∈ F ,
2. A ∈ F =⇒ (Ω \ A) ∈ F , and
3. Ai ∈ F for i = 1, 2, . . . =⇒ (

⋃∞
i=1Ai) ∈ F .

• P : F → [0, 1] such that

1. P [Ω] = 1, and
2. if {Ai}∞i=1 ∈ F is a countable collection of pairwise disjoint sets, then P [

⋃∞
i=1Ai] =∑∞

i=1 P [Ai].

Definition 2.4.2 (Random Variable). A random variable is a function X : Ω → R such
that {ω ∈ Ω|X(ω) ≤ x} ∈ F for each x ∈ R.
Definition 2.4.3 (Distribution Function). The distribution function of a random variable
X is a function F : R→ [0, 1] given by

F (x) = P [X ≤ x] .

Definition 2.4.4 (Discrete Random Variable). The random variable X is called discrete
if it takes values in some countable set. It has a probability mass function (PMF) f : R→
[0, 1] given by

f(x) = P [X = x] .

Definition 2.4.5 (Continuous Random Variable). The random variable X is called con-
tinuous if its distribution function F (x) can be written as

F (x) =

∫ x

−∞
f(u)du

for some integrable function f : R → [0,∞] called the probability density function (PDF)
of X.
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Definition 2.4.6 (Expectation of Discrete Random Variable). The expected value or ex-
pectation of a discrete random variable X with PMF f(x) is

E [X] =
∑
x

xf(x).

Definition 2.4.7 (Expectation of Continuous Random Variable). The expected value or
expectation of a continuous random variable X with PDF f(x) is

E [X] =

∫ ∞
−∞

xf(x)dx.

For a function g : R→ R, the expectation of the function g(X) of random variable X
is given by E [g(X)] =

∫∞
−∞ g(x)f(x)dx.

Expectation is a linear operator. So

E [aX + bY ] = aE [X] + bE [Y ] , a, b ∈ R.

Definition 2.4.8 (Variance). The variance of a random variable X is

Var[X] =E
[
(X − E(X))2

]
=E

[
X2
]
− (E [X])2.

2.4.2 Some Distribution Functions

Now we describe some useful distribution functions that we will be using in this thesis.

Multinomial Distribution

Let X ∈ {1, 2, . . . , K} be a discrete random variable, and P [X = j] = θj, then

P [X] =
K∏
j=1

θ
(X=j)
j

is a multinomial distribution where (X = j) is a truth statement that evaluates to 1 or
0. In Chapter 6, we represent each row of the transition matrix of Markov chain as a
multinomial distribution. Then, learning of Markov chains is equivalent to estimating the
parameters of the multinomial distributions.
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Given n independent trials, let Xi be the discrete random variable representing the
number of times the outcome of the trial is i ∈ {1, 2, . . . , K}. Then the probability mass
function of multinomial distribution is also defined as

f(x1, . . . , xK) =

{
n!

x1!...xK !
θx11 . . . θxKK , when

∑K
i=1 xi = n

0, otherwise.

Dirichlet Distribution

Dirichlet distribution is a continuous multivariate distribution. The Dirichlet distribution
with parameters α = {α1, α2, . . . , αK} has the probability density function

f(x1, . . . , xK) =
1

β(α)

K∏
i=1

xαi−1
i

such that

x1, x2, . . . , xK−1 > 0

x1 + x2 + . . .+ xK−1 < 1

xK = 1− x1 − . . .−xK−1.

The function β(α) is the normalizing constant.

The mean of the random variable Xi from the Dirichlet distribution is given by

E [Xi] =
αi
α0

(2.1)

and the variance of Xi is given by

Var[Xi] =
αi(α0 − αi)
α2

0(α0 + 1)
(2.2)

where α0 =
∑

i αi.
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Chapter 3

Persistent Monitoring with Latency
Constraints

Persistent monitoring tasks such as surveillance and environmental sampling require that
locations in an environment be visited continually by a team of robots. In such tasks,
locations of more importance should be visited more often as compared to locations with
relatively low importance. This requirement can be modeled using a latency constraint for
each location which specifies the maximum time the robots are allowed to stay away from
a location. The locations that are at higher risk in a surveillance application will have a
lower latency constraint and hence will be visited more often by the robots to satisfy that
latency constraint. In this chapter we consider the problem of finding the patrolling paths
for the robots to satisfy the latency constraints of the locations in the environment. In an
application, where the number of robots is constrained, finding a feasible solution to the
problem may not be possible. In such cases, we consider the problem of minimizing the
maximum weighted latency of the locations in the environment.

The contributions of this chapter are as follows. The literature related to the problems
discussed in this chapter is reviewed in Section 3.1. We formally define the problem of
minimizing the number of robots to satisfy the latency constraints in Section 3.2. In Sec-
tion 3.3 we present an O(log ρ) approximation algorithm for the problem where ρ is the
ratio of the maximum and the minimum latency constraints. We provide some heuristic
algorithms to solve the problem in Section 3.4 and show through simulations that the pro-
posed orienteering-based heuristic algorithm gives better solutions than the approximation
algorithm. In Section 3.5 we study the problem of minimizing the maximum weighted la-
tency using multiple robots and provide an algorithm for the problem. We also give some
results that relate this problem to the problem of satisfying latency constraints. Finally,
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in Section 3.6 we evaluate the performance of the algorithms on large problem instances
in a patrolling scenario and in an image collection application for 3D scene reconstruction.
We also compare our algorithms against an existing solver on benchmark instances.

3.1 Related Work

The problem of finding paths to satisfy latency constraints has been studied in [54, 44, 31].
The authors in [54] use incomplete greedy heuristics to find if a single robot can satisfy
the constraints on all vertices of a graph. They show that if a solution exists, then a
periodic solution also exists. In this chapter, we consider the multi-robot problem and our
objective is to minimize the number of robots that can satisfy the latency constraints on
the given graph. The multi-robot version of the problem has been considered in [31, 44],
where it is called Cyclic Routing of Unmanned Aerial Vehicles. The decision version of
the problem for a single robot is shown to be PSPACE-complete in [44]. The authors also
show that the length of even one period of a feasible walk can be exponential in the size of
the problem instance. In [31], the authors propose a solver based on Satisfiability Modulo
Theories (SMT). To apply an SMT solver, they impose an upper bound on the length of
the period of the solution. Since an upper bound is not known a priori, the solver will
not return the optimal solution if the true optimal period exceeds the bound. The authors
generate a library of test instances, but since their algorithm scales exponentially with the
problem size, they solve instances up to only 7 vertices. We compare our algorithms with
their solver and show that our algorithms run over 500 times faster on average and return
solutions with the same number of robots on 98% of the benchmark instances provided
by [31].

A related single robot problem is studied in [6] where each vertex has a weight associated
with it and the objective is to minimize the maximum weighted latency (time between
consecutive visits) for an infinite walk. The authors provide an approximation algorithm
for this problem. In this chapter, we consider the multi-robot version of this problem and
provide an algorithm to solve the problem. The authors in [12] study the single robot
problem for a security application where the length of attack on each vertex of the graph
is given. To intercept all possible attacks, they design an algorithm to repeatedly patrol
all vertices with the maximum revisit time to each vertex less than its length of attack.
The algorithm is not guaranteed to find a solution if it exists.

Timed automata have been used to model general multi-robot path planning prob-
lems [82] as the clock states can capture the concurrent time dependent motion. In [92],
temporal logic constraints are used to specify high-level mission objectives to be achieved
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by a set of robots. The routing problem with latency constraints can also be modeled as a
timed-automaton since multiple robots may require synchronization to satisfy the latency
constraints. A timed automaton based solution to the problem is presented in [30], however
it is shown to perform more poorly than the SMT-based approach in [31], which we use as
a comparison for our proposed algorithms.

3.2 Problem Statement

Consider a directed weighted graph G = (V,E), where the set of vertices V represents
the locations to be monitored in the environment. The edge lengths are given by `(e) for
each e ∈ E. These edge lengths are metric and represent the time taken by the robots to
travel between the vertices. The latency constraint for each vertex v is denoted by r(v)
and represents the maximum time allowed between consecutive visits to v. In a practical
application, the robots may need to stay at a vertex for some time to inspect the vertex
or to gather information from that vertex. This time taken by the robots to stay at a
vertex can be added to the length of the incoming edges of that vertex to get an equivalent
metric graph with zero stay times and modified latency constraints [31]. Hence, we assume
without loss of generality, that the time required by the robots to inspect a vertex is zero.
We formally define the problem statement after the following definition of latency.

Definition 3.2.1 (Latency). Given a set of infinite walks W = {W1,W2, . . . ,Wk} on a
graph G, let avi represent the ith arrival time for the walks to vertex v. Similarly, let dvi
represent the ith departure time from vertex v. Then the latency L(W , v) of vertex v on
walks W is defined as the maximum time spent away from vertex v by the walks, i.e.,
L(W , v) = supi (a

v
i+1 − dvi ).

Problem 3.2.2 (Minimizing Robots with Latency Constraints). Given latency constraints
r : V → R ∪ {∞}, the optimization problem is to find a set of walks W with minimum
cardinality such that L(W , v) ≤ r(v),∀v ∈ V .

The decision version of the problem is to determine whether there exists a set of R
walks W = {W1,W2, . . . ,WR} such that L(W , v) ≤ r(v) for all v ∈ V . Note that although
we have assumed that the robots do not need to stay at a vertex to inspect that vertex, in
a general solution to the problem the robots might still need to stay at vertices in order to
satisfy the latency constraints. Therefore a general solution to Problem 3.2.2 will be a set
of timed walks with possibly non-zero holding times.
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Figure 3.1: A graph with three vertices and the walk (a, b, a, c, a). The length of shown
edges is one. Equally spacing two robots on this walk does not halve the latencies.

In this problem definition, the graph and its edge lengths capture the robot motion
in the environment. This graph can be generated from a probabilistic roadmap (PRM),
or any other environment decomposition method [50]. The latency constraints provide
the maximum allowable time between visits to a vertex. For example, in dynamic scene
reconstruction, each vertex corresponds to a viewpoint [84]. The latency constraints may
encode the maximum staleness of information that can be tolerated for the voxels captured
at that viewpoint.

3.2.1 Multiple Robots on the Same Walk

In multi-robot problems that involve finding cycles or tours in a graph, the cost of the
tour can be reduced by a factor of n by placing n robots on the tour such that each robot
follows the one ahead of it at a distance of 1/n times the length of the tour [24]. We will
refer to this placement of multiple robots on a tour as equally spacing robots on a tour.
Equally spacing multiple robots on the solution for a single robot does not work in a similar
manner for Problem 3.2.2: if a periodic walk W gives latency L(W, v) on vertex v, equally
spacing more robots on one period of that walk does not necessarily reduce the latency for
that vertex. Figure 3.1 gives an example of such a walk. The latency of vertices a, b and c
on the walk (a, b, a, c, a) are 2, 4 and 4 respectively. The length of one period of the walk
is 4. If we place another robot following the first robot with a lag of 2 units, the latency
of vertex a remains the same. If we place the second robot at a lag of 1 unit, the latency
will reduce to 1 for vertex a and 3 for vertices b and c. Hence cycles are an exception, for
general walks we need more sophisticated algorithms than finding a walk for a single robot
and adding more robots on that walk until the constraints are satisfied.

3.3 Approximation Algorithm

Since Problem 3.2.2 is PSPACE-complete, we resort to finding approximate and heuristic
solutions to the problem. In this section, we present an approximation algorithm for the
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problem.

3.3.1 O(log ρ) Approximation

We first mention a simple approach to the problem and then improve it incrementally to
get the approximation algorithm. One naive solution is to find a TSP tour of the graph
and equally space robots on that tour to satisfy all the latency constraints. However, a
single vertex with a very small r(v) can result in a solution with the number of robots
proportional to 1/r(v). To solve this issue, we can partition the vertices of the graph
such that the latencies in one partition are close to each other, and then place robots on
the TSP tour of each partition. If more than one robot is required for a partition V ′,
then another approach is to solve the MCCP for that partition. The benefit of using the
MCCP over placing multiple robots on a TSP is that if all the vertices in V ′ had the same
latency requirement, then we have a guarantee on the number of cycles required for that
partition. However, a general solution to the problem might not consist of simple cycles.
Lemma 3.3.2 relates solutions consisting of cycles to general solutions and shows that a
solution consisting of cycles will have latencies no more than twice that of any general
solution with same number of robots. Therefore, if we solve the MCCP on a partition with
its latency constraints multiplied by two, we have a guarantee on the number of cycles. We
can then use the naive idea from TSP based solutions and place multiple robots on each
cycle to satisfy the latency constraints.

The approximation algorithm is given in Algorithm 1. The first five lines of the al-
gorithm partition the vertices according to their latency constraints. For each of those
partitions, the function MCCP(V, λ) called in Line 7 uses an approximation algorithm for
the minimum cycle cover problem from [96]. Then, the appropriate number of robots are
placed on each cycle returned by the MCCP function to satisfy the latency constraints.
We will need the following definition to establish the approximation ratio of Algorithm 1.
A similar relaxation technique was used in [6].

Definition 3.3.1. Let rmin = minv r(v). The latency constraints of the problem are said to
be relaxed if for any vertex v, its latency constraint is updated from r(v) to r̄(v) = rmin2

x

such that x is the smallest integer for which r(v) < rmin2
x.

We will also need the following lemma that follows from Lemma 2 in [24] and we omit
the proof for brevity.

Lemma 3.3.2. For any set of walks W on an undirected metric graph with vertices V ,
there exists a set of walks W ′ on V with |W| = |W ′|, such that each walk Wi ∈ W ′ is a
cycle of vertices Vj ⊆ V , and the sets Vj partition V , and maxv L(W ′, v) ≤ 2 maxv L(W , v).
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Algorithm 1 ApproximationAlgorithm

Input: Graph G = (V,E), latency constraints r(v),∀v
Output: A set of walks W , such that L(W , v) ≤ r(v)

1: Let rmax = maxv r(v), rmin = minv r(v), ρ = rmax
rmin

2: if rmax/rmin is an exact power of 2 then ρ = rmax
rmin

+ 1
3: end if
4: W = {}
5: Let Vi be the set of vertices v such that rmin2i−1 ≤ r(v) < rmin2

i for 1 ≤ i ≤ dlog2 ρe
6: for i = 1 to dlog2 ρe do
7: C = MCCP(Vi, rmin2

i+1)
8: for C in C do
9: Equally space d`(C)/minv∈V (C) r(v)e robots on cycle C to get walks W ′
10: W = {W ,W ′}
11: end for
12: end for

The following proposition gives the approximation factor of Algorithm 1.

Proposition 3.3.3. Given an undirected metric graph G = (V,E) with latency con-
straints r(v) for v ∈ V , Algorithm 1 constructs R walks W = {W1,W2, . . . ,WR} such
that L(W , v) ≤ r(v) for all v ∈ V and R ≤ 4αdlog(ρ)eROPT, where ROPT is the minimum
number of robots required to satisfy the latency constraints and α is the approximation
factor of MCCP.

Proof. Given that ROPT robots will satisfy the latency constraints r(v), they will also satisfy
the relaxed constraints r̄(v) since r̄(v) > r(v). Therefore, there exists a set of at most ROPT

walks W∗ such that for v ∈ Vi, L(W∗, v) ≤ rmin2
i.

Using Lemma 3.3.2, given the set W∗, ROPT cycles can be constructed in Vi such that
the latency of each vertex in Vi is at most rmin2i+1. Hence, running an α approximation
algorithm for Minimum Cycle Cover Problem (MCCP) on the subgraph with vertices Vi
and with maximum cycle length rmin2i+1 will not return more than αROPT cycles.

Since MCCP returns cycles, equally spacing k robots on each cycle will reduce the
latency of each vertex on that cycle by a factor of k. As r(v) ≥ rmin2

i+1/4 for each v ∈ Vi,
we will need to place at most 4 robots on each cycle.

Finally, since there are at most dlog ρe partitions Vi, the algorithm will return R ≤
4αdlog(ρ)eROPT walks.
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Runtime: Since we run the approximation algorithm for MCCP on partitions of the
graph, Algorithm 1 has the same time complexity as that of the approximation algorithm
of MCCP. That is because the runtime of MCCP is superlinear, so if

∑
|Vi| = |V |, then∑

|Vi|p ≤ |V |p for p ≥ 1.

