
University of South Wales

2059305
>\. t> bey
Bookbinding Co.,
Cardiff, South Wales 

Tel:(01 222) 395882



The Refinement of Formal Specifications Using 

Reusable Software Components in Ada95

By

Stephen Alan Bale BSc (Hons)

A thesis submitted in partial fulfilment of the requirements of the 

University of Glamorgan/Prifysgol Morgannwg for the degree of Doctor

of Philosophy.

School of Accounting and Mathematics

Division of Mathematics and Computing

The University of Glamorgan

Mid Glam

CF37 1DL

August 1998.



Contents

Acknowledgements......................................................................................................i

Certificate Of Research............................................................................................... ii

Declarations................................................................................................................iii

Abstract.......................................................................................................................iv

Chapter 1. Introduction

1.1 Background............................................................................................................ 2

1.2 The Z Formal Specification Language.................................................................. 3

1.3 Project Aims and Strategy..................................................................................... 5

1.4 Construction of Reusable Components to Model Z .............................................. 6

1.5 Abstract Data Types ..............................................................................................6

1.6 Choosing the Target Language.......................,......................................................?

1.7 Overview of Project............................................................................................... 8

1.8 Overview of Thesis................................................................................................ 8

Chapter 2. Literature Survey

2.1 Introduction......................................................................................................... 12

2.2 Refinement Calculus and Refinement Methods.................................................. 12

2.3 Rapid Prototyping and Animation....................................................................... 19

2.4 Bridging the Gap Between the Specification and Target Languages..................28

2.5 Conclusion...........................................................................................................36

Chapter 3. Overview of Methodology

3.1 Introduction .........................................................................................................40

3.2 The Birthday Book Specification........................................................................40

3.3 Translating the Birthday Book State Schema......................................................41

3.4 Broad Overview of Method.................................................................................46



Chapter 4. Construction of Reusable Components

4.1 Introduction......................................................................................................... 48

4.2 Outline of Reusable Components........................................................................ 49

4.3 Construction of Efficient Data and File Structures ............................................. 53

4.4 Construction of Utility Packages Using Layering.............................................. 54

4.5 Construction of Z Operators Using Utility Packages..........................................57

4.6 Testing the Reusable Components ...................................................................... 59

Chapter 5. State Schema Refinement

5.1 Introduction......................................................................................................... 63

5.2 Methodology........................................................................................................ 63

5.3 Refinement of State Schemas..............................................................................64

5.4 The State Invariant.............................................................................................. 71

5.5 Multiple States and Inclusion.............................................................................72

5.6 Schema Types and Schema Bindings.................................................................. 76

Chapter 6. Operation Schema Refinement

6.1 Introduction......................................................................................................... 83

6.2 Function or Procedure Bodies ............................................................................. 83

6.3 Refining the Initial State Schema........................................................................ 83

6.4 The Declarative Part of Schemas......................................................................... 85

6.5 Refinement of Z Statements................................................................................ 88

6.6 Refinement of Preconditions............................................................................... 89

6.7 Comprehension Terms....................................................................................... 101

6.8 Refining Complex Postconditions and Statements ........................................... 111

6.9 Operations Involving Schema Types and Bindings .......................................... 113

6.10 Schema Calculus ............................................................................................. 117



Chapter 7. Evaluation of Method

7.1 Introduction....................................................................................................... 130

7.2 Comparison of Code Produced Manually ......................................................... 130

7.3 Comparison with Code Produced from Concrete Design ................................. 137

7.4 Other Languages for Modelling Z..................................................................... 152

7.5 Scaling up to Industrial Sized Problems............................................................ 163

7.6 Summary of Conclusions .................................................................................. 195

Chapter 8. Advantages of Ada95 Over Ada83

8.1 Introduction....................................................................................................... 199

8.2 Improvements in the Generic Paradigm............................................................ 199

8.3 Iterators..............................................................................................................202

8.4 The Use of Child Packages................................................................................ 204

Chapter 9. Future Work and Conclusions

9.1 Introduction....................................................................................................... 210

9.2 Quality of the Reusable Components and the Code Obtained..........................210

9.3 Viability of the Method.....................................................................................211

9.4 Advantages in Rapid Prototyping Terms..........................................................211

9.5 Efficiency of the Obtained Code. ..................................................................... 212

9.6 Scaling up to Industrial Sized Specifications...................................................213

9.7 Preserving the Style of the Original Specification ............................................ 214

9.8 Non Functional Requirements..........................................................................215

9.9 The Use of Ada95 .............................................................................................216

9.10 Criticisms of the Method................................................................................. 216

9.11 Advantages of Using Reusable Components..................................................218

9.12 Future work .....................................................................................................219

References...........................................................................................................220



Appendix 1 - List of Software Components and Implemented Specification Case 
Studies.

Appendix 2 - List of Z to Ada Translations.



Acknowledgements

I would like to express my sincere thanks to my supervisors at the University of 

Glamorgan and to Dr J. Hayward for his support, encouragement and advice 

throughout the duration of this research project.

I would also like to thank the Higher Education Funding Council for Wales 

(HEFCW) for their financial contribution to allow the University to fund this 

research under its DevR scheme.

Page i



Certificate Of Research

This is to certify that, except where specific reference is made, the work presented in 

this thesis is the result of the investigation undertaken by the candidate.

Candidate

Director of 
studies

Page ii



Declarations

This is to certify that neither this thesis or any part of it has been presented or is 

being currently submitted in candidature for any other degree other than that of 

Doctor of Philosophy of the University of Glamorgan / Prifysgol Morgannwg.

Candidate

Page iii



Abstract

The Refinement Of Z Specifications Using Reusable Software 

Components Written In Ada95

This thesis documents research that enables formal specifications, written in the 

specification language Z, to be turned into high level code in fewer steps than other 

refinement techniques and without the need for formal proof. This method helps to 

overcome one of the mam stumbling blocks for formal methods, which is the 

difficulty of creating software from the formal specification. In the main, previous 

methods have either concentrated on creating an animation or prototype of the 

specification using functional languages or on converting the abstract structures 

found in specification into the less abstract structures found in high level 

programming languages, via a series of lengthy proofs.

The method presented in this thesis uses a different approach. Here, the target 

language is enriched with the abstract structures and operations available to the 

formal specification language. This is achieved by the construction of a series of 

reusable software components that model the main types and operations found in Z. 

The formal specification can then be translated into executable code by selecting the 

correct operations from the reusable components to implement each of the Z 

operations.

The research described in this thesis shows that the method is a viable one. as 

efficient executable code can be produced very quickly, without the need for formal 

proof, and with great confidence in its correctness. The components required to do 

this are available and have been written and constructed in such a way as to allow 

more complex components to be built from them.

Page iv



Chapter 1 __ Introduction

Chapter 1

Introduction

Page I



Chapter 1____________________________________Introduction

1.1 Background

Over the past few decades, the number of complicated software systems in existence 

has grown enormously. As the complexity of these systems increases, they become 

more error prone due to the task of designing and coding the system. Many systems 

delivered to customers contain errors, do not meet the customer's requirements, are 

late and over budget. This problem was first recognised in the nineteen sixties and is 

known as the software crisis. Formal methods have arisen in recent years in an 

attempt to cure these problems. At present, most specifications are written in natural 

language, but this leads to specifications which are imprecise and ambiguous. 

Formal methods however, are techniques that use mathematical principles to 

develop software, the goal being to use the precision of mathematics to improve the 

quality of the software.

One very important aspect of formal methods is the process of turning the 

specification into executable code. This is called reification or refinement 

[McDe89]. The process is easier when functional and logic languages are the target 

language because they support sets or predicate calculus. For this reason, languages 

such as Miranda and Prolog are often used to animate specifications or prototype the 

software [Dill90,West92]. However, many specifications must be refined into third 

generation languages, which do not support sets or predicate calculus. Most of the 

work done in this area concentrates on methods that convert the abstract structures 

found in specifications into less abstract structures found in many high level 

languages [Woodk91,Woodk93]. The refinement calculus [Morg94] can be used 

with Z to provide a path from the abstract Z specification to executable code. The Z 

specification is successively refined and turned into the refinement calculus from 

which executable code can be derived with the aid of Dijkstra's guarded command 

language[Dijk75]. King [King90] gives rules for translating Z specifications into 

Morgan's refinement calculus and shows the development process. Other examples 

of this method can be found in the books by Woodcock [Woodc96] and Wordsworth 

[Word92]. A different approach is pursued by Valentine [Vale91]. Here, a

Page 2



Chapter 1____________________________________Introduction

computational subset of Z named Z~ is used to move the specification through 

successive refinement stages to arrive at executable code.

An alternative to refinement within Z itself, is to bridge the gap between the formal 

specification and the target language. Wood et al [Woodw91] describe this latter 

method using Anna (annotated Ada) as the bridge between Z and Ada. Other 

methods exist for refining formal specifications, such as the B-memod [Abri91], 

which has considerable tool support for refinement proofs.

1.2 The Z Formal Specification Language

The language used for this research project has been Z [Bard94,Spiv89,Word92] 

which is a formal specification language developed by the Programming Research 

Group at Oxford University. The notation is capable of presenting the mathematics 

and decisions made in the development of systems in a readable yet rigorous 

framework. The use of Z in writing specifications allows the developer to explore 

fundamental aspects of the system and can uncover design faults that may have been 

overlooked.

The language is designed to be read by humans, with the mathematics describing 

each operation or state enclosed in a box structure called a schema. Each schema is 

followed by English text to further describe the actions. Schemas allow large 

specifications to become manageable, as pieces of a system can be specified and 

then put into global context with schema promotion.

Z is based upon sets, and uses discrete mathematics and first order logic to fully 

describe each operation. It can describe both the static and dynamic aspects of the 

system. The static aspects include the state the system can take, and the invariant 

relationships that hold as the system changes. Dynamic aspects include the 

mathematical relationships between input and output, and the changes of state that 

are allowed to happen. However, Z lacks the features required for expressing real

Page 3



Chapter 1____________________________________Introduction

time constraints and behaviour. It can be used to model real time systems, but there 

is little agreement on how to do it and no one method has been found to be superior 

[Fidg92]. Another feature that Z lacks is a modular structure (apart from the schema) 

for specifying software components or object orientated specifications; although 

extensions to Z to remedy these aspects have been proposed [Carr91].

Z is a specification language that has been used in large industrial applications. A 

good example of this is the IBM Customer Information Control System (CICS). 

Several case studies involving Z and CICS can be found in the book by Hayes 

[Haye87].

1.2.1 A Z Success Story

An experimental study, carried out by Goel and Sahoo [Goel91], compared the 

development time and the number of errors found during development, for software 

written from an English specification, with software written from a Z specification. 

The problem chosen was the NASA Launch Interceptor Problem, which is a simple 

but realistic representation of an anti-missile system. Programmers derived versions 

of the software from Z specifications using C and Ada. These were then compared 

with others versions derived from English specifications. It was noted that the 

versions developed from Z used less lines of code, and the development time was 

less. The main findings of the study were that the effort spent in writing Z 

specifications was compensated for by the reduced effort needed during later stages 

of development. Also, the number of errors found during development and testing 

were significantly smaller in versions developed from formal specifications 

compared with those developed informally.

1.2.2 Drawbacks

The method of turning formal specifications into code by successive refinement of Z 

specifications using the refinement calculus is a difficult process. Much work is 

required to prove that the new 'concrete1 specification does not violate the original 

abstract specification. These proofs are carried out using predicate calculus and are

Page 4



Chapter 1____________________________________Introduction

both difficult and time consuming, although there are now automated proof tools 

available. The difficulty of turning a formal specification into code is one reason 

why such a small percentage of software written in industry has been specified 

formally. A study by Smith [Smit91] indicates that formal refinement is currently 

impractical on an industrial scale. King [King90] states that there has been 

significantly less use of Z in the latter stages of development. Z has been used to 

document designs and specifications, but in very few cases have the proofs been 

completed.

1.3 Project Aims and Strategy

This project uses an alternative strategy to those described earlier. Instead of 

making the formal specification close to the target programming language, the 

programming language is enriched to model the structures found in the specification 

language itself. This is achieved by the construction of a number of reusable 

software components to model the types and operations found in the formal 

language. It should then be possible to translate a formal specification into 

executable code with high confidence in its correctness.

This thesis seeks to demonstrate that an imperative language can be enriched to 

provide a potentially viable method of translating a Z specification in order to arrive 

at code that can be executed. Other researchers have used functional languages 

mainly due to the fact that functional languages support sets.

This project is also concerned with reducing the number of refinement steps, making 

the refinement process simpler, and programming abstractly in Ada. This idea is not 

new [Jack85,Rann94], but the actual creation of a collection of reusable software 

components containing the operations found in Z, the implementation of the method, 

the problems arising from it, and ways to make the refinement progress smoothly 

have not been investigated in previous work.

Page 5



Chapter 1____________________________________Introduction

1.4 Construction of Reusable Components to Model Z

Reusing software components is part of the object based methodology found in 

modern languages such as Ada and C++, and is aimed at turning software 

construction into an engineering discipline. Data structures and algorithms form the 

building blocks from which all software systems stem, and so make excellent 

candidates for reusable components. If there exists a rich supply of software 

components whose behaviour is known, then it is possible to construct more 

complicated systems with high degrees of confidence in their correctness. This will 

result in improved production, with less time required for development, integration 

and testing [Booc87].

The main types in Z are the set, function, relation and sequence. In order to turn a Z 

specification into code (using the method detailed in this thesis), it is necessary to 

have many components for each of these types to satisfy any performance or 

behavioural characteristics of the system. Each type of component must contain 

functions or procedures to model each of the operations available in Z for the type. 

Also, each component must have generic functions and procedures, parameterised 

over other functions, to implement quantifiers, comprehension statements, and 

iterators. The components themselves must also be parameterised to allow different 

instances of each package to be created when refining the state schema. The types in 

the package must be exported, but access to the underlying structure of the types 

must be prohibited. In order to satisfy these requirements, each component has been 

implemented as an abstract data type.

1.5 Abstract Data Types

An abstract data type is a structured type that can only be accessed by a well defined 

set of operations specified in an external interface [Booc87]. For example, the 

abstract data type stack can only be accessed by its operations e.g. pop, push, top 

etc. One way of visualising an abstract data type is as a black box. The user provides 

the correct input for an operation, and the black box provides the answer. The

Page 6



Chapter 1___________________________________Introduction

abstract view is the view from outside the black box, and this is the only view 

necessary for its use. The internal workings of the black box are unimportant to its 

user. Abstraction is only possible if the internal workings of the black box are kept 

hidden. Hiding more information leads to more abstraction.

Abstract data types are seen by many people as a way of enriching a language with 

reusable software components [Booc87], which is the philosophy followed by this 

research project. Using techniques such as data hiding, encapsulation and the generic 

features of a language such as Ada, more abstract data structures can be provided, 

rather than the pre-defined arrays, pointers, and records etc. of high level languages. 

Ada provides the ability to define an abstract data type where the implementation is 

invisible to the outside world. Variables of this type can then be instantiated, and 

thought of as objects, while the abstract data type may be thought of as a class.

1.6 Choosing the Target Language

The Language Ada was chosen for this project because :-

  It is a very stable language established as an ANSI (American National 

Standards Institute) standard in 1983, and no subsets or supersets of Ada83 are 

allowed. Ada is subject to design reviews to keep up with developments in the 

software industry. This resulted in a new version, Ada95 which is also subject to 

ANSI standards. This version improved and added new features to AdaS3. The 

next review is scheduled for the next century. Additionally all Ada compilers 

have to undergo a rigorous validation program before being certified. These 

measures improve the portability of Ada programs between machines.

  It allows a rich variety of packages and tasks.

  It is strongly typed and imposes constraints on the types of formal and actual 

parameters and those variables obtained from instances of generic packages.

  It is possible to parameterise software components over values, types, objects, 

and formal subprograms using Ada's generic mechanism. Ada95 now allows 

parameterisation of generic components over other components.

Page 7



Chapter 1____________________________________Introduction

• It utilises modern software engineering philosophies of abstraction, information 

hiding, and code reuse.

1.7 Overview of Project

The project is at the stage where there is a complete set of components available 

enabling Z specifications to be translated into code directly. Moreover, a number of 

different components exist for each of the main types in Z, allowing users 

requirements for performance and storage to be met (a list of these components and 

the specification case studies already implemented can be found in appendix 1). The 

operations in the reusable components cover those operations found in the Z 

mathematical Tool Kit [Spiv89]. The translation of a Z specification provides a 

package that can be compiled but not executed. In order to execute the package it 

must be instantiated in other software that can then access and use the operations in 

the translated Ada package. The Ada packages obtained from the Z specifications 

used throughout this project have all been executed by writing programs to 

instantiate and test them (with the exception of the steam boiler and aircraft 

illumination specifications, due to the difficulty of simulating the steam boiler and 

aircraft illumination equipment and a lack of non-functional data).

1.8 Overview of Thesis

Chapter two is a literature survey chapter, discussing other work in the field of 

refining Z specifications to produce executable code.

Chapter three briefly highlights the program development method used when 

translating a Z specification into Ada code. A simple specification of the birthday 

book [Spiv89] is shown along with its equivalent implementation in Ada using 

reusable components. A program necessary to instantiate the Ada birthday book 

package implementation and use its operations is also shown. The details behind the 

derivation of the Ada code from the Z specification are explained in detail in 

chapters five and six.

Page 8



Chapter 1__________________________________Introduction

Chapter four discusses the construction of the reusable components necessary for the 

method and describes a process of constructing components, that are built upon 

existing components, to provide efficient data structures by programming at a higher 

level of abstraction. This technique allows complex components to be constructed 

with much speed and ease. It also shows how some of the operators in Z that operate 

over complex types can be programmed in Ada95. As an example the code

implementing the distributed union operator, defined by U : P(P X)  » P X, is 

given.

Chapter five deals with the translation of the state schema to provide the state 

variables upon which the operations of the Z specification can act. The organisation 

of the Ada specification(s) implementing the Z specification is also discussed 

because some Z specifications use promotion and inclusion and cannot always be 

implemented in a single package. A novel way of implementing specifications that 

are based upon multiple states is presented. Schema types and bindings and the state 

invariant are also discussed.

Chapter six discusses the translation of operation schemas and the Z statements 

contained within them. It highlights the issues relating to the translation of the 

operation precondition (including quantifiers) and a technique to translate complex 

statements in the postcondition. Chapter six also introduces the operators of the 

schema calculus and their respective refinement in Ada. Schema calculus is 

important with regard to the construction of complex specifications that are built up 

using simpler specifications. The guidelines for the translation of Z operators for 

each of the main types are given in appendix 2.

Chapter seven evaluates this method of refinement by comparing the code produced 

using reusable components with the code that could be produced manually. Also, 

other languages such as C++ [Skan97] and the functional language Haskell

Page 9



Chapter 1____________________________________Introduction

[Thom96] are examined to see how they could be used to produce the reusable 

components for implementing Z specifications. Finally, two case studies are 

included to examine how well real world Z specifications can be refined using 

reusable components in Ada95.

Chapter eight discusses the advantages that were brought to the method when Ada95 

was used as the target language instead of Ada83. The advantages spanned the 

construction of the reusable components and the implementation of some of the 

more complex issues in Z.

Chapter nine contains the conclusions and recommendations for future work.

Page 10



Chapter 2 ___________________________ Literature Survey

Chapter 2 

Literature Survey

Page 11



Chapter 2__________________________________Literature Survey

2.1 Introduction

The Z notation has been used successfully in the specification of many software 

systems [Crai95a]. However, specifications are not always seen as an end in 

themselves and whilst Z is good for specifying system behaviour, it is not so suitable 

for the refinement of these specifications into executable code. This is an important 

part of formal methods, which is not easy to achieve. As a result, many methods 

have been proposed to smooth the transition from the abstract specification to 

executable code.

The main methods examined in this chapter can be broadly classified in the 

following manner (although there is an overlap between classes in some methods 

discussed below) :-

1) those methods that successively refine the specification by stepwise refinements 

moving from the abstract specification to a more concrete specification.

2) those methods that produce an executable prototype of the specification by using 

a target language which is itself based upon sets and predicate calculus.

3) those methods that seek to bridge the gap between the formal specification and 

the target programming language by working in the Z domain.

2.2 Refinement Calculus and Refinement Methods

Many specifications must be refined into third generation languages which do not 

support the sets and predicate calculus found in the specification language. In these 

instances, it is necessary to convert the abstract structures found in the specification 

into the less abstract arrays, pointers etc. of the high level language. There are two 

processes involved in the refinement of model based specifications. The first is data 

refinement where the abstract mathematical representation of data is expressed by a

Page 12



Chapter 2______________________________ Literature Survey

concrete equivalent and secondly, algorithm refinement where the operations of the 

specification are refined to produce an executable equivalent.

MacDonald and Sennet [MacD89] identify two aspects which may cause an initial 

specification to change even if all parties concerned agree that it meets the user 

requirements.

1. In moving to a design that will actually work on a computer some properties may 

need to be respecified in order to make the specification implementable.

2. There may be several equivalent ways of expressing the same properties, but 

some definitions may be easier to prove correct than others. The specification 

may be changed to utilise the definitions that make the proof easier.

The refinement methods and the refinement calculus are both based upon the 

successive stepwise transformation of specifications. In refinement methods 

[Word92, Woodc96], a concrete version of the specification is written by adding 

more detail to the abstract specification. This detail will include how the data is to be 

stored and how the abstract operations are made concrete by operating on the 

concrete state. As a result proof obligations are required to show that the new 

concrete specification is a valid representation of the original abstract specification.

The method involves the use of a simulation [Word92] or retrieve function [Litt92] 

to link the abstract state and the concrete state. This takes the form of a new schema 

which includes the abstract and concrete states and also a predicate which describes 

how their components are related.

When the simulation or retrieve schema is complete, the initial concrete schema 

must be defined which describes the concrete state when the system starts. Proof 

obligations are required to show that an initial state can be found and that any initial 

concrete state is correct with respect to the initial abstract state by the retrieve 

function. Mathematically the proofs [Word92] are stated as :-

Page 13



Chapter 2____________________________________Literature Survey

[_ 3 ConcState' • Conclnit and

Conclnit [_ 3 AbstractState' • (Abstractlnit A Retrieve')

Retrieve is a function from the abstract state to the concrete state. Retrieve is primed 

because AbstractState is primed and the concrete state is primed in Conclnit (this 

sets the state to its initial value). When the concrete operations have been designed, 

they must also be shown to be correct with respect to the abstract operations. There 

are two obligatory proof obligations.

1) The Safety or Applicability proof is given by:-

pre AbstractOp A Retrieve |_ pre ConcOP

This states that if the current abstract state satisfies the precondition of the abstract 

operation, then the concrete state must satisfy the precondition of the concrete 

operation.

2) The Correctness proof is given by :-

pre AbstractOp A Retrieve A ConcOp [_ 3 AbstractState' • (AbstractOp A Retrieve')

This ensures that, when given a valid starting state for an abstract operation, 

performing the corresponding concrete operation will result in a state that 

corresponds to the abstract operation by the retrieve relation.

When the concrete design is complete and the proof obligations have been 

discharged for every operation schema, the algorithm refinement stage must follow 

in order to arrive at executable code. The approach taken is to use Djikstra's 

Guarded Command Language [Dijk75] to form a framework for the solution. Some 

statements may need further refinement here and they are written as subcomponents

Page 14



Chapter 2__________________________________Literature Survey

for which specifications must be produced. The refinement is complete when each of 

the subspecifications are primitive statements in the target language. Wordsworth 

carries out safety and liveness proofs during these refinement stages also. However, 

Litteck [Litt92] says that the method need not be strictly followed (except in 

complicated situations) as refinements can be performed immediately producing 

algorithms straight from specifications.

A specification for a library system is given in [King89]. A design analysis is carried 

out to develop a concrete design and concrete data operations. The proofs that are 

required as discussed above, are stated, but left as an exercise for the reader. The 

concrete data designs are developed further towards executable code using Djikstras 

guarded command language, although the step from the guarded command language 

to the final implementation is not given. The work presented in this paper will be 

compared with an implementation using reusable components in chapter 7.3 to 

compare the code produced between the two methods.

In the refinement calculus [Back88,Morri87] the abstract specification is 

transformed by successive steps governed by the rules of the calculus which have 

been shown to provide valid refinements. The refinement calculus is based upon 

Djikstra's guarded command language extended with a specification construct to 

allow the formal use of specifications within programs. It has been designed as a 

wide spectrum language to support the whole development cycle from the abstract 

specification to code. The addition of the specification construct allows the 

distinction between programs and specifications to be banished. The specification 

construct is as follows :-

W: [pre,post]

where W - the frame listing the variable that may change

pre - describes the initial states

post - describes the final states.

Page 15



Chapter 2_________________________________Literature Survey

As far as the refinement calculus is concerned all specifications are programs, and 

hence, not all programs are executable. Programs can include specifications and 

have constructions (called code) which are executable. In order for the entire 

program to be executable, the specifications must be removed from the program by 

the action of stepwise refinement, introducing more executability with each step. 

The book by Morgan [Morg94] introduces the thought behind the refinement 

calculus, its laws, the details and techniques of its use and provides case studies.

A number of papers have combined Z and the refinement calculus. King [King90] 

introduces a way of using Z specifications and the refinement calculus together in 

one development method. He describes the differences between Z and the refinement 

calculus and the reasons for those differences. He then describes a set of rules that 

allow a Z specification to be turned into the refinement calculus from which 

executable code can be derived. The development methodology is as follows :-

1. Write the specification in Z

2. Carry out data refinement in Z (as in the refinement methods by creating a 

concrete version of the specification).

3. Use the translation laws to turn the concrete specification into the refinement 

calculus.

4. Carry out algorithm refinement using the refinement calculus.

The aim of the work was to use each notation in the way that it is best suited and to 

provide a smooth path from the specification to executable code. Future work must 

be carried out to investigate how schema promotion (a very important aspect) fits 

into the method and King hints that future case studies may reveal small semantic 

changes that may be made to Z in order to make the development easier.

Wood [WoodK93] develops a method of using the specification properties of Z and 

the development capabilities of the refinement calculus "without the need for any 

cumbersome translation between the t\vo notations" (presumably referring to

Page 16



Chapter 2_________________________________Literature Survey

[King90] ). This is achieved by dropping many of the standard features of Z and 

using the resulting streamlined Z with an unchanged refinement calculus. The 

method is described as the refinement calculus with a bit of Z (or Rz). The Z 

specifications were written in such a way as to facilitate an easy transition from Z to 

the refinement calculus. Z schemas were only used to define compound types, whilst 

operation schemas were defined axiomatically to avoid them using schemas to 

change the state. Wood concludes that this restriction in the style of writing Z 

specifications did not impede the expressive power of the specifier and is justified 

due to the ease in which the refinement calculus can be introduced. He notes that one 

or two of the important features of the original method are lost but in addition to a 

seamless path from the specification to executable code, the approach provides 

encapsulation properties with are noticeably lacking in standard Z. This is due to the 

way in which schemas are used in this method which is significantly different to the 

use of schemas in standard Z. The Z specification is written in such a way as to 

describe a mathematical model of the problem domain where schemas define types 

but do not introduce any state to the system. The states are allocated when a variable 

of the appropriate schema type is declared in a scoped block of the refinement 

calculus. This lends encapsulation properties to the specification by reducing the 

prevalence of global data. A further restriction in the style of Z is that preconditions 

must be explicitly stated. The work detailed in this thesis also has this proviso, 

which, is deemed good practice [Good95a, Bard92]. Wood also notes that many of 

the operations will be specified as axiomatically defined functions which would 

lends themselves to rapid prototyping in a functional language, before the full 

refinement to imperative code is carried out. Other papers, discussed in section 2.3, 

also suggest that the full refinement product should be in an imperative and not a 

functional language. Another example of this refinement method is given in 

[WoodK91].

Page 17



Chapter 2_________________________________Literature Survey

2.2.1 Critique of refinement methods and refinement calculi

The refinement methods described above have the advantage that a complete history 

of formal development is available from the specification through to executable 

code. This can enable errors to be easily traced and improves confidence in the 

systems correctness. However, formal proof is expensive, time consuming and 

requires a level of mathematical understanding greater than that needed for the 

formal specification and design. As a result very few proofs are actually carried out 

[Thom93]. Sceptics claim that formal methods are infeasible for any realistically 

size problem, whilst the less sceptical proponents claim that they should be applied 

selectively [Bowe93]. At Praxis, [Thom93] proof activity is limited because the 

proofs were judged not to be cost-effective for the systems developed at Praxis, 

which were rarely safety critical. Thomas also states that "there seems to be 

widespread agreement amongst those with industrial experience of using formal 

methods that a lot of the benefits come from developing the formal specification 

(which takes relatively little time) compared with formal refinement and 

verification. " It was expected that a new generation of tools to assist with proofs 

would change this balance in the future. The lack of tool support is one reason cited 

in [Holl96, Gerh94] for the lack up uptake of formal methods in industry. Craigen et 

al [Crai95a] puts the lack of tool support down to:-

  The research and rapid prototyping nature of the tools make them unsuitable for 

industrial use.

  The steep learning curves associated with their use (up to 6 months as stated in 

[Crai95b]).

The methods described above pertain to be fully formal methods, but in reality, due 

to the complexities involved in using them, they are seldomly used in a fully formal 

manner.

Page 18



Chapter 2_________________________________Literature Survey

2.3 Rapid Prototyping and Animation

The second class of refinement involves using functional or logic languages to 

produce a prototype or animation of the specification by translating it in a direct 

manner. A rapid prototype [Maud91] can improve software productivity by 

eliminating unnecessary rework. One of the major factors of rework are 

misunderstood specifications and interfaces [Boeh87]. A rapid prototype can allow 

the client to see and experiment with a system that is close to the final system to 

ensure that the requirements and behaviour are sound. This is an important activity 

because, even if the program is proven correct mathematically with respect to its 

specification, it does not imply that the specification describes what the customer 

wanted. The creation of a prototype has the advantage that the customer can have a 

demonstration of the systems intended behaviour at an early stage of the 

development cycle, allowing the developer to be confident that the customers 

requirements have been met by the formal specification.

Johnson et al [John90] describe a small example of how a Z specification can be 

turned into a functional language and shows that the resultant code cannot possibly 

be used as the final implementation because it is too slow. The program must be 

transformed using techniques such as those described in [Burn77] to produce a 

program whose run time behaviour is acceptable for a prototype of the system. 

Johnson proposes the following methodology.

1. Produce a formal specification of the system using Z

2. Refine the model into an explicit (constructive) representation and discharge 

proof obligations.

3. Use the formal transformation techniques to improve the speed of the program to 

make it suitable as a viable prototype.

4. Produce imperative programs that are implementations of the final functional 

program.

Page 19



Chapter 2__________________________________Literature Survey

In step 2, the specification must be refined into a constructive representation because 

to quote Morgan [Morg94 pg 7] "It can be proved that no computer, as the term is 

presently understood, can be built -which could execute all specifications". Many 

specifications can contain statements which are not implementable as they stand, as 

shown in the paper "Specifications are not (Necessarily) Executable" [Haye89]. Any 

method that seeks to take a specification containing such statements and then arrive 

at executable code using that specification as a base, must transform those 

statements in some way. Fuchs [Fuch92] criticises Hayes and Jones [Haye89] and 

argues that "Specifications are (Preferably) Executable". Furthermore he suggests 

that highly expressive specifications and executability are not mutually exclusive 

and that the examples given in [Haye89] can be made executable by adding a small 

number of constructive elements. Executable specifications generated in this way are 

transformations of their non-execuable counterparts, although they are slightly less 

abstract than the non-executable specification, but this is necessary for 

implementation purposes.

When the prototype, implemented as a functional program, is transformed to 

improve its efficiency, Johnson still advises a change to an imperative language. 

However, the author adds that in the future due to the advances in functional 

language compiler technology, this stage may be unnecessary in certain applications. 

Sherrel and Carver [Sher94] also state that the functional programming language 

Haskell will be usable for the construction of large software applications, when 

better compilers and improvements in computer architecture are made available. 

Utting [Utti95] states that even an inefficient animation is extremely useful for 

exploring the meaning of a specification. He adds that if more efficient animations 

are possible they may be used as a prototype of the final system, or even as the final 

implementation itself.

2.3.1 Z into Prolog(1)

Knott et al [Knot92] present a method of animating Z specifications using Prolog. 

The project developed a library of Prolog rules (the SuZan library) to match the built

Page 20



Chapter 2_________________________________Literature Survey

in constructs of Z. Their method allows the Prolog code to execute at much faster 

speeds than other methods by carrying out program transformations at the Prolog 

level. An implementation of Morgan's telephone network in [Haye87] showed that 

the animation runs extremely slowly when translated into a functional language (in 

this case the animation took overnight to execute). A naive translation of the 

specification into calls of the Prolog library rules described in this paper, although 

faster than the functional form of Morgan's, still took three hours to execute. Some 

transformation rules such as placing the delta call of schemas at the end of the 

Prolog rules (instead of at the beginning as it appears in Z schemas) lowered the 

execution time to 70 seconds. Further work using some applications of the laws of 

Boolean algebra reduced the time to 0.65 seconds.

A major criticism of this work is that, for each schema, a predicate is built which 

generates all possible states defined by the signature part of the schema. The 

approach is completely impractical because often there will be no satisfactory 

answer to a query, due to a possibly infinite number of answers, or because the act of 

generating all possible states and testing them will take too much time. A simple 

example such as sorting the sequence [5,2,4,3,1] took 9 seconds with LPA 

MacProlog on a Macintosh SE/30 and a total of 11 seconds to verify that the 

solution was unique. The program generated all possible sequences containing the 

same elements as the sequence to be ordered and then chose the generated sequence 

(there should be only one) that had the correct order. Obviously this generate and 

test paradigm has the possibility to generate massive amounts of possible solutions 

through a combinatorial explosion. How long would the program take to sort even a 

small sequence of 100 numbers?

Another weakness of this method is that the system does not provide a means for 

handling quantifiers and generic schemas. The only schema calculus operators 

allowed are: negation (- ), conjunction (A), and disjunction (v) . These restrictions 

limit the expressiveness of the specifications that can be animated.

Page 21



Chapter 2__________________________________Literature Survey

Finally, the author acknowledges that the variety of flow-modes allowable in the 

implementations of Prolog inhibits the portability of the SuZan library to other 

Prolog versions.

2.3.2 Z into Prolog(2)

West and Eaglestone investigate the animation of Z specifications using two 

approaches in Prolog.

1. The first method called 'formal program synthesis' arises from the fact that Z 

and Prolog are related in a mathematical way. The method realises this 

relationship by a direct translation of the Z schema into Prolog.

2. The second method is 'structure simulation' which results in a simulation of the 

Z schema by capturing its mathematical structure.

2.3.2.1 Formal Program Synthesis

This method consists of two parts. Firstly to express the higher order logic of Z as 

first order computer logic and secondly to turn the first order computer logic into 

Prolog. Some characteristics of schemas were identified in order to assess how a 

first-order, straight forward schema would be represented in Prolog. List operations 

in Prolog were used as a model for some set operations in Z. The method failed 

mainly due to the difficulty of deriving Prolog clauses from the first order 

representation of the Z specification. West et al concluded that, as yet, there is no 

suitable way of turning arbitrary logic specifications into logic programs and hence 

abandoned this approach.

2.3.2.2 Structure Simulation

This method required a 'flattening' of the Z specification into a form suitable for 

implementation in Prolog. A library of (finite) set theory operations was constructed 

using Prolog recursive predicates. These were used to animate two simple examples 

from [Haye87]. The advantages of the method were that the approach is simple and

Page 22



Chapter 2_________________________________Literature Survey

the Prolog code is general so that it can be tailored to a particular Prolog 

implementation. However, this is clearly not an advantage in terms of the language 

used. Ideally Prolog code should work on all Prolog environments if the interpreters 

and the language conformed to a strict standard. The lack of data types in Prolog 

meant that Prolog sets had to be implemented as lists which was judged as a 

restriction on the subset of Z which is capable of being translated by this technique. 

In modelling the set as a list, the author does not say if the semantics of the set are 

preserved i.e. that it is finite, enumerable and no duplication of items are allowed. 

He does however say that the order of items in the list will be irrelevant. Another 

restriction of the technique involved some Z constructs whose suitability for 

implementation was unknown (at the time of writing the paper). These constructs 

included Lambda expressions and complex existentially quantified statements.

This approach has more merit than the approach of Knott et al, discussed previously, 

because the approach does not use the generate and test technique and so avoids 

combinatorial explosions. Instead data is directly input into the queries of the 

animation. Variables are instantiated with set values according to some test strategy 

to validate the specification and test the resulting animation.

2.3.3 Z into LISP

Morey et al [Morr92] present work on a project developing a method which enables 

Z specifications to be translated in an executable form in LISP. The more complex Z 

operations such as power set and distributed disjoint were prototyped in Miranda 

(Diller [Dill90] gives an example of animation using Miranda) to explore efficient 

designs before being coded in LISP. These were then tuned with specific LISP 

constructs. The project has concentrated on the functionality of Z schemas and hence 

on the implementation of their predicates rather than the declarations. The type of 

the variables were deemed to be outside the scope of the study. However, it is an aim 

of the project workers to extend the animation system to deal with a larger part of 

the Z language and to include the schema calculus operators and data typing. Morey 

criticises the implementation on the grounds of its inefficiency, but defends the

Page 23



Chapter 2__________________________________Literature Survey

prototype by saying that once validated, program transformation techniques can be 

applied to speed up the implementation.

Morey et al identify the fact that a user would expect a prototype to support an on 

going state so that the post state values of one operation will become the pre state 

values of the next operation. However, in the example specification implemented by 

the method, the after states and output are defined as local variables in the functions 

implementing the operation schemas. Thus, there is no continuing state. This must 

make the animation difficult to use because the state must be set up individually for 

each test case because the after state of one operation test cannot be used in the next 

test.

This is one of the difficulties of using functional languages, which do not have the 

concept of a state, to implement state based specifications. The work of Goodman 

below attempts to address this problem without explicitly passing the state between 

functions.

2.3.4 Z into Haskell

Goodman criticises previous functional languages because they have been slow, and 

cumbersome. He also criticises attempts at animating or prototyping Z specifications 

with other functional languages because, the state has been handled clumsily, by 

being passed explicitly from function to function and input/output if handled at all 

has been done so with a series of continuations [Good95b]. He proposes the use of a 

Monad to simulate the action of input, output and state when implementing Z 

specifications using the functional language Haskell. This allows the programmer to 

deal with these features in a new way which is simpler than those used before. 

