
Cyclic-routing of Unmanned Aerial Vehicles

DRUCKER, N, HO, H M <http://orcid.org/0000-0003-0387-4857>,
OUAKNINE, J, PENN, M and STRICHMAN, O

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25240/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DRUCKER, N, HO, H M, OUAKNINE, J, PENN, M and STRICHMAN, O (2019).
Cyclic-routing of Unmanned Aerial Vehicles. Journal of Computer and System
Sciences, 103, 18-45.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/228130862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Cyclic-Routing of Unmanned Aerial VehiclesI

Nir Druckera, Hsi-Ming Hob, Joël Ouakninec,b, Michal Penna, Ofer Strichmana

aIndustrial Engineering and Management, Technion, Haifa, Israel
bDepartment of Computer Science, University of Oxford, Oxford, UK

cMax Planck Institute for Software Systems, Saarland Informatics Campus, Germany

Abstract

Various missions carried out by Unmanned Aerial Vehicles (UAVs) are concerned with permanent monitoring
of a predefined set of ground targets under relative deadline constraints, i.e., the targets have to be revisited
‘indefinitely’ and there is an upper bound on the time between two consecutive successful scans of each target.
A solution to the problem is a set of routes—one for each UAV—that jointly satisfy these constraints. Our
goal is to find a solution with the least number of UAVs. We show that the decision version of the problem
(given k, is there a solution with k UAVs?) is PSPACE-complete. On the practical side, we propose a
portfolio approach that combines the strengths of constraint solving and model checking. We present an
empirical evaluation of the different solution methods on several hundred randomly generated instances.

Keywords:
motion planning, computational complexity, model checking

1. Introduction

Unmanned Aerial Vehicles (UAVs) have many uses, ranging from civilian to military operations. Like
other autonomous systems, they are particularly well-suited to ‘dull, dirty and/or dangerous’ missions [2].
A common scenario in such missions is that a set of targets have to be visited (or, more aptly, scanned)
by a limited number of UAVs. This has given rise to a large body of research on route planning for UAVs.
Depending on the specific application at hand, routes of UAVs may be subject to various complex constraints,
e.g., related to kinematics or fuel (see, among others, [3, 4, 5, 6]). In this work, we focus primarily on timing
constraints and consider the Cyclic-Routing UAV problem (cr-uav) [7]: a recurrent UAV route-planning
problem in which each target must be scanned not only once but repeatedly, i.e., at intervals of prescribed
maximal duration (relative deadline). With the minimal flight time between each (ordered) pair of the
targets and the minimal scanning time needed for each target also given as inputs, a solution is a set of
(infinite) routes that together satisfy these timing constraints. The goal is to find a solution with the least
possible number of UAVs. As an example, consider a number of sensitive areas that have to be monitored
permanently to prevent intrusion. An obvious solution is to simply deploy one UAV to stay at each location.
To save costs, however, one seeks to minimise the number of UAVs used while ensuring that the time between
any two consecutive successful scans of each target, plus the reaction time of security forces, is not longer
than the time it takes for a successful intrusion. Similar applications include inspection of bridges and dams
for damage, surveillance of oil and gas pipelines for spillage, monitoring of forests for fire, etc.

IPart of this work appeared in the Proceedings of the 18th International Conference on Foundations of Software Science
and Computation Structures (2015), and in the Proceedings of the 13th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (2016). Joël Ouaknine was supported by ERC
grant AVS-ISS (648701), and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Projektnummer
389792660 — TRR 248.

Email addresses: nirdru@gmail.com (Nir Drucker), hsimho@gmail.com (Hsi-Ming Ho), joel@mpi-sws.org
(Joël Ouaknine), mpenn@ie.technion.ac.il (Michal Penn), ofers@ie.technion.ac.il (Ofer Strichman)

Preprint submitted to Journal of Computer and System Sciences March 15, 2019

We give a formal definition of the cr-uav problem in Section 2. While the problem is formulated in
a very general manner, we make some useful observations to simplify the analysis and modelling in later
sections. In particular, we can focus on solutions that are periodic and integer-timed. The complexity of
the cr-uav problem is studied in Section 3. We first show that the period of a solution can be exponential
in the size of the inputs, refuting an incorrect claim in the literature [8]. Then, extending this idea, we
show that the problem is indeed PSPACE-hard by reducing from the periodic sat problem, known to be
PSPACE-complete [9]. We derive lower and upper bounds on the number k of required UAVs in Section 4
and detail a reduction from the decision version of the cr-uav problem to the model-checking problem for
Linear Temporal Logic (LTL) [10] on symbolic transition systems in Section 5. The cr-uav problem can then
be solved by a binary search on k, invoking a model checker in each step. In Section 6, we propose a simple
approach to the cr-uav problem: use a satisfiability-modulo-theories (SMT) solver [11] to find solutions
and run, in parallel, a dedicated algorithm to prove that no solution exists. We also exhibit a method to
reduce the searched state-space, which simplifies both tasks, based on a simulation relation. Experimental
results are reported in Section 7 where we compare the efficiency of the approaches proposed in Sections 5
and 6. We close the article with some discussion and outlook in Section 8.

This paper is a revised and extended version of two conference papers [12, 13]. This new version contains
a more precise formulation of the problem, a reduction to model checking, and new experimental results.

2. Definitions

2.1. Scenario and problem inputs
Let there be a number of targets, i.e., areas to be scanned, and a flock of UAVs, which we treat as

free-moving points. Each target is associated with a scanning time: the least amount of time a UAV must
stay at the target to complete a successful scan. Moreover, each target has a relative deadline: an upper
bound requirement on the time between two consecutive successful scans. We make several assumptions:

• When more than one UAV are involved, each UAV flies at a different altitude. This allows us to ignore
the issue of intersecting routes that might otherwise lead to collisions.

• All UAVs are identical, i.e., their top speeds are the same. It follows that we can associate with each
ordered pair of targets a flight time: the least amount of time needed for a UAV to fly from some
point within the first target to some point within the other.

• Scans of targets are not split between UAVs.

• The scanning time of each target is not less than the least amount of time needed for a UAV to fly
between any two points within the target. Thus, we can ignore the actual shape of each target and
imagine it as a circle with scanning time as the ‘diameter’.

In the rest of this article we fix the set of n targets to be V = {0, . . . , n − 1} and let vi = i, v1 = 1, …,
vn−1 = n− 1. In this way, we can refer to the elements of V not only as targets, but also as unique indices.
The inputs are as follows:

1. An array ST of size n such that for every v ∈ V , ST[v] is the scanning time of v.
2. An array RD of size n such that for every v ∈ V , RD[v] is the relative deadline of v.
3. A two-dimensional array FT of size n×n such that for every pair v, v′ ∈ V , FT[v, v′] is the flight time

from v to v′. In particular, FT[v, v′] = 0 if and only if v = v′.
Time units are chosen so that all the scanning times, relative deadlines and flight times are non-negative
integers. We further assume that FT[v, v′] + ST[v′] + FT[v′, v′′] ≥ FT[v, v′′] for all v, v′, v′′ ∈ V—as we will
show later on, we can transform the input problem into an equivalent one without scanning times, from
which it then follows that we are working with a metric. Without loss of generality, we further require that
(i) ST[v] is even for all v ∈ V (as we will divide ST[v] by 2 in the said transformation), (ii) RD[v] > 0 for
all v ∈ V .1

1If RD[v] = 0 one may simply assign to each such v a dedicated UAV; it can be shown that this strategy does not affect the
least number of UAVs required.

2

2.2. Routes and solutions
Now let I = ⟨ST,RD,FT⟩ be an instance of the problem. A route of I is a function r from R>0 (the

positive reals) to Vϵ = V ∪ {ϵ} such that:

• For all t, t′ ∈ R>0, t < t′ and v, v′ ∈ V such that r(t) = v and r(t′) = v′, we have t′ − t ≥ FT[v, v′].

Intuitively, a route records the trajectory of a UAV, which may be at some target or ‘in transit’ (represented
by the special symbol ϵ) at any given time. For a positive integer P , we denote by r↾(0,P] the restriction of
r to the right-closed interval (0, P]. If r = (r↾(0,P])

ω, i.e., r is the infinite concatenation of r↾(0,P], we say
that r is periodic, P is a period of r, and r↾(0,P] is a cycle of r. To capture successful scans, we define
a function securedr from R>0 to Vϵ for each route r: securedr(t) = v if (i) ST[v] = 0 and r(t) = v or (ii)
ST[v] > 0 and r(t′) = v for all t′ ∈ (t− ST[v], t); otherwise securedr(t) = ϵ. Intuitively, securedr(t) = v for
v ∈ V only when the UAV stays ‘long enough’ at v. A solution to I with k UAVs (k ≥ 1) is an indexed
set S of k routes that satisfies the following conditions:

• For all v ∈ V , we have securedr(t) = v for some r ∈ S and t ∈ (0,RD[v]].

• For all v ∈ V , t, t′ ∈ R>0 with t′ − t = RD[v], we have (i) securedr(t
′′) = v for some r ∈ S and

t′′ ∈ (t, t′), or (ii) securedr(t) = v for some r ∈ S and securedr′(t
′) = v for some r′ ∈ S.

The first condition requires that the first successful scan of each target v to be done, at the very latest,
by its relative deadline RD[v].2 The second condition ensures that in any time interval of length RD[v], a
successful scan must happen within the inteval or at its endpoints. We say S = {r0, . . . , rk−1} has a period
P if ri = (ri↾(0,P])

ω for all i ∈ {0, . . . , k − 1}; in this case, S′ = {r0↾(0,P], . . . , rk−1↾(0,P]} is a cycle of S. In
particular, if each ri (i ∈ {0, . . . , k − 1}) has a period Pi, then the least common multiple of P1, …, Pk−1 is
a period of S = {r0, . . . , rk−1}.

Example 1. Consider I = ⟨ST,RD,FT⟩ where

ST =
[
0 4 0

]
RD =

[
10 5 10

]
FT =

0 1 6
1 0 3
6 3 0

 ,
as illustrated in Fig. 1. Two solutions Sa (with a period 10) and Sb (with a period 18) to I are depicted in
Figs. 2 and 3 where the horizontal axes are time t, the vertical axes are the indices of the targets, and the
multiples of the period P are indicated with dashed lines. The set of routes Sc = {rc0, rc1} (in Fig. 4) is not
a solution to I since the relative deadlines of v0 and v2 are clearly violated. The function rd1 (in Fig. 5) is
not a route of I since rd1(4) = v0, rd1(8) = v2, but 8− 4 < FT[v0, v2] = 6.

2.3. Objective
We now formally define the cr-uav problem and the associated decision problem.3

Definition 1 (The cr-uav problem). Given I = ⟨ST,RD,FT⟩ as described above, output a solution with
the least possible number of UAVs.

Definition 2 (The decision version of the cr-uav problem). Given I = ⟨ST,RD,FT⟩ as described above
and a positive integer k, is there a solution with k UAVs?

2Note in passing that we postulate that all UAVs use a global clock which starts at time 0.
3We assume that all numerical constants are encoded in binary, but our results hold irrespective of this assumption.

3

5

10

10

ST[v1] = 4

ST[v0] = 0

ST[v2] = 0

v1

v0

v2

1

6

3

Figure 1: I in Example 1. The flight times are labelled on the edges (FT is symmetric in this example) and the relative
deadlines are labelled on the targets; the scanning times are labelled adjacent to the targets.

v1

v0

v2

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

ra0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

ra1

Figure 2: A k = 2 solution Sa = {ra0 , ra1} to I in Example 1.

v1

v0

v2

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rb0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rb1

Figure 3: A k = 2 solution Sb = {rb0, rb1} to I in Example 1.