Remark 3.3.4 (Heuristic Improvements). Instead of finding cycles using MCCP for each
partition Vi in Line 7 of the algorithm, we can also equally space robots on the Traveling
Salesman Tour of Vi to get a feasible solution. In practice, we use both of these methods and
pick the solution that gives the lower number of robots for each Vi. This modification can
return better solutions to the problem but does not improve the approximation guarantee
established in Proposition 3.3.3.

3.4 Heuristic Algorithms

The approximation algorithm for Problem 3.2.2 presented in Section 3.3 is guaranteed to
provide a solution within a fixed factor of the optimal solution. In this section, we propose
a heuristic algorithm based on the Orienteering Problem, which in practice provides high-
quality solutions.

3.4.1 Partitioned Solutions

In general, walks in a solution of the problem may share some of the vertices. However,
sharing the vertices by multiple robots requires coordination and communication among
the robots. Such strategies may also require the robots to hold at certain vertices for some
time before traversing the next edge, in order to maintain synchronization. This is not
possible for vehicles that must maintain forward motion, such as fixed-wing aircraft. The
following example illustrates that if vertices are shared by the robots, lack of coordination
or perturbation in edge weights can lead to large errors in latencies.

Example 3.4.1. Consider the problem instance shown in Figure 3.2. An optimal set
of walks for this problem is given by {W1,W2,W3} where W1 = ((a, 1), (b, 1)), W2 =
((b, 0), (c, 0)) and W3 = ((c, 0), (d, 1), (c, 1)). Note that walk W1 starts by staying on vertex
a, while W2 leaves vertex b and W3 leaves vertex c. Also note that any partitioned solution
will need 4 robots. Moreover, if the length of edge {b, c} changes from 3 to 3 − ε, (e.g.,
if the robot’s speed increases slightly) the latencies of vertices b and c will keep changing
with time and will go up to 5. Hence, a small deviation in robot speed can result in a large
impact on the monitoring objective.
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Figure 3.2: A problem instance with an optimal set of walks that share vertices. The
latency constraints for each vertex are written inside that vertex. The edge lengths are
labeled with the edges. The optimal walks are {W1,W2,W3} where W1 = ((a, 1), (b, 1)),
W2 = ((b, 0), (c, 0)) and W3 = ((c, 0), (d, 1), (c, 1)).

Since the above mentioned issues will not occur if the robots do not share the vertices
of the graph, and the problem is PSPACE-complete even for a single robot, we focus on
finding partitioned walks in this section. The general greedy approach used in this section
is to find a single walk that satisfies latency constraints on a subset of vertices V ′ ⊆ V .
Note that we do not know V ′ beforehand, but a feasible walk on a subset of vertices will
determine V ′. We then repeat this process of finding feasible walks on the remaining
vertices of the graph until the whole graph is covered.

3.4.2 Greedy Algorithm

We now consider the problem of finding a single walk on the graph G = (V,E) that satisfies
the latency constraints on the vertices in V ′ ⊆ V . Given a robot walking on a graph, let
p(k) represent the vertex occupied by the robot after traversing k edges (after k steps) of
the walk. Also, at step k, let the maximum time left until a vertex i has to be visited
by the robot for its latency to be satisfied be represented by si(k). If that vertex is not
visited by the robot within that time, we say that the vertex expired. Hence, the vector
s(k) = [s1(k), . . . , s|V ′|(k)]T represents the time to expiry for each vertex. At the start of
the walk, si(0) = r(i), and si(k) evolves according to the following equation:

si(k) =

{
r(i) if p(k) = i

si(k − 1)− `(p(k − 1), p(k)) otherwise.
(3.1)

We will use the notation si without the step k if it is clear that we are talking about
the current time to expiry. An incomplete greedy heuristic for the decision version of
the problem with R = 1 is presented in [54]. The heuristic is to pick the vertex with
minimum value of si(k) as the next vertex to be visited by the robot. This heuristic does
not ensure that all the vertices on the walk will have their latency constraints satisfied
since the distance to a vertex i to be visited might get larger than si(k). To overcome this,
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i

Figure 3.3: An example depicting a step of the greedy algorithm. The solid black lines
show the existing walk W , and the yellow arrow shows the current position of the robot.
The green vertex i is the vertex with least time to expiry. That vertex is appended to the
existing walk and the closed walk is checked for feasibility before appending i to W .

we propose a modification to the heuristic to apply it to our problem. Given a walk W on
graph G, the function PeriodicFeasibility(W,G) determines whether the periodic walk
∆(W ) is feasible on the vertices that are visited by W . This can be done simply in O(|W |)
time by traversing the walk [W,W ] and checking if the time to expiry for any of the visited
vertices becomes negative. Given this function, the simple greedy algorithm is to pick
the vertex i = arg min{sj} subject to the constraint that PeriodicFeasibility([W, i], G)
returns true, where W is the walk traversed so far. The algorithm terminates when all the
vertices are either expired, or covered by the walk. An example of a step of the greedy
algorithm is depicted in Figure 3.3.

3.4.3 Recursive Greedy Algorithm

The greedy algorithm presented above selects the vertex with the minimum time to expiry
and adds it to the current walk if the resulting walk is feasible. In this section we extend
the greedy algorithm and instead of going directly to vertex i = arg min{sj}, we check if
other vertices can be visited on the way to vertex i. This is done greedily as well, where we
pick the vertex j 6= i with the minimum time to expiry such that the walk [W, j, i] remains
feasible on the vertices visited by the walk. This is done recursively until no more vertices
can be added to the walk. We refer to this algorithm as RecursiveGreedy.
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Figure 3.4: A step of the OrienteeringGreedy algorithm. The solid lines represent the
walk traversed so far. Yellow arrow is the current position of the robot. Vertex y is picked
greedily. The figure on left shows the time d that can be spent before going to y. The
figure on right shows the orienteering path from x to y.

3.4.4 Orienteering Based Greedy Algorithm

In this section we take the idea of the RecursiveGreedy algorithm one step further and
try to visit the ‘best’ combination of vertices on the way to vertex i = arg min{sj}. This
algorithm also finds partitioned walks like the previous two heuristic algorithms by finding
a feasible walk on a subset of vertices and then considering the remaining subgraph. The
algorithm is presented in Algorithm 2. From the current vertex x, the target vertex y is
picked greedily as described in Section 3.4.2. Then the time d is calculated in Line 10
which is the maximum time to go from x to y for which the periodic walk remains feasible.
In Line 17, Orienteering(V − Vexp, x, y, d, ψ) finds a path in the vertices V − Vexp from
x to y of length at most d maximizing the sum of the weights ψ on the vertices of the path.
The set Vexp represents the expired vertices whose latencies cannot be satisfied by the
current walk, and they will be considered by the next robot. The vertices with less time to
expiry are given more importance in the path by setting weight ψi = 1/si for vertex i. The
vertices that are already in the walk will remain feasible, and so their weight is discounted
by a small number m to encourage the path to explore unvisited vertices. One step of
the algorithm is depicted in Figure 3.4. The following result shows that the algorithm will
always find a feasible solution.

Proposition 3.4.2. Algorithm 2 returns a feasible solution, i.e., for the set of walks W
returned by Algorithm 2, L(W , v) ≤ r(v), for all v ∈ V .
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Algorithm 2 OrienteeringGreedy

Input: Graph G = (V,E), latency constraints r(v),∀v
Output: A set of walks W , such that L(W , v) ≤ r(v)

1: j = 1, W = {}
2: while V is not empty do
3: Vexp = {}
4: si = r(i) for all i ∈ V
5: Wj = pick vertex a randomly from V
6: while V − V (Wj)− Vexp is not empty do
7: x = last vertex in Wj

8: for y ∈ V − Vexp in increasing order of s do
9: if PeriodicFeasibility([Wj, y], G) then
10: Use binary search between `(x, y) and sy to get d (time to go from x to

y) such that [Wj, y] remains feasible
11: for z in V − (Vexp ∪ V (Wj)) do
12: if sz < d+ `(y, a) then Vexp = Vexp ∪ z
13: end if
14: end for
15: ψi = 1/si for all non expired vertices i
16: ψi = mψi for i in V (Wj)
17: Wj = [Wj,Orienteering(V − Vexp, x, y, d, ψ)]
18: Update s using Equation (3.1)
19: else
20: Vexp = Vexp ∪ y
21: end if
22: end for
23: end while
24: W = {W ,Wj}, j = j + 1
25: V = V − V (Wj)
26: end while
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Proof. The vertices covered by the walk Wj added to the solution in Line 24 are removed
from the set of vertices before finding the rest of the walks. Hence the latencies of the
vertices V (Wj) will be satisfied by only Wj. We will show that every time Wj is appended
in Line 17, it remains feasible on V (Wj).

Wj starts from a single vertex a, and hence is feasible at the start. Let us denoteW−
j as

the walk before Line 17 andW+
j as the walk after Line 17. Due to Line 10, ifW−

j is feasible
in a particular iteration, then [W−

j , y] will remain feasible. Hence the only vertices than can
possibly have their latency constraints violated inW+

j are in the orienteering path from x to
y. Consider any vertex z in the path from x to y returned by the Orienteering function
in Line 17. If z ∈ V (W−

j ), then L(W+
j , z) ≤ r(z) because of Line 10. If z /∈ V (W−

j ), then
r(z) = `(W−

j ) + sz and by Line 12, r(z) ≥ `(W−
j ) + d + `(y, a). As z is only visited once

in W+
j , L(W+

j , z) = `(W+
j ) ≤ `(W−

j ) + d+ `(y, a) ≤ r(z).

An approximation algorithm for Orienteering can be used in Line 17 of Algorithm 2.
In our implementation, we used an ILP formulation to solve Orienteering. To improve
the runtime in practice, we pre-process the graph before calling the Orienteering solver
to consider only the vertices z such that `(x, z) + `(z, y) ≤ d. We show in the next section
that although the runtime of Algorithm 2 is more than that of Algorithm 1, it can still
solve instances with up to 90 vertices in a reasonable amount of time, and it finds better
solutions.

3.5 Min Max Weighted Latency Problem

The approximation algorithm and analysis presented above helps in formulating an algo-
rithm for the multi-robot version of a related problem. In [6], the authors study in detail
the problem of minimizing the maximum weighted latency of a graph given a single robot.
Here we define the multiple robot version of the problem.

Problem 3.5.1 (Minimizing Maximum Weighted Latency). Given a graph G = (V,E)
with weights φ(v) for v ∈ V , and a set of walks W, the weighted latency of v is defined
as C(W , v) = φ(v)L(W , v). Given the number of robots R, the problem of minimizing
maximum weighted latency is to find a set of R infinite walks W = {W1,W2, . . . ,WR} such
that the cost maxv C(W , v) is minimized.

Without loss of generality, φ(v) is assumed to be normalized such that maxv φ(v) =
1. In this section we present an algorithm for this problem and relate this problem to
Problem 3.2.2.
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In [6], an approximation algorithm for the single robot version of Problem 3.5.1 is given.
We will refer to that approximation algorithm as MinMaxLatencyOneRobot(Gj),
which returns a walk in graph Gj such that the maximum weighted latency of that walk
is not more than (8 log ρj + 10)OPTj1, where ρj is the ratio of maximum to minimum vertex
weights in Gj and OPTj1 is the optimal maximum weighted latency for one robot in Gj.
We use this approximation algorithm as a subroutine in Algorithm 3 for minimizing the
maximum weighted latency with multiple robots.

Algorithm 3 LatencyWalks

Input: Graph G = (V,E), vertex weights φ(v),∀v ∈ V , and number of robots R.
Output: A set of R walks {W1, . . . ,WR} in G.

1: ρ = maxi,j φi/φj
2: if maxi,j φi/φj is an exact power of 2 then ρ = maxi,j φi/φj + 1
3: end if
4: Let Vi be the set of vertices of weight 1

2i
< φ(u) ≤ 1

2i−1 for 1 ≤ i ≤ dlog2 ρe
5: if R < log ρ then
6: for j = 1 to R do
7: Let Gj be a subgraph of G with vertices Vi for d j−1

R
log ρe+ 1 ≤ i ≤ d j

R
log ρe

8: Wj = MinMaxLatencyOneRobot(Gj)
9: end for
10: end if
11: if R ≥ log ρ then
12: Equally space bR/dlog ρec robots on TSP tour of Vi for all i to get
{W1, . . . ,Wdlog ρeb R

dlog ρe c
}

13: for k = R− dlog ρeb R
dlog ρec+ 1 to R do

14: Find subset Vi that has the maximum cost with currently assigned robots
15: Equally space all the robots on Vi along with robot k to get Wk

16: end for
17: end if

Proposition 3.5.2. Given an instance of Problem 3.5.1, Algorithm 3 constructs R walks
such that the maximum weighted latency of the graph is not more than (8 log ρ

R
+ 10)OPT1 if

R ≤ log ρ and 3OPT1/bR/dlog ρec otherwise, where ρ = max φ(vi)
φ(vj)

and OPT1 is the maximum
weighted latency of the single optimal walk.

Proof. The maximum vertex weight in the subgraph Gj constructed at Line 7 of the al-
gorithm will be at most 1/(2

j−1
R

log ρ), whereas the minimum vertex weight in Gj will be
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at least 1/(2
j
R

log ρ). Hence the ratio of the maximum to minimum vertex weights in Gj

will be at most ρj = 2
log ρ
R . Therefore, the approximation algorithm for one robot will

return a walk Wj such that the maximum weighted latency of Wj will not be more than
(8 log ρj + 10)OPTj1. Moreover, OPTj1 ≤ OPT1 and hence if R < log ρ, the maximum weighted
latency will be at most (8 log ρ

R
+ 10)OPT1.

The TSP tour of Vi is an optimal solution when all the vertex weights in Vi are equal.
Since the vertex weights within Vi differ by a factor of 2 at most, and the approximation
factor of TSP tour in metric graphs is 3/2, the maximum weighted latency of the TSP
tour will be at most 3OPT1. Equally spacing bR/dlog ρec will decrease the latency of all
the vertices by a factor of bR/dlog ρec.

Note that Algorithm 3 bounds the cost of the solution by a function of the optimal
cost of a single robot. This algorithm shows that R robots can asymptotically decrease
the weighted latency given by a single walk by a factor of R, which is not straightforward
for this problem as discussed in Section 3.2.1. A relation between OPT1 and the optimal
weighted latency could result in an approximation ratio for Algorithm 3, however, we were
not able to establish such a relation.

Now we show that if there is an approximation algorithm for Problem 3.5.1, it can
be used to solve Problem 3.2.2 using the optimal number of robots but with the latency
constraints relaxed by a factor α. This is referred to as a (α, 1)-bi-criterion algorithm [48]
for Problem 3.2.2.

Proposition 3.5.3. If there exists an α-approximation algorithm for Problem 3.5.1, then
there exists a (α, 1)-bi-criterion approximation algorithm for Problem 3.2.2.

We will need the following lemma relating the two problems to prove the proposition.
Given an instance of the decision version of Problem 3.2.2 with R robots, let us define an
instance of Problem 3.5.1 by assigning φ(v) = rmin

r(v)
,∀v ∈ V , where rmin = minv r(v).

Lemma 3.5.4. An instance of the decision version of Problem 3.2.2 is feasible if and only
if the optimal maximum weighted latency is at most rmin for the corresponding instance of
Problem 3.5.1.

Proof. If the optimal set of walksW has a cost more than rmin, then L(W , v) > rmin/φ(v) =
r(v) for some vertex v. Hence the latency constraint for that vertex is not satisfied and
the set of walks W is not feasible.

If the optimal set of walksW has a cost at most rmin, then L(W , v)φ(v) ≤ rmin for all v.
Hence, L(W , v) ≤ rmin/φ(v) = r(v). So, the latency constraints are satisfied for all vertices
and W is feasible.
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Proof of Proposition 3.5.3. If a problem instance of Problem 3.2.2 with R robots is feasible,
then by Lemma 3.5.4 the optimal set of walks has a cost at most rmin. The α-approximation
algorithm for the corresponding Problem 3.5.1 will return a set of walks W with a cost no
more than αrmin. Hence, L(W , v) ≤ αrmin/φ(v) = αr(v), for all v.

