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The Unmanned Aerial Vehicle Routing and Trajectory Optimisation
Problem, a taxonomic review

Abstract

Over the past few years, Unmanned Aerial Vehicles (UAVs) have become more and more popular. The

complexity of routing UAVs has not been fully investigated in the literature. In this paper, we provide

a formal definition of the UAV Routing and Trajectory Optimisation Problem (UAVRTOP). Next, we

introduce a taxonomy and review recent contributions in UAV trajectory optimisation, UAV routing and

articles addressing these problems, and their variants, simultaneously. We conclude with the identification

of future research opportunities.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are aircraft that do not need a human pilot on board. In general,

these vehicles are either controlled by an embedded computer or by a pilot operating a remote control.

Drones, remote controlled helicopters and unmanned gliders are examples of UAVs. Gliders differ from

the other types due to the lack of on-board propulsion (e.g., an electric or combustion engine). Modern5

UAVs were first developed in the 1920s to support military operations in which the presence of human

pilots was either impossible or too dangerous (Beard & McLain, 2012; Keane & Carr, 2013). However,

UAVs have recently become very popular for logistics and surveillance applications (Tsourdos et al.,

2010).

A report from the National Purchase Diary has shown that sales of drones increased by 224% in10

twelve months from April 2015, reaching a total of 200 million dollars (NPD, 2016). Due to being able

to embed several transmitters, sensors and photographic equipment, UAVs can be used in a large range

of applications. Successful cases have been reported in, for example, aerial reconnaissance (Ruzgiené

et al., 2015), aerial forest fire detection (Yuan et al., 2015), target observation (Rysdyk, 2006), traffic

monitoring and management (Kanistras et al., 2013), online commerce (Wang et al., 2017), geographical15

monitoring (Uysal et al., 2015), scientific data collection (Stöcker et al., 2015), meteorological sampling

(Elston et al., 2014) and disaster assessment and response (Quaritsch et al., 2010; Xu et al., 2014; Nedjati

et al., 2016). In Hayat et al. (2016), several applications of UAV networks are reviewed. The use of UAVs

for 3D mapping is surveyed in Nex & Remondino (2013). A literature review about the applications

of UAVs in humanitarian relief is provided by Bravo & Leiras (2015). More examples of the growing20

applications of UAVs are presented in Rao et al. (2016).

The academic routing community has acknowledged the interest of companies and organisations in

adopting UAVs in their operations. A recent example is the approach of combining UAVs and trucks for

distribution activities by dispatching drones from trucks for the last mile distribution within city centres
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(Ha et al., 2015; Murray & Chu, 2015; Wang et al., 2017). It has been shown that this solution can reduce25

truck travel time, and the corresponding CO2 emissions, by up to 50%. The UAV Task Assignment

Problem (UAVTAP), which is closely related to the UAV routing problem, consists of optimising the

assignment of a set of UAVs to a set of tasks subject to mission constraints (Khamis et al., 2015). A

growing body of literature appeared on the UAVTAP in the last decade, e.g., Ramirez-Atencia et al.

(2016), Wang et al. (2015), Hu et al. (2015a), Thi et al. (2012), Alidaee et al. (2010) and Edison & Shima30

(2011). However, the UAV routing and task assignment literatures have often neglected constraints due to

the flight dynamics of the UAVs. Finding feasible trajectories for UAVs in a routing problem is a complex

task, but it is necessary to ensure the feasibility of the UAVs routes. For some real-world applications

involving more complex UAV systems, such as unmanned gliders and fixed-wing vehicles, the definition of

routes must be coupled to the design of flyable trajectories, otherwise the assigned routes might become35

inefficient or even infeasible for these UAVs.

Most of the UAVs used for civil applications present a low flight autonomy. Therefore, it is important

for UAV routing algorithms to properly model battery life. According to Fügenschuh & Müllenstedt

(2015), this can be achieved by integrating the UAVs’ dynamics with routing. As mentioned by the

authors, for powered UAVs, a proper modelling of the actual fuel consumption must include, for instance,40

the current weight, the altitude, the speed and climb/descent rate, which are usually modelled by flight

dynamics.

Zhang et al. (2012) consider a problem where a UAV must visit a set of targets. However, after reaching

a predetermined distance from a target the UAV must then adjust its flight attitude (i.e., its orientation)

in order to perform a payload delivery. After the delivery, the UAV must complete an escape manoeuvre45

and prepare for the next delivery. According to Zhang et al. (2012), routing and trajectory optimisation

must be integrated in order to ensure the safety of the vehicle and the feasibility of trajectories.

The computation of trajectories for UAVs has been widely studied in the aerospace engineering and

optimal control literature (Yang et al., 2016). The Trajectory Optimisation (TO) problem consists of

finding a control history of a given vehicle, that minimises a scalar performance index (for example,50

flight time or fuel consumption) while satisfying constraints on the kinematics (position, velocity and

acceleration) and the dynamics (forces and moments) of the vehicle (Betts, 1998). A trajectory is generally

associated with a set of Equations of Motion (EOMs) that describe the relationship between the spatial

and the temporal changes to the system. The TO problem is closely related to the Optimal Control (OC)

problem (Betts, 2001).55

The problem named Path Planning (PP) consists of finding a flyable path for a UAV visiting a

given sequence of waypoints (targets) in a two-dimensional (2D) or three-dimensional (3D) space without

considering the vehicle’s dynamics. According to Gasparetto et al. (2015), PP is a geometric problem,

because it is defined as finding a geometric path regardless any specified time law. In turn, TO consists

of assigning a time law to a controlled geometric path.60

More complex variants of the PP problem including, for instance, wind and motion constraints, require

substantial simplifications and assumptions to be solved heuristically (Kunchev et al., 2006; Rathinam

& Sengupta, 2007). The books by Tsourdos et al. (2010) and Beard & McLain (2012) provide good

overviews of PP algorithms for UAVs. On the other hand, high fidelity TO models (i.e., using more
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accurate physical models) have been developed for aircraft and spacecraft (Raivio et al., 1996; Conway,65

2010; Fisch, 2011; Garćıa-Heras et al., 2014; Colasurdo et al., 2014). These models are currently solved

by OC techniques. An overview of OC methods for TO is provided in Betts (1998, 2001).

The field of TO has however not considered routing decisions: given a set of ordered waypoints, it is

possible to find a feasible trajectory for a generic UAV, but it is not clear in the literature if the sequence

of waypoints is appropriate. For example, for a gliding vehicle (i.e., with no onboard thrust) a given70

waypoint sequence might be infeasible in terms of flight dynamics. Given a fleet of UAVs, it is an open

question how to combine routing and trajectory decisions in a single optimisation problem. As far as

the authors are aware, there is not a survey summarising the literature about routing and trajectory

optimisation for UAVs.

Research about integrated routing and TO problems seems to be still fragmented. One of the main75

contributions of this paper is introducing the UAV Routing and Trajectory Optimisation Problem (UAVR-

TOP). We believe that integrating TO and routing in a single optimisation problem is a key research

challenge in adopting UAVs for real world applications.

The purpose of this survey is to present the UAVRTOP, highlighting approaches already proposed in

the literature and providing a direction for further research. We introduce a taxonomy, that is able to80

identify the key components of routing and TO problems, as well as highlight assumptions and simplifi-

cations commonly adopted in the literature.

The remainder of this paper is organised as follows. In Section 2, we formally define the UAVRTOP.

In Section 3, a background on TO problems is provided. The same is done in Section 4 for vehicle routing

problems. In Section 5, a taxonomy of UAV routing and TO problems is provided. An application of the85

proposed taxonomy to a selected number of papers is demonstrated in Section 6. This section continues

with an analysis of the results obtained from the taxonomic review. In Section 7, we discuss future

research opportunities.

2. The UAV routing and trajectory optimisation problem

In this section, we formally define the UAV Routing and Trajectory Optimisation Problem (UAVR-90

TOP), the problem in which a fleet of UAVs has to visit a set of waypoints assuming generic kinematics

and dynamics constraints. Wind conditions, collision avoidance between UAVs and obstacles can also be

incorporated in the model.