2.4. Related work
As we will see in Section 3, (the decision version of) the cr-uav problem is PSPACE-complete, and

hence NP-complete problems cannot be more than weakly related to this problem. We nevertheless briefly
mention here two problems that have interesting connections to cr-uav.

The first of those is the generalised windows scheduling problem [14]. The input to this problem is a
sequence of n pairs of positive integers ⟨(w1, l1), (w2, l2), . . . , (wn, ln)⟩. Each such pair corresponds to a
job that has to be scheduled, such that the processing length of job i is li slots and the window between
two consecutive beginnings of executions of job i is at most wi slots. The goal is to repeatedly and non-
preemptively schedule all the jobs on the fewest possible machines under these constraints. This problem is
a special case of cr-uav, where flight times between targets are uniform. In that case we can simply add
the flight time to the scanning time at the target and consider the move between targets as instantaneous
(i.e., no flight time). Now the scanning time at target i is li and the relative deadline is wi, which is exactly
the generalised windows scheduling problem. Interestingly, [14] mentions that this problem is known to be
NP-hard, but neither there or anywhere else did we find a result showing the exact complexity class of this
problem.

Various versions of multiprocessor scheduling, starting from Liu and Layland’s pivotal work [15], have
certain characteristics that remind of cr-uav. Generally the problem is to schedule tasks on one or more

4

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rc0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rc1

Figure 4: Sc = {rc0, rc1} is not a solution to I in Example 1 as
v0 and v2 miss their relative deadlines.

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rd0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rd1

Figure 5: rd1 is not a route of I in Example 1 as rd1(4) = v0,
rd1(8) = v2 but FT[v0, v2] = 6.

processors periodically, with exact relative deadlines, in contrast to cr-uav where the relative deadlines are
only upper bounds (i.e., we can visit the target earlier and reset the clock). Also, the flight time in cr-uav
cannot simply be reduced to be the processing time in [15] because the processing time only depends on the
current task whereas in cr-uav the flight time depends on both the current and the next task.

Additional related work is mentioned in Section 8.

2.5. Some simplifying observations
We now describe some observations regarding inputs and solutions to the problem. As we will soon see,

these observations greatly simplify the analysis and modelling in later sections.

Eliminating scanning times. Recall that each target v is an area, and we therefore treat it as a circle with
‘diameter’ ST[v]. This complication, however, can be avoided by ‘shrinking’ each target to a point. Formally,
for I = ⟨ST,RD,FT⟩, define shrink(I) = ⟨ST′,RD,FT′⟩ where ST′[v] = 0, FT′[v, v] = 0 for all v ∈ V , and
FT′[v, v′] = 1

2ST[v] + FT[v, v′] + 1
2ST[v′] for all distinct v, v′ ∈ V .

Proposition 1. For any I and k ≥ 1, I has a solution with k UAVs iff shrink(I) has a solution with k
UAVs.

Proof. Consider a solution S to I = ⟨ST,RD,FT⟩. We define, for each r ∈ S, a corresponding function r′:
r′(t) = v (v ∈ V) if securedr(t+

1
2ST[v]) = v and r′(t) = ϵ otherwise. If r′(t) = v, r′(t′) = v′ for some t, t′ ∈

R>0, t < t′ and distinct v, v′ ∈ V , we have securedr(t+
1
2ST[v]) = v and securedr(t

′+ 1
2ST[v′]) = v′, which in

turn give r(t′′) = v for all t′′ ∈ (t− 1
2ST[v], t+ 1

2ST[v]) and r(t′′′) = v′ for all t′′′ ∈ (t′− 1
2ST[v′], t′+ 1

2ST[v′])
(assuming ST[v],ST[v′] > 0). Now since t′′′− t′′ can be arbitrarily close to t′− 1

2ST[v′]− (t+ 1
2ST[v]), yet for

any such t′′ and t′′′ it must be the case that t′′′− t′′ ≥ FT[v, v′], we have t′− t ≥ 1
2ST[v]+FT[v, v′]+ 1

2ST[v′].
It follows that r′ is a route of shrink(I), and one can show that {r′i | ri ∈ S, 0 ≤ i < |S|} is a solution to
shrink(I) with a simple proof by contradiction. Conversely, given a solution S′ to shrink(I), we define a
function fr′ from R>0 to Vϵ for each r′ ∈ S′: fr′(t) = v if r′(t− 1

2ST[v]) = v and fr′(t) = ϵ otherwise. Now
define r′′(t) = v (v ∈ V) if (i) ST[v] = 0 and fr′(t) = v, or (ii) ST[v] > 0 and there exists t′ > t such that
fr′(t

′) = v and t′ − t < ST[v], and r′′(t) = ϵ otherwise. Finally let r(t) = r′′(t + 1
2 maxv∈V {ST[v]}) (the

purpose of the extra shifting is to ensure that the first successful scans to the targets are completed in time).
Similarly, one can verify that r is a route of I and {ri | r′i ∈ S′, 0 ≤ i < |S′|} is a solution to I.

Example 2. Consider I in Example 1. We have shrink(I) = ⟨ST′,RD,FT′⟩ where

ST =
[
0 0 0

]
RD =

[
10 5 10

]
FT =

0 3 6
3 0 5
6 5 0

 ,
as illustrated in Fig. 6. Two solutions to shrink(I), Se (corresponding to Sa in Fig. 2) and Sf (corresponding
to Sb in Fig. 3), are depicted in Figs. 7 and 8, respectively.

5

5

10

10

v1

v0

v2

3

6

5

Figure 6: shrink(I) in Example 2.

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

re0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

re1

Figure 7: A solution Se = {re0, re1} to shrink(I) in Example 2.

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rf0

0 2 4 6 8 10 12 14 16 18 20 22 24
0
1
2

rf1

Figure 8: A solution Sf = {rf0 , r
f
1 } to shrink(I) in Example 2.

Thanks to Proposition 1 we can (without loss of generality) disregard ST altogether and from now on
consider only I = ⟨RD,FT⟩ where FT[v, v′] + FT[v′, v′′] ≥ FT[v, v′′] for all distinct v, v′, v′′. In the sequel,
we call such an I an instance of the cr-uav problem.

Digitisation of solutions. We say a route r is integer-timed iff the UAVs only reach/leave the targets at
integer time points (i.e., for each non-negative integer N , either (i) r(t′) = v for all t′ ∈ (N,N + 1) and
some v ∈ V , or (ii) r(t′) = ϵ for all t′ ∈ (N,N + 1)). We say a route r is instantaneous iff the UAV never
stays at a target in r (i.e., r(t) ̸= ϵ implies that t is a point of discontinuity of r).4 These notions extend to
solutions in the expected way. The following proposition is reminiscent of a standard digitisation result in
the theory of timed automata [16].

Proposition 2. For any I and k ≥ 1, a solution to I with k UAVs can be transformed into an instantaneous
integer-timed solution to I with k UAVs.

Proof. Consider a solution S to I = ⟨RD,FT⟩. We define, for each r ∈ S, a corresponding function rd:
rd(t) = v (v ∈ V) if t is a positive integer and (i) there exists t′ ≥ t such that t′ − t < 1

2 and r(t′) = v, or (ii)
there exists t′′ ≤ t such that t− t′′ ≤ 1

2 and r(t′′) = v, and rd(t) = ϵ otherwise (note that rd is well-defined
as we have FT[v, v′] ≥ 1 for all distinct v, v′ ∈ V). Obviously, all the routes in {rdi | ri ∈ S, 0 ≤ i < |S|}
are instantaneous and integer-timed. Now suppose to the contrary that {rdi | ri ∈ S, 0 ≤ i < |S|} is not
a solution to I; in other words, there are t, t′ ∈ R>0 such that (i) t′ − t = RD[v] ≥ 1 for some v ∈ V , (ii)
rdi (t

′′) ̸= v for all i, 0 ≤ i < |S| and t′′ ∈ (t, t′), and (iii) if rdi (t) = v for some i, 0 ≤ i < |S| then rdi (t
′) ̸= v

for all i, 0 ≤ i < |S|, and vice versa. Consider the following cases:

• Both t and t′ are integers: if rdi (t) ̸= v and rdi (t
′) ̸= v for all i, 0 ≤ i < |S| then obviously ri(t

′′) ̸= v
for all i, 0 ≤ i < |S| and t′′ ∈ [t, t′]. If, say, rdi (t) = v, we must have ri(t′′) ̸= v for all i, 0 ≤ i < |S|
and t′′ ∈ [t+ 1

2 , t
′ + 1

2). In both subcases, S cannot be a solution to I, which is a contradiction.

4Note that, however, we allow UAVs to take self-loops.

6

• Both t and t′ are not integers: as rdi (⌈t⌉) ̸= v and rdi (⌊t′⌋) ̸= v for all i, 0 ≤ i < |S|, we have ri(t′′) ̸= v
for all i, 0 ≤ i < |S| and t′′ ∈ [⌈t⌉ − 1

2 , ⌊t
′⌋+ 1

2). Since t′ − t = ⌊t′⌋ − ⌈t⌉+ 1, S cannot be a solution
to I, which is a contradiction.

Example 3. Consider J = ⟨RD,FT⟩ where

RD =
[
3 3 3 3

]
FT =


0 2 3 2
2 0 2 3
3 2 0 2
2 3 2 0

 ,
as illustrated in Fig. 9. A solution Sg (in which the UAVs reach/leave the targets at non-integer points) and
its ‘digitised’ counterpart Sh (in which the UAVs reach/leave the targets only at integer points) are depicted
in Figs. 10 and 11, respectively.

3 3

33

v1v0

v2v3

2

2

2

3

3
2

Figure 9: J in Example 3.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rg0

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rg1

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rg2

Figure 10: A solution Sg = {rg0 , r
g
1 , r

g
2} to J in Example 3.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rh0

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rh1

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

rh2

Figure 11: An integer-timed solution Sh = {rh0 , rh1 , rh2 } to J
in Example 3.

In light of Proposition 2, from now on we let FT[v, v] = 1 (instead of 0) for all v ∈ V .

Punctuality of solutions. We say a route r is punctual iff for all t, t′ ∈ R>0, t < t′, and v, v′ ∈ V such that
r(t) = v, r(t′) = v′, and r(t′′) = ϵ for all t′′ ∈ (t, t′), either (i) v ̸= v′ and t′ − t = FT[v, v′], or (ii) v = v′ and
t′ − t = 1. We now show that it suffices to consider punctual solutions (i.e., all routes are punctual).

Proposition 3. For any I and k ≥ 1, an instantaneous integer-timed solution to I with k UAVs can be
transformed into a punctual instantaneous integer-timed solution to I with k UAVs.

7

Proof. Consider an instantaneous integer-timed solution S to I = ⟨RD,FT⟩. For each r ∈ S, let r′ be a
route such that

• r′(t′′) = v′ (v′ ∈ V) if t′′ is a positive integer and either (i) r(t′′) = v′, or (ii) t′′ ∈ (t, t′), r(t) = v,
r(t′) = v′, r(t′′′) = ϵ for all t′′′ ∈ (t, t′), and t′′ − t ≥ FT[v, v′] for some positive integers t, t′ and
v ∈ V ;

• r′(t′′) = ϵ otherwise.

Intuitively, arriving earlier at targets and staying (whenever possible) cannot invalidate a solution. Thus, it
is clear that {r′i | ri ∈ S, 0 ≤ i < |S|} is a punctual instantaneous integer-timed solution to I.

Periodicity of solutions. Our final observation, stated in the proposition below, enables us to consider only
periodic solutions without sacrificing correctness.

Proposition 4. For any I and k ≥ 1, a punctual instantaneous integer-timed solution to I with k UAVs
can be transformed into a periodic punctual instantaneous integer-timed solution to I with k UAVs.