Hence, we can use binary search to find the minimum number of robots for which the
α-approximation algorithm for the corresponding Problem 3.5.1 results in a latency at
most αr(v) for all v. This will be the minimum number of robots for which the problem is
feasible.

3.6 Simulation Results

We now present the empirical performance of the algorithms presented in this chapter. For
the approximation algorithm, we used the LKH implementation [43] to find the TSP of the
graphs instead of the Christofides approximation algorithm [25]. This results in the loss
of approximation guarantee but gives better results in practice. The orienteering paths in
Algorithm 2 were found using the ILP formulation from [59] and the ILP’s were solved
using the Gurobi solver [41].

3.6.1 Patrolling an Environment

The graphs for the problem instances were generated randomly in a real world environ-
ment. The scenario represents a ground robot monitoring the University of Waterloo
campus. Vertices around the campus buildings represent the locations to be monitored
and a complete weighted graph was created by generating a probabilistic roadmap to find
paths between those vertices. Figure 3.5 shows the patrolling environment. To generate
random problem instances of different sizes, n random vertices were chosen from the orig-
inal graph. The latency constraints were generated uniformly randomly between TSP/k
and kTSP where k was chosen randomly between 4 and 8 for each instance. Here TSP
represents the TSP length of the graph found using LKH.

For each graph size, 10 random instances were created. The average runtimes of the al-
gorithms are presented in Figure 3.6. The runtimes for the RecursiveGreedy algorithm
are not shown in the figure as the its run times were very similar to the Greedy algorithm
and the slight difference in run times does not depict the efficiency of the algorithms. As
expected, Algorithm 2 is considerably slower than the approximation and simple greedy
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Figure 3.5: The environment used for generation of random instances. The red dots
represent the vertices to be monitored and the green dots represent the vertices in the
Probabilistic Roadmap used to find shortest paths between red vertices.

algorithms due to multiple calls to the ILP solver. However, as shown in Figure 3.7, Algo-
rithm 2 also gives the lowest number of robots required for most of these instances. The
trend of the number of robots returned by the greedy algorithm, the recursive greedy al-
gorithm and the orienteering based greedy algorithm shows that the idea of visiting more
vertices on the way to the greedily picked vertex works well in practice.

3.6.2 Persistent 3D Scene Reconstruction

Another application of our algorithms is in capturing images for 3D reconstruction of a
scene. Since existing algorithms focus on computing robot paths to map a static scene [13,
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Figure 3.6: Average runtimes of the algorithms. The line plot shows the mean over 10
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33



0 20 40 60 80 100
Number of Vertices

1

2

3

4

5

6

7

N
um

be
r 

of
 R

ob
ot

s

Orienteering Based Algorithm
Approximation Algorithm
Greedy Algorithm
Recursive Greedy
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84], our algorithms could be applied to persistently monitor and thus maintain an up-to-
date reconstruction of a scene that changes over time. To demonstrate this, we create
problem instances using a method similar to [84]. The viewpoints were generated on a
grid around the building to be monitored. For each viewpoint, five camera angles were
randomly generated, and best angle was selected for each viewpoint based on a view score
that was calculated assuming a square footprint for the camera. For each camera angle,
equally placed rays were projected onto the building within the footprint and a score was
calculated based on the distance and incidence angle of the ray. This calculation is similar
to that in [84], although they used a more detailed hemisphere coverage model.

After selecting the viewing angles, the final score of a camera pose was evaluated as
in [84] by greedily picking the best viewpoint first and evaluating the marginal score of
other viewpoints. The resulting graph had 109 vertices. The latencies were set such that
the most informative viewpoint is visited every 8 minutes and on average each viewpoint
is visited every 50 minutes. Algorithm 2 found a solution in 150 seconds using two walks,
as shown in Figure 3.8. Note that Algorithm 1 returned a solution with 3 robots.

3.6.3 Comparison with Existing Algorithms in Literature

In [30, 31] the authors propose an SMT (Satisfiability Modulo Theory) based approach
using the Z3 solver [29] to solve the decision version of the problem. The idea is to fix an
upper bound on the period of the solution and model the problem as a constraint program.
The authors also provide benchmark instances for the decision version of the problem. We
tested our algorithms on the benchmark instances provided and compare the results to the
SMT based solver provided by [31].

Out of 300 benchmark instances, given a time limit of 10 minutes, the Z3 solver returned
182 instances as satisfiable with the given number of robots. We ran our algorithms for
each instance and checked if the number of robots returned is less than or equal to the
number of robots in the benchmark instance. The approximation algorithm satisfied 170
instances whereas Algorithm 2 satisfied 178 instances. The four satisfiable instances that
Algorithm 2 was unable to satisfy had optimal solutions where the walks share the vertices,
and Algorithm 2 returned one more robot than the optimal in all those instances. The
drawback of using the constraint program to solve the problem is its poor scalability. It
spent an average of 3.76 seconds on satisfiable instances whereas Algorithm 2 spent 3 ms
on those instances on average. Moreover, on one such instance where Algorithm 2 returned
one more robot than the Z3 solver, the Z3 solver spent 194 seconds as compared to ∼ 5 ms
for Algorithm 2. Note that these differences are for benchmark instances having up to 7
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Figure 3.8: The walks returned by Algorithm 2 to continually monitor the mausoleum of
the Taj Mahal. The cones at each viewpoint show the camera angle. Note that the walk
on the top is not a tour, as it visits the vertex with least latency twice within a period.
The walk on the bottom is a tour and it visits the vertices that the first robot was unable
to cover.
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vertices. As shown in Figure 3.6, Algorithm 2 takes ∼ 100 seconds for 90 vertex instances
whereas we were unable to solve instances with even 15 vertices within an hour using the
Z3 solver. Hence, the scalability of the Z3 based solver hinders its use for problem instances
of practical sizes.

3.6.4 Patrolling Application

As shown in [6], one possible application of the problem is patrolling to control crime. The
patrolling agents’ objective is to persistently visit the locations in an area to deter crime.
The locations that are more prone to criminal activities should be visited more often and
hence the duration between visits to such locations should be less as compared to that of a
safer location. In this section, we construct a problem instance using real world locations
and data, and solve the problem using Algorithm 2.

For our example, we consider a region of downtown Toronto to be patrolled. For the
input graph to the problem, 42 major intersections in the area are considered as vertices
and driving times between them were queried from the Google maps API. The crime data
for each of the intersections was taken from Toronto Police Service Public Safety Data
Portal [1]. The data provides major crime indicators for each intersection in the area. We
used the crime indicators for the calendar year 2017. For each vertex, the crimes for the
intersections near that vertex were accumulated to find the crime index of that vertex.
This data was then converted to a latency constraint such that the latency constraints
were inversely proportional to the crime index and 150 crimes a year for a vertex translates
to a latency constraint of 1 hour. The map of the area to be patrolled, along with the
vertices and the latency constraints is shown in Figure 3.9.

The patrolling walks returned by the Algorithm 2 are also shown in Figure 3.9. The
algorithm returns two walks and hence two patrolling agents are required to patrol the
given area. Note that if patrolling agents are placed at equal distance on a TSP path of
the vertices, three agents will be required to satisfy all the constraints. The approximation
algorithm also returned three walks.
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Figure 3.9: Patrolling in downtown Toronto. The figure on left shows the vertices with
latency constraints in minutes and the right two figures show the walks returned by Algo-
rithm 2.
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Chapter 4

Multi-Robot Stochastic Patrolling

In this chapter we discuss the persistent monitoring problem when the number of robots is
fixed. Due to the constraint on the number of robots used, all the events appearing in the
environment may not be observed by the team of robots. Moreover, to define the latency
constraints used in the previous chapter, the event durations must be fixed. However, in
certain scenarios, the events that arrive at a location may not always stay there for a fixed
amount of time. For example, if the monitoring task is to observe wildlife at a certain
location, then we might have a distribution of staying times of the animals arriving there,
but we will not have an exact latency constraint. In these scenarios, a measure of how well
the monitoring task is carried out the expected number of observed events by the team of
robots. In this chapter we focus on the problem of maximizing the expected value of the
observed events, when the distribution of event duration for each location is given.

The organization and contributions of this chapter are as follows. We review the liter-
ature related to this problem in Section 4.1. The problem is formally defined and Markov
chain based random patrolling policies are motivated in Section 4.2. In Section 4.4 we
characterize the hardness of the problem and show that the objective function is submod-
ular. In Section 4.3 the expected reward of observed events is evaluated as a function of
the transition matrices of the Markov chains used for patrolling. In Section 4.5 we pro-
vide an approximation algorithm for the single robot problem when the event durations
are the same for all the vertices and using submodularity extend this algorithm to an ap-
proximation algorithm for the multi-robot problem. We propose an algorithm for general
problem instances in Section 4.6 and give a distributed algorithm to solve the problem in
Section 4.7. In Section 4.8 we consider adversarial events that can choose where and when
to appear in order minimize the expected reward of the patrolling team. Finally we give
simulation results in Section 4.9
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4.1 Related Work

The robotic surveillance problem is very well studied and there is a substantial amount of
work related to design of patrolling policies for monitoring of environments. For determin-
istic paths, there is a breadth of work considering both single and multiple robots [88, 81,
95, 24]. In [95] the authors consider cyclic policies to detect randomly arriving events in
an environment. Partitioned and Cyclic policies for multiple robots are compared in [24].
The problem discussed in this chapter is different from these works as we consider events
that stay at locations for a certain amount of time. Moreover, we also consider adversarial
events.

We use random patrolling paths to monitor environments in this chapter. Random
paths have also been extensively studied in the literature. In [89] the authors advocate
random patrolling paths by showing that it is hard to find deterministic strategies that
satisfy the surveillance criterion of visiting vertices proportional to their importance. In [38]
the authors consider stochastic surveillance paths so that the intruders cannot easily exploit
the predictability of a deterministic path. In [4] the authors look at intelligent intruders in
a perimeter patrolling problem. We deal with a general version of the problem as we deal
with environments represented as graphs, for which border patrol is a special case. In [19]
the authors find maximum entropy random walks such that all the paths of length t with
the same endpoints have equal probability of being traversed. In [55] the authors provide a
strategy for the attacker that disables sensors in a sensor selection problem and then they
give a resilient sensor selection method for the adversarial setting. Our approach is similar
in the sense that we also consider events that act adversarially.

Markov chains are often used to model random paths on a graph [89, 38, 78]. For
example, [78] represent the environment as a graph and design Markov chains that generate
randomized paths with desired behaviors. They use semidefinite programming to minimize
the mean first passage time from one state of the Markov chain to any other state, which
is constant for a given chain and is called the Kemeny constant [51]. The problem can
be formulated as a semidefinite program for reversible Markov chains only. They also
use the Markov chains on weighted graphs, where the probability of traversing an edge is
independent of the weight of that edge in the graph. This formulation is more useful in
the case of surveillance since the environment is usually represented as a weighted graph
and the Markov chain is then defined on that graph. The problem of finding a Markov
chain for a single robot to detect events is also studied in [12]. However, they consider
fixed event durations only and the events can only arrive when the robot is at a vertex.
We consider distributed event durations, and we allow for the events to arrive at any time.

In [15] the authors design a Markov chain with fastest mixing time which approaches
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the steady state distribution as quickly as possible. They also formulate the problem as a
semidefinite problem. A finite set of Markov chains is used to formulate the problem as a
Bayesian Stackelberg Game in [5], where the patroller first picks a mixed optimal strategy
and the adversary then picks the region to attack to maximize its payoff.

4.2 Problem Statement

A team of m robots is patrolling an environment to detect events appearing at certain
locations of the environment. As in the previous chapter, the environment is represented
by a directed weighted graph G = (V,E)1 where the set of vertices V = {1, 2, . . . , n}
represents the locations to be monitored and the set of edges E represents the links using
which the robots can travel between the vertices. The notation `ij or `e is used to represent
integer travel time on edge e = (i, j) ∈ E. Each vertex of the graph i ∈ V also has a weight
associated with it given by φi and it represents the reward for detecting an event at that
vertex. Once an event appears at a vertex i, say at time t1, it stays there for Li ∈ R+

amount of time. The event can only be observed by the robots if one of the robots visits
the vertex i within time [t1, t1 +Li]. Otherwise the event is missed by the robots. The time
Li is not known and is drawn from a known probability distribution, i.e., Li ∼ gi(li). Note
that different vertices may have different distributions for the event duration time Li. The
probability of an event arriving at vertex i is given by ψi. Also note that the robots do not
know if an event has arrived at a vertex unless one of the robots visits that vertex. The
objective for the team of robots is to maximize the expected reward of observed events.

4.2.1 Patrolling Policies

In [85], the authors empirically show that introducing randomness into Travelling Salesman
based tours of a graph can increase the probability of detecting the events if the events are
adversarial, i.e., the events have information about the patrolling paths and they can use
this information to appear at vertices of the graph to increase their chances of remaining
undetected. This observation is intuitive because it is easier for adversarial events to avoid

1Note that the problem can be defined for heterogeneous robots, where each robot r is given a different
edge set Er. That can be useful when we have different types of robots, e.g, aerial and ground robots
working together to patrol the environment. In such cases the edge set for an aerial robot will be different
from that of a ground robot. The algorithms proposed in this chapter can be used for the case of hetero-
geneous robots. To keep the analysis and notation easy to follow, we will assume the same edge set E for
all the robots in the rest of this chapter.

41



Figure 4.1: The vertex weights are written inside the vertices, and the event duration for a
vertex is written beside that vertex. The expected rewards of the two deterministic paths
shown visiting four and three vertices are 0.9375 and 1 respectively. The random path
depicted at right has an expected reward of 1.083.

a deterministic path. However, in their experiments the vertices of the graph did not have
vertex weights and the event duration was same for all the vertices. Due to this restriction,
the best solution found in their experiments for random, non-adversarial events was the
TSP cycle. We now provide a simple example to show that even when the events are
random, difference in vertex weights and duration of events can lead to random solutions
performing better as compared to simple cyclic solutions.

Example 4.2.1. Consider the graph with four vertices as shown in Figure 4.1, where the
distance between each pair of vertices is one. The vertex weight φi for each vertex i is
written inside that vertex, and the fixed duration of event for each vertex is written beside
that vertex. The probability of an event arriving at any vertex is 1/4. The cyclic TSP
solution gives an expected reward of 0.9375 whereas the deterministic solution visiting three
vertices gives an expected reward of 1. Also note that any other deterministic cycle covering
any two or three vertices will give ≤ 1 reward. Now consider the random patrolling path, in
which if the robot is at the vertex with vertex weight 3, it goes to one of its neighbors with
equal probability, and then comes back to that vertex. This random path gives an expected
reward of 1.083 which is 8.3% improvement over simple cyclic deterministic solutions.

Therefore, we consider possibly random patrolling policies in this chapter, and we use
Markov chains to represent those patrolling policies. The Markov chain for a single robot
will define the probability of the robot traversing an edge given a certain history of the
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path. The length of the history considered depends on the order of the Markov chain.
Note that simple deterministic cycles can also be written as Markov chains.

In general, a Markov chain based policy can have a memory of order t ∈ Z+. Increasing
the value of t cannot make the policy worse as the robot will have more information about
its path history to make the next decision. In the problems of this form studied in game
theory literature, there exists a maximum value t̄ for t, such that the objective value does
not increase anymore for t ≥ t̄ [12, 36]. However the value of t̄ can be very large as shown
in the following result that gives a lower bound on t̄ for a set of problem instances.

Proposition 4.2.2. There exists a family of instances Ik for k > 0 with O(k2 ln k) vertices
such that the minimum required order for the Markov chain of the optimal policy is Ω(k).

Proof. Consider a single robot problem and the graph shown in Figure 4.2. This example
is from [44] and the description and solution are reproduced here for completeness. Let
the weight of each vertex be one. The probability of an event arriving at any vertex is
same. The length of each edge shown without an edge length written beside is one. In the
graph, there are k sections, and each section x has px branches where px is the x-th prime
number. The event duration for each vertex is written inside that vertex. Here T = 4k.
The optimal solution that observes all possible events, must be a deterministic solution
that goes from vt through all the sections to vb to vm and to vt again, or the same path
traversed in opposite direction. The robot must know what branch it took to traverse each
section last time to decide which branch to take next. Since there are k sections, the order
of the Markov chain that defines this deterministic policy is Ω(k).