2.1. A mathematical formulation for the UAVRTOP

In the following, we assume a fleet C of UAVs is available at the launching site 0. Let G = (V,A)95

be a graph, where the set V represents all the waypoints that need to be visited by the UAVs and A

represents the set of arcs between waypoints. In addition, let 0′ represent the landing site. The cost of

using a vehicle k ∈ C is Fk. The parameters (e.g., mass, wing area, aerodynamics coefficients) of the

UAV k travelling between i and j are stored in the vector pijk. Note that these parameters may change

during the mission due, for example, to a change in flight mode (if hybrid UAVs are used). The state of100

a UAV is a vector fully defining the position, orientation and velocity of the vehicle in some coordinate

system (alternative state representations will be described in Section 3).
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For simplicity, we recall yijk(tijk) ∈ Rnk
y , nky ∈ Z, the state variable of the UAV k travelling between

waypoints i and j at time tijk ∈ R. Similarly, the control variables model the inputs that are given to

the physical systems in order to achieve a desired trajectory. Typical control variables for UAVs are the105

thrust (the impulse given by the UAV engine, if any), the roll angle, a.k.a. bank angle (which banks the

aircraft to change its horizontal flight direction), and the angle-of-attack (which is related to how much

lift the aircraft’s wing generate). We define uijk(tijk) ∈ Rnk
u , nku ∈ Z, the control variables for a UAV k

flying on arc (i, j) at time tijk ∈ R.

The physical laws governing the UAV k travelling between the waypoints i and j at time tijk are

referred as system dynamics. In general terms, the system dynamics can be expressed by a set of EOMs

in the form of a system of Ordinary Differential Equations (ODEs) as follows:

ẏijk = fk(yijk(tijk),uijk(tijk),pijk, tijk)∀i, j ∈ V,∀k ∈ C (1)

The functions fk,∀k ∈ C, in the right hand side of the EOMs (1), represent the relationship between the110

variables and parameters with the derivatives over time of the state variables (here denoted by “ ˙ ”).

State and control variables have to be specified for a time instant to initialise the ODEs. In what

follows, we assume that the initial conditions need to be specified at time t = 0. It is also reasonable

to assume that only the control variables need to be optimised since the values of the states can be

determined, provided an initial condition and the evolution of the controls over time.115

Let wk(.) be a function computing the cost of using UAV k along an arbitrary trajectory. The routing

cost for a UAV k to travel between waypoints i and j can be computed as:∫ tfijk

toijk

wk(yijk(tijk),uijk(tijk),pijk, tijk)dtijk. (2)

The variables toijk and tfijk represent the initial and final flight times of the UAV k travelling between

waypoints i and j such that tijk ∈ [toijk, t
f
ijk].

Bounds on the state and control variables are usually imposed by a given UAV technology. We denote

ylb
ijk and yub

ijk the lower and upper bounds on the state variables yijk(tijk) of the UAV k travelling in an

arc (i, j) for all tijk ∈ R, respectively. Similarly, ulb
ijk and uub

ijk represent the lower and upper bounds of120

the control variables uijk(tijk) of the UAV k travelling on arc (i, j) for all tijk ∈ R. We also assume lower

and upper bounds on the operational constraints, here denoted as glb
ijk and gub

ijk.

According to our assumption on the initial conditions, the initial flight time from the launching point

must be defined as to0jk = 0,∀j ∈ V,∀k ∈ C. Let ȳo and ūo represent predetermined initial conditions.

Thus, the initial state and control variables can be defined as y0jk(to0jk) = ȳo and u0jk(to0jk) = ūo,125

respectively, if UAV k departs from the launching point.

Let us define the following binary variables:

xijk =

1, if UAV k flies directly from waypoint i to j

0, otherwise.

(3)

Hereafter, we will describe the optimisation problem defined by Equations (4-19). This formulation is

a conceptual model created for describing the UAVRTOP in mathematical terms. The objective function

(4) minimises the sum of the fixed cost of using a UAV, the routing cost of flying between waypoints i
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and j and a measure of the quality of the trajectories at the end points of each arc (i, j). Non desirable130

features at the end points of the UAVs’ trajectories can be penalised in the objective function by means of

the functions φk(yijk(tfijk),uijk(tfijk),pijk, tfijk). Such undesirable characteristics may include, e.g., sharp

flight angles, prohibited flight speeds and noise levels (Vanderbei, 2001; Zhang et al., 2012). Constraints

(5) and (6) ensure that every waypoint is visited exactly once and that, if a UAV arrives at a waypoint

l ∈ V , it must also depart from l. Constraints (7) make sure that each UAV departs from the launching135

point 0 and lands in 0′, if the UAV k is used. Constraints (8) ensure that the UAVs’ dynamics are

preserved if arc (i, j) is used in a solution. In a similar way, Constraints (9-11) make sure the bounds on

the state variables, control variables and operational constraints (gijk(yijk(tijk),uijk(tijk),pijk, tijk)) are

respected for every arc (i, j) and for every UAV k if these are travelled in the obtained solution. These

constraints can model, for example, collision avoidance and undesirable manoeuvres. Constraints (12)140

and (13) ensure that the final state and control variables at every arc (i, j) visited by UAV k is linked to

the state and control variables of its subsequent arc (j, l) if waypoints i, j and l are visited by UAV k in

this order. Constraints (14) preserve the continuity of the time variable tijk,∀i, j ∈ V, along the UAV’s k

trajectory for all k ∈ C. Constraints (15) and (16) provide the initial states and controls for every UAV

departing from the launching point. Finally, Constraints (17-19) define the domain of the variables.145

The UAVRTOP can be modelled as follows:

min
∑
k∈C

∑
i∈V

Fkx0ik

+
∑
k∈C

∑
(i,j)∈A

{∫ tfijk

toijk

wk(yijk(tijk),uijk(tijk),pijk, tijk)dtijk

}
xijk

+
∑
k∈C

∑
(i,j)∈A

φk(yijk(tfijk),uijk(tfijk),pijk, tfijk)xijk (4)

s.t.
∑
k∈C

∑
i∈V ∪{0}

i 6=j

xijk = 1,∀j ∈ V (5)

∑
i∈V ∪{0}

i 6=j

xijk −
∑

i∈V ∪{0′}
i 6=j

xjik = 0,∀j ∈ V,∀k ∈ C (6)

∑
i∈V

x0ik =
∑
i∈V

xi0′k ≤ 1,∀k ∈ C (7)

ẏijk = fk(yijk(tijk),uijk(tijk),pijk, tijk)xijk,∀i, j ∈ V,∀k ∈ C (8)

glb
ijkxijk ≤ gijk(yijk(tijk),uijk(tijk),pijk, tijk) ≤ gub

ijkxijk,

∀i, j ∈ V,∀k ∈ C (9)

ylb
ijkxijk ≤ yijk(tijk) ≤ yub

ijkxijk,∀i, j ∈ V,∀k ∈ C (10)

ulb
ijkxijk ≤ uijk(tijk) ≤ uub

ijkxijk,∀i, j ∈ V,∀k ∈ C (11)

yjlk(tojlk)xijk = yijk(tfijk)xijkxjlk,∀i, j, l ∈ V,∀k ∈ C (12)

ujlk(tojlk)xijk = uijk(tfijk)xijkxjlk,∀i, j, l ∈ V,∀k ∈ C (13)

tojlkxijk = tfijkxijkxjlk,∀i, j, l ∈ V,∀k ∈ C (14)

y0jk(to0jk) = ȳox0jk,∀j ∈ V,∀k ∈ C (15)
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u0jk(to0jk) = ūox0jk,∀j ∈ V,∀k ∈ C (16)

xijk ∈ {0, 1},∀i, j ∈ V,∀k ∈ C (17)

uijk(tijk) ∈ Rnk
u ,∀i, j ∈ V,∀k ∈ C (18)

tijk, t
o
ijk, t

f
ijk ∈ R.∀i, j ∈ V,∀k ∈ C (19)

3. The trajectory optimisation problem

TOPs are a special case of OC problems determining the trajectory of a system (e.g., vehicles such as

spacecraft, aircraft, UAVs) while minimising a measure of performance and satisfying a set of boundary

(initial and final) conditions, path constraints and system dynamics.

