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Preamble

his book is devoted to an emerging branch of Information Fusion based on new approach for model-
Tling the fusion problematic when the information provided by the sources is both uncertain and
(highly) conflicting. This approach, known in literature as DSmT (standing for Dezert-Smarandache
Theory), proposes new useful rules of combinations. We gathered in this volume a presentation of DSmT
from the beginning to the latest development. Part 1 of this book presents the current state-of-the-art on
theoretical investigations while Part 2 presents several applications of this new theory. We hope that this
first book on DSmT will stir up some interests to researchers and engineers working in data fusion and in
artificial intelligence. Many simple but didactic examples are proposed throughout the book. As a young
emerging theory, DSmT is probably not exempt from improvements and its development will continue to
evolve over the years. We just want through this book to propose a new look at the Information Fusion

problematic and open a new track to attack the combination of information.
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ideas and questions on DSmT over the last three years. We thank specially Dr. Albena Tchamova
and Dr. Milan Daniel for reviewing carefully chapters of this book and also Dr. Frédéric Dambreville,
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xi



We are also grateful to International Society of Information Fusion (ISIF) for authorizing us to publish
in Chapters @2 Bl [ and [[Q some parts of articles presented during the recent ISIF conferences on

Information Fusion.

Jean Dezert is grateful to Department of Information Modelling and Processing (DTIM/IED) at
the Office National d’Etudes et de Recherches Aérospatiales (ONERA), Chatillon, France for encour-
aging him to carry on this research and for its financial support. He thanks his colleagues and friends
Dr. Christian Musso (ONERA /DTIM/IED) for his valuable discussions on DSmT, and also Dr. Frédéric
Cassaing (ONERA/DOTA/CC), Dr. Christophe Peyret (ONERA/DSNA) and Dr. Jean-Philippe Ovarlez
(ONERA/DEMR/TSI) for their help for typing this book under the BTEX typesetting system. He wants
also to thank Dr. Patrick Vannoorenberghe from PSI Lab., University of Rouen, France, Prof. Tzvetan
Semerdjiev from CLPP Bulgarian Academy of Sciences, Sofia, Professors Jean-Pierre Aubin and Patrick
Saint-Pierre from University Paris-Dauphine, Paris, France, Prof. Laurence Hubert-Moy from COSTEL
Lab./CNRS at University of Rennes 2, France, Dr. Frédéric Dambreville from CTA (Délégation Générale
pour I’Armement), Arcueil, France and Prof. Subhash Challa formerly with Melbourne University and
currently with University of Technology Sydney, Australia for inviting him to give seminars on DSmT

during the last years.

Florentin Smarandache is grateful to The University of New Mexico that many times sponsored him
to attend international conferences on Data Fusion or Fuzzy and Neutrosophic Logics in Australia or at
the University of Berkeley in California where he met Professor Lofti Zadeh who became interested in

DSmT, or in Sweden, and UNM for encouraging him to carry on this research.

We want to thank everyone.

The Editors



Prefaces

Advances in science and technology often result from paradigm shifts. In the 1910’s, Einstein tried
to reconcile the notion of absolute space and time of Cartesian dynamics, with Maxwell’s electro-
dynamic equations, which introduced an absolute speed for light in vacuum. Addressing this dilemma
inevitably lead him to put space and time on an equal footing, for any observer in an inertial frame,
and special relativity was born. When he then tried to include gravitation in the picture, space and
time became warped by mass (or energy) and general relativity emerged by connecting locally inertial
frames. In each case, a new theory arose from relaxing assumptions, which formerly were thought to
be immutable. We all know now the ideal regions of applicability of Cartesian dynamics (slow-moving
objects) compared to those of special relativity (fast moving objects) and general relativity (cosmology
and strong gravitational fields). However general relativity can reduce to special relativity, which itself
can become Cartesian dynamics in everyday life. The price to pay in going from Cartesian dynamics to

the more general formulations of relativity is increasing complexity of the calculations.

In his classic 1976 book, Shafer stated the paradigm shift, which led him to formulate an alternative
to the existing Bayesian formalism for automated reasoning, thus leading to what is commonly known as
Dempster-Shafer (DS) evidential reasoning. The basic concept was that an expert’s complete ignorance
about a statement need not translate into giving 1/2 a probability to the statement and the other 1/2 to its
complement, as was assumed in Bayesian reasoning. Furthermore, when there are several possible single
mutually exclusive alternatives (singletons) and the expert can only state positively the probabilities of
a few of these, the remaining probabilities had to be distributed in some a priori fashion amongst all
the other alternatives in Bayesian reasoning. The complete set of all the N alternatives (the frame of
discernment) had to be known from the outset, as well as their natural relative frequency of occurrence.
By allowing as an alternative that the ignorance could be assigned to the set of all remaining alternatives
without any further dichotomy, a new theory was thus born that reasoned over sets of alternatives, DS

theory.
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Clearly the problem became more complex, as one had to reason over 2V alternatives, the set of all
subsets of the N singletons (under the union operator). When Dempster’s orthogonal sum rule is used
for combining (fusing) information from experts who might disagree with each other, one obtains the
usual Dempster-Shafer (DS) theory. The degree of disagreement, or conflict, enters prominently in the
renormalization process of the orthogonal sum rule and signals also when DS theory should be used with
extreme caution: the conflict must not be too large. Indeed several paradoxes arise for highly conflicting
experts (sources), and these have to be resolved in some way. Going back to relativity for a moment, the
twin paradox occurs when one tries to explain it with special relativity, when actually it is a problem
that has to be handled by general relativity. A paradigm shift was necessary and one will be needed here
to solve the paradoxes (referred to in this book as counter-examples) of DS theory: the relaxation of an
a priori completely known frame of discernment made of mutually exclusive singletons, and this is what

Dezert-Smarandache (DSm) theory is basically all about.

In the first part of this book, DSm theory is motivated by expanding the frame of discernment to
allow for presumed singletons in DS (or Bayesian) theory to actually have a well-defined intersection,
which immediately states when this theory should be used: whenever it is impossible to estimate at the
outset the granularity required to solve the problem at hand, either by construction (fuzzy concepts which
cannot be refined further), or when the problem evolves in time to eventually reveal a finer granularity
than originally assumed. It would then be important to continue being able to reason, rather than to go

back and expand the frame of discernment and start the reasoning process over again.

However, clearly the problem again becomes more complex than DS theory, as one has to reason now
over more alternatives (following Dedekind’s sequence of numbers as N increases), consisting of the set
of all subsets of the N original singletons (but under the union and the intersection operators). This is
still less than would be required for a refined DS theory (if possible), which would consist of 2 to the
power 2V — 1 alternatives. The classic DSm rule of combination ensures the desired commutativity and
associativity properties, which made DS theory viable when the original orthogonal sum rule is used.
This classic DSm rule is particularly simple and corresponds to the Free DSm model. Because the classic
DSm rule does not involve a renormalization depending on the conflict, it will not exhibit the problems
of DS theory under highly conflicting conditions. However since one of the applications of DSm theory
involves dealing with problems with dynamic constraints (elements can be known not to occur at all at
a certain time), a hybrid rule of combination is also proposed which deals with exclusivity constraints
as well (some singletons are known to be truly exclusive). One can think of many examples where such
available knowledge fluctuates with time. In this first part, the authors make a special effort to present

instructive examples, which highlight both the free DSm model and the hybrid DSm model with exclusiv-



ity and/or non-existential constraints. The classic counter-examples to DS theory are presented, together

with their solution in DSm theory.

In the second part of the book, data/information fusion applications of DSm theory are presented,
including the Tweety Penguin triangle, estimation of target behavior tendencies, generalized data associ-
ation for multi-target tracking in clutter, Blackman’s data association problem, neutrosophic frameworks
for situation analysis, land cover change detection from imagery, amongst others. This second part of
the book is much more of an applied nature than the theoretical first part. This dual nature of the book
makes it interesting reading for all open-minded scientists/engineers. Finally, I would like to thank the

authors for having given me the opportunity to peer-review this fascinating book.

Pierre Valin, Prof., Ph.D.
Dept. de Physique
Université de Montréal
Montréal, Québec, Canada
May, 2004

his book presents the foundations, advances and some applications of a new theory of paradoxical
Tand plausible reasoning developed by Jean Dezert and Florentin Smarandache, known as DSmT.
This theory proposes a general method for combining uncertain, highly conflicting and imprecise data,
provided by independent sources of information. It can be considered as a generalization of classical
Dempster-Shafer mathematical theory of evidence, overcoming its inherent constraints, closely related
with the acceptance of the law of the excluded middle. Refuting that principle, DSmT proposes a formal-
ism to describe, analyze and combine all the available information, allowing the possibility for paradoxes
between the elements of the frame of discernment. It is adapted to deal with each model of fusion occur-
ring, taking into account all possible integrity constraints of the problem under consideration, due to the
true nature and granularity of the concepts involved. This theory shows through the considered appli-
cations that conclusions drawn from it provides coherent results, which agree with the human reasoning

and improves performances with respect to Dempster-Shafer Theory.

Krassimir Atanassov, Prof., Ph.D.
Centre of Biomedical Engineering
Bulgarian Academy of Sciences
Sofia, Bulgaria

May, 2004



Sciences advancement has always been through achievements, ideas and experiences accumulation.
New ideas and approaches sometimes suffer misunderstanding and sometimes from a kind of “rejec-
tion” because they disturb existing approaches and, humans do not easily accept the changes. Simply,

this is the human being history.

Information processing domain is not an exception. While preparing this preface, I remembered what
happened when the fuzzy sets theory was developed. In the 1970’s, some said “Fuzzy logic is the opium
of sciences”! Amazing to see how things have changed since that time and how fuzzy sets theory is now

well accepted and so well applied.

The scientific area of Information Fusion is beautifully “disturbing” our ways of thinking. In fact,
this area imposes important questions: What is information? What is really informative in information?
How to make information fusion? etc. From my own point of view, this area is pushing the scientific
community towards promising approaches. One of these approaches is raised by Florentin Smarandache
& Jean Dezert in their book: Advances and Applications of DSmT for Information Fusion. This approach
aims to formalize the fusion approach in the very particular context of uncertain and highly conflicting
information. The Dezert-Smarandache Theory (DSmT) should be considered as an extension of the
Dempster-Shafer (DS) as well as the Bayesian theories. From a technical point of view, the fundamental
question concerning the granularity of the singletons forming the frame of discernment is clearly raised.
The book is not only limited to theoretical developments but also presents a set of very interesting ap-

plications, making thus, its reading a real pleasure.

I would like to thank the authors for their original contribution and to encourage the development of

this very promising approach.

Bassel Solaiman, Prof., Ph.D.
ENST Bretagne
Brest - France

May, 2004



Part 1

Advances on DSmT






Chapter 1

Presentation of DSmT

Jean Dezert Florentin Smarandache
ONERA Department of Mathematics
29 Av. de la Division Leclerc ~ University of New Mexico
92320 Chatillon Gallup, NM 8730
France U.S.A.

Abstract: This chapter presents a general overview and foundations of the DSmT,
i.e. the recent theory of plausible and paradozical reasoning developed by the au-
thors, specially for the static or dynamic fusion of information arising from several
independent but potentially highly conflicting, uncertain and imprecise sources of
evidence. We introduce and justify here the basis of the DSmT framework with
respect to the Dempster-Shafer Theory (DST), a mathematical theory of evidence
developed in 1976 by Glenn Shafer. We present the DSm combination rules and
provide some simple illustrative ezamples and comparisons with other main rules of
combination available in the literature for the combination of information for sim-
ple fusion problems. Detailed presentations on recent advances and applications of

DSmT are presented in the next chapters of this book.

1.1 Introduction

he Dezert-Smarandache Theory (DSmT) of plausible and paradoxical reasoning proposed by the
Tauthors in recent years |9, [0, B6] can be considered as an extension of the classical Dempster-Shafer
theory (DST) [33] but includes fundamental differences with the DST. DSmT allows to formally combine
any types of independent sources of information represented in term of belief functions, but is mainly
focused on the fusion of uncertain, highly conflicting and imprecise sources of evidence. DSmT is able

to solve complex static or dynamic fusion problems beyond the limits of the DST framework, specially
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when conflicts between sources become large and when the refinement of the frame of the problem under
consideration, denoted ©, becomes inaccessible because of the vague, relative and imprecise nature of

elements of © [I0].

The foundation of DSmT is based on the definition of the Dedekind’s lattice D® also called hyper-
power set of the frame © in the sequel. In the DSmT framework, © is first considered as only a set
{61,...,0,} of n exhaustive elements (closed world assumption) without introducing other constraint
(exclusivity or non-existential constraints). This corresponds to the free DSm model on which is based
the classic DSm rule of combination. The exhaustivity (closed world) assumption is not fundamental
actually, because one can always close any open world theoretically, say ©open by including into it an
extra element/hypothesis 6y (although not precisely identified) corresponding to all missing hypotheses
of ©open to work with the new closed frame © = {6y} U ©gpen = {60,61,...,6,}. This idea has been
already proposed and defended by Yager, Dubois & Prade and Testemale in [@5, [[3, B0] and differs from
the Transferable Belief Model (TBM) of Smets [42]. The proper use of the free DSm model for the fusion
depends on the intrinsic nature of elements/concepts 6; involved in the problem under consideration
and becomes naturally justified when dealing with vague/continuous elements which cannot be precisely
defined and separated (e.g. the relative concepts of smallness/tallness, pleasure/pain, hot/cold, colors
(because of the continuous spectrum of the light), etc) so that no refinement of © in a new larger set

O,.cy of exclusive refined hypotheses is possible. In such case, we just call © the frame of the problem.

When a complete refinement (or maybe sometimes an only partial refinement) of © is possible and
thus allows us to work on ©,.s, then we call O,.; the frame of discernment (resp. frame of partial
discernment) of the problem because some elements of ©,..s are truly exclusive and thus they become
(resp. partially) discernable. The refined frame of discernment assuming exclusivity of all elements 6; € ©
corresponds to the Shafer’s model on which is based the DST and can be obtained from the free DSm
model by introducing into it all exclusivity constraints. All fusion problems dealing with truly exclusive
concepts must obviously be based on such model since it describes adequately the real and intrinsic nature
of hypotheses. Actually, any constrained model (including Shafer’s model) corresponds to what we called
an hybrid DSm model. DSmT provides a generalized hybrid DSm rule of combination for working with
any kind of hybrid models including exclusivity and non-existential constraints as well and it is not only
limited to the most constrained one, i.e. Shafer’s model (see chapter Hl for a detailed presentation and
examples on the hybrid DSm rule). Before going further into this DSmT presentation it is necessary to
briefly present the foundations of the DST [33] for pointing out the important differences between these

two theories for managing the combination of evidence.
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1.2 Short introduction to the DST

In this section, we present a short introduction to the Dempster-Shafer theory. A complete presentation
of the Mathematical Theory of Evidence proposed by Glenn Shafer can be found in his milestone book

n [33]. Advances on DST can be found in [34], 48] and [49].

1.2.1 Shafer’s model and belief functions

Let © = {61,03,...,0,} be the frame of discernment of the fusion problem under consideration having n
exhaustive and exclusive elementary hypotheses 6;. This corresponds to Shafer’s model of the problem.
Such a model assumes that an ultimate refinement of the problem is possible (exists and is achievable)
so that 0, are well precisely defined/identified in such a way that we are sure that they are exclusive and

exhaustive (closed-world assumption).

The set of all subsets of © is called the power set of © and is denoted 2°. Its cardinality is 2!®!. Since

29 is closed under unions, intersections, and complements, it defines a Boolean algebra.
By example, if ®@ = {91, 92, 93} then 26 = {@, 91, 92, 93, 91 @] 92, 91 @] 93, 92 U 93, 91 U 92 U 93}

In Shafer’s model, a basic belief assignment (bba) m(.) : 2© — [0, 1] associated to a given body of
evidence B (also called corpus of evidence) is defined by [33]

m@) =0  and > m(A) =1 (1.1)

Ae2©

Glenn Shafer defines the belief (credibility) and plausibility functions of A C © as

Bel(d)= Y m(B) (1.2)

Be2© BCA

PlA)= > m(B)=1-Bel(4) (1.3)
Be€29,BNA#D

where A denotes the complement of the proposition A in ©.

The belief functions m(.), Bel(.) and Pl(.) are in one-to-one correspondence [33]. The set of elements
A € 2° having a positive basic belief assignment is called the core/kernel of the source of evidence under

consideration and is denoted K(m).

1.2.2 Dempster’s rule of combination

Let Bel;(.) and Belz(.) be two belief functions provided by two independent (and a priori equally reliable)

sources/bodies of evidence B; and By over the same frame of discernment © and their corresponding
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bba mq(.) and ma(.). Then the combined global belief function denoted Bel(.) = Beli(.) & Bels(.) is
obtained by combining the bba m(.) and ma(.) through the following Dempster rule of combination [33]

m(.) = [m1 @ ms](.) where

m(0) =0
> ma(X)my(Y)
() = A V(A #D) € 2° .
m = = S
1= > ma(X)my(Y)
X,Ye2®
XNY=0

m(.) is a proper basic belief assignment if and only if the denominator in equation () is non-zero.

The degree of conflict between the sources By and By is defined by

k2 2 ) ma(X)ma(Y) (1.5)

X,Ye2®

XNy=0
The effect of the normalizing factor 1 — k12 in () consists in eliminating the conflicting pieces
of information between the two sources to combine, consistently with the intersection operator. When
k12 = 1, the combined bba m(.) does not exist and the bodies of evidences By and By are said to be in
full contradiction. Such a case arises when there exists A C © such that Bel;(A) = 1 and Bely(A4) = 1.
The core of the bba m(.) equals the intersection of the cores of m; and mq, i.e K(m) = K(m1) N K(mg).
Up to the normalization factor 1 — ky2, Dempster’s rule is formally nothing but a random set intersection
under stochastic assumption and it corresponds to the conjunctive consensus [I3]. Dempster’s rule of
combination can be directly extended for the combination of NV independent and equally reliable sources of

evidence and its major interest comes essentially from its commutativity and associativity properties [33].

A recent discussion on Dempster’s and Bayesian rules of combination can be found in [3].

1.2.3 Alternatives to Dempster’s rule of combination

The DST is attractive for the Information Fusion community because it gives a nice mathematical model
for the representation of uncertainty and it includes Bayesian theory as a special case [33] (p. 4). Although
very appealing, the DST presents some weaknesses and limitations [27] already reported by Zadeh B0,
o1, 62, B3] and Dubois & Prade in the eighties [I2] and reinforced by Voorbraak in [43] because of the
lack of complete theoretical justification of Dempster’s rule of combination, but mainly because of our
low confidence to trust the result of Dempster’s rule of combination when the conflict becomes important
between sources (i.e. ki2 /' 1). Indeed, there exists an infinite class of cases where Dempster’s rule of
combination can assign certainty to a minority opinion (other infinite classes of counter-examples are
discussed in chapter H) or where the ”ignorance” interval disappears forever whenever a single piece of

evidence commits all its belief to a proposition and its negation [29]. Moreover, elements of sets with
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larger cardinality can gain a disproportionate share of belief [43]. These drawbacks have fed intensive

debates and research works for the last twenty years:

e either to interpret (and justify as best as possible) the use of Dempster’s rule by several approaches
and to circumvent numerical problems with it when conflict becomes high. These approaches are
mainly based on the extension of the domain of the probability functions from the propositional
logic domain to the modal propositional logic domain [31), B2, 28] or on the hint model [22] and
probabilistic argumentation systems [T} [[5] [T, 2, [16, [I7, [[8, 19, 20]. Discussions on these interpre-
tations of DST can be found in [38, B0, B2, and also in chapter [[Z of this book which analyzes and
compares Bayesian reasoning, Dempster-Shafer’s reasoning and DSm reasoning on a very simple

but interesting example drawn from [28§].

e or to propose new alternative rules. DSmT fits in this category since it extends the foundations of

DST and also provides a new combination rules as it will be shown in next sections.

Several interesting and valuable alternative rules have thus been proposed in literature to circumvent
the limitations of Dempster’s rule of combination. The major common alternatives are listed in this
section and most of the current available combination rules have been recently unified in a nice gen-
eral framework by Lefévre, Colot and Vanoorenberghe in [25]. Their important contribution, although
strongly criticized by Haenni in [I9] but properly justified by Lefevre et al. in [26], shows clearly that
an infinite number of possible rules of combinations can be built from Shafer’s model depending on the
choice for transfer of the conflicting mass (i.e. ki2). A justification of Dempster’s rule of combination
has been proposed afterwards in the nineties by the axiomatic of Philippe Smets [37, 24, BT, 42] based
on his Transferable Belief Model (TBM) related to anterior works of Cheng and Kashyap in [6], a non-

probabilistic interpretation of Dempster-Shafer theory (see [B, H] for discussion).

Here is the list of the most common rules of combinatiorﬂ for two independent sources of evidence
proposed in the literature in the DST framework as possible alternatives to Dempster’s rule of combination

to overcome its limitations. Unless explicitly specified, the sources are assumed to be equally reliable.

e The disjunctive rule of combination [T} [[3, B9]: This commutative and associative rule pro-
posed by Dubois & Prade in 1986 and denoted here by the index U is examined in details in chapter
B my(.) is defined VA € 2° by

my(0) =0

mu(A) = Y mi(X)ma(Y) V(A #0)€2° (1.6)
X,y e2®
XUY=A

1The MinC rule of combination is not included here since it is covered in details in chapter [
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The core of the belief function given by m, equals the union of the cores of Bel; and Bels. This rule
reflects the disjunctive consensus and is usually preferred when one knows that one of the source

B1 or By is mistaken but without knowing which one among B; and Bs.

e Murphy’s rule of combination [27: This commutative (but not associative) trade-off rule,
denoted here with index M, drawn from [46], [[3] is a special case of convex combination of bba my
and mg and consists actually in a simple arithmetic average of belief functions associated with m;

and ma. Bely(.) is then given VA € 2© by:

Bely (A) = %[Bell(A) + Belo(A))] (1.7)

e Smets’ rule of combination [ATL42]: This commutative and associative rule corresponds actually
to the non-normalized version of Dempster’s rule of combination. It allows positive mass on the
null/empty set (. This eliminates the division by 1 — k12 involved in Dempster’s rule (). Smets’
rule of combination of two independent (equally reliable) sources of evidence (denoted here by index
S) is given by:

ms0) =k =Y mi(X)ma(Y)

X,y e2®
XNY=0 (1.8)

ms(A) = Y mi(X)ma(Y)  V(A#0)€2°
X,ye2®
XNy=A
e Yager’s rule of combination [l 46, B7]: Yager admits that in case of conflict the result is not

reliable, so that k12 plays the role of an absolute discounting term added to the weight of ignorance.

The commutative (but not associative) Yager rule, denoted here by index Y is givend by:

my (@) =0
my(A) = > mi(X)my(Y) VA2 A#0,A+0O
X,ye2® (1.9)
XNY=A
my (0) = m1(0)my(0) + Z m1(X)mo(Y) when A=0
55

e Dubois & Prade’s rule of combination [I3]: We admit that the two sources are reliable when
they are not in conflict, but one of them is right when a conflict occurs. Then if one observes a value
in set X while the other observes this value in a set Y, the truth lies in X NY as long X NY # (.

If X NY =0, then the truth lies in X UY [I3]. According to this principle, the commutative (but

20 represents here the full ignorance 1 U@z U ... U 6, on the frame of discernment according the notation used in [B3].
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not associative) Dubois & Prade hybrid rule of combination, denoted here by index DP, which is

a reasonable trade-off between precision and reliability, is definedd by:

mDp((Z)) =0

mpp(A) = Y mi(X)ma(Y)+ Y mi(X)ma(Y) VA€2°,4#0 (1.10)
X,y e2® X,y e2®
XNY=A XUY=A
XNY #0D XNy =0

1.2.3.1 The unified formulation for rules of combinations involving conjunctive consensus

We present here the unified framework recently proposed by Lefevre, Colot and Vanoorenberghe in [25] to
embed all the existing (and potentially forthcoming) combination rules involving conjunctive consensus
in the same general mechanism of construction. Here is the principle of their general formulation based

on two steps.

e Step 1: Computation of the total conflicting mass based on the conjunctive consensus

klg é Z ml(X)mg(Y) (111)

X,ye2®
XNy =0

e Step 2: This step consists in the reallocation (convex combination) of the conflicting masses on

(A # 0) C © with some given coefficients wy, (A) € [0,1] such that 3 4 wm(A4) = 1 according to

m(0) = wm (0)k12

m(A) = [ Z m1(X)ma(Y)] + wp (A) k12 V(A # () € 2° (1.12)

X,y e2®
XNY=A4

The particular choice of the set of coefficients wy, (.) provides a particular rule of combination. Actually
this nice and important general formulation shows there exists an infinite number of possible rules of
combination. Some rules are then justified or criticized with respect to the other ones mainly on their
ability to, or not to, preserve the associativity and commutativity properties of the combination. It
can be easily shown in [25] that such general procedure provides all existing rules involving conjunctive

consensus developed in the literature based on Shafer’s model. As examples:

e Dempster’s rule of combination () can be obtained from (CI2) by choosing VA # ()

wa®) =0 and wn(d) = Y m(Xma(Y) (1.13)

X,Ye2®
XNY=A

3taking into account the the correction of the typo error in formula (56) given in [[3], page 257.
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e Yager’s rule of combination (CH) is obtained by choosing

wm(©) =1 and wm(A#£0)=0 (1.14)

e Smets’ rule of combination ([J) is obtained by choosing

wm(0) =1 and  wR(A#£0)=0 (1.15)

e Dubois and Prade’s rule of combination ([CI0) is obtained by choosing

1

YA CP, wm(A) = E m* 1.16

a ( ) 1=k A1,As|A]UAS=A ( )
A1NAy=0

where m* £ m; (A;)ma(As) corresponds to the partial conflicting mass which is assigned to A; UAs.

P is the set of all subsets of 2 on which the conflicting mass is distributed. P is defined by [25]

P2{Ac2°|3A4, € K(my),342 € K(ma), A1 U Ay = Aand A; N Ay = 0} (1.17)

The computation of the weighting factors w,,(A) of Dubois and Prade’s rule of combination does
not depend only on propositions they are associated with, but also on belief mass functions which
have cause the partial conflicts. Thus the belief mass functions leading to the conflict allow to
compute that part of conflicting mass which must be assigned to the subsets of P [25]. Yager’s rule

coincides with the Dubois and Prade’s rule of combination when P = {©}.

1.2.4 The discounting of sources of evidence

Most of the rules of combination proposed in the literature are based on the assumption of the same
reliability of sources of evidence. When the sources are known not being equally reliable and the reliability
of each source is perfectly known (or at least has been properly estimated when it’s possible [42, 25]),
then is it natural and reasonable to discount each unreliable source proportionally to its corresponding
reliability factor according to method proposed by Shafer in [33], chapter 11. Two methods are usually

used for discounting the sources:

e Classical discounting method [33] [[3] @2l 25]:

Assume that the reliability/ conﬁdencJ} factor a € [0,1] of a source is known, then the discounting
of the bba m(.) provided by the unreliable source is done to obtain a new (discounted) bba m/(.)

as follows:

m/(A) = a-m(4), VA€2°, 440
(1.18)

m'(0)=(1—a)+a-m(O)

4We prefer to use here the terminology confidence rather than reliability since the notion of reliability is closely related
to the repetition of experiments with random outputs which may not be always possible in the context of some information

fusion applications (see example 1.6 given by Shafer on the life on Sirius in [33], p.23)
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« = 1 means the total confidence in the source while a = 0 means a complete calling in question of

the reliability of the source.

e Discounting by convex combination of sources [I3]: This method of discounting is based on
the convex combination of sources by their relative reliabilities, assumed to be known. Let consider
two independent unreliable sources of evidence with reliability factors «; and as with ag, as € [0, 1],

then the result of the combination of the discounted sources will be given VA € 2° by

Bel(A) = ﬁBeh(A) + ﬁBeIQ(A) (1.19)

When the sources are highly conflicting and they have been sufficiently discounted, Shafer has
shown in [33], p. 253, that the combination of a large number n of equally reliable sources using
Dempster’s rule on equally discounted belief functions, becomes similar to the convex combination
of the n sources with equal reliability factors o; = 1/n. A detailed presentation of discounting

methods can be found in [T3].

It is important to note that such discounting methods must not be chosen as an ad-hoc tool to adjust
the result of the fusion (once obtained) in case of troubles if a counter-intuitive or bad result arises, but
only beforehand when one has prior information on the quality of sources. In the sequel of the book we will
assume that sources under consideration are a priori equally reliable/trustable, unless specified explicitly.
Although being very important for practical issues, the case of the fusion of known unreliable sources of
information is not considered in this book because it depends on the own choice of the discounting method
adopted by the system designer (this is also highly related with the application under consideration and
the types of the sources to be combined). Fundamentally the problem of combination of unreliable sources
of evidence is the same as working with new sets of basic belief assignments and thus has little interest

in the framework of this book.

1.3 Foundations of the DSmT

1.3.1 Notion of free and hybrid DSm models

The development of the DSmT arises from the necessity to overcome the inherent limitations of the DST
which are closely related with the acceptance of Shafer’s model (the frame of discernment © defined as
a finite set of ezhaustive and exclusive hypotheses 6;, i = 1,...,n), the third middle excluded principle
(i.e. the existence of the complement for any elements/propositions belonging to the power set of ©),
and the acceptance of Dempter’s rule of combination (involving normalization) as the framework for the
combination of independent sources of evidence. We argue that these three fundamental conditions of

the DST can be removed and another new mathematical approach for combination of evidence is possible.
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The basis of the DSmT is the refutation of the principle of the third excluded middle and Shafer’s
model, since for a wide class of fusion problems the intrinsic nature of hypotheses can be only vague and
imprecise in such a way that precise refinement is just impossible to obtain in reality so that the exclu-
sive elements 6; cannot be properly identified and precisely separated. Many problems involving fuzzy
continuous and relative concepts described in natural language and having no absolute interpretation
like tallness/smallness, pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT
starts with the notion of free DSm model, denoted M7 (0), and considers © only as a frame of exhaustive
elements 0;, i = 1,...,n which can potentially overlap. This model is free because no other assumption is
done on the hypotheses, but the weak exhaustivity constraint which can always been satisfied according
the closure principle explained in the introduction of this chapter. No other constraint is involved in the
free DSm model. When the free DSm model holds, the classic commutative and associative DSm rule
of combination (corresponding to the conjunctive consensus defined on the free Dedekind’s lattice - see

next subsection) is performed.