A Markov chain of order k will require nk memory to store all the possible histories in
general for a n vertex graph making the problem intractable. Therefore, we will consider
Markov chains of order one in this chapter. Previous work dealing with Markov chain
based patrolling policies also considered Markov chains of order one [12, 78, 10].

So far we have considered the policies for a single robot. In the case of multiple robots,
the next vertex of a robot r, may depend on the current vertices of all the other robots.
Even if the graph was unweighted or all edges in the graph had length one, the number of
states required to represent such a policy is nm where each state gives the current position
of all the robots. Apart from being computationally expensive, such a policy requires
coordination and communication among the robots which may not be practically desirable,
specially in the presence of adversarial events. Hence, we only consider the policies where
the robots are independent, and the next vertex of robot r depends only on the current
vertex of robot r. The Markov chain for robot r will be represented using its transition
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matrix Pr that governs the random path of the robot. The probability of the robot r going
from vertex i to vertex j is given by Pr(i, j). Hence, the goal of the problem is to find the
set of patrolling Markov chains P = {P1, P2, . . . , Pm} to maximize the expected weight of
observed events. We formalize the objective function in the next section.

4.2.2 Objective Function

Given the Markov chain transition matrix Pr for robot r, let Sr(e, j) represent the prob-
ability of an event missed (not observed) by the robot r, given that the event appeared
at vertex j when the robot r was traversing edge e ∈ E. Also let qr(e) be the probability
of robot r being on edge e ∈ E during its patrol when an event arrives on some vertex.
Note that Sr(e, j) and qr(e) are functions of Pr, and since the Markov chains of the robots
are independent, these probabilities do not depend on the Markov chains of other robots.
We will calculate these probabilities in Section 4.3. Using the law of total probability, the
probability of robot r not observing an event at j is given by

P [not observed at j by r] =
∑
e∈E

qr(e)Sr(e, j).

To calculate the probability of the event being observed at vertex j by the team of
robots, we note that the only scenario of an event not being observed at vertex j is if none
of the r robots observes that event. Since Sr(e, j) and qr(e) only depend on Pr, and since
Markov chains of the robots are independent, the probability of robot r not observing an
event at j is independent of the probability of robot u not observing that event. Hence,
the probability of an event at j not being observed is

P [not observed at j] =
m∏
r=1

(∑
e∈E

qr(e)Sr(e, j)
)
. (4.1)

Since the probability of an event appearing at vertex j is given by ψj, the expected
reward for the patrolling policy P is given by

f(P) =
n∑
j=1

φjP [event at j]P [observed at j]

=
n∑
j=1

φjψjP [observed at j] .

(4.2)
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Now we can use the complement of the probability in Equation (4.1) to get

f(P) =
n∑
j=1

φjψj

(
1−

m∏
r=1

(∑
e∈E

qr(e)Sr(e, j)
))
.

= φTψ − (
m⊙
r=1

(qr
TSr))(φ�ψ),

(4.3)

where
⊙

represents element-wise product of vectors. This objective function gives the
expected reward of successfully observed events for the patrolling policy P .

4.3 Evaluating the Objective Function

In this section we will calculate the probabilities Sr(e, j) (the probability of robot r missing
an event that arrived on vertex j when the robot was traversing edge e) and qr(e) (the
probability of robot r traversing edge e) discussed in the previous section, that are used
in the evaluation of the objective function (4.3). Given the graph G = (V,E) with edge
lengths `e for edge e and the Markov chain transition matrix Pr for robot r, the probability
mass function of the time steps taken for the first visit from vertex i to vertex j by robot
r is given by [12, 10]

Ft,r(i, j) =

 Pr(i, j)11(`ij), if t = 1∑
h6=j

Pr(i, h)Ft−`ih,r(h, j) + Pr(i, j)1t(`ij), if t ≥ 2 (4.4)

where Ft,r(i, j) = 0 for non-positive values of t, and 1t(`) is an indicator function which is
equal to one if ` = t and 0 otherwise. Ft,r(i, j) gives the probability of the robot r visiting
vertex j for the first time from vertex i in exactly t time steps. We can use Ft,r(i, j) to
calculate the probability of observing an event of duration L at vertex j, given that the
event arrives when the robot was at vertex i as follows.

Lemma 4.3.1. If the duration of an event at vertex j is L ∈ R+, then the probability of
robot r observing that event, given that the event appeared when robot r was at vertex i is∑bLc

t=1 Ft,r(i, j).

Proof. Although the duration of the event may not be an integer, the edge weights being
integer means that a robot starting from vertex i will reach vertex j only at integer times.
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Therefore it will be able to observe the event at vertex j if it takes time less than or equal
to L to reach vertex j. Since L ∈ [bLc, bLc + 1), and since going from i to j for the first
time in exactly t1 steps, and going from i to j for first time in exactly t2 6= t1 steps are
mutually exclusive occurances, we can add the probabilities Ft,r(i, j) for t = 1 to bLc to
find the probability of observing the event.

An event may arrive when the robot is traversing an edge instead of being located at
a specific vertex. In fact, in our patrolling model, the robot will spend all of its time on
edges, moving between vertices, because if the robot has to stay at a vertex i for t time
units, it can be modeled as transitioning along (i, i), a self-looping edge, repeatedly t times
with wii = 1. Let S̄r(e, j|L) represent the probability of robot r observing an event of
duration L that arrived on vertex j when the robot was traversing the edge e. Since the
duration of event at vertex j is distributed according to the probability distribution gj, we
can write the probability of robot r observing the event using the law of total probability
as

S̄r(e, j) =

∫ Lmax

0

S̄r(e, j|L)gj(L)dL, (4.5)

where the duration of event at vertex j is distributed between 0 and Lmax according to
the distribution gj. Note that, without loss of generality, we can assume Lmax to be an
integer. This probability can be evaluated using the following result.

Lemma 4.3.2. If an event arrived at vertex j when the robot r was traversing edge e =
(h, i), then the probability of the robot r observing that event can be evaluated using the
following expression:

S̄r(e, j) =
1

`e

Lmax−1∑
t=1

Ft,r(i, j)Ht(e, j),

where

Ht(e, j) =


`e(1−

∫ t+`e
0

gj(L)dL) +
∫ t+`e
t

(L− t)gj(L)dL,

if t < Lmax − `e∫ Lmax
t

(L− t)gj(L)dL, otherwise.

We first need the following result to calculate the probability S̄r(e, j|L).

Lemma 4.3.3. If the duration of an event at vertex j is L and the event arrived when the
robot r was traversing the edge e = (h, i), then the probability of the robot r observing that
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event is given by

S̄r(e, j|L) =

bL−`ec∑
t=1

Ft,r(i, j)+

1

`e

[ `e∑
t=1

FbL−(`e−t)c,r(i, j) ·
(
`e − t+ L− bLc

)]
.

(4.6)

For the ease of notation we will use Ft instead of Ft,r(i, j) in the forthcoming proofs to
denote the probability of robot r going to vertex j from vertex i in exactly t time steps.

Proof. Suppose that when the event arrives on vertex j, the robot is at a point on edge
e = (h, i) that it will take k time to reach vertex i on its way from h to i. When the
robot reaches vertex i, the event will stay for another L− k time, and using Lemma 4.3.1,
the probability of observing that event is

∑bL−kc
t=1 Ft. Since the arrival of the events is

independent of the motion of the robot, at the time of arrival of a certain event, the robot
can be anywhere on its path. Given that the robot is on edge e when the event arrives, its
probability distribution of being k distance away from vertex i will be uniform and since
the time taken on edge e is `e, this probability will be given by 1/`e. The probability of
observing the event is then given by

S̄r(e, j|L) =

∫ `e

0

bL−kc∑
t=1

FtP [k away from i] dk

=

∫ `e

0

bL−kc∑
t=1

Ft
1

`e
dk.

Let k0 = L−bLc, then for k ∈ [0, k0],
∑bL−kc

t=1 Ft =
∑bLc

t=1 Ft. Similarly, for k ∈ (k0 + q, k0 +
q+ 1], q = {1, . . . , `e− 1}, the integrand in the above integral remains constant, and so we
can break up the integral as follows:

S̄r(e, j|L) =
1

`e

(∫ k0

0

bL−kc∑
t=1

Ftdk +

∫ k0+1

k0

bL−kc∑
t=1

Ftdk + . . .+

∫ `e

k0+`e−1

bL−kc∑
t=1

Ftdk
)

=
1

`e

( bLc∑
t=1

Ftk0 +

bL−1c∑
t=1

Ft + . . .+

bL−(`e−1)c∑
t=1

Ft +

bL−`ec∑
t=1

Ft(1− k0)
)
.
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Now note that all the summations go from t = 1 to t = bL− `ec and so we can rewrite the
sum as follows:

S̄r(e, j|L) =
1

`e

( bL−`ec∑
t=1

Ft(k0 + `e − 1 + 1− k0)+

FbL−`e+1c(`e − 1 + k0) + . . .+ FbLck0

)
=

bL−`ec∑
t=1

Ft +
1

`e

( `e∑
t=1

FbL−(`e−t)c(`e − t+ k0)
)
.

Now we give the proof of Lemma 4.3.2.

Proof of Lemma 4.3.2. We solve the integral in Equation (4.5) for the two summations in
Equation (4.6) separately so that the derivation is easier to follow. From the first term we
get, ∫ Lmax

0

bL−`ec∑
t=1

Ftgj(L)dL =

∫ 1

0

bL−`ec∑
t=1

Ftgj(L)dL+

∫ 2

1

bL−`ec∑
t=1

Ftgj(L)dL+ . . .

+

∫ Lmax

Lmax−1

bL−`ec∑
t=1

Ftgj(L)dL.

Note that the sum
∑bL−`ec

t=1 Ft remains constant for L between two consecutive integers,
because `e is an integer. Also note that for L ∈ (0, 1), the integrand will be zero. Hence
we can write the above expression as

1−`e∑
t=1

Ft

∫ 2

1

gj(L)dL+
2−`e∑
t=1

Ft

∫ 3

2

gj(L)dL+ . . .+
Lmax−1−`e∑

t=1

Ft

∫ Lmax

Lmax−1

gj(L)dL.

Since each summation in the above expression goes at least up to t = 1− `e, we can take
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∑1−`e
t=1 Ft common to get

1−`e∑
t=1

Ft

(
1−

∫ 1

0

gj(L)dL
)

+ F2−`e

(
1−

∫ 2

0

gj(L)dL
)

+

. . .+ FLmax−1−`e

(
1−

∫ Lmax−1

0

gj(L)dL
)

=
1−`e∑
t=1

FtḠj(1) + F2−`eḠj(2) + . . .+ FLmax−1−`eḠj(Lmax − 1)

=
1−`e∑
t=1

FtḠj(1) +
Lmax−1∑
t=2

Ft−`eḠj(t)

=
Lmax−1∑
t=2

Ft−`eḠj(t)

=
Lmax−1−`e∑

t=1

FtḠj(t+ `e), (4.7)

where Ḡj(x) = 1 −
∫ x

0
gj(L)dL and the second last equality is due to the fact that edge

weights are integers and if the robot is spending some time in traversing an edge e, then
`e ≥ 1. For the second term, first consider the following integral.∫ Lmax

0

FbL−`e+tc(`e − t+ L− bLc)gj(L)dL

=
Lmax−1∑
y=0

∫ y+1

y

FbL−`e+tc(`e − t+ L− bLc)gj(L)dL

=
Lmax−1∑
y=0

Fy−`e+t

∫ y+1

y

(`e − t+ L− y)gj(L)dL

=
Lmax−1−`e+t∑

y=1

Fy

∫ y+`e−t+1

y+`e−t
(L− y)gj(L)dL

Using this procedure for the second term in Equation (4.6), we get

`e∑
t=1

Lmax−1−`e+t∑
y=1

Fy

∫ y+`e−t+1

y+`e−t
(L− y)gj(L)dL.
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Breaking the summation, that term becomes

Lmax−1−`e∑
y=1

Fy

( `e∑
t=1

∫ y+`e−t+1

y+`e−t
(L− y)gj(L)dL

)
+

Lmax−1∑
y=Lmax−`e

Fy

( `e∑
t=1

∫ y+`e−t+1

y+`e−t
(L− y)gj(L)dL

)
.

Combining the sum of integrals and noting that
∫ Lmax+k+1

Lmax+k
(L− y)Gj(L)dL = 0 for k ≥ 0,

we get

Lmax−1−`e∑
y=1

Fy

(∫ y+`e

y

(L− y)gj(L)dL
)

+
Lmax−1∑

y=Lmax−`e

Fy

(∫ Lmax

y

(L− y)gj(L)dL
)
.

Using this expression along with (4.7) in Equation (4.5), we get the result.

Using this result, the probability of robot r missing an event that arrived at vertex j
when the robot r was traversing edge e can be calculated as Sr(e, j) = 1 − S̄r(e, j). Note
that since Ft,r(i, j) is a function of Pr, Sr(e, j) is also a function of Pr. Also note that Gt,j
is not a function of Pr, and needs to be computed once for all t and j for a given instance
of the problem.

The probability qr(e) used in the objective function (4.3) represents the probability of
robot r being on edge e when an event arrives on some vertex. Since the arrival of events is
independent of the robots’ patrolling paths, sampling the position of robot r at the times
of arrival of events is equivalent to randomly sampling the position of robot r. Hence qr(e)
is just the probability of robot r being on edge e. This probability can be calculated using
the following result.

Lemma 4.3.4. If the robot r is patrolling the graph using the Markov chain transition
matrix Pr, the probability of the robot traversing edge e = (i, j) is given by

qr(e) = π̂(i)Pr(i, j)`e,

where the vector π̂ ∈ R1×n is the solution to the following set of equations.∑
i∈V

π̂(i)
(∑

j

(w(i,j))Pr(i, j)
)

= 1 (4.8)

π̂Pr = π̂
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Figure 4.3: Converting an edge weighted graph into an unweighted graph. The transition
probabilities for each edge are written beside that edge.

Proof. Since the robot is following a Markov chain with transition matrix P , we can use
this transition matrix to find the probability of the robot being on edge e. The probability
of a Markov chain making a transition from state i to state j is given by

P [transition (i, j)] = P [state i]P [transition (i, j)|state i]
= π(i)P (i, j),

where π is the stationary distribution vector of the Markov chain P . If the robot spent
same amount of time on each edge, the probability of the robot being on edge (i, j) would be
given by π(i)P (i, j). However, since the transition times on edges are given by edge weights
of the graph, we first convert the edge weighted graph into an unweighted one as follows.
For each directed edge e = (i, j) ∈ E, we add `e − 1 dummy vertices {de,1, . . . , de,`e−1} to
the new vertex set. The edges (i, de,1), (de,`e−1, j), and (de,k, de,k+1) for k ∈ {1, . . . , `e − 2}
replace the weighted edge e. The unweighted graph constructed using this method is
denoted as Ĝ = (V̂ , Ê). The new transition probabilities will be P̂ ((i, de,1)) = P (i, j),
P̂ (de,k, de,k+1) = 1 for k ∈ {1, . . . `e−2}, and P̂ (de,`e−1, j) = 1. Note that this new graph Ĝ
with the new Markov chain P̂ represents the same motion of the robot as that of Markov
chain P on graph G. An example of this conversion is shown in Figure 4.3.

The probability of the robot being on edge e = (i, j) ∈ E can now be calculated as
π̂(i)P (i, j)`(i, j) since the probability of being on the edge (de,k, de,k+1) is the same as the
probability of the robot traversing the edge (i, de,1). This calculation will however require
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the stationary distribution π̂ of P̂ to be calculated. Since, P̂ is a transition matrix of a
n+

∑
e∈E(`e − 1) state Markov chain, the calculation of π̂ using P̂ can be expensive. We

calculate π̂r using a more efficient method as follows.

