569 research outputs found

    Ideal Membership Problem and a Majority Polymorphism over the Ternary Domain

    Get PDF

    Ideal Membership Problem for Boolean Minority and Dual Discriminator

    Get PDF

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996

    Get PDF
    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague

    Geometric Ramifications of the Lovász Theta Function and Their Interplay with Duality

    Get PDF
    The Lovasz theta function and the associated convex sets known as theta bodies are fundamental objects in combinatorial and semidefinite optimization. They are accompanied by a rich duality theory and deep connections to the geometric concept of orthonormal representations of graphs. In this thesis, we investigate several ramifications of the theory underlying these objects, including those arising from the illuminating viewpoint of duality. We study some optimization problems over unit-distance representations of graphs, which are intimately related to the Lovasz theta function and orthonormal representations. We also strengthen some known results about dual descriptions of theta bodies and their variants. Our main goal throughout the thesis is to lay some of the foundations for using semidefinite optimization and convex analysis in a way analogous to how polyhedral combinatorics has been using linear optimization to prove min-max theorems. A unit-distance representation of a graph GG maps its nodes to some Euclidean space so that adjacent nodes are sent to pairs of points at distance one. The hypersphere number of GG, denoted by t(G)t(G), is the (square of the) minimum radius of a hypersphere that contains a unit-distance representation of GG. Lovasz proved a min-max relation describing t(G)t(G) as a function of ϑ(G)\vartheta(\overline{G}), the theta number of the complement of GG. This relation provides a dictionary between unit-distance representations in hyperspheres and orthonormal representations, which we exploit in a number of ways: we develop a weighted generalization of t(G)t(G), parallel to the weighted version of ϑ\vartheta; we prove that t(G)t(G) is equal to the (square of the) minimum radius of an Euclidean ball that contains a unit-distance representation of GG; we abstract some properties of ϑ\vartheta that yield the famous Sandwich Theorem and use them to define another weighted generalization of t(G)t(G), called ellipsoidal number of GG, where the unit-distance representation of GG is required to be in an ellipsoid of a given shape with minimum volume. We determine an analytic formula for the ellipsoidal number of the complete graph on nn nodes whenever there exists a Hadamard matrix of order nn. We then study several duality aspects of the description of the theta body TH(G)\operatorname{TH}(G). For a graph GG, the convex corner TH(G)\operatorname{TH}(G) is known to be the projection of a certain convex set, denoted by TH^(G)\widehat{\operatorname{TH}}(G), which lies in a much higher-dimensional matrix space. We prove that the vertices of TH^(G)\widehat{\operatorname{TH}}(G) are precisely the symmetric tensors of incidence vectors of stable sets in GG, thus broadly generalizing previous results about vertices of the elliptope due to Laurent and Poljak from 1995. Along the way, we also identify all the vertices of several variants of TH^(G)\widehat{\operatorname{TH}}(G) and of the elliptope. Next we introduce an axiomatic framework for studying generalized theta bodies, based on the concept of diagonally scaling invariant cones, which allows us to prove in a unified way several characterizations of ϑ\vartheta and the variants ϑ\vartheta' and ϑ+\vartheta^+, introduced independently by Schrijver, and by McEliece, Rodemich, and Rumsey in the late 1970's, and by Szegedy in 1994. The beautiful duality equation which states that the antiblocker of TH(G)\operatorname{TH}(G) is TH(G)\operatorname{TH}(\overline{G}) is extended to this setting. The framework allows us to treat the stable set polytope and its classical polyhedral relaxations as generalized theta bodies, using the completely positive cone and its dual, and it allows us to derive a (weighted generalization of a) copositive formulation for the fractional chromatic number due to Dukanovic and Rendl in 2010 from a completely positive formulation for the stability number due to de Klerk and Pasechnik in 2002. Finally, we study a non-convex constraint for semidefinite programs (SDPs) that may be regarded as analogous to the usual integrality constraint for linear programs. When applied to certain classical SDPs, it specializes to the standard rank-one constraint. More importantly, the non-convex constraint also applies to the dual SDP, and for a certain SDP formulation of ϑ\vartheta, the modified dual yields precisely the clique covering number. This opens the way to study some exactness properties of SDP relaxations for combinatorial optimization problems akin to the corresponding classical notions from polyhedral combinatorics, as well as approximation algorithms based on SDP relaxations

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Advances and Applications of DSmT for Information Fusion

    Get PDF
    This book is devoted to an emerging branch of Information Fusion based on new approach for modelling the fusion problematic when the information provided by the sources is both uncertain and (highly) conflicting. This approach, known in literature as DSmT (standing for Dezert-Smarandache Theory), proposes new useful rules of combinations
    corecore