The origin of OC problems dates to as early as the 17th century when Johann Bernoulli proposed the150

Brachistochrone problem (Ross, 2009), one of the first problems in calculus of variations. One of the first

applications of the calculus of variations to the control of flying vehicles was presented by Robert Goddard

in “A method of reaching extreme altitudes” (Goddard, 1919), where the objective was to determine the

minimum initial mass of a ground-based rocket necessary to achieve a given altitude. OC methods are

a classical tool in the computation of spacecraft trajectories, e.g., for interplanetary travel and satellite155

transfer orbits around Earth (Conway, 2010; Colasurdo et al., 2014).

Usually, system dynamics are modelled by a set of EOMs that can be nonlinear and discontinuous. six

degrees of freedom (6DOF) EOMs are composed by translational equations (containing forces, position,

velocity, acceleration, etc.) and rotational equations (containing moments, angular velocities, angular

acceleration, etc.). Under simplifying assumptions, 6DOF EOMs can be decoupled into three degrees of160

freedom (3DOF) EOMs, see, e.g., Stengel (2004) and Fisch (2011). Usual state variables in 6DOF EOMs

are the position vector, velocity, pitch angle, pitch rate, weight and flight path angle. In the 3DOF case,

the state vector can represent, for instance, the position, velocity, flight path angle and yaw angle of the

vehicle.

Solving a Trajectory Optimisation Problem (TOP) for an aircraft consists of generating the inputs165

for the aircraft’s control system so as to perform a desired set of manoeuvres. A TOP takes as input

the dynamic constraints of the aircraft and outputs time-indexed states and controls such as positions,

velocities and accelerations.

Other difficulties can be added to the problem if one considers that the boundary conditions depend

on unknown variables or if the dynamics of the vehicles change over time. In this cases, TOPs can be170

divided into two or more phases in order to properly model the changes in the operational or physical

characteristics of the vehicles. A phase can be defined as a segment of a trajectory in which the dynam-

ical system remains unchanged. Phases can be described by their own boundary conditions, system of

differential equations, operational constraints and time events. Finally, all phases can be linked or not

depending on the behaviour of the dynamical system.175

Aircraft TO models have gained much popularity over the last decades. For instance, Schultz &

Zagalsky (1972) present solutions for several fixed endpoint aircraft TOPs using calculus of variations. In

Raivio et al. (1996), a nonlinear programming-based method is proposed to compute optimal trajectories

for a descending aircraft. Fisch (2011) presents a high fidelity optimisation framework for the computation
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of air race trajectories under safety requirements. Garćıa-Heras et al. (2014) compare several OC methods180

for the TO of cruise flight with fixed arrival time. Finally, Delahaye et al. (2014) present a survey of

mathematical models for the computation of aircraft trajectories.

OC methods for UAVs are similar to those of full size aircraft, and therefore similar system dynamics

can be used for both types of planes. On the other hand, new challenges are introduced when specific

mission demands are requirements. Moreover, due to their limited capacity, extra effort must be put185

into determining successful flight plans. Therefore, algorithms that are capable of tackling the UAVs’

particularities while developing flight plans must be developed.

3.1. Direct and indirect methods for trajectory optimisation problems

Two main classes of numerical methods became very popular for solving TOPs, these being, direct

and indirect methods. The so-called direct methods rely on the discretisation of a infinite-dimensional OC190

problem into a finite-dimensional optimisation problem. This strategy is commonly known as “discretise,

then optimise”. In a direct single shooting method, for example, the controls are discretised on a fixed

grid using an arbitrary parametrisation scheme. The next step of this method consists of solving a non-

linear programming problem in order to find an optimal vector of parameters. The indirect methods

consist of determining necessary optimality conditions for an OC problem and then using a discretisation195

method to solve the resulting equations. Indirect methods generally apply an “optimise, then discretise”

strategy. In an indirect single shooting method, for example, the resulting optimality conditions consist

of a boundary value problem, which can be solved by means of a simple single shooting algorithm (Betts,

2001).

Several sophisticated algorithms have been developed for solving TOPs. Reviewing such works is200

considered beyond the scope of this paper. More information about algorithms for OC and TO can be

found, for example, in the papers by Stryk & Bulirsch (1992), Betts (1998), Ross (2009), Wang (2009)

and Rao (2014); and, the books by Bryson (1975), Bertsekas (1979), Betts (2001), Bryson (2002) and

Kirk (2012).

3.2. The UAV path planning problem205

Using the notation defined by Latombe (1991), the basic PP problem can be defined as follows. Let

A be an object (a robot) moving in a workspace S (e.g., in an Euclidean space S = Rn, n = 2 or 3). A

set of obstacles B1, . . . ,Bm is assumed to be distributed over S. The problem consists in, given initial

and final configurations (position and orientation) for A, find a path in S that avoids collisions with the

objects B1, . . . ,Bm. It has been shown that this problem is NP-hard if the velocity of the object A is210

unbounded and no rotation is considered (Reif & Sharir, 1994). For Gasparetto et al. (2015), a path

planning problem consists of finding a collision-free path among an environment from an initial point

to a final goal. For example, YongBo et al. (2017) studied a path planning problem with obstacles in

three dimensions. In the literature, the terms PP and motion planning are used almost interchangeably

(Barraquand & Latombe, 1991). Both problems have gained much popularity over the years. Figure 1215

shows the number of publications by year on UAV PP problems.

PP algorithms can be classified into discrete and continuous methods. In the former, the workspace

S is transformed into a graph through discretisation. Conventional heuristics or exact shortest path
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Figure 1: Number of published papers by year on PP problems.

algorithms are then used to find a path between a given initial configuration and a final configuration.

The output for discrete methods are usually polygonal paths, i.e., paths with no curvature constraints.220

Therefore, in the case of UAVs these paths need to be further refined. Continuous methods represent S by

using a continuous function. Tsourdos et al. (2010), for instance, employed attraction fields to represent

the desired endpoints and repulsive fields to represent obstacles in order to produce a collision-free UAV

path.

Problems integrating UAV routing and PP have been studied before, see, for example, Manyam et al.225

(2015), Ho & Ouaknine (2015), Enright et al. (2015), Sundar & Rathinam (2014) and Levy et al. (2014).

Under simplifying assumptions, a PP problem can be modelled as a network problem and standard

shortest path techniques can be used. A common assumption is that the UAV can be modelled as a

Dubin’s vehicle (Medeiros & Urrutia, 2010). A Dubin’s vehicle has a limited turning angle and is restricted

to move forward, therefore it can be a good representation for some types of UAVs. This simplification230

is very popular specially for modelling rotary-wing aircraft such as quadcopters. However, for most

fixed-wing UAVs, the Dubin’s assumption might not be suitable due to their complicated dynamics. The

reader is referred to Tsourdos et al. (2010) for more details on UAVs PP methods.

Most algorithms for UAV PP have originated from adaptations of existing algorithms for robot PP.

However, we do not intend to survey all PP algorithms as it has already been done in other articles, e.g.,235

Kunchev et al. (2006), Goerzen et al. (2009), Galceran & Carreras (2013) and Yang et al. (2016).

4. The vehicle routing problem

The Vehicle Routing Problem (VRP) is a very well known problem in operational research and com-

binatorial optimisation. In the VRP, routes must be assigned to a set of vehicles that must serve a set of

customers such that the total cost of the operation is minimised. Its classical variant is called Capacitated240

Vehicle Routing Problem (CVRP), where a load capacity is assigned to each vehicle.

The CVRP can be formally defined as follows. A set of vertices V = {0, . . . , n} and a set of arcs

A connecting these vertices are given. Each vertex represents a customer with demand di, i ∈ V \ {0}.

A value cij is assigned to each arc (i, j) ∈ A representing the travel cost between two customers. Let

C = {1, . . . ,m} be a set of homogeneous vehicles with capacity Q. Here we denote the vertex i = 0245
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representing the depot (launching site). The CVRP consists of finding a minimum cost set of m routes

starting and ending at the depot such that all customers are visited exactly once, all customers’ demands

are satisfied and the capacity of the vehicles are respected. The CVRP is well known to be NP-hard.

More information about the VRP and its variants can be found, e.g., in Golden & Assad (1988), Cordeau

et al. (2007), Golden et al. (2008), Toth & Vigo (2002), Eksioglu et al. (2009), Lahyani et al. (2015) and250

Braekers et al. (2016).