By the definition of stationary distribution, we have

π̂(j) =
∑
i∈V̂

π̂(i)P̂ (i, j)

=
∑
i∈V

π̂(i)P̂ (i, j) +
∑
i∈V̂ \V

π̂(i)P̂ (i, j).

Notice that if for some e = (i, j) ∈ E, `e = 1, then P̂ (i, j) = P (i, j). Otherwise, if for some
e = (i, j) ∈ E, `e > 1, then e /∈ Ê, making P̂ (i, j) = 0, and the edge (de,`e−1, j) ∈ Ê with
P̂ (de,`e−1, j) = 1. Also π̂(de,`e−1) = π̂(i)P̂ (i, j). Therefore, we can write

π̂(j) =
∑
i∈V

π̂(i)P (i, j).

Hence we can write π̂P = π̂ to calculate π̂(j) for all j ∈ V . Since π̂ is the left eigenvector
of P with eigenvalue one, any vector cπ̂ for some constant c ∈ R is also a solution to
π̂P = π̂. We will need the following constraint to uniquely define π̂.∑

i∈V̂

π̂(i) = 1.

Since, π̂(de,k) = π̂(i)P̂ (i, j) for e = (i, j) we can write this constraint as∑
i∈V

π̂(i)
(

1 +
∑
j

(`(i, j)− 1)P (i, j)
)

= 1.

We can further simplify this by noting that
∑

j P (i, j) = 1, and get∑
i∈V

π̂(i)
(∑

j

(`(i, j))P (i, j)
)

= 1. (4.9)

Therefore, given a transition matrix P , we use π̂P = π̂ with Equation (4.9) to find π̂(i)
for i ∈ V , and then find the probability of the robot being on edge e = (i, j) using

q(e) = π̂(i)P (i, j)`e.
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Note that the equation π̂Pr = π̂ means that π̂ is the eigenvector of Pr with eigenvalue
one. Equation (4.8) normalizes π̂.

Given Lemmas 4.3.2 and 4.3.4, we can calculate qr(e) and Sr(e, j) given the transition
matrix Pr, and hence we can evaluate the objective function f(P) given a patrolling policy
P . In [10], the probability of an event being detected by a robot was calculated assuming
that the events can only appear when the robot is at some vertex. Moreover, the duration of
events was fixed. That probability was a sum of the terms Ft,r(i, j) given in Equation (4.4).
It is interesting to note that allowing for distributed durations of events, and considering
a more general and practical case where events can arrive when the robots are traversing
edges, the probability of an event being detected is a weighted sum of the terms Ft,r(i, j)
as shown in Lemma 4.3.2. Also note that the weights Ht(e, j) only need to be calculated
once as they only depend on the distributions of event durations and the graph, and are
independent of the patrolling policy.

4.4 Properties of the Problem

Given the objective function f(P) in Equation (4.3), the patrolling problem is to find the
set of patrolling policies P = {P1, P2, . . . , Pm} to maximize f(P). Each of the Markov
chains Pr should be a valid transition matrix that the robot can use for patrolling. This
results in the following constrained optimization problem.

maximize: f({P1, P2, . . . , Pm})

subject to:
n∑
j=1

Pr(i, j) = 1, ∀i, r

Pr(i, j) ≥ 0, ∀i, j, r

Pr(i, j) = 0, if (i, j) /∈ E,∀r

Pr has one communicating class, ∀r.

(4.10)

The first two constraints make sure that Pr is a valid transition matrix. The third constraint
means that the robot will only be able to transition from i to j if there is an edge (i, j)
in the graph. The last constraint makes sure that there is only one communicating class
and the robot can visit all the vertices in that communicating class. If the communicating
class does not include all the vertices in the graph, then the probability of missing an event
arriving on the vertices that are not in the communicating class is one.
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4.4.1 Computational Complexity

The following result shows that maximizing f(P) is NP-hard even in the case of a single
robot.

Proposition 4.4.1. The Problem (4.10) is NP-hard.

Proof. We will show the hardness using a reduction from the Hamiltonian cycle prob-
lem. Given a graph G = (V,E) as an instance of Hamiltonian cycle, we construct
an instance of Problem (4.10) as follows. Set the number of robots as m = 1, the edge
weights as `e = 1,∀e ∈ E to get a weighted graph. Set the vertex weights as one for all
the vertices, and gi(l) = δ(|V |), i.e., the duration of events at each vertex is equal to the
number of vertices in the graph. Also let ψi = 1/|V | for all i ∈ V .

If the Problem (4.10) returns a solution with objective value less than 1, then there
does not exist a Hamiltonian cycle in the graph G = (V,E). That is because if there was
a Hamiltonian cycle in the graph, it could be written as a Markov chain, and that Markov
chain will return an objective value of 1 because all the events can be observed by a robot
following the Hamiltonian cycle of the graph, as the duration of events and the length of
the Hamiltonian cycle is |V |.

If the Problem (4.10) returns a solution with objective value 1, then there exists a
Hamiltonian cycle in the graph G = (V,E), because if there was no Hamiltonian cycle
in the graph, there is a non-zero probability of the events being missed and the objective
function will be less than 1.

Remark 4.4.2. Note that maximizing the objective function f(P) is equivalent to mini-
mizing the function (

⊙m
r=1 qr

TSr)(φ�ψ) because φTψ is a constant for a given instance.
However, if the problem was to minimize this function, then we can show that no polyno-
mial time approximation algorithm exists for this problem unless P=NP. This is because
we can use the same reduction as in the proof of Proposition 4.4.1 from the Hamilto-
nian Cycle to show that a Hamiltonian cycle exists if and only if the problem has the
objective value 0. Since, any approximation algorithm of the problem would also result in
the objective value 0, this implies that if a polynomial time approximation algorithm exists,
Hamiltonian Cycle could be solved.

4.4.2 Non-Convexity

The objective function f(P) is not a convex function in general. The following example
demonstrates this.
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Example 4.4.3. Consider a single robot version of the problem (m = 1) with P = P1. The
functions S(e, j) for all e ∈ E and j ∈ V are functions of the problem variables P (x, y) for
x, y ∈ V . Now consider a specific instance of the problem with all the edge weights equal
to one (`e = 1, ∀e ∈ E), and same duration of event for all the vertices fixed as 3. Then
using Equation (4.6), for e = (h, i) we can write

S(e, j) = 1− F1(i, j)− F2(i, j).

The elements in the Hessian of S(e, j) will be given by

∂2S(e, j)

∂P (x, y)∂P (k, l)
=

−∂2F1(i, j)

∂P (x, y)∂P (k, l)
− ∂2F2(i, j)

∂P (x, y)∂P (k, l)
.

Consider edge e = (h, 1) for some neighbor h of vertex 1, and the variables P (1, 3) and
P (3, 2) as the first two variables in the indexing of the Hessian of S(e, 2). Then

∂2(F1(1, 2) + F2(1, 2))

∂P (1, 3)∂P (3, 2)
=
∂2(P (1, 2) +

∑n
k 6=2 P (1, k)P (k, 2))

∂P (1, 3)∂P (3, 2)

=1,

and

∂2F1(1, 2)

∂P (1, 3)∂P (1, 3)
+

∂2F2(1, 2)

∂P (1, 3)∂P (1, 3)
=

∂2F1(1, 2)

∂P (3, 2)∂P (3, 2)
+

∂2F2(1, 2)

∂P (3, 2)∂P (3, 2)

=0.

So, the first and the second principal minor of the Hessian of S(e, 2) for e = (h, 1) evaluate
to 0 and −1 respectively. Hence S(e, j) is not a convex function of P and hence f(P ) is
not in general a convex function of P .

Therefore, we cannot use constrained convex optimization to solve the problem. How-
ever, the objective function is submodular as shown in the following section.

4.4.3 Submodularity

The function f(P) is a set function that is defined on a subset of the set of Markov chains.
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Proposition 4.4.4. Let the set C denote the set of all possible Markov chain transition
matrices defined on the graph G = (V,E), i.e. C = {P ∈ Rn×n|

∑
j P (i, j) = 1, P (i, j) ≥

0, (i, j) /∈ E =⇒ P (i, j) = 0}. The objective function (4.3) defined on the subsets of C
has the following properties.

1. f({}) = 0.

2. A ⊆ B ⊂ C =⇒ f(A) ≤ f(B).

3. f(A ∪ {P})− f(A) ≥ f(B ∪ {P})− f(B), for A ⊆ B ⊂ C, P /∈ B.

Proof. The first two properties are straightforward, since if no robot is monitoring the
environment, the expected reward collected will be zero. Also adding more robots cannot
decrease the expected reward.

Now consider sets A = {P1, P2, . . . , Pa} and B = {P1, P2, . . . , Pb} where b ≥ a. Then
for Pk /∈ B,

f(A ∪ {Pk})− f(A)

=(
a⊙
r=1

qr
TSr)(φ�ψ)− (

a⊙
r=1

qr
TSr)� (qk

TSk)(φ�ψ)

=(1− qkTSk)� (
a⊙
r=1

qr
TSr)(φ�ψ)

≥(1− qkTSk)� (
a⊙
r=1

qr
TSr)� (

b⊙
r=a+1

qr
TSr)(φ�ψ)

=(1− qkTSk)� (
b⊙

r=1

qr
TSr)(φ�ψ)

=f(B ∪ {Pk})− f(B).

We use the submodularity of the objective function in the following section to give an
approximation algorithm for a certain set of instances of the problem.
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4.5 Approximation Algorithm for Fixed Event Duration

In this section we first give an approximation algorithm for the single robot problem when
the event durations are fixed to L for all the vertices. Although we are considering the set of
all Markov chains for our patrolling policy, the following result shows that a deterministic
tour returned by the Orienteering Problem gives an approximate solution to the problem.

Proposition 4.5.1. Consider an instance I of Problem 4.10 defined on an undirected
metric graph with one robot i.e., m = 1 and the duration of event fixed as L for each vertex.
Let {v1, v2, . . . , vk, v1} represent an α-approximate solution to the Orienteering Problem on
a metric graph G = (V,E) with vertex weight on vertex i ∈ V given by φiψi, and the
maximum tour length L. Then the deterministic Markov chain following the orienteering
tour (P (i, j) = 1 if (i, j) = (vi, vi+1) or (i, j) = (vk, v1) and 0 otherwise) will give the
objective value f(P ) ≥ αf ∗/2, where f ∗ is the objective value of the optimal solution to I.

Proof. For m = 1, the objective is to maximize f = φTψ−(qTS)(φ�ψ). In this objective
ψj is the probability of an event arriving at vertex j, and φj is the value of detecting an
event at the vertex j. Therefore we can get the same objective function by assuming that
the probability of an event arriving at a vertex is 1/n for all the vertices, and setting the
value of detecting an event at vertex j to nψjφj. Hence, in this proof, without loss of
generality, we assume that φ̃j = ψjφj.

Now, consider any deterministic tour visiting vertices U ⊂ V with maximum tour
length at most L. Since, the robot follows a deterministic tour of vertices in U with the
tour length not greater than the duration of events L, the probability of missing events on
the vertices in U is 0, whereas all the events arriving on vertices not in U will be missed,
i.e., S(e, j) = 1, ∀j ∈ V \ U , and S(e, j) = 0,∀j ∈ U and for all the edges e belonging to
the tour. S(e, j) for j ∈ U and e not in the tour does not matter since q(e) for those edges
will be zero. Hence, the objective function is

f =
∑
j∈V

(φ̃j)−
∑
j∈V \U

(φ̃j)

=
∑
j∈U

(φ̃j).
(4.11)

Hence for any deterministic tour of length at most L, the objective is the sum of the
weights of the vertices in the tour. Since, the orienteering problem by definition maximizes
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that sum, any other deterministic tour with length at most L will be sub-optimal. Also
note that any random path that visits only the vertices in U cannot perform better than
the orienteering tour. Let Uα be the vertices in an α approximation of the orienteering
tour of the graph with maximum tour length L and vertex weights φ̃. U1 represents the
vertices in the optimal orienteering tour.

Note from Equation (4.3) that the single robot objective function can be written as

f =
∑
e∈E

q(e)
[∑
j∈V

φ̃j
(
1− S(e, j)

)]
.

Since, the events arrive on the vertices with equal probability, the term
∑

j∈V φ̃j
(
1−S(e, j)

)
represents the average value of the detected events when the robot starts from edge e. For
any general Markov chain P , whenever the robot starts from edge e and comes back to the
same edge e in at most L time, by the definition of the orienteering problem, it could not
have visited the vertices with more collective value than an orienteering tour, i.e.,∑

j∈V

φ̃j
(
1− S(e, j)

)
≤
∑
j∈U1

φ̃j ≤
∑

j∈Uα φ̃j

α
.

In the case when the robot starts from edge e and comes back to edge e in more than
L time, it could not have visited vertices with total value more than twice that of an
orienteering tour by the following claim.

Claim 4.5.2. The total vertex weight collected by an orienteering path of length L is at
most twice the total vertex weight collected by an orienteering tour of length L.

Proof. Split the orienteering path into two segments of length L/2. One of those segments
must have a total vertex weight at least half of the total weight collected by the path.
Since the graph is metric, a tour can be constructed collecting at least half the total weight
of the orienteering path using that half segment.

Hence, for the case when the robot comes back to edge e in more than L time, we have∑
j∈V

φ̃j
(
1− S(e, j)

)
≤ 2

∑
j∈U1

φ̃j ≤
2

α

∑
j∈Uα

φ̃j.

Therefore we can write,

f ≤
∑
e∈E

q(e)
( 2

α

∑
j∈Uα

φ̃j
)

=
2

α

∑
j∈Uα

φ̃j,

59



where the second equality follows because
∑

e∈E q(e) = 1. Noting that
∑

j∈Uα φ̃j is the
objective function obtained by an α-approximation of the orienteering problem as shown
in Equation (4.11) completes the proof.

Remark 4.5.3. The approximation ratio given in Proposition 4.5.1 is tight. Consider a
ring graph with n ≥ 8 vertices where each vertex is connected to its two neighbors with edge
length 1. Let the vertex weights be one for all the vertices and the duration of event at
each vertex be n/2. An orienteering tour of length n/2 will result in the objective function
1/4 + 1/n. A deterministic tour of the whole ring will result in the objective function
being 1/2. As the number of vertices grows, we get the approximation ratio 1/2 with the
orienteering tour approximation ratio being α = 1 in this example.

Since the set function f(P) is submodular, we can greedily add Markov chains to maxi-
mize the marginal reward of adding the new Markov chain in order to get an approximation
algorithm to the multi-robot problem.

Algorithm 4 ApproximationAlgorithm

Input: GraphG = (V,E) with edge length `e, vertex weights φi and arrival probabilities
ψi, ∀i ∈ V , event stay duration L, and number of robots m.
Output: A set of m Markov chains P = {P1, . . . , Pm}.

1: V̄ ← V
2: for r = 1 to m do
3: Pr ← Orienteering Tour of V̄ with vertex weights φiψi for i ∈ V̄ and tour length L.
4: Remove vertices covered by Pr from V̄
5: end for

Proposition 4.5.4. If the duration of events is fixed as L for all the vertices, i.e., gi(l) =
δ(L), then given an α-approximation algorithm for Orienteering Tour Problem, Algorithm 4
is a 1− 1

eα/2
approximation algorithm for Problem 4.10.

Proof. For a submodular, non-negative and monotone set function defined over the subsets
of a finite set, the following algorithm gives 1 − 1

eβ
approximation for maximizing the set

function [69]. Start from an empty set and iteratively select an element to add to the
solution set such that the marginal gain of the added element is at least β times the
maximum marginal gain of adding a new element.

The set of all Markov chain transition matrices defined on the graph G = (V,E,W ), is
an uncountably infinite set. Therefore to use the greedy algorithm, we construct a finite
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set as follows. Take the m optimal Markov chains P ∗1 , . . . , P ∗m, and mMarkov chains picked
by the greedy algorithm P1, . . . , Pm to form a set of Markov chains with 2m elements. If
we run the greedy algorithm on this finite set, then using Proposition 4.5.1 we get the
result that f({P1, . . . Pm}) ≥ (1− 1

eα/2
)f({P ∗1 , . . . , P ∗m}). Since {P ∗1 , . . . , P ∗m} is the optimal

solution in P , we get the desired approximation ratio.