Proof. Given I and k ≥ 1, let prefixI,k be the set of k-tuples ⟨f0, . . . , fk−1⟩ where there is a positive integer
T such that

• each fi is of the form r↾(0,T] where r is a punctual instantaneous integer-timed route of I,

• ri(T) = v for some i ∈ {0, . . . , k − 1} and v ∈ V , and

• for each v ∈ V , ri(T ′) = v for some T ′ ≤ T and i ∈ {0, . . . , k − 1}.

Now define an equivalence relation ∼ on prefixI,k: ⟨f0, . . . , fk−1⟩ ∼ ⟨g0, . . . , gk−1⟩ iff for each k-tuple
⟨r0, . . . , rk−1⟩ of punctual instantaneous integer-timed routes of I, {f0r0, . . . , fk−1rk−1} is a solution to
I whenever {g0r0, . . . , gk−1rk−1} is a solution to I. We will see in Section 5 that ∼ partitions prefixI,k into
finitely many equivalence classes. Therefore, if S is a punctual instantaneous integer-timed solution to I
with k UAVs, there must be two distinct ‘prefixes’ of S that are ∼-equivalent. The proposition follows by
repeating the in-between part ad infinitum.

Corollary 1. For any I and k ≥ 1, a solution to I with k UAVs can be transformed into a periodic punctual
instantaneous integer-timed solution to I with k UAVs.

Following Corollary 1, we will only consider periodic punctual instantaneous integer-timed solutions in
the rest of this article.

3. Complexity

We will see in Section 5 that the decision version of the cr-uav problem can be solved in PSPACE
via a rather straightforward reduction to LTL model-checking on symbolic transition systems [17]. On the
other hand, it is not immediate whether the problem can be solved in NP. It is claimed in [8] that in the
single-UAV case (i.e., k = 1), it suffices to consider solutions with periods bounded by the largest relative
deadline; if constants are encoded in unary, this would immediately imply NP-membership of the problem
in the single-UAV case. However, that claim is unfortunately wrong, because of the following proposition.

Proposition 5. There is a family of cr-uav instances {In}n>0 such that the shortest possible period of a
single-UAV solution to In is exponential in the size of In.5

5This example was suggested by Daniel Bundala.

8

Proof. (Sketch.) See Fig. 12 for an illustration of I3. The i-th ‘diamond’ (i ≥ 1, in top-down order) has
pn branches where pn is the n-th prime number. Each unlabelled edge has flight time set to 1, and each
missing edge has flight time set to the ‘shortest distance’ between the two relevant targets. It can be shown
that a solution must be an infinite repetition of either (i) from vtop through all the diamonds to vbot, to vmid
and to vtop again, or (ii) from vbot through all the diamonds to vtop, to vmid and to vbot again; without loss
of generality we assume (i). In this case, in each diamond one must go straight down, and only the edges
shown in the figure can be used. It follows that the shortest period of a solution to In is bounded below by
n∏

i=1

pi = Ω(en). On the other hand, the number of targets and the largest relative deadline in In are both

O(n2 lnn).

T

2T 2T

T

3T3T 3T

T

5T5T5T 5T 5T

T

T vmid

vtop

vbot

1
4T

1
4T

Figure 12: The cr-uav instance I3 in Proposition 5 (T = 12).

In what follows, we show that the decision version of the cr-uav problem is indeed PSPACE-hard even
in the single-UAV case. The proof is accomplished by reduction from the periodic sat problem, known to
be PSPACE-complete [9].

3.1. The periodic sat problem
The periodic sat problem is one of the many PSPACE-complete problems introduced in [9]. In the

rest of this section, let X be a finite set of (boolean) variables and let Xj be the set of variables obtained
from X by adding a superscript j to each variable.

9

Definition 3 (The periodic sat problem [9]). Consider a CNF formula φ(0) over X0 ∪X1. Let φ(j) be
the formula obtained from φ(0) by replacing all variables x0i ∈ X0 by xji and all variables x1i ∈ X1 by xj+1

i .
Is there an assignment to

∪
j≥0X

j such that
∧

j≥0 φ(j) is satisfied?

Note that there are at most 2|X| possible assignments to |X|. It follows that if there is a satisfying
assignment to

∧
j≥0 φ(j), it can be turned into a periodic satisfying assignment, i.e., there is a positive

integer N ≤ 2|X| such that for all non-negative integers j1 and j2, the truth values of Xj1 and Xj2 are
identical if j1 ≡ j2 (mod N).

Example 4. Let X = {x1, x2} and

φ(0) = (x01 ∨ x11) ∧ (x02 ∨ x12) ∧ (¬x01 ∨ ¬x11) ∧ (¬x02 ∨ ¬x12) .

Then

φ(1) = (x11 ∨ x21) ∧ (x12 ∨ x22) ∧ (¬x11 ∨ ¬x21) ∧ (¬x12 ∨ ¬x22) ,
φ(2) = (x21 ∨ x31) ∧ (x22 ∨ x32) ∧ (¬x21 ∨ ¬x31) ∧ (¬x22 ∨ ¬x32) ,

and so on. The infinite conjunction
∧

j≥0 φ(j) is satisfied by the following periodic assignment to variables∪
j≥0X

j (with N = 2):

(xi1, x
i
2) 7→

{
(true, true) if i is even
(false, false) otherwise.

3.2. The construction
Consider a CNF formula φ(0) = c1 ∧ · · · ∧ ch over X0 = {x01, . . . , x0m} and X1 = {x11, . . . , x1m}. Without

loss of generality, we assume that each clause cj of φ(0) is non-trivial (i.e., cj does not contain both positive
and negative occurrences of a variable) and m > 2, h > 0. We construct an instance I = ⟨RD,FT⟩ of the
cr-uav problem such that

∧
j≥0 φ(j) is satisfiable iff I has a solution with a single UAV. The reduction

can be done in polynomial time (the largest constant in I has magnitude O(m2h) and |V | = O(mh)); in
particular FT is symmetric, i.e., it forms a metric on V . The general idea of the reduction is inspired by the
textbook reduction from 3sat to hamiltonian path [18]: assignments to variables correspond to the ways
in which targets are visited, and a clause is satisfied if one of its laterals is ‘hit’. More precisely, we construct
variable gadgets that can be traversed in two ‘directions’ (corresponding to assignments true and false to
variables). A clause target is visited if the corresponding clause is satisfied by the assignment. Crucially,
we use consistency gadgets, in which we set the relative deadlines of the targets carefully to ensure that
the directions of traversals of the variable gadgets for X1 (corresponding to a particular assignment to
variables) in a given iteration is consistent with the directions of traversals of the variable gadgets for X0

in the next iteration.
We now describe and explain each part of I in detail. The reader, however, is advised to glance ahead

to Fig. 17 (on page 14) to get an impression of I as a whole. In what follows, let l = 24h+ 34 and

T = 2
(
m
(
2(3m+ 1)l + l

)
+m

(
2(3m+ 2)l + l

)
+ l + 2h

)
.

These expressions may look horrendous at this point, but they will become clear as we proceed; roughly
speaking, l is the time needed to traverse a ‘row’ in Fig. 13, and T is the time needed to complete a round-trip
in Fig. 17.

Variable gadgets. For each variable x0i , we construct a corresponding variable gadget with the following
targets (see Fig. 13):

• Three targets on the left side (LSi = {vt,Li , vm,L
i , vb,Li })

• Three targets on the right side (RSi = {vt,Ri , vm,R
i , vb,Ri })

10

• A ‘clause box’ (CBj
i = {va,ji , vb,ji , vc,ji , vd,ji , ve,ji , vf,ji }) for each j ∈ {1, . . . , h}

• A ‘separator box’ (SBj
i = {vā,ji , vb̄,ji , vc̄,ji , vd̄,ji , vē,ji , vf̄ ,ji }) for each j ∈ {0, . . . , h}

• A target at the top (vtop if i = 0, vi−1 otherwise)

• A target at the bottom (vi).

· · ·

· · ·

· · ·

(3m + 1)l (3m + 1)l

(3m + 1)l (3m + 1)l

vt,Li

vm,L
i

vb,Li

vā,0i

vb̄,0i

vc̄,0i vd̄,0i

vē,0i

vf̄ ,0i va,1i

vb,1i

vc,1i vd,1i

ve,1i

vf,1i vā,1i

vb̄,1i

vc̄,1i v
d̄,(h−1)
i

v
ē,(h−1)
i

v
f̄ ,(h−1)
i va,hi

vb,hi

vc,hi vd,hi

ve,hi

vf,hi vā,hi

vb̄,hi

vc̄,hi
vd̄,hi

vē,hi

vf̄ ,hi vt,Ri

vm,R
i

vb,Ri

Figure 13: The variable gadget for x0
i . Dotted lines indicate the connections to the i-th consistency gadgets LCGi and RCGi

(not shown in this figure).

The clause boxes for j ∈ {1, . . . , h} are aligned horizontally in the figure. A separator box is laid between each
adjacent pair of clause boxes and at both ends. This row of boxes (Rowi =

∪
j∈{1,...,h} CBj

i ∪
∪

j∈{0,...,h} SBj
i)

is then put between LSi and RSi. The relative deadlines of all targets v ∈ LSi∪RSi∪Rowi are set to T+l+2h.
The targets are connected as indicated by solid lines. The four ‘long’ edges in the figure have their flight
times set to (3m + 1)l while all other edges have flight times set to 2, e.g., FT[vtop, v

t,L
1] = (3m + 1)l and

FT[vb,11 , vc,11] = 2. There is an exception though: FT[vb,Lm , vm] and FT[vb,Rm , vm] (in the variable gadget for
x0m) are set to (3m + 2)l. The variable gadgets for variables x1i are constructed almost identically. The
three targets on the left and right side are now LSi+m and RSi+m. The set of targets in the row is now
Rowi+m =

∪
j∈{1,...,h} CBj

i+m ∪
∪

j∈{0,...,h} SBj
i+m. The target at the top is vi+m−1 and the target at the

bottom is vi+m (i ̸= m) or vbot (i = m). The relative deadlines of targets in LSi+m ∪ RSi+m ∪ Rowi+m are
set to T + l+2h, and the flight times of the edges are set as before, except that all the long edges now have
flight times set to (3m+ 2)l. Now consider the following ordering of variables:

x01, x
0
2, . . . , x

0
m, x

1
1, x

1
2, . . . , x

1
m .

Observe that the variable gadgets for two ‘neighbouring’ variables (with respect to this ordering) have a
target in common. Specifically, the set of the shared targets is S = {v1, . . . , v2m−1}. We set the relative
deadlines of all targets in S to T + 2h and the relative deadlines of vtop and vbot to T .

Clause targets. For each clause cj in φ(0), there is a clause target vcj with relative deadline set to 3
2T . If

x0i occurs in cj as a literal, we connect the j-th clause box in the variable gadget for x0i to vcj as shown in
Fig. 14 and set the flight times of these new edges to 2 (e.g., FT[vcj , vc,ji] = FT[vcj , vd,ji] = 2). If instead ¬x0i
occurs in cj , then vcj is connected to va,ji and vf,ji (with the flight times of the new edges set to 2). Likewise,
the variable gadget for x1i may be connected to vcj via {vc,ji+m, v

d,j
i+m} (if x1i occurs in cj) or {va,ji+m, v

f,j
i+m} (if

¬x1i occurs in cj).

11

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vcj

2

2

2

2

2

2

2

2

2 2

2

2

Figure 14: The variable occurs positively in cj .

pvtLi

in↓,L
i out↑,Li

in↑,L
i out↓,Li

2

2

2

2

Figure 15: A consistency gadget LCGi.