The m-TSP is closely related to the VRP. In the m-TSP, m minimum cost tours starting at the depot

must be found such that every vertex in V \ {0} is visited exactly once. The m-TSP can be reduced

to the CVRP if all vehicles are considered to have infinite capacity. An extensive literature review on

models and algorithms for the m-TSP is presented by Bektas (2006).255

The VRP and the m-TSP have been widely studied for terrestrial applications, but with the develop-

ment of new technologies, such as unmanned vehicles, new variants of these problems are gaining interest

among the scientific community. The problem of routing an aerial vehicle is more complex than the VRP

because it combines the combinatorial characteristics of the VRP with the complexity of dealing with

the system dynamics of UAVs (i.e., flight dynamics, battery life, wind conditions).260

4.1. UAV task assignment problem

The UAV Task Assignment Problem (UAVTAP) consists of finding an optimal assignment of UAVs

to a set of tasks. Often, the UAVs have different characteristics and the tasks depend on the nature

of the application. It has been shown that this problem is NP-hard (Alidaee et al., 2010). Due to the

quick development of UAV technology, new challenging assignment problems arise every day and many265

algorithms have been developed to address the new challenges. Figure 2 shows the number of publications

by year in UAVTAPs, the y axis corresponds to the number of publications found in Science Direct and

Web of Knowledge databases. One can observe that this field of research has gained attention of the

scientific community. A detailed literature review about algorithms for multi-robot Task Assignment

(TA) problems can be found in Khamis et al. (2015).270
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Figure 2: Number of published papers by year on TA problems.

The UAVTAP shares some characteristics with the VRP. Many examples in the literature support

this claim. One can cite, for instance, TA with time windows (Karaman & Inalhan, 2008), multi-depot

9



(launching points) (Darrah et al., 2012), task allocation with resource constraints (Kim et al., 2015),

TA with flexible demand (Alidaee et al., 2011), real-time and dynamic assignment (Kim et al., 2007;

Lin et al., 2013), time-dependent TA (Kingston & Schumacher, 2005), and finally, TA under uncertainty275

(Alighanbari & How, 2008; Hu et al., 2015a). However, the UAVTAP differs from the VRP by allowing,

for example, multiple visits and subtours. In addition, new features may also be introduced, e.g., the

possibility of heterogeneous UAVs to perform multiple operations at the same time (Shima & Schumacher,

2009). On the other hand, the kinematics and dynamics of UAVs are usually not considered, as opposed

to the formulation of path/motion planning and TO problems.280

5. UAVRTOP taxonomy

In this section, a taxonomy is proposed in order to help readers identify the key differences among

various UAV routing problems and guide their research towards the development of new algorithms.

We have identified 20 attributes that are common to the UAV TO, PP, routing and TA literatures.

They define common features of UAVs routing problems, such as the kind of fleet, mission characteristics285

and flight dynamics. Attributes are further grouped into five classes. The first class collects the charac-

teristics of UAVs, the second class represents the characteristics of waypoints, the third class describes the

characteristics of the environment, the fourth class involves the characteristics of the launching point(s)

and the last class is concerned about flight duration. These are listed in Table 1. The last two lines of

this table are not part of the taxonomy, but they are important for understanding Appendix A.290

Within class UAVs, the fleet and how the UAVs’ kinematics and dynamics are modelled are considered

as follows:

1. Multiple - A fleet of vehicles is available (as opposed to a single vehicle).

2. Heterogeneous - Heterogeneous fleet, i.e., the fleet is composed of vehicles with different character-

istics (as opposed to a homogeneous fleet).295

3. Fleet Size - The size of the fleet must be optimised (as opposed to a fixed fleet size).

4. Capacity - Vehicles are capacitated (as opposed to uncapacitated vehicles). A capacitated UAV

might have, for example, a maximum flight endurance or maximum payload capacity.

5. Geometric - The vehicle’s flight dynamics are neglected (as opposed to considering flight dynamics).

For example, by using Euclidean distances between waypoints instead of flight distances.300

6. Dubin’s - Dubin’s vehicles are used to model the UAVs.

7. EOM - A set of differential equations has been used to model the vehicles’ kinematics and dynamics

(as opposed to neglecting the dynamics).

The class Waypoints presents the attributes of the waypoints (vertices):

8. Multiple - Multiple waypoints must be visited (as opposed to a single waypoint or destination).305

9. Unordered - The visiting order of waypoints is unknown (as opposed to a predefined order).

10. Visits - The waypoints can be visited multiple times (as opposed to a single visit for each waypoint).

11. Constraints - Special mission constraints must be considered. For instance, time-windows, prece-

dences, and special boundary conditions.
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12. Covering Region - A continuous, but not necessarily convex, region (or airspace) is defined over the310

waypoint. We believe this characteristic is important to the UAVRTOP since most UAVs’ sensors

require at least a minimum radius of action in order to be effective.

The Environment class collects the attributes about the environment where the UAVs operate:

13. 3D - The UAVs operate in a 3D space (as opposed to a 2D space).

14. Obstacles - The problem includes the presence of fixed or moving obstacles (as opposed to an315

obstacle-free environment).

15. Wind - The effects of wind are considered (as opposed to neglecting the wind effects).

16. Real-time - The problem must be solved in real-time. For example, waypoints and tasks arriving

at random times and locations.

The class Launching groups the attributes about the number of launching points (depots):320

17. Multiple - There are multiple launching points (as opposed to a single launching point).

18. Inter-depot - There are inter-depots available (e.g., for refuelling, battery replenishment or mainte-

nance of the UAVs).

Papers are classified in class Time according to the way the flight time is considered in their models:

19. Fixed - The UAVs’ flight times between arcs can be computed beforehand. This is a common325

characteristic of some PP methods (e.g., the Dubin’s model).

20. Variable - The UAVs’ velocities and flight times between arcs are optimisation variables.

In order to provide a survey of the most relevant and recent papers, we adopted the following pro-

cedure. Papers published since 2010 were collected from the following databases: The Web of Science,

Google Scholar and ScienceDirect. We have limited our search to papers published in English. In order330

to cover the most common types of UAVs, we considered Unmanned Combat Aerial Vehicle (UCAV),

Unmanned Aerial Systems (UAS) and aerial gliders in our search. The following keywords were used:

• UAV/UCAV/UAS/aerial glider trajectory optimisation

• UAV/UCAV/UAS/aerial glider PP

• UAV/UCAV/UAS/aerial glider motion planning335

• UAV/UCAV/UAS/aerial glider task assignment

• UAV/UCAV/UAS/aerial glider routing

Papers that focus on Control Theory for UAVs were not reviewed.

6. Critical review of the recent literature

In this section, we apply our taxonomy to 70 articles published between 2010 and 2016. We have340

balanced our analysis by considering articles dedicated to UAV TO/PP and UAV routing/TA. Papers

devoted to technical and theoretical aspects of UAV flight dynamics were excluded from our analysis.
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Table 1: Characteristics of the problems considered in this literature review.

UAVs

1 Multiple A fleet of vehicles is available

2 Heterogeneous The fleet is heterogeneous

3 Fleet size The size of the fleet must be optimised

4 Capacity Vehicles are capacitated

5 Geometric The vehicle’s flight dynamics are neglected

6 Dubin’s A Dubin’s vehicle model has been used

7 EOM A set of EOMs is used to model the UAVs’ flight dynamics

Waypoints

8 Multiple Multiple waypoints must be visited

9 Unordered The visiting order of waypoints is unknown

10 Visits Waypoints can be visited multiple times

11 Constraints Special mission constraints must be considered. (e.g., time-windows and boundary

conditions)

12 Covering Region If there is a continuous covering region around the waypoints

Environment

13 3D The UAVs operate in a 3D space

14 Obstacles If obstacles are present

15 Wind The effects of wind are considered

16 Real-time The problem must be solved in real-time

Launching (Depot)

17 Multiple There are multiple launching points

18 Inter-depot There are inter-depots available

Time

19 Fixed The UAVs’ flight times between arcs are known.

20 Variable Flight times and velocities are optimisation variables

Approach The type of algorithm used to solve the problem (Appendix A)

Application A real-world motivation to solve the problem (Appendix A)
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Articles published in journals and conferences have been included in a number that we consider to be

representative. Nonetheless, we apologise for any inadvertent omission of relevant papers.