Depending on the intrinsic nature of the elements of the fusion problem under consideration, it can
however happen that the free model does not fit the reality because some subsets of © can contain el-
ements known to be truly exclusive but also truly non existing at all at a given time (specially when
working on dynamic fusion problem where the frame © varies with time with the revision of the knowl-
edge available). These integrity constraints are then explicitly and formally introduced into the free DSm
model M7(0) in order to adapt it properly to fit as close as possible with the reality and permit to
construct a hybrid DSm model M(O) on which the combination will be efficiently performed. Shafer’s
model, denoted M°(0), corresponds to a very specific hybrid DSm model including all possible exclusiv-
ity constraints. The DST has been developed for working only with M°%(©) while the DSmT has been
developed for working with any kind of hybrid model (including Shafer’s model and the free DSm model),
to manage as efficiently and precisely as possible imprecise, uncertain and potentially high conflicting
sources of evidence while keeping in mind the possible dynamicity of the information fusion problem-
atic. The foundations of the DSmT are therefore totally different from those of all existing approaches
managing uncertainties, imprecisions and conflicts. DSmT provides a new interesting way to attack the
information fusion problematic with a general framework in order to cover a wide variety of problems. A

detailed presentation of hybrid DSm models and hybrid DSm rule of combination is given in chapter Hl

DSmT refutes also the idea that sources of evidence provide their beliefs with the same absolute in-
terpretation of elements of the same frame © and the conflict between sources arises not only because of
the possible unreliabilty of sources, but also because of possible different and relative interpretation of ©,

e.g. what is considered as good for somebody can be considered as bad for somebody else. There is some
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unavoidable subjectivity in the belief assignments provided by the sources of evidence, otherwise it would
mean that all bodies of evidence have a same objective and universal interpretation (or measure) of the
phenomena under consideration, which unfortunately rarely occurs in reality, but when bba are based on
some objective probabilities transformations. But in this last case, probability theory can handle properly
and efficiently the information, and the DST, as well as the DSmT, becomes useless. If we now get out of
the probabilistic background argumentation for the construction of bba, we claim that in most of cases,
the sources of evidence provide their beliefs about elements of the frame of the fusion problem only based
on their own limited knowledge and experience without reference to the (inaccessible) absolute truth of

the space of possibilities.

The DSmT includes the possibility to deal with evidences arising from different sources of information
which do not have access to the absolute and same interpretation of the elements of © under consideration.
The DSmT, although not based on probabilistic argumentation can be interpreted as an extension of
Bayesian theory and Dempster-Shafer theory in the following sense. Let © = {61,602} be the simplest

frame made of only two hypotheses, then

e the probability theory deals, under the assumptions on exclusivity and exhaustivity of hypotheses,

with basic probability assignments (bpa) m(.) € [0, 1] such that

e the DST deals, under the assumptions on exclusivity and exhaustivity of hypotheses, with bba
m(.) € [0,1] such that
m(6‘1) + m(6‘2) + m(91 U 92) =1

e the DSmT theory deals, under only assumption on exhaustivity of hypotheses (i.e. the free DSm

model), with the generalized bba m(.) € [0, 1] such that

m(@l) + m(6‘2) + m(91 U 6‘2) + m(91 n 92) =1

1.3.2 Notion of hyper-power set D®

One of the cornerstones of the DSmT is the notion of hyper-power set (see chapters Bl and Bl for examples
and a detailed presentation). Let © = {61, ..., 60, } be a finite set (called frame) of n exhaustive elements.
The Dedekind’s lattice, also called in the DSmT framework hyper-power set D® is defined as the set of

all composite propositions built from elements of © with U and N operatorﬂ such that:

5We do not assume here that elements 6; are necessary exclusive. There is no restriction on 6; but the exhaustivity.
60 generates D® under operators U and N
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1. 0,91,...79n€D®.
2. If A,B € D®, then ANB € D® and AU B € D°.

3. No other elements belong to D®, except those obtained by using rules 1 or 2.

The dual (obtained by switching U and N in expressions) of D® is itself. There are elements in D®
which are self-dual (dual to themselves), for example ag for the case when n = 3 in the example below.
The cardinality of D® is majored by 22" when the cardinality of © equals n, i.e. |©] = n. The generation
of hyper-power set D® is closely related with the famous Dedekind problem 8, [7] on enumerating the set
of isotone Boolean functions. The generation of the hyper-power set is presented in chapter Bl Since for

any given finite set ©, |[D®| > |29| we call D® the hyper-power set of ©.

Example of the first hyper-power sets D®
e For the degenerate case (n = 0) where © = {}, one has D® = {ay = ()} and |D®| = 1.
e When © = {6}, one has D® = {ag = ),a; = 6} and |D®| = 2.

e When © = {6,0,}, one has D® = {ag,a1,...,a4} and |D®| = 5 with ap £ 0, a1 = 61 N b2,

Qo é91, Qs é@g and a4é91 U 6s.

e When O = {6;,05,03}, one has D® = {ag,ay,...,a15} and |D®| = 19 with

ap = ()

a1 2 60:N60:N05 a1p £ 65

g 20, N6 a1 = 03

az 2 60,N63 a1a 2 (01N 6) U b3
ay = 0N 603 a1z = (01 N63) U by
as = (0, Ub) N o3 a1s = (02N 63) U6
ag 2 (01 UB3) N6y ais =601 U6y

ar = (62 U03) N6 16 £ 601 U 03

ag = (01 NO)U (01 NO3) U (B2 N03) gy =60,U63

a9é91 a18é91U92U93

Note that the complement A of any proposition A (except for () and for the total ignorance I; £

61 UbU...UH,), is not involved within DSmT because of the refutation of the third excluded middle.
In other words, YA € D® with A # () or A # I, A ¢ D®. Thus (D®,N,U) does not define a Boolean al-
gebra. The cardinality of hyper-power set D® for n > 1 follows the sequence of Dedekind’s numbers [35],

ie. 1,2,5,19,167,7580,7828353,... (see next chapter for details).
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Elements 0;, 7 = 1,...,n of © constitute the finite set of hypotheses/concepts characterizing the fusion
problem under consideration. D® constitutes what we call the free DSm model M/(0) and allows to
work with fuzzy concepts which depict a continuous and relative intrinsic nature. Such kinds of concepts

cannot be precisely refined in an absolute interpretation because of the unapproachable universal truth.

However for some particular fusion problems involving discrete concepts, elements 6; are truly exclu-
sive. In such case, all the exclusivity constraints on #;, i = 1,...,n have to be included in the previous
model to characterize properly the true nature of the fusion problem and to fit it with the reality. By
doing this, the hyper-power set D® reduces naturally to the classical power set 2© and this constitutes
the most restricted hybrid DSm model, denoted M°(0), coinciding with Shafer’s model. As an exemple,
let’s consider the 2D problem where © = {6,605} with D® = {(),6; N 0a,6,,02,6, U} and assume now
that 6, and 0y are truly exclusive (i.e. Shafer’s model MO holds), then because 61 N Oy Aéo (), one gets

0
D® ={0,6, N6, 20,64,6,,0, Ubs} = {0,61,05,0, Ub} = 2°.

Between the class of fusion problems corresponding to the free DSm model M/ (©) and the class of
fusion problems corresponding to Shafer’s model M%(0), there exists another wide class of hybrid fusion
problems involving in © both fuzzy continuous concepts and discrete hypotheses. In such (hybrid) class,
some exclusivity constraints and possibly some non-existential constraints (especially when working on
dynamid] fusion) have to be taken into account. Each hybrid fusion problem of this class will then be
characterized by a proper hybrid DSm model M(0) with M(0) # M/ (©) and M(0) # M°(O), see

examples presented in chapter

1.3.3 Generalized belief functions
From a general frame ©, we define a map m(.) : D® — [0, 1] associated to a given body of evidence B as
m@) =0  and > m(A) =1 (1.20)

AeD®
The quantity m(A) is called the generalized basic belief assignment/mass (gbba) of A.

The generalized belief and plausibility functions are defined in almost the same manner as within the

DST, i.e.
Bel(4) = Y m(B) (1.21)

Pl(A)= >  m(B) (1.22)

i.e. when the frame © is changing with time.
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These definitions are compatible with the definitions of classical belief functions in the DST framework
when D€ reduces to 2° for fusion problems where Shafer’s model M°(©) holds. We still have VA €
D® Bel(A) < PI(A). Note that when working with the free DSm model M/ (0), one has always P1(A) =
1 VA # () € D® which is normal.

1.3.4 The classic DSm rule of combination

When the free DSm model M/ (©) holds for the fusion problem under consideration, the classic DSm
rule of combination m s gy = m(.) £ [m1 @ mo](.) of two independent sources of evidences By and By
over the same frame © with belief functions Bel;(.) and Bely(.) associated with gbba m4(.) and ma(.)

corresponds to the conjunctive consensus of the sources. It is given by [0, [0]:

VC € D®,  mupse)(C)=m(C)= Y mi(A)ma(B) (1.23)
A,BeD®
ANB=C
Since D® is closed under U and N set operators, this new rule of combination guarantees that m(.) is
a proper generalized belief assignment, i.e. m(.) : D® — [0,1]. This rule of combination is commutative
and associative and can always be used for the fusion of sources involving fuzzy concepts. This rule can

be directly and easily extended for the combination of k > 2 independent sources of evidence (see the

expression for S1(.) in the next section and chapter Hl for details).

This classic DSm rule of combination becomes very expensive in terms of computations and memory
size due to the huge number of elements in D® when the cardinality of © increases. This remark is
however valid only if the cores (the set of focal elements of gbba) K1(m1) and K2 (m2) coincide with D®,
i.e. when m(A) > 0 and ma(A) > 0 for all A # () € D®. Fortunately, it is important to note here that in
most of the practical applications the sizes of IC;(m;) and Ka(ms2) are much smaller than |D®| because
bodies of evidence generally allocate their basic belief assignments only over a subset of the hyper-power

set. This makes things easier for the implementation of the classic DSm rule (CZ3).

The DSm rule is actually very easy to implement. It suffices for each focal element of Ky (mq) to
multiply it with the focal elements of Ka(mso) and then to pool all combinations which are equivalent

under the algebra of sets according to figure [C11

The figure [Tl represents the DSm network architecture of the DSm rule of combination. The first
layer of the network consists in all gbba of focal elements A;,i = 1,...,n of mi(.). The second layer
of the network consists in all gbba of focal elements Bj,j = 1,...,k of ma(.). Each node of layer 2 is
connected with each node of layer 1. The output layer (on the right) consists in the combined basic

belief assignments of all possible intersections 4; N By, ¢ = 1,...,n and j = 1,...,k. The last step
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of the classic DSm rule (not included on the figure) consists in the compression of the output layer by
regrouping (summing up) all the combined belief assignments corresponding to the same focal elements
(by example if X = A; N Bs = A4 N Bs, then m(X) = m(A2 N Bs) + m(A4 N Bs)). If a third body of
evidence provides a new gbhba ms3(.), the one combines it by connecting the output layer with the layer
associated to mg(.), and so on. Because of commutativity and associativity properties of the classic DSm

rule, the DSm network can be designed with any order of the layers.

m(Ay N Br) = m1(A1)ma(B1)
m(An n Bl) = ml(An)mg(Bl)

77:1(A1 N Bg) = T:n1(A1)77212(BQ)
m(An N By) = my(Ay)ma(Bs)

m(A1 N By) = mi(Ar)ma(B)
m(An N By) = mq(An)ma(By)

Figure 1.1: Representation of the classic DSm rule on M/ (0)

1.3.5 The hybrid DSm rule of combination

When the free DSm model M/ (©) does not hold due to the true nature of the fusion problem under
consideration which requires to take into account some known integrity constraints, one has to work with
a proper hybrid DSm model M(0) # M/ (). In such case, the hybrid DSm rule of combination based
on the chosen hybrid DSm model M(O) for k£ > 2 independent sources of information is defined for all

A € D® as (see chapter @l for details):
ma(e)(A) = ¢(A) |S1(A) + S2(A4) + 53(14)} (1.24)

where ¢(A) is the characteristic non-emptiness function of a set A, ie. ¢(A) =11if A ¢ @ and ¢p(4) =0
otherwise, where @ = {@nq, 0}. @ is the set of all elements of D® which have been forced to be empty
through the constraints of the model M and §) is the classical/universal empty set. S1(A) = m s g)(A),
S2(A), S3(A) are defined by

Si1(4) £ > [[mi(x3) (1.25)

X1,X9,..,X,eD® =1
(XlﬁXQO...ﬂXk):A
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k

Sa(4) 2 2 [Tmi(x) (1.26)
X1,X2,...,X,€0 i=1
U=AN[UER A (A=T1,)]

S3(4) £ > [[mi(x3) (1.27)

X1,X9,..,X,eD® =1
(XlUXQU...UXk):A
(XlﬂXgﬂ..nXk)e(I)

with U £ u(X7) Uu(Xa) U...Uu(Xg) where u(X) is the union of all singletons 6; that compose X and
I, £ 0, U0,U...U6, is the total ignorance. S7(A) corresponds to the classic DSm rule of combination for
k independent sources based on the free DSm model M7 (6); S3(A) represents the mass of all relatively
and absolutely empty sets which is transferred to the total or relative ignorances; Ss3(A) transfers the

sum of relatively empty sets to the non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of combination and is not
equivalent to Dempter’s rule. It works for any models (the free DSm model, Shafer’s model or any other
hybrid models) when manipulating precise generalized (or eventually classical) basic belief functions. An
extension of this rule for the combination of imprecise generalized (or eventually classical) basic belief

functions is presented in chapter @l and is not reported in this presentation of DSmT.

1.3.6 On the refinement of the frames

Let’s bring here a clarification on the notion of refinement and its consequences with respect to DSmT
and DST. The refinement of a set of overlapping hypotheses © = {6;,i = 1,...,n} consists in getting a
new finer set of hypotheses 6}, i = 1,...,n/, n’ > n} such that we are sure that 6 are truly exclusive and
Ur .60, = U?;lt?;, ie. © ={6,,i=1,...,n > n}. The DST starts with the notion of frame of discern-
ment (finite set of exhaustive and exclusive hypotheses). The DST assumes therefore that a refinement
exists to describe the fusion problem and is achievable while DSmT does not make such assumption at its
starting. The assumption of existence of a refinement process appears to us as a very strong assumption
which reduces drastically the domain of applicability of the DST because the frames for most of prob-

lems described in terms of natural language manipulating vague/continuous/relative concepts cannot be

formally refined at all. Such an assumption is not fundamental and is relaxed in DSmT.

As a very simple but illustrative example, let’s consider © defined as © = {#; = Small, 6, = Tall}.
The notions of smallness (f1) and tallness (f2) cannot be interpreted in an absolute manner actually
since these notions are only defined with respect to some reference points chosen arbitrarily. Two inde-
pendent sources of evidence (human ”experts” here) can provide a different interpretation of §; and 69

just because they usually do not share the same reference point. #; and 6 represent actually fuzzy con-
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cepts carrying only a relative meaning. Moreover, these concepts are linked together by a continuous path.

Let’s examine now a numerical example. Consider again the frame © = {f; £ Small, §; £ Tall} on

the size of person with two independent witnesses providing belief masses
m1(91) =04 m1(92) =0.5 m1(91 U 92) =0.1

m2(91) =0.6 m2(92) =0.2 m2(91 U 92) =02

If we admit that 6; and #; cannot be precisely refined according to the previous justification, then the

result of the classic DSm rule (denoted by index DSmc here) of combination yields:
mDSmc((Z)) =0 mDsmc(Hl) =0.38 mDsmc(ﬁg) =0.22 mDSmc(6‘1U6‘2) =0.02 mDsmc(ﬁlﬂﬁg) =0.38

Starting now with the same information, i.e. mq(.) and ma(.), we volontary assume that a refinement
is possible (even if it does not make sense actually here) in order to compare the previous result with
the result one would obtain with Dempster’s rule of combination. So, let’s assume the existence of an
hypothetical refined frame of discernment ©,..; = {0} = Small’, 05 £ Medium, ¢4 = Tall’} where 0}, 6}
and 604 correspond to some virtual exclusive hypotheses such that 61 = 61U0)%, 6, = 6,005 and 6:N6; = 6},
and where Small’” and Tall’ correspond respectively to a finer notion of smallness and tallness than in
original frame ©. Because, we don’t change the information we have available (that’s all we have), the

initial bba m;(.) and ms(.) expressed now on the virtual refined power set 2 are given by
my(LU) =04  my(f,U05) =05  my(H U UG) =0.1

my(0yU6y) =0.6  my(05U605) =0.2  mhH(6; UG, U6L) =0.2

Because O,y is a refined frame, DST works and Dempster’s rule applies. Because there is no positive
masses for conflicting terms 0] N6Y, 67 NO%, 05,N0%5 or ) NO,NEGL, the degree of conflict reduces to k12 =0
and the normalization factor involved in Dempster’s rule is 1 in this refined example. One gets formally,

where index DS denotes here Dempster’s rule, the following result:

mps(@) =0

mps(65) = m'y (6, U6,)mb (6 U 6y) +mb (68 Uby)m) (6 U6) =0.2-0.4+0.5-0.6 = 0.38

mps (01 U ) = my (6 U bs)ms(67 U 63) + mi (67 U 05 U b)ms (67 U b) + ma (6 U 6y U 05)mi (67 U 65)

04-06+0.1-064+0.2-0.4=0.38

M (0 U 8) = m, (6 U 8 )miy(0 U 05) -+l (6 U 0 U 05 )m (8 U 6) + mb (6} U 8y U 4)m}, (6} U )
=02-05+0.1-024+0.2-05=0.22

mps (0] U6, U0L) =mi (67 U, UG )mSL(60; U, U6s) =0.1-0.2=0.02
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But since 05 = 61 N6y, 07 U0, =61, 05,005 = 02 and 0] U6, U0O; = 01 U b, one sees that Dempster’s
rule reduces to the classic DSm rule of combination, which means that the refinement of the frame ©
does not help to get a more specific (better) result from the DST when the inputs of the problem remain
the same. Actually, working on ©,.¢ with DST does not bring a difference with DSmT, but just brings
an useless complexity in derivations. Note that the hybrid DSm rule of combination can also be applied
on Shafer’s model associated with ©,.f, but it naturally provides the same result as with the classic DSm

rule in this case.

If the inputs of the problem are now changed by re-asking (assuming that such process is possible)
the sources to provide their revised belief assignents directly on ©,.f, with m}(6;) > 0, m/(65) > 0 and
m}(0%5) > 0 (¢ = 1,2) rather than on ©, then the hybrid DSm rule of combination will be applied instead
of Dempster’s rule when adopting the DSmT. The fusion results will then differ, which is normal since

the hybrid DSm rule is not equivalent to Dempster’s rule, except when the conflict is zero.

1.3.7 On the combination of sources over different frames

In some fusion problems, it can happen that sources provide their basic belief assignment over distinct
frames (which can moreover sometimes partially overlap). As simple example, let’s consider two equally
reliable sources of evidence B; and By providing their belief assignments repectively on distinct frames

O and Oy defined as follows
O, = {P £ Plane, H £ Helicopter, M £ Missile}

O, = {S £ Slow motion, F' £ Fast motion}

In other words, m1(.) associated with B; is defined either on DY or 29 (if Shafer’s model is assumed
to hold) while my(.) associated with By is defined either on D or 29. The problem relates here to the

combination of mq(.) with ma(.).

The basic solution of this problem consists in working on the global frameH © = {01,053} and in
following the deconditionning method proposed by Smets in [39] based on the principle on the minimum
of specificity to revise the basic belief assignments m4(.) and mz(.) on ©. When additional information
on compatibility links between elements of ©; and O, is known, then the refined method proposed by
Janez in [21] is preferred. Once the proper model M(0) for © has been chosen to fit with the true nature
of hypotheses and the revised bba m7¢’(.) and m5¢?(.) defined on D® are obtained, the fusion of belief

assignments is performed with the hybrid DSm rule of combination.

8with suppression of possible redundant elements when ©1 and O3 overlap partially.
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1.4 Comparison of different rules of combinations

1.4.1 First example

In this section, we compare the results provided by the most common rules of combinations on the
following very simple numerical example where only 2 independent sources (a priori assumed equally
reliable) are involved and providing their belief initially on the 3D frame © = {61,62,605}. It is assumed
in this example that Shafer’s model holds and thus the belief assignments my(.) and maz(.) do not commit

belief to internal conflicting information. m;(.) and mz(.) are chosen as follows:

mq (91) =0.1 mq (92) =04 mq (93) =0.2 mq (91 U 92) =0.1
m2(91) =05 m2(92) =0.1 m2(93) =0.3 m2(91 @] 92) =0.1
These belief masses are usually represented in the form of a belief mass matrix M given by

0.1 04 0.2 0.3
M = (1.28)

0.5 0.1 0.3 0.1
where index ¢ for the rows corresponds to the index of the source no. 4 and the indexes j for columns
of M correspond to a given choice for enumerating the focal elements of all sources. In this particular

example, index j = 1 corresponds to 61, j = 2 corresponds to 62, 7 = 3 corresponds to 63 and 7 = 4

corresponds to 61 U 0.

Now let’s imagine that one finds out that f3 is actually truly empty because some extra and certain
knowledge on 03 is received by the fusion center. As example, 61, 62 and 03 may correspond to three
suspects (potential murders) in a police investigation, m;(.) and ma(.) corresponds to two reports of
independent witnesses, but it turns out that finally 5 has provided a strong alibi to the criminal police
investigator once arrested by the policemen. This situation corresponds to set up a hybrid model M with

the constraint 65 2 (see chapter Hl for a detailed presentation on hybrid models).

Let’s examine the result of the fusion in such situation obtained by the Smets’, Yager’s, Dubois &
Prade’s and hybrid DSm rules of combinations. First note that, based on the free DSm model, one would

get by applying the classic DSm rule (denoted here by index DSmc) the following fusion result

mDSmc(ﬁl) =0.21 mDsmc(eg) =0.11 mDSmc(Hg) = 0.06 mDSmc(ﬁl U 92) =0.03
mDSmc(91 M 6‘2) =0.21 mDsmc(ﬁl n 93) =0.13 mDSmc(ﬁg n 93) =0.14

mDSmc(og N (91 @] 92)) =0.11
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But because of the exclusivity constraints (imposed here by the use of Shafer’s model and by the

non-existential constraint 63 M (), the total conflicting mass is actually given by
k12 =0.06 +0.214+0.134+0.14 4 0.11 = 0.65 (conflicting mass)
e If one applies the Disjunctive rule (CH), one gets:

mu(0) = 0
mu(01) = ma (0 )ma(6,) = 0.1-0.5 = 0.05
mo(62) = my (B2)ma(6) = 0.4-0.1 = 0.04
my(f3) = m1(63)ma(63) = 0.2-0.3 = 0.06
my(01 U b2) = [mq(01 U bO2)ma (61 UO2)] + [m1(01)ma(02) + ma(01)m1(62)]
+ [ma(01)ma (01 U 62) + ma(61)mq (61 U 62)]
+ [ma(02)ma (01 U b2) + ma(B2)my (61 U 62)]
= [0.3-0.1] + [0.01 + 0.20] + [0.01 + 015] + [0.04 + 0.03]
=0.0340.21 4+ 0.16 + 0.007 = 0.47
mo(61 U 6s) = m (01)ma(03) + ma(6:)mr (63) = 0.03 + 0.10 = 0.13
my (b2 U b3) = mq(02)ma(03) + ma(2)m1(65) = 0.12 4+ 0.02 = 0.14

mu(6‘1 Uby U 92) = m1(93)m2(91 U 6‘2) =0.02+0.09=0.11

e If one applies the hybrid DSm rule (CZ4) (denoted here by index DSmh) for 2 sources (k = 2),

one gets:

mpsmn(0) =0
mpsmh(61) = 0.21 +0.13 =0.34
mpsmh(62) = 0.11 +0.14 = 0.25

mpsmn (01 U ) =0.03+[0.2-0.1+0.3-0.3]+[0.1-0.1+0.5-0.4] + 0.2 0.3] = 0.41

e If one applies Smets’ rule (LX), one gets:

mg(0) = m(0) = 0.65 (conflicting mass)
ms(01) = 0.21
ms(02) = 0.11

m5(91 U 92) = 003
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e If one applies Yager’s rule (L), one gets:

my(@) =0
my(91) =0.21
my(92) =0.11

my (01 U 6a) = 0.03 + k1o = 0.03 + 0.65 = 0.68

e If one applies Dempster’s rule (L)) (denoted here by index DS), one gets:

mps(@) =0
mps(61) = 0.21/[1 — kr2] = 0.21/[1 — 0.65] = 0.21/0.35 = 0.600000
mps(02) = 0.11/[1 — kia] = 0.11/[1 — 0.65] = 0.11/0.35 — 0.314286

mps (61 UBy) = 0.03/[1 — ki2] = 0.03/[1 — 0.65] = 0.03/0.35 = 0.085714

e If one applies Murphy’s rule (), i.e average of masses, one gets:

ma(0) = (0+0)/2=0
mar(61) = (0.1 4 0.5)/2 = 0.30
mar(62) = (0.4 40.1)/2 = 0.25
mas(03) = (0.2 4 0.3)/2 = 0.25
mar (61 U 62) = (0.3 +0.1)/2 = 0.20
But if one finds out with certainty that 65 = @), where does mps(f3) = 0.25 go to? Either one

accepts here that mps(63) goes to mpr(61 U 62) as in Yager’s rule, or mps(63) goes to mas(0) as in

Smets’ rule. Catherine Murphy does not provide a solution for such a case in her paper [27].
e If one applies Dubois & Prade’s rule ([CI0), one gets because 03 My

mpp(P) =0 (by definition of Dubois & Prade’s rule)
mpp(01) = [m1(01)ma(61) +my(01)ma(61 U ) + ma(01)m1 (61 Ub2)]
+ [ma(61)ma2(03) + ma(01)m1(0s)]
—[0.1-0.5+0.1-0.1+0.5-0.3]+[0.1-0.3+0.5-0.2] = 0.21 +0.13 = 0.34
mpp(02) = [0.4-0.1+0.4-0.1+0.1-0.3] +[0.4-0.3+0.1-0.2] = 0.11 +0.14 = 0.25
mpp (61 UBO2) = [m1(61 Ub2)ma(61 Ub)] + [m1(61 U b2)ma(03) + ma(61 U O2)mq(6s)]
+ [ma(61)ma2(02) + ma(61)m1(62)]
= [0.30.1] + [0.3- 0.3+ 0.1 0.2] + [0.1- 0.1 + 0.5 - 0.4] = [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

=0.034+0.1140.21 =0.35
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Now if one adds up the masses, one gets 0+ 0.34+0.25+0.35 = 0.94 which is less than 1. Therefore
Dubois & Prade’s rule of combination does not work when a singleton, or an union of singletons,
becomes empty (in a dynamic fusion problem). The products of such empty-element columns of the
mass matrix M are lost; this problem is fixed in DSmT by the sum S3(.) in ((C24]) which transfers

these products to the total or partial ignorances.

In this particular example, using the hybrid DSm rule, one transfers the product of the empty-element

03 column, m(63)ma(03) = 0.2-0.3 = 0.06, to mpgmn(f1 Ub2), which becomes equal to 0.35+0.06 = 0.41.

In conclusion, DSmT is a natural extension of DST and Yager’s, Smets’ and Dubois & Prade’s ap-
proaches. When there is no singleton nor union of singletons empty, DSmT is consistent with Dubois &
Prade’s approach, getting the same results (because the sum S3(.) is not used in this case in the hybrid
DSm rule of combination). Otherwise, Dubois & Prade’s rule of combination does not work (giving a
sum of fusionned masses less than 1) for dynamic fusion problems involving non existential constraints.
Murphy’s rule does not work either in this case because the masses of empty sets are not transferred.
If the conflict is k1o is total (ije. k12 = 1, DST does not work at all (one gets 0/0 in Dempster’s rule
of combination), while Smets’ rule gives mg(#) = 1 which is upon to us for the reasons explained in
this introduction and in chapter Bl not necessary justified. When the conflict is total, the DSm rule is

consistent with Yager’s and Dubois & Prade’s rules.

The general hybrid DSm rule of combination works on any models for solving static and dynmaic
fusion problems and is designed for all kinds of conflict: 0 < m(conflict) < 1. When the conflict is
converging towards zero, all rules (Dempster’s, Yager’s, Smets’, Murphy’s, Dubois & Prade’s, DSmT)
are converging towards the same result. This fact is important because it shows the connection among
all of them. But if the conflict is converging towards 1, the results among these rules diverge more and
more, getting the point when some rules do not work at all (Dempster’s rule). Murphy’s rule is the
only one which is idempotent (being the average of masses). Dubois & Prade’s rule does not work in
the Smets’ case (when m(()) > 0). For models with all intersections empty (Shafer’s model) and conflict
1, Dempster’s rule is not defined. See below example on © = {61,602,605,04} with all §;, i = 1,2,3,4
exclusive:

m1(91) = 01 m1(92) = O m1(93) = 07 m1(94) = 0
m2(6‘1) =0 m2(92) =0.6 m2(93) =0 m2(6‘4) =04

Using Dempster’s rule, one gets 0/0, undefined. Conflicting mass is 1.
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Yager’s rule provides in this case my (61 U6z U 65 U 6y) = 1 which does not bring specific informa-
tion, while Smets’ rule gives m (@) = 1 which is also not very useful. Murphy’s rule gives ms(6;) = 0.15,
mar(62) = 0.30, mpr(6s) = 0.35 and mpr(04) = 0.20 which is very specific while the hybrid DSm rule pro-
vides mpgmp (61 Ub2) = 0.18, mpgmn(01Ubs) = 0.12, mpsmn(62U03) = 0.42 and mpgmn(f3U6s) = 0.28
which is less specific than Murphy’s result but characterizes adequately the internal conflict between

sources after the combination and partial ignorances.