In the next section we solve the general problem where the duration of events can be
distributed.

4.6 Centralized Algorithm

Motivated by the submodular structure of the problem, we propose an algorithm similar to
Algorithm 4. We will first present an algorithm to solve the single robot problem and then
give a greedy algorithm to construct a solution for the multi-robot problem. The following
section focuses on finding a solution for the single robot problem.

4.6.1 Single Robot Solution

Since the single robot objective function is non-convex and continuously differentiable, we
can use gradient descent methods to find a locally optimal Markov chain. However, due
to the recursive nature of the objective function, calculating the gradient of the objective
function is computationally expensive with runtime O(n5Lmax) where n is the number of
vertices in the graph and Lmax is the maximum duration of event. Therefore, we use a
gradient free direct search method (Algorithm 5) that converges to a Markov chain P ′

such that ∇f(P ′) = 0 [60]. We present the details of the direct search algorithm below.

At iteration k of Algorithm 5, a set of search directions Dk is chosen and the function
is evaluated at a given step length γk along these directions. As soon as a better point
is found, it is chosen as the current point and the method proceeds to the next iteration.
The step length is decreased or increased depending on whether a better point is found.
The sufficient increase function ρ(γk) is Mγ

3/2
k where M is a constant, as suggested by [72]

for the algorithm to converge.

Direction set: For each row i of the transition matrix, the constraints define a simplex
in R|N (i)| dimensions where N (i) is the set of neighboring vertices of vertex i. So, the set
Dk includes |N (i)| − 1 orthonormal directions on the simplex for each row i.
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Algorithm 5 PatrollingStrategy

Input: Graph G = (V,E) and function f(P ).
Output: Markov chain P .

1: Pick a starting transition matrix Po and γo
2: for k = 0, 1, 2, . . . do
3: if γk < γt then
4: stop
5: end if
6: flag ← 0
7: for d ∈ Dk do
8: Q← Pk + γkd
9: if Q not feasible then
10: Q← project(Q)
11: end if
12: if f(Q) > f(Pk) + ρ(γk) then
13: Pk+1 ← Q
14: γk+1 ← φkγk
15: flag ← 1
16: break
17: end if
18: end for
19: if flag = 0 then
20: γk+1 ← θkγk
21: end if
22: end for

The motivation for the search directions in the direct search method comes from the
2-opt or k-opt local search heuristic for the travelling salesman problem [62]. The Markov
chain transition matrix P for a deterministic tour will have P (i, j) = 1 if and only if the
vertex j comes after the vertex i in the tour. Suppose a deterministic tour is given by
(v1, . . . , i, j, . . . , x, y, . . . , vn). A 2-opt move will be to set P (i, j) and P (x, y) to 0, and
set P (i, x) and P (j, y) to 1. Since in a Markov chain we can have transition probabilities
between zero and one, we can generalize 2-opt by getting a transition matrix Q from a
given transition matrix P by setting Q(i, j) = P (i, j)− ε, Q(i, x) = P (i, x) + ε, Q(x, y) =
P (x, y) − ε and Q(j, y) = P (j, y) + ε for some ε > 0. Also note that we can also have
1-opt local search directions by modifying only one row of the transition matrix P . In our
implementation, we use 1-opt and some random directions in Dk.

Projection onto the feasible set: The function Project in Line 10 of Algorithm 5
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projects the matrix Q onto the convex set defined by the first three constraints of Prob-
lem 4.10. Since each row i of matrix P lies in a |N (i)| dimensional simplex, we can use
the algorithm from [32] to project each row of Q onto the desired simplex. This method
employs simple vector operations and is therefore more efficient as compared to projection
using convex optimization.

4.6.2 Multi-Robot Solution

Now we can use the single robot algorithm presented in the last section to construct a
multi-robot solution. We start from random patrolling Markov chains for all the robots.
At each iteration of the multi-robot algorithm, the Markov chain of one of the robots,
say r, is updated. The following observation shows that the problem of finding Pr to
maximize f(P) is equivalent to solving the problem for a single robot. Therefore, we can
use Algorithm 5 to update Pr.

Observation 4.6.1. If the Markov chains {P1, . . . , Pr−1, Pr+1, . . . , Pm} are given, the prob-
lem of finding the Markov chain Pr to maximize the objective function f(P) given in (4.3)
is equivalent to solving the problem for a single robot.

Proof. The term φTψ in the objective function in Equation (4.3) is independent of the
patrolling policy, hence maximizing f(P) is equivalent to minimizing

(
m⊙
k=1

qk
TSk)(φ�ψ). (4.12)

We can write this objective as(
(
⊙
k 6=r

qk
TSk)� qrTSr

)
(φ�ψ)

=(qr
TSr)

(
(
⊙
k 6=r

qk
TSk)

T � φ�ψ
)
.

Since qk and Sk are fixed for k 6= r, we can define new vertex weights as

φ̃j =
∏
k 6=r

(∑
e∈E

qk(e)Sk(e, j)
)
φj

and the objective function becomes (qr
TSr)(φ̃�ψ), the minimization of which is equivalent

to minimizing the function (4.12) with m = 1 and modified vertex weights.
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Since Algorithm 5 is an ascent algorithm, and because the Markov chains of all the
other robots remain the same during this iteration, f(P) increases if a new Markov chain
for robot r is found. The algorithm stops when none of the robots can increase f(P).

4.7 Online Distributed Algorithm

In the problem and its solutions studied so far, the parameters φj (importance of vertex
j), ψj (probability of event arrival on vertex j), and gj (the distribution of the duration
of events on vertex j) are provided beforehand as an input to the problem. In a practical
setting, these parameters may not remain constant throughout the monitoring mission, or
the parameters may be unknown beforehand. In these cases, the robots may use some
estimation and filtering techniques to update these parameters from the observed data
while patrolling the environment. As the parameters change, the patrolling policy should
change accordingly. In this section we present a distributed online algorithm to solve the
problem.

Given the current patrolling policy P = {P1, . . . , Pm}, where robot r is patrolling the
vertices Vr ⊆ V , let Mr represent the neighboring robots of robot r. The neighboring
robots can be defined based on the communication protocol used by the robots. Our
proposed algorithm is independent of the definition of Mr as long as two non-neighbor
robots do not visit the same vertex on their patrolling paths. One such definition of the
neighbors of robot r is given in [99] where the neighbors of robot r are the robots that are
patrolling at least one vertex that is a neighboring vertex of the vertices in Vr. We assume
that the robot r knows the current Markov chains Pk for their neighboring robots k ∈Mr.

Algorithm 6 DistributedAlgorithmMove(r, k)

1: for i ∈ Vr and j ∈ Vk do
2: Find new vertex sets V̄r and V̄k using Local Move 1, 2 or 3
3: Find new Markov chains P̄r and P̄k on the new vertex sets
4: Evaluate objective function on the set Vr ∪ Vk
5: if objective function improves then
6: Return V̄r, V̄k, P̄r and P̄k
7: end if
8: end for
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4.7.1 Local Moves

In the distributed algorithm, a pair of neighboring robots r and k ∈Mr communicate and
try some local moves to improve the local objective function, i.e., the objective function
defined on the vertices Vr ∪ Vk. The neighboring robots that execute the local move can
be selected in a distributed manner using a token passing algorithm [58], or any other
method that ensures each pair of robots gets a turn at making a local move. One such
randomized algorithm is presented in [34]. The algorithm terminates when no pair of
robots can improve the local objective function. The possible local moves that can be
implemented in Line 2 of Algorithm 6 are given below.

Local Move 1 (Vertex Removal): Robot r removes a vertex i from its subset Vr,
which is added to the subset of the neighboring robot k ∈ Mr, resulting in new subsets
V̄r ← Vr \ {i} and V̄k ← Vk ∪ {i}.

Local Move 2 (Vertex Exchange): Robot r and robot k ∈ Mr swap vertices i ∈ Vr
and j ∈ Vk to get the subsets V̄r ← (Vr − {i}) ∪ {j} and V̄k ← (Vk − {j}) ∪ {i}.

Local Move 3 ( Vertex Sharing): A vertex i ∈ Vr is shared with robot k ∈Mr, so that
both the robots r and k will cover vertex i. The subset Vr will remain the same, whereas
V̄k ← Vk ∪ {i}. This local move can be ignored if we are only interested in partitioned
solutions.

In Line 3 of Algorithm 6, we find new Markov chains on the vertex sets updated using
local moves. These Markov chains can be found using Algorithm 5. However, for quick
evaluation of new Markov chains P̄r and P̄k that are ‘near’ to the current Markov chains
Pr and Pk, we use the method described in the following section.

4.7.2 Adding and Removing Vertices

To evaluate the change in objective function when a vertex is removed or added to a
partition, we need the new Markov chain. As discussed earlier, for a general objective
function, finding an optimal Markov chain for a single robot is an NP-hard problem. Even
for the objective functions where an optimal Markov chain can be found, e.g., a semi-
definite program can find a Markov chain that minimizes the Kemeny constant [78], we
will need to solve for O(n2) optimal chains since we have to evaluate the change in the
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multi-robot objective function each pair i ∈ Vr and j ∈ Vk. Therefore we present a heuristic
method to find new Markov chains after adding or removing a vertex from a partition.

Removing a Vertex: Let x ∈ Vr be the vertex removed from a partition Vr to get
Vr − {x} and the new Markov chain be P̄r. Since x is removed from Vr, the transition
probabilities between x and vertices in Vr − {x} become zero, and we need to update the
transition probabilities P (i, j),∀i, j ∈ Vr − {x}. If the edge (i, j) is in the graph induced
by the vertices in Vr − {x}, then its updated transition probability is given by

P̄r(i, j) = Pr(i, j) + Pr(i, x)
(
Pr(x, j) +

φ(j)∑
v∈N (i) φ(v)

(
∑

w/∈N (i)

Pr(x,w))
)
, (4.13)

where N (i) is the set of outgoing neighbors of i in the graph induced by Vr − {x}.
Notice that a special case of this expression is when we remove a vertex from a deter-

ministic path or tour. In that case all the probabilities are either 1 or 0, and after removing
a vertex x from the tour, the resultant tour is obtained by connecting the vertex preceding
x in the tour to the vertex following x in the tour.

Proposition 4.7.1. The Markov chain transition matrix P̄ obtained using Equation (4.13)
is feasible.

Proof. Since we are only adding a positive term to the old transition probability, P̄r(i, j)
is positive. Now we show that the sum of each row in the transition matrix is one. First
notice that ∑

j∈N (i)

(
Pr(x, j) +

φ(j)∑
v∈N (i) φ(v)

(
∑

w/∈N (i)

Pr(x,w))
)

=
∑
j∈N (i)

Pr(x, j) +

∑
j∈N (i) φ(j)∑
v∈N (i) φ(v)

∑
w/∈N (i)

Pr(x,w)

=
∑
j

Pr(x, j) = 1.

Since, x /∈ N (i),
∑

j∈N (i) Pr(i, j) = 1− Pr(i, x), therefore, using Equation (4.13),∑
j∈N (i)

P̄r(i, j) = 1− Pr(i, x) + Pr(i, x)

= 1.
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Adding a Vertex: For adding a vertex y to a partition Vr, we need to choose the
transition probabilities from all vertices in Vr to y, the transition probabilities from y to
all the vertices in Vr, and to update the transition probabilities for all i, j ∈ Vr. We select
the transition probability of going from a vertex i ∈ Vr to y based on the vertex weight of
y. The higher the φ(y) as compared to the sum of the weights of neighbors of i, the higher
the transition probability of going from i to y. Let the new transition matrix after adding
vertex y to Vr be given by P̄r, then,∑

j∈N (i) P̄r(i, j)∑
j∈N (i) φ(j)

=
P̄r(i, x)

φ(x)
.

Since, we also want
∑

j∈N (i) P̄r(i, j) + P̄r(i, x) = 1, we get

P̄r(i, x) =
φ(x)∑

j∈N (i) φ(j) + φ(x)
.

For the transition probabilities on the outgoing edges from x, we also use the vertex
weights to get

P̄r(x, j) =
φ(j)∑

i∈N (x) φ(i)
.

Now we re-normalize to get the transition probabilities between i, j ∈ Vr,

P̄r(i, j) =
Pr(i, j)

1 + P̄ (i, x)

=
Pr(i, j)(

∑
v∈N (i) φ(v) + φ(x))∑

v∈N (i) φ(v) + 2φ(x)
.

It is easy to see that that P̄r is a feasible transition matrix.

4.8 Objective Functions for Adversarial Events

The objective function f(P) gives the expected reward of successfully observed events
when the events arrive at the vertices according to a given distribution, and the time of
arrival of events is random and independent of the positions of the robots. Such events
can model environmental phenomenon such as forest fires where historical data can be

67



used to estimate the probability of event arriving at a location and the arrival of events is
independent of the patrolling paths. However, in certain applications such as patrolling to
protect locations of an environment against intruders, the events can be adversarial and
they can use the information about the patrolling paths to avoid detection by the patrolling
robots or to minimize the patrolling reward.

In this section, we consider two different cases of adversarial events. In the first case,
the probability of arrival of events at locations is given, but the events can choose the
time to appear in order to avoid being detected. These events model cases where the
event selects the location to appear at beforehand, and then uses the information about
the patrolling policy to decide when to appear. In the second case, the events can also
choose the location to appear at based on the patrolling policy of the robots. We provide
the objective functions that represent the expected value of observed events for both these
cases below.

4.8.1 Adversarial Events with Given Probability of Arrival

First we give the objective function for the events that appear at location i according a
known probability ψi and choose the time to appear in order to maximize their chances
of remaining undetected. Using Equation (4.2), the expected reward for such events using
patrolling policy P is given by

f2(P) =
n∑
j=1

φjP [event at j]P [observed at j]

=
n∑
j=1

φjψjP [observed at j] .

(4.14)

To calculate the probability of an event arriving at j not being observed by the robots,
we first note that in order to maximize its chances of remaining undetected by robot r, the
event will appear as soon as robot r commits to traversing an edge e. Hence the probability
of detecting such an event at vertex j given event duration L is given by

S̄r(e, j|L) =

{∑L−`e
t=1 Ft(i, j), `e < L

0, otherwise.

Using this probability, S(e, j) can be calculated by using Lemma 4.3.2.
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Also note that in this case we do not need the probability of robot r traversing edge
e when the event arrives because in the worst case scenario for the robot, the event will
arrive when the robot is on the edge which maximizes the probability of missing the event,
i.e., Sr(e, j). Hence we get

P [not observed at j by r] = max
e
Sr(e, j). (4.15)

Since the Markov chains of the robots are independent, we get

f2(P) =
n∑
j=1

φjψj

(
1−

m∏
r=1

(
max
e
Sr(e, j)

))
. (4.16)

An analysis similar to Proposition 4.4.4 shows that this objective function is also sub-
modular.

4.8.2 Adversarial Events that Select Vertex

Now we consider events that can also decide where to appear in order to maximize the
chances of avoiding detection by the robots. In this scenario, the probabilities of event
arrival ψ are not given. Using Equation (4.15) and the fact that the robots are independent,
the probability of the robots not detecting an event that arrives at the worst possible time
at vertex j is given by,

P [not observed at j] =
m∏
r=1

max
e
Sr(e, j). (4.17)

Now, in the worst case the event will appear at the vertex that minimizes the patrolling
reward:

f3(P) = min
j

[
φj

(
1−

m∏
r=1

max
e
Sr(e, j)

)]
. (4.18)

Observation 4.8.1. The objective function f3(P) is not submodular.

Proof. Consider a simple example with three vertices a, b and c. All the vertices have same
reward equal to 1. Now consider three Markov chains Pa, Pb and Pc. Each Markov chain
Px just stays at vertex x and the robot does not move. Then adding the Markov chain
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Pc to a larger set of Markov chains {Pa, Pb} increases the expected reward from 0 to 1 as
all three vertices will be covered. Adding Pc to the smaller set {Pa} keeps the expected
reward at 0 because the event will always appear at vertex b. Hence, adding a new element
to a larger set offers more marginal reward and the function is not submodular.