The selected papers have been organised into Table 2. Each line of this table corresponds to one345

article and the meaning of each column relates to the numbering in Table 1. Each time an attribute is

present in a paper the respective column is marked with “5”. Therefore, an empty cell indicates that

its corresponding paper has not addressed the attribute indicated by this cell’s column. A table with

a detailed description of methods and applications for each article can be found in the Appendix A.

Statistics about Table 2 are provided in Table 3.350

Three types of articles can be identified in Table 2. Papers focusing on UAV routing and TA can

be identified by the presence of attributes 8 and 9. The second type, which involves papers on UAV

PP and TO, exclusively, correspond to the ones where attribute 9 is absent. The third type consists of

articles that integrate UAV routing and PP or UAV routing and TO. The former can be identified by

the presence of attributes 5 or 6 together with 8 and 9, while the latter can be identified by the presence355

of attributes 7, 8 and 9 together.

In Table 2 it can be seen that 70% of the articles considered a fixed flight time. This indicates that

most of the UAV literature is concerned with routing and PP algorithms, where constant velocity along

the trajectories is a common assumption. The EOMs of the vehicles were employed in 17.1% of the

articles. In 53.8% of the papers on PP that applied a Dubin’s model (which consist of only 18.6% of the360

total number of papers), the flight time has been considered as a variable.

Multiple UAVs were considered in 25% of the papers dealing with TO and PP. An interesting fact

arises counting the number of papers dealing with multiple UAVs and their EOMs. There seems to be

a preference for using PP methods and the Dubin’s model when a fleet of UAVs is taken into account.

One can notice that the preferred strategy is to simplify the physical models of the UAVs so as to make365

the problem of designing multiple flyable routes more tractable. This happens in 44.4% of the articles on

UAV PP and TO and in all the articles on UAV routing and TA.

Around 37.5% of the papers on TO and PP problems dealt with visiting multiple waypoints. However,

only 14.3% attempted to integrate PP and TO to routing decisions. Among them, three papers employed

the UAVs’ EOMs. This gives an indication that integrated routing and TO is yet to be fully investigated370

in the literature.

Regarding environmental conditions, 40% of the papers have studied three dimensional problems.

Obstacle avoidance was tackled in 22.8% of the articles. Only a few studies (10%) included the effects of

the wind in the UAVs’ trajectories. In addition, only 7.1% of the papers studied real-time applications.

In 78.5% of the papers articles focusing on UAV routing and TA, a fleet of UAVs was considered. A375

large amount (85.7%) of the articles on routing and TA have either neglected or simplified the dynamics

of the UAVs. Approximately 18% of the articles have modelled the UAVs as Dubin’s vehicles. There is

some overlap between these papers since some of them employ more than one methodology. This suggests

the preference for simplified vehicle models when dealing with UAV routing.

Table 3 illustrates other differences between the literature on UAV TO/PP and UAV routing/TA.380

Each row of Table 3 shows four classes that were defined in the proposed taxonomy and their respective

frequencies (defined as the number of non-empty cells divided by the total number of cells in that class).
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Table 2: Summary of the taxonomic review on 70 selected papers.
Author(s) UAVs Waypoints Env. Dep. Time

1 2 3 4 5 6 7 8 9 1011 12 13141516 17 18 19 20
Al-Sabban et al. (2012) 5 5 5
Babel (2011) 5 5 5
Babel (2012) 5 5 5 5
Bae et al. (2015) 5 5 5 5
Baiocchi (2014) 5 5 5 5
Bandeira et al. (2015) 5 5 5 5 5
Bednowitz et al. (2012) 5 5 5 5 5 5
Besada-Portas et al. (2010) 5 5 5 5 5
Besada-Portas et al. (2013) 5 5 5 5 5
Casbeer & Holsapple (2011) 5 5 5 5 5 5 5 5 5
Chakrabarty & Langelaan (2011) 5 5 5 5 5
Chen et al. (2016) 5 5 5 5 5 5 5
Choe et al. (2016) 5 5 5 5 5 5
Cobano et al. (2013) 5 5 5 5 5 5 5 5
Cons et al. (2014) 5 5 5 5
Crispin (2016) 5 5 5 5
Dilão & Fonseca (2013) 5 5 5
Edison & Shima (2011) 5 5 5 5 5 5
Enright et al. (2015) 5 5 5 5 5 5 5 5 5
Evers et al. (2014) 5 5 5 5 5 5 5
Faied et al. (2010) 5 5 5 5 5 5 5
Filippis et al. (2011) 5 5 5
Forsmo (2012) 5 5 5 5 5 5
Fügenschuh & Müllenstedt (2015)5 5 5 5 5 5 5 5 5 5 5 5 5
Furini et al. (2016) 5 5 5 5 5 5
Gottlieb & Shima (2015) 5 5 5 5 5 5 5 5
Guerriero et al. (2014) 5 5 5 5 5 5 5 5 5
Han et al. (2014) 5 5 5 5
Henchey et al. (2016) 5 5 5 5 5 5 5 5 5
Huang et al. (2016) 5 5 5 5 5
Hu et al. (2015b) 5 5 5 5 5 5 5
Jaishankar & Pralhad (2011) 5 5 5 5 5
Jiang & Ng (2011) 5 5 5 5 5 5
Kagabo (2010) 5 5 5 5
Kivelevitch et al. (2016) 5 5 5 5 5 5
Kumar & Padhi (2013) 5 5 5
Kwak et al. (2013) 5 5 5 5 5 5 5 5 5
Levy et al. (2014) 5 5 5 5 5 5 5 5 5 5
Liu et al. (2013) 5 5 5
Liu et al. (2016) 5 5 5 5
Manyam et al. (2015) 5 5 5 5 5 5 5
Mersheeva (2015) 5 5 5 5 5 5 5 5 5 5
Mufalli et al. (2012) 5 5 5 5 5 5
Murray & Karwan (2010) 5 5 5 5 5 5 5 5 5
Murray & Karwan (2013) 5 5 5 5 5 5 5 5 5
Myers et al. (2016) 5 5 5 5 5 5 5
Nguyen et al. (2015) 5 5 5 5 5 5 5
Niccolini et al. (2010) 5 5 5 5 5 5 5 5
Park et al. (2012) 5 5 5 5 5 5 5
Pepy & Hérissé (2014) 5 5
Pharpatara et al. (2015) 5 5 5
Rogowski & Maroński (2011) 5 5
Shanmugavel (2013) 5 5
Silva et al. (2015) 5 5 5 5
Song et al. (2016) 5 5 5 5 5 5 5 5 5
Stump & Michael (2011) 5 5 5 5 5 5 5 5 5
Sundar & Rathinam (2014) 5 5 5 5 5 5 5 5
Techy et al. (2010) 5 5 5
Thi et al. (2012) 5 5 5 5 5 5
Vilar & Shin (2013) 5 5 5 5 5 5 5
Wang et al. (2015) 5 5 5 5 5 5 5 5 5 5 5
Wang et al. (2016) 5 5 5
Wu et al. (2011) 5 5 5 5 5
Xu et al. (2017) 5 5 5 5 5 5
Yakıcı (2016) 5 5 5 5 5 5
Yang et al. (2015) 5 5 5 5 5 5 5 5 5
Yomchinda et al. (2016) 5 5 5 5
Zhang et al. (2011) 5 5 5 5 5 5
Zhang et al. (2012) 5 5 5 5 5 5 5 5
Zhang et al. (2014) 5 5 5 5 5 5 5 5

For example, for the articles tackling TO and PP, the number of non-empty cells for class Depot is 3

and the total number of cells for the same class is 64. Hence the density of class Depot for TO/PP

papers is 3/64 = 0.047. One can notice that while the routing/TA literature is able to include more385

VRP-like attributes (like multiple UAVs and waypoints), the literature on TO/PP is more concerned

about modelling environmental aspects. Including environmental attributes (such as obstacles and wind)

is usually possible when the UAVs physical models are integrated to the optimisation problem.

In addition, the number of articles using a fixed flight time between waypoints is higher in the

routing/TA literature (89.3%) than in the TO/PP literature (59.4%). This is also related to the preference390

for simplified physical models in the UAV routing/TA research community.
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Table 3: Densities per class for each classification.