The disjunctive rule gives in this last example my (61 U 02) = mq(01)ma(02) + ma(61)m1(62) = 0.18.
Similarly, one gets my (61 U 64) = 0.12, my(62 U 03) = 0.42 and my(f3 U 04) = 0.28. This coincides with

the hybrid DSm rule when all intersections are empty.

1.4.2 Second example

This example is an extension of Zadeh’s example discussed in chapter Bl Let’s consider two independent
sources of evidences over the frame © = {01, 65,053,604} and assume that Shafer’s model holds. The basic

belief assignments are chosen as follows:

m2(91) = O m2(92) = 0998 m2(93) = O m2(94) = 002

In this simple numerical example, Dempster’s rule of combination gives the counter-intuitive result

mps(8a) = 0.001 - 0.002 ~0.000002
P 0.998 0,998 + 0.998 - 0.002 + 0.998 - 0.001 + 0.998 - 0.001 + 0.001 - 0.002  0.000002

Yager’s rule gives my (64) = 0.000002 and my (61 U 62 U 03 U 64) = 0.999998.

Smets’ rule gives mg(6,) = 0.000002 and mg(()) = 0.999998.

Murphy’s rule gives mps(01) = 0.499, mas(62) = 0.499, mps(63) = 0.0005 and mp(64) = 0.0015.

Dubois & Prade’s rule gives mpp(64) = 0.000002, mpp (61 U b2) = 0.996004, mpp (61 UBOs) = 0.001996,
mpp (62 UB3) = 0.000998, mpp(f2 Ubs) = 0.000998 and mpp(fs U 6,) = 0.000002. Dubois & Prade’s
rule works only in Shafer’s model M°(©), i.e. when all intersections are empty. For other hybrid models,
Dubois & Prade’s rule of combination fails to provide a reliable and reasonable solution to the combination
of sources (see next example).

The classic DSm rule of combination provides mpgme(fs) = 0.000002, mpgme(f1 N 62) = 0.996004,
MDsme(01NM01) = 0.001996, M pgme(02103) = 0.000998, 1M gme(02M04) = 0.000998 and 1 pgme(03M04) =
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0.000002. If one now applies the hybrid DSm rule since one assumes here that Shafer’s model holds, one
gets the same result as Dubois & Prade’s. The disjunctive rule coincides with Dubois & Prade’s rule and

the hybrid DSm rule when all intersections are empty.

1.4.3 Third example

Here is an exemple for the Smets’ case (i.e. TBM) when m(0) > 0 where Dubois & Prade’s rule of

combination does not work. Let’s consider the following extendecH belief assignments
ml((Z)) =0.2 ma (91) =0.4 ma (92) =04

mg(@) =0.3 m2(91) =0.6 m2(92) =0.1

In this specific case, the Dubois & Prade’s rule of combination gives (assuming all intersections empty)

mpp() =0 (by definition)
mpp(61) = m (91)m2(6‘1) + [m1 ((Z))m2(91) + m2(®)m1(91)] =0.24+ [0.12 + 0.12] =0.48
mpp(f2) = my (92)m2(6‘2) + [m1 ((Z))m2(92) + m2(®)m1(92)] =0.04 + [0.02 + 0.12] =0.18
mDp(91 @] 92) = m1(91)m2(92) + m2(91)m1(92) =0.04 + 0.24 = 0.28
The sum of masses is 0.48 +0.18 +0.28 = 0.94 < 1. Where goes the mass m1(@)m2(0) = 0.2-0.3 = 0.06 ?

When using the hybrid DSm rule of combination, one gets mpgmn () = 0, mpsmn(61) = 0.48, mpgmn(62) =

0.18 and
mpsmn(01 U 02) = [m1(01)ma(0) + ma(01)m(02)] + [my(B)ma(0)] = [0.28] +[0.2 - 0.3] = 0.34

and the masses add up to 1.

The disjunctive rule gives in this example

my(01) = mq(01)ma(01) + [m1(D)ma(01) + ma(@)mq(61)] = 0.24 + [0.12 + 0.12] = 0.48
my(02) = mq(02)ma(02) + [m1(B)ma(02) + ma(B)mq(62)] = 0.04 + [0.02 + 0.12] = 0.18
my (01 U 02) = my(01)ma(02) +ma(01)mi(62) = 0.04 +0.24 = 0.28
mu(0) = m1(0)ma(0) = 0.06 > 0
One gets the same results for my(61), my(62) as with Dubois & Prade’s rule and as with the hybrid DSm

rule. The distinction is in the reallocation of the empty mass my(0)mso(0) = 0.06 to #; U6y in the hybrid

DSm rule, while in Dubois & Prade’s and disjunctive rules it is not.

9We mean here non-normalized masses allowing weight of evidence on the empty set as in the TBM of Smets.
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A major difference among the hybrid DSm rule and all other combination rules is that DSmT uses
from the beginning a hyper-power set, which includes intersections, while other combination rules need

to do a refinement in order to get intersections.

1.4.4 Fourth example

Here is another example where Dempster’s rule does not work properly (this is different from Zadeh’s
example). Let’s consider © = {61,602,05,6,} and assume that Shafer’s model holds. The basic belief

assignments are now chosen as follows:

m1(91) =0.99 m1(92) =0 m1(93 U 94) =0.01
m2(91) =0 mg(og) =0.98 m2(93 @] 94) =0.02

Applying Dempster’s rule, one gets mps(61) = mpg(f2) = 0 and

0.01-0.02 0.0002  0.0002

mps(s U 6a) = 1~ [0.99-0.98+0.99-0.02+ 0.98-0.01] 1—0.9998  0.0002

which is abnormal.

The hybrid DSm rule gives mpgmn(f1 U 62) = 0.99 - 0.98 = 0.9702, mpgmn (61 U 63 U Os) = 0.0198,
mpgmh (02 U b3 U 6by) = 0.0098 and mpgmn (03 UBs) = 0.0002. In this case, Dubois & Prade’s rule gives
the same results as the hybrid DSm rule. The disjunctive rule provides a combined belief assignment

my(.) which is same as mpgmn(.) and mpp(.).

Yager’s rule gives my (05 U 64) = 0.0002, my (61 U 02 U O3 U 6,y) = 0.9998 and Smets’ rule gives
mg(f3 U 6y) = 0.0002, mg () = 0.9998. Both Yager’s and Smets’ results are less specific than the result
obtained with the hybrid DSm rule. There is a loss of information somehow when using Yager’s or Smets’

rules.

1.4.5 Fifth example

Suppose one extends Dubois & Prade’s rule from the power set 2° to the hyper-power set D®. It can be

shown that Dubois & Prade’s rule does not work when (because Sz(.) term is missing):
a) at least one singleton is empty and the element of its column are all non zero
b) at least an union of singletons is empty and elements of its column are all non zero

c) or at least an intersection is empty and the elements of its column are non zero
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Here is an example with intersection (Dubois & Prade’s rule extended to the hyper-power set). Let’s

consider two independent sources on © = {61,602} with
m1(91) =0.5 m1(92) =0.1 m1(91 N 92) =04

m2(6‘1) =0.1 m2(6‘2) =0.6 m2(6‘1 n 92) =0.3

Then the extended Dubois & Prade rule on the hyper-power set gives mpp(0) = 0, mpp(61) = 0.05,
mpp(62) = 0.06, mpp(6; NBy) =0.04-0.3+0.5-0.6+0.5-0.3+0.1-0.4+0.1-0.3+0.6-0.4=0.89.

Now suppose one finds out that #; N #y = (), then the revised masses become

mpp(@) =0  (by definition)
m’y p(02) = 0.06 + [m1(02)ma (01 N 62) + ma(62)m1 (61 N 62)] = 0.06 + [0.1- 0.3+ 0.6 - 0.4] = 0.33

The sum of the masses is 0.24 4+ 0.33 + 0.31 = 0.88 < 1. The mass product mq(6; N O2)ma (01 N O) =
0.4 -0.3 = 0.12 has been lost.

When applying the classic DSm rule in this case, one gets exactly the same results as Dubois & Prade,
i.e. mpsme(D) =0, Mmpsme(61) = 0.05, mpgme(02) = 0.06, mpsme(61 Nbz) = 0.89. Now if one takes into

account the integrity constraint ; N 62 = @) and using the hybrid DSm rule of combination, one gets

mpsmn(0) =0 (by definition)
mpsmn(01) = 0.05 + [my(61)ma (61 N 62) + ma(61)ma (61 N 62)] = 0.05+[0.5-0.3+0.1-0.4] = 0.24
mpsmn(02) = 0.06 + [m1(02)ma (61 N O) + ma(f2)mq (61 N O2)] = 0.06 + [0.1-0.3 +0.6-0.4] = 0.33

mDSmh(el U 92) = [ml (92)7712(6‘2) + mg(ﬁl)ml (92)] + [m1(6‘1 N 92)7712(91 n 6‘2)] = [031] + [012] =0.43

Sz in hybrid DSm rule eq.

Thus the sum of the masses obtained by the hybrid DSm rule of combination is 0.24 + 0.33 + 0.43 = 1.

The disjunctive rule extended on the hyper-power set gives for this example

)
mu(6‘1) = [m1 (91)7712(6‘1)] + [ml(ﬁl)mg(Hl n 6‘2) + mg(ﬁl)ml (91 n 6‘2)] =0.05+ [015 + 004] =0.24
mu(6‘2) = [m1 (92)7712(92)] + [ml(ﬁg)mg(Hl n 6‘2) + mg(ﬁg)ml (91 n 6‘2)] = 0.06 + [015 + 004] =0.33
mu(t?l U 92) = [ml (92)7712(92) + m2(91)m1 (92)] = 031

mu(t?l N 92) = m1(91 N 92)77’1,2(91 n 92) =04-03=0.12
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If now one finds out that 6; N6y = (), then the revised masses m{,(.) become m{,(01) = my(61), m{,(02) =

mu(92>, mb(@l U 92) = mU(91 U 92) but mb(@) = mU(91 N 92) =0.12 > 0.

1.5 Summary

DSmT has to be viewed as a general flexible Bottom-Up approach for managing uncertainty and conflicts
for a wide class of static or dynamic fusion problems where the information to combine is modelled as
a finite set of belief functions provided by different independent sources of evidence. The development
of DSmT emerged from the fact that the conflict between the sources of evidence arises not only from
the unreliability of sources themselves (which can be handled by classical discounting methods), but also
from a different interpretation of the frame itself by the sources of evidence due to their limited knowlege
and own (local) experience; not to mention the fact that elements of the frame cannot be truly refined at
all in many problems involving only fuzzy and continuous concepts. Based on this matter of fact, DSmT

proposes, according to the general block-scheme in Figure[[2 a new appealing mathematical framework.

Here are the major steps for managing uncertain and conflicting information arising from independent

sources of evidence in the DSmT framework, once expressed in terms of basic belief functions:

1. Bottom Level: The ground level of DSmT is to start from the free DSm model M/ () associ-
ated with the frame © and the notion of hyper-power set (free Dedekind’s lattice) D®. At this
level, DSmT provides a general commutative and associative rule of combination of evidences (the

conjunctive consensus) to work on M7(©).

2. Higher Level (only used when necessary): Depending on the absolute true intrinsic nature (as-
sumed to be known by the fusion center) of the elements of the frame © of the fusion problem
under consideration (which defines a set of integrity constraints on M/ (0) leading to a particular
hybrid DSm model M(©)), DSmT automatically adapts the combination process to work on any
hybrid DSm model with the general hybrid DSm rule of combination explaine in details in chapter
Al The taking into account of an integrity constraint consists just in forcing some elements of the

Dedekind’s lattice D® to be empty, when they truly are, given the problem under consideration.

3. Decision-Making: Once the combination is obtained after step 1 (or step 2 when necessary),
the Decision-making step follows. Although no real general consensus has emerged in literature
over last 30 years to give a well-accepted solution for the decision-making problem in the DST
framework, we follow here Smets’ idea and his justifications to work at the pignistic level [d2] rather
than at the credal level when a final decision has to be taken from any combined belief mass m(.).

A generalized pignistic transformation is then proposed in chapter [ based on DSmT.
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Decision-making

Hybrid DSm rule for hybrid model M(©)
VAE DO, mae)(A) = 9(4) | mause)(A4) + S2(A) + S(4)]

Introduction of integrity constraints into D®
Hybrid model M(©)

Classic DSm rule based on free model M7 (©)

,,,,,

my(.) : D® —[0,1] mi(.) : D® — [0,1]

Source s : : Source si

Figure 1.2: Block Scheme of the principle for the DSm fusion

The introduction of a specific integrity constraint in step 2 is like pushing an elevator button for going
a bit up in the complexity of the processing for managing uncertainty and conflict through the hybrid
DSm rule of combination. If one needs to go to a higher level, then one can take into account several
integrity constraints as well in the framework of DSmT. If we finally want to take into account all possible
exclusivity constraints only (when we really know that all elements of the frame of the given problem are
truly exclusive), then we go directly to the Top Level (i.e. Shafer’s model which serves as foundation for
Shafer’s mathematical theory of evidence), but we still apply the hybrid DSm rule instead of Dempster’s
rule of combination. The DSmT approach for modelling the frame and combining information is more
general than previous approaches which have been mainl based on the Shafer model (which is a very

specific and constrained DSm hybrid model) and works for static fusion problems.

The DSmT framework can easily handle not only exclusivity constraints, but also non existential
constraints or mixed constraints as well which is very useful in some dynamic fusion problems as it is
shown in chapter Bl Depending on the nature of the problem, we claim that it is unnecessary to try
working at the Top Level (as DST does), when working directly at a lower level is sufficient to manage

properly the information to combine using the hybrid DSm rule of combination.

Oexcept the Transferable Belief Model of Smets [AT] and the trade-off/averaging combination rules.
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It is also important to reemphasize here that the general hybrid DSm rule of combination is definitely
not equivalent to Dempster’s rule of combination (and to all its alternatives involving conjunctive consen-
sus based on the Top level and especially when working with dynamic problems) because DSmT allows to
work at any level of modelling for managing uncertainty and conflicts, depending on the intrinsic nature
of the problem. The hybrid DSm rule and Dempster’s rule do not provide the same results even when
working on Shafer’s model as it has been shown in examples of the previous section and explained in

details in forthcoming chapters Bl and B

DSmT differs from DST because it is based on the free Dedekind lattice. It works for any model (free
DSm model and hybrid models - including Shafer’s model as a special case) which fits adequately with
the true nature of the fusion problem under consideration. This ability of DSmT allows to deal formally
with any fusion problems expressed in terms of belief functions which can mix discrete concepts with
vague/continuous/relative concepts. The DSmT deals with static and dynamic fusion problematics in the
same theoretical way taking into account the integrity constraints into the model which are considered
either as static or eventually changing with time when necessary. The general hybrid DSm rule of
combination of independent sources of evidence works for all possible static or dynamic models and
does not require a normalization step. It differs from Dempster’s rule of combination and from all its
concurrent alternatives. The hybrid DSm rule of combination has been moreover extended to work for
the combination of imprecise admissible belief assignments as well. The approach proposed by the DSmT
to attack the fusion problematic throughout this book is therefore totally new both by its foundations,

its applicability and the solution provided.
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The generation of hyper-power
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sets

Abstract: The development of DSmT is based on the notion of Dedekind’s lattice,

called also hyper-power set in the DSmT framework, on which is defined the general

basic belief assignments to be combined. In this chapter, we explain the structure of

the hyper-power set, give some examples of hyper-power sets and show how they can

be generated from isotone Boolean functions. We also show the interest to work with

the hyper-power set rather than the power set of the refined frame of discernment in

terms of complexity.

2.1 Introduction

O ne of the cornerstones of the DSmT is the notion of Dedekind’s lattice, coined as hyper-power set

by the authors in literature, which will be defined in next section. The starting point is to consider
O = {61,...,0,} as a set of n elements which cannot be precisely defined and separated so that no
refinement of © in a new larger set O,y of disjoint elementary hypotheses is possible. This corresponds
to the free DSm model. This model is justified by the fact that in some fusion problems (mainly those
manipulating vague or continuous concepts), the refinement of the frame is just impossible to obtain;

nevertheless the fusion still applies when working on Dedekind’s lattice and based on the DSm rule of

This chapter is based on a paper [6] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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combination. With the DSmT approach, the refinement of the frame is not prerequisite for managing
properly the combination of evidences and one can abandon Shafer’s model in general. Even if Shafer’s
model is justified and adopted in some cases, the hybrid DSm rule of combination appears to be a new
interesting and preferred alternative for managing high conflicting sources of evidence. Our approach
actually follows the footprints of our predecessors like Yager [23] and Dubois and Prade [7] to circumvent
the problem of the applicability of Dempster’s rule face to high conflicting sources of evidence but with a
new mathematical framework. The major reason for attacking the problem directly from the bottom level,
i.e. the free DSm model comes from the fact that in some real-world applications observations/concepts
are not unambiguous. The ambiguity of observations is explained by Goodman, Mahler and Nguyen
in O] pp. 43-44. Moreover, the ambiguity can also come from the granularity of knowledge, known as

Pawlak’s indiscernability or roughness [15].

2.2 Definition of hyper-power set D®

The hyper-power set D® is defined as the set of all composite propositions built from elements of © with
U and N (O generates D® under operators U and N) operators such that
1. @,91,---,971 S D®.

2. If A,B € D®, then ANB € D® and AU B € D°.

3. No other elements belong to D®, except those obtained by using rules 1 or 2.

The dual (obtained by switching U and N in expressions) of D® is itself. There are elements in D® which
are self-dual (dual to themselves), for example ag for the case when n = 3 in the example given in the
next section. The cardinality of D® is majored by 22" when Card(©) = |©| = n. The generation of
hyper-power set D® is closely related with the famous Dedekind problem [A, 3] on enumerating the set
of monotone Boolean functions as it will be presented in the sequel with the generation of the elements

of D°.

2.3 Example of the first hyper-power sets

e In the degenerate case (n = 0) where © = {}, one has D® = {ap £ ()} and |D®| = 1.
e When © = {6}, one has D® = {ag = ),a; = 6} and |D®| = 2.

e When © = {6,6>}, one has D® = {ag,a1,...,as4} and |D®| = 5 with ap 2 0, a; = 6; N Oy,

Qo é91, Qs é@g and a4é91 U 6s.

e When © = {61,0,,03}, the elements of D® = {ag,a1,...,a15} and |[D®| = 19 (see [5] for details)

are now given by (following the informational strength indexation explained in the next chapter):
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Elements of D®=101,02.05}
(7)) é @
a1 260,N0;N65 a1p £ 65
g 201N 0 a1 = 03
as 2 0,N06; 12 2 (01N 6) U b3
ay 2 05N65 a1z = (01 N63) U by
as = (6 Uby) N6 s 2 (02N 63) U6
ag 2 (6 U603)N 6, ars 2 01 U6,
ar = (62 U03) N6, a1g £ 61 U bs
ag 2 (01 NO)U (0 NBO3)U (2N 03) | arr =60 Ub3
ag 2 0, a1s 260, Uy U6

Note that the classical complementary A of any proposition A (except for () and ©), is not involved
within the free DSm model because of the refutation of the third excluded middle; it can however be
introduced if necessary when dealing with hybrid models as it will be shown in chapter Hl if we introduce
explicitly some exclusivity constraints into the free DSm model when one has no doubt on the exclusivity
between given elements of © depending on the nature of the fusion problem. |D®| for n > 1 follows the
sequence of Dedekind’s numbersﬂ 1,2, 5,19, 167, 7580, 7828353, 56130437228687557907787... [T7]. Note
also that this huge number of elements of hyper-power set is comparatively far less than the total number
of elements of the power set of the refined frame ©,..; if one would to work on 20rer and if we admit the

possibility that such refinement exists as it will be seen in section 22411

2.4 The generation of D®

2.4.1 Memory size requirements and complexity

Before going further on the generation of D®, it is important to estimate the memory size for storing
the elements of D® for |©| = n. Since each element of D® can be stored as a 2" — 1-binary string, the
memory size for D® is given by the right column of the following table (we do not count the size for ()

which is 0 and the minimum length is considered here as the byte (8 bits)):

L Actually this sequence corresponds to the sequence of Dedekind minus one since we don’t count the last degenerate

isotone function fyan (.) as element of D® (see section EZ).
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|©| =n | size/elem. | # of elem. | Size of D®

2 1 byte 4 4 bytes

3 1 byte 18 18 bytes

4 2 bytes 166 0.32 Kb

5 4 bytes 7579 30 Kb

6 8 bytes 7828352 59 Mb

7 16 bytes | ~2.4-10'? | 3.6-10* Gb

8 32 bytes | ~5.6-10%2 | 1.7-10'® Gb

This table shows the extreme difficulties for our computers to store all the elements of D® when || > 6.
This complexity remains however smaller than the number of all Boolean functions built from the ultimate
refinement (if accessible) 297/ of same initial frame © for applying DST. The comparison of |D®| with

respect to |2©7¢f| is given in the following table

O] =n | [DO] | [267es| = 22" 1

2 5 23 =38

3 19 27 =128

4 167 215 — 32768

5 7580 | 231 = 2147483648

Fortunately, in most fusion applications only a small subset of elements of D® have a non null basic
belief mass because all the commitments are just usually impossible to assess precisely when the dimension
of the problem increases. Thus, it is not necessary to generate and keep in memory all elements of D® or
29+<f but only those which have a positive belief mass. However there is a real technical challenge on how
to manage efficiently all elements of the hyper-power set. This problem is obviously more difficult when
working on 29¢f. Further investigations and research have to be carried out to develop implementable
engineering solutions for managing high dimensional problems when the basic belief functions are not

degenerated (i.e. all m(A) >0, A € D® or A € 20r<r).

2.4.2 Monotone Boolean functions

A

A simple Boolean function f(.) maps n-binary inputs (x1,...,2z,) € {0,1}" = {0,1} x ... x {0,1} to a
single binary output y = f(x1,...,2,) € {0,1}. Since there are 2™ possible input states which can map
to either 0 or 1 at the output y, the number of possible Boolean functions is 22" . Each of these functions
can be realized by the logic operations A (and), V (or) and — (not) [B, ZI]. As a simple example, let’s
consider only a 2-binary input variable (z1,22) € {0,1} x {0,1} then all the 22° = 16 possible Boolean

functions f;(x1,x2) built from (21, x2) are summarized in the following tables:
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(w1, 22) fo i fa f3 fa fs fe Iz

(0,0) 0 0 0 0 0 0 0 0
(0,1) 0 0 0 0 1 1 1 1
(1,0) 0 0 1 1 0 0 1 1
(1,1) 0 1 0 1 0 1 0 1

Notation False x1 N\ T2 x1 N\ T2 T T1 N\ T2 T2 T v T2 1V o

($15$2) fS f9 flO fll f12 f13 f14 f15

(0,0) 1 1 1 1 1 1 1 1
(0,1) 0 0 0 0 1 1 1 1
(1,0) 0 0 1 1 0 0 1 1
(1,1) 1 0 1 0 1 0 1

Notation | z1Vas | x1Azo | To | 21V TZo | T1 | ZT1 V2o | 1 Axe | True

with the notation Z £ —z, 21 Y x5 £ (11 V 22) A (Z1 V Z3) (x0r), 21Vre £ —(z1 V 29) (nor), 1 Ax0 £

(1 A x2) V (Z1 A Z2) (xnor) and z; A z2 = —(x1 A z2) (nand).

We denote by F.(A,V, ) = {fo(z1,...,2n),..., foan _1(21,...,2,)} the set of all possible Boolean
functions built from n-binary inputs. Let x £ (z1,...,z,) and X' = (2/1,...,2',) be two vectors in
{0,1}™. Then x precedes x’ and we denote x < x’" if and only if z; < 2/; for 1 < i < n (< is applied

componentwise). If z; < 2/; for 1 < ¢ < n then x strictly precedes x’ which will be denoted as x < x'.

A Boolean function f is said to be a non-decreasing monotone (or isotone) Boolean function (or
just monotone Boolean function for short) if and only if Vx,x’ € {0,1}" such that x < x’, then
f(x) <X f(x') [M9]. Since any isotone Boolean function involves only A and V operators (no — opera-
tions) [21] and there exists a parallel between (V, A) operators in logics with (4, -) in algebra of numbers
and (U,N) in algebra of sets, the generation of all elements of D® built from © with U and N opera-
tor is equivalent to the problem of generating isotone Boolean functions over the vertices of the unit
n-cube. We denote by M,,(A, V) the set of all possible monotone Boolean functions built from n-binary
inputs. M, (A, V) is a subset of F,(A,V,=). In the previous example, fi1(z1,22), f3(x1,22), f5(x1,22),
f7(x1, 22) are isotone Boolean functions but special functions fo(z1,22) and foor _q (21, ..., x,) must also
be considered as monotone functions too. All the other functions belonging to Fa(A, V, =) do not belong
to Ma2(A, V) because they require the — operator in their expressions and we can check easily that the

monotonicity property x < x’ = f(x) =< f(x’) does not hold for these functions.



42 CHAPTER 2. THE GENERATION OF HYPER-POWER SETS

The Dedekind’s problem [] is to determine the number d(n) of distinct monotone Boolean functions
of n-binary variables. Dedekind H] computed d(0) = 2, d(1) = 3, d(2) = 6, d(3) = 20 and d(4) = 168.
Church [1] computed d(5) = 7581 in 1940. Ward [20] computed d(6) = 7828354 in 1946. Church [2]
then computed d(7) = 2414682040998 in 1965. Between sixties and eighties, important advances have
been done to obtain upper and lower bounds for d(n) [I0, M2, [[4]. In 1991, Wiedemann [22] computed
d(8) = 56130437228687557907788 (200 hours of computing time with a Cray-2 processor) which has
recently been validated by Fidytek and al. in [8]. Until now the computation of d(n) for n > 8 is still a
challenge for mathematicians even if the following direct exact explicit formula for d(n) has been obtained

by Kisielewicz and Tombak (see [I, [I&] for proof) :

22" gn_14-1 1(3)

=> I ITa-vsra-oh H( — b (1= 51,))) (2.1)

k=1 j=1 =0

where [(0) = 0 and (i) = [log, i] for i > 0, b¥ £ [k/2!] — 2[k/2*!] and [z] denotes the floor function (i.e.
the nearest integer less or equal to ). The difficulty arises from the huge number of terms involved in
the formula, the memory size and the high speed computation requirements. The last advances and state

of art in counting algorithms of Dedekind’s numbers can be found in [I8, &, [19].

2.4.3 Generation of MBF

Before describing the general algorithm for generating the monotone Boolean functions (MBF), let exam-
ine deeper the example of section ZZ2A From the previous tables, one can easily find the set of (restricted)
MBF M3%(A, V) = {fo(z1,22) = False, f1(x1,22) = 21 A 22, f5(x1,22) = 2, fr(21,22) = 21 V 22} which
is equivalent, using algebra of sets, to hyper-power set DX = {(}, x1 N 2o, z1, T2, 21 Uxy} associated with
frame of discernment X = {x1,x2}. Since the tautology fi5(z1,22) is not involved within DSmT, we do
not include it as a proper element of DX and we consider only M3 (A, V) & Ma(A, V) \ {fi5} rather than
Ma (A, V) itself.

Let’s now introduce Smarandache’s codification for the enumeration of distinct parts of a Venn diagram
X with n partially overlapping elements x;,: = 1,2,...,n. Such a diagram has 2" — 1 disjoint parts. One
denotes with only one digit (or symbol) those parts which belong to only one of the elements z; (one
denotes by < i > the part which belongs to z; only, for 1 < i < n), with only two digits (or symbols)
those parts which belong to exactly two elements (one denotes by < ij >, with ¢ < j, the part which
belongs to x; and z; only, for 1 <4 < j < n), then with only three digits (or symbols) those parts which
belong to exactly three elements (one denotes by < ijk > concatenated numbers, with ¢ < j < k, the
part which belongs to z;, x;, and xj only, for 1 <i < j < k <mn), and so on up to < 12...n > which
represents the last part that belongs to all elements x;. For 1 < n < 9, Smarandache’s encoding works

normally as in base 10. But, for n > 10, because there occur two (or more) digits/symbols in notation of
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the elements starting from 10 on, one considers this codification in base n + 1, i.e. using one symbol to

represent two (or more) digits, for example: A =10, B =11, C = 12, etc.
e For n =1 one has only one part, coded < 1 >.

e For n = 2 one has three parts, coded < 1 >, <2 >, < 12 >. Generally, < ijk > does not represent

x; Nzj Ny but only a part of it, the only exception is for < 12...n >.

e For n = 3 one has 23 — 1 = 7 disjoint parts, coded < 1>, < 2>, <3 >, < 12>, <13 >, < 23 >,
< 123 >. < 23 > means the part which belongs to x2 and x3 only, but < 23 ># x5 N x3 because

x2 N3 = {< 23 >,< 123 >} in the Venn diagram of 3 elements x1, z2, and x3 (see next chapter).

e The generalization for n > 3 is straightforward. Smarandache’s codification can be organized in a

numerical increasing order, in lexicographic order or any other orders.

A useful order for organizing Smarandache’s codification for the generation of DX is the DSm-order
U, = [u1,...,usn_1]" based on a recursive construction starting with u; £ [< 1 >]. Having constructed

u,_1, then we can construct u, for n > 1 recursively as follows:
e include all elements of u,_1 into u,;
e afterwards, include element < n > as well in u,;

e then at the end of each element of u,_; concatenate the element < n > and get a new set u’,,_1

which then is also included in u,,.

This is u,,, which has (2"71 —1) +1+ (2"~ — 1) = 2" — 1 components.

For n = 3, as example, one gets uz 2 [< 1> <2 > < 12> <3 > < 13> < 23 > < 123 >)". Because
all elements in u, are disjoint, we are able to write each element d; of DX in a unique way as a linear

combination of u,, elements, i.e.
dn = [dl,...7d2n_1]’=Dn-un (22)

Thus u,, constitutes a basis for generating the elements of DX. Each row in the matrix D,, represents
the coefficients of an element of DX with respect to the basis u,. The rows of D,, may also be regarded

as binary numbers in an increasing order.
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Example: For n = 2, one has:

dlleﬂxg 0 0 1
<1l>

dgzxg 0 1 1

d3=$1 1 0 1
<12 >

dy = 21 U 2o

—_
—_
[

d2 D2
where the "matrix product” is done after identifying (+,-) with (U,N), 0- < z > with § and 1- < = >

with < x >.