However, no mention is made of how to translate specifications that include multiple 

states, schema inclusion and schema bindings.

Page 24



Chapter 2_________________________________Literature Survey

One benefit of using a functional language is that it is easier to reason about and 

formal proofs are more amenable than for an imperative language. However, 

incorporating the Monad introduces an imperative style of functional programming 

which then complicates matters with respect to reasoning and proving programs 

correct [Good93].

2.3.5 Critique of Rapid Prototying and Animations using Functional 

Languages.

The methods outlined above have the aim of showing that the formal specification is 

a valid representation of the customers requirements by providing a version of the 

software that can be shown to the customer at an early stage of development. The 

animation can be used to test operations and for reasoning about the specification. 

Indeed, quite commonly this is all they are used for because the code produced is not 

usable as a final implementation since its performance may not be satisfactory. The 

implementations are often acknowledged by the authors as being too slow. Another 

disadvantage is that many specifications are state based and the functional 

implementations do no handle the state well (although Goodman addresses this by 

moving the functional language closer to an imperative one, by adding some 

imperative features, through the use of a monad). Even carrying out an animation, 

without a continuing state (as in Morey), must be difficult as the state must be 

generated for each set of tests because the state obtained after an operation is not 

used in the next test.

Many functional languages do not have a standard implementation which would 

make it difficult to reuse the code in other applications. Also, the current state of 

compiler technology prohibits the use of functional programs in real world 

applications due to performance issues. However, many authors believe that 

functional programs will be in widespread use with future increases in compiler 

performance and advances in computer architecture. As Utting [Utti95] states, an

Page 25



Chapter 2__________________________________Literature Survey

animation of a Z specification can be used in the final software provided it is 

efficient enough.

One other limitation with functional languages is the lack of facilities for interfacing 

with other languages and systems, such as networks and databases. Wadler [Wadl95] 

introduces one meagre (in his words) facility to enable the functional programming 

language Haskell to interface with C programs. At the time of writing, only values of 

base type could be passed to C. He states that this is a start in the right direction and 

current research topics include how to pass more complex structures between C and 

Haskell, how to add concurrency, how to integrate storage management and better 

support for graphical user interfaces. Once again, these are problems that are not 

faced when using a target language such as Ada.

Proponents of rapid prototyping using functional languages claim that the 

implemented code has the advantage that is closely matches the original 

specification, far more than is the case when imperative languages are used. The 

work outlined in this thesis has the advantage that the code produced is easily 

identifiable with the Z specification through the use of predefined function and 

procedure calls matching the Z operations, but because it has been constructed with 

an imperative language, the concepts of input, output and state are inherently 

available. The work of Goodman allows a functional language to be used in an 

imperative way, whereas the work described in this thesis allows an imperative 

language to be used in a more functional manner.

From the literature the following advantages of using functional languages to 

implement Z specifications can be summarised as follows :-

advantages
1. The prototype provides early validation of customer requirements.

2. A subset of Z is easily constructed in functional languages.

Page 26



Chapter 2__________________________________Literature Survey

3/ The code matches the original Z specification through similarly named function 

/, calls

4. The method provides an efficient means of testing model based specifications.

5. When using a functional language it is possible to make assertions about 

programs and prove these assertions to be correct.

disadvantages

1. Functional languages do not have the concept of a state, making it difficult to

implement state based specifications.

2. Input and output are not handled well, particularly in the case of interactive 

input/output with purely functional languages

3. The resulting code is slow and often cannot be used as the final implementation.

4. The functional program must be translated into an imperative language if the 

prototype is not suitable for use.

5. The lack of a standard in many functional languages makes interfacing with 

other languages and portability difficult.

The work contained in this thesis has many of the advantages of using functional 

programs outlined above. However, with regards to point 2 and point 5, producing 

the code for the reusable components is more difficult and it is much harder to 

reason about imperative programs, although the use of abstract data types make 

reasoning about programs easier to do than when using the structures provided by 

the programming language [Haye96].

The work in the thesis uses a well established standard imperative language and 

therefore does not have the disadvantages inherent with using a functional 

programming language (such as state, input/output, speed and portability problems). 

Also, coding the specification in a high level imperative language allows for 

flexibility when integrating with operating systems, user interfaces and external 

modules [Jado89].

Page 27



Chapter 2__________________________________Literature Survey

2.4 Bridging the Gap Between the Specification and Target Languages

The methods discussed in this section all seek to make the implementation process 

easier by refinement within the Z specification language, or by writing the 

specification in such a way that producing executable code is more easily achieved.

2.4.1 Structuring Z

Read [Read92] identifies the fact that Z has been used to good effect on large 

projects but it can be difficult to reuse parts of the system in future developments. 

The conventional way of writing Z specifications gives a good description of the 

behaviour of the whole system but does not define the behaviour of individual parts 

of the software. Read's paper is fundamentally about changing the way 

specifications are written. He suggests that specifications should be written in a style 

that allows parts of the system to be reused with more ease than at present. This can 

be achieved by improving the correspondence between Z and Ada at a structural 

level. Ada has several structuring mechanisms that have no equivalent in Z (i.e. 

packages, private types and tasks). Read shows how various classes of Ada packages 

can be modelled using Z. With these mechanisms in place a Z specification can be 

written in a more modular style with thought as to the final structuring of the Ada 

packages making up the implementation. The aim is to produce a specification that 

will have a one-to-one correspondence to the Ada packages that eventually 

implement it. In other words the formal specification must have the same structure 

as an Ada program. This means that parts of the system and their implementation 

can be more easily identified and plucked out for use in other specifications.

The main difference between Read's work and the work detailed in this thesis is that 

Read adds structure to Z using the structuring mechanism of Ada as a model. 

However, in this thesis, functionality is added to Ada by modelling the types and 

operations found in Z. Read uses Z to model service, restricted service, generic and 

state based Ada packages.

Page 28



Chapter 2_________________________________Literature Survey

Read does not mention the process of taking a complete specification and arriving at 

code using only reusable components. In fact Read is not concerned about how a 

particular specification is turned into code at all, as long as the specification is 

modularised so that some components of the specification can be reused in other 

specifications. Read is concerned with facilitating the reuse of parts of an existing 

implementation in another system. The work presented in this thesis is concerned 

with arriving at the implementation.

A Z specification written using Read's method would undoubtedly be easier to 

translate into Ada code using the method presented in this thesis. This is because the 

Z specification will have been written in a structured manner and so the developer 

won't have to decide which states, types and operations should appear in which Ada 

package as would be the case in general. Read's method will have completed some 

design work at the beginning so that one does not have to be concerned with how the 

Z specification will map to the Ada implementation, one can simply translate each 

modularised Z component using the reusable Ada components. This will have 

advantageous results for scaling up the work to an industrial application because the 

industrial specification will be made up of small specifications, each concerned with 

a separate aspect of the systems functionality, which will easily map to Ada 

packages.

Lano et al [Lano92] also discuss the reuse and adaptation of specifications in Z and 

Object Z. Reusability of components has been seen as a central means to resolve the 

software crisis, but in order to reuse a component safely, there must be some formal 

description of its semantics. Lano et al identify Z specifications as potentially an 

excellent medium for reuse and adaptation since they combine a precise description 

of functionality with a design of the system. The paper addresses issues of how Z 

specifications can be structured and designed to facilitate reuse and adaptation.

Mitchell et al [Mitc94] also criticise the way in which formal specifications are 

written because the lessons learned from programming about effective

Page 29



Chapter 2__________________________________Literature Survey

decomposition strategies are often not applied at the specification level. The authors 

conclude that care over decomposition in specifications is just as important as 

decomposition in computer programs. This is echoed by Sampaio and Meira 

[Samp90] who state that "Although mechanisms for structuring and modularisation 

are more widely available in programming languages, they are vital to all phases of 

software development. Indeed, they are useful as a way to simplify any problem 

solving activity and software specification is no exception." Modularity reduces 

complexity, aids maintainability and increases system comprehension. Glass and 

Noiseux [Glas91] argue that modularising contributes far more to maintainability 

than structure does and is the most important factor in preventative maintenance, 

whilst Lientz and Swanson cite a study finding that 89% of code users reported 

improved maintainability with modular programming [LienSO].

A specification written with the methods described above should be more amenable 

to direct translation with reusable components. The structure of the Z specification 

will map to Ada packages easily because the Z specification will have been 

structured to specify coherent conceptual units in the application domain. The 

process of translating a large specification into code will then be equivalent to 

translating a series of smaller specifications each describing an aspect of the system 

into an Ada package. It is not necessarily the number of state schemas or the number 

of individual operation schemas, contained in a specification, that makes an 

implementation using reusable components difficult. It is the relationships between 

the states, operations and the packages housing them that can possibly cause 

difficulties if the specification is constructed in an ad hoc manner.

2.4.2 Transformation within Z

This section discusses those methods that work in the Z domain inorder to smooth 

the path from an abstract specification to executable code.

Page 30



Chapter 2__________________________________Literature Survey

2.4.2.1 FunZ

Sherrel and Carver [Sher95] introduce FunZ which is described as an extension of 

Haskell with a Z like flavour, that preserves many of the notational conventions of 

Z. Software design with FunZ is similar to design with Z except that it provides a 

bridge between the Z specification and a functional implementation. Each step in the 

method has functional overtones to facilitate direct translation in a functional 

language. The Z specification is refined into a FunZ specification from which 

Haskell code can be derived. The paper uses a case study based upon the class 

managers assistant of Wordsworth [Word92]. Indeed, the whole process is very 

similar because Wordsworth develops a concrete specification using a retrieve 

function and data types found in an imperative language, whereas Sherrel and Carver 

develop the FunZ specification, again with a similar retrieve function, but targeting 

the types and operations available in Haskell. The work is based upon the fact that 

there exists a mapping between sets in Z and lists in Haskell. For example, 

considering lists without duplication, set difference, / , is mapped into range 

subtraction, ^, which in turn is mapped into list difference, // in Haskell. However, 

the paper does not describe the following important aspects.

  The example specification is simple and only uses Z operations which have 

direct counterparts in Haskell. No explanation of how operations in Z that have 

no counterpart in Haskell are specified in FunZ .

  Although the FunZ specification is now more readily turned into Haskell (as it is 

basically Haskell), no mention is made of how this is done with regards to the 

issues of input and output and state. The only examples shown are simple 

statements being translated into a FunZ equivalent. No information on how the 

final system works is given.

The work translates Z set operators into Z sequence operators, from which Haskell 

list functions are directly used to derive code. However, if Haskell supported the 

original set operations, then code could be translated directly, without rewriting the 

specification.

Page 31



Chapter 2__________________________________Literature Survey

2.4.2.2 Anna

A similar method exists for linking Z specifications with Ada using Anna 

(ANNotated Ada) as an intermediate link [Woodw91]. Anna is a language extension 

to Ada that includes facilities for formally specifying the intended behaviour of Ada 

programs. The intention is to move from the abstract Z specification through 

refinement steps to arrive at a concrete Ada program. The method uses three 

notations during the development process :-

1. An implementation independent notation for the specification of the system (Z in 

this case).

2. An implementation dependant notation for the representation of a lower level 

specification (Anna).

3. A programming language for implementation (Ada).

The approach followed is to capture the system requirements in Z, refine the Z 

notation (for some number of steps) to both add detail to the specification and to 

bring the specification into a form suitable for transformation to Anna. Finally, the 

Anna specification may then be further refined and extended with Ada until the 

specification has been satisfied.

Some general rules for translating various types of schema are shown throughout the 

report, such as SimpleData :-

|  SimpleData
Varl : TYPE1

Varn : TYPEN 
Predl

PredN

Page 32



Chapter 2__________________________________Literature Survey

The variables in state schemas, such as SimpleData, are translated into functions as 

the corresponding Anna specification shows :-

Package SimpleData is

function varl return Typel;

function varn return Typen;

axiom
predl,

predn; 

end SimpleData;

Where ~| is the notation for an Anna annotation.

The approach of using functions to represent state variables has been chosen because 

the transformation works best when analysing the Z specification using the Anna 

specification analyser. However, it is clearly not a representation of what the Z 

specification intended. Varl is a variable of type TYPE1, it is not a function 

returning an item of type TYPEl. The authors acknowledge this by saying that 

further work must be done to represent state variables as variables. A further 

criticism is that the method also fails when schema inclusion and the use of multiple 

states are required. Again the authors suggest that further work must be done to 

overcome these difficulties. The difficulties are not a result of moving from Z to 

Ada, as it will be been shown in this thesis (chapter 5) that state schemas, inclusion, 

schema types and bindings are easily translated when using reusable Ada 

components, but, the difficulties are caused by the requirement to use the Anna 

analyser.

Page 33



Chapter 2__________________________________Literature Survey

In the paper, the only stage presented is the process of converting Z schemas into 

equivalent Anna specifications through the use of the Birthday Book case study 

[Spiv89]. In the state schema for Birthday Book, Known is defined as :- 

Known : P NAME

In the Anna specification it is represented in the manner shown above as :-

Function Known return SET_OF_NAMES.SET;

Where SET_OF_NAMES is an instance of a package SET_CONCEPTS. The method 

translates operations by using generic packages such a SET_CONCEPTS and 

MAP_CONCEPTS which are assumed to be part of the Anna library, used by the Anna 

analyser, to show that the Anna specification is a valid representation of the Z 

specification. The Anna specification for AddBirthday is given as :-

procedure ADD J3IRTHDAY(ANAME : in NAME; AD ATE : in DATE);

 I where

~| in (not SET_CONCEPTS.MEMBER(ANAME,KNOWN));

--] out (BIRTHDAY =

SET_CONCEPTS.UNION(MAP_CONCEPTS.MAPSTO(ANAME,ADATE),

in BIRTHDAY);

The development of this Anna specification to Ada code is not shown. In the 

appendices of [Woodw91], the original abstract Birthday Book specification is given 

with the corresponding Anna specification. However, the concrete version of the 

Birthday Book, also given in [Spiv89] is also presented, but the Anna specification 

for this concrete design is not given because, the authors say, it is not in a suitable 

form for translation due to infinite structures being used (Spivey developed the code 

using an (imaginary) infinite array structure to keep the example simple). This 

suggests that the Anna specification of the original Birthday Book specification is 

not used for the development of the Ada code at all. It is unknown why the authors 

were reluctant to provide an Anna specification for the new concrete design because

Page 34



Chapter 2_________________________________Literature Survey

the Anna specification for the original Birthday Book specification also contains 

infinite structures. All that is required as Spivey says is to use schema calculus to 

specify a limit on the number of entries, with appropriate error reports if the limit is 

exceeded.

Finally, it is interesting to note that the Anna specification for Birthday Book is very 

similar to the actual code that would be derived if the operations contained within 

the reusable components described in this thesis were used. It is a shame that is it not 

possible to use the methodology described throughout this thesis to derive the Anna 

specifications (for reasons of using the analyser outlined above). If it were possible 

then code could be shown to implement the Z specification using the Anna analyser, 

but the code would be executable.

2.4.2.3 Z»

Valentine [Vale91] introduces Z , which he describes as an executable subset of Z 

which can be treated as a typed functional programming language and executed 

reasonably efficiently. A Z specification is refined through successive steps and data 

refinements to arrive at high level Z--. Operational refinement moves the 

specification into base level Z . The stages are highlighted by using Spivey's 

Birthday Book [Spiv89] as a case study. The description of Z~ is important with 

respect to the work presented in this thesis because Z  ensures that all values it 

recognises can be stored in a finite computing machine. Whilst Z allows the finite 

and infinite data structures to be used in the same basis as each other programming 

languages do not (conceptually infinite structures can be defined in functional 

languages, but if a calculation is to be performed it must take place on a finite 

section of the data structure). Valentine transforms infinite sets, such as Known : P 

Name (from the Birthday Book) into alternate representations such as Known : F 

Name. This can then be held as an array, or in Z terms a sequence, with the range as 

the set. Valentine separates the use of sets into two concerns. Passive sets are those 

sets that are not altered and are only used for membership tests. These sets are left

Page 35



Chapter 2__________________________________ Literature Survey

unrefined in Z--. Active sets, are those sets that are enumerated and are therefore 

refined as sequences.

A concrete version of the specification is written replacing sets with sequences. The 

function Birthday : NAME -** DATE is refined as follows :-

an ordered pair is declared entry = = NAME x DATE 

Birthday then becomes BirthdayList: seq entry

One criticism of the work is that sequences allow duplication of items, where as 

duplication of items is forbidden in sets. BirthdayList, as declared above, allows 

duplicate Names, which was forbidden hi the original specification. Also, the whole 

process is intended to refine the specification into a concrete form using sequences, 

from which an implementation can be created using a language that supports Z like 

sequences. However, if the target language supported sets, functions, relations and 

sequences then the transformation process to a concrete design based upon 

sequences would be unnecessary. This is the reasoning behind the construction of a 

series of reusable components written in Ada95 to model those types in Z and to 

allow a translation between the two. Valentine also identifies the fact that very large 

sets must be refined into some other data structure, apart from sequences, in order 

for them to be executed efficiently. This, presumably, would not be as easy to 

specify in the Z  domain as no details of how to use more efficient structures are 

discussed. However, a specification written in Z~ will be more amenable to 

refinement with reusable components because it will be written in an executable 

manner.

2.5 Conclusion

No computer will be built that is capable of implementing all specifications. It is a 

fact that many specifications are produced that are not implementable as they stand. 

The refinement methods and calculi manoeuvre around these problems by 

constructing a design based on implementable constructs in a programming

Page 36



Chapter 2_________________________________Literature Survey

language. Additional work is carried out to satisfy the non-functional requirements 

which do not appear in the original abstract specification such as performance, 

reliability, platform and storage means etc. The specification is heavily reworked 

and proofs are required to show that the new specification does not invalidate the 

original. When functional languages are used, some work must also take place to 

refine the Z specification. This work seeks to remove the non-executable statements 

by making them constructive, although non-functional requirements are often not 

considered because the intention is only to produce a prototype to validate the 

original specification. The work presented in this thesis also requires some work to 

be carried out in the Z domain, with regards to writing non executable statements in 

a constructive manner, removing non-determinism and considering performance 

issues before translation with reusable components can take place. A Z purist would 

argue that a specification only states a problem and does not offer a solution to 

implement it. This is a perfectly valid viewpoint and is the reason why every 

refinement method in the literature either adds information to the Z specification or 

rewrites it in some way in the process of developing code. When implementing a Z 

specification directly, it is necessary to blur this distinction between specifications 

and code by writing the specification in a functional manner, or transforming it to 

make it executable. A specification written in a functional style has the major 

advantage of being executable. The disadvantage is that some freedom in a specifiers 

expression is lost. However, to put this loss into context, Fuchs [Fuch92] points out 

that the main problem in software development is a lack of correctness and not the 

possible lack of expressive power in a specification language.

Refinement methods allow full formal development from specification to code in an 

imperative language, which can be used in an application. However, this method is 

impractical for all but the simplest specification and as a result very few proofs are 

carried out, although in many cases the cost of system failure does not justify the 

cost of full formal development. Here, usable code is produced but the method is, 

arguably, difficult to use. Animation or rapid prototyping of specifications using 

functional languages offers a more usable method, although less formal, but the

Page 37



Chapter 2__________________________________Literature Survey

functional code produced is inefficient and is not often usable as a final system. The 

work presented in this thesis is comparably as easy to use as the functional methods 

because the translation process of Z predicates is similar, but the code produced is in 

a widely used, standard imperative language which has facilities to interface with 

other languages. The cost of producing the reusable components is higher than it 

would be if a functional language were used, but this can be offset because the 

functional implementation is often transformed into an imperative equivalent in any 

case.

Many authors have realised that Z specifications must be written in a more modular 

fashion to enable the lessons already learn't in software engineering for the 

construction of programs to be applied to the construction of specifications. At 

present, schema calculus incorporates many structuring facilities, but it does not 

modularise specifications. These methods will have advantages for the 

transformation of specifications to code using reusable components because the 

specification will map to an equivalent implementation in a linear fashion. A single 

module in a Z specification, i.e. a group containing its state, initialisation and 

operations, will be turned into a single package modelled as an abstract state 

machine. A specification that is modular will also enable each component 

specification to be tested against the informal requirements as it is implemented. The 

reuse of specifications will also be improved and a library of specifications can be 

built up from which other larger specifications can be constructed.

Page 38



Chapter 3_____________________________Overview of Methodology

Chapter 3 

Overview of Methodology

Page 39



Chapter 3_____________________________Overview of Methodology

3.1 Introduction

The aim of this thesis is to show how Z specifications can be refined into code, 

which can be executed, using reusable components in Ada95. In this chapter a 

simple example of a Z specification of the Birthday Book [Spiv89] is given along 

with the Ada package specification and the Ada package body of the translation. A 

simple menu program is also highlighted which shows how the Birthday Book 

package is instantiated and how the operations are used.

3.2 The Birthday Book Specification

The Birthday Book records peoples birthdays and is able to issue a reminder when 

the day comes around. The system must deal with people's names and dates, 

however, for specification purposes the model for the names and dates does not 

matter. The sets of all names and all dates are introduced as basic types of the 

specification. These are :-

[NAME, DATE]

The Birthday Book state schema is as follows :- 

BirthdayBook ____________
known : P NAME 
birthday: NAME -» DATE

known = dom birthday

An initialisation schema specifies the state at which the system starts.

Page 40



Chapter 3________________________________Overview of Methodology

plnitB irthdayB ook    | 

BirthdayBook

known = 0

One operation of Birthday Book is to add birthdays to the system. It is specified as :- 

,-AddBirmday _____________________
A BirthdayBook 
name? : NAME 
date? : DATE

name? g known
birthday' = birthday u { name? >-» date?}
_________________________________I

Another operation could be to find the birthday of a person known to the system. It 

is specified as :-

FindBirthday_______________
S BirthdayBook 
name ? : NAME 
date? : DATE

name? e known
date ! = birthday (name?)

3.3 Translating the Birthday Book State Schema

The state schema is translated into an Ada package specification modelling an 

abstract state machine. The state model is developed by instantiating reusable 

components according to the types specified in the state schema. This aspect is 

explained in detail in chapter 5. The operations specified in the Z specification 

require procedure or function definitions in the Ada package specification. The 

actual implementation of these Z specification operations are contained in the Ada

Page 41



Chapter 3_____________________________Overview of Methodology

package body. The implementation of the Z operation schemas is discussed in detail 

in chapter 6.

The Ada specification for the Birthday Book is given below :-

with Many_to_one_G;Set_G;

generic
type name is private; 
type date is private;

package b_book is

procedure init_book;
procedure add_birthday (n : name; d:date); 
function find_birthday (n : name) return date; 
--other operations in Z specification

private
package name_set_pack is new Set_G(name); 
use name_set_pack;

package date_set_pack is new Set_G(date); 
use date_set_pack;

package birthday_map is new Many_to_one_G
(name_set_pack, 
date_set_pack,

use birthday_map;

--the state model becomes 
known : name_set_pack.set ; 
birthday : birthday_map.map;

end b book;

The Ada package body is given below. The details behind its derivation are 

explained in chapter 6.

Page 42



Chapter 3_____________________________Overview of Methodology

package body b_book is

procedure init_book is 
begin

create_map(birthday) ; 
end;

procedure add_birthday (n:name; d:date) is 
begin

if not is_a_member(n,known)
then

bind(n,d,birthday) ;
end if; 

end;

procedure f ind__birthday (nrname; d: in out date) is 
begin

if is_a_member(n,known)
then

return (range_of(n,d, birthday) ) ;
end if; 

end;

  other birthday book operations 

end b book;

The code given above is the Ada translation of the Z specification. As in the Z 

specification, no types are given for NAME or DATE. These are left as generic 

parameters in the Ada package. The code given above can be compiled, but in order 

to execute it, the birthday book package must be instantiated and used in another 

piece of software. This other software must provide the models for the generic types 

and the code for any generic procedures used. In this simplified example, there are 

no generic procedures used. In chapter 6 the use of generic procedures is explained 

in more detail. When the translated Ada package is instantiated the operations 

contained within the package become available for use. Other ancillary procedures 

can be included in the software using the translation, such as requesting input data. 

In order to instantiate the birthday book package the following code can be used, 

where its main body consists of a simple menu in order to call the operations 

available in the birthday book package (N.B. to cut down on the code in the thesis, 

this program is simplified and contains simple models, it does not for instance check 

that inputs are valid).

Page 43



Chapter 3_____________________________Overview of Methodology

with b_book,text_io; 
use text_io;

procedure birthday_main is

—the options are the operations available to birthday book
 -quit program is used to end this program

type options is (init_book,add_birthday,find_birthday,
quit_program);

package options_io is new enumeration_io(options); 
use options_io;

— an integer package is instantiated because integer is used as 
~- a type in part of the model for DATE given below.

package iio is new integer_io(integer); 
use iio;

— the model for NAME
subtype name is string(1..10) ;

subtype day_number is integer range 1..31;

type months is (January,February,March,April,May,June,July, 
August,October,November,December);

package month_io is new text_io.enumeration_io(months); 
use month_io;

— a simple model for DATE
type date is record
day:day_number;
month:months; 

end record;

-- instantiation of birthday book package

package birthday_book is new b_book(name,date) ; 
use birthday_book;

—variables used in menu program 
n: name ;
d:date;
11:natural;
choice : integer range 0..3;
quit : boolean:=false;

--simple procedure to request input of a date
procedure get_date(d:out date) is 
begin
put_line("enter day number 1..31 ");
get(d.day);
put_line("enter month eg July ");
get(d.month); 

end;

Page 44



Chapter 3_____________________________Overview of Methodology

begin  main part of menu program 
while not quit loop 
begin

--print menu 
for i in 0..3 loop 
put(i,2); 
put("...."); 
put(options'val(i)); 
new__line; 

end loop;
put("enter option : "); 
get(choice);skip_line;

-- menu case statement

case options'val(choice) is

when init_book => 
init_book;

when add_birthday =>
put("enter name ");get_line(n, 11) 
put("enter date ");get_date(d); 
add birthday(n,d);

when find_birthday => put_line("enter name "); 
get_line(n,11); 
d := find_birthday(n) ; 
put(d.day); 
put(" "); 
put(d.month);

-- other operations

when quit_program =>
quit := true; 

end case;

end loop; 

end birthday main;

In the example above, the model for date does not check the number of days in a 

give month on input of a date. However, this simplified model was intended only as 

an example. It would be possible to use the model for date as given in the Ada 

package Calendar. The package Birthday Book is also reusable since many models 

for the given types can be used to instantiate the package.

Page 45



Chapter 3_____________________________Overview of Methodology

3.4 Broad Overview of Method

  Examine the systems non-functional requirements to identify which reusable 

component to use for each of the types declared in the state schema, with regards 

to performance and method of data storage.

  Identify the Ada package hierarchy that will translate the Z specification (see 

examples in section 7.5.2.1 and section 7.5.3.3).

  Identify which Z operations will be contained in which Ada package.

  Translate state variables from state schema into an Ada package specification 

(see chapter 5) by using instantiations of the reusable components.

  Translate Z operations into Ada procedures or functions in the Ada package 

body (see chapter 6) using the operations contained in the reusable components.

  The translated Ada package(s) must be instantiated and used in the software 

system. This can be achieved when the system is built.

  Validate customer requirements using the complete software system using 

current techniques.

  Test the complete system against non-functional requirements using current 

techniques.

  If the system performance is not satisfactory then tune software (see section 

7.3.5 paragraph 2).

  If the system performance is satisfactory and the system meets the customer 

requirements then it can be used in the final system.

Page 46



Chapter 4_____________________Construction of Reusable Components

Chapter 4 

Construction of Reusable Components

Page 47



Chapter 4_____________________Construction of Reusable Components

4.1 Introduction

In order to translate Z specifications into Ada using reusable software components, it 

was necessary to construct reusable software components to model the main types 

found in Z; namely the set, function, relation and sequence. Each component was 

implemented as an Abstract Data Type using Ada95 and the Booch style [Booc87]. 

For each of these main types, a number of different components were developed 

based upon different data structures and using both internal and external memory to 

satisfy user requirements for efficiency and method of storage. The code extracts 

that appear throughout this thesis are written in Ada95.

The operations contained within each software component model the Z operations 

for that particular type. However, some combinations of Z statements occurred often 

and it was more efficient to create a separate operation to implement them. For 

example the statement r eran F would involve applying the operation range_of to 

create the set of range elements for the function F and then using the function 

is_a_member to test the membership of r in this set. However the function 

is_a_range_eiement was included into function and relation components to model 

this situation using a single operation. A number of other operations have overridden 

counterparts so that the same operation can be applied on single items or sets of 

items and to either change an existing state variable or create a new variable. A full 

list of simple Z statements and operations are given in appendix 2, along with the 

Ada operation(s) used for their translation. Also contained in this section is a 

discussion on efficient data structures and a method of improving the productivity 

and efficiency of software components by the construction of utility packages. As an 

example, a set package is built on top of a package providing efficient external data 

storage, and then a function package is built on top of the set package. This method 

of construction also enabled software components modelling the Z operators that 

function over different types (such as distributed union) to be completed.

Page 48



Chapter 4_____________________Construction of Reusable Components

4.2 Outline of Reusable Components

This section describes the layout and structure for the Ada specification of a typical 

abstract data type, used to model a type in Z. Segments from the specification of a 

set are shown to highlight the main areas of interest. The data model is not given as 

many alternatives are possible (such as arrays, lists, trees and file structures etc.) and 

the operations shown are not exhaustive, in order to save on space. The generic 

formal part of a function package is also shown as an example because the other Z 

types (function, relation and sequence) require a set as a parameter to some 

operations. Here, with Ada95, the set can be imported as a generic package 

parameter, but, when using Ada83, the solution is not as concise (this is discussed in 

more detail in chapter 8 section 8.2).

It is possible for the set, function, and relation components to import an ordering 

function as a generic parameter, in order to improve the speed and efficiency of the 

implementation. It is valid to incorporate an ordering function for sets, even though 

a set is defined as having no order, because the order of items in the set is not 

available to the developer. The developer, when implementing the formal 

specification, can only access the set through the operations of the set abstract data 

type. The order is simply an underlying mechanism to improve the efficiency of the 

component and so the key abstraction of a set is not broken. In the case of the 

sequence component, there is no ordering function because the order of items in a 

sequence is of importance. Other components that use hashing functions or keys to 

achieve efficiency can also be constructed. In the case of a component utilising 

hashing routines, the component can be parameterised over a hashing routine 

supplied by the developer as required.

A typical set component is given as:-

Page 49



Chapter 4_____________________Construction of Reusable Components

generic

type Item_Type is private; --allows a developer to instantiate set 
maxsize : in positive; --over a given type and for a given

--number of items in the set 
package Set_bounded_G is

--the type set is private so that the abstraction is safe 

type Set is private;

--standard set operations
procedure Create_Set (S :out Set);
procedure Insert (Item :in Item_Type; S : out Set);
procedure Union (S1,S2 :in Set; S3 : out Set);
procedure Intersection(SI,S2 :in Set; S3 : out Set);

function Is_Equal_Set (S1,S2 : Set) return boolean; 
function Size_Of (SI : Set) return natural;

-- Identity functions (used in quantifiers and set comprehension)

function Ident (II:in Item_Type) return Item_Type; 
function Ident (II:in Item_Type) return boolean;

-- Generic functions

generic
with function Predicate (II :in Item_Type) return boolean;
with function Expression (II :in Item_Type)

return Item_Type is Ident; 
procedure Set_Comprehension(SI :in Set;S2 : in out Set);

--see section 6. 7 for detailed explanation of set comprehension

generic
with function Post_Predicate(II:in Item_Type) return boolean;
with function Pre_Predicate (II:in Item_Type)

return boolean is IDENT; 
function There_exists(SI : Set) return boolean;

-- see section 6.6.2 for detailed discussion of There^exists

generic
with procedure Process(II:in Itera_Type;Continue : our boolean); 

procedure Iterate(S:Set);

--see section 6.7.4 for detailed discussion of Iterate

-- Exported Exceptions (see section 4.2.1 for use of exceptions)

Set_Is_Full : exception;
Already_In_Set : exception;
Item_Not_In_Set : exception;

private
-- DATA MODEL (this is not shown as many are possible)

end Set bounded G; __________________

Page 50



Chapter 4_________________ Construction of Reusable Components

The interface and some operations for a typical function component are as follows :-

with Set_bounded_G;

generic
MSIZE:in positive;
with package dset_pack is new Set_bounded_G(<>);--set of domain
with package rset_pack is new Set_bounded_G(<>}; --and range types

package One_to_one_G is 

type Map is private;

procedure Create_Map(M:out Map);
procedure Bind( D : dset_pack. item_type;   M' = M u (D >-> R}

R : rset_pack.item_type;
M : in out Map);

procedure Domain_Restrict(DS : dset_pack.Set; -- M ' = DS <7 M
Ml : in out Map);

end One to one G;

4.2.1 Use of Exceptions Within ADTs

Z was not designed to be executable and as a result it has no formal semantics for 

exceptions. However, since executable code is the goal, a design decision was made 

to incorporate exceptions into the reusable components. If attempting an operation 

would break the abstraction (such as attempting to add a duplicate to a set) then a 

message, in the form of an exception, is passed back to the application using the 

abstract data type. The application may then respond to the exception by repeating a 

process, trying an alternative, repairing the problem or even ignoring it. Exceptions 

can also be used to ensure that the system does not crash under certain 

circumstances, for example, when using dynamic memory allocation in a linked list. 

In dynamic data structures, it may be possible to use up all of the systems resources 

when adding data to the structure since computer memory is finite. In Ada 

operations that add data to the dynamic data structure, an exception can be raised

Page 51



Chapter 4_____________________Construction of Reusable Components

from within the component when the systems storage capacity is reached. Z allows 

infinite data structures, finite computing machines do not.

The exception item_aiready_in_set is raised in the Ada set operation insert. 

This operation models the statement S ' = S u {I}, which is in effect made up of two 

statements, i.e. create a singleton set and union it with the set S. Since this statement 

is very common in Z specifications, a single operation was created to model it. 

When implementing the insert operation in an ordered set, the position of the item 

must be found. Having found the position of the item ready for insertion into the 

data structure, it is a very simple matter to determine if the item is already present 

and raise an exception if so. It is very common practice for an Ada package 

specification to contain a declaration of the exceptions that can occur in the package 

[Skan88 pg443]. An exception is not necessarily the result of an error in the 

program, it may be an event that happens rarely. By raising an exception within the 

package the user is given the opportunity to take appropriate action. Raising an 

exception here, also follows the style of Booch [Booc87] where exceptions are 

specific to a particular abstraction and may be raised if an operation is applied that 

may violate an object's integrity. The reusable components are designed to be usable 

in any implementation (not just for translating Z), and therefore it was deemed 

important that exceptions were included. Having said that, a Z specification should 

have a precondition ( such as I e S) to check that one of the main abstractions of the 

set is preserved (i.e. that no item is duplicated) before a postcondition that adds an 

item to the set is reached. If this is true, then the exception item_aiready_in_set 

will not be raised. This is because the insert operation containing the exception 

will only be called if the item is not in the set. When translating a Z specification, 

the exception item_aiready_in_set can only be raised if an attempt is made to add 

a duplicate item and there is no Z precondition present in the specification which 

disallows it.

When implementing an unordered set component, checking for a duplicate item as 

part of the insert operation is not as efficient as with the ordered set component. In 

the unordered case, the insert operation may simply add the item to the end of the

Page 52



Chapter 4_____________________Construction of Reusable Components

data structure and checking for duplicity would require a traversal of the whole 

structure (in the worst case). It would be possible to write an Ada operation for 

inserting an item into an unordered set without first checking that it is not a duplicate 

and rely on a Z precondition to check first. This would mean that the operations 

from an abstract data type must be combined in a manner that preserves the 

abstraction (i.e. that is_a_member is used before insert, which is used only if 

is_a_member returns false.). This would then break a key concept of abstract data 

types, because, any order of operations should be applicable without breaking the 

abstraction. If the definition of the abstract data type is preserved, then the operation 

to insert an item should check that it is not a duplicate. As stated earlier, this is very 

easy when implementing insert in an ordered set component.

For the reasons above, a design decision was made to follow the Booch [Booc87] 

style of exporting exceptions rather than passing back a status parameter when an 

operation would possibly violate an objects integrity. The advantages of this were 

that error detection and recovery could be localised through the existing Ada 

exception handling mechanism.

4.3 Construction of Efficient Data and File Structures

Packages based upon trees have been constructed which use both internal and 

external storage, to provide efficient data structures. The tree package based on 

internal storage uses a tree with a balance condition to ensure that the height of the 

tree is always O (log n). This guards against cases where data is not random and 

could lead to a tree of height n at worst, which would result in an expensive list. The 

tree based upon external storage is an implementation of a B-tree 

[Baye72a,Baye72b,Weis93]. Accessing information from a disk is much slower than 

retrieval from main memory, and is the crucial factor in the performance of 

operations on the tree. The B-tree is organised so that each node in the tree contains 

n keys. When searching the tree an n+1 way decision is made in order to determine 

which direction to branch. This greatly reduces the number of disk operations. For 

example, a B-tree with a branching factor of 101 (i.e. 100 keys in each node) enables

Page 53



Chapter 4_____________________Construction of Reusable Components

any key in a tree containing one million keys to be found in at most two disc 

accesses if the root node is kept in main memory or three otherwise. These tree 

packages have been used as utility packages in the construction of two other set 

packages, and in keeping with the principles of reuse, and building utility packages 

upon other existing software packages, two more function packages have been built 

using the two set packages mentioned here.

4.4 Construction of Utility Packages Using Layering

It is possible to create software components which use the structure of trees or B- 

trees in the private parts of their Ada specification. Operations such as insert and 

domain_restrict for example would be implemented by direct manipulation of the 

underlying arrays, file structures and pointers contained within the specification. 

However, this would be complicated for many operations. The approach followed 

for this project was to implement the tree or B-tree as an abstract data type with 

enough primitive operations to facilitate the construction of other components as 

utility packages. This would improve the production of components by building 

them on top of existing components to make the most of reuse. The productivity is 

improved because the complexity is reduced by operating at a higher level of 

abstraction.