Class TO/PP routing/TA

UAVs 20.1% 37.8%

Waypoints 11.9% 61.4%

Environment 26.6% 9.8%

Depot 4.7% 30.4%

The analysed papers consider a variety of different objective functions, given that they refer to different

applications. Minimising the total flight time or the overall travel distance are common objectives in the

UAV routing literature (e.g., Casbeer & Holsapple, 2011). In delivery applications however, minimising

delivery costs or the delivery time to customers are often preferred (e.g., Wang et al., 2017). In the case of395

powered UAVs, minimising energy expenditure or maximising the flight duration of each UAV is a common

objective (e.g., Al-Sabban et al., 2012). On the other hand, for unpowered UAVs, one usually seeks to

find a trajectory that maximises the flight range (e.g., Chakrabarty & Langelaan, 2011). For UCAVs,

due to the high UAV unit costs and danger involved in military missions, minimising the risk of suffering

an attack is the preferred objective (e.g., Bae et al., 2015). For aerial survey operations, maximising area400

coverage is a popular objective (e.g., Mersheeva, 2015). In task assignment problems, service levels are

usually maximised (e.g., Hu et al., 2015a). Finally, for disaster assessment and response, minimising the

total mission time or the maximum flight duration (makespan) are amongst the most adopted objectives

(e.g., Bravo & Leiras, 2015).

Figure 3 summarises the most employed algorithms for each research area described in Sections 3 and405

4. These results are described in more details in the Appendix A. For the sake of simplicity, methods

belonging to the same class of algorithms are grouped together on Figure 3. For example, the group

Metaheuristics involves Iterated Local Search, Ant Colony Optimisation, Particle Swarm Optimisation,

Evolutionary Algorithms, among others. Group Heuristics involves either methods combining more

than one heuristic algorithm or specialised methods for a given problem. Group Mixed-Integer Linear410

Programming corresponds to exacts algorithms, i.e., branch-and-bound and column generation amongst

others. Group Others on Figure 3b represents different ad hoc path planning algorithms that did not fit

into a special category, each algorithm being present in only one paper.

One can notice that for articles involving TO (Figure 3a), exact methods for continuous optimisation

are preferred. On the other hand, heuristics and metaheuristics are more frequent in the articles on UAV415

PP (Figure 3b). Heuristics, metaheuristics and Mixed-Integer Linear Programming (MILP) algorithms

are very popular among articles considering UAV routing and TA. Being exact methods more popular

in the UAV routing papers (Figure 3c) and heuristics and metaheuristics more popular in the UAV TA

articles (Figure 3d).

6.1. Integrating routing and trajectory optimisation420

Hereafter we highlight the contribution of articles that studied UAV routing and TO in an integrated

framework. Such articles can be identified in Table 2 by attributes 7, 8 and 9 being marked with “5”.
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(a) Articles on UAV trajectory optimisation. (b) Articles on UAV path planning.

(c) Articles on UAV routing. (d) Articles on UAV task assignment.

Figure 3: Overview of methods and algorithms employed in the 70 selected papers.

These papers present alternative frameworks to the UAVRTOP formulation presented in Section 2.

Zhang et al. (2012) investigated the problem of routing a combat UCAV in a 3D environment through

stationary ground targets whilst avoiding no-fly threat areas. In order for the attacks to succeed, the425

UCAV must fly within the targets’ allowable attack region (which consists of a hollow-cone-like airspace

around the target) and respect projectile release attitude and velocity constraints. The UCAV was

modelled by high fidelity 3DOF EOMs taking wind velocities into account.

In order to solve this problem, Zhang et al. (2012) propose a hierarchical heuristic with two levels.

In the first level, the vehicle’s state space is discretised into a set of feasible points that intersects the430

targets’ allowable attack region through the use of a modified probabilistic road map method. Then,

for every pair of sampled points not in the same target a TO problem was solved to obtain feasible

trajectories (with respect to the vehicle’s dynamics and operational constraints) and their respective

costs. The second decision level consists of solving a Generalised Travelling Salesman Problem (GTSP)

over the network produced in the first level. This is accomplished by transforming the GTSP into an435

instance of the Asymmetric TSP by means of the noon-bean transformation method. The Lin-Kernighan

heuristic was then employed to solve the ATSP. In addition, the authors embedded this algorithm into a

real-time framework in order to make this approach more flexible for practical applications. Numerical

experiments showed that this approach is computationally intensive. The authors reported that roughly

50 minutes were necessary to solve a test case with three targets and one no-fly zone.440

Fügenschuh & Müllenstedt (2015) studied the problem of designing and routing a fleet of heteroge-

neous UAVs over a set of waypoints. The waypoints have to be selected from a list where a score was

associated to each waypoint. The objective was to maximise the total score (defined as the sum of the

individual scores) whilst minimising the total flight time. The UAVs’ motion was modelled by piecewise
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linear dynamics based on Newton’s laws of motion. The advantage of using this model lies on its sim-445

plicity, since the discretised version of these EOMs is also linear. On the other hand, the accuracy of

such a model regarding UAVs flight dynamics is limited. In order to represent the range of the UAVs’

sensors, the waypoints were considered to rest inside a sphere. A waypoint would be considered visited

if a UAV passes through its covering sphere. No-fly zones and collision avoidance among the UAVs were

also considered. Finally, different locations could be chosen to launch each UAV.450

The authors proposed a Mixed-Integer Non-linear Programming (MINLP) formulation to this prob-

lem, which was linearised and could be solved by a commercial MILP optimisation software. Eight

instances were created by varying the number of waypoints between 3–15, the number of no-fly zones

between 0–3 and the number of UAVs between 1–2. Computational experiments showed that bigger

instances with 10–15 waypoints could not be solved within one hour. The computation time required to455

solve smaller problems to optimality varied between 57–3400 seconds.

A similar approach was presented by Forsmo (2012). The author applied Newton’s second law in

order to model the motion of the UAVs. However, constraints on the magnitudes of forces, velocities and

yaw rates were also imposed, which increased the complexity of the physical representation of the UAVs.

Several operational constraints were considered, such as obstacles and collision avoidance. Scenarios460

with up to two UAVs and multiple waypoints were generated. A MILP formulation was proposed in

order to find minimum flight time trajectories visiting all waypoints subject to mission and operational

constraints. Computational experiments were performed over 5 test cases, constructed by varying the

number of UAVs (1 or 2), waypoints (6 or 8) and by imposing, or not imposing, a visiting order. The

authors showed that CPU times could be reduced by decreasing the flight time horizon.465

7. Conclusions and directions for future research

The UAVRTOP is a routing problem that takes into account the flight dynamics of UAVs. UAV

routing problems usually ignore flight dynamics, while work on UAV trajectory optimisation usually

ignores any routing aspects. Coupling these two important aspects leads to a more realistic approach

that allows the design of optimal routes and trajectories for a fleet of UAVs flying simultaneously.470

This problem arises from the current development of UAV technology and the vast number of ap-

plications that these vehicles can be used for. In this paper, we first formalised the UAVRTOP. Next,

an introduction to TOPs, VRPs and their variants has been provided. In addition, we introduced a

taxonomy capable of classifying UAV routing/TA and UAV TO/PP problems according to their most

relevant features. This taxonomy included 20 common attributes from the literature. Finally, we applied475

the proposed taxonomy to 70 recent papers.

The literature on UAVs routing problems has been surveyed and a lack of articles integrating UAV

routing and TO has been identified. In particular, the UAVs’ flight dynamics is often simplified or

neglected. In many cases the behaviour of UAVs cannot be satisfactorily approximated only by their

kinematics, as in the case of terrestrial robots (Forsmo, 2012). We believe that integrating the UAVs’480

system dynamics into routing problems is a key concept for complex operations. A realistic routing and

TO algorithm must take into account the vehicle’s kinematics and dynamics. In addition, by considering

the UAVs’ EOMs one can also better approximate, for example, the vehicles’ energy consumption, which
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is highly important for UAVs with limited battery duration. Modelling energy consumption is an issue

that needs further investigation in the UAV routing literature.485

Flight safety is an important aspect in connection with the use of UAVs. Most research on UAV

routing does not consider, for example, collision avoidance and wind conditions. This is important, e.g.,

for goods distribution within urban areas where collisions with buildings and manned aircraft must be

avoided and the fleet of UAVs must operate in a robust and reliable way.