The generation of DX is then strictly equivalent to generate u,, and matrix D,, which can be easily

obtained by the following recursive procedure:
e start with D§ = [0 1) corresponding to all Boolean functions with no input variable (n = 0).

e build the D{ matrix from each row r; of D§ by adjoining it to any other row r; of Df such that
r; Ur; =r;. This is equivalent here to add either 0 or 1 in front (i.e. left side) of r1 = 0 but only
1 in front of ro = 1. Since the tautology is not involved in the hyper-power set, then one has to

remove the first column and the last line of

0 0

D{ = |0 1| toobtain finally D; =
1

e build D§ from D by adjoining to each row r; of D, any row r; of D such that r; Ur; =r; and

then remove the first column and the last line of D§ to get Dy as in ([23)).

e build D§ from D§ by adjoining to each row r; of D§ any row r; of D§ such that r; Ur; =r; and
then remove the first column and the last line of D§ to get D3 given by (where D’ denotes here the

transposed of the matrix D)

0 000O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OTI1I 1111

0o 000O0OO0OO0OO0OO0ODO0OO0OTI1T1TT1TO0O0O0T1T1

oo0oo0o0o0o0111111111111171

D;=10000010000100100T1°01

0001110011101 1111T171

0010110101111 1011T171
o1+r1 1111111111111 111

e Likewise, D¢, is built from D¢,_; by adjoining to each row r; of Df,_; any row r; of Df,_; such that

r; Ur; =r;. Then D, is obtained by removing the first column and the last line of D,.
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Example for © = {61, 63,03}: Note that the new indexation of elements of D® now follows the MBF

generation algorithm.

<1>
< 2>
<12 >
<3>
<13 >

<23 >

ap =0 00000

a1 £60,N620N05 00000

ay £ 60,N05 000 0O

a3é91093 0 00 01

as = (61 U6) N6 00001

as £ 65 00011

a6é01092 O O 1 O O

ar = (6 U63) N6 00100

ag = (62 U03) N6, 001 01

(675) é (91 ﬂ@g) U (91 093) U (92 093) O O 1 O 1

a10 £ (91 N 92) U 03 0O 01 1 1

a1 = 0, 01100

12 é (91 N 93) @] 92 01 1 01

algé(eguog) 0O 1 1 1 1

o £ 60 1 01 01

Q15 é (92 n 93) U 91 1 O 1 O 1

alGé(Gluﬂg) 1 01 1 1

a7 = (0, U6y) 1 110 1

L 18 £ (91 Ul U 6‘3) 1 1 1 1 1
ds D3

| <123 >

For convenience, we provide in appendix the source code in Matlalﬂ language to generate D®. This

code includes the identification of elements of D® corresponding to each monotone Boolean function

according to Smarandache’s codification.

2.5 Conclusion

In this chapter, one has introduced the notion of Dedekind’s lattice D® (hyper-power set) on which are

defined basic belief functions in the framework of DSmT and the acceptance of the free DSm model. The

justification of the free DSm model as a starting point (ground level) for the development of our new

theory of plausible and paradoxical reasoning for information fusion has been also given and arises from

the necessity to deal with possibly ambiguous concepts which can appear in real-world applications. The

lower complexity of the hyper-power set with respect to the complexity of the classical refined power set

2Matlab is a

trademark of The MathWorks, Inc.
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20r<f has been clearly demonstrated here. We have proven the theoretical link between the generation of

hyper-power set with Dedekind’s problem on counting isotone Boolean functions. A theoretical solution

for generating lattices D® has been presented and a MatLab source code has been provided for users

convenience.
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Appendix: MatLab code for generating hyper-power sets

%************************************************
% Copyright (c¢) 2003 J.Dezert and F.Smarandache
%
% Purpose: Generation of D" Theta for the DSmT for
% Theta={theta_1 ,.., Theta_n}. Due to the huge
% # of elements of D"Theta. only cases up to n<7
% are usually tractable on computers.
%************************************************
n=input(’Enter_cardinality .for_.Theta_(0<n<6)_7");
% Generation of the Smarandache codification
% Note: this should be implemented wusing
% character strings for n>9
u_n=[1];
for nn=2:n
u.n=[u.n nn (u-nx104+nn*ones(1,size(u-nxx10,2)))];
end
% Generation of D.n (isotone boolean functions)
D.nl1=[0;1];
for nn=1:n, Dn=][];
for i=1:size(D.nl,1),Li=D.nl(i,:);
for j=i:size(D.nl,1)
Lj=D.nl(j,:); Li-inter_Lj=and(Li,Lj);
Li_union_Lj=or (Li,Lj);
if ((Licinter_Lj==Li)&(Li_union_Lj==Lj))
D.n=[D.n; Li Lj];
end
end
end
D_nl=D_n;
end
DD=D._n;DD(:,1)=[];DD(size (DD,1) ,:)=[]; D.n=DD;
% Result display
disp ([ ’ | Theta|=n=’,num?2str(n)])
disp ([’ |D"Theta|=",num?2str(size (D.n,1))])
disp ( ’Elem.._of_D"Theta_are.obtained .by.D_n*u_n’)
disp ([ ’with.u_-n=[’ ,num2str(u.n),’]’’.and’])

D_n=D_n

Matlab source code for generating D®



Chapter 3

Partial ordering on hyper-power sets

Jean Dezert Florentin Smarandache
ONERA Department of Mathematics
29 Av. de la Division Leclerc ~ University of New Mexico
92320 Chatillon Gallup, NM 8730
France U.S.A.

Abstract: In this chapter, we examine several issues for ordering or partially or-
dering elements of hyper-power sets involved in the DSmT. We will show the benefit
of some of these issues to obtain a nice and interesting structure of matriz represen-

tation of belief functions.

3.1 Introduction to matrix calculus for belief functions

As rightly emphasized recently by Smets in [9], the mathematic of belief functions is often cum-
bersome because of the many summations symbols and all its subscripts involved in equations.
This renders equations very difficult to read and understand at first sight and might discourage potential
readers for their complexity. Actually, this is just an appearance because most of the operations encoun-
tered in DST with belief functions and basic belief assignments m(.) are just simple linear operations
and can be easily represented using matrix notation and be handled by elementary matrix calculus. We
just focus here our presentation on the matrix representation of the relationship between a basic belief
assignment m(.) and its associated belief function Bel(.). A nice and more complete presentation of
matrix calculus for belief functions can be found in [, [, @]. One important aspect for the simplification

of matrix representation and calculus in DST, concerns the choice of the order of the elements of the

This chapter is based on a paper [] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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power set 29. The order of elements of 2© can be chosen arbitrarily actually, and it can be easily seen
by denoting m the bba vector of size 2™ x 1 and Bel its corresponding belief vector of same size, that
the set of equations Bel(A) = >~ 5, m(B) holding for all A C © is strictly equivalent to the following
general matrix equation

Bel=BM -m < m=BM ' Bel (3.1)

where the internal structure of BM depends on the choice of the order for enumerating the elements of
29, But it turns out that the simplest ordering based on the enumeration of integers from 0 to 2" — 1
expressed as n-binary strings with the lower bit on the right (LBR) (where n = |0|) to characterize all
the elements of power set, is the most efficient solution and best encoding method for matrix calculus
and for developing eflficient algorithms in MatLad] or similar programming languages [9]. By choosing
the basic increasing binary enumeration (called bibe system), one obtains a very nice recursive algorithm
on the dimension n of © for computing the matrix BM. The computation of BM for |0| = n is just
obtained from the iterations up to i + 1 = n of the recursive relation [J] starting with BM, = [1] and

where 0,1 denotes the zero-matrix of size (i + 1) x (i + 1),

BM; 0i11
BMi_;,_l = (32)
BM; BM;
BM is a binary unimodular matrix (det(BM) = £1). BM is moreover triangular inferior and symmet-

rical with respect to its antidiagonal.

Example for © = {61,0,,05}

The bibe system gives us the following order for elements of 2© = {ag, ..., ar}:
ap=000=0 o7 =001=6, as =010 = 0, a3 =011=6, U6y
=100=603 a5=101=601U03 ag=110=0,U03 «ay=111=60;U60,U03=06

Each element «; of 2€ is a 3-bits string. With this bibe system, one has m = [m(ay), ..., m(az)]" and

Bel = [Bel(ay), ..., Bel(ar)]’. The expressions of the matrix BMj3 and its inverse BM3 ™! are given by

10000000
11000000
10100000

BM o |t 1110000
10001000
11001100
10101010

1111 1 1 1 1]

Matlab is a trademark of The MathWorks, Inc.
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(1 0 0o 0o 0o 0o o0 o0
11 0 0 0 0 0 0
1 0 1 0 0 0 0 0
a1 L1000 0
10 0 0 1 0 0 0
1 =10 0 -1 1 0 0
1 0 -1 0 -1 0 1 0
-1 1 1 -1 1 -1 -1 1

3.2 Ordering elements of hyper-power set for matrix calculus

As within the DST framework, the order of the elements of D® can be arbitrarily chosen. We denote the
Dedekind number or order n as d(n) £ |D®| for n = |©]. We denote also m the gbba vector of size d(n) x 1
and Bel its corresponding belief vector of the same size. The set of equations Bel(4) = 3" pc po pc 4 m(B)

holding for all A € D® is then strictly equivalent to the following general matrix equation
Bel=BM-m < m=BM ' Bel (3.3)

Note the similarity between these relations with the previous ones ([BIl). The only difference resides
in the size of vectors Bel and m and the size of matrix BM and their components. We explore in the
following sections the possible choices for ordering (or partially ordering) the elements of hyper-power set
D®, to obtain an interesting matrix structure of BM matrix. Only three issues are examined and briefly
presented in the sequel. The first method is based on the direct enumeration of elements of D® according
to their recursive generation via the algorithm for generating all isotone Boolean functions presented in
the previous chapter and in [3]. The second (partial) ordering method is based on the notion of DSm
cardinality which will be introduced in section B2 The last and most interesting solution proposed for
partial ordering over D® is obtained by introducing the notion of intrinsic informational strength s(.)

associated to each element of hyper-power set.

3.2.1 Order based on the enumeration of isotone Boolean functions

We have presented in chapter B a recursive algorithm based on isotone Boolean functions for generating
D® with didactic examples. Here is briefly the principle of the method. Let’s consider © = {61, ...,60,}
satisfying the DSm model and the DSm order u,, of Smarandache’s codification of parts of Venn diagram
© with n partially overlapping elements 6;, i = 1,...,n. All the elements «; of D® can then be obtained
by the very simple linear equation d,, = D,, - u,, where d,, = [ap = 0, 11, . .. ,ad(n),l]' is the vector of
elements of D®, u,, is the proper codification vector and D,, a particular binary matrix. The final result

d,, is obtained from the previous matriz product after identifying (+, ) with (U, N) operators, 0z with
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and 1-z with . D, is actually a binary matrix corresponding to isotone (i.e. non-decreasing) Boolean

functions obtained by applying recursively the steps (starting with D§ = [01]")

e D¢ is built from D¢ _; by adjoining to each row r; of D{,_; any row r; of Df, _; such that r;Ur; = r;.

Then D,, is obtained by removing the first column and the last line of D¢,.

We denote r5° (cv;) the position of «; into the column vector d,, obtained from the previous enumer-
ation/generation system. Such a system provides a total order over D® defined Vo, o; € D® as a; < o
(a; precedes «;) if and only if r**°(a;) < r**°(cj). Based on this order, the BM matrix involved in B3]
presents unfortunately no particular interesting structure. We have thus to look for better solutions for

ordering the elements of hyper-power sets.

3.2.2 Ordering based on the DSm cardinality

A second possibility for ordering the elements of D® is to (partially) order them by their increasing DSm

cardinality.

Definition of the DSm cardinality

The DSm cardinality of any element A € D®, denoted Cpq(A), corresponds to the number of parts of A in
the Venn diagram of the problem (model M) taking into account the set of integrity constraints (if any),
i.e. all the possible intersections due to the nature of the elements 6;. This intrinsic cardinality depends
on the model M. M is the model that contains A which depends on the dimension of Venn diagram,
(i.e. the number of sets n = |©| under consideration), and on the number of non-empty intersections in
this diagram. Caq(A) must not be confused with the classical cardinality |A| of a given set A (i.e. the

number of its distinct elements) - that’s why a new notation is necessary here.

Some properties of the DSm cardinality

First note that one has always 1 < Caq(A) < 2" — 1. In the (general) case of the free-model M/ (i.e. the
DSm model) where all conjunctions are non-empty, one has for intersections:

Car(01) = ... =Cps(6,) =271

Camr(0;N0;) =272 forn > 2

Car(0;N0; NO) =273 forn >3

It can be proven by induction that for 1 <m < n, one has Cpqs(0;; NO;, N...NE;, ) =2""™. For the
cases n = 1,2, 3,4, this formula can be checked on the corresponding Venn diagrams. Let’s consider this
formula true for n sets, and prove it for n + 1 sets (when all intersections/conjunctions are considered
non-empty). From the Venn diagram of n sets, we can get a Venn diagram with n + 1 sets if one draws

a closed curve that cuts each of the 2™ — 1 parts of the previous diagram (and, as a consequence, divides
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each part into two disjoint subparts). Therefore, the number of parts of each intersection is doubling
when passing from a diagram of dimension n to a diagram of dimension n + 1. Q.e.d.
In the case of the free-model M7, one has for unions:

Car(0; U0;) =3(2"72) for n > 2

Car(0; U0; Ub)=T7(2"3) forn >3

It can be proven also by induction that for 1 < m < n, one has Cps(0;; U6, U...U0; ) =
(2™ —1)(2"~™). The proof is similar to the previous one, and keeping in mind that passing from a Venn
diagram of dimension n to a dimension n + 1, each part that forms the union 6; N 6; N 6, will be split

into two disjoint parts, hence the number of parts is doubling.

For other elements A in D®, formed by unions and intersections, the closed form for C s (A) seems
more complicated to obtain. But from the generation algorithm of D®, DSm cardinal of a set A from
D® is exactly equal to the sum of its coefficients in the u,, basis, i.e. the sum of its row elements in
the D,, matrix, which is actually very easy to compute by programming. The DSm cardinality plays in
important role in the definition of the Generalized Pignistic Transformation (GPT) for the construction of
subjective/pignistic probabilities of elements of D® for decision-making at the pignistic level as explained
in chapter [ and in [5]. If one imposes a constraint that a set B from D® is empty, then one suppresses
the columns corresponding to the parts which compose B in the D, matrix and the row of B and the
rows of all elements of D® which are subsets of B, getting a new matrix D’,, which represents a new
model M’. In the u, basis, one similarly suppresses the parts that form B, and now this basis has the

dimension 2" — 1 — Capq(B).

Example of DSm cardinals on M/

Consider the 3D case © = {f;,0,,05} with the free-model M/ corresponding to the following Venn
diagram (where < i > denotes the part which belongs to 6; only, < ij > denotes the part which belongs

to 0; and 6; only, etc; this is Smarandache’s codification (see the previous chapter).

Figure 3.1: Venn Diagram for M/
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The corresponding partial ordering for elements of D® is then summarized in the following table:

Ae DP Cms(A)

ap =0 0

aléﬁlﬂﬂgﬂ%

[

as 260, N0,
as 2 60,N05
ay 2 0,N03
as = (01 U62) N o3

)

Qg £ (91 U93) N 6y

(674 £ (92 U93) N 6,
)

ag 2 (61N 6) U (61 N63) U (62N 6s)

A
Q12 =

(01 N62) U B3
aiz = (0;N63) Uy
a2 (02N 05) U6,
Q15 29,06,

16 £ 01 U063

Q17 é 92 U93

Q
=
o
(1>
>
[ V)
EN Y- NN NI NI, BRI, TS T~ U SO SO SO U SCEEN CHE N

algé%U@QUGg

Table 3.1: Cys(A) for free DSm model M/

Note that this partial ordering doesn’t properly catch the intrinsic informational structure/strength
of elements since by example (61 Né2) U (01 NO3)U (02 Nb3) and O; have the same DSm cardinal although
they don’t look similar because the part < 1 > in 6; belongs only to 6; but none of the parts of
(01 N B2) U (01 NB3) U (B2 N O3) belongs to only one part of some ;. A better ordering function is then
necessary to catch the intrinsic informational structure of elements of D®. This is the purpose of the

next section.

Example of DSm cardinals on an hybrid DSm model M

Consider now the same 3D case with the hybrid DSm model M # M/ in which we force all possible

conjunctions to be empty, but ; N @2 according to the following Venn diagram.
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Figure 3.2: Venn Diagram for M

The corresponding partial ordering for elements of D® is then summarized in the following table:

Ae D® Cm(A)
ag 20 0
a1 2 0,N06, 1
as 205 1
as 20, 2
ay 20y 2
as 260, U6, 3
ag 260, U6b; 3
ar £ 0, U0 3
as 260, U0y U 65 4

Table 3.2: Caq(A) for hybrid DSm model M

Another example based on Shafer’s model

Consider now the same 3D case but including all exclusivity constraints on 6;, ¢ = 1,2,3. This corre-

sponds to the 3D Shafer’s model M presented in the following Venn diagram.

01 P

03

Then, one gets the following list of elements (with their DSm cardinal) for the restricted D€, which

coincides naturally with the classical power set 2°:
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A€ (D®=29) | Crp(A)
ag 20 0
a 26, 1
as 20y 1
as 2 05 1
g 2601 U0 2
as £ 601 U0; 2
ag £ 0y Ubs 2
ar 260, U6, U6 3

Table 3.3: Cyq0(A) for Shafer’s model M°

The partial ordering of D® based on DSm cardinality does not provide in general an efficient solution
to get an interesting structure for the BM matrix involved in B3), contrary to the structure obtained by
Smets in the DST framework as in section Bl The partial ordering presented in the sequel will however

allow us to get such a nice structure for the matrix calculus of belief functions.

3.2.3 Ordering based on the intrinsic informational content

As already pointed out, the DSm cardinality is insufficient to catch the intrinsic informational content of
each element d; of D®. A better approach to obtain this, is based on the following new function s(.), which
describes the intrinsic information strength of any d; € D®. A previous, but cumbersome, definition of
s(.) had been proposed in our previous works [Il, 2] but it was difficult to handle and questionable with

respect to the formal equivalent (dual) representation of elements belonging to D®.

Definition of the s(.) function

We propose here a better choice for s(.), based on a very simple and natural geometrical interpretation
of the relationships between the parts of the Venn diagram belonging to each d; € D®. All the values of

the s(.) function (stored into a vector s) over D® are defined by the following equation:

s=D, -w, (3.4)

with s £ [s(dp) ... s(d,)]’ where p is the cardinal of D® for the model M under consideration. p is
equal to Dedekind’s number d(n) — 1 if the free-model M/ is chosen for © = {6,...,0,}. D, is the
hyper-power set generating matriz. The components w; of vector w,, are obtained from the components

of the DSm encoding basis vector u,, as follows (see previous chapter for details about D,, and u,,) :

w; 2 1/1(ug) (3.5)
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where [(u;) is the length of Smarandache’s codification wu; of the part of the Venn diagram of the model

M, i.e the number of symbols involved in the codification.

For example, if u; =< 123 >, then [(u;) = 3 just because only three symbols 1, 2, and 3 enter in the

codification u;, thus w; = 1/3.

From this new DSm ordering function s(.) we can partially order all the elements d; € D® by the

increasing values of s(.).

Example of ordering on D®={01.%2} with M/

In this simple case, the DSm ordering of D® is given by

a; € D® s(a;)

ag =10 s(ag) =0
ar=61N0 | s(a1) =1/2

ag =6 s(ag) =1+41/2

az = O s(az) =1+1/2
ag=601U0 | s(as)=14+1+1/2

Based on this ordering, it can be easily verified that the matrix calculus of the beliefs Bel from m by

equation ([B3), is equivalent to

Bel(0) 10000 m(0)
Bel(6; N 6s) 1 10 0 0| |m6n6)
Bely) | =111 1 0 of| m(6)
Bel(0s) 11010 m(62)
Bel(0; U 65) 1 1 1 1 1| |m(61U869)
] Bel ] - BM, = m ]

where the BMjy matrix has a interesting structure (triangular inferior and unimodular properties,

det(BM,) = det(BM;') = 1). Conversely, the calculus of the generalized basic belief assignment

m from beliefs Bel will be obtained by the inversion of the previous linear system of equations
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@ | [1 0 o o ol Bem |
m(6y N 62) -1 1 0 0 0] |Bel(f1Nbs)
m@) |=]0 -1 1 0 0 Bel(61)
m(6s) 0 -1 0 1 0| Bel(f)
m(6y U 6s) 0 1 -1 =1 1| [Bel(f1Ubs)
m MB,—BM; ! Bel

Example of ordering on D®={01.205} with M/

In this more complicated case, the DSm ordering of D® is now given by

a; €D®,i=0,..,18 s(a;)

0 0

01N 0N 03 1/3

01N 6, 1/3+1/2

61 N 03 1/3+1/2

62N 03 1/3+1/2

(61 U 6) N 6 1/3+1/2+1/2

(61 U 65) N 65 1/3+1/2+1/2

(62 UB03) N6, 1/3+1/2+1/2

(1 NG2) U (01 NO3)U(02N03) | 1/3+1/2+1/2+1/2

01
D)
03
(01 NBO2) U O3
(61 N 63) U by
(62N 65) U0,

1/3+4+1/2+1/2+1
1/3+1/2+1/2+1
1/34+1/2+1/2+1
1/34+1/241/24+1+1/2
1/341/241/24+1+1/2
1/341/241/24+1+1/2

61U 6, 1/3+1/24+1/24+1+1/2+1
61 U b5 1/3+1/24+1/24+1+1/2+1
02 U 03 1/3+1/24+1/2+1+1/2+1
01 U6 U O3 1/3+1/24+1/24+14+1/2+1+1

The order for elements generating the same value of s(.) can be chosen arbitrarily and doesn’t change
the structure of the matrix BMj given right after. That’s why only a partial order is possible from s(.).
It can be verified that BM3 holds also the same previous interesting matrix structure properties and that

det(BM3) = det(BMgl) = 1. Similar structure can be shown for problems of higher dimensions (n > 3).
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Although a nice structure for matrix calculus of belief functions has been obtained in this work, and
conversely to the recursive construction of BM,, in DST framework, a recursive algorithm (on dimension
n) for the construction of BM,, from BM,,_; has not yet be found (if such recursive algorithm exists ...)

and is still an open difficult problem for further research.

(1 000000000000O0O0GO0O0O0 O]
1 1000000000O0O0O0O0OO0O0O0
11 100000000000O0O0GO0O0O0
1 1010000000000O0O0GO0O0O0
11001000000000O0GO0GO0GO0O0
110111000000000G0000
1110101000000000000
111100010000000°0000
111111111000000°G0000
BM;=|111100010100000000 0
111010100010000°0000
11011100000°1000°0000
1111111110011000000
1111111110100100000
1111111111000010000
1111111111100111000
111111111101 1010100
111111111011 11000T1°0
11111111 11111111111 ]

3.3 Conclusion

In this chapter, one has analyzed several issues to obtain an interesting matrix representation of the
belief functions defined in the DSmT. For ordering the elements of hyper-power set D® we propose three
such orderings: first, using the direct enumeration of isotone Boolean functions, second, based on the
DSm cardinality, and third, and maybe the most interesting, by introducing the intrinsic informational
strength function s(.) constructed from the DSm encoding basis. The third order permits to get a nice
internal structure of the transition matrix BM in order to compute directly and easily by programming

the belief vector Bel from the basic belief mass vector m and conversely by inversion of matrix BM.
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Chapter 4

Combination of beliefs on hybrid
DSm models

Jean Dezert Florentin Smarandache
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Abstract: This chapter presents a general method for combining uncertain and
paradozical (i.e. highly conflicting) sources of evidence for a wide class of fusion
problems. From the foundations of the DSmT we show how the DSm rule of com-
bination can be extended to take into account all possible integrity constraints (if
any) of the problem under consideration due to the true nature of elements/concepts
involved into it. We show how Shafer’s model can be considered as a specific hybrid
DSm model and can be easily handled by the DSmT and one presents here a new
efficient alternative to Dempster’s rule of combination, following steps of previous
researchers towards this quest. Several simple didactic examples are also provided to

show the efficiency and the generality of the approach proposed in this work.

4.1 Introduction

ﬁ. ccording to each model occurring in real-world fusion problems, we present a general hybrid DSm
rule which combines two or more masses of independent sources of information and takes care of
constraints, i.e. of sets which might become empty at time ¢; or new sets/elements that might arise in the

frame at time t;,1. The hybrid DSm rule is applied in a real time when the hyper-power set D® changes

61
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(i.e. the set of all propositions built from elements of frame © with U and N operators - see [3] for details),
either increasing or decreasing its focal elements, or when even © decreases or increases influencing the

D® as well, thus the dynamicity of our DSmT.

This chapter introduces the reader to the independence of sources of evidences, which needs to be
studied deeper in the future, then one defines the models and the hybrid DSm rule, which is different from
other rules of combination such as Dempster’s, Yager’s, Smets’, Dubois-Prade’s and gives seven numerical
examples of applying the hybrid DSm rule in various models and several examples of dynamicity of DSmT,

then the Bayesian hybrid DSm models mixture.

4.2 On the independence of the sources of evidences

The notion of independence of the sources of evidence plays a major role in the development of efficient
information fusion algorithms but is very difficult to formally establish when manipulating uncertain and
paradoxical (i.e. highly conflicting) sources of information. Some attempts to define the independence of
uncertain sources of evidences have been proposed by P. Smets and al. in Dempster-Shafer Theory (DST)
and Transferable Belief Model in |12, [T3, [[4] and by other authors in possibility theory [I, 2, B, B, [[0]. In
the following, we consider that n sources of evidences are independent if the internal mechanism by which
each source provides its own basic belief assignment doesn’t depend on the mechanisms of other sources
(i.e. there is no internal relationship between all mechanisms) or if the sources don’t share (even partially)
same knowledge/experience to establish their own basic belief assignment. This definition doesn’t exclude
the possibility for independent sources to provide the same (numerical) basic belief assignments. The
fusion of dependent uncertain and paradoxical sources is much more complicated because, one has first
to identify precisely the piece of redundant information between sources in order to remove it before

applying the fusion rules. The problem of combination of dependent sources is under investigation.

4.3 DSm rule of combination for free-DSm models

4.3.1 Definition of the free-DSm model M/(O)

Let’s consider a finite frame © = {6y,...0,} of the fusion problem under consideration. We abandon
Shafer’s model by assuming here that the fuzzy/vague/relative nature of elements 6; ¢ = 1,...,n of © can
be non-exclusive. We assume also that no refinement of © into a new finer ezxclusive frame of discernment
©rf is possible. This is the free-DSm model M7 (©) which can be viewed as the opposite (if we don’t
introduce non-existential constraints - see next section) of Shafer’s model, denoted M°(©) where all 6;

are forced to be exclusive and therefore fully discernable.
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4.3.2 Example of a free-DSm model

Let’s consider the frame of the problem © = {6y, 65,05}. The free Dedekind lattice D® = {aq,...,a1s}

over © owns the following 19 elements (see chapter B

Elements of D® for M/(©)
ap =0
a1 26,N6,N60;#0 10 £ 02 # 0
az26,N6;£0 a1 205 # 0
as£601N05#£0 12 2 (01N 62) U3 # 0
g 2 0,N05 40 13 = (01N 605) Uy # 0
as £ (61U 02) N 63 # 0 a1 2 (62N05) U0, £ 0
ag = (01 U03) N0y £0 Q15 20, Uby £ 0
ar 2 (02U603)N0; #0 Q16 2 01U £ 0
as £ (01 NO)U 01 N03)U(02N03) 0 | arr =0 U03 £ 0
a0 20y £ 0 ag 2 05 Uy U by # 0

The free-DSm model M/ (©) assumes that all elements a;, i > 0, are non-empty. This corresponds to

the following Venn diagram where in Smarandache’s codification ”¢”

denotes the part of the diagram which
belongs to 8; only, ”ij” denotes the part of the diagram which belongs to 6; and 6; only, "ijk” denotes the
part of the diagram which belongs to 6; and 6, and 6y, only, etc [3]. On such Venn diagram representation
of the model, we emphasize the fact that all boundaries of intersections must be seen/interpreted as only

vague boundaries just because the nature of elements 6; can be, in general, only vague, relative and even

imprecise (see chapter H).

Figure 4.1: Venn Diagram for M/ (0©)

For the chapter to be self-contained, we recall here the classical DSm rule of combination based on

M/ (©) over the free Dedekind’s lattice built from elements of © with N and U operators, i.e. D®.
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4.3.3 Classical DSm rule for 2 sources for free-DSm models

For two independent uncertain and paradoxical (i.e. highly conflicting) sources of information (experts/-
bodies of evidence) providing generalized basic belief assignment m(.) and ms(.) over D® (or over any

subset of D®), the classical DSm conjunctive rule of combination m 4, (e)(.) = [m1 @ my](.) is given by

VA#D e D®, mupse)(A) 2 imem)(Ad)= Y, mi(X1)ma(Xa) (4.1)

X1,X2€D®

(XlﬂXQ):A
Mg f(@)(@) = 0 by definition, unless otherwise specified in special cases when some source assigns a
non-zero value to it (like in the Smets TBM approach [d]). This DSm rule of combination is commutative

and associative. This rule, dealing with both uncertain and paradoxical/conflicting information, requires

no normalization process and can always been applied.

4.3.4 Classical DSm rule for k£ > 2 sources for free-DSm models

The above formula can be easily generalized for the free-DSm model M/ (0) with k¥ > 2 independent

sources in the following way:

VA# D€ D®, mpre)(A) 2 i @...my)(A) = > [[mi(xs) (4.2)
X1,...,X,eD® =1
(Xﬂ‘l..ﬂ;(i):A

m Mf(@)(@) = 0 by definition, unless otherwise specified in special cases when some source assigns a

non-zero value to it. This DSm rule of combination is still commutative and associative.