Consistency gadgets. For each i ∈ {1, . . . ,m}, we construct two consistency gadgets LCGi (see Fig. 15) and
RCGi. In LCGi, the target at the centre (pvtLi) has relative deadline set to 1

2T +m
(
2(3m+2)l+ l

)
− (2i−

1)l+4h. The other four targets (in↓,L
i , out↑,Li , in↑,L

i and out↓,Li) have relative deadlines set to 3
2T . The flight

time from pvtLi to any of the other four targets is set to 2. RCGi is identical except that the subscripts
on the targets change from L to R. The i-th consistency gadgets LCGi and RCGi are connected to the
variable gadgets for x0i and x1i as in Fig. 16. The targets in↓,L

i , out↑,Li , in↓,R
i , out↑,Ri are connected to certain

targets in the variable gadget for x0i —this allows pvtLi and pvtRi to be traversed ‘from above’. Similarly, the
edges connected to in↑,L

i , out↓,Li , in↑,L
i , out↓,Li allow pvtLi and pvtRi to be traversed ‘from below’. Formally,

FT[v, v′] = 2 if

• v = in↓,L
i , v′ ∈ {vb,Li , vc̄,0i } or v = in↓,R

i , v′ ∈ {vf̄ ,hi , vb,Ri }

• v = out↑,Li , v′ ∈ {vt,Li , vā,0i } or v = out↑,Ri , v′ ∈ {vd̄,hi , vt,Ri }

• v = in↑,L
i , v′ ∈ {vb,L(i+m), v

c̄,0
(i+m)} or v = in↑,R

i , v′ ∈ {vf̄ ,h(i+m), v
b,R
(i+m)}

• v = out↓,Li , v′ ∈ {vt,L(i+m), v
ā,0
(i+m)} or v = out↓,Ri , v′ ∈ {vd̄,h(i+m), v

t,R
(i+m)}.

Finally, there is a target vmid with RD(vmid) = T connected to vbot and vtop with two edges, each of
which has flight time set to 1

4T . The flight times of all the missing edges are set to the ‘shortest distance’
between the two relevant targets; we will simply assume these edges are never taken. This completes the
construction of I. An example with m = 3 is given in Fig. 17, where targets in S (shared by two variable
gadgets) are depicted as solid circles.

Proposition 6.
∧

j≥0 φ(j) is satisfiable iff I has a solution with a single UAV.

3.3. Correctness of the reduction
The rest of this section is devoted to the proof of Proposition 6—in particular, we show that if I admits

a solution with a single UAV, then each of the clause targets must be visited exactly once, and the directions
in which the variable gadgets are traversed give the satisfying assignment to

∧
j≥0 φ(j). Since we work with

a single UAV, a solution may be conveniently denoted by an infinite sequence s ∈ V ω. The duration of
u ∈ V ⋆, which we denote by dur(u), is defined to be the sum of the flight times along u. We first prove
the forward direction. Given a satisfying assignment to

∧
j≥0 φ(j), we construct a solution s as follows: s

starts from vtop and goes through the variable gadgets for x01, x02, . . . , x0m, x11, x12, . . . , x1m in order, eventually
reaching vbot. Each variable gadget is traversed according to the truth value assigned to its corresponding
variable. In such a traversal, both pvtLi and pvtRi are visited once (see the thick arrows in Fig. 16 for the
situation when x0i is assigned true and x1i is assigned false). Along the way from vtop to vbot, s detours
at certain times and ‘hits’ each clause target exactly once as illustrated by the thick arrows in Fig. 14 (this

12

x0
i

x1
i

LCGi RCGi

Figure 16: Connecting the variable gadgets for x0
i and x1

i to LCGi and RCGi. Parts of the intended path when x0
i is assigned

to true and x1
i is assigned to false are indicated by the thick arrows: the UAV first follows the black thick arrows (thereby

traversing the variable gadget for x0
i ‘left-to-right’), then it traverses through some other variable gadgets, and then it follows

the grey thick arrows (thereby traversing the variable gadget for x1
i ‘right-to-left’).

can be done as φ(0) is satisfied by the assignment). Then s goes back to vtop through vmid and starts over
again, this time following the truth values assigned to variables in X1 ∪X2, and so on. One can verify that
s is a solution to I.

Now consider the other direction. Let

s = (vmids1vmid . . . vmidsp)
ω

be a solution to I where each segment sj , j ∈ {1, . . . , p} is a finite subpath visiting only targets in V \{vmid}.
We further assume that s satisfies the first case of the following proposition (this is sound as s can be ‘reversed’
while remaining a valid solution). Let sj−1 = sp if j = 1 and sj+1 = s1 if j = p.

Proposition 7. In s = (vmids1vmid . . . vmidsp)
ω, either of the following holds:

• Each sj, j ∈ {1, . . . , p} starts with vtop and ends with vbot

• Each sj, j ∈ {1, . . . , p} starts with vbot and ends with vtop.

To prove this proposition, we first establish several simple lemmas and propositions.

Lemma 1. Each segment sj must start with and end with vtop or vbot.

Lemma 2. The time needed from vtop or vbot to any other target is at least (3m+ 1)l.

Lemma 3. The time needed from vmid to any other target is at least 1
4T .

13

vmid

vtop

vbot

v1

v2

v3

v4

v5

x0
1

x0
2

x0
3

x1
1

x1
2

x1
3

1
4
T

1
4
T

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 1)l(3m+ 1)l

(3m+ 1)l (3m+ 1)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

(3m+ 2)l (3m+ 2)l

(3m+ 2)l(3m+ 2)l

Figure 17: An example with m = 3. Solid circles denote the shared targets S = {v1, . . . , v5}.

Lemma 4. Each segment sj must contain more than one target.

Proof. By Lemma 1, without loss of generality let sj = vbot, a single target. It is easy to see that sj−1 must
end with vtop and sj+1 must start with vtop, otherwise the relative deadline of vtop will be violated. Now
consider v1 (with RD[v1] = T + 2h). By Lemma 2 and the fact that dur(vtopvmidvbotvmidvtop) = T , the
relative deadline of v1 is violated for sure even if s visits v1 immediately after vtop. This is a contradiction.

Proposition 8. For each segment sj, 0 < dur(sj) ≤ 1
2T .

Proof. By Lemma 4 we have dur(sj) > 0. For the upper bound, note that dur(vmidsjvmid) =
1
2T + dur(sj)

and RD[vmid] = T .

Proposition 9. Each segment sj contains all targets in V \{vmid} with relative deadlines less or equal than
T + l + 2h.

Proof. Let v ∈ V \ {vmid} be a target missing in sj with RD[v] ≤ T + l + 2h. By Lemmas 1, 2 and 4,
dur(sj) ≥ 2(3m+1)l > l+ l > l+2h. We have dur(vmidsjvmid) =

1
2T +dur(sj) > 1

2T + l+2h. By Lemma 3,
dur(vvmidsjvmidv) must be greater than T + l + 2h for any v ∈ V \ {vmid}, which is a contradiction.

By Lemma 1 and Proposition 9, we first derive a (crude) lower bound on dur(sj). The sum of the
minimum times needed to enter and leave every v ∈ S and the minimum times needed to enter or leave the
two ends of sj (when both are vtop) gives

dur(sj) ≥ (m− 1)
(
2(3m+ 1)l

)
+m

(
2(3m+ 2)l

)
+ 2(3m+ 1)l . (1)

14

Proposition 10. vtop, vbot and each v ∈ S appears exactly once in each segment sj.

Proof. Without loss of generality, assume one of these targets appears more than once in sj . By a similar
argument as above, we derive that dur(sj) is at least (m− 1)

(
2(3m+ 1)l

)
+m

(
2(3m+ 2)l

)
+ 2(3m+ 1)l +

2(3m+ 1)l > 1
2T . This contradicts Proposition 8.

Proof (of Proposition 7). By Lemma 1 and Proposition 10, sj must start and end with different targets from
{vtop, vbot}. Therefore, we can revise our lower bound in Eq.(1) and obtain

dur(sj) ≥ (m− 1)
(
2(3m+ 1)l

)
+m

(
2(3m+ 2)l

)
+ (3m+ 1)l + (3m+ 2)l . (2)

Now without loss of generality let sj ends with vtop and sj+1 starts with vtop. By Eq.(2), dur(sj) +
dur(sj+1) ≥ 2

(
(m−1)

(
2(3m+1)l

)
+m

(
2(3m+2)l

)
+(3m+1)l+(3m+2)l

)
> 1

2T , and hence dur(sjvmidsj+1) >

T . By Lemma 1 and Proposition 10, vbot can only appear at both ends of sjvmidsj+1, hence its relative
deadline must be violated. This is a contradiction.

We now argue that s ‘witnesses’ a satisfying assignment to
∧

j≥0 φ(j).

Lemma 5. In each segment sj, each target in
∪

i∈{1,...,m}{pvtLi , pvtRi } appears twice whereas other targets
in V \ {vmid} appear once.

To prove this lemma, we first refine our lower bound in Eq.(2) by taking into account other targets in
variable gadgets and consistency gadgets with relative deadline less or equal to T + l+2h (by Proposition 9).
As many of these targets are adjacent, we only accumulate the minimum times needed to enter them:

• h clause boxes and h+ 1 separator boxes in each of the 2m rows: 2 · 6 · (2h+ 1) · 2m.

• pvtLi and pvtRi , i ∈ {1, . . . ,m}: 2 · 2 ·m.

• LSi and RSi, i ∈ {1, . . . , 2m}: Note that in the calculation of Eq.(2), one of the two targets connected
to vtop and one of the four targets connected to each v ∈ S ‘have already been entered’ and cannot be
included in the current calculation. This gives 2 · 6 · 2m− 2− 2 · (2m− 1) = 20m.

In total, we now have
dur(sj) ≥

1

2
T − 20m− 2h . (3)

Proposition 11. Each segment sj contains all targets with relative deadlines equal to 3
2T , i.e., clause

targets and targets in
∪

i∈{1,...,m}
(
(LCGi \ {pvtLi }) ∪ (RCGi \ {pvtRi })

)
.

Proof. Assume that there is such a target v not appearing in sj . By Eq.(3), we have dur(vbotvmidsjvmidvtop) ≥
3
2T − 20m − 2h. By Lemma 2, the relative deadline of v must be violated as dur(vvbotvmidsjvmidvtopv) ≥
3
2T − 20m− 2h+ 2(3m+ 1)l > 3

2T . This is a contradiction.

Based on the previous proposition, we can further refine our lower bound on the duration of a segment.
The minimum times needed to enter

• clause targets vcj , j ∈ {1, . . . , h}

• targets in
∪

i∈{1,...,m}
(
(LCGi \ {pvtLi }) ∪ (RCGi \ {pvtRi })

)
can now be included in the calculation. We have

dur(sj) ≥
1

2
T − 4h . (4)

Proposition 12. In each segment sj, each target in
∪

i∈{1,...,m}{pvtLi , pvtRi } appears more than once.

15

Proof. Let there be such a target v appearing only once in a segment. By Lemma 2, there are two occurrences
of v in s separated by at least 1

2 ·
(
1
2T + (12T − 4h) + 1

2T
)
+ (3m + 1)l. This exceeds all possible values of

RD[v].

Proof (of Lemma 5). By Proposition 12, we assume that each target in
∪

i∈{1,...,m}{pvtLi , pvtRi } appears twice
in a segment. Counting each such target once again gives an extra time of 4h. The sum of this with Eq.(4)
matches the upper bound in Proposition 8. Any more visit to a target in V \ {vmid, vtop, vbot, v1, . . . , v2m−1}
will immediately contradict Proposition 8.

Based on Lemma 5, we show that s cannot ‘jump’ between variable gadgets via clause targets. It follows
that the traversal of each Rowi must be done in a single pass.

Proposition 13. In each segment sj, if vck is entered from a clause box (in some variable gadget), the edge
that immediately follows must go back to the same clause box.