The crucial factor in the construction of utility packages is the generic iterator 

procedure which provides a mechanism for traversing the underlying abstract data 

type. The following code excerpts are taken from the completed versions and 

describe how a one to one function package was built upon a set package which was 

in turn built upon an underlying B-tree package.

The set is simply an instantiation of the B-tree package. The semantics of the set 

operations are constructed by appropriate use of the primitive operations available in 

the B-tree package.

Page 54



Chapter 4_____________________Construction of Reusable Components

package Set_bounded_G is

private
package btree_set_io is new btree_G (msize,

degree,item_type,lt_item);

use btree_set_io;

type set is record
the_set : btree_set_io.btree; 

end record/­ 
end Set bounded G;

An operation to open the set stored on file simply calls the appropriate primitive 

routine from the B-tree package. A list of possible exceptions for the B-tree will 

export exceptions relevant to the set.

procedure open_set(s:in out set;set_title,spaces_title:in string)is

begin
btree_set_io.open_btree(s.the_set,set_title,spaces_titie);

exception
when btree_set_io.btree_status_error =>

raise set_status_error; 
when btree_set_io.btree_name_error =>

raise set_name_error; 
when btree_Set_io.btree_already_open =>

raise btree_already_open; 
when others =>

raise error_opening_set; 
end;

A simple operation such as inserting an item into the set will call the primitive 

operation insert from the B-tree package. An exceptional condition such as 

attempting to insert an item that is already in the B-tree will result in an exception. 

Again, the exception can be caught here to export an exception relevant to sets.

procedure Insert (Item: in Item__Type; S : in out Set) is 
begin
btree_set_io.Insert(Item,S.The_Set); 
exception

when already_in_btree => raise already_in_set; 
end;

Page 55



Chapter 4_____________________Construction of Reusable Components

A more complex operation such as union will require the use of the iterator 

procedure from the B-tree package to traverse the B-tree structure. The union 

procedure takes two sets as input and places the union of the two sets into the first. 

The procedure iterates through the set s2 (contained in a B-tree) and checks whether 

each item in the set s2 is already in the set si. If the item is not in the set si then it is 

inserted into si to form the union of the sets.

procedure UNION(SI:in out Set;S2:in Set) is

Procedure Union_Process(Item:Item_Type;Continue:Out Boolean) Is 
begin

continue:=true;
if not Btree_Set_Io.Isin(Item,SI.The_Set)
then

Insert(Item,SI.The_Set);
end If; 

end Union_Process;

Procedure Union_Btree_Iterate Is New Btree_Set_Io.
Btree_Iterate(Union_Process);

begin
Union_Btree_Iterate(S2.The_Set); 

end UNION;

A one to one function can be modelled as a set of ordered pairs. The one to one 

function can therefore be built by an instantiation of the sets package described 

above. The item type for the set must be an element that has a record structure 

containing domain and range fields.

package Bt map

type element is record
Dom :domain;
Ran :Rainge; 

end record/­

Package Btree_Set_map_Io Is New Set_bounded_G
(Msize,Degree,Element,Lt_Element)

type Map is record
A_Map: Btree_Set_map_Io.Set; 

end record;

Page 56



Chapter 4_____________________Construction of Reusable Components

A simple operation on the function would call the appropriate function from the 

instance of the set package.

function IS_EQUAL_MAP{M,Ml:MAP) return boolean is 
begin

return IS_EQUAL_SET(M.A_MAP,Ml.A_MAP); 
end;

Complex operations will require an instantiation of the iterator procedure from the 

set package in the same manner as described earlier for the union operation. Each 

operation in the function package can be created via the operations available in the 

set package.

This method of construction allows software components that are based upon very 

complex structures to be completed with relative ease and in a fraction of the time. 

Increasing the degree of reuse of components by building on top of existing 

components has an effect on the productivity of software and should increase the 

quality of the software. However, there is no empirical evidence that this layering 

approach improves quality. A study by Zweben et al [Zweb95] concludes that there 

is certainly no loss of quality when layering is used and any loss in performance is 

minimal if the proper abstract functionality is encapsulated in the component. In the 

example shown above, the proper functionality certainly is encapsulated in each of 

the components. This is due to the fact that the main structure in Z is the set and 

each of the other structures depend upon sets.

4.5 Construction of Z Operators Using Utility Packages

It has been shown how components can be built upon other abstract data types to 

take advantage of the performance aspects of the underlying type. In this section, a 

utility component is shown which can house Z operations that operate over different 

set types. The distributed union operator has been used as an example, and its 

specification and the code for its body are given. The distributed union operator 

takes a set of sets as an input parameter and outputs a set of items.

Page 57



Chapter 4_____________________Construction of Reusable Components

It is defined by U : P ( P X) -» PX .

This operation is complicated by the fact that it operates upon sets of different types. 

Other operations that mix types such as relational composition can also be included 

in a utilities package. A version of the set comprehension procedure can also be 

placed in a utilities package to allow sets based upon different types to be created 

(see chapter 6 section 6.7). The following specification is complete for the 

distributed union operator.

with Set_bounded_G; 

package Set_Utilities is 

generic

size : natural;
with package set_pack is new Set_bounded_G(<>);
with package se^_of_sets_pack is new Set_bounded_G

(set_pack.set,size,gt_set);

procedure dist_union (ss: in set_of_sets_pack.set;
s : in out set_pack.set};

-  other set utility operations 

end;

This package imports a set package and another set package instantiated over the 

first to create a set of sets. The body is implemented by using nested iterators. The 

first iterator traverses the set of sets. Each set in the set of sets is then taken in turn, 

and the inner iterator is used to traverse each of them. Each item can now be taken 

and inserted into the output set which contains all the items present in the set of sets. 

The iterator procedure in this set package contains code that visits each item in the 

set until the last item in the set is reached or until the parameter continue has been 

set to false. In this case continue is always set to true because every item in each set 

in the set of sets must be visited.

Page 58



Chapter 4_____________________Construction of Reusable Components 

The implementation for distributed union is as follows :-

package body Set_Utilities is

procedure dist_union(ss:set_of_sets_pack.set;
s:in out set_pack.set) is 

continue:boolean;

procedure process_set (constituent_set: in set_pack.set;
continue:out boolean) is

procedure process_item (i:in set_pack. item_type;
continue:out boolean) is 

begin
if not set_pack.is_a_member(i,s) then

set_pack.insert(i, s) ; 
end if;
continue:=true ; 

end;

procedure iterate_through_set is new
set_pack.iterate(process_item);

begin -- process_set
iterate_through_Set(constituent_set) ;
continue:=true; 

end;

procedure iterate_through_set_of_sets is new
set_of_sets_pack.iterate(process_Set) ;

begin -- disr_ur.ion
iterate_thrcugh_set_of_sets(ss); 

end;

-   other set utility operations 

end Set Utilities;

4.6 Testing the Reusable Components

Reusable components require more testing than any other component [Barb94], 

since errors will spread to all software using the reusable components and 

confidence will be destroyed if an error is found in a 'safe' component. It would be 

possible to mathematically prove that each of the operations in the components 

preserve their respective Z semantics. However, proving programs correct is a very 

difficult and time consuming process. For the purposes of this research project and 

due to the time constraints involved, the main concern was in actually modelling the

Page 59



Chapter 4_____________________Construction of Reusable Components

Z types and operations using Ada and the translation of Z specifications into Ada 

code. The testing of components for this research project has not proven that they are 

free from errors, as the type of testing completed for this project can only 

demonstrate that the program is free from errors for the tests that were carried out.

The reusable components were tested in two ways:

1. The reusable components were tested by writing an event loop, with a menu, to 

test each operation in the components. This has been done for all the components 

to structurally test their correctness and usefulness. The approach is known as 

'white box' testing [Basi87] since the source code is inspected and test cases are 

found to test each path through the operation for a variety of data. As the 

complexity and size of each operation is small complete coverage of the paths 

through the operation can be obtained for each operation in each component.

2. The abstract data types were also specified using an algebraic (or axiomatic) 

specification. Test programs were then derived from the semantics of the 

operations in the algebraic specification to test the validity of the operations in 

the reusable components. A technical report for the algebraic specification of the 

abstract data type set is given in [Hayw94]. A version of a bounded set 

component used to refine Z specifications is given in [Bale94] and a simple test 

program for the semantics is included.

The advantages of creating algebraic specifications for the abstract data types are:-

  Each operation has a well defined outcome for any data.

  The axioms can be used to test the software component.

  The ADT can be shown to be complete i.e. combinations of operations 

produce well defined results.

  Further results concerning the application of operations can be proved.

  The axioms contained within the Ada test program are independent of the data 

model.

Page 60



Chapter 4_____________________Construction of Reusable Components

A software component that implements such an algebraic ADT can be used with a 

high degree of confidence in its behaviour, since it effects are clear, its logical 

foundation is sound and it has been tested against its axioms. This method is akin to 

'black box' testing where test data is constructed from the specification.

Page 61



Chapter 5_____________________________State Schema Refinement

Chapter 5

State Schema Refinement

Page 62



Chapter 5_____________________________State Schema Refinement

5.1 Introduction

This chapter discusses the method and details for the refinement of the state schema. 

An example of the Birthday Book [Spiv89] is given although it has been extended to 

include a higher order relation to show how complex types can be translated. A 

second state schema for a petrol station is refined to reinforce the method and to 

enable some of its operations to be used as examples in the next chapter. Other 

issues affecting design decisions are discussed and a third example departmental 

database specification, is used to highlight these areas. The areas include the 

refinement of schemas with multiple states, the use of schemas as types and the 

binding notation (0).

5.2 Methodology

The state schema is refined into a generic Ada package specification by a series of 

instantiations of the reusable software components which model any sets, functions, 

relations and sequences found in the state schema. These create the state space upon 

which the operational schemas can act. The operations of the specification are 

translated and appear in the Ada package body (see chapter 6). A specification based 

upon a named state is translated into an Ada based Abstract State Machine (ASM). 

The parachuted or given types of the Z specification become generic types to the 

Ada package to give a developer control over their final format. This information is 

not present in the Z specification, but poses no problems for translation since the 

actual model to implement each type can be deferred to the package or system that 

uses (and therefore must instantiate) the translated package. Each of these given 

types will require an instantiation of a reusable sets package to create a set for each 

type. A complication occurs when it comes to modelling functions and relations 

because some of their operations can be parameterised over a set of the domain and 

range types. It is necessary, therefore, to instantiate set packages for the domain and 

range types before the function or relation statement in the schema can be modelled 

and instantiated as a package. A similar strategy exists for sequences, but in this case

Page 63



Chapter 5______________________________State Schema Refinement

the domain set of the sequence is the natural set, whilst the range set is a set of the 

item type making up the sequence. In some specifications, where functions, 

relations, sequences and combinations of these types are involved, the order of 

instantiation is important. This is because the instantiated package of one type can be 

used in the generic parameter list of another type (refer to function example in 

section 4.2). However, the order of instantiation is not difficult to determine because 

it is not possible to instantiate a package A that depends upon other packages B and 

C if the packages B and C have not been instantiated themselves. So, for example, 

when instantiating a function package, the set packages for domain and range types 

must be instantiated first. The instantiation of the function can then use these 

packages as generic package parameters.

5.3 Refinement of State Schemas

The rule for the refinement of the state variables contained within the state schema is 

that each different type introduced must have a set package instantiated for it, if it is 

used as a power set or in a function, relation or sequence declaration. Items that are 

declared as power sets require a set package instance in order to hold the state 

information. A minor refinement is made so that sets of type P are implemented as 

sets of type F. The other types also depend upon sets since functions, relations and 

sequences require sets of domain and range items. Implementations using bounded 

data structures will require some extra information about the bounds.

5.3. 1 Relations and Functions

In this section, relations and the various types of function are examined along with 

which type of reusable component should be used for each. For the discussion 

below, a set of domain items is known as the source set, whilst the set of range items 

is known as the target set.

5.3.1.1 Relations
The relation X <-» Y is defined in [Spiv89] as X «-»  Y = = P (X x Y).

Relations are modelled by instantiating a many to many map package.

Page 64



Chapter 5_________________.___________State Schema Refinement

5.3.1.2 Partial injections.

These are defined in [Spiv89] as :

X >+* Y = = { f: X -»Y| ( V x ls x2 : dom f - f (x,) = f (x2) => x, = x2 ) }

This definition states that each member of the domain maps to a different member of 

the range. Functions of this type are therefore modelled by instantiating a one to one 

function package.

5.3.1.3 Partial functions

These are defined in [Spiv89] by:-

X-^Y = ={f:X^Y| (Vx:X;yby2 : Y.

( x >->yi ) e f A ( x >-* y2 ) e f => y, = y2 ) }

This definition says that each member x in the domain of the function must relate to 

one member y in the range. However, it allows for duplicated range items provided 

that each of the duplicated range items has a different domain item. Functions of this 

type are modelled by a many to one function package.

5.3.1.4 Other Types of function.

The functions described above were partial functions and partial injections. The 

other types of function are subsets of the main types given above. They are:-

  total functions - The domain of the function is the source set.

  total injections - An injective function which is also total.

  partial surjections - A partial function for which the range of the function

is the target set.

  total surjections - A partial surjection that is also total, i.e. the domain

of the function is the whole of the source set and the 

range of the function is the whole of the target set.

  bijections - An injective function that is both total and surjective.

Paee 65



Chapter 5_____________________________State Schema Refinement

A minor refinement is made where each of the types of function are created by 

instantiating a map component according to its basic type. Therefore all injections 

are modelled by instantiating a one to one package. All partial functions are 

modelled by instantiating a many to one package. The flavours of function 

effectively amount to whether the source or target sets cover the domain or range of 

the function.

5.3.2 The Birthday Book Implementation

The state schema for the Birthday Book specification is given as :-

[  BirthdayBook
known : P NAME 
birthday : NAME^» DATE 
cardSent : YEAR** (NAME -*» DATE) 
cardReceived : NAME <-» YEAR

known = dom birthday 
V y : YEAR   dom (cardSent y ) c: known 
for each year cards can only be sent to people 
known to the system

The state schema is refined into a generic Ada package specification, where the 

parachuted types [NAME,DATE.YEAR] are generic parameters to the package, so 

that the developer has control over their final format. This information is not present 

in the Z specification, but the final format of the models used for each type can be 

determined by the non functional requirements of the system to be built. The 

following code segments are the instantiations of set packages for the parachuted 

types.

package Name_set_package is new Set_bounded_G (a_name,-------);

package Date_set_package is new Set_bounded_G (date,-------);

package Year_set_package is new Set_bounded_G (year,------);

Page 66



Chapter 5______________________________State Schema Refinement

The dotted lines in the generic parameter list above and throughout this section are 

intended to show that it is possible to include an ordering function or a hashing 

function (depending on the construction of the component) in the generic parameter 

list in order to improve the efficiency of the software, as discussed in chapter 4.2.

Each function or relation is essentially a mapping from a set of domain elements to a 

set of range elements, therefore, a set package of domain and range types is made 

generic to each package modelling them. In the example below, the set packages 

have been shown in bold type. The type Birthday is created by instantiating a many 

to one function as follows:-

package Many_names_to_one_date is new Many_to_one_G(

Name_set_package, --set package of domain types

Date_set_package, --set package of range types

------ ) ; --possible ordering functions

The relation cardSent : YEAR <-» (NAME -+» DATE) is a higher order relation. A 

many to many map package can be used, with the year as the domain and the partial 

function NAME -^ DATE as the range. A set of YEAR has already been 

instantiated. In order to instantiate the map package, a set of range items (of type 

NAME -» DATE ) is also required. This is done by utilising another set package 

instantiation. The item type for this set package will be the type 

Many_names_to_one_date, which is the NAME -H> DATE function instantiated 

previously. This enables the higher order relation to be created.

package Set_of_many_names_to_one_date is new Set_bounded_G{ 

Many_names_to_one_date, --Package of functions 

_______); --ordering functions

package Many_years_to_many_names_to_one_date is new Many_to_tnany_G(

Year_set_package,

Set_of_many_names_to_one_date, --set package of functions

_______ ) ; --ordering functions

Page 67



Chapter 5 ______________________________ State Schema Refinement

The relation cardReceived : NAME <-» YEAR uses a straight forward instantiation 

of the many to many map package.

package Many_names_to_many_years is new Many_to_many_G ( 

Name_se t_pack , 

Year_se t_pack ,

The state model presented in the private part of the Ada package specification 

becomes :-

Known : Name_set_pack. set ,-

birthday : Many_names_to_one_date.map;

cardsent : Many__years_to_many_names_to_one_date .map;

cardreceived : Many_names_to_many_years .map;

The type Known is redundant in this example, because it exists as the domain of the 

birthday function and can therefore be removed from the implementation. The other 

alternative is to keep known in the system and duplicate the data. Situations such as 

this can be common in Z specifications and the implementation of these situations 

can depend upon the available storage and speed requirements of the system. 

Duplicating data may speed up some operations in the system, but at the expense of 

its memory.

5.3.2.1 The Package Interface

Each of the instantiations that are used in the creation of the state space contain a 

number of parameters such as the type, and possibly size and ordering functions etc. 

These parameters must be declared as generic formal parameters to the package. The 

interface for the birthday book package is as follows:-

Page 68



Chapter 5________________________ State Schema Refinement

with Set_bounded_G,Many_to_one_G,Many_to_many_G;

Generic
Map_size : in positive;  if bounded function
type a_name is private;
type date is private;
type year is private;
with procedure out_name(n:a_name); --procedures to output
with procedure out_date(d:date); --types if output required.
with procedure out_year(y:year) ;  in Z specification

---- possible ordering functions if ordered sets are used.
--- Sets are of type NAME, DATE and YEAR, so there would be
---- one ordering function for each.

package birthday_book is

- - available operations

---- exported exceptions

private
----- package instantiations creating state variables

---- the state model 

end;

If unbounded components were used, the Birthday Book could grow dynamically 

and in this example Map_size would not be required as a generic parameter. The Z 

specifications ! notation does not contain information as to the type of output 

required from the specification. The generic output procedures allow this choice to 

be deferred to the actual package that instantiates the Birthday Book package. These 

output procedures can be constructed, by the developer, to take non functional 

requirements into account, such as outputting to a terminal, file, printer or using the 

output as the input to another routine.

The exported exceptions are used to implement operation schemas that have been 

made total by specifying what happens under certain 'error' conditions. This use of 

exceptions is discussed in section 6.6.1.

Functions for equality do not have to be included as generic parameters in the 

software components because they each export a private type. Ada semantics

Page 69



Chapter 5______________________________State Schema Refinement

therefore include the predefined operations for testing equality (and inequality) of 

types.

5.3.3 The Petrol Filling Station

The state schema for the Filling Station specification is specified in [Norc91] and 

given below. The set waitingToLeave models the situation where a car has filled up 

with petrol and the owner is about to pay. The car is finally removed from 

waitingToLeave by the operation LeavesHappy (not specified here). This operation 

enables the car to visit the petrol station again.

[ Pump, Car ] The parachuted types are Pump and Car 

FillingStation _______________________
queues : Pump >-+ » seq Car 
waitingToLeave : P Car

V p : dom queues  
#(queues p ) = # ( ran (queues p )) A 

the length of a queue at that pump is equal to the 
number of different cars in the queue

waitingToLeave r\ ran (queues p ) = 0 
a car cannot be at a pump and serviced

V pl,p2 : dom queues | pi ^ p2  
ran ( queues pi) n ran (queues p2) = 0 

a car can only be at one pump

The filling station has two given types namely pump and car. These will each 

require an instantiation of a set package. The type 'queues' is a partial injection, 

therefore a one to one function component is used. The domain of the function is 

the set of type 'Pump', whilst the range is the set of type 'Seq car'. An instantiation 

of a sequence package over the type car is therefore required. This can then be used 

as a parameter in a set package to create a set of the sequence of cars. The set of cars 

and set of pumps must be created first.

Page 70



Chapter 5 _____________________________ State Schema Refinement

The car set is more suited to an unbounded set whereas the number of pumps in a 

filling station is small, finite and fixed so a bounded set package can be used. They 

are instantiated as follows:-

package car_set_pack is new Set_unbounded_G (car, ---);

package pump_set_pack is new Set_bounded_G (pump,max_no_pumps, ---) ;

The sequence package is instantiated next, as it uses the set of cars as a parameter.

package car_seq_pack is new Sequence_bounded_G (sequence_size,

car_set_pack) ;

A set of car sequences is required for the range of the 'queues' function.

package set_of _car_Sequences_pack is new Set_bounded_G (

car_sequence , 

max_no_pumps ) ;

The function 'queues' can now be instantiated. The domain type is the set of pumps 

package, whilst the range type is the set of car sequences package.

package Queues_map is new One_to_one_G (max_no_pumps ,

pump_Set , 

set_of_car_sequences_pack

The state model in the Ada package specification becomes :- 

queues : Queues_Map .Map; 

waitingToLeave : Car_Set_pack.Set ;

5.4 The State Invariant

The state invariant describes a set of rules that must always be true of the state 

before and after operations are applied. A well written specification document 

should contain proofs to verify that the invariants are preserved by the initial state 

and that any state changing operations never violate the state invariants [Good95b]. 

If state changing operations never violate the state invariants, then the state

Page 71



Chapter 5______________________________State Schema Refinement

invariants will not require implementation in the Ada package specification 

modelling the state schema. As part of the established strategy for writing Z 

specifications, listed in [Bard92], it is recommended that the preconditions of partial 

operations are calculated. The description of the abstract operation is checked to 

ensure that the precondition is explicit in the operation schema; if not, it is added. 

Explicit preconditions should be used in operation schemas so that when any state 

changing operation is translated into Ada, its application will not violate the state 

invariants of the Z specification.

5.5 Multiple States and Inclusion

Many specifications are written which use schema inclusion. This can be in the form 

of state inclusion or operation promotion. It is vitally important, therefore, that using 

reusable software components for refining Z specifications succeeds with this type 

of specification. The specification described next contains a number of systems as 

specified in [Dill90]. The first system is a phone database that relates people to 

phone numbers. The second is a departmental database that relates people to 

departments and to rooms. Finally a third database extends the phone database with 

the departmental database, to create a full staff database. This section shows how 

child packages can be used to implement specifications that involve reuse and have 

multiple states. The work discussed in chapter 2 on refinement using functional 

languages eg. [Knot92,Morr92] has problems with this type of specification. Even 

the work of Goodman [Good95b,Good93] which handles the state in an 'imperative' 

manner through the use of a Monad does not mention how multiple states and state 

schema inclusion would be implemented.

5.5.1 The Phone Database State Schema

This database relates people to their phones.

[PERSON,PHONE] These are the parachuted types

MaxNoLines :

Page 72



Chapter 5__________________ State Schema Refinement

r- Phone Db
members : F PERSON 
telephones : PERSON ^> PHONE

dom telephones c members
# (ran telephones) < maxNoLines

5.5.2 The Departmental Database State Schema

This database relates people to departments and room numbers.

[DEPARTMENT,ROOM_NUMBER] 

r Dept_Db ——————————————————————I
departments : ¥ l DEPARTMENT 
located : PERSON -*» DEPARTMENT 
occupies : PERSON -* ROOM_NUMBER

ran located cr departments 
dom occupies c: dom located

The statement ran located cr departments is included in the schema Dept_Db 

because operations exist that can modify the departments, by for instance merging 

two existing departments. The full staff database extends the phone database with 

the departmental one.

5.5.3 The Staff Database State Schema

r- StaffJDb - 
Phone_Db 
Dept_Db

dom telephones c dom occupies 
members = dom located

Page 73



Chapter 5_____________________________State Schema Refinement

This schema includes the Phone_Db and Dept_Db state schemas. Purely 

departmental operations could be defined for Staff_Db or defined for Dept_Db and 

then promoted to the full system. There are three possible ways of implementing this 

system :-

1. The private types would have to be made non private, so that they become 

visible to the package sharing them. This would allow the client package to have 

access to the underlying structure also, and would break the abstraction, resulting 

in a loss of information hiding. This should be avoided as information hiding is 

deemed as a good software engineering principle [Booc87].

2. Implement the specification using a single package incorporating all three 

system states. This would allow the types to remain private. However, this would 

create a large package, and in specifications that use schema promotion to a large 

extent this solution would be very impractical. Another disadvantage is that any 

additions to the system would require the package and all the client packages to 

be recompiled, even if the client packages do not use the new additions.

3. Ada95 allows the construction of a hierarchical library system that utilises child 

subprograms and child packages. When translating this specification the phone 

database can be implemented as a single package, and the staff database can be 

implemented by making the departmental database a child package of the phone 

database. A child package can be thought of as being declared within the 

declarative part of its parent, but after the specification part [Barn95]. This 

allows the private part of the parent to be visible to the child only. Child 

packages solve the problem of sharing private types amongst many packages and 

enable the package to be extended by 'bolting' on child units without 

recompilation of all client packages.

This project makes extensive use of reusable components. Reuse can also be 

employed in the construction of specifications that incorporate other specifications 

as seen in the staff database. Clearly, out of the three approaches outlined above,

Page 74



Chapter 5______________________________State Schema Refinement

child packages are the best means of ensuring that the visibility of private types is 

restricted to only those Ada packages that require it and that those packages can 

remain in individual packages.

5.5.4 Implementing the Phone Database

The state model can be constructed by the following instantiations of the reusable 

software components, where the types PERSON, PHONE and MaxNoLines are 

generic parameters to the package.

With Set_bounded_G,Many_to_many_G; 

generic

Package Phone is

---- available operations

private

package members_set_pack is new Set_bounded_G (person,msize,--); 

package phone_set_pack is new Set_bounded_G(Phone,MaxNoLines,--);

package telephone_map is new Many_to_many_G (msize,MaxNoLines,
members_set_pack,phone_set_pack);

--The state model becomes : -

telephones : telephone_map.map; 
members : members_set_pack.set;

end;

5.5.5 Implementing the Departmental Database

StaffJDb is implemented by making Dept_Db a child package of Phone_Db as 

discussed. Important aspects are shown in bold type as follows:-

Page 75



Chapter 5_______________________ ____ State Schema Refinement

with Set_bounded_G,Many_to_many_G,Many_to_one_G; 

generic

package phone.dep is -- phone is the parent package

--Available operations 

private

package department_set_pack is new Set_bounded_G(
department,size,---);

package room_number_set_pack is new Set_bounded_G(
room number,size,---);

package located_map is new
Many_to_one_G(size,members_set_pack, 

department_se

package occupies_map is new Many_to_one_G(size,members_set_pack/
room_number_set_pack);

--The state model becomes :-

occupies : occupies_map.map;
departments : department_set_pack.set;
located : located_map.map;

end;

The package members_set_pack is visible here, even though it is in the private part 

of phone.ads.

5.6 Schema Types and Schema Bindings

Another way in which Z reuses specifications is by its use of schemas as types. A 
schema can be used as a type by creating a binding which allows the schema to be 

used as an object. The binding notation 0 exists to create bindings and to abbreviate 

the making of associations. It can be used to identify the current component values 

of the schema and to equate the before and after state components of an operation.

Page 76



Chapter 5______________________________State Schema Refinement

The next section looks at a specification for a class managers assistant [Word92] that 

uses schema types and the binding notation.

5.6.7 The Class Managers Assistant

The specification that follows is taken from the Class Managers Assistant as 

specified in [Word92]. It has been used to show how schema types and bindings are 
implemented.

[STUDENT]

size :

Class ________________
I

enrolled,tested : P STUDENT

tested c enrolled 

# enrolled < size

An operation can be defined to enrol a student into a class :-

,— Enrol

A Class

s? : STUDENT

s? e enrolled

# enrolled < size

enrolled' = enrolled u { s?}

The state schema Class could have been refined into an abstract state machine, but it 

is used as a type in the schema TwoClasses (following) and must therefore be 

implemented as an abstract data type. It is an abstract data type because the type

Page 77



Chapter 5_____________________________State Schema Refinement

class is exported from the package implementing the state schema Class (this 

package is given on page 79 and is named a_ciass due to different naming rules 

between Z and Ada). Exporting Class as a type enables many instances of class to 

be used.

r- TwoClasses- I 
z_for_beginners : Class

z_advanced : Class 
__________________I

Every operation on z_for_beginners contains the following predicates, so in 

[Word92], a schema is made of them, as folio ws:-

[— ZfbOperation 

AT wo Classes 

A Class

z_advanced'= advanced 

advanced doesn 't change 

z_for_beginners = 0 Class 

z_for_beginners' = 6 Class' 

the changes in z Jor_beginners are 

identified with changes in a typical 

class, component by component

A similar operation would exist to link changes in the class 'Two'.

Page 78



Chapter 5_____________________________ State Schema Refinement

An operation can be defined which reuses enrol and operates on the state 

TwoClasses. An operation to enrol a student into the class z_for_beginners would 

be:-

ZfbEnrol = 3 A Class   Enrol A ZfbOperation

The specification has the parachuted type student. Student will therefore be a generic 

type. The package implementing the state schema Class has been called a_ciass 

since the type Class is exported as a private type.

generic

size:natural;
type student is private;
with function gt_student (sl,s2: student) return boolean;
with procedure out_student(s :student);

package a_class is

-- The type class must be exported for use in TwoClasses, so it is
-- declared as a private type. Also, since this is an abstract data
-- type, each operation must act on the type class.

type class is private;

procedure Init (c: out class) ;
procedure enrol (s:in student;c:in out class );
procedure out_class(c:in class);

enrol_error:exception; 

private

package set_pack is new Set_bounded_G
(student,size,-----)  

-- The type class can now be defined as a record containing fields
-- for the set of enrolled and tested students.

type class is record
enrolled,tested : set_pack.set; 

end record;

end a class;

Page 79



Chapter 5______________________________State Schema Refinement

The operation enrol can now be implemented in the body of a_dass. The state 
schema for TwoClasses is implemented by the following Ada specification (the 
generic parameters are the same as for a_ciass):-

with Set_bounded_G, a_class; 

generic

package TwoClasses is

type z_for_beginners is private; 
type z_advanced is private;

procedure init_beginners(b: in out z_for_beginners); 
procedure init_advanced (a: in out z_advanced);

procedure ZfbEnrol(s:student;b:in out z_for_beginners) 
procedure Za_Enrol (s:student;a:in out z_advanced);

classtwo_enrol_error : exception;

private

package class_pack is new a_class
(size,student,  ---- ) •

type z_for_beginners is new class_pack.class; 
type z_advanced is new class_pack.class;

end TwoClasses;

5.6.2 Extending the Class Managers Assistant

In the next example, the state upon which the operations act will not be given 
explicitly, but must be calculated within the Z specification. The simple class 

database can be extended to operate for many classes.

[Id] Each class will have a unique identifier.

I— ManyClasses ————,

Many : Id -«• Class 
_____________I

Page 80



Chapter 5_________________________ State Schema Refinement

The generic parameters to the package will be the same as for the TwoClass system, 

but extra parameters are required to create the set containing the unique identifiers. 

In order to create the state space for ManyClasses, the package a_class must be 

instantiated. A set package can then be instantiated using the type class from the 

instance of the package a_ciass to create a set of classes. This can, in turn, be used 

in the many to one function component along with the set of unique identifiers.

private

package class_pack is new a_class
(size,student,-—--);

type the_class is new class_pack.class;

package id_set_pack is new Set_bounded_G(id,size,

package set_of_classes_pack is new Set_bounded_G(
the_class, size,

package many_map is new Many__to_one_G (size,
id_set_pack, set_of_classes_pack, - 

many:many_map.map;

To enrol a class the following linking schema is required :-

,_ IdOperation _________________ 
A ManyClasses 
A Class 
I?: Id

I? e dom many
many' = many © { I? -•-> 0 Class '}
{I?} <3 many' = {I?} o many

The refinement of this schema is dealt with in chapter 6 section 6.9.2.

Page 81



Chapter 6_________________________Operation Schema Refinement

Chapter 6 

Operation Schema Refinement

Page 82



Chapter 6__________________________Operation Schema Refinement

6.1 Introduction

An operation schema from the Z specification will be refined into an exportable 

function or procedure in the Ada package body. The Z operations within the schema 

become function or procedure calls in the body of the Ada subprogram that 

implements the schema. In the case of the majority of operations in Z, the operators 

can be replaced by their equivalents from the reusable components. For example 

is_a_member replaces e and size_of replaces #. In other cases a quantifier may be 

used which requires the use of a generic operation (see section 6.6.2). This chapter 

will describe the techniques that are required to turn the Z operation schemas into 

code and some examples will be given. A list of Z operations and their Ada 

counterparts are given in appendix 2.

6.2 Function or Procedure Bodies

A decision must be made as to whether functions or procedures are used to refine the 

schema. This decision depends on the type of the schema. Schemas that modify the 

state are implemented as procedures, whilst query operations that interrogate the 

system to return a value are implemented as functions.

6.3 Refining the Initial State Schema

The initial state schema specifies the state at which a system starts and can be used 

as an operation to set the system to the start values. There are a number of methods 

for initialising a system; this section will discuss each method in turn.

6.3. 11nitialising the Exported Type in the Ada Specification

The data structures used to implement the abstract data types modelling the types 

found in Z can be set to an initial value in the private part of the Ada specification. 

When a variable is declared as a type it will start its life at the initialised value. 

However, this method alone would not allow the variable to be reinitialised because 

the internals of the package where the initialisation took place will not be visible at

Page 83



Chapter 6_________________________Operation Schema Refinement

the level at which reinitialisation takes place. In order to refine an initial state 

schema this method alone is insufficient.

6.3.2 Exporting an Initialisation Procedure

For the reason mentioned above, each software component has a procedure which 

will create an item of a type by initialising the structures for the type. This allows the 

initial state schema to be refined by calling the appropriate create procedure. For 

example, the initial state schema for a library subsystem might be :-

Init_B o ok_Information 

Book Information'

title_of'= 0 

written_by' =0 

about' = 0

This is refined by the following procedure :-

procedure Init_Book_Information is 
begin

create_set(title_of);
create_set(written_by);
create_set(about); 

end;

Ada will automatically use the correct instance of the procedure create_set for the 

type given as a parameter. The operation init_Book_information is implemented 

as an operation in the abstract state machine package for Book_information. 

Therefore, it is not necessary to include Book_information explicitly in the 

parameter list of the Ada operation init_Book_information.

Page 84



Chapter 6_________________________Operation Schema Refinement

6.3.3 Initialisation in Body of Package Implementing Specification

In the case of most packages, a collection of operations are available for export, but 

no main program for the package is given. It is possible to include the initialisation 

of the package in the main body of the program. When the program is executed the 

system will take up this initial state. However, this method once again fails when it 

is necessary to reinitialise or clear state variables. In most cases the initial state will 

require the sets, functions and relations etc. modelling the state to be empty on start 

up. This method can be used where the state must be set up in a more detailed way. 

The specific state can be set up in the main part of the package body implementing 

the specification.

6.4 The Declarative Part of Schemas

The declarative part of schemas can consist of type declarations and a list of input 

and output variables. The refinement of the declarative part of schemas is now 

discussed.

6.4.11nput and Output Variables

The schema will often have input and output variables in its declaration part. Since 

the package implementing the specification is turned into an abstract state machine, 

the state variables do not have to be listed in the Ada operations parameter list. 

Variables that use the '?' notation become input parameters to the procedure and can 

use the in mode in Ada. The use of the '!' notation in a schema requires a different 

technique as some important issues are raised. It is not sufficient to include an out 

mode parameter in the procedure or use a return statement if a function is used.

For example, consider the following schema taken from the Phone Database 

specification mentioned earlier (chapter 5.5.1).

Page 85



Chapter 6_________________________Operation Schema Refinement

- WhoIsOnLine 

H Phone DB

number ? : PHONE 

persons! : F, PERSONS

persons! = telephones ~ ({number?} )
__________________________I

This could be implemented as :-

function WhoIsOnLine (number:in Phone) return Person_set.set 

or

procedure WhoIsOnLine(number:in Phone; Person : out

Person_set.set)

In both cases, the package would have to export the type Person_set. set as well as 

the state that represents the specification. The package that uses the abstract state 

machine obtained from the Z specification would have to have visibility of the 

underlying representation of set in order to access each member of the set. In order 

to avoid this (since the underlying representation of set should be private for 

information hiding purposes), an operation to output types must be included in each 

of the reusable software components that model the main types. For example, in the 

set package, the following procedure is available.

Generic
with procedure output_item(I:in Item); 

procedure cucput_set( s: in set);

The output_set procedure is generic and can be instantiated over the procedure 

output_item. The procedure output_set is contained in the reusable set 

components and simply visits each item in the set and calls output_item for each 

item in the set. The code for the procedure output_item must be supplied by the 

developer. This code will appear in the package that instantiates and uses the 

abstract state machine derived from the Z specification. The code for outputting each

Page 86



Chapter 6_________________________Operation Schema Refinement

item must be written according to the non functional requirements that are not 

present in the Z specification. Output is specified in Z with the ! notation and this 

does not contain the actual details for the output. Using a generic procedure for 

output allows this information to be deferred to the actual instantiation of the 

abstract state machine. In this manner the abstract state machine implements the Z 

specification without saying how the output is to be achieved. The developer can 

decide whether the output is to be applied to a screen or a printer etc. or even both, 

because many output_set procedures can be instantiated by the developer by 

providing different code for output_item.

The operation WhoIsOnLine specified above can be declared in the Ada package 

specification as :-

generic

with procedure out_person (P : in person) 

procedure WhoIsOnLine (number : in Phone)

In the Ada body of WhoIsOnLine an instantiation of the generic procedure from the 

set package must take place :-

i.e. procedure out_person_set is new members_set_pack.

out_set(out_person);

The predicate in WhoIsOnLine can now call out_person_set to output the 

required set persons! (an example is shown in section 6.7.2). The code for 

out_person, provided in the software using the translated Ada package, could for 

example be simply :-

procedure cut_person(P: in person) is 
begin

text_io.put(p); 
end;

Page 87



Chapter 6_________________________Operation Schema Refinement

6.4.2 Declarative Types

On occasion, a type that is not a state variable will be declared in a schema. When 
types are declared that are state variables then they can be declared as being of the 
corresponding type. If a type does not exist as a state variable, then it must be 
created locally to the function or procedure implementing the schema. For example, 
consider the following schema fragment taken from the filling station specification.

- TotalNumberAtEachPump 

S FillingStation 

numbers ! : PUMP ^>N

The type numbers is not a type derived in the state schema. The type will have to be 
created by instantiating a function package locally to the operation 
TotalNumberAtEachPump. However, since the type is only required locally it may 
not be necessary to create the type in the first instance. In the case above, it would be 
possible to simply access and output the pump and the relevant number of cars 
without creating the function.