4.4 Presentation of hybrid DSm models

4.4.1 Definition

Let © be the general frame of the fusion problem under consideration with n elements 61, 6s, ..., 0,.
A hybrid DSm model M(©) is defined from the free-DSm model M7 (0) by introducing some integrity
constraints on some elements A of D® if one knows with certainty the exact nature of the model corre-
sponding to the problem under consideration. An integrity constraint on A consists in forcing A to be
empty (vacuous element), and we will denote such constraint as A 4 () which means that A has been
forced to () through the model M(©). This can be justified by the knowledge of the true nature of each
element §; of ©. Indeed, in some fusion problems, some elements ; and 6; of © can be fully discernable
because they are truly exclusive while other elements cannot be refined into finer exclusive elements.
Moreover, it is also possible that for some reason with some new knowledge on the problem, an element
or several elements 6; have to be forced to the empty set (especially if dynamical fusion problems are

considered, i.e when © varies with space and time). For example, if we consider a list of three potential
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suspects into a police investigation, it can occur that, during the investigation, one of the suspects can
be withdrawn of the initial frame of the problem if his innocence is proven with an ascertainable alibi.
The initial basic belief masses provided by sources of information one had on the three suspects, must

then be modified by taking into account this new knowledge on the model of the problem.

There exists several possible kinds of integrity constraints which can be introduced in any free-DSm
model MY (©) actually. The first kind of integrity constraint concerns exclusivity constraints by taking
into account that some conjunctions of elements 0;, ..., 0y are truly impossible (i.e. 6; N ... N6 /\E/[ 0).
The second kind of integrity constraint concerns the non-ezistential constraints by taking into account
that some disjunctions of elements 6;, ..., 0 are also truly impossible (i.e. 8; U... U8 /\E/[ ). We exclude
from our presentation the completely degenerate case corresponding to the constraint 6; U... U6, 4
(total ignorance) because there is no way and no interest to treat such a vacuous problem. In such a
degenerate case, we can just set m(()) £ 1 which is useless because the problem remains vacuous and D®
reduces to (). The last kind of possible integrity constraint is a mixture of the two previous ones, like for
example (; N6;) U@ or any other hybrid proposition/element of D® involving both N and U operators
such that at least one element 6}, is a subset of the constrained proposition. From any M/(0), we can
thus build several hybrid DSm models depending on the number of integrity constraints one needs to fully
characterize the nature of the problem. The introduction of a given integrity constraint A 4 ) € D®
implies necessarily the set of inner constraints B /\E/l (¢ for all B C A. Moreover the introduction of two
integrity constraints, say on A and B in D® implies also necessarily the constraint on the emptiness of the
disjunction AU B which belongs also to D® (because D® is closed under N and U operators). This implies
the emptiness of all C' € D® such that C' C (AU B). The same remark has to be extended for the case
of the introduction of n integrity constraints as well. Shafer’s model is the unique and most constrained
hybrid DSm model including all possible exclusivity constraints without non-existential constraint since
all §; # () € © are forced to be mutually exclusive. Shafer’s model is denoted M"(©) in the sequel. We
denote by @ the set of elements of D® which have been forced to be empty in the hybrid DSm model
M.

4.4.2 Example 1 : hybrid DSm model with an exclusivity constraint

Let © = {61,02,05} be the general frame of the problem under consideration and let’s consider the

following hybrid DSm model M;(0) built by introducing the following exclusivity constraint oy £ 6, N
M

02 N o5 = (). This exclusivity constraint implies however no other constraint because oy doesn’t contain

other elements of D® but itself. Therefore, one has now the following set of elements for D®
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Elements of D® for M;(©)

a2

a1 260,N0N65
az20,N0y £
as£6,N6;£0
s 2 0,N05 40
as 2 (01 U0) N0z £0
ag 2 (01 U03)N0, #A0

M

=0

a0 £ 0s £ 0

an 203 £0

alo 2 (01N6)UO3 # 0
a3 = (01N03) U0y # 0
s = (02N03) U0, #0
a5 =0, U0y 0

16 = 601Ul # 0
0417é92U937é®
g £ 01 U0, U603 £ 0

)
a7é(92U93)06’17§@
g £ (91092)U(91093)U(9206‘3)75(7)
ag £ 0y # 0

Hence the initial basic belief mass over D® has to be transferred over the new constrained hyper-power
set D®(M1(©)) with the 18 elements defined just above (including actually 17 non-empty elements). The
mechanism for the transfer of basic belief masses from D® onto D® (M (0)) will be obtained by the hybrid

DSm rule of combination presented in the sequel.

4.4.3 Example 2 : hybrid DSm model with another exclusivity constraint

As the second example for a hybrid DSm model M3(0), let’s consider © = {61,602, 05} and the following

exclusivity constraint ap £ 61 M6 L (). This constraint implies also c; = 6 Nf2 N3 e 0 since a1 C as.
Therefore, one has now the following set of elements for D® (M3 (0))
Elements of D® for My (O)
A
Qo =
A Mo N
a1:91ﬂ92ﬂ93:@ a10292¢®
M
as20,N0y =0 a1 205 # 0
M
as£01N05 £ 0 a2 2 (01 N0) Ul = arn # 0

a4é92ﬂ937ﬁ@
20, Ub)N05£0

algé(ﬁlﬂ%)ut%#@
0142(92093)U917&@

Mo a15é91U9275®

g =61 Ub3 # 0
0117292U937é®
18 £ 601 UbU b3 # 0

ag #0

az #0

ag 2 (0 N6) U (AL N63)U (62 N6O3)
g 201 #£0

015—(
agé(91U93)092 =
N Mo
a7:(92U93)06‘1 =
)

Mo

as 7 |

Note that in this case several non-empty elements of D®(M3(©)) coincide because of the constraint

M M M M

P g, ar = as, as = as, a1p = a11). D®(M3(0)) has now only 13 different elements. Note
M M

that the introduction of both constraints a; £ 6; N0, N O3 = O and ay £ 6, N0y = () doesn’t change

the construction of D®(Mz(0)) because a1 C asz.
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4.4.4 Example 3 : hybrid DSm model with another exclusivity constraint

As the third example for a hybrid DSm model M3(0), let’s consider © = {64, 62,03} and the following

N

exclusivity constraint ag = (6‘1 Ués) N 92 * (). This constraint implies now o £ 6; N6y N 63 () since
Ms Ms
a1 C ag, but also as 2 6, N6y = 0 because as C ag and ay 2 03N 03 = () because ay C ag. Therefore,

one has now the following set of elements for D®(M3(©))

Elements of D® for M3(0)

O[()é

a Ms a
a1—91092093:@ alo—ez#@
a2é91092/\§® a11é9375@
a3é91ﬂ937£(/) algé(elﬂ%)u@g%‘%au#@
a4é92093:® a13 = (01N 605) Uy # 0
a5é(91U92)06’ Aéag#@ a14é(6‘2093)U91/\é3a975@
aGé(Gluﬁg)ﬂe /\é 0115291U927é®
Oé7é(92U193)r“9/\é 370 a6 201Ul # 0
agé(elﬂeg)U(Qlﬂeg) (6‘2093)/\%36%75@ a17é92U937£(2)
a9é917§® algéolLJ@QU@g#@

D®(M3(0)) has now only 10 different elements.

4.4.5 Example 4 : Shafer’s model

As the fourth particular example for a hybrid DSm model M4(0), let’s consider © = {61,05,03} and
the following exclusivity constraint ag = {(6; N6) U b3} N (61 U hy) =) Therefore, one has now the

following set of elements for D®(M4(©))

Elements of D® for M, (©) (Shafer’s model)
O[()é
N My N
a1:91ﬂ92003 E@ a10:92¢@
a2é91092%4@ a11é9375@
a5 20,05 2 ) 12 2 (01 N105) Ul 2 any £ 0
a4ét92ﬂ935(7] alg—(ﬁlﬂﬁg)u%ﬂé 0110#@
(6‘1U92)09 %4(2) 0414—(6‘2093)U91/\é ag?é@
(6‘1U93)09 %4(2) 0415é6‘1U927é@
é(ezuog)me iy e 20, Ufs # 0
:(91ﬂ02)u(01ﬂ03)u(92093)%40) 0417292U937£@
ag £ 61 #0 s 201U Ub3 # 0
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This model corresponds actually to Shafer’s model M°(©) because this constraint includes all possible
exclusivity constraints between elements 6;, ¢ = 1,2, 3 since oy £20,N0,N05 C ag, Qo £0,N0, C as,
a3 20N C ag and ag 2 6, N O3 C ag. DO(My(0)) has now 2/® = 8 different elements and
coincides obviously with the classical power set 2€. This corresponds to Shafer’s model and serves as the

foundation for Dempster-Shafer Theory.

4.4.6 Example 5 : hybrid DSm model with a non-existential constraint

As the fifth example for a hybrid DSm model M5(0©), let’s consider © = {61, 02, 05} and the following non-
existential constraint ag = 91 ° (). In other words, we remove #; from the initial frame © = {61,02,05}.
This non-existential constraint implies a1 £ 61 N6y N G5 L 0, s £ 6, N6y s 0, g £ 6, N0 s (0 and

ar 2 (2 U603) N6, =) Therefore, one has now the following set of elements for D® (M5(0))

Elements of D® for M5(0)
O[()é
A Ms A
o1 =01NO,NOs =0 alozeg#@
a2_91092 ElS@ 0111293#@
a3_91ﬂ93%5® 0112—(91092)U9 %50111¢@
a4é920937é alg—(91093)U9 Aésalo?é@
./\/l Ms
as £ (01 U6)N0s = ay #0 ais 2 (02N03) U0, = ag #0
Oé(aé(91U193)ﬁi92/\é ayg #0 015201U92A§5a107&®
CV?é(92U6'3)ﬂ6'1/\é CY16—91U93/\é an #0
Ms
(91092) (01N05)U(62N03) = s #0 | aur £ 0 U03 #0
ag 20,72 g 2 0, Uy Uby "= g £ 0

D®(M5(0)) has now 5 different elements and coincides obviously with the hyper-power set DO\t

4.4.7 Example 6 : hybrid DSm model with two non-existential constraints

As the sixth example for a hybrid DSm model Mg(©), let’s consider © = {61, 602,05} and the following
two non-existential constraints ag 2 64 /\éﬁ 0 and a1p £ 6o /\éﬁ (0. Actually, these two constraints are
equivalent to choose only the following constraint a5 £ 6; U 6, Aé (). In other words, we remove now
both 6; and 6y from the initial frame © = {91,92,93} These non—existential constraints implies now
a1 20,00, 2 (2) as 20,0, "2 0, as _91093 20, an 2 o0y 200, s 2 (91u92)m93% 0,
ag = (91U93)092 =0, ar £ (egueg)mel =0, ag 2 {(91062)U63}m(91U92) =0, au3 2
(61 NB3) U 92 =0, aq 2 2 (AN 63) U 01 =’ (). Therefore, one has now the following set of elements for

DO (Me(0)):
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Elements of D® for Mg(O)

O[()é
a1é9109206‘3/\é6@ aloéﬁgAéG(Z)
agéﬁlﬂ%%ﬁ@ 05112937&@
O[géolﬂog'/\éﬁ@ algé(ﬁlﬂﬁg)u%ﬂé 0111#@
a4é92093=@ a1z = (01 N05)U 9%0
a5é(91U6‘2)09 Aéﬁ(b 0414é(6‘206‘3) 01 Aéﬁ(b

A MG A M
016:(91U93)09 =10 a5 = 01 U6y E@

N M A Me
a7=(92U6‘3)09 =0 a1 =601 Ubl3 = agp #0

M(‘, MG
é(91092)U(91093) U(@2n03) =0 | arr £02U03 = a1 # 0
ag 26,2 g 2 01Ul Ul 2 ayy £ 0

D®(Mg(©)) reduces now to only two different elements () and #3. D®(Mg(O)) coincides obviously
with the hyper-power set DO\{?1.02}  Because there exists only one possible non empty element in
D®(Mg(©)), such kind of a problem is called a trivial problem. If one now introduces all non-existential
constraints in the free-DSm model, then the initial problem reduces to a vacuous problem also called the
impossible problem corresponding to m(f)) = 1 (such kind of a ”problem” is not related to reality). Such
kinds of trivial or vacuous problems are not considered anymore in the sequel since they present no real

interest for engineering information fusion problems.

4.4.8 Example 7 : hybrid DSm model with a mixed constraint

As the seventh example for a hybrid DSm model M7 (©), let’s consider © = {01, 02,05} and the following
mized exclusivity and non-exristential constraint s = (6‘1 Né2) U 93 " (). This mixed constraint 1mphes
5 e (6‘1 U92)093 E @7

a1:91092093 E (Z) a2=91092 E (Z) 04326‘106‘3 E (Z) 04426‘206‘3 E @ «
%7@311(1 11 éeg /\é7 @

(91U93)ﬂ92 @ 047—(92U93)091 = @ ag_{(91092)U93}ﬂ(91U92)

Therefore, one has now the following set of elements for D®(M~(©))
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Elements of D® for M+ (©)
O[()é
A Mo A
o1 =60N0,NOs = 0 04102927'5@
agéolﬂ92%7@ 0411293%70
agéelﬂegE@ au_(elﬂt%)U@/é@
s 20,105 "2 ¢ s 2 (01 N105) Ul X g £ 0
a5 = (6‘1U92)09 %7(2) 0414—(6‘2093)U91Aé ag?é@
g = (91U93)09 /\é7® 0415291U927£@
Mz A Mz
ar = (6‘2U93)09 =0 w16 = 01 U 03 EO(g?é(Z)
agé(91092)U(91093)U(92093)Aé?(l) 0417—92U93 E 041075@
agéﬂl;&@ a18291U92U93g704157é®

D®(M+(0)) reduces now to only four different elements ), 61, 62, and 6 U 65.

4.5 DSm rule of combination for hybrid DSm models

In this section, we present a general DSm-hybrid rule of combination able to deal with any hybrid DSm
models (including Shafer’s model). We will show how this new general rule of combination works with
all hybrid DSm models presented in the previous section and we list interesting properties of this new

useful and powerful rule of combination.

4.5.1 Notations

Let © = {01,...0,} be a frame of partial discernment (i.e. a frame © for which at least one conjunctive
element of D® \ {(}} is known to be truly empty) of the constrained fusion problem, and D® the free
distributive lattice (hyper-power set) generated by © and the empty set §) under N and U operators. We
need to distinguish between the empty set (), which belongs to D€, and by () we understand a set which
is empty all the time (we call it absolute emptiness or absolutely empty) independent of time, space and
model, and all other sets from D®. For example 6; N #y or 61 UGy or only 6; itself, 1 < i < n, etc,
which could be or become empty at a certain time (if we consider a fusion dynamicity) or in a particular
model M (but could not be empty in other model and/or time) (we call a such element relative emptiness
or relatively empty). We'll denote by @ the set of relatively empty such elements of D® (i.e. which
become empty in a particular model M or at a specific time). @, is the set of integrity constraints which
depends on the DSm model M under consideration, and the model M depends on the structure of its
corresponding fuzzy Venn Diagram (number of elements in ©, number of non-empty intersections, and
time in case of dynamic fusion). Through our convention () & @r. Let’s note by @ = {(), @} the set of

all relatively and absolutely empty elements.
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For any A € D®, let ¢(A) be the characteristic non emptiness function of the set A, i.e. ¢(A) =1
if A¢ @ and ¢(A) = 0 otherwise. This function assigns the value zero to all relatively or absolutely
empty elements of D® through the choice of hybrid DSm model M. Let’s define the total ignorance
on © = {01,05,...,0,} as I; = 6 Ufy U... U6, and the set of relative ignorances as I, = {6;, U
... U8, , where iy,...,ip € {1,2,...,n} and 2 < k < n — 1}, then the set of all kind of ignorances as
I =1, UI,. For any element A in D®, one considers u(A) as the union of all singletons 6; that compose
A. For example, if A is a singleton then u(A) = A; if A =0, N2 or A =6, Uy then u(A) = 6, Uby; if
A = (0;N63)U03 then u(A) = 6, Uf;Ubs. ; by convention u(()) £ (). The second summation of the hybrid
DSm rule (see eq. [E3) and @) and denoted Ss in the sequel) transfers the mass of §) [if any; sometimes,
in rare cases, m(f)) > 0 (for example in Smets’ work); we want to catch this particular case as well] to the
total ignorance Iy = 6, U6 U...U6,. The other part of the mass of relatively empty elements, 6; and 6;
together for example, ¢ # j, goes to the partial ignorance/uncertainty m(6; U6;). Se multiplies, naturally
following the DSm classic network architecture, only the elements of columns of absolutely and relatively
empty sets, and then Sy transfers the mass my(X1)ma(X2) ... mg(X}) either to the element A € D? in
the case when A = u(X7) Uu(X2)U...Uu(Xy) is not empty, or if u(X1) Uu(X2)U...Uu(Xy) is empty
then the mass mq(X1)ma(X3) ... mi(Xy) is transferred to the total ignorance. We include all degenerate
problems/models in this new DSmT hybrid framework, but the degenerate/vacuous DSm-hybrid model

M
My defined by the constraint Iy =6, U U... U8B, =’ () which is meaningless and useless.

4.5.2 Programming of the u(X) function

We provide here the issue for programming the calculation of u(X) from the binary representation of
any proposition X € D® expressed in the Dezert-Smarandache order (see chapters Bl and ). Let’s con-
sider the Smarandache codification of elements 61, ...,60,. One defines the anti-absorbing relationship
as follows: element 7 anti-absorbs element ij (with ¢ < j), and let’s use the notation i << ij, and also
Jj << ij; similarly ij << ijk (with i < j < k), also jk << ijk and ik << ijk. This relationship is
transitive, therefore i << ij and ij << ijk involve i << ijk; one can also write i << ij << ijk as a
chain; similarly one gets j << ijk and k << ijk. The anti-absorbing relationship can be generalized for
parts with any number of digits, i.e. when one uses the Smarandache codification for the corresponding
Venn diagram on © = {6,60,,...,0,}, with n > 1. Between elements ij and ik, or between ij and jk
there is no anti-absorbing relationship, therefore the anti-absorbing relationship makes a partial order on
the parts of the Venn diagram for the free DSm model. If a proposition X is formed by a part only, say
i1ig...1, in the Smarandache codification, then u(X) = 6;, Uf;, U...U#6; . If X is formed by two or
more parts, the first step is to eliminate all anti-absorbed parts, ie. if A << B then u(A, B) = u(A);
generally speaking, a part B is anti-absorbed by part A if all digits of A belong to B; for an anti-

absorbing chain A; << Ay << ... << Aj one takes A; only and the others are eliminated; afterwards,
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when X is anti-absorbingly irreducible, u(X) will be the unions of all singletons whose indices occur in
the remaining parts of X - if one digit occurs many times it is taken only once. For convenience, one
provides below the MatLalﬂ source code for computing u(X), X € D®. The input variable u, of this

routine corresponds to the DSm base encoding and can be obtained by the method proposed in chapter P21

Dok 3¢k 3k 3K ok oK o oK oK o oK K K KK oK K KK KK S K K KK KK K oK K KK S oK o ok K ok oK ok ok
function [UX]=GetUX(u.n,X);

ook sk sk sk sk ok sk ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok s ok ok ok K sk ok K ok K Kok R sk K ok ok 3k ok K ok ok ok ok ok ok
% GetUX computes the function u(X) involved

% in the DSm hybrid rule of combination.

% Inputs : u-n => Dezert—Smarandache base encoding
% X => FElement of D"Theta in base u-n
% Ezample for n=38: if Theta={thetal ,h theta2,6 theta3}

X

then uw_83=[1 2 12 8 13 28 123]

X

Output : Uz => u(X) expressed in base u_n
Copyrights (c) 2003 — J. Dezert €& F. Smarandache

X

Tk sk 3 3ok 3 3ok K KK K K KK K KK K K KR K K KK K KK K KR K K KK K KO K K oK K K
UX=zeros (1,size (u-n,2));XP=u_n(find (X==1))’;
AF=zeros (size (XP,1) ,1); XC=[];

for jj=1:size(XP,1)

if (AF(jj)==0),ujj=num2str(XP(jj));

for kk=1:size (XP,1)

if (AF (kk)==0)

ukk=num?2str (XP(kk));w=intersect (ujj ,ukk);

if (isempty (w)==0),

if ((isequal (w,ujj)+isequal (w,ukk))>0)
XC=[XC;str2num(w) |;

if(size(ujj,2)<size (ukk,2)),AF(kk)=1;end

if (size (ukk,2)<size (ujj,2)),AF(jj)=1;end

end; end; end; end; end; end

XC=unique (XC) ; XCS=unique (num?2str(XC’));

for ii=1:size(XCS,2),if(XCS(ii) ='.")

for jj=1l:size(u-n,2)

if (isempty (intersect (XCS(ii),num2str(u-n(jj))))==0)
UX(jj)=1;end;end;end;end

Matlab source code for computing u(X), X € D®

Here are some examples for the case n = 3: 12 << 123, i.e. 12 anti-absorbs 123. Between 12 and 23

there is no anti-absorbing relationship.
o If X =123 then U(X) = 91 U92 U93.

o If X = {23,123}, then 23 << 123, thus u({23,123}) = u(23), because 123 has been eliminated,
hence u(X) = u(23) = 03 U 0.

o If X = {13,123}, then 13 << 123, thus u({13,123}) = u(13) = 6; U 6s.

IMatlab is a trademark of The MathWorks, Inc.
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o If X = {13,23,123}, then 13 << 123, thus u({13,23,123}) = u({13,23}) = 61 U 2 U 5 (one takes
as theta indices each digit in the {13,23}) - if one digit is repeated it is taken only once; between

13 and 23 there is no relation of anti-absorbing.

o If X = {3,13,23,123}, then u(X) = u({3,13,23}) because 23 << 123, then u({3,13,23}) =
u({3,13}) because 3 << 23, then u({3,13}) = u(3) = 03 because 3 << 13.

o If X ={1,12,13,23,123}, then one has the anti-absorbing chain: 1 << 12 << 123, thus u(X) =
u({1,13,23}) = u({1,23}) because 1 << 13, and finally u(X) = 6; U0 U 5.

o If X = {1,2,12,13,23,123}, then 1 << 12 << 123 and 2 << 23 thus u(X) = u({1,2,13}) =
u({1,2}) because 1 << 13, and finally u(X) = 6; U 5.

o If X = {2,12,3,13,23,123}, then 2 << 23 << 123 and 3 << 13 thus u(X) = w({2,12,3}), but
2 << 12 hence u(X) = u({2,3}) = 02 U 65.

4.5.3 The hybrid DSm rule of combination for 2 sources

To eliminate the degenerate vacuous fusion problem from the presentation, we assume from now on that
the given hybrid DSm model M under consideration is always different from the vacuous model My (i.e.
I; # (). The hybrid DSm rule of combination, associated to a given hybrid DSm model M # My , for

two sources is defined for all A € D® as:

ma(e)(4) = ¢(A){ Z my(X1)ma(Xa)

X1,X2€D®
(X1 ﬂXz):A

+ > mi(X1)ma(Xa)
X1,X2€0
[(u(X1)Uu(X2))=A]V[(w(X1)Uu(X2) €EB)A(A=I)]

=+ Z ml(Xl)mg(Xg)} (43)

X1,X2€D®
(X1UX2):A
X1NX2€0

The first sum entering in the previous formula corresponds to mass m s (e)(A) obtained by the classic
DSm rule of combination @) based on the free-DSm model M/ (i.e. on the free lattice D®), i.e.
mpqs o) (A) £ Z mi(X1)ma(X?) (4.4)
X1,X2€D®
(X1NX2)=A
The second sum entering in the formula of the DSm-hybrid rule of combination [3) represents the
mass of all relatively and absolutely empty sets which is transferred to the total or relative ignorances.
The third sum entering in the formula of the DSm-hybrid rule of combination 3] transfers the sum
of relatively empty sets to the non-empty sets in a similar way as it was calculated following the DSm

classic rule.
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4.5.4 The hybrid DSm rule of combination for k£ > 2 sources

The previous formula of hybrid DSm rule of combination can be generalized in the following way for all

Ae D°

mae)(A4) = ¢(A) { Z H m;i(X;)
X1,X2,..., XkGD@ =1
(X1NX2N..NXk)=A

k

X1,X2,..,X,€0
[(u(X1)Uu(X2)U...Uu(Xg))=A]V[(u(X1)Uu(X2)U...Uu(Xk)ED)A(A=I})]

k
+ Y IImxa] @)

X1,X2,...X€D® =1
(X1UX2U...UXk):A
X1NX2N...nX,€0

The first sum entering in the previous formula corresponds to mass m s (e)(A) obtained by the classic
DSm rule of combination @2 for k sources of information based on the free-DSm model M/ (i.e. on

the free lattice D®), i.e.

k
M )(4) = > [ mi(x:) (4.6)
X1,X2,...,X,eD® =1
(X1NX2N...NXE)=A

4.5.5 On the associativity of the hybrid DSm rule

From ) and ), the previous general formula can be rewritten as

o) (4) £ 6(A)[S1(4) + Sa(4) + Ss(A)] (4.7)
where i
S1(A) = mpgs () (A) £ > H mi(X;) (4.8)

(X10X2ﬁ...ﬂXk):A

k
Sa(A) £ Z H m;(X;) (4.9)
X1,X2,...,.X,€0 i=1
[(w(X1)U(X2)U...Uu(X5)) = AV [ (w( X1)Ut(X2)U...Uu( Xy ) D) A (A=1,)]
k
S3(4) £ > [[mi(x3) (4.10)

X1,X2,...,X,eD® =1
(XlUXQU...UXk):A
X1NX2N..NXr€0

This rule of combination can be viewed actually as a two-step procedure as follows:

e Step 1: Evaluate the combination of the sources over the free lattice D® by the classical DSm rule
of combination to get for all A € D®, S1(A) = mas(e)(A) using [@T). This step preserves the
commutativity and associativity properties of the combination. When there is no constraint (when
using the free DSm model), the hybrid DSm rule reduces to the classic DSm rule because @ = {(}}
and m;(0) = 0, i = 1,...k and therefore ®(A) = 1 and Sy(A) = S3(A) = 0 VA # () € D®. For
A=0,®(A) =0 and thus m s (0) = 0.
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e Step 2: Transfer the masses of the integrity constraints of the hybrid DSm model M according
to formula 7). Note that this step is necessary only if one has reliable information about the
real integrity constraints involved in the fusion problem under consideration. More precisely, when
some constraints are introduced to deal with a given hybrid DSm model M(©), there exists some
propositions A M () for which ®(A) = 0. For these propositions, it is actually not necessary to
compute Si(A4), S2(A) and S3(A) since the product ®(A)[S;(A) + S2(A) + S3(A)] equals zero
because ®(A4) = 0. This reduces the cost of computations. For propositions A J;é/l () characterized
by ®(A) = 1, the derivation of S1(A), S2(A) and S3(A) is necessary to get maqe)(A). The last
part of the hybrid DSm combination mechanism (called compression step) consists in gathering
(summing) all masses corresponding to same proposition because of the constraints of the model.
As example, if one considers the 3D frame © = {61, 02, 03} with the constraint 65N 63 M (), then the
mass resulting from the hybrid DSm fusion rule ) maqe) (01 U (62 N 03)) will have to be added

to maq(e)(01) because 61 U (62 N 03) M 01 due to the constraint 0 N 05 M 0.

The second step does not preserve the full associativity of the rule (same remark applies also with
Yager’s or Dubois & Prade’s rules), but this is not a fundamental requirement because this problem can
be easily circumvented by keeping in parallel the two previous steps 1 and 2. The fusion has to start
always on the free-DSm model. The second step is applied only when some integrity constraints are
introduced and before the decision-making. In other words, if one has only 2 independent sources of
information giving m1(.) and ma(.) and some integrity constraints on the frame ©, one applies step 1 to
ge mj\’jf(@)(.) = [m1 @ m2](.) defined on the free-DSm model and then one applies step 2 to get the

2

final result m}\/[ (@)(.) on the hybrid-model. If a third source of information is introduced, say ms(.), one

combines it with the two previous ones by step 1 again to get m}\’j}%@)(.) = [m3 @ m}\’jf(@)](.) and then

one applies step 2 to get the final result mﬁ(%)() on the hybrid-model M(O).

There is no technical difficulty to process the fusion in this way and that’s why the full associativity
of the fusion rule is not so fundamental despite of all criticisms against the alternatives to Dempster’s
rules emerging in litterature over the years. The full/direct associativity property is realized only through
Demspter’s rule of combination when working on Shafer’s model. This is one of reasons for which Demp-
ster’s rule is usually preferred to the other fusion rules, but in turn this associativity property (through
the normalization factor 1 — m(()) is also one of the main sources of the criticisms for more than twenty
years because one knows that Dempster’s rule fails to provide coherent results when conflicts become
high (see chapters Bl and for examples) and something else must be carried out anyway to prevent

problems. This matter of fact is quite paradoxical.

2We introduce here the notation m®2(.) to explicitly express that the resulting mass is related to the combination of

sources 1 and 2 only.
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To avoid the loss of information in the fusion, one has first to combine all sources using DSm rule on
free-DSm model and then to adapt the belief masses according to the integrity constraints of the model
M. TIf one first adapts the local masses m(.), ...my(.) to the hybrid-model M and afterwards one applies
the combination rule, the fusion becomes only suboptimal because some information is lost forever during
the transfer of masses of integrity constraints. The same remark holds if the transfer of masses of integrity

constraints is done at some intermediate steps after the fusion of m sources with m < k.