Proof. Consider a 3× 3 ‘box’ formed by a separator box and (the left- or right-) half of a clause box. Note
that except for the four targets at the corners, no target in this 3×3 box is connected to the rest of the graph.
Recall from [19] that if each target in this 3× 3 box is to be visited only once (as enforced by Lemma 5), it
must be traversed in the patterns illustrated in Figs. 18 and 19.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 18: Pattern ‘⊔⊓’.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 19: Pattern ‘⊓⊔’.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

vck

vy

vxvz

Figure 20: x0
i occurs positively in ck.

Now consider for example the situation in Fig. 20 where sj goes from vz to vck . The 3× 3 box with vz
at its lower-right must be traversed in Pattern ‘⊔⊓’ (as otherwise vz will be visited twice). Suppose to the
contrary that sj does not visit vx immediately after vck . As vx cannot be entered or left via vz and vck , the
3× 3 box with vx at its lower-left must also be traversed in Pattern ‘⊔⊓’. However, there is then no way to
enter or leave vy. This is a contradiction.

Note that in Fig. 20, the three clause boxes (framed by dashed lines) are all traversed in Pattern ‘⊓’ or
they are all traversed in Pattern ‘⊔’. More generally, we have the following proposition.

Proposition 14. In each segment sj, clause boxes in a given variable gadget are all traversed in Pattern
‘⊓’ or they are all traversed in Pattern ‘⊔’ (with possible detours via clause targets).

16

Write v → v′ for the edge from v to v′ and v ⇝ v′ for a finite path that starts with v and ends with v′.
By Lemma 5, each segment sj can be written as vtop ⇝ vb1 ⇝ · · ·⇝ vb2m−1

⇝ vbot where b1, . . . , b2m−1 is a
permutation of 1, . . . , 2m− 1. We show that each subpath v ⇝ v′ of sj with distinct v, v′ ∈ S ∪ {vtop, vbot}
and no v′′ ∈ S ∪ {vtop, vbot} in between must be of a very restricted form. For convenience, we call such a
subpath v ⇝ v′ a fragment.

Proposition 15. In each segment sj = vtop ⇝ vb1 ⇝ · · ·⇝ vb2m−1 ⇝ vbot, a fragment v ⇝ v′ visits pvtLi and
pvtRi (once for each) for some i ∈ {1, . . . ,m}. Moreover, each fragment v ⇝ v′ in vtop ⇝ vb1 ⇝ · · · ⇝ vbm
visits a different set {pvtLi , pvtRi }. The same holds for vbm ⇝ vbm+1 ⇝ · · ·⇝ vbot.

Proof. From Fig. 17, it is clear that dur(v ⇝ v′) ≥ 2(3m + 1)l, and hence dur(vtop ⇝ vb1 ⇝ · · · vbm) ≥
m
(
2(3m + 1)l

)
. Let there be a target v ∈

∪
i∈{1,...,m}{pvtLi , pvtRi } missing in vtop ⇝ vb1 ⇝ · · · vbm . Since

the time needed from vbm to v is greater than (3m+1)l, even if sj visits v as soon as possible after vbm , the
duration from vbot in sj−1 to v in sj will still be greater than 1

2T +m
(
2(3m + 1)l

)
+ (3m + 1)l > RD[v],

which is a contradiction. Therefore, all targets in
∪

i∈{1,...,m}{pvtLi , pvtRi } must appear in the subpath from
vtop to vbm . The same holds for the subpath from vbm to vbot by similar arguments. Now note that by
Proposition 13 and Fig. 16, a fragment v ⇝ v′ may visit, among

∪
i∈{1,...,m}{pvtLi , pvtRi }, at most two

targets—{pvtLi , pvtRi } for some i ∈ {1, . . . ,m}. The proposition then follows from Lemma 5.

Proposition 16. In each segment sj, a fragment v ⇝ v′ visits all targets in either Rowi or Rowi+m for
some i ∈ {1, . . . ,m} but not a single target in

∪
j ̸=i

j∈{1,...,m}
(Rowj ∪ Rowj+m).

Now consider a fragment v ⇝ v′ that visits pvtLi and pvtRi (by Proposition 15). By Lemma 5, v ⇝ v′

must also visit exactly two targets other than pvtLi in LCGi and exactly two targets other than pvtRi in RCGi

(once for each). By the argument above, v ⇝ v′ must contain, in order, the following subpaths (together
with some obvious choices of edges connecting these subpaths):

(i). A long edge, e.g., vi → vb,Ri .
(ii). A ‘side’, e.g., vb,Ri → vm,R

i → vt,Ri .
(iii). A subpath consisting of a pvt target and two other targets in the relevant consistency gadget, e.g.,

out↑,Ri → pvtRi → in↓,R
i .

(iv). A traversal of a row with detours.
(v). A subpath consisting of a pvt target and two other targets in the relevant consistency gadget.
(vi). A side.
(vii). A long edge.
The following proposition is then immediate. In particular, the exact value of dur(v ⇝ v′) is decided by:

• flight times of the long edges taken in (i) and (vii)

• detours to clause targets in (iv).

Proposition 17. In each segment sj, the following holds for all fragments v ⇝ v′:

2(3m+ 1)l + l ≤ dur(v ⇝ v′) ≤ 2(3m+ 2)l + l + 2h.

Proposition 18. The order the sets {pvtLi , pvtRi } are visited (regardless of which target in the set is first
visited) in the first m fragments of each segment sj is identical to the order they are visited in the last m
fragments of sj−1.

Proof. By Proposition 17, if this does not hold then there must be a pvt target having two occurrences in s
separated by more than 1

2T +m
(
2(3m+ 1)l + l

)
+ 2(3m+ 1)l. This is a contradiction.

For each segment sj , we denote by first(sj) the ‘first half’ of sj , i.e., the subpath of sj that consists of
the first m fragments of sj and by second(sj) the ‘second half’ of sj . Write ∃(v ⇝ v′) ⊆ u if u has a subpath
of the form v ⇝ v′.

17

Proposition 19. In each segment sj = vtop ⇝ vb1 ⇝ · · · ⇝ vb2m−1 ⇝ vbot, we have bi = i for all
i ∈ {1, . . . , 2m− 1}.
Proof. First note that by construction and Proposition 15, {pvtLm, pvtRm} must be the last set of pvt targets
visited in second(sj−1). By Proposition 18, it must also be the last set of pvt targets visited in first(sj).
Now assume that a long edge of flight time (3m+ 2)l is taken before pvtLm and pvtRm are visited in first(sj).
Consider the following cases:

• ∃(pvtLm ⇝ pvtRm) ⊆ second(sj−1) and ∃(pvtRm ⇝ pvtLm) ⊆ first(sj): Note that the last edge taken in
sj−1 is a long edge of flight time (3m+2)l, and hence there are two occurrences of pvtLm in s separated
by at least 1

2T +m
(
2(3m+ 1)l + l

)
+ 2l > 1

2T +m
(
2(3m+ 1)l + l

)
+ l + 4h = RD[pvtLm].

• ∃(pvtRm ⇝ pvtLm) ⊆ second(sj−1) and ∃(pvtLm ⇝ pvtRm) ⊆ first(sj): The same argument shows that
pvtRm must miss its relative deadline.

• ∃(pvtLm ⇝ pvtRm) ⊆ second(sj−1) and ∃(pvtLm ⇝ pvtRm) ⊆ first(sj): The same argument shows that
both pvtLm and pvtRm must miss their relative deadlines.

• ∃(pvtRm ⇝ pvtLm) ⊆ second(sj−1) and ∃(pvtRm ⇝ pvtLm) ⊆ first(sj): The same argument shows that
both pvtLm and pvtRm must miss their relative deadlines.

We therefore conclude that in first(sj), all long edges taken before pvtLm and pvtRm are visited must have flight
time equal to (3m+1)l. Furthermore, all such long edges must be traversed ‘downwards’ (by Lemma 5). It
follows that bi = i for i ∈ {1, . . . ,m − 1}. By Proposition 18, Lemma 5 and m > 2, we easily derive that
bm = m and then bi = i for i ∈ {m+ 1, . . . , 2m− 1}.

By Proposition 19, the long edges in each variable gadget must be traversed in the ways shown in Figs. 21
and 22.

Figure 21: The variable is assigned to true. Figure 22: The variable is assigned to false.

Proposition 20. For each segment sj, the ways in which the long edges are traversed in the last m fragments
of sj are consistent with the ways in which the long edges are traversed in the first m fragments of sj+1.
Proof. Without loss of generality, consider the case that ∃(pvtLi ⇝ pvtRi) ⊆ second(sj) and ∃(pvtRi ⇝ pvtLi) ⊆
first(sj+1). By Proposition 19, these two occurrences of pvtLi in s are separated by, at least, the sum of
1
2T +m

(
2(3m+ 2)l+ l

)
− (2i− 1)l and the duration of the actual subpath pvtRi ⇝ pvtLi in first(sj+1). It is

clear that pvtLi must miss its relative deadline.

Proposition 21. In each segment sj, if a variable gadget is traversed as in Fig. 21 (Fig. 22), then all of
its clause boxes are traversed in Pattern ‘⊔’ (Pattern ‘⊓’).
Proof (of Proposition 6). Consider a segment sj . As each clause target is visited once in sj (by Lemma 5),
the ways in which the long edges are traversed in all fragments v ⇝ v′ of sj (i.e., as in Fig. 21 or Fig. 22) can
be seen as a satisfying assignment to φ(0) (by construction and Proposition 21). By the same argument, the
ways in which the long edges are traversed in all fragments of sj+1 can be seen as a satisfying assignment
to φ(1). Now by Proposition 20, the assignment to variables X1 is consistent in both segments. The same
argument can again be applied to sj+2 which itself can be seen as a satisfying assignment to φ(2) where
the assignment to variables X2 is consistent with sj+1, and so on. It follows that s witnesses a (periodic)
satisfying assignment to

∧
j≥0 φ(j).

18

The main result of this section follows immediately from PSPACE-membership of the problem (Propo-
sition 24).

Theorem 1. The decision version of the cr-uav problem is PSPACE-complete.6

4. Lower and upper bounds on the number of UAVs

Given a cr-uav instance I = ⟨RD,FT⟩, the least number kI of UAVs required in a solution to I can be
computed by solving the decision version of the cr-uav problem for increasing values of k ∈ {1, . . . , |V |}.
In this section, we improve this naïve algorithm by giving better lower and upper bounds on kI .

4.1. A lower bound on the number of UAVs
In what follows, let

FTmin(v) = min
v′∈V
v′ ̸=v

{FT[v, v′]} .

In words, FTmin(v) denotes the minimal FT on any outgoing edge of v. We say a target v ∈ V is isolated
iff RD[v] ≤ FTmin(v).

Example 5. Consider the cr-uav instance I depicted in Fig. 23. The only isolated target is v0. A solution
with three UAVs appears in Fig. 24. We will soon show that this number matches the lower bound.

4

10 10

10

v0

v1
v2

v3

5 5

5

9

99

Figure 23: I in Example 5.

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

ri0

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

ri1

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3

ri2

Figure 24: A solution Si = {ri0, ri1, ri2} to I in Example 5.

Proposition 22. For I = ⟨RD,FT⟩, a lower bound on kI is given by

|W |+


∑

v∈(V \W)

FTmin(v)

RD[v]

 ≤ kI

where W ⊆ V is the set of isolated targets.

6Our result holds irrespective of whether the numbers are encoded in unary or binary.

19

Proof. Let S be a periodic instantaneous integer-timed solution to I with a period P . Let Tsl(v) ≤ P be
the total time S spent at a target v on self-loops in (0, P]. The number of UAV entries to v during (0, P]
must be at least ⌈

P − Tsl(v)

RD[v]

⌉
,

and hence the total flight time dedicated to v must be at least⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v) . (5)

The overall flight time is given by aggregating Eq.(5) over V :∑
v∈V

(⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v)

)
.

This term must not exceed the total flight time of all UAVs during T , which is given by P · kI :∑
v∈V

(⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v)

)
≤ P · kI .