6.5 Refinement of Z Statements

The next section will deal with refinement issues concerning predicates in operation 
schemas. Some of the issues discussed will cover the refinement of simple Z 
statements, preconditions, quantifiers as preconditions, complex Z postconditions 
and comprehension terms. Some of the operations in Z (e.g. quantifiers, set 
comprehension terms and mu expression) must be translated using generic units 

available in the software components.

6.5.1 Simple Z Statements

Most of the statements written in Z can be refined with a direct replacement of the 
relevant operation in the reusable software component. Many statements in Z such as

Page 88



Chapter 6_________________________Operation Schema Refinement

I? e dom (M) are used commonly and have been implemented with single 

statements such as is_a_domain_element (D,M) for reasons of efficiency. An 

alternative would be to implement it as :-

whole_domain(M,donain_set) ; — get the domain of the map 

is_a_member(I,domain_set); --test for set membership of I in

-- temporary set (domain_set)

A full list of general Z statements, the equivalent Ada operations to translate them 

and some simple guidelines are given for each type of software component (see 

appendix 2). The general statements are also useful for refining complex statements 

as discussed in section 6.8.

Many operations such as restrictions and subtractions on the domain and range 

contain a number of overloaded procedures. This is because restrictions and 

subtractions can be defined as acting on a single item or on a set of items, and it is 

possible to change the existing state or create a new object. Care must be taken when 

using procedures that belong to different types. For example in a one to one function 

f: X >+->Y, the Z statement f ~(y) will return the domain for a given valid range input 

provided it is there. In the case of a many to one function f: X -+> Y, f ( y ) will 

return a set of domain elements for any given valid range element.

6.6 Refinement of Preconditions

The propositions in the precondition of a Z schema are refined by a nested 'if' 

statement in Ada. Each proposition has an 'if' clause and the program flow is 

arranged so that the postcondition appears in that part of the nested 'if' structure for 

which all the 'if' statements are satisfied. Each proposition in the precondition is 

evaluated and if satisfied, program control will move on to the next proposition, or 

if all propositions in the precondition are satisfied, program control moves onto the

Page 89



Chapter 6__________________________Operation Schema Refinement

postcondition. If any of the propositions are not satisfied then the program flow does 

not arrive at the postcondition. The following schema serves as an example:-

AddEntry_Ne wL ine 
A Phone_Db 
name ?:PERSON
newNumber ? : PHONE

# (ran telephones ) < maxNoLines
name ? e members
newNumber g ran telephones
They must be a staff member, the line must be new

telephones' = telephones u {name? >-» newNumber? } 
members' = members

The three propositions in the precondition for AddEntry_NewLine are translated as:-

if size_of(range_of(telephones)) < maxNoLines 
then

if is_a_member(name,members) 
then

if not is_a_range_element(newNumber,telephones) 
then
— DO POSTCONDITION 

end if; 
end if; 

end if;

6.6.1 Robust Schemas

Many specifications use a style where the pre and postconditions of an operation are 

given without any details of error conditions. The error conditions are contained 

within a separate schema that can be combined with the original by schema 

disjunction to create the fully robust schema.

The schema for AddEntry_NewLine has three propositions, so there are three 

possible 'error' conditions. Schemas can be defined to handle what happens when

Page 90



Chapter 6_________________________Operation Schema Refinement

the propositions are not satisfied. Error schemas for the each of the three 

propositions are:-

— Addentry_Errorl- 

E Phone_Db 

reply! : message

—i (# (ran telephones ) < maxNoLines) 

reply! = NotEnoughLines

I— Addentry_Error2- 

E Phone_Db 

reply! : message

—i (name ? e members) 

reply! =NotAMember

i— Addentry_Error3- 

E Phone_Db 

reply! : message

-i (newNumber £ ran telephones) 

reply! = Number Already Exists_____i

The robust schema operation for AddEntry_NewLine would be defined as :-

Robust AddEntry_NewLine = AddEntry_NewLine v Addentry_Errorl v

Addentry_Error2 v Addentry_Error3

RobustAddEntry_Ne\vLine would be translated as :-

Page 91



Chapter 6__________________________Operation Schema Refinement

if size_of(range_cf(telephones)} < maxNoLines 
then

if is_a_member(name,members) 
then

if not i s_a_r a rige_e lament (newNumber, telephones ) 
then

— DO POSTCONDITION 
else

put_line("NumberAlreadyExists"); 
end if; 

else
put_line("NotAMember"); 

end if; 
else

put_line("NotEnoughLines") ; 
end if;

In this example put_iine statements have been used to print messages to the 

screen. This method of screen output is seen in other examples of animation found in 

the literature [Woodc96]. The problem is that the specification does not include 

details as to how the output is to be achieved. It may not be desirable to output to a 

screen. Indeed there may be no screen in the system.

In the next example of implementing RobustAddEntry_NewLine a decision was 

made to use exceptions to flag these 'error' conditions. This has the advantage that 

error detection and recovery can be localised through the use of the existing Ada 

exception handling mechanism [Booc87 pg 580]. The software using the Ada 

package of the translated Z specification can catch these exceptions and take 

appropriate actions according to requirements not specified in the Z specification. 

These actions could be. for example, outputting a message to the screen, attempting 

the same operation with different data, or even doing nothing when catching the 

exception. The code for RobustAddEntry_NewLine incorporating the exceptions is 

now:-

Page 92



Chapter 6__________________________Operation Schema Refinement

if size_of(range_of(telephones)) < maxNoLines 
then

if is_a_member(name,members) 
then

if not is_a_range_element(newNumber,telephones; 
then
— DO POSTCONDITION 

else
raise NumberAlreadyExists; 

end if; 
else

raise NotAMember; 
end if; 

else
raise NotEnoughLines; 

end if;

In the error schemas, it can be noted that when each proposition is satisfied an output 

message occurs. These propositions are the negation of the original propositions in 

AddEntry_NewLine. It is possible to refine the robust operation in a similar manner 

by negating the propositions of AddEntry_NewLine and raising exceptions if the 

negated propositions are true. The operations implementing the propositions in the 

precondition return boolean values and so negating them does not alter the meaning 

of the code so long as the correct program control is used to arrive at the 

postcondition. In the example below, program control only arrives at the 

postcondition if all the negated propositions of AddEntry_NewLine are false. The 

equivalent to arriving at the postcondition when the precondition is true as in the 

first example of AddEntry_NewLine. Implementing the code in the manner shown 

next, enables the depth of indentation of i f statements to be reduced and preserves 

the meaning of the specification.

if not size_of(range_of(telephones)) < maxNoLines then
raise NotEnoughLines; 

elsif not is_a_member(name,members)then
raise NotAMember; 

elsif is_a_range_element(newNumber,telephones)then
raise NumberAlreadyExists; 

else
— DO POSTCONDITION 

end if;

Page 93



Chapter 6_________________________Operation Schema Refinement

6.6.2 Quantifiers in Preconditions

Each type of software component has generic functions to handle both the existential 

and universal quantifiers. It is possible to use them over sets, functions, relations, or 

sequences. The existential quantifier traverses each item in the structure and is used 

to test if an item exists in the structure, according to specified rules. If an item 

obeying the specified rules is found then the traversal of the structure stops. The 

universal quantifier traverses the structure and tests that all the items in the structure 

of interest follow given rules. Their general forms are :-

3 D I P»Q and V DI P»Q where: 3 is the existential quantifier

V is the universal quantifier 

D is some declaration 

P is a predicate acting as a constraint 

Q is a predicate being quantified

For example the statement 3 n:S| n <10»n2 = 64 can be read as there exists a 

number in the set S where the number is less than 10 and its square is sixty four. The 

following operations are used to define the quantifiers for a set package. Functions 

would be declared for P and Q such as :-

function Lt_Ten (n : ir. S) return boolean is 
begin

return n < 10; 
end;

function Nsq_equal_64 ;n: in S) return boolean is 
begin

return n*n = 64; 
end;

The Ada specifications for the quantifiers is now given. The ident functions are

I A 
__ „. „„ ___ ...„.__-._.___.„—- _. _ nz = 64).

function IDENT (I : ir. ITEM_TYPE) return ITEMJTYPE; 

function IDENT (I : ir. ITEM TYPE) return boolean;

Page 94



Chapter 6__________________________Operation Schema Refinement

generic

with function P(I:in ITEM_TYPE) return boolean;

with function Q (I:in ITEM_TYPE) return boolean is IDENT; 

function THERE_EXISTS(S : SET) return boolean;

generic

with function P(I:in ITEM_TYPE) return boolean;

with function Q (I:in ITEM_TYPE) return boolean is IDENT; 

function FOR_ALL(S:SET) return boolean;

6.6.3 Refinement of Universal Quantifiers

As an example of the use of the universal quantifier, the following schema is 

presented. It is also taken from the petrol station specification, and it describes wrhat 

happens when a car arrives at the station and joins the queue at a pump.

Arrives ___________________________
A FillingStation 
c? : Car 
p?:Pump

p? e dom queues
V p : dom queues • c? £ ran (queues p )
c? £ serviced
queues ' = queues © { p? »-»• queues p? <c?>}
serviced' = serviced

The statement 'V p : dom queues • c? £ ran (queues p )' says that the car arriving 

at the pump must not already be in a queue at any pump. A universal quantifier is 

translated following the form Quantifier : Type • Predicate and the following three 

point process can be used :-

I. The quantifier is the universal quantifier which requires an instantiation of a 

generic function.

Page 95



Chapter 6__________________________Operation Schema Refinement

II. The type of the set is dom(queues). Therefore V must be instantiated from 

pump_set_pack. A set over which V iterates must be enumerated. This is

achieved with whoie_domain(pump_set,queues), where pump_set is defined 

locally to Arrives as type pump_set_pack. set.

III. The predicate c? g ran (queues p ) follows the general statement I £ ran S q 

This is implemented by not is_a_member(c,Sq)

where Sq = queues p which follows the form M(D), which is refined by 

range_of( p, Sq , queues)

The refinement process has stopped, as all the operations in the general statements 

have been fully decomposed, and all the information necessary for implementation 

has been collected. However the parameter S q is still unknown and so becomes a 

local variable of type car_sequence. Reading upwards to collect the refined 

statements allows the full implementation for the predicate part of the universal 

quantifier construct. In the code below, the variable c is in scope as it is an input 

parameter of the procedure implementing the schema Arrives.

Procedure Arrives(c: in car; P in Pump) is

function is_car_in_sequence (P:pump) return Boolean is
Sq : car_sequence; 

begin
range_of (p,Sq,queues);
return not is_a_member(c,Sq); 

end;

function Car_not_in_queue is new pump_set_pack.
~ — — for_all(is_car_in_sequence)

begin
if Car_not_in_queue then

--- other statements in implementation of predicate 

end;

Page 96



Chapter 6__________________________Operation Schema Refinement

6.6.4 Refinement of Ma-Expressions

The Mu-expression is defined as follows :-

(j, D P • E Where D- Denotes declarations.

P- Denotes a predicate constraining the values. 

E- An expression denoting a term.

The value that makes the properly of P true is used in the expression E to give the 

result of the Mu-expression. The Mu-expression is defined only if there exists a 

unique element to make the property of P true. If no expression is supplied then the 

value of the characteristic tuple is used. A Mu-expression is similar to a set 

comprehension procedure that produces a singleton set. Unfortunately the set 

comprehension procedure cannot be used to translate a Mu-expression because it 

returns a set instead of an item. For this reason a separate generic function is used in 

the refinement of Mu-expressions :-

generic

with function Predicate (I: Item_type)return boolean;

with function Expression(I: Item_type)return Item_type is Ident; 

function Mu_expression(S: Set) return Item_type;

Consider the following statement that uses the state model of the filling station.

u P : PUMP • S = queues P A c? e ran S 

This statement is translated as follows :-

function car_in_Sequence(P:pump) return Boolean is 
begin

range_of (P,s,queues);
return is_a_member(c,s); 

end;

function car_at_pump is new
pump_set_pack.Mu_expression(car_in_Sequence)

Page 97



Chapter 6__________________________Operation Schema Refinement

The function car_at_pump, which refines the mu-expression is used in the following 

manner.

procedure ---- is

p : pump;
pumps: pump_set_pack.set;

----- function for car_in_sequence
----- instantiation of car_at_pump

begin
whole_domain(pumps,queues);
P:= car_at_pump(pumps); -- this delivers the value of P

In this example P is used locally to the procedure. However, care may need to be 

taken to make sure that the delivered item from the mu-expression is in scope with 

regards to its declaration and use in Ada.

6.6.5 Elimination of Propositions in Precondition

In some cases, some propositions in a precondition can be left out of the Ada code 

implementing the operation schema. This can be done if the proposition is 

effectively contained within an Ada operation that raises an exception and is used in 

the translation of a postcondition. For example, the Ada set operation insert 

models the statement S ' = S u {I}. However, it also ensures that the item is not 

already in the set so in effect insert models the situation I e S A S ' = S u {I}. 

Consider the following schema from the filling station specification as specified in 

[Norc91] .

Page 98



Chapter 6_________________________Operation Schema Refinement

_ Serviced ——— 
AFillingStation 
p? : Pump

p? e dom queues
the pump is on the forecourt
queues p? ^ o
the queue at the pump is not empty

serviced' = serviced ^J {head (queues p? ) } 
the car at the front of the queue has been serviced 
queues' = queues ® { p? •-* tail (queues p?) } 
the car has left the queue at p?

In this example, the propositions in the precondition could be implemented in the 

following way:-

1. ) p? e dom queues follows the general statement I e dom M 

This is implemented by Is_a_domain_element(p,queues)

2.) queues p? * o follows the general statement is_empty(Sq ) 

This is implemented by is_empty(sq)

where S q = queues p

The general form for this statement is M(d) which is refined by :- 

range_of (p,sq,queues )

This would give the following code :-

if is_a_domain_element(p,queues) 
then

range_of(p,sq,queues);
if not is_empty (sq)
then

— DO POSTCONDITION;

Page 99



Chapter 6_________________________Operation Schema Refinement

However, in this case, the precondition is unnecessary for implementation purposes 

because the two propositions making up the precondition are themselves contained 

in Ada operations which raise exceptions and are used in the translation of the 

postcondition :-

serviced' = serviced u {head (queues p? ) } 
queues' = queues © { p? »-»• tail (queues p?) }

The Ada operations head, tail and range_of (which implement queues p?) each 

contain code to raise an exception. In the Ada implementation of head and tail an 

exception is raised if the sequence is empty. In the Ada operation range_of an 

exception is raised if an attempt is made to find the corresponding range of an item 

that does not appear in the domain of the function. These exceptions are effectively 

equivalent to the propositions p? € dom queues and queues p? ^ <> in the 

precondition. The use of exceptions within the reusable software components was 

discussed in chapter 3.2.1. An alternative version of serviced is possible :-

procedure serviced(p:pump) is
temp_seq,tail_seq:car_sequence; 
c:car; 

begin
range_of(p,temp_seq,queues);--raises exception if p e dom queues
head(temp_seq,c); --raises exception if temp_seq = <>
tail(temp_seq,tail_seq);
insert(c,serviced);
function_override(p,tail_seq,queues);

exception
when queues_map.domain_not_found => null; 
when car_seq_pack.sequence_is_empty => null;

end;

In the exception handler above, nothing is done when the exceptions are caught. 

However, if error schemas were specified as in section 6.6.1, the following 

exception handler could be used to catch the exceptions and export ones relevant to 

the error schemas :-

when queues_map.domain_not_found => raise not_a_valid_pump; 
when car_seq_pack.sequence_is_empty => raise queue_is_empty;

Page 100



Chapter 6__________________________Operation Schema Refinement

When the program carries out the operations in the refinement of a postcondition an 

exception is raised if either the domain item does not exist or the sequence is empty. 

In this example, the only way that a postcondition can alter the state is if no 

exceptions are raised, or, in the original context, if both propositions in the 

precondition are true. Care must be taken in order to use this technique. The 

developer must ensure that all the propositions are effectively contained in Ada 

operations implementing the postcondition, which raise exceptions. Also, the 

developer must ensure that no state variables are allowed to change, whilst 

implementing the postcondition, before the opportunity of raising the relevant 

exceptions is exhausted.

6.7 Comprehension Terms

Set comprehension offers a powerful means of defining a set by stating properties 

that distinguish its members from values of the same type. Since functions, relations 

and sequences can have sets as constituent parts, it is possible to specify and 

implement comprehension terms over these structures.

In Z, a set comprehension term is written as { D P • E } where D denotes 

declarations, P is a predicate constraining the values and E is an expression denoting 

a term. Each software component contains a generic comprehension procedure, and 

when used will require appropriate functions in order to complete the instantiation 

process. This allows any number of different set comprehension terms to be defined. 

The example given below belongs to the set package and defines the standard set 

comprehension operation. The package also caters for situations where the 

expression is left out by using an identity function.

generic
with function PREDICATE (II : in ITEMJTYPE) return boolean;
with function EXPRESSION(II : in ITEM_TYPE) return

ITEMJTYPE is IDENT; 
procedure SET COMPREHENSION (SI : in SET;S2 : in out SET);

Page 101



Chapter 6_________________________Operation Schema Refinement

It is also possible to create a set comprehension procedure in a utility package to 

allow a set of different types to be created. The set comprehension procedure must 

be additionally parameterised over the type of the new set. The expression function 

will be provided by the developer to create the new type from the existing one, ready 

for insertion into the set of new types (NEW_SET . SET, shown below).

generic
type NEW_SET is new Set_bounded_G (<>);
with function PREDICATE (I : in~ITEM_TYPE) return boolean;
with function EXPRESSION(I : in ITEM_TYPE) return

NEW_SET.ITEM_TYPE is IDENT;

procedure SET_COMPREHENSION (SI: in SET;S2 : out NEW__SET. SET) ;

6. 7.1 Lambda Expressions (A)

A Lambda expression takes the form X D P • T, where D denotes declarations, and 

P is a predicate constraining the values which are mapped to a value defined by T. 

The Lambda expression is merely syntactic sugar for the set comprehension 

statement given as :-

{x: T| P • x >-»• term} 

So, the lambda expression X n : N n < 8 • n2 can be written as :-

{n:N n < 8 • n -> n2 }

Lambda expressions are therefore translated as set comprehension statements. Some 

examples of translating set comprehension statements are given below :-

6.7.2 Implementing Set Comprehension

The following state schema models a banking system:-

Page 102



Chapter 6_________________________Operation Schema Refinement

Bank

balance : ACCOUNT -» Z 

belongsTo : ACCOUNT -» F NAME

dom balance = dom belongsTo
________________________I

An operation involving set comprehension could be to output the set of all accounts 
belonging to a given person :-

AllAccounts ————————
SBank
name ? : NAME
accounts ! : F ACCOUNT

accounts! = { a: dom belongsTo name? e belongsTo a }
_______________________________________I

The refinement of a set comprehension term is very similar to that of a quantification 

term.

I. The Z statement defines a set comprehension term which requires an 
instantiation of a generic function.

II. The type is ACCOUNT. Therefore the set comprehension term must be
instantiated from account_set_pack. A set over which the comprehension
iterates must be enumerated. This is achieved with whoie_doir;ain
(account_set / belongsTo), where acccunt_set is defined locally to the

procedure implementing the schema as type account_set_pack. set.

III. The proposition 'name? e belongsTo a' follows the general statement I 6 S 

where S is obtained from the functional application 'BelongsTo a'.

The translation of these statements results in the following Ada operations :-

Page 103



Chapter 6_________________________Operation Schema Refinement

range_of (a, name_set, belongsTo) 

is_a_member(name,name_set)

The Ada specification for the operation AllAccounts is given as :-

generic
with procedure output_account (a: in account); 

procedure AllAccounts (n: in name);

The full implementation for AllAccounts is now given, the instantiation for the set 

comprehension procedure has been highlighted in bold :-

procedure AllAccounts (n: in name) is 
account_set :account_set_pack.set;

procedure output_set_of_accounts is new
account_set_pack.out_set {output_account);

function find_accounts_for_name(a:account)return boolean is
name_set:name_set_pack.set; 

begin
range_of(a,name_set,belongsTo) ;
return (is_a_member(n,name_set) ) ; 

end;

procedure enumerate_set_of_accounts is new
account_set_pack.set_comprehension

(find_accounts_for_name);

begin
whole_domain(account_set,belongsTo} ;
enumerate_set_of_accounts(account_set, accounts) ;
output_set_of_accounts(accounts) ; 

end;

6.7.3 Example of Comprehension Involving Many to One Function

Set comprehension techniques can also be applied to other structures such as 

functions, relations and sequences. The following schema is taken from the 

departmental phone database specification.

Page 104



Chapter 6_________________________Operation Schema Refinement

Merge_departments____
A Staff_Db
H Phone_Db
dl?,d2? : DEPARTMENT
dnew? : DEPARTMENT

dl? e departments 
d2 ? e departments 
dnew? £ departments

located' =luctucu —
located ® { p: PERSON located p - dl? v located p = d2? • p •-> dnew? }
departments' = departments u {dnew?} \ {dl?,d2?}

The statement located' = located @ {p: PERSON /located p = dl? v located p = 

d2? • p i-> dnew? } can be implemented by using the generic 

map_set_comprehension procedure found in the many to one map package because 

the normal function override procedures that exist apply to single pairs or whole 

functions or relations.

The predicate part can be implemented following the same method as the previous 

example. It is given by the function :-

function is_persons_department_valid(p rperson;
dept:department)return boolean is

temp_department:department; 
begin

range_of(p,temp_department,located) ;
return (temp_department = dl or temp_department = d2); 

end;

If the predicate above is satisfied then the new department must replace the old one. 

The procedure below models the expression term in the set comprehension 

definition. Note that this example makes use of the expression function that is

Page 105



Chapter 6_________________________Operation Schema Refinement

available whilst in the previous example an expression function was not supplied as 

the ident function was available.

procedure join_person__to_new_dept {
p:in out person;dept:in out department) is 

begin
dept:=dnew; 

end;

The package containing the located function will then be updated by the 

comprehension procedure, which will be equivalent to the function override 

operator. The body of Merge_departments can now be completed. Both the formal 

subprograms listed above must be presented locally to Merge_departments so that 

the map_set_comprehension procedure can be instantiated (it is highlighted in 

bold).

procedure Merge_departments(dl,d2,dnew:department} is 

new_located:located_map.map;

function is_persons_department_valid ( —-- 
begin

end;

procedure join_person_to_new_dept ( ---- 
begin

end;

procedure new locations is new located_inap.map_set_comprehension 
(is_persons_department_valid, join_person_to_new_dept) ;

begin
if is_a_member(dl,departments) then 

if is_a_member(d2,departments)then
if not is_a member(dnew,departments)then

new locations (located, new_located) ; --map_set__comp 
copy^new_located,located); --creates a new map

--so copy back

- — ----- Rest of Implementation of postcondition

end if; 
end i f; 

end if; 
end merge_departments;

Page 106



Chapter 6_________________________Operation Schema Refinement

6.7.4 Use of Iterator Procedure for Set Comprehension Terms

Some set comprehension terms cannot be implemented as they are stated. In order 

for the set comprehension procedure to work, the input set must be definite, finite 

and enumerated. The schema below, is an example of a set comprehension 

statement that uses a set that has not been enumerated and is therefore not suited to 

refinement with the set comprehension procedure.

^_ TotalNumber _________________________________,

H FillingStation 

n! :N

n! = # { c : CAR; P : dom queues I c e ran (queues p ) • c }

this uses set comprehension to compute the set of all cars at pumps
___ ___ ____________________________I

The problem here is that the set comprehension term is used to find the set of all cars 

at the station, which is drawn from the set of all cars which exist. The set of all cars 

that exists has not been enumerated and hence, it is not possible to draw cars from 

the set of cars that exist and then test them to see if they are at the service station.

In these cases the generic iterator procedure, found in each component, can also be 

used to the same effect. The iterator permits non-destructive traversal through a 

structure over which it is defined. A parameter 'CONTINUE' is included to terminate 

the iteration if desired. This type of iterator is known as a passive iterator and has 

been used here because it is safer than the equivalent active iterator [Booc87]. A 

discussion of iterators and their use in the construction of software components is 

described in chapter 8 section 8.3. The iterator procedure shown below is taken 

from the set package. It will visit each item in the set, and carry out operations 

defined in process. This will occur until either then end of the set is reached or 

when continue becomes false.

Page 107



Chapter 6__________________________Operation Schema Refinement

generic

with procedure PROCESS(II:in ITEM_TYPE;CONTINUE : out boolean);

procedure ITERATE(S:SET);

An alternative to using the iterator procedure would be to rewrite the Z set 

comprehension statement. One logical statement can be expressed as many different

Z predicates, it is possible to rewrite the statement as n! = # ( ran ( U ran queues) )

in order to achieve the same result. This statement is written in a functional form, 

but it is still specified in mathematical terms and is as unambiguous as the original 

statement. However, it is in a form that accesses the information and structures 

specified in the state schema and is therefore easily implementable. In [MacD89] it 

is stated that a specification may be changed to make proofs easier. Rewriting the Z 

statement can be justified on these grounds, in order to make the implementation 

easier.

The following difficult set comprehension example shows just how versatile the 

iterator procedure can be.

Departmental_Db___________________________________ 
H Staff Db '
deptartment ? : DEPARTMENT
departmental_Db ! : P (PERSON x ROOM_NUMBER x F PHONE )

department? e departments
departmental_Db! - { P : PERSON; r : ROOM_NUMBER; t: F PHONE 

located p = department? A occupies p = r A t = telephones ( {p} )}

_______________________________________________I

The output from this schema is a set of tuples. The procedure Departmental_Db 

which refines this schema can be declared as a generic procedure in the Ada package 

specification. This allows a client to specify a device or format for the output of the 

types. The output for the types PERSON and ROOM_NUMEER have been combined in 

the same procedure to afford the developer more flexibility. The procedure

Page 108



Chapter 6__________________________Operation Schema Refinement

out_phone has been given separately because it is required in order to instantiate an 

output procedure for the set of phones.
generic

with procedure out_phone(t:a_phone);

with procedure out_person_room(p.-person; r:room_number); 

procedure Departmental_Db (dept:department);

The operation to create the set of tuples is not suited to the set comprehension 

procedure. In this case it is better to use the generic iterator procedure as this would 

avoid the requirement to create a set package of the type (PERSON x ROOM_NUMBER 

x F PHONE ). The terms within the set comprehension statement all involve P. It is 

possible to iterate through the set of members and for each P in this set extract the 

relevant information from the database. The body contains the instantiated version of 

out_set to output a set of phones. It is instantiated by the formal subprogram

out_phone.

procedure departmental_db(dept:department) is

procedure out_phone_set is new phone_set_pack.out_set (outjphone) ,-

procedure iterate_process(p:in person;continue:out boolean) is 
r :room_number; 
temp_dept :department; 
telephone_set:phone_set_pack.set; 

begin
range_of (p, temp_dept, located) ,- 
if temp_dept = dept then 
range_of(p,r,occupies);
phone.telephone_map.range_of(p,telephone_set,telephones); 
out_person_room(p,r); 
out_phone_set(telephone_set); 

end if;
continue:=true; 

end;

procedure iterate_through_members is new
members_set_pack.iterate(iterate_process);

begin
if is_a_member(dept,departments) then 

iterate_through_members(members);
end if; 

end;

Page 109



Chapter 6__________________________Operation Schema Refinement

6.7.5 Use of Iterators for Counting Sets

A very common use of set comprehension occurs when the number of items in some 

set of interest must be found. The set comprehension term defines the set containing 

the items of interest, and the size_of operator (#) is then applied to this set. If the 

iterator procedure is used, then the need to produce the set first can be avoided. The 

following schema taken from the hotel specification [Hayw96] serves as an 

example:-

_ Single_occupant 

E Hotel

numberWithSingle ! :

numberWithSingle ! = # { r: occupied # (occupants r ) = 1}
_______________________________________I

where :- occupied : F ROOM

occupants : ROOM -*» Fj NAME

This is a very straight forward example of a set comprehension term. However, only 

the number of items in the set is required so it is wasteful to create the set. A better 

solution would be to iterate through the set occupied and for each room in 

occupied apply the function occupants to get the set containing the names of the 

people in the room. If the size of this set is equal to one then the running total for the 

number of single occupant rooms can be incremented. For example :-

procedure counting_process (r:room_number; continue: out
boolean) is

name_set: set_of_names_pack.set; 
begin

continue := true;
range_of (r, name_set,occupants) ;
if size_of(name_set} = 1 then

numberWithSingle := numberWithSingle + 1 ; 

end if; 

end;

Page 110



Chapter 6_________________________Operation Schema Refinement

6.8 Refining Complex Postconditions and Statements

The refinement of long complex statements within the operation schemas is a 

difficult process and requires a different technique to aid the process. Originally, the 

author analysed the statements in applicative order (from the inside out). This made 

the process difficult as the best place to start was not always obvious. A different 

tactic has now been employed in order to make the process more mechanical. The 

statement is written in a general form and refined in normal order (from the outside 

in) to create the Ada code segments. The code segments are then reversed to 

establish applicative order for the computer. When the general form is refined with 

the appropriate Ada operation(s) any parameters in the general statement which 

cannot be implemented with information already known, will require further 

refinement. These parameters, will consist of other smaller Z statements which are 

also written as general statements. The method proceeds until the information for all 

the parameters in the general statements, and their Ada equivalents are known. The 

Ada equivalents are then rewritten in reverse order, with the information in their 

parameter lists being substituted upwards. When the refinement for each general 

statement ends, any parameters which are unknown after back substitution will be 

defined locally to the main procedure or function implementing the Z schema. This 

procedure basically splits the complex operation into a number of operations, 

available in the reusable components, and enables them to be applied in the correct 

order.

The following statement serves as an example and is taken from the Switch schema 

specified in [Norc91], where c? is of type Car and p? is of type pump.

queues' = queues © {p? •-» queues p? "<c?>,q >-» squash(queues q > {c?})}

As a reminder, the state variables and given types are as follows :-

[ Pump, Car ] The parachuted types are pump and car.

Page 111



Chapter 6_________________________Operation Schema Refinement

queues : Pump >-*•» seq Car 

waitingToLeave : P Car

It can be seen that the statement is basically a functional override application where 

the parameters to be overridden are calculated from other statements.

The statement follows the general form M' = M © {dl >-» rl, d2 >-» r2 }

This is implemented by
function_override (dl,rl,M ) 
function_override (d2,r2,M )

where M = queues 
dl =p 
d2 = q
rl = queues p? <c?>

r2 = squash (queues q O {c?} )

calculating rl :-

This follows the form S q < I >

and is implemented as construct ( c, Sq )

where S q = queues P? and is implemented as range_of (p, Sq ,queues )

calculating r2 :-

r2 follows the form Sq F {1}

which is implemented by sequence_range_subtract (c,sql )

where sql = queues q and is implemented by range_of (q, sql,queues )

Reading upwards and substituting for implemented statements in bold type results in 

the following full implementation for the statement in applicative order.

Page 112



Chapter 6_________________________Operation Schema Refinement

range_of (q,sql, queues) 
sequence__range_subtract (c,sql) 
range_of (p, sq,queues) 
construct (c, sq); 
function_override (p,sql,queues) 
function_override (q,sq,queues)

6.9 Operations Involving Schema Types and Bindings

Chapter three discussed state schema refinement and introduced the method of 

refining state schemas that involved schema types and the binding notation (0). This 

section implements the operation schemas that were introduced in chapter 5 section 

5.6.1. The important schemas are reintroduced, but the reader is redirected to the 

Ada package specifications for the implemented state schemas.

6.9.7 Class Managers Assistant Operation Schemas

As a reminder, the state for the class system is :-

i— Class —————————————————I 

enrolled,tested : P STUDENT

tested c enrolled 
# enrolled < size

The operation to enrol a student is given as :-

Enrol
A Class
s? : STUDENT

s? e enrolled 
# enrolled < size
enrolled' - enrolled u { s?} 
______ ____________I

Page 113



Chapter 6__________________________Operation Schema Refinement

The operation enrol can be implemented in the Ada package body of a_ciass. The 

init procedure would refine the initial state schema to create the sets enrolled and 

tested.

package body a_class is

procedure init(c:out class) is 
begin

set_pack.create_set(c.enrolled) ;
set_pack.create_set(c.tested) ; 

end;

procedure enrol(s: in student;c: in out class) is 
begin

if not set_pack.is_a_member(s,c.enrolled) and
{set_pack.size_of(c.enrolled) < size) 

then
set_pack.insert(s,c.enrolled); 

else
raise enrol_error; 

end if; 
end;

The state for the two class system is given as :-

r— TwoClasses- I 
z_for_beginners : Class

z advanced : Class

An operation can be defined which reuses enrol and operates on the state 

TwoClasses.

Page 114



Chapter 6________________________ Operation Schema Refinement

— ZfbOperation 

ATwoClasses 

A Class

z_advanced' = z_advanced 

advanced class doesn 't change 

z_for_beginners = 9 Class 

z_for_beginners' = 0 Class' 

the changes in z_for_beginners are 

identified with changes in a typical 

class, component by component

A similar operation would exist to link changes in the class 'two'. An operation to 

enrol a student into class z_for_beginners would be:-

ZfbEnrol = 3 A Class • Enrol A ZfbOperation

The operation ZfbEnrol that links enrol with TwoClasses can be implemented in the 

package body for the two class system :-

package body classTwo is

procedure ZfbEnrol(s:in student;b:in out z_for_beginners) is 
begin

enrol(s,b);
exception when enrol_error => raise class_two_enrol_error; 

end;

The procedure ZfbEnrol (s,b) is from the package a_class. In this example, the 

class 'z_for_beginners' is explicitly identified by the theta notation as the current

Page 115



Chapter 6_________________________Operation Schema Refinement

state upon which the operation must act. For this reason, the type z_f or_beginners 

is used as an in out parameter to the operation zfbEnroi.

6.9.2 The Extended Class Managers Assistant Operations

To enrol a class the following linking schema is required :-
p- IdOperation ——————————————————I 

A ManyClasses 
A Class 
I?: Id

I? e dom many
many' = many © { I? -+* 0 Class'}
{I?} o many' = {I?} <3 many

The operation to enrol a student into a class is expressed in the same way as the 

OneEnrol operation, namely :-

IdEnrol = 3 A Class • Enrol A Idoperation

A problem exists when trying to implement these schemas. In the schema 

Idoperation, the statement 0 Class 'effectively uses a binding that is calculated in the 

schema Enrol. This is legal in Z because it is in scope, but causes problems when a 

procedural language like Ada is used. In order to successfully implement these 

schemas, the statements involving 0 Class 'must be implemented in Idenrol and not 

in Idoperation. In order to achieve this, the class must be output from the procedure 

IdOperation, which is identified by using range_of for the input Id. The approach 

is not structure preserving, but this is the case in general as the structure of Z 

specifications does not (as they are currently written) map well to Ada 

implementations [Read92].

Page 116



Chapter 6__________________________Operation Schema Refinement

procedure IdOperation(i:in Id; c:in out the_class ) is

begin
if is_a_domain_element(i,many) 
then

range_of(i,c,many) ; 
else

raise invalid_id; 
end if; 

end;

The procedure idenroi can now use the correct binding for Class to enrol the 
student. The function 'Many' must be updated after enrol.

procedure Idenroi(s:in student;!: in id) is
c:the_class; 

begin
IdOperation(i,c);
enrol(s,c);
unbind(i,many);
bind(i,c,many);

exception
when enrol_error => raise mclass_enrol_error; 

end;

6.10 Schema Calculus

Many specifications use existing schemas in the definition of 'new' schemas. This 
can be achieved because Z specifications can be decomposed into relevant parts and 
schema calculus can be used to combine the parts to create the full specification. 
This helps a specifier to concentrate on small parts of a system without getting 
bogged down by trying to specify a complete system in one go. In Z, there exist a 
number of operators that can be applied to schemas in order to manipulate them in 
this way. Collectively the operators form a schema calculus which is analogous to 
the predicate calculus of typed set theory. This section will take each operation 
available in the schema calculus and describe how refinement takes place. In many 
cases, the refinement is trivial, however, this section has been included because 
schema calculus is an important aspect of Z. Also, when Z specifications are

Page H7



Chapter 6__________________________Operation Schema Refinement

prototyped using functional languages only a subset of the schema calculus 

operators are used. In [Morr92, Knot92] the only operators that are available in the 

method are negation, conjunction and disjunction.

6.10.1 Schema Renaming

Schema renaming is a convenience operation that allows a specifier to create a new 

schema from an old one by the replacement of selected variables. In some cases of 

schema renaming, the old schema can be thought of as a template, whilst the new 

schema can be thought of as an instance of the old schema parameterised over the 

new variables. For schema renaming, no refinement need take place as it is possible 

to use just the result of the renaming action.

6.10.2 Schema Piping

Schema piping is another technique to build larger schemas from smaller ones. 

Basically schema piping takes the output of one schema and 'pipes' it through as 

the input to the next schema. The problems with implementing the schema piping 

operator involve the management of the input and output variables of the new 

schema and the constituent schema. 

In general, when implementing R = S » U

• The procedure R gets all the input parameters of S and all the output 

parameters of U.
• Additionally R gets the inputs for U if they are unmatched as outputs of S.

• R gets the outputs of S if they are unmatched as inputs of U.

• Where the outputs of S are used as inputs to U they can be declared locally 

for R and the result used in a call to U.
• Variables that are inputs for S and outputs for U, will have the parameter 

mode m Out in R.

Page 118



Chapter 6 Operation Schema Refinement

In following the above rules, the parameter list will contain a minimum of 

information, whilst being sufficient to call S and U from R.

6.10.3 Schema Inclusion

The name of a schema can be included in the declaration part of another schema. 

The effect is for the included schema to be physically imported in the text of the 

including schema. Its declarations are merged with those of the including schema 

and its predicate part is conjoined with the predicate part of the including schema.

NB. The Ada translation of the including and included schemas may appear in 

different Ada packages. The refinement of schema inclusion amongst schemas in 

different packages was be discussed along with state extension in the section 

regarding child packages in chapter 5 section 5.5.