Usually, research on UAV path and route planning concentrates on modelling kinematics. In many490

articles about UAV routing and TA even the kinematics are neglected. Models taking into account

the forces acting on these vehicles, the interaction with wind and their manoeuvring capabilities could

possibly result in computationally expensive formulations, but such models might allow for more realistic

solutions.

Mathematical formulations and algorithms capable of tackling complex unmanned aerial systems in495

a routing framework have recently appeared in the literature. A first step in this direction has been

made by Zhang et al. (2012), Forsmo (2012) and Fügenschuh & Müllenstedt (2015). Zhang et al. (2012)

proposed a heuristic method based on the 3DOF EOMs of a UAV. Whereas Forsmo (2012) and Fügen-

schuh & Müllenstedt (2015) developed MILP formulations based on simplified dynamic equations. Only

problems with limited size have been solved by the aforementioned authors. Therefore, the development500

of efficient frameworks for solving UAVRTOPs still raises challenging research questions that need to be

answered.

Appendix A. Methods and applications for the selected literature

Table A.4 highlights the methods and practical applications addressed in the 70 selected papers.
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Table A.4: Summary of methods and applications on 70 selected papers.

Authors Approach Application

Al-Sabban et al. (2012) Markov decision process Path planning in uncertain wind conditions

Babel (2011) Shortest path algorithms UAV path planning with obstacles

Babel (2012) Shortest path algorithms Path planning in a risk environment

Bae et al. (2015) Dynamic programming and heuristics Risk-constrained shortest path for UCAV

Baiocchi (2014) Heuristic algorithms Path planning for aerial photography

Bandeira et al. (2015) Heuristic algorithms UAV routing for aerial photography

Bednowitz et al. (2012) Simulation model UAV routing in dynamic environment

Besada-Portas et al. (2010) Evolutionary algorithms Real-time UAV path planning

Besada-Portas et al. (2013) Evolutionary algorithms Real-time UAV path planning

Casbeer & Holsapple (2011) Column generation UAV TA with precedence

Chakrabarty & Langelaan (2011) Energy map method Path planning for soaring UAVs

Chen et al. (2016) Genetic algorithm Multi UAV trajectory optimisation

Choe et al. (2016) Pythagorean hodograph bézier curves Cooperative path planning

Cobano et al. (2013) Rapid exploring random trees Cooperative trajectory optimisation

Cons et al. (2014) Heuristic algorithms Integrated TA and path planning

Crispin (2016) Rapid exploring random trees Path planning for aerial gliders

Dilão & Fonseca (2013) Heuristic algorithms Path planning for a hypersonic glider

Edison & Shima (2011) Genetic algorithm Integrated TA and path planning

Enright et al. (2015) Queueing theory UAV routing in stochastic environments

Evers et al. (2014) ILS metaheuristic UAV orienteering problem with time windows

Faied et al. (2010) Mixed-Integer Linear Programming Multi UAV routing problem

Filippis et al. (2011) Shortest path algorithms UAV path planning with obstacles

Forsmo (2012) Mixed-Integer Linear Programming UAV routing and trajectory optimisation

Fügenschuh & Müllenstedt (2015) Mixed-Integer Linear Programming UAV routing and trajectory optimisation

Furini et al. (2016) Mixed-Integer Linear Programming Time dependent UAV routing problem

Gottlieb & Shima (2015) Enumerative and heuristic algorithms Integrated TA and path planning

Guerriero et al. (2014) Multi-objective optimisation UAV routing with time windows

Han et al. (2014) Dynamic programming UAV path planning

Henchey et al. (2016) Enumerative and heuristic algorithms UAV routing problems

Huang et al. (2016) Ant colony optimisation Multi UAV path planning

Hu et al. (2015b) Ant colony optimisation UAV task assignment

Jaishankar & Pralhad (2011) Multi criteria decision analysis UAV path planning

Jiang & Ng (2011) Mixed-Integer Linear Programming Multi UAV routing problem

Kagabo (2010) Fuzzy Logic Path planning for aerial gliders

Kivelevitch et al. (2016) Market-based algorithm UAVs TA problem

Kumar & Padhi (2013) Model predictive static programming UAV trajectory optimisation

Continued on next page
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Table A.4 – continued from previous page

Authors Approach Application

Kwak et al. (2013) Heuristic algorithms Generalised UAVs TA

Levy et al. (2014) Heuristic algorithms UAVs routing with refuelling depots

Liu et al. (2013) Heuristic algorithms Real-time UAV path planning

Liu et al. (2016) Collocation interval analysis method UAV path planning

Manyam et al. (2015) Lagrangian Relaxation Multi depot UAVs routing

Mersheeva (2015) Heuristics and constraint programming UAV routing in disaster assessment

Mufalli et al. (2012) Mixed-Integer Linear Programming and heuristics UAVs routing problems

Murray & Karwan (2010) Mixed-Integer Linear Programming UAVs dynamic TA and routing

Murray & Karwan (2013) Branch-and-bound UAVs dynamic routing

Myers et al. (2016) Shortest path algorithm Real-time UAV path planning

Nguyen et al. (2015) Look-up tables Path planning for aerial gliders

Niccolini et al. (2010) Descriptor functions methodology Multi UAV TA problem

Park et al. (2012) Heuristic algorithms UAV routing

Pepy & Hérissé (2014) Indirect shooting method Trajectory optimisation for an aerial glider
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tory Generation Using Pythagorean Hodograph Bézier Curves. Journal of Guidance, Control, and

Dynamics, 39 , 1–20. doi:10.2514/1.G001531.

Cobano, J. A., Alejo, D., Sukkarieh, S., Heredia, G., & Ollero, A. (2013). Thermal detection and570

generation of collision-free trajectories for cooperative soaring UAVs. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems (pp. 2948–2954). doi:10.1109/IROS.2013.6696774.

22

http://dx.doi.org/10.1016/j.ins.2013.02.022
http://dx.doi.org/10.1109/TRO.2010.2048610
http://dx.doi.org/10.2514/2.4231
http://dx.doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.1002/rnc.1722
http://dx.doi.org/10.1016/j.cja.2015.12.008
http://dx.doi.org/10.2514/1.G001531
http://dx.doi.org/10.1109/IROS.2013.6696774


Colasurdo, G., Zavoli, A., Longo, A., Casalino, L., & Simeoni, F. (2014). Tour of Jupiter Galilean moons:

Winning solution of GTOC6. Acta Astronautica, 102 , 190–199. doi:10.1016/j.actaastro.2014.06.003.

Cons, M. S., Shima, T., & Domshlak, C. (2014). Integrating Task and Motion Planning for Unmanned575

Aerial Vehicles. Unmanned Systems, 02 , 19–38. doi:10.1142/S2301385014500022.

Conway, B. A. (2010). Spacecraft Trajectory Optimization. Cambridge University Press.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. P., & Vigo, D. (2007). Chapter 6 Vehicle Routing.

In Handbooks in Operations Research and Management Science (pp. 367–428). Elsevier volume 14 of

Transportation. doi:10.1016/S0927-0507(06)14006-2.580

Crispin, C. (2016). Path Planning Algorithms for Atmospheric Science Applications of Autonomous

Aircraft Systems. Ph.D. Thesis University of Southampton, Southampton, UK.

Darrah, M., Fuller, E., Munasinghe, T., Duling, K., Gautam, M., & Wathen, M. (2012). Using Genetic

Algorithms for Tasking Teams of Raven UAVs. Journal of Intelligent & Robotic Systems, 70 , 361–371.

doi:10.1007/s10846-012-9696-3.585

Delahaye, D., Puechmorel, S., Tsiotras, P., & Feron, E. (2014). Mathematical Models for Aircraft

Trajectory Design: A Survey. In E. N. R. Institute (Ed.), Air Traffic Management and Systems

number 290 in Lecture Notes in Electrical Engineering (pp. 205–247). Springer Japan. doi:10.1007/

978-4-431-54475-3 12.