We now separate the elements in the sum on the left according to whether v ∈W :∑
v∈W

(⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v)

)
+

∑
v∈(V \W)

(⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v)

)
≤ P · kI . (6)

Let us focus on the first summation: since this expression is monotone in Tsl(v) (when the other variables
are fixed) and 0 ≤ Tsl(v) ≤ P , its value is in the range[∑

v∈W

P,
∑
v∈W

⌈
P

RD[v]

⌉
· FTmin(v)

]

(recall that for each v ∈ W we have RD[v] ≤ FTmin(v)). Thus, the first sum in Eq.(6) can be lowered to
P · |W |, which gives us

P · |W |+
∑

v∈(V \W)

(⌈
P − Tsl(v)

RD[v]
· FTmin(v)

⌉
+ Tsl(v)

)
≤ P · kI . (7)

Furthermore, the second summation is larger than∑
v∈(V \W)

(
P − Tsl(v)

RD[v]
· FTmin(v) + Tsl(v)

)
(by removing the ceiling operator), which can be rewritten into∑

v∈(V \W)

(
P · FTmin(v)

RD[v]
+ Tsl(v) ·

(
1− FTmin(v)

RD[v]

))
. (8)

Note that by the definition of isolated targets, for every v ∈ (V \ W) it holds that FTmin(v)
RD[v] ≤ 1, which

implies that the right operand is positive and consequently Eq.(8) is larger than∑
v∈(V \W)

P · FTmin(v)

RD[v]
.

20

Hence, based on Eq.(7) we have that

P · |W |+
∑

v∈(V \W)

P · FTmin(v)

RD[v]
≤ P · kI .

Dividing by P and rounding up concludes the proof.

The bound is tight as witnessed by I in Example 5: by the proposition above, a lower bound on kI is
given by 1+

⌈
(5
10 + 5

10 + 5
10)

⌉
= 3; this matches the actual value of kI (a solution to I with three UAVs—the

least possible—is given in Fig. 24).
Remark 1. Proposition 22 may tempt the reader to think that for each I with some isolated targets, there
must be a solution with kI UAVs where a UAV is dedicated to each isolated target. This, however, is not
true. To see this, observe that for I in Example 5 (kI = 3), dedicating a UAV to v0 would force us to
dedicate a UAV for each of the other three targets, hence using four UAVs altogether.

4.2. An upper bound on the number of UAVs
Proposition 23. For I = ⟨RD,FT⟩, an upper bound on kI is given by

kI ≤ min{|V |,
⌈

TSP(I)
RDmin

⌉
} (9)

where TSP(I) is the length of the tour when I is regarded as an instance of the Travelling Salesman Problem
and RDmin is the minimal RD in I.

Proof. If |V | <
⌈

TSP(I)
RDmin

⌉
, dedicate a UAV to each target; otherwise let all the UAVs follow the TSP tour

and be evenly spaced (see Fig. 10 for an example). In both cases one obtains a solution to I.

While an upper bound which in itself may take exponential time to solve seems not very useful, we note
that (i) in our application domain there is often a relatively small number of targets to begin with, and (ii)
the famous result by Christofides [20] gives us a tour within a factor of 1.5 of the optimal tour in polynomial
time, as long as the problem is defined over a metric. On the other hand, the bound is tight as witnessed
by J in Example 3: by the proposition above, an upper bound on kJ is given by min{4,

⌈
8
3

⌉
} = 3; this

matches the actual value of kJ .

5. Solving the cr-uav problem via a reduction to LTL model checking

In this section, we give a reduction from the decision version of the cr-uav problem to LTL model
checking on symbolic transition systems. For a cr-uav instance I and a positive integer k (assuming
k < n), we construct a symbolic transition system AI,k and an LTL formula φ such that a solution to I
with k UAVs corresponds directly to a loop in AI,k that violates φ, i.e., I has a solution with k UAVs iff
there exists such a loop in AI,k.7 In practice, we can use a model checker to find a lasso (i.e., an infinite
path of the form suω where s, u are non-empty sequences of states) in AI,k that violates φ, from which
we can easily extract such a loop (uω) and obtain the corresponding solution by observing the states. The
following proposition follows from [17]. In particular, (the optimisation version of) the cr-uav problem can
be solved by a binary search on k (between the lower and upper bounds given in the previous section).

Proposition 24. The decision version of the cr-uav problem is in PSPACE.

7The state space of AI,k is exponential (in the size of I) yet it is described symbolically, i.e., as Boolean formulas over state
variables, which keeps the representation polynomial.

21

5.1. Symbolic transition systems
We first make explicit what we mean by symbolic transition systems. For notational simplicity, we will use

Boolean variables in the definitions below; it is straightforward to extend these definitions to accommodate
bounded-width integer variables and arithmetic operations on them (they can be broken up into individual
bits by model checkers).

Definition 4 (Symbolic transition systems). A (finite-state) symbolic transition system T is a tuple
⟨X, Init, R⟩ where

• X is a finite set of Boolean variables

• Init (the initial predicate) is a Boolean formula over X

• R (the transition relation) is a Boolean formula over X ∪X ′ where X ′ = {x′ | x ∈ X}.

A state q of T is a valuation of X, i.e., q : X 7→ {true, false}. We write q′ for the valuation of X ′ such
that q′(x′) = q(x) for each x ∈ X. A transition from q0 to q1 (written q0 → q1) is in T iff R[q0/X, q

′
1/X

′]
(the Boolean formula obtained from R by substituting all x ∈ X with q0(x) and all x′ ∈ X ′ with q′1(x

′))
holds. An infinite path in T is an infinite sequence q0 → q1 → · · · of transitions in T such that Init(q0)
holds.

5.2. The symbolic transition system AI,k

Let I = ⟨RD,FT⟩ be the given cr-uav instance and k be the presumed number of UAVs. We now detail
the construction of AI,k. The essence of the construction is to record the information associated with each
prefix in prefixI,k (defined in the proof of Proposition 4) in the state variables.

State variables. Each state q of AI,k is a tuple

⟨TC,UC, latest, stop⟩ :

• TC is an array of size n such that for each v ∈ V , TC[v] (the ‘target clock’ for v) is the time elapsed
since the last scan of v (0 ≤ TC[v] < RD[v]).

• UC is an array of size k such that for each i ∈ {0, . . . , k− 1}, UC[i] (the ‘UAV clock’ for the i-th UAV)
is the time elapsed since the i-th UAV scanned some target (0 ≤ UC[i] < FTmax where FTmax is the
maximal flight time in FT).

• latest is an array of size k such that for each i ∈ {0, . . . , k − 1}, latest[i] ∈ V is the last target scanned
by the i-th UAV.

• stop is a Boolean variable that is set when the UAVs cease to proceed.

The initial predicate is ¬stop.

Transitions. The transition

⟨TC0,UC0, latest0, false⟩ → ⟨TC1,UC1, latest1, false⟩

is in AI,k iff there is a mapping from {0, . . . , k− 1} to V (which we represent as an array ‘heading’) and the
state variables satisfy the following (note in particular that TC1[v] < RD[v], UC1[i] < FTmax):

• step = mini∈{0,...,k−1}{FT[latest0[i], heading[i]]− UC0[i]} > 0.

• For all v ∈ V , TC1[v] =


0 if heading[i] = v, UC0[i] + step = FT[latest0[i], v]

for some i ∈ {0, . . . , k − 1} and TC0[v] + step ≤ RD[v]

TC0[v] + step otherwise.
22

• For all i ∈ {0, . . . , k − 1}, UC1[i] =

{
0 if UC0[i] + step = FT[latest0[i], heading[i]]
UC0[i] + step otherwise.

• For all i ∈ {0, . . . , k − 1}, latest1[i] =
{

heading[i] if UC0[i] + step = FT[latest0[i], heading[i]]
latest0[i] otherwise.

Intuitively, heading[i] is the presumed next target of the i-th UAV and step is the least time required for
some UAV to reach its presumed target. In addition to these ‘normal’ transitions, we also have

⟨TC0,UC0, latest0, stop⟩ → ⟨TC0,UC0, latest0, true⟩

for both values of stop; in other words, AI,k can go into a ‘stop’ state at any point and loop there forever.

Example 6. Consider the cr-uav instance L = ⟨RD,FT⟩ where

RD =
[
10 5 10

]
FT =

1 3 6
3 1 5
6 5 1

 ,
and k = 2. A transition in AL,2 is illustrated in Fig. 25 where the two states are labelled with ⟨TC,UC, latest⟩
(the values of stop are assumed to be false and hence omitted for clarity) and the transition itself is labelled
with the corresponding ⟨heading, step⟩. In this case, UAV 0 is heading towards target 1, UAV 1 is heading
towards target 2; the value of step is then min{FT[0, 1]− 0,FT[0, 2]− 0} = 3. Since FT[0, 2]− 0 > 3, UAV
1 will not reach target 2; in fact, since heading is not part of the states, only the choices of the UAVs that
actually reach their headed targets (in this case, UAV 0) are relevant. In the destination state, TC becomes
[3, 0, 9] as only target 1 is actually visited; UC becomes [0, 3] and latest becomes [1, 0] as it is UAV 0 that
visits target 1. Note that since the relative deadline of v2 is bound to expire afterwards (no matter how the
UAVs are moved), the only outgoing transition from ⟨[3, 0, 9], [0, 3], [1, 0]⟩ goes to a state where stop is true
(not depicted in the figure).

⟨[3, 0, 9], [0, 3], [1, 0]⟩⟨[0, 1, 6], [0, 0], [0, 0]⟩
⟨[1, 2], 3⟩

Figure 25: A transition in AL,2 in Example 6.

5.3. The LTL specification φ

It is clear that a solution to I with k UAVs can be mapped to an infinite path in AI,k where stop is
always false. On the other hand, if I has no solution with k UAVs, one of the relative deadlines must be
violated no matter how the UAVs are moved. As we enforce that TC[v] < RD[v] for each v ∈ V and step > 0
in the definition of AI,k, any infinite path must go into a stop state and stuck there at some point. We
therefore let

φ = F stop

(F is the LTL operator for ‘in the future’) which asserts the latter—the infinite path contains a state where
stop is true.8

Example 7. Consider the cr-uav instance J in Example 3 (on page 7) and k = 3. A loop in AJ ,3 (where
stop is always false) is illustrated in Fig. 26. From this loop in AJ ,3, one can easily reconstruct the solution
Sh (in Fig. 11) to J with three UAVs (note that the i-th UAV reaches a target whenever UC[i] = 0); the
cr-uav instance J and the corresponding configurations of UAVs are also depicted in the figure.

8We omit the full definition of LTL; interested readers are referred to, for instance [21], for details.

23

⟨[1, 2, 0, 0], [1, 0, 0], [0, 3, 2]⟩

⟨[2, 0, 1, 1], [0, 1, 1], [1, 3, 2]⟩

⟨[0, 1, 2, 0], [1, 0, 0], [1, 0, 3]⟩

⟨[1, 2, 0, 1], [0, 1, 1], [2, 0, 3]⟩⟨[0, 0, 1, 2], [1, 0, 0], [2, 1, 0]⟩

⟨[1, 1, 2, 0], [0, 1, 1], [3, 1, 0]⟩

⟨[2, 0, 0, 1], [1, 0, 0], [3, 2, 1]⟩

⟨[0, 1, 1, 2], [0, 1, 1], [0, 2, 1]⟩

⟨[1, 0, 3], 1⟩

⟨[2, 0, 3], 1⟩

⟨[2, 1, 0], 1⟩

⟨[3, 1, 0], 1⟩

⟨[3, 2, 1], 1⟩

⟨[0, 2, 1], 1⟩

⟨[0, 3, 2], 1⟩

⟨[1, 3, 2], 1⟩

3 3

33

v1v0

v2v3

2

2

2

3

3
2

• •

•

•

•
•

•

•
•

•
•

•

•

• •

•

•
•

•

•

•

•

•
•

Figure 26: A loop in AJ ,3 in Example 7. The states are labelled with ⟨TC,UC, latest⟩ (the values of stop are assumed to be
false) and the transitions are labelled with ⟨heading, step⟩. For example, in the top-left state, UAV 0 is at v0 (UC[0] = 0 and
latest[0] = 0) whereas UAV 1 has left v2 for 1 time unit (UC[1] = 1 and latest[1] = 2).