An example of inclusion is as follows :-

State __ 
~X:P 
Y:I-+*J
Dom Y ci X

r°P —
A State

{n?}

-NewOp- 
Op 
m?: J

m? g ran Y 
Y ' = Y u {n? m?}

Page 119



Chapter 6_________________________Operation Schema Refinement 

The procedure Op can be implemented as :-

procedure Op (n:in I) is 
begin

Insert(n,x); 
end;

The schema NewOp which includes Op is refined as :-

procedure NewOp(n: in I; m-. in J) is 
begin

if not is_a_range_element (m,Y) then 
Op (n) ,-
bind (n,m, Y) ; 

end i f; 
end;

Since the predicates are conjoined, the propositions in the precondition of Op and 

NewOp must be true before the operations translating the postcondition are 

implemented. In this example, the propositions in the precondition of NewOP are 

implemented first. If the precondition of NewOp is valid then Op can be called. It 

does not matter that the postcondition from Op is implemented before NewOp since 

no order is forced on the statements in the postcondition.

In general when a schema A includes a schema B, they are implemented as foliows:-

Procedure B ( parameters of B) is 
begin

end;

procedure A (parameters of A and B) is 
begin

Precondition for A
B (parameters of B)
postcondition of A 

end;

6. 10.4 Schema Conjunction

Schema conjunction is an operation that is similar to schema inclusion. This is 

because the declarative parts of the schema are merged and their predicate parts

Page 120



Chapter 6__________________________Operation Schema Refinement

conjoined. Schema inclusion imports the definition and predicate parts of the 

included schema for use in the including schema, whereas schema conjunction 

creates a new schema from the composite schemas. Since a new schema is created, a 

slightly different approach is required. In general, suppose C - A A B

where A and B were implemented as :-

procedure A ( ---- } is procedure B is (----) 
begin begin

end; end;

Then C would be implemented in the following manner (note some code duplication 

may take place if A and B are not independant) :-

procedure C (parameters of A and B) is 
begin

Precondition of A;
B (parameters of B) ;
postcondition of A; 

end;

In the example above, if the preconditions of A are not true then an exception can 

be raised and program control will not arrive at the postcondition. Similarly for the 

precondition of B. The only way that program control moves to the postconditions 

of A and B, is if the preconditions of A and B are true.

6.10.5 Schema Disjunction

The disjunction of two schemas is a new schema with the signatures of the two 

schemas merged and their predicate parts disjoined. Once again, the schemas must 

be compatible. Schema disjunction can be written as C = A v B. In order to refine C 

(if C is deterministic) a condition must be found that separates the behaviour of A 

from that of B. If C is not deterministic then no condition separating the behaviour 

of A and B can be found. The schema C will be refined as follows :-

Page 121



Chapter 6_________________________Operation Schema Refinement

procedure C ( parameters of A and B) is 
begin

if determining condition then
A { parameters of A); 

else
B { parameters of B); 

end if; 
end;

The following example of disjunction is an extract of the telephone system database.

The state schema is :-

_ Phone Db_
members : F PERSON 
telephones : PERSON <-> PHONE

dom telephones cr members
# (ran telephones) < maxNoLines
________________________I

Adding an entry into the phone database depends on whether the phone is on a new 

or existing telephone line.

AddEntry_NewLine 
A Phone_Db 
name ? : PERSON
newNumber ? : PHONE

# (ran telephones ) < maxNoLines
name ? e members
newNumber g ran telephones
They must be a staff member, the line must be new

telephones' = telephones u {name? >-» newNumber? } 
members' = members
___________________________________I

Page 122



Chapter 6_________________________Operation Schema Refinement

AddEntry_ExistingLine_ 
A Phone_DB 
name ? : PERSON 
number ? : PHONE

name ? e members
name ? e ran telephones
(name ? •-> number) & telephones
They must be a staff member, the line must exist and
this person must not already be allocated to it

telephones' = telephones ^ {name? >-» number? } 
members' = members

An operation to add a line is a combination of these two:-

AddEntry = AddEntry_NewLine [number? / newNumber?] v

AddEntry_Exi stingL ine

The schema AddEntry is deterministic because there is a condition that separates the 

behaviour of AddEntry_NewLine over AddEntry_ExistingLine. By examining the 

precondition, it can be seen that the proposition name ? ^ ran telephones says that 

the line must already exist. Whilst the proposition newNumber e ran telephones 

says that the new number must not exist. Between them they effectively state which 

schema should be used. AddEntry can be refined as :-

procedure AddEntry( parameters of AddEntry_Newline and
AddEntry_ExistingLine) is 

begin
if is_a_range_elament(name,telephones) 
then

AddEntry_ExistingLine(----); 
else

AddEntry_NewLine (----); 
end if; 

end;

Page 123



Chapter 6_________________________Operation Schema Refinement

6.10.6 Schema Override

Schema override is written as A © B and is defined by:-

(A A -. pre B ) v B

The schema override operator can be implemented by expanding the schema 

according to the definition above and using the correct Ada program control 

structure.

6.10.7 Schema Hiding

The schema hiding operator hides the specified variables so that the variables listed 

are removed from the declaration and become local variables to an existential 

quantifier. Schema hiding can be used to remove input variables from the system 

and allow the system to arrive at a value for the variable itself. This technique may 

reduce input effort, but it makes the process of refinement with this method more 

difficult, as it introduces non-determinism to the specification. An example of 

schema hiding is as follows :-

Add_record 
A Database
name? : Person 
number? : Number

number g dom members
members' = members © { number? >—» name ?}

The statement NewAddRecord = Add_record \ [number?] results in the following 

schema with number hidden, but existentially quantified :-

NewAddRecord 
A Database 
name? : Person

3 number : code • number g dom members
A members' = members © { number »-» name ?}

Page 124



Chapter 6_________________________Operation Schema Refinement

The schema NewAddRecord would cause difficulties for the implementor because 

the number required is specified as being generated by the system, but no details as 

to how this is done are given. The set of codes from which the number is drawn is 

probably an infinite set, which will also cause problems when using a generic 

iterator or the there_exists function as these operations iterate over finite sets. For 

specification purposes, the way in which the number is arrived at in this case is 

irrelevant. Burdening the specification with these details would result in over 

specification. However, for implementation purposes this extra information is 

crucial. If this schema is to be refined as it is, then some extra code must be included 

to arrive at the new number. The ideal situation would be one where the new number 

remained as an input to the schema. In general then, schema hiding results in a loss 

of determinism, which has to be avoided when refining specifications with this 

method. Alternatively a global operation could be included in the schema, for 

example 'get_code_number'. This operation would then allow the implementation 

details to be left out of the schema. The schema would be implemented with 

'get_code_number' as a generic procedure to the procedure NewAddRecord. The 

developer could then decide upon the form of 'get_code_number' and instantiate the 

procedure NewAddRecord for 'get_code_number'.

6.10.8 Schema Composition

This is written as C = A §B. In a programming language this statement can be read 

as do A then do B. However, in specification terms schema composition is not as 

straightforward. When schema composition is used there is an intermediate state 

between A and B. This is the state at which A ends and B starts. Applying A moves 

the state from S to S', then applying B moves the state from S' to S". Applying C 

moves the state from S to S", and the intermediate S' is eliminated.

When implementing the schema composition some repetition of statements may be 

incurred as it is possible for pre and postconditions to be repeated in both A and B. 

This repetition of statements can be avoided if the schema C is expanded, and then

Page 125



Chapter 6__________________________Operation Schema Refinement

implemented, because after expansion duplicated statements can be identified and 

removed. This would also introduce the problem of the intermediate state that 

existed between A and B. It is possible that a precondition of the second schema 

may involve primed variables of the first schema. This would result in a chicken and 

egg situation, since all the preconditions must be calculated before the 

postconditions. In order to implement this, some formal manipulation would be 

required to arrive at the real precondition.

Care must be taken when using schema composition to write specifications that will 

be refined with this method. It is best to limit the use of schema composition to those 

schemas for which the natural programming style of composition can be applied.

6.10.9 Schema Negation

Schema negation creates a new schema with its predicate part negated. However, 

care must be taken when negation is applied to schemas [Woodc96]. The new 

schema may have properties that were not expected, because it is the property that 

changes and not the signature. This occurs when there are constraints upon the 

components in the declaration part of the schema that are not present in the property 

that is negated. For schema negation to be used correctly, the schema must be 

normalised so that the constraints that apply to the components appear in the 

property of the schema. For the purpose of this project, it is assumed that the 

schemas have been written in such a way that their negation results in the schema 

that was intended. It is then a simple matter to produce a new schema with the 

propositions in the precondition negated.

6.10.10 Schema Implication and Equivalence

Schema implication and equivalence can be formed using negation, conjunction and 

disjunction. If S and T are schemas then S =>T can be written as -. S v T and S <=> T 

can be written as (-. S A -i T ) v ( S A T). These two operators make use of negation, 

so once again care must be taken when the negation is carried out. The most useful

Page 126



Chapter 6_________________________Operation Schema Refinement

operators with regards to the construction of specifications are conjunction, 
disjunction and inclusion whilst operators like negation, implication and equivalence 
are not very useful.

6.10.11 Schema Projection

If S and T are schemas then S I" T is equivalent to (S A T) \ (x,, ...., xn), where xb 

....,xn are the components of S that are not shared by T. The refinement of schema 
projection can therefore be accomplished along the same lines as for schema hiding 
discussed above, but by taking into account the extra constraint.

6.10.12 Universal and Existential Quantification of Schemas

The universal and existential quantifiers can once again be used to create a new 

schema from old ones. If S and T are schemas then 3 S • T and V S • T denotes a 

schema whose signature is that of T with all the names of the signature of S 
removed. The property of the new schema is then the property of T with an 
existential or universal quantifier operating over the variables of S constrained by 

the property of S.

For example, given the schemas S and T as below :-

S—————, .T 

I :N

The schema 3 S • T can be written as :-

Page 127



Chapter 6_________________________Operation Schema Refinement

_ 3 S • T_ 

J:Z

3I:Z

This schema can then be refined using the generic operation for there exists, with the 

predicate part of S and that of T used together to instantiate the generic operation.

Page 128



Chapter 7____________________________Evaluation of the Method

Chapter 7

Evaluation of the Method

Page 129



Chapter 7____________________________Evaluation of the Method

7.1 Introduction

In this section, the method will be evaluated by taking into account how the code 

obtained with reusable components compares with that which could have been 

produced manually. Also, the code that is produced from a concrete design, obtained 

from an initial Z specification will be compared with code produced using reusable 

components from the original Z specification. A comparison of how the reusable 

components could have been programmed using another imperative language (C++) 

and a functional language (Haskell) will also be made. Finally, some conclusions of 

how well the method scales up to industrial sized specifications will be drawn, by 

looking at the steam boiler [Buss96] and aircraft cabin illumination [Hame95] 

specifications and their corresponding implementation.

7.2 Comparison of Code Produced Manually

In this section the code that could be produced by a manual translation of a Z 

specification will be compared with code produced by using reusable components. 

When the term 'manually' is used for the development of code, it does not imply 

that the alternative method of using reusable components is automated.

7.2.1 Manual Implementation of Birthday Book Specification

In this section, an Ada program specification for the extended Birthday Book (state 

schema is in section 5.3.1) is given, along with a possible data model that may be 

used. The model is based upon linked lists. The data models for NAME, DATE and 

YEAR are still left as generic parameters, as with the version using reusable 

components, because their data model is not given in the specification. As a result, 

generic procedures for outputting those types are also given. It would have been 

possible to create models for these types in the Ada specification and hence no 

generic parameters would be required. The linked list model is dynamic, but must 

incorporate an exception if it is not possible to add more data to the birthday book 

due to constraints in the machines memory. If this example was used in a real

Page 130



Chapter 7____________________________Evaluation of the Method

application, file structures would have been used so that information is not lost when 

the machine is switched off. However for demonstration purposes lists shall suffice.

7.2.2 Manually Implemented Ada package specification for birthday 
Book
The Birthday Book could be implemented using linked lists as follows:-

type birth_day;

type birthday_list is access birth_day;

type birth_day is record 
the_name : name; 
the_date : date; 
next : birthday_list; 

end record;

type card_sent;

type card_sent_list is access card_sent; 

type card_sent is record
the_year
domain
next

year;
birthday_list; 
card sent lis~;

end record;

type card_received;

type card_received_list is access card_received;

type card_received is record
the_name 
the_year 
next 

end record;

name; 
year; 
card received list;

birthday :birthday_list;
cardsent :card_sent_list;
cardreceived :card received list;

end;

7.2.3 Manual Implementation of Add_Birthday Operation

An implementation of the operation Add_Birthday, implemented manually with the 

linked list data model could be :-

Page 131



Chapter 7_____________________________Evaluation of the Method

procedure Add_Birthday(n:name; drdate) is 

index:birthday_list:=birthday;

begin
while index /=null 
loop

if index.the_name = n then 
put_line("already known"}; 
return; —it may jbe disorienting to see a

— return here but see [Booc87]p264 
else

index:=index.next; 
end if; 

end loop;

birthday:=new birth_day' {the_naine=>n,
the_date=>d, 
next =>birthday);

put_line("ok");

exception
when storage_error => raise overflow;

- the linked list,although
--dynamic, is finite so an
--exception is raised if memory is used up 

end;

In the code above, it is necessary to loop through the list structure for birthday to 

check that a duplicate entry is not made. If the entry is not already there then the 

persons birthday is added to the list.

7.2.4 Implementation of Add_Birthday using Reusable Components

The same operation can be implemented by direct translation using operations from 

the reusable components. The state schema for the expanded birthday book 

specification is on page 66 whilst the state variables are declared on page 68. 

Add_Birthday is translated as follows:-

procedure Add_Birthday(n:a_name; d:date) is 
begin

if not is_a_domain_element(n, birthday) 
then
bind(n,d,birthday); 
put_line("ok"); 

else
put_line("already known"); 

end if; 
end; ________

Page 132



Chapter 7____________________________Evaluation of the Method

The operations is_a_domain_element and bind would be contained in a reusable 

Ada package modelling functions. A data model for a function based upon linked 

lists and the code for the operations is_a_domain_element and bind are now 

given to show typical pieces of code contained within the reusable components.

The data model for a reusable function component based upon linked lists is:-

type map;
type map_list is access map
type map is record

the_domain: dset_pack.item_type;
the_range : rset_pack.item_type ;
next : map_list; 

end record/­

implementation for the operation is_a_domain_element from a reusable 

function component based upon linked lists is as follows :-

function is_a_domain_element (d: dsei:_pack. item_type; m: map)
~~ ~ return boolean is

index:map_list :=m; 
begin

while index /=null 
loop

if index.the_domain = d 
then

return true; 
else

index:=index.next; 
end if; 

end loop; 
return false; 

end;

An implementation of the bind operation from a reusable function component based 

upon linked lists is as follows :-

Page 133



Chapter 7__________________________ Evaluation of the Method

procedure bind( d: dset_pack.item_type;
r: rset_pack.item_type; 
m:in out map ) is

index:raap_list:=m; 
begin

while index/=null 
loop

if index.the_domain = d 
then

raise domain_already_exists; 
else

index:=index.next ; 
end if; 

end loop; 
--binding does not exist so add new pair to map

m:=new map' ( the_domain =>d,
the_range =>r,
next =>m);

exception
when storage_error => raise overflow; --raised when the set

—cannot grow large enough 
--to complete the operation

end;

7.2.5 Comparison of reusable code against manually derived code

In the code for Add_Birthday using the reusable components, the calls to 

is_a_domain_eiement and bind effectively duplicate work by traversing the same 

list structure twice to check for membership of a domain item. The first check is to 

determine if 'name' is already a member of the domain of the function. The second 

check occurs because the semantics of bind say that a pair can only be entered into 

the mapping if the domain element is not already there (in the case of the many to 
one mapping). The bind operation, therefore, forces another traversal of the 

structure in the preservation of its semantics. This is one area where the code 

produced manually can be more efficient than the code produced using operations 

from reusable components modelling abstract data types. The problem occurs 

because, by definition, each operation available in the abstract data type must 

preserve the semantics of the abstract data type in question, so in the application of

Page 134



Chapter 7___________________________ Evaluation of the Method

a series of operations when translating Z statements, some duplication of work is 

inevitable. When code is developed manually, a developer can rationalise code in a 

manner that cannot be matched when using operations from the reusable 

components. However, as Boehm [Boeh87] states, a project manager can reduce 

software costs and improve software quality by using modern software engineering 

techniques. Boehm specifically mentions Ada with its support for modularity, 

information hiding and reuse. When using reusable components, errors can only be 

introduced at the translation stage (provided the operations in the components are 

error free). A manually constructed version of the software may be more efficient, 

but it has the opportunity to introduce errors in the actual detailed coding stage. One 

of the most important objectives of software engineering is to reuse existing pieces 

of program so that the effort of detailed new coding is kept to a minimum [Barn95 

pg!5]. As an example of reusable components improving software quality and 

reducing costs, Raytheons system of reusable software components has achieved 

figures of 60% reusable code resulting in savings of 10% in the design phase and 

50% in the coding and testing phase [Boeh87].

7.2.6 Improving Add_Birthday Performance

A design decision was taken to raise an exception in the code for bind (given on 

page 134), when attempting to add duplicate items, the goal being to avoid the 

duplication of search effort in the code implementing Add_Birthday. An equivalent 

implementation for Add_Birthday (which follows), is more efficient. It only requires 

a call to the bind operation because bind handles the case where the name is 

already in the birthday book i.e. that name? e birthday. The operation bind is an 

implementation of union but for a single item and with more primitive semantics. 

An exception is raised for a duplicate item in bind, whereas for the union 

operation, nothing is done as duplicate items are simply ignored.

Page 135



Chapter 7____________________________Evaluation of the Method

procedure Add_Birthday(n:a_name;d:a_date) is 
begin

bind(d, r,birthday);
put_line("ok");

exception
when doraain_already_exists = > put_line("already known"); 

end;

The code for this operation, is now very similar to the version of the code produced 
manually by direct manipulation of the linked list structure (if the code for bind is 
taken into account).

In the code for Add_Birthday above, put_iine statements have been used to output 
messages for ok and already known in a similar manner to many other methods used 
throughout the literature. Woodcock [Woodc96, page 361] constructs a report type 
which is passed as a parameter from the operation. However, since the Z 
specification does not say in what form the message should be output an alternative 
implementation of AddJBirthday using exceptions is also possible.

procedure Add_Birthday(n:a_name;d:a_date) is 
begin

bind(n,d,birthday);

exception
when domain_already_exists = > raise already_known; 

end;

If the name is already in the function birthday, an exception is raised by the 
operation bind. This can be caught in Add_Birthday and an exception 
already_known (which will be declared in the Birthday Book package) is exported 
and can be caught in the program that is using the Birthday Book package. A 
message will have been passed from the Add_Birthday operation without specifying 
its form or what action should be taken upon its receipt thus satisfying the original 
intent of the Z specification and following the style of Booch [Booc87]. Of course, 
catching and then exporting an exception could also be employed in the manually 
produced version. In both methods, when using reusable components and producing

Page 136



Chapter 7___________________________ Evaluation of the Method

code manually, the same information is lacking in the Z specification, and hence, 

similar decisions must be taken to account for this lack of information. When the 

exception aiready_known is raised the exception handler in the program 

instantiating and using the birthday book package could, for instance, take the form:-

exception
when already_known => put_line("already known");

or it could request that the user try the operation again with a new name, or simply 

do nothing by using the null statement.

7.2.7 Conclusions

Primitive operations such as searching for items in a structure, updating a structure 

and deleting items from a structure will match the performance of similar operations 

constructed manually using the same data structures. However, when translating Z 

specifications directly, some duplication of effort is encountered because each 

operation in the reusable components must preserve the semantics of its underlying 

type. As a result, a complex operation schema may use a series of many operations 

from the reusable components in its implementation, which may duplicate a lot of 

work. In the Add_Birthday example it was shown that a duplication of work existed 

and how the use of exceptions in the construction of the operations in the reusable 

components could remove it in this case. However, the important point is that a 

manually produced version of the code has the opportunity to rationalise code in a 

manner that selecting a series of operations from reusable components cannot. On 

the other side, the manually constructed version has more opportunity of introducing 

errors in the detailed coding and also makes less use of reuse.

7.3 Comparison with Code Produced from Concrete Design

A library specification is given in [King89]. The specification is refined into a 

concrete design from which an algorithm, in Djikstra's guarded command language, 

is presented for one of the operations. Proof obligations are stated but are not

Page 137



Chapter 7____________________________Evaluation of the Method

completed. This section seeks to compare the code produced for this algorithm with 

the code that is produced by using operations from the reusable components using 

the original abstract operation and state model. As a result some schemas from the 

specification in [King89] must be introduced.

7.3.1 Library Specification Summary

The given types and state schemas are as follows :-

[PERSON, COPY, TITLE, AUTHOR, SUBJECT] 

maxbooks : N

BOOK USERS

title : TITLE 

authors : F AUTHOR 

subjects : F SUBJECT

staff: P PERSON 

borrowers : P PERSON

staff n borrowers =

The state schema for the database is given as:-

stock : P COPY 
available : P COPY 
checked_out: COPY -» PERSON 
last_checked_out: COPY -** PERSON 
book info :COPY -» BOOK

(dom checked_out) u available = stock
(dom checked_out) n available = 0
V p : PERSON • # (checked_out > {p} ) < maxbooks
checked_out c last_checked_out
dom book_info = stock

________________I

Page 138



Chapter 7 Evaluation of the Method

The operation used as the main example in the paper and in this section is specified 
as:-

^_ Check_out ______ 
Counter_trans 
borrower ? :PERSON

copy? e available
borrower? e staff u borrowers
#(checked_out > {borrower? }) < maxbooks
available ' — available \ {copy?}
checked_out' = checked_out u {copy? >-> borrower?}
last_checked_out' = last_checked_out e {copy? >-» borrower?}

Where Counter_trans in the schema Check_out, is a schema used to check that a 

book is in stock.

King and S0renson develop the operation Check_out by specifying a concrete 

version and then providing an algorithm in the guarded command language. A 

summary of the concrete design is now given for the reader to understand the 

concrete version of Check_out, named D_Check_out, and the resulting algorithm, 

named T D Check out which also follows.

[TKN]
P_TYPE::= staff 
C STATUS:-in

borrower 
out

C_BORRO WER::= person < PERSON) | none

P_RECORD ___ 
pid : PERSON 
status : P_TYPE 
borrowed : FTKN

#borrowed < maxbooks

C_RECORD ________ 
cid : COPY 
status : C_STATUS 
borrower : C_BORROWER 
details : BOOK

borrower = non => status = in

Page 139



Chapter 7____________________________Evaluation of the Method

DJUSERS ————————————— 
P_file : PERSON >+* P_RECORD 
staff list: F PERSON

staffjist = dom ( P_file > {P_RECORD type = staff} ) 
V p : PERSON p e dom P_file • P_file (p).pid - p

D_DB _____________ 
C_index : COPY >» TKN 
C_file : TKN >-*» C_RECORD 
Authjist: AUTHOR «-» TKN 
Subjjist: SUBJECT «-» TKN

ran C_index = dom C_file
Authjist - (C_file | X C_RECORD • details ;

{b:BOOK; a:AUTHOR| a e b.authors } ) "' 
Subjjist = ( CJile | X C_RECORD • details f

{b:BOOK; s:SUBJECT | s e b.subjects } ) ~ l

V c : COPY c e dom CJndex • ( CJndex f C Jile) (c).cid = c

The concrete version for the operation Check_out is specified as>

Page 140



Chapter 7____________________________Evaluation of the Method

- D Check out

D_Counter_trans 
borrower? : PERSON

(C_index § C_file) (copy?).status = in 
borrower? e dom P_flle 
#(P_file (borrower?).borrowed) < maxbooks 
CJile' = C_file © {C_RECORD; C_RECORD' |

6 C_RECORD = (C_index | C_file)(copy?)
cid' = cid
staus' = out
borrower' = person(borrower?)
details' == details
• C_index (copy?) -»• 6 C_RECORD '} 

P_file' = P_file e {P_RECORD; P_RECORD' |
0 P_RECORD - P_file (borrower?)
pid' = pid
type' = type
borrowed ' = borrowed u {C_index (copy?)}
• borrower ? -> 0 P_RECORD ' }

The process of moving to a concrete design has resulted in schemas which are more 

complicated than their original abstract versions, as design details are included. 

Indeed, the concrete schema D_Check_out bears little resemblance to the original 

abstract schema due to the large amount of rewriting work carried out.

7.3.2 Concrete Algorithm Design for T_D_Check_out

The algorithm which follows is an implementation of D_Check_out :-

Page 141



Chapter 7____________________________Evaluation of the Method

T_D_Check_out
c

rl,r2,r3:boolean; 
c_tkn : TKN;
member(staff_list, id?, rl); 
domlookup(C_index,copy?, c_tkn,r3); 
if -i rl —> r! = "unknown librarian" 
0 —i r2 —> r! = "unknown borrower" 
D -i r3 -» r! = "book not in stock" 
D rlA r2 A r3 -> 

PR:P_RECORD; 
CR:C_RECORD; 
r4,r5:boolean;
filelookup(C_file,c_tkn, CR, r4 ) ; 
pflookup(P_file,borrower?,PR, r5) ; 
lengthdll(PR.borrowed,1);
if CR.status * in —» r! := "book not available" 
D 1 > maxbooks —>• r! := "too many books" 
Q CR.status = in —» adddll(Pr.borrowed,c_tkn);

A 1 < maxbooks pfinsert(P_file,borrower?,PR);
CR.status := out; 
CR.borrower := borrower? 
fileinsert(C_file, c_tkn, CR); 
r! = "ok" 

fi 
fi

7.3.3 Comparison of Code Obtained from Components and Concrete 
Design

In order to compare the code produced between the two methods, each of the Z 

operations from the original abstract version of Check_out and their respective 

implementations using reusable components shall be examined, in turn, to see if they 

can match the performance of the concrete design algorithm T_D_Check_out.

The following three statements can be executed extremely efficiently if a reusable 

component based upon a Btree or an equivalent is used to store the information on a 

file. The statements in courier font are the implementations for the Z statements.

id? e Staff is_a_member (id, staff)
Copy? 6 Stock is_a_member(copy,stock)
Copy? e available is_a_member (copy, available)

Page 142



Chapter 7_____________________________Evaluation of the Method 

The next statement requires a union operation to be performed.

borrower? e Staff U borrowers union (staff, borrowers, temp_set)
is_a_raernber (borrower, temp_Set)

The act of carrying out a union operation will undoubtedly be less efficient than the 

code produced by the algorithm T_D_Check_out. However, in the concrete design a 

type is introduced to mark a person as a member of staff or a borrower in the 

following way :- P_TYPE ::= staff / borrower. The relevance of being a staff 

member or a borrower is then reduced as the concrete operation D_Check_out is 

only interested in legal users regardless of status as implied by the statement 

borrower? e dom P_file. Here, two sets are effectively combined and there is no 

need for a union operation.

If A and B are large sets, the difference in performance between a manual version 

discussed above and the code obtained from reusable components will be large. A 

discussion on the performance of the union operation and algorithms to improve the 

performance of the operation are given in chapter 8 of [Weis93]. If the 

implementation of this operation causes a bottle neck in system performance then 

using a data structure that is well suited to the union operation may improve the 

performance to a point that is satisfactory. However, a better solution would have 

been to avoid the union operation by checking for membership of a person in the set 

of staff or in the set of borrowers. The statement could be rewritten in the form:-

( x e A vxeB)

Rewriting the specification statement in this form will have the same result as the 

original statement, but it may be argued that performance concerns are being 

introduced into the specification document by making the statement less abstract. 

However, this refinement may be necessary for some statements if the code is to be 

used not just for prototyping purposes but as the final system.

Page 143



Chapter 7____________________________Evaluation of the Method

Indeed, King and S0renson use a similar technique when creating the algorithm 

T_D_Check_out. For example, the statement from D_Check_out

(C_index f C_file)(copy?).status = in

is implemented in T_D_Check_out by : -

dirlookup(C_index,copy?,c_tkn, r3) ;
filelookup(C_file,c_tkn,CR, r4) ;

if CR.status * in —» r!:="book not available"

where as a reminder:- C_index : COPY >+•» TKN

C_file : TKN >++ C_RECORD

Here, King and S0renson did not attempt to form the relational composition of the 

two functions in their algorithm design because doing so would have used up much 

processing time by visiting every copy and every token, TKN, in order to create a 

new mapping. The objective of the statement is to inquire as to whether a book is in 

the library. This was easily achieved as King and S0renson have done by looking 

through C_index to get the token, C_tkn, for the copy in question and then searching 

for the token in C_file to access its data and hence its status as in or out of the 

library.

Returning to Check_out, the statement

#(checked_out > {borrower? }) < maxbooks

is refined by:- range_restrict (borrower, temp_map, checked_out)
size_of(temp_map) < maxbooks

Here, the mapping checked_out is restricted to those range elements that match 

borrower? and the number of items in that restricted mapping must be less than 

maxbooks. The operation implementing range restriction traverses the mapping and 

when a range item in the mapping matches borrower it is placed into a new

Page 144



Chapter 7_____________________________Evaluation of the Method

mapping (temporary in this overloaded version of range_restrict). The operation 

size_of simply returns the size of the mapping which is held in a record field of the 

data structure, so that a traversal of the new mapping is unnecessary. The 

inefficiency here is that range items may be duplicated through the entire mapping. 

It is thus necessary to traverse the entire mapping to access all people that may have 

borrowed a particular book.

Another inefficiency is in the actual creation of the mapping, which must be stored 

in order to apply size_of to the new mapping. It would be more efficient in terms 

of memory usage to traverse the structure and simply update a count of the number 

of times the range of the mapping matched the item(s) in question. This can be 

achieved, if desired, by use of the iterator procedure in a similar manner to that of 

section 6.7.4. However, the link between the Z statement and the resulting Ada code 

will then not be as obvious and some complexity will have been introduced by the 

inclusion of a subprocedure and the instantiation of the iterator operation using that 

subprocedure. However, in this case creating a temporary mapping will not have 

much affect because the new mapping will not be large as the number of books a 

person has checked out is likely to be small.

Even when using the iterator procedure to model the statement, the efficiency of the 

new concrete design cannot be matched. In the concrete design, each person is 

modelled as a record which has a field containing the set of books that they have 

borrowed. In the algorithm for the concrete design, all that is required is to search for 

the person in question, access the correct record field and then count the number of 

books that the person has. The efficiency of this statement cannot be matched by 

using the operations available in the reusable components because the state model in 

the original abstract Z specification is not a design and was not written with 

efficiency in mind. The only alternative to improving the efficiency of this operation 

would be to change the state model, or add information such as adding the function 

Borrovced_by : Person -» F Copy. In doing this, the performance of the operation 

can be matched, but this results in a duplication of data.

Page 145



Chapter 7____________________________Evaluation of the Method

The remaining statements from Check_out 

available' = available \ {copy?} 

checked_out' = checked_out u {copy? >-» borrower?} 

last_checked_out' = last_checked_out © {copy? >-* borrower?}

are refined respectively by :-
delete(copy,available)
bind(copy,borrower,checked_out}
function_override(copy,borrower,last_checked_out)

These statements are as efficient as a manual implementation (since they are either 

inserting, deleting or updating a pair in a mapping) provided the reusable component 

chosen has the same underlying data structure as was chosen for the manual version.

7.3.4 Inserting Extra Data Structures

In the text above, it was claimed that the performance using reusable components 

could only match the algorithm derived from the concrete design if the state model 

was refined in some manner or if an extra structure was added, due to the 

range_restrict operation. However, in developing the concrete design this is 

perfectly allowable. Two operations in the concrete design required traversing the 

whole of the COPY file to find matching records, so for efficiency reasons, King and 

S0renson built two more indexes. The original abstract specification for these two 

operations, Subject_enquiry and Author_enquiry, are as follows :-

[DESC]

A_match : DESC <-» AUTHOR 

S match : DESC <-» SUBJECT

Page 146



Chapter 7 Evaluation of the Method

Subj ect_enquiry 
User_trans 
d? : DESC 
list! : P BOOK

list! = { b : BOOK | b e ran book_info A
(b.subject n S_match ( d?) * 0 )}

Author_enquiry. 
User_trans 
d? : DESC 
list! : P BOOK

list ! - { b : BOOK b e ran book_info A
(b.authors n A_match ( d?) * 0 )}

The problem is that in order to find all the books whose authors match a given 

description, the whole of the COPY file (in the concrete design) would have to be 

searched to see which records matched. The two additional indexes add information 

to the specification as follows :-

Auth list

Authjist: AUTHOR <-» TKN
A similar structure would exist for subjects. Each Author is related to some tokens

which are keys to the COPY records.

Page 147



Chapter 7____________________________Evaluation of the Method

As for implementing the operation Author_enquiry with reusable components, the 

set comprehension procedure available in the reusable components can be used 

Implementing the operation list! = { b : BOOK/ b eran bookjnfo /\ (b.authors n 

Ajnatch (d? ) * 0)} is a straightforward example of using the set comprehension 

procedure (see section 6.7). However, the resulting code is not as efficient as the 

code produced by the concrete design because, once again, additional information, in 

the way of extra data structures have been added to create the new concrete Z 

specification. If the performance of this operation is not satisfactory using the 

reusable components, then a similar action of adding a new data structure to the state 

schema can be performed. In this example, this can be achieved by adding the 

following statement to the state schema.

Wrote : Author >+* P BOOK

However, BOOK itself contains a power set of authors as a field, so some 

information has been duplicated but information has also been duplicated in the 

concrete design since:-

Authjist: AUTHOR *-> TKN 

CJile : TKN >+* C_RECORD

where C RECORD is defined as :-

,_ C_RECORD ————————— 
cid:COPY 
status : C_STATUS 
borrower : C_BORROWER 
details : BOOK

Page 148



Chapter 7____________________________Evaluation of the Method

7.3.5 Improving Performance

In writing Z specifications a developer with some experience of using the reusable 

components to translate the Z specification will know that using statements such as 

range_restrict will result in an inefficient translation for functions and relations. 

The reusable components modelling functions and relations can use the domain 

element as a key for efficient searching of domain items, insertion of pairs into the 

mapping and the retrieval of range items for a given domain item. However, 

searching for range items in a function or relation, with the domain as the key field 

is not efficient as the range items may be scattered throughout the data structure.

If performance of the code, translated from an abstract specification, is not 

satisfactory, then it must be tuned. However, predicting the efficiency of a system or 

parts of a system is a difficult task. Booch [Booc87] states that characterising the 

space and time complexity of components within a system is highly dependant on 

the compiler used. A good compiler that is used on well designed high level code 

will produce optimised machine code. He also states that it is often too difficult to 

predict the space and time complexities of a large system and that it is more 

common to build a prototype of the system and then collect the necessary 

performance data. It is not practical or necessary to achieve the best possible 

performance for every part of a large system and it is sufficient to isolate 

performance bottlenecks and then tune them. The work detailed in this thesis can 

also be used in this role.

In his summary on the approach to code tuning McConnel [McCo93] lists 

following steps as a guideline.

the

1. Develop the software using a good design, with highly modular code that's easy 

to understand and modify.

2. If performance is poor, measure the system to find hot spots.

Page 149



Chapter 7____________________________Evaluation of the Method

3. Determine whether the weak performance comes from inadequate design, data 

structures or algorithms and whether code tuning is appropriate. If code tuning 

isn't appropriate, go back to step 1.

4. Tune the bottleneck identified in step 3. Measure each improvement, and if it 

does not improve the code take it out.

Repeat from step 2.

Step 3 advises the developer to determine if the poor performance is due to the 

design, the data structures or the algorithms. The last two can easily be changed by 

selecting different reusable components based upon different data structures and 

containing more efficient algorithms. An improvement in the design of operations 

can be made by respecifying an operation, since in Z there are many ways of 

expressing the same idea, but they may not be equal in the time taken to evaluate the 

statements using the operations from the reusable components. These refinements 

will be easier to do if the specification is written in a modular style since 

implementing a state schema with different reusable components or improving the 

design of a schema will not adversely affect the other modules in the system. This is 

why it is advantageous to program in a modular style. More seriously, if the bad 

performance is down to the design, it may be necessary to construct a more concrete 

design using a more efficient state model. However, this more concrete version, 

whilst taking into account design details, will still be written in Z and as a result, 

operations from the reusable components can still be used. The concrete design of 

the library system in section 7.3 can be used for translation using reusable 

components, since the state schema still defines functions and sets. Functions such 

as CJile : TKN >+* C_RECORD could be implemented using a function component 

based upon a Btree with TKN as the domain field, or the key field of the Btree and 

C_record as the range field containing the data.

Page 150



Chapter 7 Evaluation of the Method

7.3.5.1 Implementation of T_D_Check_out Using Reusable Components

The concrete state schema can be implemented in the same manner as the abstract 

state schema, since it still uses sets and functions, although with a more improved 

model to access data. The algorithm T_D_Check_out (on page 142) contains 

procedure calls, such as member and domiookup, which have direct counterparts to 

operations within the reusable components. It would also be perfectly possible to 

translate T_D_Check_out because all the operations stated in the algorithm are 

available as operations in the reusable components, as is shown below: -

member(staff list, id?, rl); Equivalent to the is_a_member 
operation from the components.

domiookup (C_index, copy?, c_tkn, r3) ; Equivalent to the range_of
operation.

filelookup(C file,c tkn,CR,r4); Equivalent to the range_of 
operation.

pflookup (P_file, borrower?, PR, r5) ; Equivalent to the range_of
operation.

lengthdll(PR.borrowed, 1);

adddll(Pr.borrowed, c_tkn);

pfinsert(P_file,borrower?,PR); 

fileinsert(C file,c tkn,CR);

Returns the length of dynamic 
linked list. Equivalent to # operation in 
Z and size_of function from the 
reusable components.

Adds an item to a linked list. This is 
equivalent to the insert operation.

Equivalent to bind. 

Equivalent to bind.

In some cases above, it is stated that the range_of or insert operation is equivalent 

to an operation contained in the algorithm T_D_Check_out, even though in the 

algorithm different names are used, such as pfinsert and fileinsert. However, 

versions of bind will operate over different types depending on which package 

instantiation they came from. So for example, person_set_pack.bind would

Page 151



Chapter 7___________________________ Evaluation of the Method

correspond to pfinsert, whilst copy_set_pack.bind would correspond to 
fileinsert.