Let’s note also that this formula of transfer is more general (because we include the possibilities to
introduce both exclusivity constraints and non-existential constraints as well) and more precise (because
we explicitly consider all different relative emptiness of elements into the general transfer formula 1))
than the generic transfer formulas used in the DST framework proposed as alternative rules to Dempster’s

rule of combination [6] and discussed in section EER.T0

4.5.6 Property of the hybrid DSm Rule

The following equality holds:
> mae)(A) = D 6(4)[S1(4) + Sa(4) + Sy(4)] =1 (4.11)
AeD® AeD®
Proof: Let’s first prove that ) , . pe m(A) = 1 where all masses m(A) are obtained by the DSm classic
rule. Let’s consider each mass m;(.) provided by the ith source of information, for 1 < i < k, as a vector
of d = | D® | dimension, whose sum of components is equal to one, i.e. m;(D®) = [m;1, M2, ..., M4,

and Ej:l 4 Mij = 1. Thus, for k > 2 sources of information, the mass matrix becomes

mi1 mi2 N mid

mi1 mio ceo Mg

If one denotes the sets in D® by A;, As, ..., A4 (it doesn’t matter in what order one lists them) then the
column (j) in the matrix represents the masses assigned to A; by each source of information s, sa, ...,
sy; for example s;(A;) = m;;, where 1 <4 < k. According to the DSm network architecture [3], all the
products in this network will have the form my; maj, ... my;,, i.e. one element only from each matrix
row, and no restriction about the number of elements from each matrix column, 1 < ji,ja,..., 5k < d.
Each such product will enter in the fusion mass of one set only from D®. Hence the sum of all components

of the fusion mass is equal to the sum of all these products, which is equal to

Hzmij:_]'[1:1 (4.12)
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The hybrid DSm rule has three sums S7, S, and S3. Let’s separate the mass matrix M into two disjoint
sub-matrices My formed by the columns of all absolutely and relatively empty sets, and My formed by

the columns of all non-empty sets. According to the DSm network architecture (for k£ > 2 rows):

e 57 is the sum of all products resulted from the multiplications of the columns of My following the
DSm network architecture such that the intersection of their corresponding sets is non-empty, i.e.
the sum of masses of all non-empty sets before any mass of absolutely or relatively empty sets could

be transferred to them;

e Sy is the sum of all products resulted from the multiplications of My following the DSm network
architecture, i.e. a partial sum of masses of absolutely and relatively empty sets transferred to the

ignorances in I £ I, U I, or to singletons of ©.

e 53 is the sum of all the products resulted from the multiplications of the columns of My and My
together, following the DSm network architecture, but such that at least a column is from each
of them, and also the sum of all products of columns of My such that the intersection of their
corresponding sets is empty (what did not enter into the previous sum S7), i.e. the remaining sum
of masses of absolutely or relatively empty sets transferred to the non-empty sets of the hybrid

DSm model M.

If one now considers all the terms (each such term is a product of the form mq;, maj, ... my;, ) of these
three sums, we get exactly the same terms as in the DSm network architecture for the DSm classic rule,
thus the sum of all terms occurring in Sy, Sa, and S3 is 1 (see formula IZ)) which completes the
proof. The hybrid DSm rule naturally derives from the DSm classic rule. Entire masses of relatively and
absolutely empty sets in a given hybrid DSm model M are transferred to non-empty sets according to

the formula @) and thus

VAe® C D® mpe(A)=0 (4.13)
The entire mass of a relatively empty set (from D®) which has in its expression 6;,, 0j,, ..., 0;_, with
1 < r < n will generally be distributed among the 8;,, 0;,, ..., 8;, or their unions or intersections, and the

distribution follows the way of multiplication from the DSm classic rule, explained by the DSm network
architecture [3]. Thus, because nothing is lost, nothing is gained, the sum of all m rg)(4) is equal to 1
as just proven previously, and fortunately no normalization constant is needed which could bring a loss

of information in the fusion rule. The three summations S;(.), S3(.) and S3(.) are disjoint because:

e 51(.) multiplies the columns corresponding to non-empty sets only - but such that the intersections

of the sets corresponding to these columns are non-empty [from the definition of DSm classic rule];
e S5(.) multiplies the columns corresponding to absolutely and relatively empty sets only;

e S3(.) multiplies:
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a) either the columns corresponding to absolutely or relatively empty sets with the columns
corresponding to non-empty sets such that at least a column corresponds to an absolutely or

relatively emptyset and at least a column corresponds to a non-emptyset,

b) or the columns corresponding to non-empty sets - but such that the intersections of the sets

corresponding to these columns are empty.

The multiplications are following the DSm network architecture, i.e. any product has the above general
form: mqj;,ma;, ... myj,, i.e. any product contains as factor one element only from each row of the mass
matrix M and the total number of factors in a product is equal to k. The function ¢(A) automatically
assigns the value zero to the mass of any empty set, and allows the calculation of masses of all non-empty

sets.

4.5.7 On the programming of the hybrid DSm rule

We briefly give here an issue for a fast programming of the DSm rule of combination. Let’s consider
O = {61,0,,...,0,}, the sources By, Ba,..., B, and p = min{n, k}. One needs to check only the focal
sets, i.e. sets (i.e. propositions) whose masses assigned to them by these sources are not all zero. Thus,
if M is the mass matrix, and we consider a set A; in D® | then the column (j) corresponding to Aj,
ie. (m1; mo; ... my;) transposed has not to be identical to the null-vector of k-dimension (00 ... 0)
transposed. Let D® (step,) be formed by all focal sets at the beginning (after sources By, Ba,. .., By have
assigned masses to the sets in D®). Applying the DSm classic rule, besides the sets in D® (step;) one

adds r-intersections of sets in D®(step, ), thus:

D® (step,) = D®(stepy) V {Ay A Ay A AA;Y

where A;,, Ai,, ..., A;. belong to D®(step;) and 2 < r < p.

Applying the hybrid DSm rule, due to its So and S3 summations, besides the sets in D® (step,) one

adds r-unions of sets and the total ignorance in D®(step,), thus:

D® (stepy) = D®(stepy) VI, V {A;, V Ay, V...V A; }

where A;,, Ai,, ..., A;. belong to D®(step,) and 2 < r < p.
This means that instead of computing the masses of all sets in D®, one needs to first compute the

masses of all focal sets (step 1), second the masses of their r-intersections (step 2), and third the masses

of r-unions of all previous sets and the mass of total ignorance (step 3).
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4.5.8 Application of the hybrid DSm rule on previous examples

We present in this section some numerical results of the hybrid DSm rule of combination for 2 independent
sources of information. We examine the seven previous examples in order to help the reader to check by
himself (or herself) the validity of our new general formula. We will not go in details in the derivations,
but we just present the main intermediary results S1(A), S2(A4) and S3(A) (defined in @), ET), EI0))
involved into the general formula [3) with setting the number of sources to combine to k = 2. Now
let’s consider © = {61, 05,03} and two independent bodies of evidence with the generalized basic belief

assignmentsH m1(.) and mgy(.) given in the following tableH.

Element A of D® mi(A) ma(A) | mase)(A)
0 0 0 0

01 Nb2N 03 0 0 0.16
02 N O3 0 0.20 0.19
0, N0 0.10 0 0.12
(01 U63) N6 0 0 0.01
03 0.30 0.10 0.10
01 N6 0.10 0.20 0.22
(61 U 63) N 6o 0 0 0.05
(02 U 03) N6, 0 0 0
(01 NB)U (61 NB3)U(B2Nb3) | 0 0 0
(01N 62) U b3 0 0 0

0 0.20 0.10 0.03
(01N 63) U0y 0 0 0

02 U 05 0 0 0

01 0.10 0.20 0.08
(02 Nb3) U6y 0 0 0.02
0, U 05 0.10 0.20 0.02
0, U6, 0.10 0 0

01 U6 U b3 0 0 0

The right column of the table gives the result obtained by the DSm rule of combination based on the
free-DSm model. The following sections give the results obtained by the hybrid DSm rule on the seven
previous examples of section L3 The tables show the values of ¢(A), S1(A), S2(A) and S3(A) to help the
reader to check the validity of these results. It is important to note that the values of S1(A), S2(A) and

S3(A) when ¢(A) = 0 do not need to be computed in practice but are provided here only for verification.

3A general example with m1(A4) > 0 and ma(A) > 0 for all A # () € D® will be briefly presented in next section.
4The order of elements of D® is the order obtained from the generation of isotone Boolean functions - see chapter &1



80 CHAPTER 4. COMBINATION OF BELIEFS ON HYBRID DSM MODELS

4.5.8.1 Application of the hybrid DSm rule on example 1

Here is the numerical result corresponding to example 1 with the hybrid-model M; (i.e with the exclu-

M
sivity constraint 6; N, N O3 = (). The right column of the table provides the result obtained using the

hybrid DSm rule, ie. VA € D€, my, 0)(A) = ¢(A)[S1(A) + S2(A) + S5(A)]

Element A of D€ H(A) S1(A) Sa(A)  Ss(A) | mage)(A)

0 0 0 0 0 0 [0 000 0 o
611616 20 0 0.16 0 0 0 00000 1
65 N 0 1 019 0 0 0.19 000010
6, N s 1 012 0 0 0.12 000011
(61 U6o) N 6 1 0.0l 0 0.02 0.03 000111
0 1 010 0 0 0.10 001000
6,1 6s 1 0.22 0 0 0.22 00100 1
(61 U6s) N 6 1 0.05 0 0.02 0.07 001010
(62U 63) N6, 1 0 0 0.02 0.02 001011

D, =

(BN U N (1 UG) | 1 0 0 0 0 001111
(61 N 62) U G 1 0 0 0.07 0.07 011001
6, 1 0.03 0 0 0.03 011011
(611 65) U 6 1 0 0 001 0.01 01 1 1 11
6, U 0 1 0 0 0 0 101010
6, 1 0.08 0 0 0.08 101011
(62 65) U6, 1 0.02 0 0.02 0.04 101111
6, U s 1 0.02 0 0 0.02 111011
6, U 6 1 0 0 0 0 1111
61U s U s 1 0 0 0 0

From the previous table of this first numerical example, we see in column corresponding to S3(A)
how the initial combined mass me(@)(Hl NOaN0O3) = S1(6h NO2NO3) = 0.16 is transferred (due to
the constraint of M) only onto the elements (61 U 02) N3, (61 UBO3) N Oa, (62U 03) MO, (61 Nb2)U 0O,
(6; NO3) U By, and (62 NO3) UG, of D°. We can easily check that the sum of the elements of the column
for S3(A) is equal to m s ey (61 N2 NO3) = 0.16 (i.e. to the sum of S;(A) for which ¢(A) = 0) and that
the sum of S3(A) for which ¢(A) = 1 is equal to the sum of S3(A) for which ¢(A) = 0 (in this example
the sum is zero). Thus after introducing the constraint, the initial hyper-power set D® reduces to 18

elements as follows

DSy, = {0,605 N 03,601 N 05, (61 UBO) NO3,05,01 MO, (01 UO3) N, (62 U05) N0y, {(61 Nb2) U} N (61 UBb),

(01N O2) Ub3,02, (01 NOs)Uba, 02 U03,01,(02N05) 61,01 U03,00U02,60, U0 U0z}
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As detailed in chapter B the elements of D?Al can be described and encoded by the matrix product
D, - up, with Day, given above and the basis vector upy, definedd as up, = [< 1 >< 2 >< 12 ><
3 >< 13 >< 23 >]'. Actually upy, is directly obtained from us by removing its component < 123 >
corresponding to the constraint introduced by the model M;. In general, the encoding matrix D for
a given hybrid DSm model M is obtained from D s by removing all its columns corresponding to the
constraints of the chosen model M and all the rows corresponding to redundant/equivalent propositions.
In this particular example with model M, we will just have to remove the last column of D s to get
D, and no row is removed from D s because there is no redundant/equivalent proposition involved

in this example. This suppression of some rows of D s will however occur in the next examples.

4.5.8.2 Application of the hybrid DSm rule on example 2

Here is the numerical result corresponding to example 2 with the hybrid-model My (i.e with the exclu-

M M
sivity constraint 6; N6y = 0 = 6; N N s = ). One gets now

Element A of D® B(A) Si(A) Sa(A) Ss(A) | marye)(A)
0 0 0 0 0 0
01 N6 105 20 0 016 0 0 0
051 6; 1 019 0 0 0.19
0,1 6; 1 012 0 0 0.12
(61 U 6s) N 0 1 0.0l 0 0.02 0.03
0 1 0.10 0 0 0.10
6, N6, 20 0 0.22 0 0.02 0
(6, U63) N 92 22 0,16, 1 0.05 0 0.02 0.07
(62U 05) N6, 2 9, M 0 1 0 0 0.02 0.02
(01N 02) U (81 1 63) U (62 N 63) "2 (0, UG2) N 63 1 0 0 0 0
(611 62) U by "2 0, 1 0 0 0.07 0.07
0, 1 0.03 0 0.05 0.08
(61N 05) U 6 1 0 0 001 0.01
05 U 6; 1 0 0 0 0
0, 1 0.08 0 0.04 0.12
(62165) UG, 1 0.02 0 0.02 0.04
6, U6, 1 0.02 0 0.04 0.06
6, U6, 1 0 002 007 0.09
6, U6, Ub; 1 0 0 0 0

SDMf was denoted Dy, and u,,s as up in chapter
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From the previous table of this numerical example, we see in the column corresponding to S3(A)
how the initial combined masses m s (@)(01 N 02 N 63) = S1(61 N2 N O3) = 0.16 and m s (o) (61 Nb2) =
S1(61N62) = 0.22 are transferred (due to the constraint of Ms) onto some elements of D®. We can easily
check that the sum of the elements of the column for S5(A) is equal to 0.16 + 0.22 = 0.38 (i.e. to the
sum of S7(A) for which ¢(A) = 0) and that the sum of S3(A) for which ¢(A) =1 is equal to the sum of
S3(A) for which ¢(A) = 0 (this sum is 0.02). Because some elements of D® are now equivalent due to the
constraints of Ma, we have to sum all the masses corresponding to same equivalent propositions/elements
(by example {(61N62)Ub3}N (61 U6) s (01 Ub2)N63). This can be viewed as the final compression step.

One then gets the reduced hyper-power set D?Az having now 13 different elements with the combined

belief masses presented in the following table.

The basis vector up, and the encoding matrix Dy, for the elements of Df\“)/lz are given by upn, =
[<1><2><3><13><23>]) and below. Actually upy, is directly obtained from us by removing

its components < 12 > and < 123 > corresponding to the constraints introduced by the model M.

Element A of DY Mg, (0)(4) - -

0 0
0 00 01

02 N 63 0.19+0.07 = 0.26
0 0 01 O

01N 0O3 0.12+0.02 =0.14
0 00 1 1

(91 U 92) N3 0.03+0=0.03
0 01 11

03 0.10+0.07 = 0.17
01 0 0 1

0 0.08
and Dy, =10 1 0 1 1

(91 n 93) U 0s 0.01
01 1 1 1

0y U 0 0
1 0 01 0

01 0.12
1 0 0 1 1

(92 n 93) U6 0.04
1 0 1 1 1

01 U 03 0.06
1 1 0 1 1

01 U6y 0.09
1 1 1 11
01 U602 U 03 0 B -
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4.5.8.3 Application of the hybrid DSm rule on example 3

83

Here is the numerical result corresponding to example 3 with the hybrid-model M3 (i.e with the exclu-

sivity constraint (61 U#f3) N6

M
= (). This constraint implies directly 61 N 62 N G5

s 0, 61 N 0O s ¢ and

05N 93 ° (). One gets now
Element A of D® p(A)  Si(A) Sa(A) S3(A) | magy0)(A)
0 0 0 0 0 0
61N 62N 05 20 0 0.6 0 0 0
6, N6 20 0 019 0 0 0
6, N 6; 1 012 0 0 0.12
(61 U62) N 05 72 6, M 6 1 0.0l 0 0.02 0.03
0 1 010 0 0.06 0.16
6,16, "2 0 0 0.22 0 0.02 0
(61 UB3) N6 20 0 0.05 0 0.02 0
(62U 65) N6, 2 6, M 6 1 0 0 0.02 0.02
(01N 6:)U (61 N0 U (BN 63) 26,005 | 1 0 0 0 0
(611 62) U s "2 9 1 0 0 0.07 0.07
0, 1 003 0 0.09 0.12
(611 63) U 6, 1 0 0 0.01 0.01
6, U 0 1 0 0 0.05 0.05
0, 1 008 0 0.04 0.12
(Ga165) U6, 2 0, 1 0.02 0 0.02 0.04
6, U 6; 1 0.02 0 0.06 0.08
6, U6, 1 0 002 0.09 0.11
6, U Ul 1 0 002 005 0.07

We see in the column corresponding to S3(A) how the initial combined masses m s () ((01U03)N02) =

Sl((91U93)ﬂ92) =0.05, me(@)(elﬂegﬂeg) =

S (91092093) =0.16, me(@)(egﬂeg) =

St (92093) =0.19

and mas(ey(6h N 02) = S1(61 NO2) = 0.22 are transferred (due to the constraint of Ms) onto some

elements of D®. We can easily check that the sum of the elements of the column for S3(A) is equal to

0.0540.16 4+ 0.19 + 0.22 = 0.62 (i.e. to the sum of Sy (A) for which ¢(A) = 0) and that the sum of S3(A)

for which ¢(A) = 1 is equal to 0.02+0.02 = 0.04 (i.e. to the sum of S3(A) for which ¢(A) =

0). Due to the

model M3, one has to sum all the masses corresponding to same equivalent propositions. Thus after the

final compression step, one gets the reduced hyper-power set D?/lg having only 10 different elements with

the following combined belief masses. The basis vector uy, is given by upg, = [< 1 >< 2 >< 3 >< 13 >/

and the encoding matrix D, is shown just right after.
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Element A of DY Mg, o) (A) r .
Ms 3(©) 00 0 0
0 0
000 1
6, M 065 0.12 4 0.03 + 0.02 4+ 0 = 0.17
00 1 1
0 0.16 + 0.07 = 0.23
010 0
6 0.12
0101
(91 N 93) U s 0.01 and DM’; =
01 1 1
6, U 65 0.05
100 1
6, 0.12 4+ 0.04 = 0.16
101 1
01 U 03 0.08
1101
6, U6y 0.11
1111
01 Ub U3 0.07 L -
4.5.8.4 Application of the hybrid DSm rule on example 4 (Shafer’s model)
Here is the result obtained with the hybrid-model My, i.e. Shafer’s model.
Element A of D® p(A)  Si(A) Sa(A) S3(A) | mag,e)(A)
] 0 0 0 0 0
61N 0:0 05 20 0 0.16 0 0 0
6,05 2 0 0.19 0 0 0
0, N6 =0 0 012 0 0 0
(61 UBs) N 63 2 0 001 0 0.02 0
0 1010 0 007 0.17
6,6, 2 0 0.22 0 0.02 0
(61 U63) N 6s 2 0 0.05 0 0.02 0
(62Ub3) N6, 2 0 0 0 0.02 0
(01N 6:)U (61 N0s)U (B 63) 20| 0 0 0 0 0
(611 62) U 6 2" 0 1 0 0 0.07 0.07
6 1 0.03 0 0.09 0.12
(611 65) U by 2 0, 1 0 0 001 0.01
6, U 6; 1 0 0 0.5 0.05
6, 1 0.08 0 0.06 0.14
(6a165) U6, 2 g, 1 0.02 0 0.02 0.04
6, U6; 1 0.02 0 015 0.17
6, U6y 1 0 002 0.09 0.11
61 U6, U6, 1 0 006 0.6 0.12
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From the previous table of this numerical example, we see in column corresponding to Ss(A) how the
initial combined masses of the eight elements forced to the empty set by the constraints of the model
M, are transferred onto some elements of D®. We can easily check that the sum of the elements of the
column for S3(A) is equal to 0.16 + 0.19 + 0.12 + 0.01 + 0.22 4+ 0.05 = 0.75 (i.e. to the sum of S;(A) for
which ¢(A4) = 0) and that the sum of S2(A) for which ¢(A) =1 is equal to the sum of S3(A) for which
¢(A) =0 (this sum is 0.02 + 0.06 = 0.08 = 0.02 + 0.02 + 0.02 + 0.02).

After the final compression step (i.e. the clustering of all equivalent propositions), one gets the reduced
hyper-power set D?/u having only 2% = 8 (corresponding to the classical power set 2€) with the following

combined belief masses:

Element A of DY, mag,0)(A) - -

0 0 0
) 0

0 0 1
03 0.17+0.07=0.24

01 0
02 0.12+0.01 = 0.13

01 1
0 U 63 0.05 and Dy, =

1 0 0
01 0.14 +0.04 = 0.18

1 0 1
01 U065 0.17

1 1 0
01U 0, 0.11

1 1 1
01 U602 U 03 0.12 - -

The basis vector upy, is given by upq, = [< 1 >< 2 >< 3 >]" and the encoding matrix D a4, is shown

just above.

4.5.8.5 Application of the hybrid DSm rule on example 5

The following table presents the numerical result corresponding to example 5 with the hybrid-model M5
Ms . . . c . . Ms
including the non-existential constraint #; "= ). This non-existential constraint implies 61 N6 N O3 "= B,

6‘106‘2/\%5@, 91(76‘3%5@311(1 (92U6‘3)091 Aés .

From the table, we see in the column corresponding to S3(A) how the initial combined masses of
the 5 elements forced to the empty set by the constraints of the model My are transferred onto some
elements of D®. We can easily check that the sum of the elements of the column for S3(A) is equal
to 0+ 0.16 + 0.12 4+ 0.22 + 0 + 0.08 = 0.58 (i.e. to the sum of S;(A) for which ¢(A) = 0) and that
the sum of S3(A) for which ¢(A) = 1 is equal to the sum of S3(A) for which ¢(A) = 0 (this sum is
0.02+0.06 + 0.04 = 0.12 = 0.02 + 0.02 + 0.08).
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Element A of D® p(A)  Si(A) Sa(A) S3(A) | mags0)(A)
0 0 0 0 0 0
61 N8N 05 2 0 0 0.6 0 0 0
6, N s 1 019 0 0 0.19
6,10 "2 0 0 0.12 0 0
(61 U62) N 05 "2 610 1 0.0l 0 0.02 0.03
0 1 0.10 0 001 0.11
6,16, "2 0 0 0.22 0 0.02 0
(61U 63) N6 2 051065 1 005 0 0.02 0.07
(G2Ub3) N6, "2 0 0 0 0 0.02 0
(6101 62) U (61 N 65) U (621 83) "= 6, 1 6 1 0 0 0 0
(01N 62) U b 2 g, 1 0 0 0.07 0.07
6, 1 0.03 0 0.05 0.08
(61 165) U6y 2 6, 1 0 0 001 0.01
0, U s 1 0 0 0 0
6, 20 0 008 002 0.08 0
(62165) U6, 2 61 0 1 0.02 0 0.02 0.04
0, U6; "= 6, 1 002 002 017 0.21
6, U Z 0, 1 0 006 0.09 0.15
61 U6 Ubs 2 6, U6, 1 0 0.04 0 0.04

After the final compression step (i.e. the clustering of all equivalent propositions), one gets the reduced

hyper-power set D%s having only 5 different elements according to:

Element A of DY M s (0)(A) r 7
0 0
0 0 1
02 N 63 0.1940.03 4 0.07+ 0+ 0.04 = 0.33
and Dy, =10 1 1
03 0.1140.07+0.21 = 0.39
1 0 1
02 0.08 4 0.01 4+ 0.15=0.24 .
1 1
02 U 03 0+ 0.04 =0.04 - -
The basis vector upy, is given by ua, = [< 2 >< 3 >< 23 >]'. and the encoding matrix Dy, is

shown just above.
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4.5.8.6 Application of the hybrid DSm rule on example 6

Here is the numerical result corresponding to example 6 with the hybrid-model Mg including the two non-
existential constraint 6; ‘= 0 and 0, "= @. This is a degenerate example actually, since no uncertainty
arises in such trivial model. We just want to show here that the hybrid DSm rule still works in this

example and provide a legitimate result. By applying the hybrid DSm rule of combination, one now gets:

Element A of D® p(A)  Si(A) Sa(A) S3(A) | mage0)(A)
0 0 0 0 0 0
61N 62105 20 0 0.6 0 0 0
B, N0 20 0 0.19 0 0 0
6N 20 0 0.12 0 0 0
(61 UBs) N 63 2 0 001 0 0.02 0
0 1 010 0 0.07 0.17
61N, 20 0 0.22 0 0.02 0
(61 UB3) N6 2 0 0.5 0 0.02 0
(62Ub3) N6, 2 0 0 0 0.02 0
(01N 6:)U (61 N05)U (B2 63) 20| 0 0 0 0 0
(611 62) U 6 "2 0, 1 0 0 0.07 0.07
6, "2 ¢ 0 003 002 0.11 0
(01165 U6 "2 0 0 0 0.01 0
6, U s 2 g, 1 0 004 0.05 0.09
6, "2 g 0 0.08 0 0.08 0
(G2 65) U6, "2 0 0.02 0 0.02 0
6, U6 2 g, 1 002 002 0.19 0.23
6, U6, 20 0 0 021 0.2 0
61 U U s 2 g, 1 0 036 008 0.4

We can still verify that the sum of S5(A4) (i.e. 0.88) equals the sum of S;(A) for which ¢(A) = 0 and
that the sum of S3(A) for which ¢(A4) =1 (i.e. 0.42) equals the sum of S3(A) for which ¢(A) = 0. After
the clustering of all equivalent propositions, one gets the reduced hyper-power set D?AG having only 2

different elements according to:

Element A of DS, Mmpgg(0)(A)
0 0
05 0.174+0.07+0.094+0.234+0.44 =1

The encoding matrix Dy, and the basis vector upy, for the elements of D reduce to Dy, = [01]

and up, = [< 3 >].
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4.5.8.7 Application of the hybrid DSm rule on example 7

Here is the numerical result corresponding to example 7 with the hybrid-model M7 including the mized
exclusivity and non-ezxistential constraint (61M03)Ubs Aé? (). This mixed constraint implies 61 N6>NO3 %7 0,
01060, "2 0, 0,05 = (2) 0,105 % "0, (01 U6s) N0y 270, (0, U05) N6y = 0,
{(01Nb)Ub3} N (64 Uoz) " () and 65

N

(91 U 92) N G5

mi =

" (). By applying the hybrid DSm rule of combination, one gets:

Element A of D® p(A)  Si(A) Sa(A) S3(A) | magye)(A)
0 0 0 0 0 0
61NN 05 2 0 0 0.6 0 0 0
6, N0 2 0 0 0.19 0 0 0
6N 2 0 0 0.12 0 0
(61 UB) N6 2 0 001 0 0.02 0
6; 2 0 0 010 003 0.10 0
6N, "2 0 0 0.22 0 0.02 0
(61 U6;) N6 2 0 0.5 0 0.02 0
(62063 N6, 2 ¢ 0 0 0 0.02 0
(01N 6:)U (61 N0s)U (62 63) 20| 0 0 0 0 0
(61N 6) U8 "2 0 0 0 0 0.07

6, 1 0.03 0 0.09 0.12
(611 63) U o 2 0, 1 0 0 001 0.01
0, U s 2 0, 1 0 006 0.05 0.11
6, 1 0.08 0 0.6 0.14
(Ga165) U6, 2 4, 1 0.02 0 0.02 0.04
6, U6 2 0, 1 002 001 022 0.25
6, U6, 1 0 002 0.09 0.1
61 Ubs U 6, U6, 1 0 016 0.6 0.22

After the clustering of all equivalent propositions, one gets the reduced hyper-power set DE\“)/l? having

only 4 different elements according to:

Element A of DS Mg, o) (A)
0 0
02 0.12+40.0140.11 =0.24
0, 0.14+0.04 + 0.25 = 0.43
01 U0 0.11+0.22 =0.33
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The basis vector ua, and the encoding matrix Dy, for the elements of D/(?/17 are given by

up, =[<1><2>) and Dy, =

We can still verify that the sum of S3(A) (i.e. 0.85) equals the sum of S;(A4) for which ¢(A) = 0 and
that the sum of S3(A) for which ¢(A) =1 (i.e. 0.25) equals the sum of S3(A) for which ¢(A) = 0.

4.5.9 Example with more general basic belief assignments m,(.) and my(.)

We present in this section the numerical results of the hybrid DSm rule of combination applied upon the
seven previous models M;, ¢ = 1,...,7 with two general basic belief assignments m1(.) and ma(.) such
that m1(A) > 0 and my(A) > 0 for all A # () € DO=101.0205}  We just provide here the results. The
verification is left to the reader. The following table presents the numerical values chosen for mq(.) and

ma(.) and the result of the fusion obtained by the classical DSm rule of combination

Element A of D® my(A4) ma(A) | mas(A)
0 0 0 0
01NN 03 0.01 0.40 0.4389
02 N 63 0.04 0.03 0.0410
61N 03 0.03 0.04 0.0497
(01 UB2) N O3 0.01 0.02 0.0257
03 0.03 0.04 0.0311
01 N6 0.02 0.20 0.1846
(01 U03) N 0Oy 0.02 0.01 0.0156
(65 U03) N0, 0.03  0.04 |0.0459
(01 NB2) U (81 Nb3) U (B2 Nb3) | 0.04 0.03 0.0384
(01 NBO2) U O3 0.04 0.03 0.0296
02 0.02 0.01 0.0084
(61 N 63) U b, 0.0l  0.02 |[0.0221
f2 U 63 0.20 0.02 0.0140
01 0.01 0.02 0.0109
(65 N 63) U B, 0.02  0.01 |[0.0090
0, U 63 0.04 0.03 0.0136
61 U 0 0.03 0.04 0.0175
0, UbsUbs 0.40 0.01 0.0040
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The following table shows the results obtained by the hybrid DSm rule before the final compression

step of all redundant propositions for the hybrid DSm models presented in the previous examples.