6. An optimisation based on a simulation relation on states

As we mentioned earlier, the results in the last two sections can be combined with an LTL model checker
to obtain a complete procedure for the cr-uav problem. However, it turns out that a ‘bounded model-
checking’ approach [22] is usually much faster in finding solutions: unroll the transition relation of AI,k to
a bounded depth d and use an SMT solver to check whether there is a loop for increasing values of d. This
usually works very well since d tends to be small; in other words, an exponentially-sized d (cf. Proposition 5)
is rarely needed in practice. Still, unless such a large d (which is almost always infeasible for current SMT
solvers) is used, this approach cannot prove the absence of solutions: bounded model checking is logically
incomplete. These observations suggest a simple approach to solving the cr-uav problem faster: run a
bounded model checker to search for a solution, and in parallel run an LTL model checker, which, recall, is
complete and hence is able to prove the absence of solutions. One of the two tasks must eventually return
an answer, by which time we can terminate both of them. This type of architecture is commonplace when
performing model checking.

We continue by showing that the performance of both tasks can be improved by a simulation relation,
which effectively reduces the state space to be considered. In Section 6.2 we will describe the bounded model-
checking approach, and in Section 6.3 we will describe an explicit model-checking algorithm for solving our
problem. In fact since we assume the parallel architecture mentioned above, we optimised our explicit model
checker such that it is unable to find solutions, but can prove their absence faster.

6.1. Reducing the state space via a simulation relation
We first give a formal definition of simulation relations. Intuitively, we write q1 ⊴ q0 if q1 is capable of

imitating all transitions from q0 (q1 is more ‘promising’ [23]).

Definition 5 (Simulation relation). A preorder ⊴ over the set of states of T (denoted by QT) is a simulation
relation on T = ⟨X, Init, R⟩ if for all q0, q1, q2 ∈ QT such that q1 ⊴ q0 and R(q0, q

′
2) holds, there exists

q3 ∈ QT such that R(q1, q′3) holds and q3 ⊴ q2.

Now, for our purpose, let us consider a slightly modified model Anp
I,k (‘np’ stands for ‘non-punctual’) with

no stop states. Each transition ⟨TC0,UC0, latest0⟩ → ⟨TC1,UC1, latest1⟩ in Anp
I,k can be seen as labelled

with a triple ⟨turn, heading, step⟩ where turn ∈ {0, . . . , k − 1}, heading is a mapping from {0, . . . , k − 1} to
V , and (RDmin is the minimal relative deadline in RD):

24

• max{FT[latest0[turn], heading[turn]]− UC0[turn], 0} ≤ step ≤ RDmin.9

• For all v ∈ V , TC1[v] =

{
0 if heading[turn] = v and TC0[v] + step ≤ RD[v]

TC0[v] + step if heading[turn] ̸= v and TC0[v] + step ≤ RD[v].

• For all i ∈ {0, . . . , k − 1}, UC1[i] =


0 if turn = i

UC0[i] + step if turn ̸= i and UC0[i] + step ≤ FTmax

FTmax if turn ̸= i and UC0[i] + step > FTmax.

• For all i ∈ {0, . . . , k − 1}, latest1[i] =
{

heading[i] if turn = i

latest0[i] otherwise.

Observe that if two states have same latest[i] for all i ∈ {0, . . . , k− 1}, then the state with smaller TC[v]
for all v ∈ V and larger UC[i] for all i ∈ {0, . . . , k − 1} is more promising than the other. This leads to a
simulation relation ⪯ on the states of Anp

I,k.

Example 8. Consider the cr-uav instance L in Example 6. The following diagram shows two states of
Anp

L,2, between which ⪯ holds, and below them their destination states. Note that ⪯ also hold between the
two destination states.

⟨[0, 3, 5], [0, 5], [0, 2]⟩

⟨[4, 1, 3], [1, 3], [1, 2]⟩

⟨[0, 0], 2⟩

⪯

⪯

⟨[0, 2, 5], [0, 5], [0, 2]⟩

⟨[2, 0, 3], [2, 3], [1, 2]⟩

⟨[0, 0], 2⟩

Figure 27: A pair of transitions in AL,2 in Example 6. The values of stop are omitted (all of which are false).

Formally, we define ⪯ as follows.

Definition 6. For states q0 = ⟨TC0,UC0, latest0⟩ and q1 = ⟨TC1,UC1, latest1⟩ of Anp
I,k, let q1 ⪯ q0 iff all of

the following holds:

• For each v ∈ V , TC1[v] ≤ TC0[v].

• For each i ∈ {0, . . . , k − 1}, UC1[i] ≥ UC0[i].

• For each i ∈ {0, . . . , k − 1}, latest1[i] = latest0[i].

6.2. Finding solutions with bounded model checking
A loop of length d in T = ⟨X, Init, R⟩ is encoded by

ψd = Init(q0) ∧R(q0, q′1) ∧R(q1, q′2) . . . R(qd−2, q
′
d−1) ∧R(qd−1, q

′
0) . (10)

In other words, there exists a loop of length d in T iff ψd is satisfiable. In practice, since we will use an SMT
solver to check the satisfiability of ψd, it is written directly in terms of bounded-width integer variables. We
now show that this encoding can be improved with a simulation relation on T .

9Note that step can be larger than the flight time required.

25

Proposition 25. Let ⊴ be a simulation relation on T = ⟨X, Init, R⟩. Let

ψd
sim = Init(q0) ∧R(q0, q′1) ∧R(q1, q′2) . . . R(qd−2, q

′
d−1) ∧R(qd−1, q

′
d) ∧ qd ⊴ q0 .10 (11)

Then we have the following:

• If ψd is satisfiable then ψd
sim is satisfiable.

• If ψd
sim is satisfiable then ψd′ is satisfiable for some d′ ≥ 1.

Proof. The first item is trivial (take qd = q0). For the other, by definition, there exists qd+1 ∈ QT such that
R(qd, q

′
d+1) and qd+1 ⊴ q1. Continuing this reasoning, we obtain an infinite path in T . Since QT is finite,

there must be a loop in this path.

6.3. Proving the absence of solutions with explicit model checking
Let T = ⟨X, Init, R⟩. The set of successors of Q ⊆ QT is denoted by post(Q) = {q′ ∈ QT | ∃q ∈

QT . R(q, q
′)}. Let post0(Q) = Q and posti(Q) = post

(
posti−1(Q)

)
for i ≥ 1. We denote by post+(Q) the set∪

i≥1 posti(Q). The question of whether there is an infinite path in T can be decided by an algorithm that
computes the following sequence (where Init = {q ∈ QT | Init(q)}):

Sequence 0

• FF(0) = Init

• FF(i) = post+
(
FF(i− 1)

)
for all i ≥ 1.

More specifically, the algorithm computes this sequence until a fixed point is reached, i.e., FF∗ = FF(i) =
FF(i + 1) for some i ≥ 0, and check if it is empty. This algorithm can be improved by exploiting a
simulation relation ⊴ on T . The idea is simple: for any set of states used in the algorithm, we can maintain
its most promising states instead of the set itself. Denote the set of minimal elements of Q ⊆ QT by
Min(⊴, Q) = {q ∈ Q | ∀q′ ∈ Q. (q′ ⊴ q =⇒ q ⊴ q′)}. We write Q0 ⊑ Q1 if ∀q ∈ Q0.

(
∃q′ ∈ Q1. (q

′ ⊴ q)
)

and Q0 ≈ Q1 if Q0 ⊑ Q1 and Q1 ⊑ Q0. We can compute the following sequence instead:11

Sequence 1

• F̂F(0) = Min
(
⊴, Init

)
• F̂F(i) = Min

(
⊴, post+

(
F̂F(i− 1)

))
for all i ≥ 1.

In particular, Min
(
⊴, post+

(
F̂F(i− 1)

))
can be computed as the fixed point of the following sequence:

• F̂(0) = Min
(
⊴, post

(
F̂F(i− 1)

))
• F̂(j) = Min

(
⊴, post

(
F̂(j − 1)

)
∪ F̂(j − 1)

)
for all j ≥ 1.

10We postulate that q1 ⊴ q0 can be written as constraints on (variables comprising) q1 and q0; this is true for AI,k and ⪯.
11In [23], this sequence is called the forward repeated reachability sequence of promising states.

26

The algorithm computes Sequence 1 until F̂F
∗
= F̂F(i) ≈ F̂F(i+ 1) for some i ≥ 0.

Theorem 2 ([23]). FF∗ is non-empty iff F̂F
∗

is non-empty.

The following proposition allows us to avoid the costly nested fixed point computation if Init = QT .

Proposition 26. posti+1(QT) ⊑ posti(QT) for all i ≥ 0.

It follows from the transitivity of ⊴ that we can compute the following (further simplified) sequence:

Sequence 2

• FF(0) = Min(⊴, Init)

• FF(i) = Min
(
⊴, post

(
FF(i− 1)

))
for all i ≥ 1.

Proposition 27. If Init = QT , then FF(i) = F̂F(i) for all i ≥ 0.

Finally, as the SMT solver is responsible for finding solutions, here we only need a semi-algorithm that
terminates when there is no solution. It follows that we can simply suppress the (expensive) termination
check and stop when FF(i) becomes empty.

Proposition 28. If Init = QT , then FF∗ is empty iff FF(i) is empty for some i ≥ 0.

7. Experimental results

In this section, we check the relative effectiveness of the approaches discussed thus-far. We compare the
approach discussed in Section 6 and the approach based on LTL model-checking (Section 5). For finding
solutions, we use the SMT solver Z3 [11] (in particular, we use the theory of quantifier-free linear integer
arithmetic) in an incremental fashion, i.e., we test the satisfiability of ψd

sim (defined in Proposition 25) with
increasing values of d. For proving the absence of solutions, we implemented the semi-algorithm described
in the last section (which computes FF(i) until it becomes empty) in C++ using the AaPAL library [24]. All
experiments were conducted on an IBM x3550 server (Intel Xeon X5680 @ 3.33GHz (12C/24T) + 64GB
RAM) with a timeout of 1200 seconds. The benchmarks are available from [1].

7.1. Experimental setup
Test cases. The set of test cases consists of 500 randomly generated pairs of I, k (where 217 of them have
no solution). The following parameters are chosen at random when generating them:

• type = {‘Euclidean’, ‘Spherical’, ‘Random’}

• n ∈ {4, 5, 6, 7, 8}

• k ∈ {1, 2, 3}.

For the ‘Euclidean’ type, we generate points in a 10000× 10000 grid and calculate the Euclidean distances
between them. For the ‘Spherical’ type, we generate latitude and longitude values and compute the distances
between them, assuming they are points on the Earth, with the haversine formula [25]. These distances are
then scaled down and filled into FT to make FTmax = 20. For the ‘Random’ type, we generate the values
in FT (except ‘1’s on the diagonal) from {1, . . . , 20}. Finally, for all these types of instances, we generate
the values in RD from {1, . . . , 3FTmax}.

27

Tools and modelling. We compared the following tools:

• NuSMV [26] is a BDD-based symbolic (LTL) model checker. For each cr-uav instance I and presumed
number of UAVs k, we model AI,k in its modelling language and check it against the LTL specification
φ in Section 5.3.