7.3.6 Conclusions

The library specification given in [King89] is easily translated into code using 

reusable components. However, it has been shown that for some operations the 

performance of the code obtained by using reusable components is worse and may 

not be satisfactory in all cases. This has not been due to the way in which the code 

for the operations in the reusable components have been constructed, but in the way 

in which the state has been modelled and how, subsequently, the Z statements have 

been written. If it is not possible to add some extra information, due to memory 

restrictions, or make improvements to Z statements, in order to speed up the 

implementation, then moving to a more concrete design, such as that given in 

[King89] will be necessary. The original implementation of the abstract design will 

not be wasted as it can be used as a rapid prototype to validate the original 

specification and customer requirements. The operations from the reusable 

components are still useful because they can be used in the refinement of the 

concrete design.

7.4 Other languages for Modelling Z 

7.4.1 C++

Ada95 and C++ are both general purpose languages that provide features that 

modern software engineering practice deems indispensable: modularity; information 

hiding, inheritance and support for object oriented designs and mechanisms for 

parameterising software components. In writing the reusable software components 

using Ada95, much use is made of the generic paradigm. In order to construct the 

reusable components with C++, in a similar fashion, it is necessary to investigate the 

generic facilities of C++. In C++, templates are used to create generic software 

components. A typical component for a set would be set out as follows:-

Page 152



Chapter 7____________________________Evaluation of the Method

template <class Item_type> //class definition of a set 

class set {

public
//set operations

private
//data model

Since set is a template, each member function must also be a template e.g.

template <class Item_type> //definition of member function 

function

boolean is_a_member (I Item_type, s Set) ;

Using templates in this manner allows generic packages to be constructed and 

parameterised over different types. The set class would be used to create an instance 

of the set e.g.

Set<name> S;

This statement would construct a set of type name, where the model for name would 

have to be declared. This is equivalent to the Ada statements as follows :-

package name_set is new set(name); 

S : name_set.set;

In C++, it is also possible to include function parameters that depend on a class 

parameter, which is equivalent to generic formal subprograms in Ada95. It is then 

possible to include an ordering or hashing function to improve efficiency of the 

components in C++.

Some operations in the reusable components need to be parameterised over functions 

or procedures as required by statements in the Z specification, such as set 

comprehension terms and quantifiers. In C++ pointers to functions can be passed as

Page 153



Chapter 7____________________________Evaluation of the Method

parameters to the operation in question. The universal quantifier defined as Vx : S • 

Predicate(X) can be implemented as :-

boolean predicate (Item_type) 

for_all (S, Spredicate)

Where for_aii contains code that traverses the set S and applies the function 

predicate to each member. The equivalent Ada program specification is given on 

page 95.

One feature available in Ada and lacking in C++ is the ability to instantiate a generic 

package with another package. In this way the type of the package and its 

operations, (including its generic operations), are available. In chapter 4 the 

construction of function, relation and sequence packages is discussed with respect to 

them relying on a set of domain and a set of ranges types for some operations. 

Importing set packages as generic parameters to a package implementing a function 

is shown on page 51. An equivalent using C++ is not possible in this manner. It 

would be possible to import a non generic set as a property class. However, if this is 

done, the function cannot be generic because the types will only match in one 

instance. This facility was also missing in Ada83 and this forced the developer to 

include the types and operations as generic parameters, which led to a long and 

complicated instantiation process (see page 199). However, the C++ syntax forces 

repeated mentions of all the template parameters in every member function body of a 

class template. So, if a similar method to the one necessary with Ada83 was used 

every operation available in the software component would have a very long and 

complex parameter list.

The paper by Minkowitz et al [Mink95] introduces a C++ library for implementing 

specifications. The only types created are the types set and pair. The type set is 

constructed as a class and made generic using the template facility. The type pair is

Page 154



Chapter 7____________________________Evaluation of the Method

also parameterised and is used to create Cartesian pairs. The following constructor is 

used to create the pair type :-

pair < Tl, T2> Pr = pair <T1, T2> (x,y)

This creates a pair, Pr, with first element of type x and second element of type y. A 

function can then be created by declaring a set of pairs in the following manner:-

set <pair < domain, range > > s; 

Minkowitz et al propose the following method when refining operation schemas.

• Copy all state variables into temporary variables.

• Apply the Z operations to the temporary variables.

• Test the types of the temporary variables to ensure that the types defined in the 

state schema are preserved.

• Test the temporary variables against the state invariants.

• If the temporary variables preserve the state invariants copy them to overwrite 

the original state variables.

This methodology is very inefficient because of the amount of data copying that 

must be undertaken. Also, testing the types of the state variables is time consuming 

because each item in a state variable must be tested to ensure that it preserves the 

type. For example in testing that a one to one function type is preserved, it is 

necessary to traverse the entire structure to ensure that each domain and range item 

only makes one appearance. This test is completely unnecessary if the software 

components are constructed as abstract data types. This is because every operation 

available for use within each component has been coded to preserve the underlying 

type as a matter of course.

The problem encountered by Minkowitz et al is due to the fact that the only type 

constructed in their library is the set, with functions, relations and sequences being

Page 155



Chapter 7_____________________________Evaluation of the Method

derived from the set class. However, the semantics of set are not sufficient to use as 

a basis for implementing functions, relations and sequences in the same class. It is 

evident that separate classes for implementing the other types are not used as the 

following example from [Mink95] shows. A function is defined in the state schema 

for a telephone exchange as folio ws>

Calls : PHONE-^PHONE 

This is implemented using the set class as:-

Set< Pair< PHONE,PHONE> > Calls 

An operation schema contains a statement to update the Calls function as follows :-

Calls' = Calls u { (caller?, receiver?) } 

This is implemented using the C++ library as :-

Set< Pair < PHONE,PHONE > > New_Calls =

Un( Calls, Set < Pair < PHONE,PHONE > >

(Pair < PHONE, PHONE > (caller, receiver)})

Where New_caiis is a temporary state variable which is copied to Call after the 

state invariant test function has been satisfied. This union operation from the set 

package is not sufficient to preserve the type of the function. The following example 

illustrates this :-

Suppose the following set, models an injective function and is enumerated as :- 

{1 -» Bob, 2^ Fred}

Consider performing a union operation using this function and the function 

enumerated by {3 ->Bob}. A duplicate item is not being added, so the semantics of

Page 156



Chapter 7____________________________Evaluation of the Method

set would allow the union. However, the resulting function is not an inj active 

function anymore. The result is :-

{1 i-» Bob, 2 •-» Fred, 3 •-> Bob}

Performing another union with the function enumerated as 2 ^ Joe would again be 

allowable using set semantics, because no single pair (i.e. item in the set) is 

duplicated. However, now the result is a relation.

It is unclear as to whether operations such as domain restrict, which use a set as an 

operation parameter, are implemented in the library or indeed if it is possible to 

implement operations of this type in a set package. A function is modelled by 

parameterising the set over a pair, of type domain and range, but how would the type 

set of domain or set of range be made available to the operation in question in a set 

class? A set would be being used within its own definition. Higher order functions 

such as the one implemented using Ada95 components in section 5.3.1 would 

undoubtedly be difficult to implement with the C++ library of Minkowitz et al as it 

currently stands. The solution using Ada95 is to create separate set and function 

packages and allow the function package to import two generic set packages for the 

domain and range sets. In chapter 4.4, the construction of a function package based 

upon a set package was discussed. This was a different method to that of Minkowitz 

et al because the function package was a separate concern and used only the types 

and primitive operations from the set package, as a result the function package had 

different semantics.

Minkowitz et al justify the creation of a function to test the system invariant and 

state model as an extra integrity test. In chapter 8, the state invariant is implemented 

using Ada components. However, it is implemented as a child package, which can 

be used for testing purposes, but does not have to form part of the final 

implementation. In C++ the friends concept is similar to child packages in Ada95.

Page 157



Chapter 7_____________________________Evaluation of the Method

In concluding, the authors state that program efficiency of the C++ library wasn't 

considered during its construction, but more efficient implementations are possible. 

They also argue that if using the library on an entire system is impractical, due to 

critical performance requirements within the system, even using the library on a 

small part of the system will result in productivity gains.

The target language chosen for this research project was originally Ada83. The 

reusable components were translated to Ada95 to make use of the new more 

powerful generic paradigm available in Ada95. The facilities of C++ would enable a 

developer to follow the methods used in the construction of the reusable components 

using Ada83 (see chapter 8). However, C++ does not allow a package to be 

instantiated over another package. This is an important aspect in allowing sets to be 

used as parameters in operations over other Z types and in the construction of higher 

order functions. It may be possible for a developer with much C++ experience to 

achieve a similar result perhaps through the use of pointers. At this stage it remains 

unclear as to how this could be achieved as the work of Minkowitz appears to be in 

its early stages.

The following comparison between Ada95 and C++ can be made:-

• Both languages allow modem concepts of information hiding, modularity and 

reuse in the construction of software components.

• The generic operations in the Ada95 components can be modelled using function 

templates in C++.

• Packages in Ada95 can be instantiated over other generic packages. However, 

this feature is not available in C++.

• Both languages are used in real world applications.

• No subsets of Ada are allowed and all Ada compilers must undergo a 

certification process. There is an ANSI (American National Standards Institute) 

standard for C, but not for C++. For example templates are not available in

Pase 158



Chapter 7____________________________Evaluation of the Method

some implementations of C++ [Skan97 pg. 450]. However an ANSI standard for 

C++ is in draft.

7.4.2 Haskell

Prolog is a functional language commonly used in the animation of Z specifications. 

However, much work is also being carried out using Haskell, which is a non strict 

purely functional language which has been written with research, teaching and large 

scale applications in mind. The non strict (or lazy) evaluation strategy means that no 

subexpression is evaluated until it is required. This allows the definition of 

(conceptually) infinite data structures, but, if a computation is to be performed some 

finite portion of the data structure will be accessed. The pure functional 

programming paradigm means that programs are referentially transparent. This 

allows easier reasoning about the behaviour of programs since any function or 

expression can be replaced by any other function or expression that returns the same 

value. Functional programs are easier to prove correct and they are also easier to 

make parallel because of referential transparency.

Sherrel and Carver [Sher94] implement the class managers assistant [Word92] using 

direct data design, so that the data structures from the target language (in this case 

Haskell) represent objects in the abstract data space. The work is based upon the fact 

that the set and some sequence operations can be modelled as list operations in 

Haskell. However, the work does not consider how other operations in Z which are 

not suited to implementation using lists are handled. Goodman [Good95a, Good95b] 

creates a toolkit to model the operations in Z's mathematical toolkit for which there 

are no equivalent operations defined in Haskell. The toolkit is constructed using 

Haskell's module facility. The actual creation of the operations modelling the 

respective Z counterparts is more straightforward than when using Ada95 because 

the Haskell functions need only state 'what' the operation does and not 'how' it is 

done. This is because Haskell as a declarative language is much closer in spirit to the 

Z language. In Ada95 and C++, it is necessary to describe how each operation works 

by explicitly manipulating variable stores in memory.

Page 159



Chapter 7____________________________ Evaluation of the Method

The implementation of the more complex operations such as set comprehension, 

quantifiers and mu expressions are also easier. They do not have to be coded in the 

same way as the operations were coded as generic procedures in Ada95. In Haskell, 

set comprehension can be modelled as list comprehension, mu expressions can be 

implemented in the same way, but with the item in the singleton set being retrieved. 

Universal quantification is dispensed with because all functions are universally 

quantified over their argument types [Good95b] and the existential quantifier exists 

in the language.

Another area that enables Z specifications to be implemented more easily is the fact 

that Haskell supports higher order functions. A higher order function is one which 

either produces or uses other functions and as a result leads to a very rich 

programming style. The reusable components in Ada95 were specifically 

constructed in order to enable higher order functions to be implemented, (see the 

extended birthday book example section 5.3.1), whereas higher order functions are 

available in Haskell as a matter of course.

Modelling input, output and state is not as straightforward when using Haskell to 

implement Z. Goodman's work (using Haskell 1.2), as discussed on page 24 

addresses the problem by using a Monad. In fact the use of Monads for input and 

output have been included in the release for Haskell version 1.3. This has a major 

advantage of allowing a programmer to implement input and output whilst retaining 

referential transparency. It is then possible to program imperative constructs in a 

functional manner.

One advantage that Ada has over Haskell is that Ada is a more stable language. A 

committee was set up to develop Ada, which was released for use in 1983. A design 

review was planned and a team set up to develop Ada9x, which was released for use 

as Ada95 in February 1995. Another review is scheduled for the next century. These 

design reviews have been necessary to improve the language and keep up with

Page 160



Chapter 7____________________________Evaluation of the Method

developments in software engineering. However, the new versions of the language 

are backwardly compatible and a large body of experience exists for translation 

between the language versions. Once again any compiler for the new version must 

conform to a rigorous standard. The situation for Haskell is somewhat different. A 

committee was set up in 1987 and the first Haskell version was released in 1990. 

Version 1.2 appeared in 1992, followed by version 1.3 which added monadic I/O 

and scrapped the I/O of version 1.2. Here, strict backwards compatibility was 

abandoned in favour of the more flexible approach to I/O. The next version, 1.4, has 

been released recently and is generally compatible with version 1.3. However the 

release of version 1.4 has caused some concern, notably expressed in the Haskell 

Workshop of the 1997 International Conference on Functional Programming held in 

Amsterdam, Holland on June 9th-13th. The main concerns expressed were :-

• The language has been changing too quickly, throwing text books out of date 

before they are even published, and making it hard for serious users to keep up.

• The language has become more complex.

• It now contains traps for the unwary. Simple programs fail in strange and 

unexpected ways.

The solution, after criticism of release 1.4, was to define a simplified final version 

called standard Haskell and then freeze the language. Other developments will of 

course continue, but they will have different names in order to allow Haskell to be 

taught and used with confidence.

7.4.2.1 Haskell Productivity

A study carried out by the Advanced Research Project Agency and the Office of 

Naval Research [Huda94] compared Haskell with Ada and C++ (amongst other 

languages) in an experiment to compare software prototyping productivity. The 

following results were published which supports claims made by functional 

programmers that applications in functional languages take less development time 

and can be completed in less lines of code. Since the study was aimed at

Page 161



Chapter 7_____________________________Evaluation of the Method

prototyping, no comparison of the performance difference between implementations 

was made.

language lines of code lines of documentation development time(hours)

(1)Haskell 85 465 10

(2) Ada 767 714 23

(3)Ada9X 800 200 28

(4) C++ 1105 130

(lO)Haskell 156 112

Each implementation was developed by an expert programmer in the chosen 

language. The Ada solution was written by a lead programmer at the Naval Surface 

Warfare Centre (NSWC). The line count initially reported was 249, but this did not 

include declarations. The Ada9x version was written by an independent consultant 

from Intennetrics Inc. The consultant was given the Haskell solution along with the 

problem specification. The second implementation using Haskell (number 10 above) 

was programmed by a newly hired graduate given eight days to learn the language. 

This was done to show that the language is easy to learn. The report concludes that 

the experiment clearly demonstrates the value of functional programming. However, 

it was noted that the experiment is lacking and may be criticised in many ways as 

discussed in [Huda94].

7.4.3 Conclusion

It would seem that the reusable components to model Z could have been constructed 

with more speed and ease using Haskell. However, in the main, functional languages

Page 162



Chapter 7____________________________Evaluation of the Method

as yet do not match the performance of their imperative counterparts. A case study 

compared 25 different implementations of functional languages executing a single 

program and found that 24 of them produced code that executed slower than an 

equivalent C program [Hart96]. This is in part due to the fact that most computers in 

use today follow the Von Neumann concept with a single processor connected to the 

machines memory via a data bus. This architecture uses destructive updating where 

the contents of variables change over time and suits imperative languages which are 

based upon destructive updating. Functional languages that create referentially 

transparent programs would allow different parts of a program to be evaluated in 

parallel on different processors. This would alleviate concerns over efficiency. In the 

future, functional languages may be used for more and more projects, with 

improvements in compilers for functional languages, improvements in computer 

architecture and standardisation of functional implementations. However, at present, 

functional languages are barely used in the creation of real software applications due 

to concerns over performance, different implementations of the same languages 

causing portability problems, and a lack of facilities to interface with other 

languages. Although it is more time consuming and more difficult to construct the 

reusable components in Ada95, the advantages that Ada as a widely used, 

standardised imperative language bring to the method outweigh the advantages of 

using a language like Haskell, which is simply not used to any extent in real 

applications due to the problems mentioned above.

7.5 Scaling up to Industrial Sized Problems

7.5.1 Introduction

One of the main barriers to the widespread use of formal methods is the difficulty of 

scaling up a method to use on an industrial sized application. Methods that define 

concrete specifications use proofs and have been criticised because the proofs are 

difficult and time consuming in all but the simplest cases. As a result very few are

Page 163



Chapter 7_____________________________Evaluation of the Method

completed. Refinement using functional languages provide a means of animating a 

specification, but, as seen in section 7.4.3, the code is not often usable in a final 

application.

In this section the Z specification for a steam boiler [Buss96] and a real industrial 

specification for an aircraft cabin illumination system [Hame95] are implemented. 

The aim is to shed light on whether or not using reusable components in Ada95 to 

translate Z specifications is capable of scaling up to an industrial sized specification.

7.5.2 The Steam Boiler

An international seminar on "methods for semantics and specification" was held at 

SchlofJ Dagstuhl, Wadern, Germany on June 5-9, 1995, in order to aid the industrial 

take-up and scientific progress of formal methods. The seminar took the form of a 

competition to specify the behaviour of a steam boiler. It was proposed as a common 

case study in order to assess different formalisms and to compare the strengths and 

weaknesses of the various methods. In this section, a specification for the steam 

boiler, that was written in Z and proposed as a solution at the Dagstuhl, will be 

translated into Ada95 code using the reusable components.

The Z specification for the steam boiler specifies the data definitions, data 

invariants, the state space and the input/output relations of its operations. An 

implementation of this specification will result in abstract state machines (since the 

steam boiler specifies more than one state) that capture the specified behaviour of 

the steam boiler. However, in order for the steam boiler implementation to work, 

these abstract state machines must be used in a program that incorporates the 

reactive behaviour of the steam boiler with respect to timing constraints and requests 

for operations to be carried out. For this reason, the code for the functional model of 

the steam boiler has been compiled, but it has not been tested due to the lack of a 

reactive model and the lack of suitable software to simulate the steam boiler.

Page 164



Chapter 7 Evaluation of the Method

Due to the size of the steam boiler specification, only the most relevant information 

about the specification along with a limited selection of examples for translating 

schemas will be given. The solution to the steam boiler specification problem was 

split into three views, in order to make complex systems manageable and to detect 

inconsistencies at an early stage. The three modelling views of the embedded system 

were:-

• The Architectural Model - defining class relations and system structure.

• The Functional Model - defining data structures and I/O value

transformations.

• The Reactive Model - defining object interaction and time control.

The following diagram of the steam boiler defines the variables used in the 

specification:-

steam S

M2 
N2

N, 

M,

Water Level

valve to drain

pump 1

pump 2

pump

pump 4

Page 165



Chapter 7____________________________Evaluation of the Method

W - Maximal steam quantity (litres per second).

C - Capacity of boiler.

M 1?M2 - Extreme water levels.

NbN2 - Normal water levels.

qaj - Lower water level approximation.

qa2 - Higher water level approximation.

va] - Lower approximation of steam value.

va2 - Higher approximation of steam value.

u, - Maximum gradient of steam increase (litre/second/second).
u2 - Maximum gradient of steam decrease (litre/second/second).

The steam boiler problem consists of the steam boiler itself along with physical units 

such as sensors, pumps and monitoring equipment. The various units may each be in 

a subset of the following states :-

Unitstates ::= working broken closed opening open flow no flow

The states flow and noflow are not equivalent to, or included in, open and closed. 

Sensor units for example are in the following states:-

SensorStates = = {working, broken}

A non private package is constructed to house the definition of the various sensor 

states as foliows:-

package states is

type sensorStates is (working,broken); 
type monitorStates is (flow,noflow,broken); 
type pumpStates is (closed,opening,open, broken) 
type valveStates is (open,closed); 
--other types used in specification 

end;

Page 166



Chapter 7 Evaluation of the Method

The units are

• The water sensor

• The steam sensor

• The monitored pumps model

• The valve model

• The physical steam boiler model

• The steam boiler state

Each of these units consists of a state, some definitions and hi some cases operations 

to be performed upon the system state. In this section, a package hierarchy will be 

developed to model each of these physical units. Each state schema and its 

corresponding implementation shall be given, but, for the sake of brevity, only some 

of the definitions and operations for the physical units shall be given.

7.5.2.1 Architectural Model for Steam Boiler Software

The steam boiler state will be the main package used in the system. The Water 

sensor, steam sensor, monitored pumps model, valve model and physical steam 

boiler model will be child packages of the steam boiler state as follows:-

Steam Boiler

Water Sensor Steam Sensor
Monitored 

Pumps 
Model

Valve Model
Physical 

Steam Boiler 
Model

7.5.2.2 The Water Sensor Model

This is modelled by its state and lower and upper approximations of the water level 

value. These approximations are used in case nothing is known about the sensor

Page 167



Chapter 7____________________________Evaluation of the Method

value. During normal operation these two values are equal, representing the unique 

water level value.

WaterSensorModel 

qst: SensorStates

i— WaterSensorlnit

qa,,qa2 :

0 < qaj < qa2 < C

WaterSensorModel'

qst' = working 

qa,'= 0

qa2' = c

There are no operations defined on the WaterSensorModel, but there are a number of 

definitions such as :-

WaterLow = [WaterSensorModel | Mj < qaj < N t A qa2 < N2 ] 

WaterNormal = [WaterSensorModel | (N, < qa[ A qa2 < N2) ]

These definitions are used as statements in other schemas such as :-

WaterNormal => st' = ready A Ps' =Ps A vlv' = vlv

For this reason, they are implemented as functions returning a boolean value. This is 

a very small and intuitive refinement to make. The above statement can then be 

implemented as :-

if WaterNormal then 

st:=ready;

Page 168



Chapter 7 Evaluation of the Method

The private Ada child package specification for the WaterSensorModel schema is as 

follows:-

with states; 
use states;

private 

generic

nl:natural; 
n2:natural; 
ml:natural; 
m2:natural;

-normal higher water level
--normal lower water level
--extreme higher water level
--extreme lower water level

qst :sensorstates;
qal :natural;
qa2 :natural;

(danger too high) 
(danger too low)

package steamb.wsenmod is

function WaterLow return boolean;
function WaterHigh return boolean;
function WaterNormal return boolean;
function WaterTolerable return boolean;
function WaterAboveNormal return boolean;
function WaterBelowNormal return boolean;
function WaterDanger return boolean;
function WaterSensorWorking return boolean;
function WaterSensorBroken return boolean;
function WaterKnown return boolean;

procedure waterSensorlnit;

--lower water level approximation
--higher water level approximation

end;

7.5.2.3 The Steam Sensor Model
The steam sensor is modelled by its state and lower and upper approximations of the

steam value.

_SteamSensorModel_ 

vst: SensorStates 

vals va2 : N

0 < va, < va2 < W

SteamSensormit __ 

SteamSensorModel'

vst' = working 

va,' = 0 = va2'

Page 169



Chapter 7_____________________________Evaluation of the Method 

Again, a number of definitions are given, such as :-

SteamSensorWorking = = [SteamSensorModel | vst = working ]

The private Ada child package specification is given below, note that it must also be 

generic (even though it has no formal generic parameters) because it is the child of a 

generic parent.

with states; 
use states/­ 

private 

generic 

package steamb.ssenmod is

procedure SteamSensorlnit; 
function SteamZero return boolean; 
function SteamSensorWorking return boolean; 
function SteamSensorBroken return boolean;

vst : SensorStates;
Val :natural; — lower approximation of steam value
Va2 :natural; --higher approximation of steam value

end;

7.5.2.4 The Monitored Pump Model

Each pump may be in one of the following states defined by :-

PumpStates = = {closed, opening, open, broken}

The possible state 'closing' has not been included by the specifiers. One can assume 

that it is was not deemed necessary to include this state. An individual pump is 

modelled by its state and an approximation of its capacity.

Page 170



Chapter 7_______________________ Evaluation of the Method

|— PumpModel

pst : PumpStates 

pa,, pa2 : N

pa, < pa2

pst e {closed, opening} => paj = 0 = pa2 

pst = open => pa, = P = pa2

The predicates above define the constraints for the upper and lower pumping 

capacity approximations for a non-defective pump. If the pump is opening or closed, 

the pumping rates are set to zero. If open, the upper and lower approximations are 

set to the actual pumping rate P.

Each pump is controlled by a monitor. The water can be either flowing or not 

flowing, or the monitor may be broken.

MonitorStates - = {flow, noflow, broken}

A monitored pump is a pump together with a monitor, whose main purpose is to 

define the pumps capacity approximations in case the pump is broken.

MonitoredPumpModel.
PumpModel
mst: MonitorStates

pst = broken =>
(mst = flow => pa] = P = pa2 ) A 
(mst = noflow => pa, = 0 = pa2 ) A 
(mst = broken => pa, = 0 A pa2 = P )

pst e {closed, opening} => mst e {noflow, broken}
pst = open =>-'mst e {flow, broken}

Page 171



Chapter 7____________________________Evaluation of the Method

In the cases above, the monitor can either show noflow or flow according to the 

pump state. However, in both cases the monitor can also be broken.

The definition of a monitored pump is lifted to a sequence of monitored pumps. The 

MonitoredPumpsModel schema sets the upper and lower water pumping 

approximations for the whole system by multiplying the approximations for 

individual pumps by the number of pumps in the system. It is defined as follows:-

r— MonitoredPumpsModel

Ps : seqi MonitoredPumpModel 

pa,, pa2 : Z

#Ps = NP

pa, = P * # { i: 1.. NP (Ps i).pa, = P}

pa2 = P * # { i: 1 ..Np | (Ps i).pa2 = P}

A number of conditions exist for monitored pumps, such as :- 

PumpBroken = = [MonitoredPumpsModel; i? : 1 ..NP (Ps i?).pst = broken] 

Pumps Working = = [MonitoredPumpsModel | V i : 1 ..NP - (Ps i).pst * broken]

The three Z schemas PumpModel, MonitoredPumpModel and 

MonitoredPumpsModel could have been implemented as a parent, child and 

grandchild hierarchy, which as a unit could be a descendant of the steam boiler 

package specification. However, due to the simplicity of each specification, they 

were implemented in a single Ada package specification as follows :-

Page 172



Chapter 7___________________________ Evaluation of the Method

with states,sequence_bounded_G,set_bounded_G; 
use states; ~

private 

generic 

package steamb.mpsmod is

procedure monitored_pumps_init;

function PumpBroken (i:positive) return boolean;
function PumpWorking (irpositive) return boolean;
function PumpsWorking return boolean;

procedure PumpsClosed; —the specifiers have not included
procedure PumpsOpening; --schemas for opening and closing of
procedure PumpsOpen; --individual pumps

function PumpControlBroken (i:positive) return boolean; 
function PumpControlWorking (i:positive) return boolean/­ 
function PumpControlsWorking return boolean;

type monitored_pump_model is record
pst:pumpStates;
pal:natural;
pa2:natural;
mst:monitorStates; 

end record;

package set_of_monitored_pumps is new set_bounded_G
(monitored_pump_model,4);

package sequence_of_monitored_pumps is new sequence_bounded_G 
"~ ~ ( 4 , set_of_monitored_p'omps ) ;

use set_of_monitored_pumps,sequence_of_monitored_pumps;

pal: integer;
pa2: integer;
ps : sequence_of_monitored_pumps.sequence;

end;

These are once again coded as functions in the package implementing 

MonitoredPumpsModel. As an example, the code implementing PumpsWorking is 

given as:-

Page 173



Chapter 7____________________________Evaluation of the Method

function PumpsWorking return boolean is

function check_pump_working(p:monitored_pump_model) return
boolean is 

begin
return p.pst/=broken; 

end;

function check_all_pumps_working is new
sequence_of_monitored_pumps.

for_all(check_pump_working) ;

begin
return check_all_pumps_working(ps); 

end;

7.5.2.5 The Valve Model

The state and intial state schemas for this model are very simple.

,_ ValveModel I
^_ Valvelnit.

vlv : ValveStates ValveModel'

vlv' = closed
______________I

The following definitions are given:-

ValveOpen = - [ValveModel | vlv = open ] 

ValveClosed = = [ValveModel | vlv = closed]

The Ada package specification implementing ValveModel is given as:-

Page 174



Chapter 7 Evaluation of the Method

with states; 
use states;

private 

generic 

package steamb.valmod is

procedure Valvelnit;
function ValveOpen return boolean;
function ValveClosed return boolean;

vlv : ValveStates; 

end;

An external piece of software is responsible for controlling the valves. The Z 

specification does not contain this information and this refinement reflects that.

7.5.2.6 The Physical Steam Boiler

The general modes of the physical steam boiler, based upon all the component 

models, can be defined as :-

PhysModes ::= waiting adjusting ready! running stopped

alarm: ~ON OFF

_ Modes

st: PhysModes 

alarm : Alarm

st — stopped 

=> alarm = ON

RunningOl 

Modes

st = running 

alarm = OFF

The private Ada child specification for the physical steam boiler is given as :-

Page 175



Chapter 7____________________________Evaluation of the Method

with states; 
use states;

private 

generic 

package steamb.modes is

procedure modeslnit;
function runningOk return boolean;

st : PhysModes; 
aim : Alarm/­ 

end;

Initially, the physical steam boiler is waiting and the alarm is off

r- Modeslnit 

Modes'

st' = waiting A alarm' = OFF 
______________________I

7.5.2.7 The Steam Boiler State

The state schema of the steam boiler is given as :-

. Steam Boiler ______ 
WaterSensorModel 
SteamSensorModel 
MonitoredPumpsModel 
ValveModel 
Modes

st e {waiting, adjusting, ready} =>
(alarm = OFF <=> NoDefects A SteamZero) 

st = running =>
(alarm = OFF <=> WaterTolerable A TolerableDefects)

(st = running v PumpsOpen ) => ValveClosed
________________I

The steam boiler is initialised by initialising all its parts.

Page 176



Chapter 7____________________________Evaluation of the Method

SteamBoilerlnit = = WaterSensorlnit A SteamSensorlnit A

MonitoredPumpsInit A Valvemit A Modeslnit

The Ada package specification implementing the state schema, SteamBoiler, is 

given below.

with states; 
use states;

generic
c : natural; --capacity of steam boiler (litres) .
ul : natural; --upper and lower steam gradient levels
u2 : natural; --in litres/sec/sec.
T : natural; — sampled time interval sec.
w : natural; --maximal steam quantity (litre/sec).

package steamB is
—the following procedures are all state changing. The states
--are given in the Ada package body. See paragraph below.

procedure level(q : natural); 
procedure steam(v : integer);
procedure pump_control_state(i: natural;st: MonitorStates); 
procedure pump_state(i: natural; st: pumpStates) ; 
procedure lowmark_reached; 
procedure highmark_reached; 
procedure pressure_balanced; 
procedure level_repaired; 
procedure steam_repaired;
procedure pump_control_repaired(i:natural) ; 
procedure pump_repaired(i:natural) ; 
procedure transmission_error; 
procedure stop; 
procedure waiting_timeout; 
procedure ready_timeout; 

end; ______________________

The steam boiler package depends upon its children. However, in Ada95 the Ada 

specification of a parent package cannot depend upon the Ada specification of a 

child package because of circular unit dependancy. As a result, the Ada package 

body of the steam boiler must 'with' the children and instantiate them for its use. In 

most cases, the children do not have generic formal parameters. However, the 

numbers given in the instantiation of the water sensor package (.,senmod), which 

follows, would depend upon properties not defined in the specification. These would 

have to be supplied by a person with knowledge of the specific values for these

Page 177



Chapter 7____________________________Evaluation of the Method

parameters. In this example, these numbers have been picked arbitrarily. The true 
values should appear amongst the systems non functional description.

A section of the Ada package body for steam boiler is as follows :-

with steamb.wsenmod,steamb.mpsmod, 
steamb.valmod ,steamb.modes, 
steamb.ssenmod,states;

use states; 

package body steamb is

package WaterSensorModel is new steamb.wsenmod(4,10,20,5,15); 
use WaterSensorModel;

package new_mpsmod is new steamb.mpsmod; 
use new_mpsmod;

package new_valmod is new steamb.valmod; 
use new_valmod;

package new_modes is new steamb.modes; 
use new_modes;

package new_ssenmod is new steamb.ssenmod; 
use new ssenmod;

procedure steamBoilerlnit is 
begin

WaterSensorlnit;
SteamSensorlnit;
Monitored_Pumps_Init;
valvelnit;
modeslnit; 

end;

-- other steam boiler operations

7.5.2.8 Steam Boiler operations

Data is transmitted in four steps, the water level data, the steam data, the pump 
control data and the pump data. A device failure is recognised by checking whether 
the fresh sensor level values remain inside the anticipated lower and upper 

approximations.

Page 178



Chapter 7____________________________Evaluation of the Method

CalculatedLevelBounds ______________ _____
I 

SteamBoiler

qc 1?qc2 : N

= if vlv = open then 0

else max{0,qa! - (va2 + Uj div 2 * T) * T + paj 

qc2 = min{C,qa2 - (va, - U2 div 2 * T) * T + pa2 }

In the above schema, if the valve is open, the level may drop at an unknown rate so 

the lower approximation is set to zero. The equations give the upper and lower 

water approximation based upon the initial water approximation, the level at which 

steam is created or exhausted and the rate at which water is pumped in.

The Level transmission compares the fresh sensor value with the anticipated bounds 

and decides whether the sensor's state is considered defective and it updates the 

sensor value approximations.

r- LEVEL
ASteamBoiler
E WaterSensorModel; 3 MonitoredPumpsModel; E ValveModel
q?:N

alarm = OFF; st' = st
3 qc l5 qc2 : N | CalculatedLevelBounds

• qst' = if qc, < q? < qc2 then qst else broken
A (qa,', qa2' ) = if qst' = working then (q?,q?) else (qc,,qc2)

____________________________I

The code implementing CalculatedLevelBounds is given as a local procedure to 

LEVEL since it is only used in LEVEL. The schema LEVEL uses two values 

calculated in CalculatedLevelBounds for the water level.

Page 179



Chapter 7____________________________ Evaluation of the Method

procedure Level(q: natural) is

procedure Calculated_Level_Bounds(qcl,qc2 : out natural) is 
begin

if vlv = open then
qcl:=0; 

else
qcl = max (0, qal - (va2 + (ul/2) * T) * T + pal); 

end if;
. qc2 = min (C, qa2 - (val - (u2/2) * T) * T + pa2); 

end;

begin
if aim = off then
Calculated_Level_Bounds(qcl, qc2 ) ; 
if qcl <= q and q <=qc2 then

qst:=qst; 
else

qst:=broken; 
end if;
if qst = working then 

qal:=q; 
qa2:=q; 

else
qal:=qcl; 
qa2:=qc2; 

end if; 
end if; 

end;

The transmission of the steam value is similar to that of the water level, but the 

calculations of the steam bounds are different. The more interesting data 

transmission services are those that update the pump monitor states. The pump 

control states are updated by the following schema.

PUMP_CONTROL_STATE———————————————————
ASteamBoiler
E WaterSensorModel; E SteamSensorModel; E ValveModel
i? : 1..NP; st? : {flow,noflow}

alarm = OFF; st' = st
V j : 1 ..NP • (Ps' j).pst = (Ps j).pst
V j : 1 ..NP j * i? • (Ps' j ).mst - (Ps j).mst
(Ps'i?).mst = if (Psi?).mst = broken

v ((Ps i? ).pst = closed A st? = flow) 
v ((Ps i? ).pst = open A st? = noflow) 

then broken else st?

Page 180



Chapter 7____________________________ Evaluation of the Method

The first universal quantifier specifies that for each monitored pump, in the sequence 

of monitored pumps (Ps), the state of each pump does not change. This does not 

have to be explicitly translated because the code implementing 

PUMP_CONTROL_STATE will not change the pump states. The second universal 

quantifier states that the monitored pump states may only change for the value, i?, 

that is input. Once again, it is not necessary to explicitly implement this quantifier 

because the code implementing the schema will only change the monitored state for 

the pump in question. The code is as foliows:-

procedure pump_control_state(i: natural;st: MonitorStates) is

procedure update_monitor_sensor(p:in out monitored_pump_model) is 
begin

if p.mst = broken or(p.pst = closed and st=flow)or(p.pst = open
and st=noflow) 

then
p.mst:=broken; 

else
p.mst:=st; 

end if; 
end;

procedure update_pump_control is new
sequence_of_monitored_pumps.

update_an_item(update_monitor_sensor);

begin
if aim = off —aim refines alarm
then

update_pump_control(i,ps) ;
end if; 

end; ____________

7.5.2.9 Conclusions

The functional specification for the steam boiler problem was implemented in a 

quick and straightforward manner. The following conclusions can be drawn about 

the manner in which the specification for the steam boiler was written.

Page 181



Chapter 7____________________________Evaluation of the Method

• It separated concerns between the reactive model of the steam boiler and the 

functional model for the steam boiler. Indeed, it would have been difficult to 

specify the reactive model for the steam boiler in Z because many models for 

adding real time to Z have been proposed, but no method has been agreed upon 

and no method has been shown to be superior [Fidg92].

• Although there is no module construct in Z, the specification was written in a 

'modular' style. Each state and its corresponding operation schemas modelled 

one aspect of the steam boiler functionality. The steam boiler could then use 

each of these modules. As a result developing the Ada package hierarchy was 

reasonably straightforward.

• The authors purposefully wrote the specification in a constructive style to aid in 

its implementation. This enabled the specification to be translated as it was and 

without carrying out any other specification work in Z.

This case study shows that specifications, when written in a modular and 

constructive style, can be translated into Ada code using reusable components with 

considerable speed and ease. One barrier to using reusable components to translate Z 

specifications is not necessarily the complexity of operation schemas or the number 

of operations in a specification, but the relationships between the operations and the 

various states. In general a Z specification will not map to an Ada implementation in 

a natural manner [Read92]. A Z specification that is written in a modular style will 

be more easily implemented as each of the modularised states and their respective 

operations can be housed in Ada packages in a straightforward manner. The next 

example is a real world specification for an aircraft illumination application which 

has not been written in a modular style. As a result, the interaction between the Ada 

packages implementing the specification is more complex.