Element A of D® Mt (A) ma(4) man(A) mag(A) mag(4) ma(4) ma(A)

0 0 0 0 0 0 0 0

01N O2N0O3 0 0 0 0 0 0 0

02N 03 0.0573 0.0573 0 0 0.0573 0 0

01 N0 0.0621 0.0621 0.0621 0 0 0 0

(61 UB2) N b 0.0324 0.0324 0.0335 0 0.0334 0 0

03 0.0435 0.0435 0.0460 0.0494 0.0459 0.0494 0

01 N6 0.1946 0 0 0 0 0 0

(01 UB03) N 0Oy 0.0323 0.0365 0 0 0.0365 0 0

(O2Ub3)N0 0.0651 0.0719 0.0719 0 0 0 0

(01 N62) U (81 Nbs)U (62N 63) | 0.0607 0.0704 0.0743 0 0.0764 0 0

(61N 62) Ubs 0.0527 0.0613 0.0658 0.0792 0.0687 0.0792 0

02 0.0165 0.0207 0.0221 0.0221 0.0207 0 0.0221

(01 N0O3) U O, 0.0274 0.0309 0.0340 0.0375 0.0329 0 0.0375

02 U 03 0.0942 0.1346 0.1471 0.1774 0.1518 0.1850 0.1953

01 0.0151 0.0175 0.0175 0.0195 0 0 0.0195

(62N 03) U6y 0.0182 0.0229 0.0243 0.0295 0.0271 0 0.0295

01 U0s 0.0299 0.0385 0.0419 0.0558 0.0489 0.0589 0.0631

01 U 0y 0.0299 0.0412 0.0452 0.0544 0.0498 0 0.0544

01 Uy U3 0.1681 0.2583 0.3143 0.4752 0.3506 0.6275 0.5786
The next tables present the final results of the hybrid DSm rule of combination after the compression

step (the merging of all equivalent redundant propositions) presented in previous examples.
Element A of D ma,(e)(A)

Element Aof DY mat.(e)(A) 0 0
0 0 02N 03 0.2307
0 0.2549 Element A of D, ma,(0)(A) 05 0.1635
01 0.1121 ) 0 02 0.1034
01 U 0y 0.6330 05 1 02 U O3 0.5024

On example no. 7

On example no. 6

On example no. 5
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Element Aof DS, ma,(e)(A)

0 0

Element A of DS,  ma,(e)(A) 61N 63 0.2418

0 0 05 0.1118

03 0.1286 02 0.0221

0o 0.0596 | | (61N 65) U0, 0.0340

05 U 63 0.1774 02 U 05 0.1471

61 0.0490 01 0.0418

0, U 63 0.0558 61 U b 0.0419

0, U6 0.0544 01 U b 0.0452

0, Ub2U0; 0.4752 01Uz U 05 0.3143

On example no 4 On example no 3

Element A of D, maq, (o) (A)
0 0
02 N 63 0.0573
01 N6s 0.0621
(61 U 62) N 65 0.0324
Element A of DS, m,(e)(A) 03 0.0435
0 0 01 N6 0.1946
62 N6 0.0938 (01 U03) N0y 0.0323
01 N o5 0.1340 (B2U03)N 6 0.0651
(01 Uby) N6 0.1028 (01 N63) U (81 Nb3)U (62N 0s5) 0.0607
05 0.1048 (01 N63) U b 0.0527
02 0.0207 0 0.0165
(01 Néb3) U by 0.0309 (01 N63) U by 0.0274
02 U 03 0.1346 f2 U 63 0.0942
01 0.0175 61 0.0151
(A2 Nbs) U6y 0.0229 (02 Nb3) U6y 0.0182
61 U6; 0.0385 61 U6 0.0299
61 U6, 0.0412 61 U6 0.0299
01 Uy U0bs 0.2583 0, Ubs U3 0.1681

On example no 2 On example no 1
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4.5.10 The hybrid DSm rule versus Dempster’s rule of combination

In its essence, the hybrid DSm rule of combination is close to Dubois and Prade’s rule of combination
(see chapter [ and [H]) but more general and precise because it works on D® > 2° and allows us to
include all possible exclusivity and non-existential constraints for the model one has to work with. The
advantage of using the hybrid DSm rule is that it does not require the calculation of weighting factors,
nor a normalization. The hybrid DSm rule of combination is definitely not equivalent to Dempster’s rule

of combination as one can easily prove in the following very simple example:

Let’s consider © = {61,603} and the two sources in full contradiction providing the following basic

belief assignments

m1(6‘1) =1 m1(92) =0
m2(91) =0 m2(92) =1

Using the classic DSm rule of combination working with the free DSm model M/, one gets

me(91)=0 me(92)=0 me(elﬂeg)Zl me(91U92)=0

If one forces #; and 6, to be exclusive to work with Shafer’s model M?, then the Dempster’s rule of
combination can not be applied in this limit case because of the full contradiction of the two sources of
information. One gets the undefined operation 0/0. But the hybrid DSm rule can be applied in such
limit case because it transfers the mass of this empty set (61 N2 = () because of the choice of the model

M?O) to non-empty set(s), and one gets:

mM0(91)20 mMO(og):O mM0(91 092):0 mM0(91U92>:1

This result is coherent in this very simple case with Yager’s and Dubois-Prade’s rule of combination [TT] H].

Now let examine the behavior of the numerical result when introducing a small variation € > 0 on

initial basic belief assignments m1(.) and ma(.) as follows:

mi(6h)=1—c¢ my(f2) = ¢ and ma(61) = ¢ ma(fa) =1—c¢

As shown in figure 2, lim._,o mpg(.), where mpg(.) is the result obtained from the Dempster’s rule

of combination, is given by

mps(el) =0.5 mps(eg) =0.5 mDs(91 n 92) =0 mD5(91 U 6‘2) =0

This result is very questionable because it assigns same belief on 8; and #3 which is more informational

than to assign all the belief to the total ignorance. The assignment of the belief to the total ignorance
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appears to be more justified from our point of view because it properly reflects the almost total contra-
diction between the two sources and in such cases, it seems legitimate that the information can be drawn
from the fusion. When we apply the hybrid DSm rule of combination (using Shafer’s model M), one
gets the expected belief assignment on the total ignorance, i.e. m a0 (61 U6) = 1. The figure below shows
the evolution of belief assignments on 67, > and 6, U #> with € obtained with the classical Dempster rule

and the hybrid DSm rule based on Shafer’s model M° (i.e. 61 N 62 2o ).

Evolution of rn(Bl) with £ Evolution of m(ez) with £ Evolution of rﬂ(e1 K<) 2) with £
1.5 1.5 1.5

1+ - 1+ — 1\

o1 S ]

— Dempster rule — Dempster rule — Dempster rule

— DSm hybrid rule — DSm hybrid rule — DSm hybrid rule
-0.5 -0.5 -0.5
o 0.05 o.1 o 0.05 o.1 o 0.05 o.1
e e e

Figure 4.2: Comparison of Dempster’s rule with the hybrid DSm rule on © = {61, 6-}

4.6 Dynamic fusion

The hybrid DSm rule of combination presented in this paper has been developed for static problems,
but is also directly applicable for easily handling dynamic fusion problems in real time as well, since at
each temporal change of the models, one can still apply such a hybrid rule. If D® changes, due to the
dynamicity of the frame O, from time ¢; to time ¢;41, i.e. some of its elements which at time ¢; were not
empty become (or are proven) empty at time t;,1, or vice versa: if new elements, empty at time ¢;, arise
non-empty at time #;41, this hybrid DSm rule can be applied again at each change. If © stays the same

but its set non-empty elements of D® increases, then again apply the hybrid DSm rule.

4.6.1 Example 1

Let’s consider the testimony fusion problerrH with the frame
O(t;) £ {6, = young, 6, = old, f3 = white hairs}
with the following two basic belief assignments

m1(91) =0.5 m1(93) =0.5 and m2(92) =0.5 m2(93) =0.5

6This problem has been proposed to the authors in a private communication by L. Cholvy in 2002.
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By applying the classical DSm fusion rule, one then gets
me(@(tl))(Hl N 6‘2) =0.25 me(@(tl))(Hl n 6‘3) =0.25

me(@(tl))(og n 93) = 025 me(e(tz))(93) = 025

Suppose now that at time t;1, one knows that young people don’t have white hairs (i.e 6; N5 = (). How
can we update the previous fusion result with this new information on the model of the problem? We
solve it with the hybrid DSm rule, which transfers the mass of the empty sets (imposed by the constraints
on the new model M available at time #;11) to the non-empty sets of D®, going on the track of the DSm

classic rule. Using the hybrid DSm rule with the constraint 6; N3 = (), one then gets:
mM(6‘1 n 92) =0.25 mM(92 N 6‘3) =0.25 mM(6‘3) =0.25

M
and the mass maq (61 N 63) = 0, because 01 N O3 = {young} N {white hairs} = @ and its previous mass

Mg ©@,)) (01 NB3) = 0.25 is transferred to maq(61 U 03) = 0.25 by the hybrid DSm rule.

4.6.2 Example 2

Let O(t;) = {01,062, ...,0,} be a list of suspects and let’s consider two observers who eyewitness the scene
of plunder at a museum in Bagdad and who testify to the radio and TV the identities of thieves using the
basic beliefs assignments m(.) and ma(.) defined on D®*) | where t; represents the time of the observa-
tion. Afterwards, at time ¢;41, one finds out that one suspect, among this list ©(¢;), say 6;, could not be
a suspect because he was on duty in another place, evidence which was certainly confirmed. Therefore he
has to be taken off the suspect list ©(¢;), and a new frame of discernment results in ©(¢;41). If this one
changes again, one applies again the hybrid DSm of combining of evidences, and so on. This is a typically
dynamical example where models change with time and where one needs to adapt fusion results with the
current model over time. In the meantime, one can also take into account new observations/testimonies

in the hybrid DSm fusion rule as soon as they become available to the fusion system.

If © (and therefore D®) diminish (i.e. some of their elements are proven to be empty sets) from time
t; to time ¢;41, then one applies the hybrid DSm rule in order to transfer the masses of empty sets to the
non-empty sets (in the way of the DSm classic rule) getting an updated basic belief assignment my, , ¢, (.)-
Contrarily, if © and D® increase (i.e. new elements arise in ©, and/or new elements in D® are proven
different from the empty set and as a consequence a basic belief assignment for them is required), then
new masses (from the same or from the other sources of information) are needed to describe these new

elements, and again one combines them using the hybrid DSm rule.
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4.6.3 Example 3

Let’s consider a fusion problem at time #; characterized by the frame O(t;) = {6y, 62} and two independent
sources of information providing the basic belief assignments m1(.) and ma(.) over D®®) and assume
that at time t;4; a new hypothesis 63 is introduced into the previous frame ©(t;) and a third source of

evidence available at time t;,; provides its own basic belief assignment ms3(.) over D®+1) where

O(tir1) = {O(t1), 05} = {61, 02,05}
To solve such kind of dynamical fusion problems, we just use the classical DSm fusion rule as follows:

e combine m4(.) and mg(.) at time ¢; using classical DSm fusion rule to get mi2(.) = [m1 ® ma](.)

over DO(t)

e because DOt) ¢ DOW+1) my5(.) assigns the combined basic belief on a subset of DO+1) it is
still directly possible to combine mq3(.) with mg(.) at time ¢;1 by the classical DSm fusion rule to

get the final result mja3(.) over D®i+1) given by
My () 2 maga () = [maz @ ma]() = [(m1 @ ma2) ® m3](.) = [m1 ® m2 ® ms](.)

e eventually apply hybrid DSm rule if some integrity constraints have to be taken into account in the

model M of the problem

This method can be directly generalized to any number of sources of evidences and, in theory, to any
structure/dimension of the frames ©(¢;), ©(t;+1), ... In practice however, due to the huge number of
elements of hyper-power sets, the dimension of the frames ©(¢;), ©(t;41), ... must be not too large. This
practical limitation depends on the computer resources available for the real-time processing. Specific
suboptimal implementations of DSm rule will have to be developed to deal with fusion problems of large

dimension.

It is also important to point out here that DSmT can easily deal, not only with dynamical fusion
problems but with decentralized fusion problems as well working on non exhaustive frames. For example,
let’s consider a set of two independent sources of information providing the basic belief assignments m;(.)
and ma(.) over DO1(t)={01,02} and another group of three independent sources of information providing
the basic belief assignments m3(.), m4(.) and ms(.) over D®315(01)=103,01.05.05} "then it is still possible to

combine all information in a decentralized manner as follows:

e combine m1(.) and mgy(.) at time ¢; using classical DSm fusion rule to get mia2(.) = [m1 & ma(.)

over DO12(t)

e combine mgz(.), my(.) and ms(.) at time ¢; using classical DSm fusion rule to get mga5(.) = [m3 ®

my ® ms)(.) over DOsas(t),
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e consider now the global frame ©(t;) 2 {012(t;), O345(t;)}.

e eventually apply hybrid DSm rule if some integrity constraints have to be taken into account in the

model M of the problem.

Note that this static decentralized fusion can also be extended to decentralized dynamical fusion also

by mixing the two previous approaches.

One can even combine all five masses together by extending the vectors m;(.), 1 <14 < 5, with null com-
ponents for the new elements arisen from enlarging © to {61, 02, 63,604,605} and correspondingly enlarging

D®, and using the hybrid DSm rule for £ = 5. And more general combine the masses of any k > 2 sources.

We give now several simple numerical examples for such dynamical fusion problems involving non

exclusive frames.

4.6.3.1 Example 3.1

Let’s consider O(t;) 2 {61,602} and the two following basic belief assignments available at time ¢;:

mq (91) =0.1 mq (92) =0.2 mq (91 U 92) =0.3 mq (91 n 6‘2) =04
m2(91) = 05 m2(92) = 03 m2(91 U 92) = 01 m2(91 N 92) = 01

The classical DSm rule of combination gives

m12(91) =0.21 m12(92) =0.17 m12(91 U 92) =0.03 m12(91 n 92) =0.59

Now let’s consider at time ¢, the frame O(t;;1) £ {61, 62,03} and a third source of evidence with

the following basic belief assignment

m3(93) =04 m3(91 N 93) =0.3 m3(92 U 93) =0.3

Then the final result of the fusion is obtained by combining ms(.) with mi2(.) by the classical DSm rule

of combination. One thus obtains:

m123(91 ﬂog 093) = 0464 m123(92093) = 0068 m123(91 ﬂog) = 0156 mlgg((ol Ueg)ﬂog) = 0012

m123(91 n 92) =0.177 m123(91 n (92 U 93)) = 0.063 m123(92) =0.051 m123((91 n 93) U 92) = 0.009
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4.6.3.2 Example 3.2

Let’s consider ©(t;) 2 {61,02} and the two previous following basic belief assignments my(.) and ma(.)

available at time t;. The classical DSm fusion rule gives gives as before
m12(91) =0.21 m12(92) =0.17 m12(91 U 92) =0.03 m12(91 N 92) =0.59

Now let’s consider at time t;,1 the frame ©(t; 1) £ {61,605, 03} and the third source of evidence as in

previous example with the basic belief assignment
m3(93) =04 m3(91 N 93) =0.3 m3(92 U 93) =0.3

The final result of the fusion obtained by the classical DSm rule of combination corresponds to the result
of the previous example, but suppose now one finds out that the integrity constraint 3 = () holds, which
implies also constraints 81 N2 N3 =0, 1 N0z =0, 63N 65 = () and (61 Ub2) N3 = (. This is the hybrid
DSm model M under consideration here. We then have to readjust the mass mqa3(.) of the previous

example by the hybrid DSm rule and one finally gets
mam(01) = 0.147 mam(62) = 0.060 +0.119 = 0.179

ma(01 U ) =0+ 0+0.021 =0.021  mpqg(61 N 6) = 0.240 + 0.413 = 0.653

Therefore, when we restrain back 63 = () and apply the hybrid DSm rule, we don’t get back the same
result (i.e. maq(.) # miz(.)) because still remains some information from mg(.) on 60y, 02, 61 U 63, or

01 N6y, ie. m3(92) =0.3>0.

4.6.3.3 Example 3.3

Let’s consider ©(t;) £ {6,602} and two previous following basic belief assignments m;(.) and ma(.)

available at time t;. The classical DSm fusion rule gives as before
m12(91) =0.21 m12(92) =0.17 m12(6‘1 U 92) =0.03 m12(91 N 92) =0.59

Now let’s consider at time t;,,; the frame ©(t;11) = {61,602, 03,0,} and another third source of evidence

with the following basic belief assignment
m3(93) =0.5 m3(94) =0.3 m3(93 N 94) =0.1 m3(93 U 6‘4) =0.1

Then, the DSm rule applied at time ¢;41 provides the following combined belief assignment

mi23(01N63) = 0.105 mya3(61N0s) = 0.063 mi23(01 N (A3U0s)) = 0.021  my23(61 N3N 6,) = 0.021
ma23(02M63) = 0.085 mia3(faNby) = 0.051 mya3(62N(03U60;)) = 0.017  mia3(feNb3N6,) = 0.017
mi23(03 N (01 UBO)) =0.015 mq23(0s N (01 Uby)) =0.009 mia3((f1 Uby) N (63U 60)) =0.003
mi23((01 U 62) N (031 604)) =0.003 mia3(f1 N NBs) =0.295 myoz(6y NN B,) =0.177

m123((91 N 92) n (93 U 94)) = 0.059 m123(91 N#y N3N 94) = 0.059
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Now suppose at time ;15 one finds out that 63 = 6, = (), then one applies the hybrid DSm rule after
re-adjusting the combined belief mass mi23(.) by cumulating the masses of all empty sets. Using the

hybrid DSm rule, one finally gets:

LT (61) = mi23(01) + {mi2(61)m3(03) + mi2(61)ms(04) + mi2(01)ms(0s U bs) + mi2(61)ms(63 N 64)}

=04 {(0.21 x 0.5) + (0.21 x 0.3) + (0.21 x 0.1) + (0.21 x 0.1)} = 0.21

LT (02) = mi23(02) + {mi2(62)ms3(03) + mi2(02)ms(04) + mi2(02)ms(0s U bs) + mia(62)ms(63 N 64)}

=04 {(0.17 x 0.5) + (0.17 x 0.3) + (0.17 x 0.1) + (0.17 x 0.1)} = 0.17

mtl” (91 U 92) = m123(91 U 92) —+ {m12(91 U 92)7713(93) —+ m12(91 U 92)7713(94)
+ m12(91 U 92)m3(93 U 94) + m12(91 U 92)m3 (93 n 94)}

+ Z mi2(X1)m3(X2)
X1,X2€{03,04,03U04,03NM04}

=0+ {(0.03 x 0.5) + (0.03 x 0.3) 4 (0.03 x 0.1) + (0.03 x 0.1)} + {0} = 0.03

mtl” (91 M 92) = m123(91 M 92) + {m12(01 n 92)7’)@3(93) + m12(91 M 92)7’)@3 (94)
+ m12(91 n 6‘2)7%3(6‘3 U 94) + m12(6‘1 n 92)7713(6‘3 n 6‘4)}

=0+ {(0.59 x 0.5) + (0.59 x 0.3) 4 (0.59 x 0.1) + (0.59 x 0.1)} = 0.59

Thus we get the same result as for mi2(.) at time ¢;, which is normal.

Remark: note that if the third source of information doesn’t assign non-null masses to 61, or 62 (or
to their combinations using U or N operators), then one obtains the same result at time ¢, ;2 as at time ¢
as in this example 3.3, i.e. myy2(.) = my(.), when imposing back 63 = 6, = (). But, if the third source of
information assigns non-null masses to either 61, or 62, or to some of their combinations #; Uf; or 81 N6,
then when one returns from 4 singletons to 2 singletons for ©, replacing 65 = 64 = §) and using the hybrid
DSm rule, the fusion results at time ¢4 is different from that at time ¢;, and this is normal because some
information/mass is left from the third source and is now fusioned with that of the previous sources (as

in example 3.2 or in the next example 3.4).

In general, let’s suppose that the fusion of k > 2 masses provided by the sources By, Bs, ..., By has
been done at time ¢; on O(t;) = {01,02,...,0,}. At time ¢;41 new non-empty elements 6,1, 012, - .,
On+m appear, m > 1, thus O(tj41) = {01,02,...,0,,0,41,0n42,...,0,1m} and of course one or more
sources (i.e. bodies of evidences) Byy1, ..., Bryi, where | > 1, appear to assign masses to these new

elements.
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a) If all these new sources Byy1, ..., Br4r assign null masses to all elements from D®(t41) which
contain in their structure/composition at least one of the singletons 61, 05, ..., 6, then at time
tiyo if one sets back the constraints that 6,,1 = 0,42 = ... = 0,1, = 0, then using the hybrid

DSm rule, one obtains the same result as at time #;, i.e. my42(.) = my(.).

b) Otherwise, the fusion at time t;1o will be different from the fusion at time ¢; because there still
remains some information/mass from sources Bgy1, . .., Bkt on singletons 61, 0o, .. ., 8, or on some
elements from D®*) which contain at least one such singleton, information/mass which fusions with

the previous sources.

4.6.3.4 Example 3.4
Let’s consider O(t;) 2 {61,602} and the two following basic belief assignments available at time #;:
m1(91) =0.6 m1(92) =04 and m2(91) =0.7 m2(92) =0.3

The classical DSm rule of combination gives my2(61) = 0.42, mi2(62) = 0.12 and mq2(6; N O2) = 0.46.
Now let’s consider at time ;41 the frame ©(t;41) £ {6;,62,03} and a third source of evidence with the
following basic belief assignment ms(61) = 0.5, mg(f2) = 0.2 and mg(f3) = 0.3. Then the final result

obtained from the classical DSm rule of combination is still as before
m123(91) =0.210 m123(92) =0.024 m123(91 n 92) = 0.466 m123(91 N 93) =0.126
m123(92 n 93) = 0.036 m123(91 NéyN 93) =0.138

Suppose now one finds out that the integrity constraint #; N03 = () which also implies 61 N> NG5 = .
This is the hybrid DSm model M under consideration. By applying the hybrid DSm fusion rule, one
forces maq(61 NB3) = 0 and ma(61 N2 N O3) = 0 and we transfer mya3(61 N 02 N O3) = 0.138 towards
mam((01 NB2) Ubs) and the mass mq23(01 NO3) = 0.126 has to be transferred towards m (61 U63). One
then gets finally

mm(01) = 0.210 mpaq(02) = 0.024 mp(01 N6y) =0.466 maq(f2NBO3) = 0.036

4.6.3.5 Example 3.5

Let’s consider O(t;) = {61,602} and the two previous basic belief assignments available at time #; as in

previous example, i.e.
m1(6‘1) =0.6 mq (6‘2) =04 and m2(91) =0.7 m2(92) =0.3
The classical DSm rule of combination gives

m12(91) =0.42 m12(92) =0.12 mio (91 n 92) = 0.46
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Now let’s consider at time ;41 the frame ©(t;41) £ {6;,62,03} and a third source of evidence with the

following basic belief assignment
ms(f1) = 0.5 ms(f2) = 0.2 ms(f3) = 0.3
Then the final result of the fusion is obtained by combining ms(.) with mi2(.) by the classical DSm rule
of combination. One thus obtains now
miz23(01) = 0.210 mq23(02) = 0.024 mqo3(61 NB) = 0.466 maa3(f1 NO3) =0.126

m123(92 n 93) = 0.036 m123(91 NéyN 93) =0.138

But suppose one finds out that the integrity constraint is now 63 = () which implies necessarily also
01 N0 =0:N03=601Nb2N03 =0 and (; UBy) Nbs = (this is our new hybrid DSm model M under
consideration in this example). By applying the hybrid DSm fusion rule, one gets finally the non-null
masses

ma(61) =0.336  maq(B2) =0.060  mpg(61 M) = 0.604

4.6.3.6 Example 3.6
Let’s consider O(t;) £ {61,602, 05,04} and the following basic belief assignments available at time ¢; :
m1(01) =0.5 my(f2) =04 m1(61 Nhy) =0.1
ma(61) = 0.3 ma(f2) = 0.2 ma (61 NB3) =0.1 ma(fs) = 0.4
The classical DSm rule of combination gives
mia(61) = 015 ma(fa) =0.08  mi2(6iN6:) =027 mis(61N63) = 0.05  mia(6106s) = 0.20
mi2(02 N0y) = 0.16 mi2(01 N O3 Nb3) =0.05 mi2(01 N O N6y) = 0.04

Now assume that at time t;4; one finds out that 61 N6 J\E/l 01 N0 AEA (). Using the hybrid DSm rule, one

gets:

map (01 NO2) =ma(61 NO3) =ma(01NO2NO3) =ma(01 N2 N0O4) =0

mad(61) = maa(61) + ma (61 )ma (81 N 6o) + my (01)ma (61 N 6s) = 0.15 + 0.03 + 0.05 = 0.23
ma(62) = mi2(02) + ma(f2)mq (01 N 62) + my(62)ma(61 NO3) = 0.08 + 0.02 + 0.04 = 0.14
ma(04) = mia(0s) + mq (61 NO2)mo(64) =0+ 0.04 = 0.04

ma (61 N Og) =ma2(01 NOy) =0.20

ma (2 N Os) = mia(f2Néy) =0.16

mam (01 U b2) = miz(01 U bOz) + mq(61)ma(02) + ma(01)mq(02) + my(61 N O2)ma(61 NO2) = 0.22

mM(91 Uby U 93) = m12(91 Uy U 6‘3) + m1(6‘1 n 92)7712(91 n 6‘3) + m2(6‘1 n 92)m1 (91 n 93)

+m1(91 NoyN 93)7712(91 NoyN 93) =0.01
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4.6.3.7 Example 3.7

Let’s consider O(t;) £ {61,602, 05,04} and the following basic belief assignments available at time ¢; :

mq (91) =0.2 m1(6‘2) =04 m1(6‘1 n 92) =0.1 m1(6‘1 n 93) =0.2 mq (94) =0.1
m2(91) =0.1 mg(og) =0.3 m2(91 N 92) =0.2 m2(91 N 93) =0.1 m2(94) =0.3

The classical DSm rule of combination gives
m12(91) = 002 m12(92) = 012 m12(91 n 92) = 028 m12(91 n 93) = 006 m12(94) = 003

mia(61 N 01) = 0.07  mia(@2Nbs) =015  mya(6; N2 N63) = 0.15
mi2(01 N B2 N6y) =0.05 mi2(01 N B3N 6y) = 0.07
Now assume that at time t;4; one finds out that 61 N6 J\E/l 01 N0 AEA (). Using the hybrid DSm rule, one
gets:
ma (01 Nl2) = ma(01 NO3) = ma(01 N3N O3) =ma (61 NO2NOy) =0
mam(01) = maz2(01) + ma(61)ma(01 N O2) + ma(61)m1 (61 N O2) + mq(61)m2(61 N b3)
+ma(01)m1(61 Nés) = 0.11
ma(02) = mi2(02) + ma(62)ma (01 N O2) + ma(62)m1 (61 N O2) + ma(02)ma(61 N 6s3)
+ma(62)my (61 N B3) = 0.33
mam(0s) = mi2(0s) + ma(04)ma (01 N O2) + ma(0s)my (01 N O2) +ma(0s)m2(01 N 63)
+ma(04)mq (61 N63) = 0.15
ma (61 N Oy) =my2(61 NOy) = 0.07
ma (02 Nly) = mya(62N6y) =0.15
ma (01 U 62) = mya(01 UB) +mq (61 NO2)ma(61 NO) + my(01)ma(62) + ma(61)mq(62) = 0.12
ma (61 U bs) = mi2(61 UB3) +mq(61 NO3)me(61 NO3) = 0.02

mM(91 Uy U 93) = m12(91 Uby U 93) + m1(91 n 92)m2(91 n 93) + m2(91 n 02)m1(91 n 93) =0.05

4.7 Bayesian mixture of hybrid DSm models

In the preceding, one has first shown how to combine generalized basic belief assignments provided by
k > 2 independent and equally reliable sources of information with the general hybrid DSm rule of com-
bination for dealing with all possible kinds of integrity constraints involved in a model. This approach
implicitly assumes that one knows/trusts with certainty that the model M (usually a hybrid DSm model)
of the problem is valid and corresponds to the true model. In some complex fusion problems however

(static or dynamic ones), one may have some doubts about the validity of the model M on which is
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based the fusion because of the nature and evolution of elements of the frame ©. In such situations, we
propose to consider a set of exclusive and exhaustive models { M1, Ma,..., Mk} with some probabil-
ities {P{M 1}, P{Ms},..., P{MK}}. We don’t go here deeper on the justification/acquisition of such
probabilities because this is highly dependent on the nature of the fusion problem under consideration.
We just assume here that such probabilities are available at any given time ¢; when the fusion has to
be done. We propose then to use the Bayesian mixture of combined masses may,e)(.) i = 1,..., K to
obtain the final result :

K
VAED®,  ma,. mi(A) =D P{M;}tm,e)(A) (4.14)

=1
4.8 Conclusion

In this chapter we have extended the DSmT and the classical DSm rule of combination to the case
of any kind of hybrid model for the frame © involved in many complex fusion problems. The free-
DSm model (which assumes that none of the elements of the frame is refinable) can be interpreted as
the opposite of Shafer’s model (which assumes that all elements of the frame are truly exclusive) on
which is based the mathematical theory of evidence (Dempster-Shafer Theory - DST). Between these two
extreme models, there exists actually many possible hybrid models for the frames © depending on the real
intrinsic nature of elements of the fusion problem under consideration. For real problems, some elements
of © can appear to be truly exclusive whereas some others cannot be considered as fully discernable
or refinable. This present research work proposes a new hybrid DSm rule of combination for hybrid
models based on the DSmT. The hybrid DSm rule works in any model and is involved in calculation
of mass fusion of any number of sources of information, no matter how big is the conflict/paradoxism
of sources, and on any frame (exhaustive or non-exhaustive, with elements which may be exclusive or
non-exclusive or both). This is an important rule since does not require the calculation of weighting
factors, neither normalization as other rules do, and the transfer of masses of empty-sets to the masses
of non-empty sets is naturally done following the DSm network architecture which is derived from the
DSm classic rule. DSmT together with hybrid DSm rule is a new solid alternative to classical approaches
and to existing combination rules. This new result is appealing for the development of future complex

(uncertain/incomplete/paradoxical/dynamical) information fusion systems.



4.9.

REFERENCES 103

4.9 References

[1]

Dawid A.P., Conditional Independence, 14th Conf. on Uncertainty and Artificial Intelligence, USA,
1998.

Dawid A.P., Conditional Independence, In Encyclopedia of Statistical Science (Update) Volume 3,
Wiley, New York, 1999.

Dezert J., Smarandache F., On the generation of hyper-power sets for the DSmT, Proceedings of the

6th International Conference on Information Fusion, Cairns, Australia, July 8-11, 2003.

Dubois D., Prade H., Representation and combination of uncertainty with belief functions and pos-

sibility measures, Computational Intelligence, Vol. 4, pp. 244-264, 1988.

Fonck P., Conditional Independence in Possibility Theory, Uncertainty and Artificial Intelligence,
pp. 221-226, 1994.