This objective function can also be interpreted as the worst case reward even if the
events are not adversarial. The algorithms presented in Sections 4.6 and 4.7 can be used
to find patrolling policies for the adversarial objective functions as well.

4.9 Simulations

In this section we evaluate the performance of the algorithms presented in this chapter.

4.9.1 Problem Instance

The problem instance was constructed by taking a planar environment with obstacles, and
picking random points as vertices in the free environment. To create edges each vertex
was connected to its 4 nearest neighbors and the euclidean distance was rounded off to get
integer edge weights on the edges. The product of the probability of arrival and vertex
weight, i.e., φiψi, was drawn randomly from a uniform distribution between 1 and 10. The
resulting instance with 20 vertices is shown in Figure 4.4. The duration of events was
distributed between 0 and a random number chosen from a uniform distribution between
10 and 20 for each vertex. The experiments were performed for three robots, i.e., m = 3.

4.9.2 Centralized Algorithm

The performance of the centralized algorithm presented in Section 4.6 is shown in Fig-
ure 4.5. Each color in the figure represents a different robot, e.g., green represents the
direct search perfromed by robot 1. The graph shows the value of the objective function
as the robots perform the direct search from Algorithm 5 iteratively.

4.9.3 Distributed Algorithm

For the distributed algorithm, we considered the objective function in Equation (4.18),
i.e., the events that can choose the time to appear adversarially. We did not consider local
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Figure 4.4: The graph with 20 vertices used for simulations. The size of the vertices shows
the product of vertex weight and arrival probability.
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Figure 4.5: The objective value as a percentage of the total reward available in the en-
vironment is shown as a function of the iterations of the direct search method performed
by each robot. Different colors show the progress of the direct search method for different
robots.
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Figure 4.6: The final partitions returned by the distributed algorithm.

move 3 and hence only partitioned solutions were considered. The partitions returned by
the algorithm are shown in Figure 4.6. The vertices of one color represent the partition of
a robot. Note that the robots have a transition matrix defined on each of these partitions.
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Chapter 5

Adversarial Events with Limited
Observation Time

The problem of patrolling locations of importance to protect against possible attacks by an
adversary arises in several security applications including ports, airports and environmental
resources. An adversary can observe the patrolling path over time and use its knowledge
about the path to its advantage. In Chapter 4, we discuss the scenario where the adversary
has perfect knowledge of the patrolling paths. Unless the patrolling strategy is leaked to
the adversary, the adversary will have to observe the patroller long enough to derive the
strategy [12]. However, this might not always be true in practice [53], as the adversary
might not have enough time to perfectly learn the patrolling strategy. In this chapter we
focus on the scenarios where the adversary has a limited time to observe the patrolling
path to infer the patrolling strategy. It then decides to attack or renege based on that
learned strategy. Designing a patrolling strategy that takes longer to learn will increase
the chances of the adversary reneging. However, the strategy should also minimize the
chances of a successful attack in case the adversary attacks. We study the single robot
version of the problem in this chapter. We will refer to the adversary as the intruder or
attacker throughout this chapter.

The organization and contributions of this chapter are as follows. We start by reviewing
the literature related to the problem in Section 5.1. We present a game model for the sce-
nario where the adversary has a limited time to learn the patroller’s strategy in Section 5.2.
We devise a strategy for a rational adversary and characterize the expected payoffs for the
players in Section 5.3. In Section 5.4 we set up the problem as a linearly constrained non-
convex, non-smooth optimization problem and show that the objective function is locally
Lipschitz so that direct search methods guarantee convergence to a Clarke Stationary point.
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We also show that finding a k factor approximation to the optimal patrolling strategy is
NP-hard. Finally we share the experimental results in Section 5.5.

5.1 Related Work

There is a substantial amount of work related to design of patrolling policies in robotics,
control, and game theory. Random patrolling paths are advocated in [89] by showing
that it is hard to find deterministic strategies that satisfy the surveillance criterion of
visiting vertices proportional to their importance. Stochastic surveillance is considered in
[38] so that the intruders cannot easily exploit the predictability of a deterministic path.
Intelligent intruders in a perimeter patrol problem are considered in [4]. Different ways
of randomizing paths are used in [85] to empirically show that randomizing the paths can
decrease the probability of successful intrusions. In [61] a strategic attacker is considered
that plays two player zero sum game with the patroller.

As done in Chapter 4, we will restrict the search of the optimal patrolling policy to
the set of Markov chains in this chapter. Markov chains are often used to model random
paths on a graph [89, 38, 78]. For patrolling, a common objective is to minimize mean first
passage time of a Markov chain [78]. Different intruder models are considered in [10] to
find Markov chains for patrolling in the presence of such intruders. However, these works
do not consider an intruder that can observe and learn the patrolling paths.

In game theory, security games are usually posed as Stackelberg games [76, 7, 49, 94, 17].
In [5], a finite set of Markov chains is used to formulate the patrolling problem as a
Bayesian Stackelberg Game where the patroller first picks a mixed optimal strategy and
the adversary then picks the region to attack to maximize its payoff. In [93] the patrolling
problem is studied on the graphs where traversing edges incurs different costs but the same
amount of time and the attacker prefers to attack as soon as possible. The problem setting
considered by [12] is closest to ours, however we do not assume that the attacker knows
the patrolling strategy beforehand, and it has a limited time to learn that strategy.

Limited observation time for the adversary leads to it having uncertainty about its own
payoffs. In [52] security games where the defender is uncertain about the attacker’s payoff
is considered. In [53] a player, dubbed ‘Nature’, decides whether the follower will observe
the leader’s actions or not and the leader does not know Nature’s choice. We will also
use Nature in our game model to pick the time allowed for observation. In [9] a fixed
amount of resources are distributed among some locations at each step of the game and
the attacker observes the defender for a limited time before attacking. The attacker’s belief
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about the defender’s strategy is represented as a Dirichlet distribution, and the attacker
updates this belief using Bayes’ rule based on its observations. The defender’s objective
function depends on all possible observation sequences made by the attacker. In [8] the
authors update the model to consider observation costs for the attacker, and the optimal
observation time for the attacker is evaluated. These works, however, consider placing
static resources on a set of locations rather than the problem of a patroller traversing a
graph.

5.2 Problem Definition

In this chapter we consider a single robot problem with settings similar to the previous
chapter. The patrolling scenario involves a patrolling agent or robot patrolling along
the edges of a directed weighted graph G = (V,E) where the vertices V = {1, 2, ..., n}
represent the locations to be monitored. The integer travel times on edges of the graph
are represented by `e for e ∈ E. Each vertex i of the graph has a value φi ≥ 0 that
represents the value of that vertex. An intruder waits outside the environment observing
the patrolling agent’s path. It can attack any vertex of the graph and stay there for L time
steps to complete the attack. We use the uniform length of attack (or event duration) L
for simplicity of presentation. The event duration can be different for each vertex as in
Chapter 4 and the results will hold with a slight change in payoff equations. Moroever, in
this chapter we assume for simplicity that the intruder can only appear at a vertex when
the patrolling robot leaves a vertex. The patrolling agent cannot observe the intruder
unless it visits a vertex i while it is being attacked, in which case the intruder is captured
and incurs a penalty ψ whereas the patroller receives a reward ρ. Otherwise, the attack is
successful and the intruder receives the reward φi.

This scenario can be modeled as a patrolling game with two players, the robot and the
intruder. Patrolling games are usually modeled as Stackelberg games where the defender
chooses a strategy first, and the intruder being the follower knows the patroller’s strategy
and plays the best response. We consider the case where the intruder does not know the
patrolling strategy beforehand. It has a fixed time budget to observe the patrolling path
and it uses those observations to learn the patrolling agent’s strategy. It then decides
whether it will attack the environment or leave without attacking.
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5.2.1 Game Model

We now model the above mentioned patrolling scenario as a multi-stage game, building
on the game in [12] to include the learning aspect of the intruder. The game involves
two players, the patrolling robot (defender) and the intruder (attacker). The players act
simultaneously at each stage of the game. The attacker can observe the actions of the
defender whereas the defender cannot observe the actions of the attacker. We also employ
a move by Nature to formally model the time allowed for the attacker to learn the defender’s
strategy. Nature selects a time T that denotes the maximum allowed time for the intruder
before it decides whether it will attack or leave without attacking. The attacker knows the
time T , however, the defender only knows the probability distribution q : t ∈ Z+ → [0, 1]
representing the probability of Nature selecting time t. The game starts at time zero.

Actions: The defender can go to a neighboring vertex of its current vertex i by taking
the action move(j) where j ∈ N (i). Let H represent the set of all possible histories of
vertices visited by the patroller, i.e. h ∈ H is a sequence of vertices. The available actions
for the attacker are obs, renege or attack-when(j, h) for j ∈ V and h ∈ H. Action obs
corresponds to observing the current action of the defender for the sake of learning its
strategy. Note that obs cannot be played after time T has elapsed from the start of the
game. Also note that time steps are not analogous to stages of the game since the graph is
weighted. Traversal of an edge by the defender can take multiple time steps but spans one
stage of the game since both the attacker and defender play one action during that time.
Playing attack-when(j, h) means that the attacker will wait until the defender has followed
history h and then start the attack at vertex j. The attacker cannot take any other action
after playing attack-when(j, h) and the game will conclude either in a successful attack or
the capture of the intruder. Playing renege means that the attacker will leave without
attacking the environment.

Outcomes: In case the intruder plays renege, the outcome of the game will be no-attack.
If the attacker plays attack-when(j, h), it can either result in successful-attack-j if the de-
fender does not visit j while it was being attacked or capture otherwise.

Payoffs: Both the player’s payoffs are given in the following table. The attacker’s

outcome attacker’s payoff defender’s payoff

no-attack 0 0
successful-attack-j φj −φj

capture −ψ ρ

payoff is the value gained from attacking or the penalty incurred if it is captured. Setting
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ρ = 0 represents a defender that does not give priority to capture over no-attack and only
wants to stop a successful attack.

Strategies: The defender’s strategy σd(h) gives the probability with which the defender
will move to a vertex that is a neighbor of the last visited vertex in h ∈ H. Since the
defender cannot observe the actions of the attacker, its strategy is not a function of the
attacker’s actions. The attacker’s strategy is a function from the patrolling history to the
possible actions obs, attack-when(j, h) or renege.

Remark 5.2.1. We assume that T is much greater than the time the attacker waits to
attack after deciding where to attack. This models scenarios where the attacker can commit
significant resources/time to planning an attack relative to the time scale on which the
defender traverses the graph. In this case the information gained while waiting will be
negligible compared to the information gained while learning.

5.3 Solution Approach

For the scenario where the attacker has perfect knowledge of defender’s strategy before-
hand, the defender’s strategy will be Markovian with some finite memory length as dis-
cussed in Chapter 4. We restrict defender’s strategy to Markov chains with memory one
in this chapter as well. Moreover, since the defender receives no information about the
attacker during the game unless the attacker is captured (at which point the game ends),
we only consider stationary Markov chains. Thus, we represent the defender’s strategy
as the transition matrix P = [pij] of a Markov chain, where pij gives the probability of
the patrolling agent going to vertex j when it is in i. In the rest of the chapter, optimal
strategy for the defender will refer to the optimal Markov chain.

5.3.1 Attacker’s Strategy

Assuming that the players are rational, the following proposition simplifies the strategy of
the attacker.

Proposition 5.3.1. Restricting the defender’s strategy to be a time homogeneous Markov
chain, an optimal strategy for the attacker is to play the action obs until time T and then
to either play attack-when(j, i) for some i, j ∈ V , or renege.

Proof. Actions attack-when(j, h1) and attack-when(j, h2) for h1, h2 ∈ H such that the last
vertex in h1 and h2 is the same vertex i, will give the attacker the same expected payoff,
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since the defender’s strategy only depends on the current vertex occupied by the defender.
Given an observation sequence ot of duration t ≤ T , consider the attacker’s optimal action
given by a(ot). Suppose that the expected payoff for the attacker is maximized for some
ot∗ where t∗ < T . Then the attacker can still receive the same payoff by playing the action
a(o∗t ) after observing oT because there is no cost to play obs and the expected payoff for
action attack-when(j, i) is independent of the time the action is played.

Given that the defender is using the transition matrix P as its strategy, the attacker’s
expected payoff for the action attack-when(j, i) can be calculated using the probability of
robot visiting vertex j from vertex i in exactly t time steps, i.e., Ft(i, j) from Equation (4.4).
The probability of an action attack-when(j, i) being successful can then be calculated using
Lemma 4.3.1 as S(i, j) = 1−

∑L
t=1 Ft(i, j). The attacker’s expected payoff for this action

will be

uij = φjS(i, j)− ψ(1− S(i, j)), (5.1)

whereas the robot’s payoff will be

xij = −φjS(i, j) + ρ(1− S(i, j)). (5.2)

Note that the players’ payoffs xij and uij are functions of the patrolling Markov chain
P . The attacker, not knowing P , cannot calculate its expected payoffs. Therefore, the
attacker uses its belief on the patrolling Markov chain to calculate its payoff. It uses the
observations to learn the defender’s strategy and uses the learned strategy to estimate its
expected payoffs. Let P̂ denote the estimated Markov chain transition matrix after time T
with the covariance Cov(P̂ ). If uij was a linear function of P , then the attacker could use ûij
(obtained by using p̂ij instead of pij in above expressions) to estimate the expected payoff.
Since, uij is not linear, maximizing ûij may not be optimal and the attacker will need to
consider higher moments of the estimate. The defender needs the optimal attacker response
to optimize its own strategy. Since the Fisher information matrix [67] can easily provide
Cov(P̂ ), we approximate the attacker’s response by only considering Cov(P̂ ) and ignore
the higher moments. We leave the true optimization for a future work. The uncertainty
in the estimated strategy can then be propagated to evaluate var(ûij). Note that Cov(P̂ )
and var(ûij) are functions of T . Given this data, the problem is to decide whether to
play renege or attack-when(j, i) for some i, j. The efficient frontier for this risk-reward
trade-off can be represented as a special case of Markowitz portfolio theory [64] where the
attacker has to pick only one action instead of a portfolio. For a parameter Λ ≥ 0, let
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Figure 5.1: The ‘hard to attack’ (left) and ‘hard to learn and attack’ (right) strategies in
an environment with obstacles. The area of a vertex represents its reward. The thickness
of an edge represents the probability of traversing that edge. Notice that the traversals in
the strategy on the right are less deterministic as compared to that on the left.

(i∗, j∗) = arg max(i,j){ûij − Λvar(ûij)}. Then the attacker will play

attack-when(j∗, i∗) if ûi∗j∗ − Λvar(ûi∗j∗) > 0

renege otherwise.
(5.3)

Here Λ models how risk averse the attacker is, e.g. a large value of Λ models a risk
averse intruder who will attack a vertex only if it is confident enough in its estimate of the
expected payoff. We will assume that the defender does not know the value of Λ but has
a probability distribution g(λ) over the possible values of Λ.

5.3.2 Defender’s Strategy

The defender’s strategy should be hard to attack (minimize the worst case attacker’s payoff)
as well as hard to learn (make attackers renege due to high payoff variance). The following
proposition formalizes the defender’s payoff to design such a strategy.

Proposition 5.3.2. If the defender’s strategy is given by P and the attacker’s strategy is
defined by (5.3) and Proposition 5.3.1, then the expected payoff for the defender is given
by (

1−
∑
t

∫ ∞
λ=maxi,j

ûij
var(ûij)

g(λ)dλq(t)

)
xi∗j∗ . (5.4)
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Proof. Using (5.3), the attacker will renege if T and Λ are drawn such that maxi,j{ûij −
Λvar(ûij)} ≤ 0. This implies Λ ≥ ûij/var(ûij), ∀i, j and hence, the part inside the paren-
theses in (5.4) is the probability that the attacker will play attack-when(j∗, i∗) instead of
renege. The defender’s payoff is zero in case of no attack and, using Equation (5.2), xi∗j∗
if the attacker plays attack-when(j∗, i∗).

Figure 5.1 gives an example of a hard to attack strategy that maximizes xĩ,j̃ where ĩ, j̃ =
arg maxi,j{uij} versus a hard to learn and attack strategy that maximizes an approximation
of (5.4). Ideally, the defender should find P that maximizes its expected payoff (5.4), but
the values of ûij, var(ûij) and xi∗j∗ depend on a realized path that the attacker observed
to calculate these quantities. Hence, maximizing the said expression as it is, is not possible
for the defender. We deal with this issue as follows.