7.5.3 The Airbus A330/340 CIDS cabin Illumination specification

This section presents a Z specification for the Cabin Illumination function (CIL) 

which is a sub application of the Airbus A330/340 Cabin Intercommunication Data 

System (CIDS). The informal requirements and the Z specification for the CIL

Page 182



Chapter 7 Evaluation of the Method

application are given in [Hame95]. Once again, for reasons of economy, only some 
of the details of the specification will be presented here. The CIL application allows 
for separate control of the illumination of the aircraft cabin zones (e.g. first class, 
business class etc.) and entry areas (forward and aft). To change the illumination 
status, the cabin staff uses a panel as shown in the following diagram:-

The intensities for the illumination levels are bright, dim! and dim2 . The commands 
for the cabin zones enable each zone to be illuminated separately according to the 
required illumination level. For example, if the illumination in zone 1 is off, and the 
user presses dim2 , the illumination units will be set to this level throughout the zone. 

This is acknowledged by the indicator unit for button dim2 lighting up in zone 1. The 
illumination for entry areas can be controlled in a similar manner. However, in 
addition to the command from the user, certain sensors can control the illumination 
levels. For example if the cockpit sensor signals "door open", the illumination level 

of the forward entry area is lowered to avoid distracting the cockpit crew.

7.5.3.1 Basic Data Types and Sets

[ADDRESS] -- unique identifier for an illumination unit.

Page 183



Chapter 7 Evaluation of the Method

Location ::-z. Zfcl Z3 fwd aft -zl, z2, z3 are cabin zones

~ fwd, aft are cabin entry areas 
Zones = r={z!,z2,z3 }

EA = ={fwd, aft} -entry areas 

Dim:—dim] dim2 | bright] off] onNL2 —illumination intensities 

Dim0 = = {dim l5 dim2, bright, off} 

Dimi = = (dim], dim2, bright} 

SWITCH ::= passive active 

LGCIU ::= downcompressedj downlocked uplocked -Landing Gear Control &

—Interface Unit 

PRESSURE:-low | high

DOOR:—closed open

FEATURE ::= disabled enabled

An ordering relation for illumination levels is defined as:-

- : DIM0 ~ DIM0

off<dim dim2 
dim2 <dim dim! 
dim, <dim bright

V a,b,c : DIM0 a<dim b A b<dimc • a <dim c

7.5.3.2 Definition of Cabin Assignment Module (CAM) tables.

The Cabin Assignment Module (CAM) tables, which follow, can be viewed as 

global constants that are accessed anywhere in the specification. The set of 

ADDRESS is the set of all DEU-A (Decode/Encoder Unit A) addresses combined

Page 184



Chapter 7____________________________Evaluation of the Method

with their ports to which any illumination unit is attached. The following axiomatic 

descriptions are given and are used through the CIL Z specification.

CAM_CAB: ADDRESS -+>ZONES 
CAM_EA : ADDRESS-** EA 
CAM_NL1 : ADDRESS -^ZONES 
CAM_NL2 : ADDRESS-^ ZONES 
CAM FAP : PLOCATION

CAM_NL1 £ CAM_CAB
dom CAM_CAB n (dom CAMJEA u dom CAM_NL2) = 0
dom CAM EA n dom CAM NL2 = 0

CAM_EADIM : ADDRESS -«• {off, diml, dim2}

dom CAM_EADIM c dom (CAM_EA > {fwd} )

CAM_DECOMP : FEATURE 
CAM_BLOCK : FEATURE 
CAM NLAUTO : FEATURE

The Cam tables and the basic data types and sets have been implemented in an Ada 

package, which must be visible to the other Ada packages implementing the state 

schemas and operation schemas.

with Set_bounded_G,Many_to_one_G; 

package definitions is

type location is (zl,z2,z3,fwd,aft);
type the_zones is (zl,z2,z3);
type the~ea is (fwd,aft);
type feature is (enabled,disabled);

--other types

function "<" (dl,d2 : the_dimo) return the_dimo;

package zone_set is new Set_bounded_G(the_zones, 
use zone_set;

package ea set is new Set_bounded_G(the_ea,2); 
use ea set; __________________

Page 185



Chapter 7_____________________________ Evaluation of the Method

— - other set package instantitions

package CAM_CAB_map is new Many_to_one G
(18,address_set,zone_set);

package CAM_EA_map is new Many_to_one_G(18,address_set, ea_set);

—— other CAM table instantiations

zones : zone_set.set; 
ea : ea_set.set;

—- other set declarations

CAM_CAB : CAM_CAB_map.map; 
CAM_EA : CAM_EA_map.map;

—-- other CAM declarations 

CAM_NLAUTO,CAM_NL1_DIM -.feature

— others of type feature 

end;

7.5.3.3 The System State Schemas

The following schema models the state of zone button indicators:-

ZONEINDstate
zonelnd : ZONES -» DIM0 
nllnd : ZONES -> SWITCH

V z:ZONES.
nllnd(z) = active =*• (zonelnd(z) = off v CAM_NLAUTO = disabled)

The next schema models the state of entry area button indicators 

_ EAINDstate ____________( 

ealnd : EA -» DIM0

Page 186



Chapter 7______ _____________________Evaluation of the Method

Schema MAININDstate models the state of the MAIN button indicator.

MAININDstate
ZONEINDstatea 
EAINDstate 
mainlnd : SWITCH

mainlnd = passive <=>
ran nllnd = {passive} A ran zonelnd = {off} A ran ealnd —{off}

_________________________ ___________________I

The collection of all illumination units and their corresponding illumination levels is 

modelled as a mapping between the set ADDRESS and the set DIM, as foliows:-

r- ILLstate
ill : ADDRESS -** DIM

dom ill = dom CAM_CAB u dom CAM_EA u dom CAM_NL2 
V a : dom ill. (ill (a) - onNL2 =^> a G dom CAM_NL2)

Since the cabin illumination specification is not written in a modular style the 

operation schemas must be examined to identify which operations must be placed in 

which package, and how these packages are to be related. Many of the operations 

throughout the specification make use of more than one state. Operations are also 

made total by schema calculus, where each of the suboperations making up the total 

operation also operate over different states. An example, and its implementation is 

given in section 7.5.3.5.

The following package hierarchy was used to implement the system:-

Page 187



Chapter 7 Evaluation of the Method

ZONE

Zonelnd : ZONES^DIM0 
nllnd : ZONES -» SWITCH

ZONE.EAIND

ealnd : EA —» DIM0 
MAININD : SWITCH

ZONE.ILLSTATE

ILL : ADDRESS -> DIM

In the above hierarchy, the packages ZONE.EAIND and ZONE.ILLSTATE are 
visible to the package ZONE, as they are its children. However, the Ada package 
body ZONE also depends upon the child packages ZONE.EAIND and 
ZONE.ILLSTATE for some of its operations. In the Ada package body ZONE, it is 
therefore necessary to have a with clause for the two children. The children must 
also have visibility of each other, because for example, an operation in 
ZONE.EAIND changes the state of ZONE.ILLSTATE. The package hierarchy had 
to be implemented in this way because many operations defined in each package 
used more than one state. The Z specification was constructed in such a manner that 
a mapping between the Z specification structure and the Ada implementation was 

not straightforward.

7.5.3.4 The Ada Package Specifications Implementing the State Schemas

The Ada package specification for ZONE is :-

Page 188



Chapter 7 Evaluation of the Method

with set_bounded_G,many_to_one_G,definitions; 
use definitions/­ 

package ZONE is 

procedure zoneop(z:in the_zones; d: in the dimo);

private
package zonelnd_map is new many_to_one_G(3,zone_set,dimo_set); 
use zonelnd_map; --the three zones are zl,z2,z3

zonelnd:zonelnd_map.map;

package nllnd_map is new many_to_one_G(3,zone_set,switch_set); 
use nllnd_map;

nllnd : nllnd_map. map; 
end;

The private Ada child package specification for ZONE.EAIND is :-

with definitions,many_to_one_G; 
use definitions;

private

package ZONE.EAIND is

procedure EAop(ea:the_ea; dim:the_dimo);

package EAInd_map is new many_to_one_G(2,ea_set, dino_set) ; 
use EAInd_map7 —there are f.vc er.rry areas 
EAInd : eaind_map.map; 

end;

The child package ZONE.ILLSTATE, which follows, must have visiblity of its 

sibling ZONE.EAIND. The package body of ZONE.ILLSTATE contains the 'with' 

clause for ZONE.EAIND.

Page 189



Chapter 7___________________________ Evaluation of the Method

with definitions, many__to_one_G; 
use definitions;

private

package ZONE.ILLSTATE is

procedure NLop (n: in the_zones);

package ill_map is new many_to_one_G(18,address_set, dim_set); 
use ill_map;

ill : ill_map.map; 
mainlnd:switch;

end;

7.5.3.5 An Operation Schema Example - The Night Light Operation

If the night light button indicator of zone n? is passive, it will be turned on if the 

night light autofunction is disabled or the zone illumination has previously been 

turned off. If the night light autofunction is enabled and the illumination is active, 

pressing a night light button will have no effect, but when switching off the zone 

illumination the night lights will automatically be turned on. The following schemes 

describe the operation of the night light buttons:-

r NLINDop ———— 
A ZONEINDstate 
E EAINDstate 
n? : ZONES

nllnd (n?) = passive => nllnd' =
if CAM_NLAUTO = disabled v zonelnd(n?) = off 
then nllnd © {n? •-» active } else nllnd

nllnd (n?) = active => nllnd' = nllnd © {n? •-> passive}
zonelnd' = zonelnd

Page 190



Chapter 7_______________________ Evaluation of the Method

j- NLILop____ 
ZONEINDstate 
A ILLstate 
n? : ZONES

nllnd (n?) = passive => ill' = 
ifzonelnd(n?) = off 
then ill e {x:dom (CAM_NL2 > {n?}) - x •-» onNL2}

© {x:dom (CAM_NL1 > {n?}) • x •-» CAM_NL1_DIM } 
else ill 

nllnd (n?) = active =>ill'
ifzonelnd(n?) = off
then ill © {xrdom (CAMNL2 > {n?}) . x •-» off} 

© {x:dom (CAMNL1 > {n?}). x •-» off}
else ill

—————————__________________________________I

The total operation for the night light is :- 

NLop = NLILLop A NLINDop

7.5.3.6 Implementation of Night Light Operation

The schema NLop was expanded in full. In NLILLop there are four functional 

override statements that override the ILL state according to a set comprehension 

term that creates a set of address and intensity pairs. It is necessary to create four 

generic packages instances, one for each of these statements. The procedures used 

to instantiate the iterator procedure, such as set_CAM_NL2_to_onNi2, set each 

address to the desired illumination intensity. The resulting functions are then used to 

override the ill state accordingly.

procedure NLop (n: the_zones) is

intensity : the_dimo; 
switch is : switch;

temp_CAM_NL2: CAM_NL2_raap.map; — temporary Variables to store 
temp~CAM~NLl: CAM_NLl_map.map; — results of range restrict

temp_ILL_onN12 :ZONE.ILLstate.Ill_map.map;--temporary ILL mappings 
temp~ILL~NLl_DIM:ZONE.ILLstate.Ill_map.map;--used in the functional 
terap~ILL~NLl~ :ZONE.ILLstate.Ill_map.map;--override statements

Page 191



Chapter 7______________________ Evaluation of the Method

temp_ILL_NL2 :ZONE.ILLstate.Ill_map.map;— of NLop

- the following procedures are used to set the temporary ILL
-- mappings to the correct illumination levels. Each procedure is
-- then used to instantiate the iterator to create a complete
-- temporary map which is then used in the functional override
-- statements of NLop.

procedure set_CAM_NL2_to_onN12(x:positive;z: the_zones;
continue:out boolean) is 

begin
bind(x,onNL2,temp_ill_onN12); 
continue:=true; 

end;

procedure set_CAM_NLl_to_CAM_NLl_DIM(x:positive;z: the_zones;
continue rout boolean) is 

begin
bind(x,CAM_NL1_DIM,temp_ILL_NLl_dim);
continue:=true; 

end;

procedure set_CAM_NL2_to_off(x:positive;z: the_zones;
continue:out boolean) is 

begin
bind(x,off,temp_ILL_NL2) ;
continue:=true; 

end;

procedure set_CAM_NLl_to_off(x:positive;z: the_zones;
continue:out boolean) is 

begin
bind(x,off,temp_ILL_NLl) ;
continue:=true; 

end;

-- Four iterator procedures are used because there are four
-- statements in NLop of the form

@{ x: dom ( CAM_NL1 > {n?} ) • x >-> onNL2} .
-- The iterator creates the temporary set of pairs used in the
-- override operation. The iterators are instantiated next.

procedure set_CAM_NL2 is new defin.CAM_NL2_map.
iterate(set_CAM_NL2_to_onN12);

procedure set CAM NL1 is new defin.CAM_NLl_map.
~ iterate (set_CAM_NLl_to_CA.M_NLl_DIM) ;

procedure set_CAM_NL2_off is new defin.CAM_NL2_map.
iterate(set_CAM_NL2_to_off);

procedure set_CAM_NLl_off is new defin.CAM_NLl_map.
~~ iterate (set CAM NL1 to off);

Page 192



Chapter 7____________________________Evaluation of the Method

begin — main body of NLop operation

create_map(temp_ILL_onN12) ; 
create_map(temp_ILL_NLl_DIM) ; 
create_map(temp_ILL_NLl) ; 
create_map(temp_ILL_NL2);

defin.CAM_NL2_map.range_restrict --store results of range
(n, CAM_NL2,temp_CAM_NL2); --restrict in temporary map

defin.CAM_NLl_map.range_restrict 
(n,CAM_NL1,temp_CAM_NLl) ;

range_of (n,switch_is,nllnd) ;

if switch_is = passive -- ( nllnd (n?)—passive ) 
then

ZONE.zonelnd_map.range_of (n,intensity,zonelnd); 
if CAM_NLAUTO = disabled or intensity=off 
then

function_override{n,active, nllnd}; 
end if;
if intensity =off 
then

set_CAM_NL2(temp_CAM_NL2); --create temporary ILL maps
set~CAM~NLl(temp~CAM_NLl);
function_override(ill,temp_ILL_onNL2 ); -- override ill
function_override(ill,temp_ILL_NLl_DIM); --state 

end if; 
else -- ( nllndfn?) = active )

function_override(n,passive, nllnd);
if intensity=off
then

set_CAM_NL2_off(temp_CAM_NL2); —create temporary 111 
set_CAM_NLl_off(temp_CAM_NL1); --maps 
function_override(ill,temp_ILL_NL2); —override ill 
function_override(ill,temp_ILL_NLl) ; —sta te 

end if; 
end if; 

end; 
end;

The other operations in the aircraft cabin illumination specification are very similar 

in their construction to that of the night light operation, and can be implemented in 

the same manner.

Page 193



Chapter 7____________________________Evaluation of the Method

7.5.3.7 Conclusions

The following conclusions can be drawn from the implementation of the Cabin 

Illumination application specification.

• The specification was constructive which enabled the specification to be 

implemented as it was, with much speed.

• The specification was not written in a modular style. The structure of the Z 

specification did not map to an implementation is a straightforward manner, 

although using child packages enabled each operation to have the desired 

visibility of the correct state schemas.

• The implementation of the specification cannot be used as the final system, 

because at the level of abstraction for this specification, Hamer and Peleska state 

that the difference between Flight Attendant Panels (FAP), the Multi Purpose
*

Bus (MPB) and the Additional Attendant Panels (AAP) was irrelevant, since the 

effect of pressing a button only depends upon the button's function, not on the 

panel where the button was pressed. This statement leads one to believe that a 

more concrete specification would take this difference into account and therefore 

make it relevant. This shows that, since the translation of the specification into 

Ada code is direct, the specification must be written in such a way as to fully 

account for the functionality of the system.

• If the distinction between the FAP, MPB and AAP was made relevant in the 

specification, then the operations implemented in this section, could be used in 

the final implementation if the performance is satisfactory. Although, the 

operations may have been programmed by hand in a more efficient manner, due 

to rationalising code, the small size of the functions means that the performance 

may be satisfactory. This can be evaluated by checking the operation of the 

system against the non functional requirements (for example the time delay 

between pressing the night light illumination button on the control panel and the 

night lights actually being illuminated).

• The system was a real time system, but these aspects were contained in an 

operating system layer which was outside the scope of the specification. This

Page 194



Chapter 7_______________________ Evaluation of the Method

operating system layer is responsible for calling the operations implemented 

from the CIL Z specification.

7.6 Summary of Conclusions

A Z specification is not concerned with design details, but, when translation is 

direct, the Z specification is forced to be viewed as a design document. Hence, the 

performance of the Ada code depends on how well, in terms of efficiency, the Z 

specification is written. In order to translate the Z specification into Ada code using 

the reusable components, it is necessary to have a constructive specification. This is 

true of all methods in the literature that directly translate a specification. Other 

methods that refine the specification into a more concrete version based upon 

structures found in a programming language, must also add detail in order to arrive 

at executable code. It is widely recognised that a hierarchy of specifications is 

required from an initial abstract specification to one that contains successively more 

implementation based decisions. In [Grav91], the limits of executing a specification 

presented in an implicit (or non-construction) manner are pointed out. Gravel and 

Henderson [Grav91] show methods to improve the executability of specifications 

and they highlight the advantages of having an implicit specification to capture 

invariant properties of the system and a constructive one to explain the operation of 

the system. This work is of value with regards to the method described in this thesis 

as refinement using resusable software components requires a constructive 

specification.

The performance of the operations from the reusable components such as inserting, 

deleting and testing for membership can be constructed to achieve the same 

performance as equivalent manually constructed code using the same data structure. 

The difference in efficiency between the code produced manually and the code from 

the reusable components mostly results from the way in which the Z specification 

has been constructed. The direct implementation is forced to use the data model of 

the original abstract state schema, which may well be changed when moving to a 

more concrete design, as the library example of section 7.3 shows. Obviously,

Page 195



Chapter 7__________________________ Evaluation of the Method

operations on the new concrete state schema will be different from the abstract 

versions and will take advantage of a more efficiently represented state space. If the 

performance of the code obtained from implementing the original specification is 

not efficient enough, and cannot be tuned sufficiently, then it must classed as a 

prototype, since it cannot be used as the final implementation. However, as a 

prototype, it still has the advantage of enabling the customer and the developer to 

have confidence that the systems requirements have been met. A concrete version 

utilising a more efficient state model can be constructed, which can also be 

translated using the reusable components, because the concrete design is still written 

using Z

In order for this method to scale up to industrial sized specifications, a shift in the 

way Z specifications are written is required. At present, the method will not scale up 

to an industrial sized specification easily because specifications are not being written 

in a modular style. However, it has been stated [McDe89 foreword] that one of the 

main technical barriers to the widespread use of formal methods in industry is the 

lack of a adequate techniques for modularising specifications. As a result, methods 

have been proposed to aid in the reuse of Z specifications [Lano92] and to add 

modularity to Z [Mitc94]. Read [Read92] has taken a different approach and has 

proposed a method of writing Z specifications that model the way in which Ada 

packages are constructed. This enables a Z specification to map to an equivalent Ada 

package hierarchy and facilitates reuse of both the Ada packages and the Z 

specification. Writing modular specifications will not only benefit this method, since 

a concrete design derived from an original and unmodularised specification may also 

be difficult to implement. The same decisions as to which concrete states and 

operations will be modelled in which package will still exist if the concrete 

specification is not written in a modular style.

All three, languages that have been compared are Turing complete and hence, each 

language can be used as the target language. The main disadvantage in C++ is that 

its generic facilities are not as powerful those found in Ada95. The code may be

Page 196



Chapter 7 _____________________Evaluation of the Method

All three languages that have been compared are Turing complete and hence, each 

language can be used as the target language. The main disadvantage in C++ is that 

its generic facilities are not as powerful those found in Ada95. The code may be 

developed in Haskell with more ease, but performance, portability, interfacing and 

its lack of use in industry are major hurdles.

There is a two edged sword between using Z in a very abstract way for specification 

and the work required to construct an implementation from a specification written in 

this manner. A very abstract specification will result in much work being carried out 

in order to arrive at an implementation. A more concrete and constructive Z 

specification will reduce a specifiers freedom and will introduce design decisions 

into the specfication document. However, this extra work in the Z domain results in 

an easier path to executable code.

Page 197



Chapter 8 Advantages of Ada95 over Ada83

Chapter 8 

Advantages ofAda95 Over Ada83

Page 198



Chapter 8 Advantages of Ada95 over Ada83

8.1 Introduction

Initially, Ada83 was used as the target language, but, with the advent of Ada95, the 

reusable components were converted to use the new version of Ada. This chapter 

discusses the advantages that Ada95 has over Ada83 with regards to the refinement 

of Z specifications using reusable components.

8.2 Improvements in the Generic Paradigm

The basic type in Z is the set. Other types such as functions, relations and sequences 

will depend on the type set when they are implemented as reusable components. 

This is because some operations, such domain or range restrict can require a set of 

elements as a parameter to the procedure. In these cases a set and the necessary 

operations to create a set, insert an item and so forth, must be visible and compatible 

to the package containing the operation. In Ada83, this can be achieved by importing 

the set and the necessary operations through the generic part of the client package. 

The following code segment, from a one to one package specification, highlights the 

number of generic parameters and formal subprograms required to construct a 

function package whilst making operations involving sets available. Two sets are 

required for the domain and range elements, and the necessary operations include 

those to output a set, test for membership of an item in a set, and ordering functions 

on the domain and range items in order to aid efficiency. In these examples, the type 

'Rainge' has been deliberately mispellt because Range is a reserved word in Ada.

with Set_bounded_G;

generic
Msize:In Positive; 
Type Domain Is Private; 
Type Rainge Is Private; 
Type Domain_Set Is Private/­ 
Type Range_Set Is Private;
With Function Gt_Domain (Dl,D2:Domain) Return Boolean; 
With Function Gt_Range (Rl,R2:Rainge) Return Boolean; 
With Function Lt_Range (Rl,R2:Rainge) Return Boolean; 
With Procedure Insert_Range (R:In Rainge;Rs:In Out Range_Set); 
With Procedure Insert_Domain (D:In Domain;Ds:In Out Domain_Set); 
With Procedure Create_Range_Set (Rs:Out Range_Set); 
With Procedure Create_Domain_Set (Ds: Out Domain_Set);

Page 199



Chapter 8 Advantages of Ada95 over Ada83

With Function Is_A_Domain_Member(D :Domain;Ds:Domain_Set)Return
Boolean; 

With Function Is_A_Range_member (R : Rainge;Rs:Range_Set) Return
Boolean;

Package One to one G is

A clients program that uses this package must provide all the types and formal 

subprograms in order to instantiate the package. The following excerpt is taken from 

the Ada specification of a library implementation. It involves a one to one function, 

Written_by, that relates titles of books to the author(s) that wrote them.

Written_by is defined by :- Written_by : Title >-*-» F Author

The domain item for the function is the type Title, whilst the range item for the 

function is a set of authors (since a number of authors may have written the book) . 

A set of titles and a set of author sets are required for the domain and range types.

package title_set_pack is new set_boundeci_G (Title, ---); 
package author_set_pack is new set_boundeci_G (Author, ---); 
Package set_of_author_sets is new set_bounded_G(Author_set_pack.set,

In order to instantiate the Written_By function all the generic formal parameters for 

the one to one function package must be matched up with actual parameters as 

follows:-
Package Written_By_Function Is New One_to_one_G (Msize=>10,

Domain => Title,
Rainge => Author_Set_Pack.Set,
Domain_Set => Title_Set_Pack.Set,
Range_Set => Set_Of_Author_Sets.Set,
Gt_Domain => Gt_Title,
Gt_Range => Gt_Author_Set,
Lt~Range => Lt_Author_Set,
Ins~ert Range => Set_Of_Author_Sets . Insert,
Insert~Domain => Title_Set_Pack.Insert,
Create_Range_Set => Set_Of_Author_Sets.Create_Set,
CreateJDomain_Set => Title_Set_Pack.Create_Set,
Is_A_Domain_Member => Title_Set_Pack.Is_A_Member,
Is_A_Range_Memrjer => Set_Of_Author_Sets . Is_A_Member) ;

Written_By : Written_By_Function.Map;

Page 200



Chapter 8 Advantages of Ada95 over Ada83

The introduction of Ada95 greatly simplifies the construction of packages that are 

themselves based upon other generic packages. Ada95 allows a complete package to 

be imported through the generic part of a client package. This makes all the 

operations in the package available to the client package. The code segment below is 

an extract from the Ada95 version of the one to one function package.

with set_bounded_G;

generic
Msize : in positive/­ 
with package domain_set_jpackage is new set_bounded_G (<>) ; 
with package range_set_package is new set_bounded_G (<>);
with function ">"(dl,d2:domain_set_package.item_type) return

boolean; 
with function ">"(rl,r2:range_set_package.item_type) return

boolean;

The package domain_set_pack is an instance of the set_bounded_G package. The 

box notation, (o), is used to say that no parameters are used in the instantiation at 

this stage. This allows the types such as domain_set_pack. item_type, in the 

ordering function above, to be used before any actual parameters are given. The 

actual parameters will be given in the private part of the specification, when the state 

space is created. It has already been stated that reusable components such as the 

many to one function package use operations that involve sets as parameters. These 

operations do not have to be explicitly stated because they are contained in the 

package instances domain_set_jpack and range_set_pack.

The one to one function modelling Written_by can be instantiated as follows.

package title_set_pack is new set_bounded_G(Title, —-); 
package Author_set_pack is new set_bounded_G(Author, ---); 
Package Set of~author sets is new set bounded_G(Author_set_pack.set,

——

Package Written By Function Is New One_to_one_G (
~ msize,Title_Set_Pac:<,

SetOfAuthor_Sets_Pack,

Page 201



Chapter 8 Advantages of Ada95 over Ada83

It can be seen quite clearly, that the rules in Ada95 for including packages as generic 

parameters are a vast improvement with regards to the length and complexity of 

generic parameter lists and their respective instantiation. The two examples above 

show how generic packages can be constructed from other generic packages using 

Ada83 and Ada95. The improvement of Ada95 is an extra bonus for this method, 

because each of the reusable components that model the types found in Z, with the 

exception of the set, use a set of items as a parameter in some of their operations. 

Some Z specifications contain many functions, relations and sequences, which when 

implemented in Ada83 made for very long and complex package specifications. The 

library implementation mentioned earlier involved 9 instantiated set packages and 6 

instantiated function packages. The instantiation of the reusable components 

required by the Z specification for refinement purposes is much easier using Ada95, 

it leads to less complex Ada specifications and reduces the time taken for the 

refinement of the state schema.

8.3 Iterators

An iterator is an operation, or a collection of operations, that can be exported from a 

component and used to traverse the structure of the component. The use of an 

iterator in an abstract data type allows a user to access the underlying structure of an 

object. Booch [Booc87] discusses the use of two types of iterator, namely the active 

iterator and the passive iterator, in detail along with their advantages and 

disadvantages. For the purposes of this discussion some explanation of the two types 

will be given.

8.3.1 The Active Iterator

The active iterator exports the iterator as a type along with operations that act as 

constructors and selectors. An active iterator is very versatile, but it leaves the 

abstraction open to abuse. The active iterator as modelled by Booch is given as:-

Page 202



Chapter 8 Advantages of Ada95 over Ada83

type iterator is limited private/­ 
procedure initialise (the_iterator : in out iterator;

with_the_structure : in structure);
procedure get_next(the_iterator : in out iterator); 
function value_of (the_iterator : in iterator) return item; 
function is_done (the_iterator : in iterator) return

boolean;

8.3.2 The Passive Iterator

The passive iterator has been chosen for use in the software components modelling 
the types found in Z because it is safer and it is easier for a developer to use. The 
passive iterator in the software components is modelled as :-

generic

with procedure process(I : in item_type;

continue : out boolean); 
procedure iterate (s : in structure_type);

This choice of iterator has its drawbacks when using Ada83 to build utility 
components that iterate over their constituent underlying components. An example is 
the function package that was built upon a sets package that must iterate through the 
underlying set for some operations (see section 4.4). Another example is the 
construction of basic operations in Z such as distributed union (see section 4.5) and 
distributed intersection which involve nested iterators from different packages. The 
problem is that the passive iterator is generic and Ada83 does not allow generic units 
to be used as generic formal parameters. The active iterator could be used by 
importing the iterator type and its operations but the ease of use and safety would be 

lost.

The distributed union procedure discussed above is able to use the passive iterator 
because Ada95 allows a complete package to be used as a generic parameter and that 
includes the packages own generic units. It is therefore possible to use nested 
generic iterators from imported generic packages. The ability to use the passive

Page 203



Chapter 8 Advantages of Ada95 over Ada83

iterator is retained and the solution is more elegant than using an active iterator and 

importing all its operations.

8.4 The Use of Child Packages

This project relies on the extensive use of reusable software components to 

implement Z specifications. However, many specifications themselves rely on reuse 

and are written in a style where they may reuse other specifications through 

promotion. The implementation of these specifications could not be done in Ada83 

in an efficient or safe manner. In Ada83 the developer had to chose between making 

the private types non private and allowing client packages visibility which destroyed 

the abstraction; or implementing the subsystems of the specification in an 

excessively large package. In the second case, if other operations or subsystems are 

to be added to the system then it must obviously be recompiled, but, all the other 

client packages will need recompilation even if the new additions do not affect them.

The use of child packages allows the private part of a parent package to be visible to 

the child package. In this way the child package can extend the parent package, 

without a loss of abstraction or safety and without disrupting any other client 

packages. This aspect of Ada95 is crucial to the refinement of Z specifications which 

have schema inclusion. It allows specifications which contain subsystems that share 

private types to be implemented in an efficient and natural way. The use of child 

packages will also have an impact on the construction of reusable components. 

Groups of similar operations can be collected in child packages for a particular type 

and data model. The use of child packages will enable these cases to be implemented 

with efficiency without providing operations to cover every instance in one huge 

package. However, there is a disadvantage, and this lies in the management of the 

extra packages due to the added complexity involved with using a hierarchy of 

packages. The problem will be exasperated especially when there are many software 

components using different data models for each of the basic types in Z, which will 

themselves consist of a hierarchy of packages.

Page 204



Chapter 8 Advantages of Ada95 over Ada83

8.4.1 Use of Child Packages to Implement State Invariants

It has been suggested that this method of refinement will only make a good rapid 

prototyping method because of the amount of copying of information that would go 

on because of the need to implement the state invariant [Rann94]. To avoid the state 

invariant being broken when an operation that changes the state is carried out, the 

state would be copied to a temporary state and the operation would be applied to the 

temporary state. The temporary state would then be checked against the state 

invariant and if it obeyed the state invariant then the temporary state would be 

copied to the real state. If the temporary state did not obey the state invariant, then 

an error would be raised.

It was correctly stated that this method would make the final implementation much 

less efficient because of all the copying of information to and from temporary states 

and the testing of the state invariant. However, if the specification is refined into a 

correct implementation of an abstract data type or abstract state machine, then all 

possible inputs to each operation will have a well defined output. Therefore, it is 

only necessary to implement the state invariant for testing purposes to ensure all 

usage of the package produces well defined output. Implementing the state invariant 

may well highlight preconditions that are implicitly stated in the state schema but 

left out of the operation schema. In order to use reusable components to translate Z 

specifications preconditions must be explicitly stated.

The method used in this project implements each operation schema in an Ada 

package without testing the state invariant before or after an operation is carried out. 

However, the state invariant can be refined in a separate child package so that it can 

be applied to each operation in the Ada package implementing the specification via a 

separate test program. The state invariant for the birthday book specification will be 

used as an example:-

Page 205



Chapter 8 Advantages of Ada95 over Ada83

— BirthdayBook——————————————— 
known : P NAME 
birthday : NAME -»• DATE 
cardSent: YEAR<-» NAME -*• DATE 
cardReceived : NAME <-> YEAR

known = dom birthday
V y : YEAR* dom (cardSent y ) c known

The following Ada specification is a child of the package B_book (implementing 

BirthdayBook. It contains the implementation of the state invariant for the birthday 

book specification (the refinement of which was discussed at section 5.3.1). It 

contains one function that applies the state invariant and returns true if it is valid. 

The state is not an input parameter to the function is_vaiid_state because the 

package birthday book is an implementation of an abstract state machine. All types 

and operations declared in the Ada specification B_book are visible to this child 

package. The child package must be generic, although no extra parameters are given, 

because Ada requires that a child package must be made generic if its parent is a 

generic package.

generic

package b_book.test is

function is_valid_state return boolean; 

end; ___

The state invariant says that the set of people for which cards were sent (for every 

year) must be contained within the set of people known to the birthday book. It can 

be implemented by providing the necessary generic formal subprograms to 

instantiate the for_all function. The method of refining a universal quantifier has 

already been discussed, so only the code will be given, without the refinement 

details. In the code below, the dot notation in Ada has been used to identify which 

packages the operations are used from. It is not necessary to include tests to model 

the declarative part of the state schema to ensure that the types remain the same

Page 206



Chapter 8 Advantages of Ada95 over Ada83

because each type is derived from an abstract data type and so will always remain 

the same.

package body b_book.test is

function is_valid_state return boolean is 

years : year_set_pack.set;

function for_all_predicate(y:year) return boolean is

name_to_date: birthday_map.map; 
names,known : name_set_pack.set;

begin
b_book.birthday_map.whole_domain(known, birthday); 
b_book.cardsent_map.range_of(y,name_to_date, cardsent); 
b_book.birthday_map.whole_domain(names,name_to_date);

return b_book.name_set_pack.is_subset(known,names); 
end;

function for_all_years is new
b_book.year_set_pack.for_all(for_all_predicate)

begin
b_book.cardsent_map.whole_domain(years,cardsent);
return for_all_years(years); 

end is_valid_state;

end;

This child package can now been used in a test program operating on the birthday 

book implementation. The instantiation of the package b_book and the instantiation 

of the child package must be given.

with b_book.test ----

package b_book_test_menu is new

b_book(size,a_name,date,year,out_name,out_date, out_year, 
~ gt_name,gt_date,gt_year,match_date) ;

use b_book_test_menu;

package State_invariant_test is new b_book_test_menu.test;

use state__invariant_test;_______________________________

Page 207



Chapter 8 Advantages of Ada95 over Ada83

A simple procedure can be used within the test program to test the state invariant.

procedure test_state is 
begin

if is_valid_state 
then

Put_line("state invariant ok "); 
else

put_line("error in state invariant"); 
end if; 

end test state;

This can then be applied to check that the state is valid before and after operations 
from the birthday book are applied.

test_state; 
Add_Birthday(P, D) 
test state;

This method of utilising the state invariants of the state schema, in order to test the 
operation schemas, has the advantages that the code implementing the invariants will 
not appear in the delivered software. The implementation of the state invariant only 
appears in a child package which does not have to be used by or supplied to the 
client. It is simply a tool that can be bolted onto the software as extra ammunition in 

the search for errors.

Page 208



Chapter 9

Conclusions And Future Work

Page 209



9.1 Introduction

Previous attempts at creating executable code from formal specifications have 

concentrated mainly on two methods. In the first method, the abstract mathematics of 

the specification are refined into less abstract structures within the formal language that 

can be mapped to the target language. This involves creating a new specification and 

proving that it is equivalent to the original abstract specification. For even medium 

sized specifications this is an extremely difficult task. The second method implements 

the specification using functional programming languages that share certain structures 

and operations with Z to create an animation or prototype. It is easier to implement 

specifications in functional languages as opposed to imperative languages because they 

are based upon sets and predicate calculus. However, pure functional languages do not 

have a concept of state and there are aspects of Z that are not easily implemented with a 

functional language such as input and output [Good95a]. Functional languages are also 

widely regarded as being slower than imperative languages and they do not interface 

well with other languages, which would make integration into an existing system 

difficult.

A method of turning Z specifications into executable code using a series of available 

reusable components, written in Ada95, that model the operations found in Z has been 

developed and tested using Z specifications found in the literature and those contained 

in internal technical reports [Hayw96].

9.2 Quality of the Reusable Components and the Code 
Obtained.

The software components have been constructed using modern software engineering 

principles such as information hiding, modularity and genericity, that have been shown 

to improve quality [Fent91]. Each of the operations in the software components model 

a single operation in Z which is well understood and documented [Spiv89]. The 

implementation will be extremely similar to the Z specification and a code reader will 

not see any underlying details in the body of the implementation and will have no idea 

what data structures have been utilised. The great similarity between the specification

Page 210



and the resulting code helps the developer to see where any errors that may have crept 

into the implementation are located, simply by reading the code. The specifications that 

have been used throughout this thesis have been implemented as either Abstract Data 

Types or Abstract State Machines. Therefore, each of the operations that are available 

to them have been written in such a way that there is a well defined response for all 

input. This safety is due to the way in which Z models its predicates and is fully 

captured by the use of Ada.

9.3 Viability of the Method

This research project has shown that the method of refining formal specifications using 

reusable software is potentially viable. It does produce code in the form of abstract state 

machines which can be used in other software and may be used in the final system. This 

method has enriched an existing imperative language with precisely those types and 

operations that are found in Z. This enables the Z operations to be translated into their 

corresponding Ada operations.

Many components can be written to model the types and operations in the Z language 

using different underlying data structures to allow a whole range of different 

implementations to be created according to the client's requirements for speed and 

method of data storage etc. The cost involved in using this method is high to begin with 

in terms of writing many reusable components and in testing them, but this initial cost 

is continually mitigated as it is spread over all other implementations which follow. 

This is true with all methods that make use of reusable software. The advantage here is 

that Z does not grow, so the task of producing components is finite (within the limits of 

performance etc).

9.4 Advantages in Rapid Prototyping Terms.

Many papers have been written that animate or prototype a subsection of a specification 

to test that the specification does meet the customer's requirements and to allow the 

customer and the developer to get a 'feel' for the final product. The work that is put into 

creating a prototype of the system is deemed worthwhile even when the resulting

Page 211



implementation is thrown away. The code created using the reusable components 

presented in this thesis can be used as an animation or a prototype. However, if the 

performance of the code meets the systems non-functional requirements then it can also 

be used in the final software system. A prototype of the system can be quickly 

implemented, if desired, using the simpler reusable software components to give a 

customer a workable system to test. For example, components based upon internal data 

structures may be used in the prototype. However, if file structures are to be used for 

the real system, then the only major changes that must be made are to the Ada 

specifications that implement the Z specification state schemas and the software that 

uses the implementation. These changes will be due to the different reusable 

components that are used and their resulting instantiation. The actual code in the Ada 

package body that implements the operation schemas, contained within the Z 

specification, will be almost identical. This is because the same operations are available 

for each type regardless of the underlying model. The differences in the Ada body if 

using components based upon file structures, for example, will be due to including 

operations such as opening and closing files in the Ada bodies of the translated 

operation schemas. Any changes to the modelling of the main types can be accounted 

for by simply instantiating the implementation over the new models.