Dilão, R., & Fonseca, J. (2013). Dynamic Trajectory Control of Gliders. In Q. Chu, B. Mulder,590

D. Choukroun, E.-J. v. Kampen, C. d. Visser, & G. Looye (Eds.), Advances in Aerospace Guidance,

Navigation and Control (pp. 373–386). Springer Berlin Heidelberg. doi:10.1007/978-3-642-38253-

6\ 23.

Edison, E., & Shima, T. (2011). Integrated task assignment and path optimization for cooperating

uninhabited aerial vehicles using genetic algorithms. Computers & Operations Research, 38 , 340–356.595

doi:10.1016/j.cor.2010.06.001.

Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review.

Computers & Industrial Engineering , 57 , 1472–1483. doi:10.1016/j.cie.2009.05.009.

Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., & Pope, D. (2014). Overview of Small

Fixed-Wing Unmanned Aircraft for Meteorological Sampling. Journal of Atmospheric and Oceanic600

Technology , 32 , 97–115. doi:10.1175/JTECH-D-13-00236.1.

Enright, J. J., Frazzoli, E., Pavone, M., & Savla, K. (2015). UAV Routing and Coordination in Stochastic,

Dynamic Environments. In K. P. Valavanis, & G. J. Vachtsevanos (Eds.), Handbook of Unmanned Aerial

Vehicles (pp. 2079–2109). Springer Netherlands.

Evers, L., Barros, A. I., Monsuur, H., & Wagelmans, A. (2014). Online stochastic UAV mission planning605

with time windows and time-sensitive targets. European Journal of Operational Research, 238 , 348–

362. doi:10.1016/j.ejor.2014.03.014.

23

http://dx.doi.org/10.1016/j.actaastro.2014.06.003
http://dx.doi.org/10.1142/S2301385014500022
http://dx.doi.org/10.1016/S0927-0507(06)14006-2
http://dx.doi.org/10.1007/s10846-012-9696-3
http://dx.doi.org/10.1007/978-4-431-54475-3_12
http://dx.doi.org/10.1007/978-4-431-54475-3_12
http://dx.doi.org/10.1007/978-4-431-54475-3_12
http://dx.doi.org/10.1007/978-3-642-38253-6_23
http://dx.doi.org/10.1007/978-3-642-38253-6_23
http://dx.doi.org/10.1007/978-3-642-38253-6_23
http://dx.doi.org/10.1016/j.cor.2010.06.001
http://dx.doi.org/10.1016/j.cie.2009.05.009
http://dx.doi.org/10.1175/JTECH-D-13-00236.1
http://dx.doi.org/10.1016/j.ejor.2014.03.014


Faied, M., Mostafa, & Girard, A. (2010). Vehicle Routing Problem Instances: Application to Multi-UAV

Mission Planning. In AIAA Guidance, Navigation, and Control Conference Guidance, Navigation, and

Control and Co-located Conferences (pp. 1–11). American Institute of Aeronautics and Astronautics.610

Filippis, L. D., Guglieri, G., & Quagliotti, F. (2011). Path Planning Strategies for UAVS in 3d Environ-

ments. Journal of Intelligent & Robotic Systems, 65 , 247–264. doi:10.1007/s10846-011-9568-2.

Fisch, F. (2011). Development of a Framework for the Solution of High-Fidelity Trajectory Optimization

Problems and Bilevel Optimal Control Problems. Ph.D. Thesis Technical University of Munich Munich,

Germany.615

Forsmo, E. J. (2012). Optimal Path Planning for Unmanned Aerial Systems. Msc. Thesis Norwegian

University of Science and Technology, Norway.
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Xu, S., Doğançay, K., & Hmam, H. (2017). Distributed pseudolinear estimation and UAV path optimiza-

tion for 3d AOA target tracking. Signal Processing , 133 , 64–78. doi:10.1016/j.sigpro.2016.10.012.

Xu, Z., Yang, J., Peng, C., Wu, Y., Jiang, X., Li, R., Zheng, Y., Gao, Y., Liu, S., & Tian, B. (2014).

Development of an UAS for post-earthquake disaster surveying and its application in ms7.0 lushan

earthquake, sichuan, china. Computers & Geosciences, 68 , 22–30. doi:10.1016/j.cageo.2014.04.001.850

30

http://dx.doi.org/10.1109/ROBOT.2010.5509862
http://dx.doi.org/10.1007/s11590-010-0259-x
http://dx.doi.org/10.1016/j.measurement.2015.06.010
http://dx.doi.org/10.1023/A:1013145328012
http://dx.doi.org/10.1016/j.ast.2015.11.040
http://dx.doi.org/10.1142/S2301385015500132
http://dx.doi.org/10.1007/s11590-016-1035-3
http://dx.doi.org/10.3182/20110828-6-IT-1002.01770
http://dx.doi.org/10.1016/j.sigpro.2016.10.012
http://dx.doi.org/10.1016/j.cageo.2014.04.001


Yakıcı, E. (2016). Solving Location and Routing Problem for UAVs. Computers & Industrial Engineering ,

102 , 294–301. doi:10.1016/j.cie.2016.10.029.

Yang, L., Qi, J., Song, D., Xiao, J., Han, J., & Xia, Y. (2016). Survey of Robot 3d Path Planning

Algorithms. Journal of Control Science and Engineering , 2016 , 1–22. doi:10.1155/2016/7426913.

Yang, Y., Karimadini, M., Xiang, C., Teo, S. H., Chen, B. M., & Lee, T. H. (2015). Wide area surveillance855

of urban environments using multiple Mini-VTOL UAVs. In IECON 2015 - 41st Annual Conference

of the IEEE Industrial Electronics Society (pp. 795–800). doi:10.1109/IECON.2015.7392196.

Yomchinda, T., Horn, J. F., & Langelaan, J. W. (2016). Modified Dubins parameterization for

aircraft emergency trajectory planning. Journal of Aerospace Engineering , 1 , 1–20. doi:10.1177/

0954410016638869.860

YongBo, C., YueSong, M., JianQiao, Y., XiaoLong, S., & Nuo, X. (2017). Three-dimensional unmanned

aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing , 266 , 445 –

457. doi:https://doi.org/10.1016/j.neucom.2017.05.059.

Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring,

detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Can. J. For.865

Res., 45 , 783–792. doi:10.1139/cjfr-2014-0347.

Zhang, X., Chen, J., Xin, B., & Fang, H. (2011). Online Path Planning for UAV Using an Improved

Differential Evolution Algorithm. IFAC Proceedings Volumes, 44 , 6349–6354. doi:10.3182/20110828-

6-IT-1002.01807.

Zhang, X., Chen, J., Xin, B., & Peng, Z. (2014). A memetic algorithm for path planning of curvature-870

constrained UAVs performing surveillance of multiple ground targets. Chinese Journal of Aeronautics,

27 , 622–633. doi:10.1016/j.cja.2014.04.024.

Zhang, Y., Chen, J., & Shen, L. (2012). Hybrid hierarchical trajectory planning for a fixed-wing UCAV

performing air-to-surface multi-target attack. Journal of Systems Engineering and Electronics, 23 ,

536–552. doi:10.1109/JSEE.2012.00068.875

31

http://dx.doi.org/10.1016/j.cie.2016.10.029
http://dx.doi.org/10.1155/2016/7426913
http://dx.doi.org/10.1109/IECON.2015.7392196
http://dx.doi.org/10.1177/0954410016638869
http://dx.doi.org/10.1177/0954410016638869
http://dx.doi.org/10.1177/0954410016638869
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.05.059
http://dx.doi.org/10.1139/cjfr-2014-0347
http://dx.doi.org/10.3182/20110828-6-IT-1002.01807
http://dx.doi.org/10.3182/20110828-6-IT-1002.01807
http://dx.doi.org/10.3182/20110828-6-IT-1002.01807
http://dx.doi.org/10.1016/j.cja.2014.04.024
http://dx.doi.org/10.1109/JSEE.2012.00068

	Introduction
	The UAV routing and trajectory optimisation problem
	A mathematical formulation for the UAVRTOP

	The trajectory optimisation problem
	Direct and indirect methods for trajectory optimisation problems
	The UAV path planning problem

	The vehicle routing problem
	UAV task assignment problem

	UAVRTOP taxonomy
	Critical review of the recent literature
	Integrating routing and trajectory optimisation

	Conclusions and directions for future research
	Methods and applications for the selected literature