• ABC [27] is a SAT-based model checker that won the liveness track of the Hardware Model-Checking
Competition 2014 (HWMCC’14) [28]. For our purpose, we translate our NuSMV models into AIGER
circuits [29] with a customised version of SMVFlatten [30] and use ABC to check them.

• IImc [31] is a SAT-based model checker that won the liveness track of HWMCC’13. We use it in the
same way as ABC.

7.2. Results
The execution time of 217 test cases with no solution are illustrated in Figure 28. From the figure, it

is clear that both ABC and IImc are significantly faster than NuSMV. In particular, IImc performs better
than ABC on these instances. Our semi-algorithm, labelled with ‘sim’ in the figure, is much more efficient
than these three model checkers. Moreover, IImc and ABC use three to four solver engines that are ran on
different CPU cores, whereas sim uses a single core.

The execution time of 283 test cases with solutions are illustrated in Figure 29. It is clear that Z3 is
much faster than the other model checkers.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of solved instances

sim
NuSMV

ABC
IImc

Figure 28: Comparison with model checkers for the 217 ‘no solution’ instances. Our semi-algorithm is labelled with ‘sim’.

8. Summary and future work

We defined the cr-uav problem, proved that it is PSPACE-complete even in the single-UAV case (con-
trary to a claim in the literature [8]), suggested a reduction to model-checking, and presented experimental
results with various algorithms, including a portfolio which runs in parallel a bounded model checker for
detecting solutions and an explicit-state search that attempts to prove their absence.

28

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of solved instances

Z3
IImc
ABC

NuSMV

Figure 29: Comparison with model checkers for the 283 instances for which there is a solution.

There are multiple ways in which this research can be extended. On the algorithmic side, one may
consider methods to accelerate the search by reducing the magnitude of the constants. It is trivial that
they can all be divided (except the ‘1’s on the diagonal of FT) by their greatest common divisor without
affecting the solution. But what is more interesting is that when all constants are coprime, one may adopt
the standard notion of weakening and strengthening specifications [16]. For example, if there is no solution to
the instance obtained by dividing all the constants by a number, rounding up all the relative deadlines and
rounding down all the flight times, then one can conclude that there is no solution to the original instance.
One may also apply symmetry reduction [32] for further state-space reduction. Intuitively, since all UAVs
are identical, it is not necessary to maintain an ordering between them.

On the complexity front, there are many unanswered questions. Our PSPACE-hardness proof crucially
depends on the freedom to set flight times and relative deadlines. In [33], it is claimed that the Euclidean
version of the problem, i.e., in which targets can be realised as points in a two-dimensional plane (with
discretised distances between points), is NP-complete (with a single UAV). In the view of our result, we
would like to investigate whether this claim is indeed true. It is conceivable that the techniques used in
the well-known NP-hardness proof of euclidean tsp [19] might be useful in this regard, but we were
unfortunately unable to leverage them in the case at hand.

As we mentioned earlier, introducing periodicity into many NP-complete problems renders them PSPACE-
complete [9]. The cr-uav problem, on the other hand, can be seen as a recurrent variant of the decision
version of the Travelling Salesman Problem with Time Windows (tsptw) with only upper bounds (or TSP
with Deadlines [34]). Its PSPACE-hardness hence stems from recurrency: the decision version of the (non-
recurrent) tsptw problem is NP-complete [35]. The main difference between the two notions is that, in
the former, a problem instance consists of a number of parts that explicitly correspond to neighbouring
periods (e.g., in the case of periodic sat, the input is a formula with two parts that correspond to two
copies of variables), whereas this is not the case in the latter. Our reduction reveals a connection between
these two types of problem specifications. In addition to the generalised windows scheduling problem we
mentioned earlier (and a more restricted variant, the generalised pinwheel scheduling problem [36]), there
are also crucial problems in other domains that are of a recurrent nature, e.g., the message ferrying prob-

29

lem [37]. Most of these problems are only known to be NP-hard. It would be interesting to investigate
whether our reduction can be adapted to establish PSPACE-hardness of these problems. Another possible
way to extend our complexity result is to do a more refined complexity analysis of the cr-uav problem.
For example, could it be fixed-parameter tractable (FPT) in some parameters? Is there a polynomial-time
approximation scheme (PTAS) under certain conditions (see [38] for some related results)? We leave these
questions for future work.
[1] The CR-UAV problem home-page, http://ie.technion.ac.il/~ofers/cruav/.
[2] Unmanned air vehicle systems association, http://www.uavs.org/.
[3] M. Alighanbari, Y. Kuwata, J. P. How, Coordination and control of multiple uavs with timing constraints and loitering,

in: Proceedings of ACC 2003, Vol. 6, IEEE Press, 2003, pp. 5311–5316.
[4] K. Sundar, S. Rathinam, Route planning algorithms for unmanned aerial vehicles with refueling constraints, in: Proceed-

ings of ACC 2012, IEEE Press, 2012, pp. 3266–3271.
[5] G. Yang, V. Kapila, Optimal path planning for unmanned air vehicles with kinematic and tactical constraints, in: Pro-

ceedings of CDC 2002, Vol. 2, IEEE Press, 2002, pp. 1301–1306.
[6] A. Richards, J. P. How, Aircraft trajectory planning with collision avoidance using mixed integer linear programming, in:

Proceedings of ACC 2002, Vol. 3, IEEE Press, 2002, pp. 1936–1941.
[7] N. Drucker, M. Penn, O. Strichman, Cyclic routing of unmanned air vehicles, Tech. rep., Technion, Industrial Engineering

and Management, iE/IS-2014-12. Available from [1]. (2014).
[8] N. Basilico, N. Gatti, F. Amigoni, Developing a deterministic patrolling strategy for security agents, in: Proceedings of

WI-IAT 2009, IEEE Computer Society Press, 2009, pp. 565–572.
[9] J. B. Orlin, The complexity of dynamic languages and dynamic optimization problems, in: Proceedings of STOC 1981,

ACM Press, 1981, pp. 218–227.
[10] A. Pnueli, The temporal logic of programs, in: Proceedings of FOCS 1977, IEEE Computer Society Press, 1977, pp. 46–57.
[11] L. de Moura, N. Bjørner, Z3: An efficient SMT solver, in: Proceedings of TACAS 2008, Vol. 4963 of LNCS, Springer-

Verlag, 2008, pp. 337–340.
URL http://dx.doi.org/10.1007/978-3-540-78800-3_24

[12] H.-M. Ho, J. Ouaknine, The CR-UAV problem is pspace-complete, in: Proceedings of FoSSaCS 2015, Vol. 9034 of LNCS,
Springer, 2015, pp. 328–342.

[13] N. Drucker, M. Penn, O. Strichman, Cyclic routing of unmanned aerial vehicles, in: Proceedings of CPAIOR 2016, Vol.
9676 of LNCS, Springer, 2016, pp. 125–141.

[14] A. Bar-Noy, R. E. Ladner, T. Tamir, T. VanDeGrift, Windows scheduling of arbitrary-length jobs on multiple machines,
J. Scheduling 15 (2) (2012) 141–155.

[15] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment, J. ACM 20 (1)
(1973) 46–61.

[16] T. A. Henzinger, Z. Manna, A. Pnueli, What good are digital clocks?, in: Proceedings of ICALP 1992, Vol. 623 of LNCS,
Springer, 1992, pp. 545–558.

[17] K. L. McMillan, Symbolic model checking, Kluwer, 1993.
[18] M. Sipser, Introduction to the Theory of Computation, Cengage Learning, 2012.
[19] C. H. Papadimitriou, The Euclidean traveling salesman problem is NP-complete, Theoretical Computer Science 4 (3)

(1977) 237–244.
[20] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, Tech. Rep. 388, CMU (1976).
[21] C. Baier, J.-P. Katoen, Principles of model checking, MIT Press, 2008.
[22] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Advances in Computers 58 (2003)

117–148.
[23] L. Doyen, J.-F. Raskin, Antichains algorithms for finite automata, in: Proceedings of TACAS 2010, Vol. 6015 of LNCS,

Springer, 2010, pp. 2–22.
[24] A. Bohy, Antichain based algorithms for the synthesis of reactive systems, Ph.D. thesis, University of Mons (2014).
[25] R. W. Sinnott, Virtues of the Haversine, Sky and Telescope 68 (1984) 158.
[26] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV2:

An opensource tool for symbolic model checking, in: Proceedings of CAV 2002, Vol. 2404 of LNCS, Springer, 2002, pp.
359–364.

[27] R. K. Brayton, A. Mishchenko, ABC: An academic industrial-strength verification tool, in: Proceedings of CAV 2010, Vol.
6174 of LNCS, Springer, 2010, pp. 24–40.
URL http://dx.doi.org/10.1007/978-3-642-14295-6

[28] B. Sterin, Personal Communication (2014).
[29] A. Biere, The aiger and-inverter graph (aig) format, Available at fmv.jku.at/aiger.
[30] A. Biere, Available at fmv.jku.at/smvflatten (2014).
[31] Z. Hassan, A. R. Bradley, F. Somenzi, Incremental, inductive CTL model checking, in: Proceedings of CAV 2012, Vol.

7358 of LNCS, Springer, 2012, pp. 532–547.
URL http://dx.doi.org/10.1007/978-3-642-31424-7

[32] E. A. Emerson, A. P. Sistla, Symmetry and model checking, Formal Methods in System Design 9 (1996) 105–131.
[33] J. Las Fargeas, B. Hyun, P. Kabamba, A. Girard, Persistent visitation under revisit constraints, in: Proceedings of ICUAS

2013, IEEE Press, 2013, pp. 952–957.

30

http://ie.technion.ac.il/~ofers/cruav/
http://www.uavs.org/
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-14295-6
http://dx.doi.org/10.1007/978-3-642-14295-6
http://dx.doi.org/10.1007/978-3-642-31424-7
http://dx.doi.org/10.1007/978-3-642-31424-7

[34] H.-J. Böckenhauer, J. Hromkovic, J. Kneis, J. Kupke, The parameterized approximability of TSP with deadlines, Theory
of Computing Systems 41 (3) (2007) 431–444.

[35] M. W. Savelsbergh, Local search in routing problems with time windows, Annals of Operations Research 4 (1) (1985)
285–305.

[36] E. A. Feinberg, M. T. Curry, Generalized pinwheel problem, Mathematical Methods of Operations Research 62 (1) (2005)
99–122.

[37] W. Zhao, M. H. Ammar, E. W. Zegura, A message ferrying approach for data delivery in sparse mobile ad hoc networks,
in: Proceedings of MobiHoc 2004, ACM Press, 2004, pp. 187–198.

[38] M. V. Marathe, H. B. Hunt III, R. E. Stearns, V. Radhakrishnan, Approximation algorithms for PSPACE-hard hierarchi-
cally and periodically specified problems, SIAM Journal on Computing 27 (5) (1998) 1237–1261.
URL http://dx.doi.org/10.1137/S0097539795285254

31

http://dx.doi.org/10.1137/S0097539795285254
http://dx.doi.org/10.1137/S0097539795285254
http://dx.doi.org/10.1137/S0097539795285254

	Introduction
	Definitions
	Scenario and problem inputs
	Routes and solutions
	Objective
	Related work
	Some simplifying observations

	Complexity
	The periodic sat problem
	The construction
	Correctness of the reduction

	Lower and upper bounds on the number of UAVs
	A lower bound on the number of UAVs
	An upper bound on the number of UAVs

	Solving the cr-uav problem via a reduction to LTL model checking
	Symbolic transition systems
	The symbolic transition system AI, k
	The LTL specification

	An optimisation based on a simulation relation on states
	Reducing the state space via a simulation relation
	Finding solutions with bounded model checking
	Proving the absence of solutions with explicit model checking

	Experimental results
	Experimental setup
	Results

	Summary and future work