9.5 Efficiency of the Obtained Code.

The reusable components can be constructed using very efficient underlying data 

models with efficient operations. However, the main barrier to the efficiency of the 

obtained code is that the Z specification is forced to be used as the design. This was not 

the original intention of the designers of Z, since Z is unconcerned about 

implementation issues. An inefficient architectural model of the state space will result 

in an inefficient implementation using reusable components, whilst translating a well 

'designed' state space will result in a more efficient Ada implementation. However, 

even if the state model is based upon an efficient state representation, the code obtained 

from the reusable components still cannot match the code obtained from a manually 

programmed version. This is because a manually developed program has opportunities 

to rationalise code in a way that using discrete operations from a reusable component 

cannot. However, if the code obtained does not match that of manually developed

Page 212



software, it does not mean that it cannot be used in the final system. The code may still 

meet the non-functional requirements of the system.

In section 7.3.5 it was stated that it is not possible to predict the space and time 

complexities of a system until it is built and tested. It is then possible to identify system 

bottlenecks and tune them. It is possible to improve the efficiency of the Ada 

implementation by using a component with an underlying data structure that is more 

suited to the application domain or by rewriting an inefficient Z statement in a more 

efficient manner. Rewriting Z statements has also been carried out in other forms of 

refinement to make the proofs easier [MacD89]. However, these improvements may not 

be sufficient to overcome the inherent architectural inefficiencies. If the performance of 

the system is still unsatisfactory, then the code (as it stands) cannot be used in the final 

system. However, the exercise is still worthwhile because it is possible to verify that the 

system meets the customers requirements by allowing the customer to use it.

9.6 Scaling up to Industrial Sized Specifications.

In chapter two, it was seen that one of the main barriers to the widespread use of formal 

methods is the lack of modularity in Z specifications. Translating modular 

specifications has advantages because each state and its operations can be housed in a 

single Ada package. Moreover, if the specification is written in a modular style then it 

may be possible to use those parts of the translation that meet the systems performance 

requirements in the final system and improve the design of only those modules that do 

not. It has been stated that Z is not concerned with design issues, however, a growing 

number of researchers have argued that the use of Z will be more widespread if some 

design decisions are taken when constructing the Z specification, which will in turn 

make the refinement process easier. These include adding modularity to Z and applying 

the lessons that have been learned in the construction of software to the construction of 

specifications. Read [Read92] develops a method of specifying components in Z that 

follow the Ada package model. This allows Z specifications to be reused and will 

enable a Z specification to easily map into a corresponding Ada implementation. A

Page 213



specification written using Read's method should make refinement using reusable 

components an easier prospect.

In chapter seven, a specification that is used as a test case for various formal methods 

(the steam boiler) and a real world specification (the aircraft cabin illumination system) 

were implemented. In both cases, a number of abstract state machines were obtained 

which each contained operations that implemented some part of the systems 

functionality, as specified in the Z specification. Both systems were real time systems 

and so in order to use the operations from the abstract state machines, an outer 

operating system layer is required to act on interrupts and call the necessary operations. 

In order to assess if the code obtained from the translated Z specification can be used in 

the final implementation, the performance must be measured. This has not been done 

because of the difficulty of simulating the steam boiler and the aircraft cabin 

illumination equipment and due to the lack of non functional data, such as information 

on the system response times. Therefore, no concrete claims can be made for using the 

translated software for the steam boiler and aircraft illumination package in the final 

implementation. However, in both cases, using reusable components succeeded in 

implementing the Z specification quickly and produced code that could be used, at the 

very least, as a prototype of the specification.

9.7 Preserving the Style of the Original Specification

The state schema and its operation schemas can be translated very quickly into the 

appropriate procedure or functions from the relevant Ada component. This method 

enables Z specifications to be implemented in the spirit in which they were originally 

written. However, this may not be the best way of writing them in terms of the ease of 

implementation and the resulting efficiency of the code. Many Z specifications are 

written in a style where they can be reused in other specifications through state 

inclusion or operation promotion to enable complicated specifications to be built up in 

stages. This method allows systems that are specified in this manner to be implemented 

by using child packages to allow operations in packages that implement different states 

to share private types. The use of child packages closely follows the Z model of 

inclusion and is a very important aspect of refinement with this method. This method

Page 214



can successfully translate all of the operators available in the schema calculus provided 

that the necessary work has been carried out in Z, so that the final schemas are valid, 

the operators are well suited and the final schema is correct with regards to the intention 

of the specifier.

9.8 Non Functional Requirements.

The developer must select which type of Ada component should be used according to 

the client's requirements for space, speed, bounded or unbounded components and 

internal or external storage. The developer must then manipulate the reusable Ada 

components to provide a valid state upon which the operations specified in Z can act. 

This is necessary because these performance details will not appear in the Z 

specification. The developer of the generic package that implements the specification 

must provide the models for any generic types and the code for any generic formal 

subprograms. The developer must also create an interface for the Ada package, and 

interpret the input or output devices required. The Z specifications '?' and '!' notation 

do not state the format for either the input or output data explicitly. A generic unit for 

output enables many instances of an output procedure for a given type to be 

instantiated. This allows the type to be output to different devices, such as the screen, a 

printer, or even as the input to another operation.

9.9 The Use of Ada95

All of the reusable software components have been implemented as ADTs and with 

generality in mind. Ada has provided the tools to create ADTs through its use of 

packages and private type declarations. The use of generic parameters has reduced the 

complexity of the actual software components, but unfortunately, this complexity has to 

go somewhere and it can be found in the Ada package specifications used to implement 

the Z specification. The introduction of Ada95, with its ability to use generic formal 

packages has removed much of the complexity and reduced the number of generic 

parameters that are required with its ability to import complete packages as generic 

parameters. This aspect is also important when components are to be built upon other 

underlying components using an iterator procedure to traverse the underlying data

Page 215



structure. Previously generic units could not be used as generic formal parameters, but 

in Ada95 the whole package can be used as a generic parameter, including all of the 

generic units in each package. It would be possible to use C++ for this method of 

refinement, but with the absence of the generic feature in C++, the process would be 

harder.

Another bonus that Ada95 brings is its use of child packages. This aspect is crucial to 

the implementation of specifications that are based upon multiple states or use 

inheritance. Child packages also allow a user to implement the state invariant in a 

separate package that can be used to test each of the operations contained in the 

implementation. It is not necessary to implement the state invariants and test them 

before and after each operation if any implicit preconditions are made explicit in the 

operation schemas, but this technique can be used to test the implementation and to 

identify any preconditions that are missing from the operation schema.

9.10 Criticisms of the Method

Using reusable components to directly translate Z specifications can be criticised for the 

following reasons:

• The Z specification must be written in a constructive style. If it is not written in a 

constructive style, then some work is necessary to make it so. However in order to 

arrive at executable code from a non-constructive specification some extra work 

must be done regardless of the refinement method used. This is essentially the point 

of Hayes i.e that specifications are not necessarily executable [Haye89]. Fuchs 

recongises the fact that if code is to be generated from the specification then work 

can be carried out to make it executable [Fuchs92].

• The Z specification must use finite structures. Functional languages allow the 

definition of (conceptually) infinite data structures, but if a computation is to be 

performed some finite portion of the structure must be used.

• Operations must be deterministic. However, in some cases generic procedures may­ 

be used to defer implementation choices to the software using the Ada translation.

• The Z specification must use explicit preconditions in the operation schemas.

Page 216



• The method forces Z to be used as a design document which is not the main 

purpose of Z specifications.

• The performance of the Ada implementation mainly depends upon the way the state 

and its operations have been modelled. In order for the implementation to have a 

chance of being used as the final system, a good 'design' is required for the state 

model and operations must be written in an 'efficient' manner. This reduces the 

specifiers freedom.

• The code obtained cannot match that of manually developed code in all cases. This 

is due to the lack of opportunity of rationalising code when using a series of Ada 

operations.

• The cost of constructing components is high, although this cost is mitigated as it is 

spread over each implementation that uses the components.

• Large specifications, that are not written in a modular style, are more difficult to 

implement due to operations having access to many states. As a result, it is not easy 

to map this type of specification into a series of Ada packages.

• The process is not automated.

9.11 Advantages of Using Reusable Components.

• An implementation of a Z specification using operations from reusable components 

has less opportunity of introducing errors than a manually implemented version 

which contains much detailed new coding. Barnes [Barn95 pgl5] states that one of 

the most important objectives of software engineering is to keep detailed new 

coding to a minimum. Reuse of existing code aids this goal.

• Imperative languages such as Ada95 have performance advantages over their 

functional counterparts, they have better facilities to interface with other systems 

and they are used to a much greater extent in industry.

• The implementation of the Z specification can be used as part of the final system 

provided it meets the performance requirements of the system being built. If not, the 

implementation of the original Z specification (and some software to use its 

operations) will at least allow the developer to verify that the customers 

requirements are being met.

Page 217



• A more concrete design in Z, perhaps using more efficient data representation, may 

be necessary, but reusable components may still be used to implement this 

specification as highlighted in section 7.3.5.1.

• Using reusable components in Ada95 enables specifications with multiple states 

and schema inclusion to be implemented as seen in the steam boiler and aircraft 

illumination specifications shown in chapter 7. Specifications of this type have 

previously caused problems for methods that use functional languages as the target 

language, as discussed in chapter 2.

• Using an imperative language enables the developer to handle the state and 

input/output in an easy manner, without having to pass the state around as a 

parameter, or resorting to the use of a monad.

• Using reusable components in Ada95 allows detailed information that is not stated 

in the Z specification (but is necessary for its implementation in a programming 

language) to be deferred to the package that uses the Ada translation of the Z 

specification.

9.12 Future work

This project was started using Ada83, but in February 1995, the new version of Ada 

(Ada95) was certified for use. The reusable Ada83 components were then translated 

into Ada95 to take advantage of its new features. If the project had started in Ada95 

then the reusable components may have been written in a different way. The new object 

oriented features of Ada95, such as tagged types and inheritance could have been used 

for the components because each of the main types available in Z are dependant on sets. 

One area of future work could be to investigate these new object oriented features with 

respect to creating an alternative library of reusable components. This area of research, 

however, will not affect the refinement of Z specifications because the new object 

oriented components will contain the same operations as the old components.

So far, all of the implementations of Z specifications have been completed by hand. 

However, there is a need to investigate automation and tool support if the method is to 

be used seriously in the creation of software. This could be done by using a typesetting

Page 218



tool such as CadiZ 1 and instead of using the Troff commands to output the schema text 

to a screen, the operations from the reusable components can be selected. Obviously, 

this is an oversimplification because some of the refinement process requires some 

human intelligence and the process is not a straight forward as "if you find this symbol, 

then replace it with this code". One bonus is that the code generator can translate the Z 

specification with no knowledge of the speed or memory requirements required, since 

they can be tuned by the developer in selecting different reusable components to model 

the state space.

CadiZ is available from York Software Engineering Limited, University Of York.

Page 219



References

Page 220



[Abri91] Abrial J.R, Lee M.K.O, Neilson D.S, Scharbach P.N. "The B-method" 

VDM 91 : Formal Software Development Methods, vol 551 of Lecture 

Notes in Computer Science, Springer-Verlag 1991, pp398-405.

[Back88] Back R.J.R. "Calculus of Refinements For Program Derivations." Acta 

Informatica, vol 25, 1988, pp593-624.

[Bale94] Bale.S, Hayward.J, "A Bounded Set as a Reusable Component for

Reifying Z Specifications", Technical Report (M-94-3), Department of 

Mathematics and Computing, University of Glamorgan.

[Barb94] Barbey.S, Buchs. D "Testing Abstract Data Types Using Formal

Specifications", Eurospace Ada Europe 94 Symposiun Proceedings. 

Lecture Notes In Computer Science, no 887, pp76-89, 1994.

[Bard92] Barden R. "Support For Using Z." 7th Z User Meeting, 1992.

[Bard94] Barden.R, Stepney. S, Cooper.D "Z In Practice", 

Prentice Hall, 1994, ISBN 0-13-124934-7.

[Barn95] Barnes. J. "Programming in Ada95", Addison-Wesley 1995, 

ISBN 0-201-87700-7.

[Basi87] Basili.V.R, Selby.R. W " Comparing the Effectiveness of Software

Testing Strategies". IEEE Transactions on Software Engineering 1987, 

Vol SE-13 no 12, pp!278-1295

[Baye72a] Bayer.R "Symmetric Binary B-trees : Data Structure and Maintenance 

Algorithms". Acta Informatica (1), pp290-306, Springer-Verlag, 1972.

Page 221



[Baye72b] Bayer.R. and McCreight. E. "Organisation and Maintenance of Large 

Ordered Indexes." Acta Informatica (1), pp 173-189, Springer-Verlag, 

1972.

[Boeh87] Boehm B.W. "Improving Software Productivity." IEEE Computer, 

Sept 1987, pp43-57.

[Booc87] Booch G. "Software Components With Ada - Structures, Tools and 

Systems." Benjamin Cummings, ISBN 0-8053-0610-2, 1987.

[Bowe93] Bowen J., Stavridou V. "The Industrial Take-up of Formal Methods in 

Safety-Critical and Other Areas : A Perspective." Formal Methods 

Europe 1993 in Lecture notes in Computer Science Vol 670, Springer- 

Verlag,pp 183-195.

[Bowe95] Bowen J.P, Hinchey, M.G "Ten Commandments of Formal Methods" 

IEEE Computer 28(4), pp55-63, April 1995.

[Burn77] Burnstall R.M., Darlington J. "A Transformation System for

Developing Recursive Programs." Journal of the Association for 

Computing Machinery (ACM), vol 24, nol, 1977, pp 44-67.

[Carr91] Carrington. D. "ZOOM Workshop Report", Proceedings of the Sixth 

Annual Z User Meeting 1991.

[Clif95] Clifford A, Zarzycki L. "Combining Formal Notations to Develop

Practical Formal Methodologies." Proceedings of 4th Software Quality 

Conference, pp 413-422, 1995.

[Crai95a] Craigen D, Gerhart. S, Ralston T., "Formal Methods Reality Check : 

Industrial Usage." IEEE Transaction on Software Engineering, Vol21, 

no2,pp90-98, 1995.

Page 222



[Crai95b] Craigen D., Gerhart S, Ralston T., "Formal Methods Technology 

Transfer: Impediments and Innovation." In Applications of Formal 

Methods, M.G. Hinchey, J.P.Bowen (eds), pp 399-419. 1995 

ISBN 0-13-366949-1.

[Dijk75] Dijkstra.E.W "Guarded Commands, Nondeterminancy and Formal 

Derivation of Programs." Communications of the ACM, 18(8) 1975.

[Dill90] Diller A.Z. "An Introduction to Formal Methods." John Wiley and 

Sons, 1990.

[Drap92] Draper.C "Practical Experiences of Z and SSADM". 7th Z user Meeting 

Proceedings 1992.

[Fent91 ] Fenton N.E. "Software Metrics" Chapman & Hall, 1991, 

ISBN 1-85032-242-2.

[Fidg92] Fidge. C.J "Specification and Verification of Real Time Behaviour 

using Z and RTL", Second International Symposium Proceedings, 

Formal Techniques In Real Time And Fault Tolerance Systems, (1992), 

Springer-Verlag, pp 393-409.

[Fuch92] Fuchs N.E."Specifications are (Preferably) Executable."

Software Engineering Journal, Vol 7, No 5, pp323-333, 1992.

[Gerh94] Gerhart.S, Craigen D ? Ralston T. "Experience with Formal Methods in 

Critical Systems." IEEE Software, January 1994, pp21-28.

[Glas91] Glass and Noiseux, "Software Maintenance Guidebook", Prentice-Hall, 

1991.

Page 223



[Goel91] Goel.A, Sahoo.S, "Formal Specifications and Reliability an

Experimental Study", Proceedings : 1991 International Symposium on 

Software Reliability Engineering (Cat no 91 Th0336-5) pp 139-142.

[Good93] Goodman.H.S "Animating Z specifications in Haskell Using a Monad" 

School of Computer Science, University of Birmingham, 

Technical Report CSR-93-10, 1993.

[Good95a] Goodman.H.S "The Z-into-Haskell Tool-kit: An Illustrative Case

Study." Proceeding of the 9th Z User Meeting, 1995, Springer-Verlag.

[Good95b] Goodman.H.S "The Z-into-Haskell Tool-Kit"

School Of Computer Science, University Of Birmingham. 

Technical Report (CSR-95-1), 1995.

[Grav91] Gravel A.M, Henderson P. "Why Execute Formal Specifications" 

Proceedings of Mathematical Structures for Software Engineering. 

Clarendon Press, pp 153-164, 1991.

[Hame95] Hamer U. Peleska J. "Z Applied to the A330/340 CIDS Cabin

Communication System". In "Applications of Formal Methods," 

Eds Hinchey M.G. Bowen J.P. Prentice Hall, 1995, 

ISBN 0-13-366949-1.

[Hart96] Hartel. P.H. "Benchmarking Implementations of Functional Languages 

Using 'Pseudoknot' a Float Intensive Benchmark" Journal of Functional 

Programming, vol 6, part 4, 1996. Cambridge University Press.

[Hayw96] Hayward. J "The Construction Of a Z Specification by Iteration and 

Enrichment", Technical Report (UG-M-96-3), Department Of 

Mathematics and Computing, University Of Glamorgan.

Page 224



[Hay\v95] Hayward J , Bale S. "Refinement of Z Specifications using Reusable 

Software Components in Ada" Proceedings of the ACM Sig-Ada Tri- 

Ada'95 conference.

[Hayw94] Hayward.J, Bale.S , "An Algebraic Specification of the Abstract Data 

Type Set", Technical Report (M-94-2), Department of Mathematics and 

Computing, University of Glamorgan.

[Haye87] Hayes.I.J "Specification Case Studies". Prentice Hall International, 

1987.

[Haye89] Hayes.I.J , Jones.C.B "Specifications are not (Necessarily)

Executable." Software Engineering Journal (4), pp330-338, 1989.

[Haye96] Hayes. I, "Supporting Module Reuse in Refinement" Science of 

Computer Programming, 27, pp 175-184, 1996.

[Hoar93] Hoare C.A.R "Algebra and Models" Software Engineering Notes, 

vol 18, No 5, ppl-8, 1993.

[Holl96] Holloway C.M, Butler R.W. "Impediments to Industrial Use of Formal 

Methods" IEEE Computer, April 1996, pp25-26.

[Horr84] Horrowitz E, Munson J. "An Expansive View of Reusable Software" 

IEEE Transactions on Software Engineering, vol se-10 ( 5 ) 1984.

[Huda94] Hudak P., Jones M. "Haskell vs. Ada vs. C++ vs. Awk vs. ... An 

Experiment in Software Prototyping Productivity." Department of 

Computer Science, Yale University, New Haven, CT 06518.

Page 225



[Jack85] Jackson M.I, "Developing Ada Programs Using the Vienna

Development Method (VDM)" Software Practice and Experience 

(1985) ,Vol 15(3), pp305-318.

[Jado89] Jadoul L., Duponcheel L., Puymbroeck W.V. "An Algebraic Data

Type Specification Language and its Rapid Prototyping Environment". 

Proceedings 11th International Conference of Software Engineering. 

IEEE Computer Society Press 1989, pp74-84.

[John90] Johnson. M, Sanders P, "From Z Specifications to Functional

Implementations". Proceedings 4th Annual Z User Meeting, Springer- 

Verlag, 1990, pp86-l 12.

[King89] King S., S0rensen I.H. "From Specification, Through Design, To Code 

: A Case Study In Refinement".

In Theory and Practice of Refinement Approaches to the Formal 

Development of Large-Scale Software Systems. McDermid.J.A 

(editor), Butterworths 1989. pp90-121.

[King90] King.S. "Z and the Refinement Calculus ",

VDM1 90. VDM and Z - Formal methods in Software Development. 

Third International Symposium of VDM Europe Proceedings. 

Springer-Verlag ,1990, pp 164 - 188.

[Knot92] Knott R.D, Krause P.J "The Implementation of Z Specifications Using 

Program Transformation Systems- The SuZan Project". The Unified 

Computing Laboratory - IMA Series, Vol 35, pp207-220, Clarendon 

Press 1992.

[Lano92] Lano K., Haughton H. "Reuse and Adaptation of Z Specifications" 

Seventh Annual Z User Meeting, 1992.

Page 226



[LienSO] Lientz B.P, Swanson E.B. "Software Maintenance Management", 

Addison-Wesley, 1980.

[Litt92] Litteck HJ, Wallis P.J.L "Refinement Methods and Refinement 

Calculi." Software Engineering Journal, vol 7, no 3, May 1992, 

pp219-229.

[Love92] Love.M "Animating Z Specifications in SQL*forms3.0" 

Seventh Annual Z User Meeting 1992.

[Maud91] Maude. T, Willis G. "Rapid Prototyping - The Management of 

Software Risk", Pitman Publishing, 1991, ISBN 0 273 033093.

[Mac D89] MacDonald R., Sennet C. "Refinement of Specification Versus 

Refinement of Design." In Theory and Practice of Refinement 

Approaches to the Formal Development of Large-Scale Software 

Systems. McDermid.J.A (editor), Burterworths 1989. pp!22-133.

[Me Co93] McConnell. S "Code Complete - A Practical Handbook of Software 

Construction", Microsoft Press, 1993, ISBN 1-55615-484-4.

[McDe89] McDermid J.A "The Theory and Practice of Refinement - Approaches 

to the Formal Development of Large-Scale Software Systems", 

Butterworths, 1989, ISBN 0-408-03981-7.

[Mink95] Minkowitz, C, Rann D, Turner J.H, "A C++ Library for Implementing 

Specifications." Proceedings Workshop on Industrial Strength Formal 

Specification Techniques. IEEE Computer Society Press, 1995.

[Mitc94] Mitchell R., Loomes M, Howse J, "Structuring Formal Specifications - 

a Lesson Relearned." Microprocessors and Microsystems, Vol 18, 

no 10, Butterworth-Heinemann Ltd 1994.

Page 227



[Morri87] Morris, J.M "A Theoretical Basis for Stepwise Refinement and the 

Programming Calculus." Science of Computer Programming, vol 9, 

1987,pp287-306.

[Morre92] Morrey.I, Siddiqi. J, Briggs. J, "Z Animation In LISP"

Proceedings 5th International Conference on : Putting into Practice 

Methods and Tools for Information System Design". 1992. IUT de 

Nantes.

[Morg94] Morgan C.C "Programming from Specifications"

Series in Computer Science. Prentice Hall International ,1994, 2nd 

Edition. ISBN 0-13-123274-6.

[Nise85] Nise N, Me kay C, Dillenhunt D, Kirn N, Griffin C "A Reusable

Software System" Proceedings of the AIAA / ACM / NASA / IEEE 

Computers in Aerospace V Conference, Long Beach , California 1985.

[Norc91] Norcliffe and Slater "Mathematics of Software Construction" 

1991 Ellis Horwood, ISBN 0-13-563388-5

[Rann94] Rann.D, Turner.J, Whitworth.J "Z : A Beginners Guide" 

Chapman and Hall, 1994, ISBN 0412-55-660-X.

[Read92] Read. T.J "Formal Specification of Reussable Ada Software Packages" 

In Towards Ada9X, pp98-l 17 ? A. Burns (ed), IOS Press, 1992.

[Samp90] Sampaio A., Meira S. "Modular Extensions to Z". Third Symposium of 

VDM Europe Proceedings, 1990, pp211-232.

[Shen92] Shen. J. and Cormack. G.V "On Generic Formal Parameters In Ada9x" 

Ada letters Vol xii, number 2, ppl 10-116, May/June 1992.

Page 228



[Sher94] Sherrel L.B, Carver.D.L "Experiences in Translating Z Designs to

Haskell Implementations." Software Practice and Experience, vol.24 

(12), 1994.

[Sher95] Sherrel L.B, Carver D.L "FunZ: An Intermediate Specification 

Language." The Computer Journal, Vol 38, No 3, 1995.

{Sidd93] Siddiqi J., Morrey I. "Towards CASE Tools for Prototyping Z 

Specifications", Proceeding of 6th International Workshop on 

Computer Aided Software Engineering. 1993, pp 166-73.

[Skan88] Skansholm J. "Ada From the Beginning." Addison-Wesley,1988 

ISBN 0-201-17522-3.

[Skan97] Skansholm J. "C++ From the Beginning." Addison Wesley Longman, 

1997, ISBN 0-201-40377-3.

[Smit91] Smith P., Keighley R., "The Formal Development of A Secure

Transaction Mechanism". Proceedings VDM'91 : Formal Software 

Development Methods pp457-476. Springer-Verlag 1991.

[Spiv89] Spivey J.M. "The Z Notation, a Reference Manual." Prentice-Hall, 

1989, ISBN 0-13-983768-X.

[Thom93] Thomas M., " The Industrial Use of Formal Methods" Microprocessors 

and Microsystems, Vol 17, No 1. 1993.

[Thom96] Thompson S. "Haskell - The Craft of Functional Programming." 

Addison Wesley Longman, 1996. ISBN 0-201-40357-9

Page 229



[Utti95] Utting M. "Animating Z : Interactivity, Transparency and

Equivalence." Proceedings Asia Pacific Software Engineering 

Conference. IEEE Computer Society Press 1995, pp295-303.

[Vale91] Valentine S. "Z- An Executable Subset of Z", 6th Annual Z User 

Meeting 1991.

[Wadl95] Wadler, P. "How to Declare an Imperative". Proceedings of

International Logic Programming Symposium, MIT Press 1995.

[Weis93] Weiss. M, "Data Structures and Algorithm Analysis in Ada" 

Benjamin/Cummings, 1993, ISBN 0-8053-9055-3.

[West95] West.M.M, "Types and Sets in Godel and Z" 9th International

Conference of Z Users 1995, Lecture Notes in Computer Science 967, 

Springer-Verlag.

[West92 ] West.M.M, Eaglestone.B.M "Software Development: Two

Approaches to the Animation of Z Specifications using Prolog" 

Software Engineering Journal, vol 7, no 4, July 1992, pp264-276.

[Woodc96] Woodcock J., Davies J. "Using Z Specification, Refinement and 

Proof, Prentice-Hall, ISBN 0-13-948472-8, 1996.

[WoodK91] Wood.K.R, "The Elusive Software Refinery - A Case Study in

Program Development" 4th Refinery workshop, BCS Workshops in 

Computing, 1991, Springer-Verlag.

[WoodK93] Wood. K.R , "A Practical Approach to Software Engineering using Z 

and the Refinement Calculus ", Software Engineering Notes 18,5 1993 

pp79-88.

Page 230



[WoodW91] Wood W.G, Place, P.R.H,Luckham D.C, Mann W, Sanker S.

"Formal Development of Ada programs using Z and Anna - a case 

study." Software Engineering Institute, Pittsburgh,CMU/SEI-91-lTR.

1991.

[Word92] Wordsworth J.B. "Software Development With Z." Addison-Wesley,

1992. ISBN 0-201-62757-4.

[Zweb95] Zweben. S.H , Edwards.S.H, Weide,B.W, Hollinsworth.J.E "The Effects 

of Layering and Encapsulation on Software Development Cost and 

Quality." IEEE Transactions on Software Engineering vol. 21, no 3, 

March 1995, pp200-207.

Page 231



APPENDICES



APPENDIX 1.

List of software components and specification case studies.



The following reusable components have been constructed throughout the duration 

of this project.

Set Packages 

Internal

Set_bounded_G

Set_tree_G

External

Set file G

- Set package using array model. Set is packed and 

bounded.

- Set package built using a binary tree package, based 

upon internal memory.

- Set package using direct access file structure.

Set cache G - Set package using direct access file structure and 

internal memory cache.

Set btree G - Set package built using a btree package, based upon 

external memory.

Function and Relation Packages 

Internal
One_to_one_bounded_G - One to one function package based upon array

structure.

Many_to_one_bounded_G - Many to one function package based upon array

structure.

Many_to_many_bounded_G - Many to many relation package based upon array

structure.



One_to_one_tree_G - One to one function package built on top of a binary

tree package.

Many_to_one_set_G - Many to one package built on top of the set package

Set_bounded_G.

External

One_to_one_file_G - One to one function package based upon direct

access file.

Many_to_one_file_G - Many to one function package based upon direct

access file.

Many_to_many_file_G - Many to many relation package based upon direct

access file.

One_to_one_btree_G - One to one function package built on top of a btree

package.

Sequences 

Internal
Sequence_bounded_G - Sequence package based upon array model.

External
Sequence_file_G - Sequence package based upon direct access file.



Specification Case studies

The following complete specifications have been translated using this method. All 
of the translated Ada packages from the specifications have been executed by 

instantiating them and using them in other programs. However, the steam boiler and 

aircraft illumination packages have only been compiled due to the difficulty in 

simulating the steam boiler and aircraft illumination systems, which would use the 

operations available in the translated Ada packages. In both Z specifications, the real 
time aspects were not included.

The Steam Boiler - Implementation of steam boiler specification given in

[Buss96j.

Aircraft Cabin - Implementation of real world aircraft cabin illumination 

specification, as given in [Hame95].

Library - Package implementing large library specification. 

Specification contains 6 functions and 6 given types. This 

specification has been expanded but the original can be found 

in [Dill90].

Birthday Book - Implementation of Spiveys birthday book [Spiv89].

Expanded birthday - An expanded version of birthday book using a higher order

book relation.

Filling Station - Implementation of a specification for a petrol filling station 

as specified in [Norc91].

Planepac - Implementation of a seat allocation system for aircraft as 

specified in [Ligh91].



Class Managers - Implementation of Wordsworth's class managers assistant 
Assistant [Woodc96], Assistant showing the refinement of schema

types and bindings.

Staff_Db - Collection of database systems [Dill90]. Implementation

Phone_Db highlighted the refinement of multiple state 

specifications and Departmental_Db those involving 
extension and inclusion.



APPENDIX 2.
Lists Z statements and operators and gives the required Ada

operation(s) to translate them. Guidelines for the translation 

of specifications are also given.



Logic

Z statement Refined by 
-. P not P

A? andP

vP orP

P=>Q If P then Q

P <=> Q (not P and not Q) or (P and Q)

3D P • Q Instantiate There_exists function from package according to D

(see note below), with functions modelling P and Q. 

V D P • Q Instantiate For_all function from package according to D.

with functions modelling P and Q.

NB. The quantifiers can be used over sets, sequences, functions and relations.

Numbers
Z symbol Ada

Z Integer
N Natural
N Positive

* * 
mod mod 
< <= 

>=



The following text lists refinements laws for common Z constructs using reusable 

software components.

I
Sq

S

Ss

- An Item

- A Sequence

-A Set

- A Set of sets

D 

R

M 

T

A Sequence of sequences P 

An expression

- A domain item

- A range item

- A Map

- A type

- A predicate

Refinement laws for Set

General statement

S' = S\{I}

_ oi -5>2 

S = 0
#s
I e S
I e S 
S,cS2 
S, ^S2

S\ \ S2 
S 3 = S, \ S2 
S, n S 2 
S 3 = S, n S2

USS 

USS

Refined by 

Insert (I, S) 

Delete(I, S)

Is_equal (S l5 S2 ) 
not Is_equal (Sj , S2 ) 
Is_empty_set (S) 
Size_of(S) 
Is_a_member ( I.S ) 
not Is_a_member (I, S ) 
Is_a_subset (Sj , S2 ) 
Union (S,,S2 ) 
Union (S,, 82,83) 
Difference (S,,S2 ) 
Difference (S,,S2 , S3 ) 
Intersection (Sj, S 2 ) 
Intersection (Sj, S2 , S3 )

Dist_union (Ss , S) 

Dist_inter (Ss , S)

Instantiate generic Set_comprehension 
procedure from package according to T. 
with functions modelling P and E (an



identity function can be used if E is not 
required).

Refinements laws for sequence

General statement

I e ran S q 
I g ran S

rev(sq )
Sq2 = rev(Sql )
tail (Sq )
Sq2 = tail(Sql )
last (Sq )
head (Sq )
front(Sq )
Sq2 = front (Sql )
ran Sn

Vsq2 = sql
Sq2 = Sqi

{S}]Sq

sq2 -
Sq2 =

{S}

ql

7SqSq

Refined by

Construct (I ,S q)
Concatenate (Sql ,Sq2 )
Concatenate(Sq , ,Sq21 Sq3)
Is_equal (Sq] , Sq2 )
notls_equal (Sql , Sq2 )
Is_a_member (I, Sq )
not Is_a_member (I, Sq )
Is_empty_sequence( Sq )
not Is_empty_sequence (Sq )
Size_of(Sq )
Rev(Sq )
rev(Sql , Sq2 )
tail(Sq )
tail (Sql , Sq2 )
last( Sq , I)
head (Sq , I)
front (Sq )
front (Sql , Sq2 )
range_of(Sq ,S)

Sequence_range_restrict (Sq , S ) 
Sequence_range_restrict (Sq , I ) 
Sequence_range_restrict (Sql , S , S q2 ) 
Sequence_range_restrict (Sq ,, S , S q2 )

Sequence_domain_restrict (Sq . S ) 
Sequence_domain_restrict (Sq , I ) 
Sequence_domain_restrict (Sql , S, S q2 
Sequence_domain_restrict (Sql , S, Sq2

Dist_concatenate (SqSq .S q )

Refinement Laws for One to One function

General Statement
r}

Refined by 
Bind (d , r , M )



M' = M \ {d ~ r} Unbind (d , r , M )
M! = M2 Is_equal (M! , M2 )
M! * M2 not Is_equal (M! , M2 )
#M Extent_of(M)
{d t-» r} e M Is_a_member (d , r, M)
{d >-» r} g M not Is_a_member (d , r, M)
dom ( M ) Whole_domain ( S, M)
ran ( M ) Whole_range (S, M)
M > { S } Range_restrict ( S , M)

M > { I } Range_restrict ( I, M )

Ml = M2 t> { S } Range_restrict (S ,M! , M2)

M, = M2 > { I } Range_restrict (I, M, , M2 )

M ^ { S } Range_subtract ( S , M)

M ^ { I } Range_subtract (I, M )

Ml = M2 > { S } Range_subtract (S ,M, , M2)

MI = M2 £"{1} Range_subtract (I, M, , M2 )

{ S } < M Domain_restrict ( S , M)

{ I } < M Domain_restrict (I, M )

Ml = { S } < M2 Domain_restrict (S ,Mj , M2)

M! = { I } < M2 Domain_restrict (I, M, , M2 )

{ S } <3 M Domain_subtract ( S , M)

{ I } <3 M Domain_subtract ( I, M )

Ml = { S } <3 M2 Domain_subtract (S ,M, , M2)

M, = {I } -^ M2 Domain_subtract (I, M, , M2 )

I e dom M Is_a_domain_element ( I, M )
I £ dom M not Is_a_domain_element (I ,M )
I e ran M Is_a_range_element ( I, M )
I £ ran M not Is_a_range_element (I, M )

S2 = M ( S, ) Relational_image ( S,, S2 , M )
S 2 = M — Si Inv_relational_image (S,, S2 ,M )
D = M ~ R Domain_of (D, R, M)
R = M ( d ) Range_of (d ,r , M)
M' = M®{d >-» r} Function_override ( d , r , M )
M2 = M! © {d •-> r} Function_override ( d , r , M, , M2 )
M3 = M! © M2 Function_override (M ( , M2 , M 3 )
M ' = M © M2 Function_override (M, M2 )



Refinement Laws for Many to One function

This is as the one to one function except for the following :- 

General Statement Refined by

! Domain_of(S , I, , M)
M ' = M © {d •-> r} Function_override ( d , r , M )
M2 = Mj © {d >-> r} Function_override ( d , r , Mj , M2 )
M3 = M! © M2 Function_override (Mj, M2 , M3 )
M ' = M © M2 Function_override (M, M2 )

Refinement Laws for Many to Many relation

This is as the Many to one function except for the following :-

General Statement Refined by

S = M(R) Range_of(S, I, M)
M = M! 5 M2 Rel_comp(M] ,M2 , M)
M = M! o M2 Rel_comp(M2 M, , M)

Guidelines for Translation 

State schema

• A Specification based upon a named state is implemented as an Abstract State 

Machine.
• In specifications using the binding notation (6), the schema used as a type should 

be implemented as an Abstract Data Type to allow multiple instances of itself.
• Each given type will require an instantiation of a sets package.
• A small specification using inclusion can be implemented in a single package, 

giving access to all types contained within the specification.
• A large specification using inclusion should be implemented using child 

packages to allow access to all types contained across packages and to avoid a 
cumbersome implementation with a large interface.



• The order of instantiation is important. Instantiate packages in normal order and 

remember that function, sequence and relations will require set packages as 

generic actual parameters.

• The package interface must contain formal generic parameters for each of the 

actual generic parameters used for the instantiation of the reusable components.

• The state invariant can be safely ignored provided that explicit preconditions 

appear in each operation.

• The state invariant can be implemented in a child package only as an aid for the 

testing process.

Operation Schemas
• Most simple statements can be translated using a single one of the rules given

above. Complex statements, however, will be made up of many Z operations and 

will require some analysis in order to translate them. One way to ease the 

translation of complex statements is to translate the statement in normal order 

and then reverse the statements to achieve applicative order.

• Preconditions are translated using an 'If statement and can be negated in order 

to use the 'elsif structure to reduce indentation for schemas with many pre­ 

conditions.

• Preconditions can be removed from the refined code if an operation refining a 

postcondition raises an exception identical to the precondition.

• The operation schemas can be made robust by raising exceptions for the logical 

complement of each precondition. However, the order for testing and raising 

exceptions may be of importance and should be investigated (see 6.3.4).

• Be economical in the creation of new types. Don't create a type if it is not 

required for use elsewhere. For example it is not necessary to create a new set 

simply to count the number of items in the new set.

• Make sure operation schemas contain explicit preconditions.



• If an operation schema is non-deterministic, attempt to contain the non- 

determinism as a generic parameter supplied to the operation. If this is not 

possible then some refinement within Z must take place.