Lower Bound on Expected Payoff: Although the defender does not know i∗, j∗, it
can lower bound its expected payoff using mini,j{xij} instead of xi∗j∗ in Expression (5.4).
This is equivalent to being prepared for the worst case scenario in case the intruder attacks.
Note that if learning was not involved, and intruder knew the patrolling strategy P , then
the attacker would maximize its own payoff resulting in the defender maximizing xĩ,j̃ where
ĩ, j̃ = arg maxi,j{uij}.

Attacker’s Estimate: The attacker’s estimate of the expected payoff ûij is not known
to the defender. However, since it knows P , it can calculate the actual value of the
attacker’s expected payoff uij. If the attacker is using a consistent estimator, the estimate
ûij converges to uij.

Variance in Estimate: Assuming the attacker is using an efficient estimator, the
covariance in the attacker’s estimate of P is given by the inverse of the Fisher information
matrix of the Markov chain represented by IN(P ), where N is the number of transitions
observed. The average time taken during one transition of the Markov chain on a weighted
graph is given by π(P �L)e where e is a column of ones, L is the matrix of edge weights,
and P � L denotes the element wise product of P and L [78]. Hence, for large N and T ,

N ≈ T

π(P � L)e
. (5.5)

Therefore, theoretically, the defender can propagate the covariance using the expressions
from [14] to find var(ûij) as a function of T . However, the expression for uij includes
iterative multiplications and summations of correlated variables and in practice this prop-
agation is computationally expensive. Since the defender has access to P , it can use Monte
Carlo simulations to estimate these variances. We will denote the variances calculated by
the defender by var(uij) although uij is not a random variable for the defender.
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Now, we are in a position to write the optimization problem to be solved by the defender.
Let

f(P ) = −

(
1−

∑
t

∫ ∞
λ=maxi,j

uij
var(uij)

g(λ)dλq(t)

)
min
i,j

xij, (5.6)

then the optimization problem can be written as follows.

minimize: f(P )

subject to:
∑
j

pij = 1, ∀i

pij ≥ 0, ∀i, j

pij = 0, if (i, j) /∈ E

P has one communicating class. ∀r

(5.7)

Note that we will relax the last constraint in our optimization and instead we verify that
the final solution satisfies this constraint. This works well in practice because a Markov
chain with more than one communicating class means that the chain cannot go from a
state to all other states making S(i, j) = 1 for all j for some value of i.

5.4 Computing the Patrolling Strategy

The function f(P ) is a non-convex function in general. This can be easily observed by
calculating the Hessian of sij for some i, j. Moreover, the function is also non-smooth in
general because it picks the minimum element among xij. We now characterize the hardness
of the problem using a reduction very similar to the one used to prove the hardness of the
problem discussed in Chapter 4.

Proposition 5.4.1. Unless P = NP, for any k ≥ 1, there does not exist a polynomial
time k-factor approximation algorithm for Problem (5.7).

Proof. We use a reduction from the instance G = (V,E) of the Hamiltonian cycle to an
instance of our problem with zero optimal value. Pass the graph G to the approximation
version of Problem (5.7) with `ij = 1, ∀{i, j} ∈ E, φ = 1, ψ = ρ = 0 and l = |V |. Choose
any distributions for g(λ) and q(t). A Hamiltonian cycle in G can be represented using a
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transition matrix P and it will ensure that the payoff of the attacker and the defender is
zero which is optimal. If no Hamiltonian cycle exists in G, the defender cannot visit all
the vertices within l time and the expected payoff for the defender will not be zero.

5.4.1 Numerical Optimization

We will first show that our objective function is locally Lipschitz under mild assumptions
on g(λ) and q(t).

Proposition 5.4.2. If the variance var(uij) is calculated by propagating the inverse of
IN(P ), and if the distributions g(λ) and q(t) for t ∈ [Tmin, Tmax] are bounded, then the
objective function f(P ) is locally Lipschitz at each point P .

Proof. The functions xij and uij are continuously differentiable with respect to pxy,∀x, y,
and hence, minxij is locally Lipschitz. The product of two bounded and locally Lipschitz
functions is locally Lipschitz. The part inside the parentheses in Equation (5.6) is a proba-
bility and hence is bounded, and xij is bounded if φ and ρ are bounded. So proving that the
probability of the attacker not reneging is locally Lipschitz will complete the proof. Using
the definition of Fisher information matrix for a Markov chain along with the fact that πi
is a differentiable function of P [86], uij/var(ûij) is differentiable1 and maxuij/var(ûij)

is Lipschitz. It can be easily shown that
∫ c
y(x)

g(λ)dλ and
∑Tmax

t=Tmin
z(x, t)q(t) are locally

Lipschitz for bounded g(λ) and q(t) if y(x) and z(x, t) are locally Lipschitz.

Given that the objective function is non-convex, non-smooth and locally Lipschitz,
and the constraint set is convex, Mesh Adaptive Direct Search method (MADS) can be
used to find a Clarke Stationary point [11]. Thus, we can apply standard gradient-free
optimization techniques [72] to compute a patrolling strategy. Therefore we use the direct
search method presented in Algorithm 5 to find a patrolling Markov chain.

5.5 Simulations

In this section we demonstrate that when intruders have limited time to learn, solving for
the patrolling strategies that are hard to learn along with being hard to attack can be more
useful than optimizing for the worst case.

1If var(ûij) = 0 for uij > 0, f(P ) = −minxij is locally Lipschitz.
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Strategy comparison: We conducted several experiments with n vertices placed in
a square plane including obstacles. Each vertex was connected to a random number of
its nearest neighbors and the euclidean distances between the vertices were rounded off
to get integer edge weights. This construction of the graph is similar to the Probabilistic
Roadmaps that are used for robotic path planning. The problem data for two of these
instances is as follows.

Instance 1 Instance 2
n = 7 n = 10

L = 8 L = 10

ψ = ρ = 5 ψ = ρ = 20

φ = [10, 5, 10, 5, 10, 10, 5] φi ∼ U [20, 50]

T ∼ U [90, 110] T ∼ U [200, 1000]

Λ ∼ U [0, 10] Λ ∼ U [0, 10]

We compare attacker’s average payoffs vlim and v∞ for the ‘hard to learn and attack’
strategy Plim (obtained by minimizing f(P )) and ‘hard to attack’ strategy P∞ (obtained
by minimizing −xĩ,j̃ where ĩ, j̃ = arg maxi,j{uij}). Since ρ = ψ, it is a zero sum game and
the defender’s payoff is symmetric. These average payoffs are calculated by simulating 100
attacks for each of these strategies and then taking the average of the payoff acquired by
each of these attacks. The parameters T and Λ for these attackers were drawn randomly
from their respective distributions.

Figure 5.1 shows the graph for Instance 1 along with both the strategies. For Plim, 67%
attackers renege and vlim = 1.96, as compared to 1% reneging attackers and v∞ = 3.88 for
P∞. If the intruder had perfect knowledge, the defender payoffs would be v∞ = 4.25 and
vlim = 6.79. It is to be expected since the optimization for P∞ assumes the model in which
the attackers will not renege due to lack of knowledge about the patrolling policy.

For Instance 2, we classify the attackers into different types based on the drawn pa-
rameters and show the average payoffs in Table 5.1. For example, the attackers with Λ
between 6.6 and 10 are risk averse attackers. Similarly the attackers with t from 200 to 466
are given less time to learn. Note that the strategy was calculated using T ∼ U [200, 1000]
and Λ ∼ U [0, 10], and the attackers were classified during simulation to show the effect of
T and Λ on attacker’s payoffs.

For the Plim patrolling strategy, 33 out of 100 attackers reneged. Some entries in the
table for this strategy are zero because all of the attackers of that category reneged when
this patrolling strategy was used. Note that for P∞, corresponding entries are non-zero,
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Table 5.1: The comparison of the attacker payoffs for the patrolling strategies. The payoffs
are rounded to the nearest integer.

Λ vlim v∞ vlim v∞ vlim v∞

6.6− 10 0 28 0 33 38 32
3.3− 6.6 0 31 37 17 37 27
0− 3.3 32 21 37 29 37 46

200− 466 467− 733 734− 1000 T

meaning that attackers decided to attack. In fact, none of the 100 attackers reneged for
P∞. The fraction of reneging attackers agrees with our expression of probability of reneging
used in (5.6). It can also be observed from the table that the risk averse attackers that are
given less time to learn are more likely to renege. The average attacker payoff for Plim is 25
whereas it is 29 for P∞. Hence, using the strategy for the attackers with limited learning
time resulted in a 13.7% decrease of the attacker payoff. Also note that the starting point
of the optimizations, which was a randomly generated Markov chain resulted in an average
attacker payoff of 36.

Algorithm comparison: To evaluate the performance of Algorithm 5, we compare
it with the MATLAB patternsearch function that is an adaptive mesh based direct search
method [72]. For this experiment random graphs of different sizes were generated as de-
scribed above in an obstacle free environment and the problem variables were generated
as follows.

L = 3/4(MST length of graph)

φ ∼ U [20, 50]

ψ = ρ = 20

For the purpose of this comparison, −xĩ,j̃ was minimized, i.e., it was assumed that the
attacker already knows defender’s patrolling strategy. The algorithms were timed out at
10 minutes. The attacker’s expected payoff −xĩ,j̃ for different sizes of the graph is reported
in Table 5.2, which shows that Algorithm 5 performs better in terms of final objective
value and runtime.
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Table 5.2: Comparison of MATLAB’s patternsearch function with Algorithm 5.

patternsearch Algorithm 5
n −xĩ,j̃ runtime −xĩ,j̃ runtime

10 44.7 108 32.1 26
30 46.4 600 38.9 600
50 47.8 600 44.5 600
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Chapter 6

Conclusions and Future Work

In this thesis we studied four related persistent monitoring problems. We started with
the problem of finding the minimum number of robots to satisfy the latency constraints
on the vertices of a graph. The latency constraints represented the maximum amount of
time the robots were allowed to stay away from a vertex. For this problem, we gave an
O(log ρ) approximation algorithm, where ρ is the ratio of the maximum and minimum
latency constraints. We then proposed three different heuristic algorithms to solve the
problem. Our simulation results showed that the algorithm that visits more vertices on
its way to the greedily picked vertex performed better in terms of the number of robots
required. The results also showed that although the Orienteering based heuristic algorithm
had a larger run time, it performed much better than the approximation algorithm in terms
of the objective value.

The second problem we considered was very much related to the first problem, where
instead of finding the minimum number of robots to satisfy latency constraints, our objec-
tive was to minimize the maximum weighted latency in the graph for a given number of
robots. For this problem we gave an algorithm which has a performance guarantee as a
function of the optimal cost of the single robot instance of the problem. We then presented
some results that relate this problem to the problem of satisfying latency constraints.

Next, we considered the problem of finding patrolling paths for a team of robots when
the durations of the events were not necessarily fixed and the objective was to maximize
the expected reward of observing the events. For this problem we motivated randomized
patrolling strategies, and evaluated the expected reward as a function of the Markov chain
transition matrices used by the robots for patrolling. We presented some properties of the
problem, one of which was submodularity and we leveraged this submodularity to present
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an approximation algorithm for the case where the event durations were fixed. Moreover,
we also presented a centralized and a distributed online algorithm to solve the problem. We
also considered adversarial events and characterized the objective value for those events.

The last problem we studied considered a patrolling game where the attacker learns
the patrolling strategy for a limited amount of time before deciding whether to attack or
renege. We showed that in the cases where the attackers have limited time, designing
strategies that are hard to learn along with being hard to attack can be useful.

In the following section we discuss some possible directions for future work.

6.1 Future Work

We will discuss the future work directions for each of the problems studied in this thesis
separately.

6.1.1 Persistent Monitoring With Latency Constraints

The heuristic algorithms presented in the thesis work for partitioned solutions. An inter-
esting direction for future work would be to use Team Orienteering problem in order to
construct solutions where the robots can share the vertices. Figuring out the time budget
for each of the different walks, and their target vertices might be done using a greedy
approach as well, where each robot looks at the combination of the distance to a vertex
and the time to expiry for that vertex and selects a target vertex accordingly.

Another possible direction is to include the fuel constraints for each of the robots, where
each robot needs to refuel after travelling for some fixed amount of time from designated
refuelling depots. Adding the refuelling constraints will be very useful in practical appli-
cations for persistent monitoring, since in such tasks the robots spend extended amounts
of time in the field and need to be refuelled repeatedly. The fuel constraint can be easily
added in the single robot problem to satisfy latency constraints, where the fueling depot
has a latency constraint equal to the fuel capacity of the robot. However, for the case of
multiple robots, that latency constraint could be satisfied by any of the robots, and all the
robots would not be necessarily refuelled. A possible solution to this problem would be
to extend the Orienteering based heuristic algorithm, where at each step the robot keeps
track of the nearest refuelling depot and its current fuel level.

For the problem of minimizing the maximum weighted latency, we have presented an
algorithm in this thesis that returns a solution with the cost bounded above by a factor
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of the optimal cost of the single robot problem instance. Finding a relation between the
optimal cost for a single robot solution and the optimal cost of multi-robot solution will
be helpful in establishing an approximation ratio for the proposed algorithm.

6.1.2 Multi-Robot Stochastic Patrolling

Incorporating the refuelling constraints for the multi-robot stochastic patrolling problem
is also an interesting direction for future work. We will have to deviate from the model of
using Markov chains to include the refuelling constraints, because the refuelling constraints
are hard constraints, and need to be met, whereas using a random path will result in a
probability of the robot being refuelled in proper time. Since we want this probability
to be one, we will have to look at a combination of deterministic and random patrolling
paths. Assuming that refuelling is not done as frequently as visiting the other vertices of
the graph, the robot can switch between random patrolling paths for detecting adversarial
events, and deterministic paths when it requires to be refuelled.

6.1.3 Adversarial Events with Limited Observation Time

In [9] the authors consider an attacker that observes the defender for a limited time before
attacking. Although they consider assigning resources to static locations, theoretically
their idea of using a belief for intruders can be extended to the patrolling problem. For our
problem, the defender is using a Markov chain to patrol and the attacker observes the path
of the robot to learn the patrolling strategy. The transition matrix of a Markov chain on a
graph with n vertices can be interpreted as n independent Multinomial distributions. The
Dirichlet distribution is the conjugate prior to the Multinomial distribution, i,e, if the prior
belief of the attacker on a row of the Markov chain is represented as a Dirichlet distribution,
the posterior belief after applying the Bayes’ law will also be a Dirichlet distribution. Hence,
we can assume that the intruder’s belief about each of the n rows of the patrolling Markov
chain transition matrix is a Dirichlet distribution. After the intruder observes a transition
(i, j), it will update its belief for the i-th Multinomial distribution. Since, all the rows
of the Markov chain transition matrix are independent, the overall belief of the intruder
is the product of individual Dirichlet distributions. From the intruder’s perspective, after
observing the patroller for T time, the probability that the defender is using Markov chain
P̃ is represented as P

[
Defender is using P̃ |T

]
. Then the expected payoff for the intruder
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playing action attack-when(j, i) is given by∫
P̃∈C

uij(P̃ )P
[
Defender is using P̃ |T

]
dP̃

where uij is given in Equation 5.1 and written as uij(P̃ ) to emphasize that uij is a
function of the Markov chain transition matrix. The integral is taken over the whole set
of feasible Markov chains.

In [9], the payoff is a linear function of the variables that need to be estimated. There-
fore, the expected reward can be calculated as the reward obtained by using the mean of the
belief. In our problem, uij is a recursive, non-linear, non-convex function of the estimated
Markov chain. Hence, calculating this integral is computationally very expensive, and that
is why we used Markowitz portfolio theory in Chapter 5 to estimate the behavior of the
intruder. A future work direction is to find a method to evaluate the above mentioned
integral efficiently.

Another possible direction for future work is to consider a cost for observations instead
of fixed learning time T and find the optimal time to learn the patroller’s strategy from
the intruder’s perspective.
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