Lefevre E., Colot O., Vannoorenberghe P. Belief functions combination and conflict management,

Information Fusion Journal, Elsevier, 2002.
Shafer G., A Mathematical Theory of FEvidence, Princeton Univ. Press, Princeton, NJ, 1976.

Shenoy P., Conditional Independence in Valuation-Based Systems, International Journal of Approx-

imate reasoning, VoL. 10, pp. 203-234, 1994.
Smets Ph., Kennes R., The transferable belief model, Artificial Intelligence, 66(2), pp. 191-234, 1994.

Studeny M., Formal properties of Conditional Independence in Different Calculi of Al Proc. of
ECSQARU’93, (Clarke K., Kruse R. and Moral S., Eds.), Springer-Verlag, 1993.

Yager R.R., On the Dempster-Shafer framework and new combination rules, Information Sciences,

Vol. 41, pp. 93-138, 1987..

Yaghlane B.B., Smets Ph., Mellouli K., Independence and Non-Interactivity in the Transferable Belief
Model, Workshop on Conditional Independence Structure and graphical Models, Eds. F. Matus and
M. Studeny, Toronto, CA, 1999.

Yaghlane B.B., Smets Ph., Mellouli K., Belief Function Independence: I The marginal case, Inter-

national Journal of Approximate Reasoning, Vol. 29, pp. 47-70, 2002.

Yaghlane B.B., Smets Ph., Mellouli K., Belief Function Independence: II conditional case, Interna-
tional Journal of Approximate Reasoning, Vol. 31, pp. 31-75, 2002.



104 REFERENCES



Chapter 5

Counter-examples to Dempster’s

rule of combination

Jean Dezert Florentin Smarandache @ Mohammad Khoshnevisan
ONERA Department of Mathematics Griffith Business School
29 Av. de la Division Leclerc ~ University of New Mexico Griffith University
92320 Chatillon Gallup, NM 8730 Gold Coast Campus
France U.S.A. Australia

Abstract: This chapter presents several classes of fusion problems which cannot
be directly approached by the classical mathematical theory of evidence, also known
as Dempster-Shafer Theory (DST), either because Shafer’s model for the frame of
discernment is impossible to obtain, or just because Dempster’s rule of combination
fails to provide coherent results (or no result at all). We present and discuss the
potentiality of the DSmT combined with its classical (or hybrid) rule of combination

to attack these infinite classes of fusion problems.
5.1 Introduction

n this chapter we focus our attention on the limits of the validity of Dempster’s rule of combination
Iin Dempster-Shafer theory (DST) [B]. We provide several infinite classes of fusion problems where
Dempster rule of combination fails to provide coherent results and we show how these problems can be
attacked directly by the DSmT presented in previous chapters. DST and DSmT are based on a different
approach for modelling the frame © of the problem (Shafer’s model versus free-DSm, or hybrid-DSm

model), on the choice of the space (classical power set 2€ versus hyper-power set D®) on which will

105
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be defined the basic belief assignment functions m;(.) to be combined, and on the fusion rules to apply

(Dempster rule versus DSm rule or hybrid DSm rule of combination).

5.2 First infinite class of counter examples

The first infinite class of counter examples for Dempster’s rule of combination consists trivially in all cases
for which Dempster’s rule becomes mathematically not defined, i.e. one has 0/0, because of full conflicting
sources. The first sub-class presented in subsection 2] corresponds to Bayesian belief functions. The

subsection will present counter-examples for more general conflicting sources of evidence.

5.2.1 Counter-examples for Bayesian sources

The following examples are devoted only to Bayesian sources, i.e. sources for which the focal elements of

belief functions coincide only with some singletons 6; of ©.

5.2.1.1 Example with © = {0,6,}

Let’s consider the frame of discernment © = {61,602}, two independent experts, and the basic belief
masses:

my(61) =1 mi1(62) =0

ma(f1) =0 ma(f2) =1

We represent these belief assignments by the mass matrix
M =
0 1
e Dempster’s rule can not be applied because one formally gets m(6;) = 0/0 and m(62) = 0/0 as

well, i.e. undefined.

e The DSm rule works here because one obtains m(6;) = m(62) = 0 and m(6; NO2) = 1 (the total
paradox, which it really is! if one accepts the free-DSm model). If one adopts Shafer’s model and
applies the hybrid DSm rule, then one gets mp (61 U 62) = 1 which makes sense in this case. The
index h denotes here the mass obtained with the hybrid DSm rule to avoid confusion with result

obtained with the DSm classic rule.

5.2.1.2 Example with © = {91, 92, 93, 94}

Let’s consider the frame of discernment © = {61,0s,05,64}, two independent experts, and the mass

matrix
06 0 04 O

0 02 0 08
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e Again, Dempster’s rule can not be applied because: V1 < j < 4, one gets m(6;) = 0/0 (undefined!).

e But the DSm rule works because one obtains: m(6;) = m(62) = m(63) = m(64) = 0, and m(6; N

02) = 0.12, m(61 N 04) = 0.48, m(02 N 63) = 0.08, m(f3 N G4) = 0.32 (partial paradoxes/conflicts).

e Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies
the hybrid DSm rule and one gets (index h stands here for hybrid rule): mp (61 U 63) = 0.12,
mh(91 U 6‘4) = 0.48, mh(6‘2 U 93) = 0.08 and mh(6‘3 U 94) =0.32.

5.2.1.3 Another example with © = {61,05,03,04}

Let’s consider the frame of discernment © = {61, 6,603,604}, three independent experts, and the mass

matrix

06 0 04 O
0 02 0 08
0 03 0 0.7

e Again, Dempster’s rule can not be applied because: V1 < j < 4, one gets m(6;) = 0/0 (undefined!).

e But the DSm rule works because one obtains: m(f;) = m(62) = m(63) = m(64) = 0, and
m(61 N ) =0.6-0.2-0.3 =0.036

m(61 N6s) =0.6-0.8-0.7 =0.336
m(fy M) =0.4-0.2-0.3 = 0.024
m(fsN6s) =0.4-08-0.7=0.224
m(6; MOy N6y) =0.6-0.2-0.740.6-0.3-0.8 =0.228
m(6z N B3N 6s) =0.2-0.4-0.7+0.3-0.4-0.8 = 0.152

(partial paradoxes/conflicts) and the others equal zero. If we add all these masses, we get the sum

equals to 1.

e Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies the
hybrid DSm rule and one gets: my, (61 U 63) = 0.036, mp, (61 U 04) = 0.336, my (02 U 03) = 0.024,
mh(93 U 6‘4) = 0.224, mh(91 Uby U 6‘4) = 0.228, mh(92 Ubs U 94) = 0.152.

5.2.1.4 More general

Let’s consider the frame of discernment © = {61,02,...,0,}, with n > 2, and k experts, for k > 2. Let
M = [aij], 1<i<k, 1<j<n, bethe mass matrix with k£ rows and n columns. If each column of the

mass matrix contains at least a zero, then Dempster’s rule can not be applied because one obtains for
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all 1 < j <n, m(8;) = 0/0 which is undefined! The degree of conflict is 1. However, one can use the
classical DSm rule and one obtains: for all 1 < j < n, m(6;) = 0, and also partial paradoxes/conflicts:
Vi<ovs<n,1<s<w and 2 <w<k, mly, NOy, N...Nby,)=> (a1s,) (azt,) ... (ak, ), where
the set T = {t1,ta,...,tr} is equal to the set V = {vy,v2,...,v,} but the order may be different and
the elements in the set T' could be repeated; we mean from set V' one obtains set T if one repeats some
elements of V; therefore: summation > is done upon all possible combinations of elements from columns
V1, U2, ..., Uy such that at least one element one takes from each of these columns v1, v, ..., Uy, and also
such that from each row one takes one element only; the product (ait,) - (ast,) - ... - (agt,) contains one
element only from each row 1, 2, ..., k respectively, and one or more elements from each of the columns

V1, V2, ..., Uy respectively.

5.2.2 Counter-examples for more general sources

We present in this section two numerical examples involving general (i.e. non Bayesian) sources where

Dempster’s rule cannot be applied.

5.2.2.1 Example with © = {91, 92, 93, 94}

Let’s consider © = {61, 02, 05,04}, two independent experts, and the mass matrix:

01 02 03 04 01 U 0,
ml() 04105 0 0 0.1
mg() 0 0 0.3 0.7 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(6;), 1 <4 < 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule: m(6; N63) = 0.12, m(6; N6y) = 0.28, m(02N63) = 0.15, m(A2Nby) = 0.35,
m(93 n (6‘1 U 6‘2)) =0.03, m(94 n (6‘1 U 92)) = 0.07.

Suppose now one finds out that one has a Shafer model; then one uses the hybrid DSm rule (denoted
here with index h): mp(61 U 63) = 0.12, mp, (61 U 04) = 0.28, mp (02 U 03) = 0.15, my (02 U 64) = 0.35,
mh(6‘3 U6, u 92) =0.03, mh(94 U, u 6‘2) = 0.07.

5.2.2.2 Another example with © = {6,05,03,04}

Let’s consider © = {6, 02, 05,04}, three independent experts, and the mass matrix:
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61 | 02 | O3 | 64

04105] 0 0
mg() 0 0

081 0 0 0

0.3 ] 0.6

01 U0y | 03U 0,
0.1 0
0 0.1
0.2 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(6;), 1 < i < 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule, one gets:

3

01) = m(0a) =
m(6y N 63) = 0.096

m91094)—0192

3

61N (93 U 94)) =0.032

3

05N 63N 0;) = 0.120

(93 U 94)) = 0.040

3

62 N (93 U 6‘4) n 91) ((91 M 6‘2)
m (

91U92)093091):m91093)_0024

m

(
(
(
(
(
m(f2 Ny N ) =0.240
(
(
(
(

(
(91 U 92) n 94 n 91) = m(01 n 94) = O 048
(

m((601 U 6‘2) (6‘3 U 94) 6‘1) (6‘1 n (93 U 94)) = 0.008

After cumulating, one finally gets with DSm classic rule:

m(61 N O3) =0.096 + 0.024 4 0.024 = 0.144
m
m(61 N b2 NO3) =0.120
m
m(fy N (65 U 6,)) = 0.032 + 0.008 + 0.008 = 0.048
m(60a

(
(
(
(
(
(

(93 U 94)) = 0.010

6‘206‘3)—0030 m

(91 U 92) n 93) = 0.006 m

m(0; Uby) =m(03U0,) =0

01 N 63N (6; Ub)) =m(h Nbs) = 0.024
01 N0OsN (01 Ub)) =m(f; NOy) =0.048
01N (O3UB0s) N (01 UbL)) =
03 N 05N (01 UB)) = m(62 N 0O3) = 0.030

(
(
(
(
(
(02N BsN (61 UBbs)) =m(f2N6y) =0.060
(
(
(
(

m

3

3

m(6‘1 n (93 U 94)) = 0.008

3

3

62 N (93 U 6‘4) n (91 U 92)) (6‘2 n (93 U 94)) = 0.010

3

m((61 U 6) N 63) = 0.006
(61U 62) N 6y) = 0.012
(

m 91U6‘2)ﬂ

m

(93 U 94)) = 0.002

m(61 N0s) =0.192 + 0.048 + 0.048 = 0.288

62 N 6‘4) = 0.060

m 91 n 92 N 94) = 0.240

(6, U 63) N 6y) = 0.012

m(61NOxN (93 U 94)) = 0.040
m (91 U 6‘2) N

(93 U 94)) = 0.002

Suppose now, one finds out that all intersections are empty. Using the hybrid DSm rule one gets:

mp 91 U 93) =0.144
mp, (69 U 93) =0.030

(
(
mp (61 U by Ubs) = 0.120 + 0.006 = 0.126
mp (61 U B3 U 6y) = 0.048

(

mp (61 U by U b3 U 6‘4) = 0.040 4+ 0.002 = 0.042

mp (61 U 6,) = 0.288

mp (62 U 6y) = 0.060

mp (61 U6y U 6y) = 0.240 + 0.012 = 0.252
mp (62 U B3 U 6y) = 0.010
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5.2.2.3 More general

Let’s consider the frame of discernment © = {61,60s,...,0,}, with n > 2, and k experts, for k > 2, and
the mass matrix M with k rows and n + u columns, where u > 1, corresponding to 61, 6o, ..., 0,, and u

uncertainties 6;, U...U0;_, ..., 0; U... U8, respectively.

If the following conditions occur:
e each column contains at least one zero;
e all uncertainties are different from the total ignorance 61 U...U#, (i.e., they are partial ignorances);
e the partial uncertainties are disjoint two by two;

o for each non-null uncertainty column c¢;, n +1 < j < n 4+ u, of the form say 6,, U...U 6, , there

exists a row such that all its elements on columns p, ..., pw, and ¢; are zero.

then Dempster’s rule of combination cannot apply for such infinite class of fusion problems because one
gets 0/0 for all m(6;), 1 < i < n. The DSm rules (classical or hybrid) work for such infinite class of

examples.

5.3 Second infinite class of counter examples

This second class of counter-examples generalizes the famous Zadeh example given in [7, [§].

5.3.1 Zadeh’s example

Two doctors examine a patient and agree that it suffers from either meningitis (M), contusion (C) or
brain tumor (T). Thus © = {M,C,T}. Assume that the doctors agree in their low expectation of a

tumor, but disagree in likely cause and provide the following diagnosis
m (M) =0.99 m1(T) = 0.01 and mz(C) = 0.99 mz(T) = 0.01

If we combine the two basic belief functions using Dempster’s rule of combination, one gets the unexpected

final conclusion

0.0001
1 —0.0099 — 0.0099 — 0.9801
which means that the patient suffers with certainty from brain tumor !!!. This unexpected result arises

from the fact that the two bodies of evidence (doctors) agree that the patient most likely does not
suffer from tumor but are in almost full contradiction for the other causes of the disease. This very sim-

ple but interesting example shows the limitations of the practical use of the DST for automated reasoning.
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This example has been examined in literature by several authors to explain the anomaly of the result
of Dempster’s rule of combination in such case. Due to the high degree of conflict arising in such extreme
case, willingly pointed out by Zadeh to show the weakness of this rule, it is often argued that in such case
the result of Dempster’s rule must not be taken directly without checking the level of the conflict between
sources of evidence. This is trivially true but there is no theoretical way to decide beforehand if one can
trust or not the result of such rule of combination, especially in complex systems involving many sources
and many hypotheses. This is one of its major drawback. The issue consists generally in choosing rather
somewhat arbitrarily or heuristically some threshold value on the degree of conflict between sources to
accept or reject the result of the fusion [9]. Such approach can’t be solidly justified from theoretical anal-
ysis. Assuming such threshold is set to a given value, say 0.70 for instance, is it acceptable to reject the
fusion result if the conflict appears to be 0.7001 and accept it when the conflict becomes 0.69997 What
to do when the decision about the fusion result is rejected and one has no assessment on the reliability
of the sources or when the sources have the same reliability/confidence but an important decision has to
be taken anyway? There is no theoretical solid justification which can reasonably support such kind of

approaches commonly used in practice up to now.

The two major explanations of this problem found in literature are mainly based, either on the fact
that problem arises from the closed-world assumption of Shafer’s model © and it is suggested to work
rather with an open-world model, and/or the fact that sources of evidence are not reliable. These ex-
planations although being admissible are not necessarily the only correct (sufficient) explanations. Note
that the open-world assumption can always be easily relaxed advantageously by introducing a new hy-
pothesis, say 6y in the initial frame © = {61,...,0,} in order to close it. 6y will then represent all
possible alternatives (although remaining unknown) of initial hypotheses 61,...6,. This idea has been
already proposed by Yager in [6] through his hedging solution. Upon our analysis, it is not necessary to
adopt /follow the open-world model neither to admit the assumption about the reliability of the sources
to find a justification in this counter-intuitive result. Actually, both sources can have the same reliability
and Shafer’s model can be accepted for the combination of the two reports by using another rule of
combination. This is exactly the purpose of the hybrid DSm rule of combination. Of course when one
has some prior information on the reliability of sources, one has to take them into account properly by
some discounting methods. The discounting techniques can also apply in the DSmT framework and there
is no incompatibility to mix both (i.e. discounting techniques with DSm rules of combinations) when
necessary (when there is strong reason to justify doing it, i.e. when one has prior reliable information
on reliability of the sources). The discounting techniques must never been used as an artificial ad-hoc
mechanism to update Dempster’s result once problem has arisen. We strongly disagree with the idea that

all problems with Dempster’s rule can be solved beforehand by discounting techniques. This can help
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obviously to improve the assessment of belief function to be combined when used properly and fairly, but
this does not fundamentally solve the inherent problem of Dempster’s rule itself when conflict remains

high.

The problem comes from the fact that both sources provide essentially their belief with respect only to
their own limited knowledge and experience. It is also possible in some cases, that sources of information
even don’t have the same interpretation of concepts included in the frame of the problem. Such kind of
situation frequently appears for example in debates on TV, on radio or in most of the meetings where
important decision/approval have to be drawn and when the sources don’t share the same opinion. This
is what happens daily in real life and one has to deal with such conflicting situations anyway. In other
words, the sources do not speak about the same events or even they do, they there is a possibility that
they do not share the same interpretation of the events. This has already been pointed out by Dubois
and Prade in [B] (p. 256). In Zadeh’s controversy example, it is possible that the first doctor is expert
mainly in meningitis and in brain tumor while the second doctor is expert mainly in cerebral contusion
and in brain tumor. Because of their limited knowledges and experiences, both doctors can also have
also the same reliability. If they have been asked to give their reports only on © = {M,C, T} (but not
on an extended frame), their reports have to be taken with same weight and the combination has to be
done anyway when one has no solid reason to reject one report with respect to the other one; the result
of the Demsper’s rule still remains very questionable. No rational brain surgeon would take the decision
for a brain intervention (i.e. a risky tumor ablation) based on Dempster’s rule result, neither the family
of the patient. Therefore upon our analysis, the two previous explanations given in literature (although
being possible and admissible in some cases) are not necessary and sufficient to explain the source of
the anomaly. Several alternatives to Dempster’s rule to circumvent this anomaly have been proposed
in literature mainly through the works of R. Yager [6], D. Dubois and H. Prade [2] already reported in
chapter [ or by Daniel in [T]. The DSmT offers just a new issue for solving also such controversy example
as it will be shown. In summary, some extreme caution on the degree of conflict of the sources must
always be taken before taking a final decision based on Dempster’s rule of combination, especially when

vital wagers are involved.

If we now adopt the free-DSm model, i.e. we replace the initial Shafer model by accepting the
possibility of non null intersections between hypotheses M, C' and T and by working directly on hyper-
power set D® then one gets directly and easily the following result with the classical DSm rule of

combination:

m(MNC)=09801 m(MNT)=0009 m(CNT)=0009  m(T)=0.0001
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which makes sense when working with such a new model. Obviously same result can be obtained (the
proof is left here to the reader) when working with Dempster’s rule based on the following refined frame

O,cy defined with basic belief functions on power set 2Ores .

Oref ={h=MNCNT,0o=MNCNT,03=MNCNT,04=MNCNT,
s =MNCNT,06=MNCNT,0;=MNCNT}

where T,C and M denote respectively the complement of 7', C' and M.

The equality of both results (i.e. by the classical DSm rule based on the free-DSm model and by
Dempster’s rule based on the refined frame) is just normal since the normalization factor 1 — k of Demp-
ster’s rule in this case reduces to 1 because of the new choice of the new model. Based on this remark,
one could then try to argue that DSmT (together with its DSm classical rule for free-DSm model) is
superfluous. Such claim is obviously wrong for the two following reasons: it is unecessary to work with
a bigger space (keeping in mind that |[D®| < |297¢7|) to get the result (the DSm rule offers just a direct
and more convenient issue to get the result), but also because in some fusion problems involving vague/-
continuous concepts, the refinement is just impossible to obtain and we are unfortunately forced to deal

with ambiguous concepts/hypotheses (see H] for details and justification).

If one has no doubt on the reliability of both Doctors (or no way to assess it) and if one is absolutely
sure that the true origin of the suffering of the patient lies only in the frame © = {M,C,T} and we
consider these origins as truly exclusive, then one has to work with the initial frame of discernment
O satisfying Shafer’s model. As previously shown, Dempster’s rule fails to provide a reasonable and
acceptable conclusion in such high conflicting case. However, this case can be easily handled by the
hybrid DSm rule of combination. The hybrid DSm rule applies now because Shafer’s model is nothing
but a particular hybrid model including all exclusivity constraints between hypotheses of the frame ©
(see chapter Hl for details). One then gets with the hybrid DSm rule for this simple case (more general
and complex examples have been already presented in chapter Hl), after the proper mass transfer of all

sources of the conflicts:
m(M U C) = 0.9801 m(M UT) = 0.0099 m(C UT) =0.0099 m(T) = 0.0001

This result is not surprising and makes perfectly sense with common intuition actually since it provides
a coherent and reasonable solution to the problem. It shows clearly that a brain intervention for ablation
of an hypothetical tumor is not recommended, but preferentially a better examination of the patient
focused on Meningitis or Contusion as possible source of the suffering. The consequence of the results of

Dempster’s rule and the hybrid DSm rule is therefore totally different.
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5.3.2 Generalization with © = {6, 6,,05}

Let’s consider 0 < €1,€3 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be © = {01, 05,603}, have two experts (independent sources of evidence s and s3) giving the belief masses
m1(91) =1- €1 m1(6‘2) =0 m1(6‘3) = €1

ma(61) =0 ma(f2) =1—¢e ma(fs3) = €2
From now on, we prefer to use matrices to describe the masses, i.e.
1—¢€ 0 €1
0 1—¢€ €
e Using Dempster’s rule of combination, one gets

(e1€2)

m(f3) = (1—¢€1)-04+0-(1—e)+erer

=1

which is absurd (or at least counter-intuitive). Note that whatever positive values for €1, €o are,
Dempster’s rule of combination provides always the same result (one) which is abnormal. The only
acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when €; = €2 = 1, i.e. when both sources agree in 63 with certainty which is obvious.

e Using the DSm rule of combination based on free-DSm model, one gets m(f3) = e1e2, m(61Nb) =
(1 —€1)(1—e2), m(1 Nb3) = (1 —e1)ea, m(B2 N B3) = (1 — e2)e; and the others are zero which

appears more reliable/trustable.

e Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(3) = €1 €a,
m(01 @] 92) = (1 - 61)(1 - 62), m(91 U 93) = (1 — 61)62, m(92 U 93) = (1 - 62)61 and the others are

Z€ero.
Note that in the special case when €; = €3 = 1/2, one has
m1(6‘1)=1/2 m1(92):0 m1(93):1/2 and m2(91):O m2(92):1/2 m2(93)=1/2

Dempster’s rule of combinations still yields m(f3) = 1 while the hybrid DSm rule based on the same
Shafer’s model yields now m(03) = 1/4, m(61 U 02) = 1/4, m(6; U 03) = 1/4, m(02 U b3) = 1/4 which is

normal.

5.3.3 Generalization with © = {6,,0,,05,0,}

Let’s consider 0 < €1,€2,€3 < 1 be three very tiny positive numbers, the frame of discernment be

© = {61, 62,03, 0,4}, have two experts giving the mass matrix

1—61—62 0 €1 €2

0 1—63 0 €3



5.4. THIRD INFINITE CLASS OF COUNTER EXAMPLES 115

Again using Dempster’s rule of combination, one gets m(f4) = 1 which is absurd while using the DSm rule
of combination based on free-DSm model, one gets m(64) = ezes which is reliable. Using the DSm classical
rule: m(01N0z) = (1—€1—€2)(1—€3), m(01N0y) = (1—€1—e€3)eg, m(03Nb2) = €1(1—€3), m(03N04) = €€,
m(0y) = eze3. Suppose one finds out that all intersections are empty, then one applies the hybrid DSm
rule: mp(01 Ubs) = (1 — €1 —e2)(1 —€3), mp(01 Ubs) = (1 — €1 — e3)es, mp(03 U b)) = e1(1 — e3),

mh(og U 94) = €1€3, mh(94) = €9€3.

5.3.4 More general

Let’s consider 0 < €1,...,¢, < 1 be very tiny positive numbers, the frame of discernment be © =
{01,...,0,,60,4+1}, have two experts giving the mass matrix
1-57 0 €1 0 € ... 0 €p
0 1— S_H 0 er1 0 ... €1 €

where 1 < p <n and Sf £ le €; and S;Zrl £ > €;. Again using Dempster’s rule of combination,

i=p+1
one gets m(0,,41) = 1 which is absurd while using the DSm rule of combination based on free-DSm model,

one gets m(6p11) = €pe, which is reliable. This example is similar to the previous one, but generalized.

5.3.5 Even more general

Let’s consider 0 < €1,...,€, < 1 be very tiny positive numbers (close to zero), the frame of discernment
be © = {61,...,0,,0,41}, have k > 2 experts giving the mass matrix of k rows and n + 1 columns such

that:

e one column, say column j, is (¢j,,€j,,...,€;5, ) (transposed vector), where 1 < j < n + 1 where

{€1,€js,--.,€j. } is included in {e1,€2,...,€};
e and each column (except column j) contains at least one element equals to zero.

Then Dempster’s rule of combination gives m(6;) = 1 which is absurd, while the classical DSm rule gives

m(0;) =€, - €, - ... - €, # 0 which is reliable.
Actually, we need to set restrictions only for €;,, €j,, ..., and €, to be very tiny positive numbers,
not for all €1, €3, ..., €, (the others can be anything in the interval [0, 1) such that the sum of elements

on each row be equal 1).

5.4 Third infinite class of counter examples

This third class of counter-examples deals with belief functions committing a non null mass to some

uncertainties.
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5.4.1 Example with © = {6;,05,03,0,}

Let’s consider © = {61,605, 03,04}, two independent experts, and the mass matrix:

01 02 03 | 04 | O3U 6y

mi(.) | 099 0 | 0] 0| 001

ma() | 0 (098]0 ] 0| 002

If one applies Dempster’s rule, one gets

(0.01 -0.02)
0 U0,) — =1
m(f3 U 6q) (0+0+40+0+0.01-0.02)

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to
Zadeh’s example, but is different because it is referring to uncertainty (not to contradictory) result.
Using the DSm classical rule: m(6; NOy) = 0.9702, m(6; N (03 U04)) = 0.0198, m(62N (63 UH4)) = 0.0098,
m(fs3 U 64) = 0.0002. Suppose now one finds out that all intersections are empty (i.e. one adopts
Shafer’s model). Using the hybrid DSm rule one gets: mp (61 U 62) = 0.9702, my (61 U 03 U 6,) = 0.0198,
mp (62 U3 U0s) = 0.0098, mpy (03 UBOy) = 0.0002.

5.4.2 Example with © = {0,,0,,603,0,,05}

Let’s consider © = {61,053, 03,04, ,05}, three independent experts, and the mass matrix:

th 02 Os | 04 | 05 | 04U 05
mi() 099 o | o [o]o] ool

ma() | 0 [098]001|0 |0 001
ms(.) | 0.01 [ 0.01 [ 097 [0 [0 | 0.01

e If one applies Dempster’s rule, one gets

(s U ) — (0.01-0.01-0.01) .
(0+0+0-+0+0.01-0.01-0.01)

(total ignorance), which doesn’t bring any information to the fusion.

e Using the DSm classical rule one gets:
m(6; Nbz) =0.99-0.98-0.01 +0.99-0.98 - 0.01 = 0.019404

m(6; Nb3) =0.99-0.01-0.01+0.99-0.01-0.97 = 0.009702
m(61 N2 NB3)=0.99-0.98-0.97+ 0.99-0.01-0.01 =0.941193
m(f#1 NOsN (0,U605)) =0.99-0.01-0.014 0.99-0.01-0.97 + 0.01-0.01-0.01 = 0.009703
m(61 N (04 U05)) =0.99-0.01-0.01+0.99-0.01-0.01+ 0.01-0.01-0.01 =0.000199

m((0sUbs) N2 N6) =0.01-0.98-0.01+0.99-0.01-0.01+0.99-0.98-0.01 = 0.009899
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m((64 U 05) N 6) = 0.01-0.98-0.01 + 0.01-0.98-0.01 4 0.01-0.01 - 0.01 = 0.000197
m((64 U 05) N6y N B3) =0.01-0.98-0.97 + 0.01 - 0.01 - 0.01 = 0.009507
m((64 U 05) N 6s) = 0.01-0.01-0.97 + 0.01-0.01-0.01 +0.01-0.01-0.97 = 0.000195
m(6s4 Ubs) = 0.01-0.01-0.01 = 0.000001

The sum of all masses is 1.

e Suppose now one finds out that all intersections are empty (Shafer’s model), then one uses the

hybrid DSm rule and one gets:

mnu (61 U 6y) = 0.019404 mp (61 U B3) = 0.009702
mu(61 U6y Ubs) =0.941193  my (61 U s U, UB5) = 0.009703
mp (61 U6, UBs) = 0.000199 (0 Ubs Ul U B = 0.009899
mp (6 U 65 Uby) = 0.000197  my (6 U b5 U by UBs) = 0.009507

( ) m

mp (64 UG5 U 63) = 0.000195 n(64 U B5) = 0.000001

The sum of all masses is 1.

5.4.3 More general

Let © = {61,...,0,}, where n > 2, k independent experts, k > 2, and the mass matrix M of k rows and
n+ 1 columns, corresponding to 61, 62, ..., 6,, and one uncertainty (different from the total uncertainty

01Ul U...UB,) say 6;, U...U0; respectively. If the following conditions occur:

e cach column contains at least one zero, except the last column (of uncertainties) which has only

non-null elements, 0 < €1, €2, ..., € < 1, very tiny numbers (close to zero);
e the columns corresponding to the elements 6;, ,. .., 6;, are null (all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(6;, U...U6; ) =1 (total ignorance), which doesn’t bring any

information to the fusion.

5.4.4 Even more general

One can extend the previous case even more, considering to u uncertainty columns, u > 1 as follows.

Let © = {61,...,0,}, where n > 2, k independent experts, k > 2, and the mass matrix M of k rows
and n + u columns, corresponding to 61, 0, ..., 8,, and u uncertainty columns (different from the total

uncertainty 61 U6y U. ..U 8,) respectively. If the following conditions occur:

e each column contains at least one zero, except one column among the last u uncertainty ones which

has only non-null elements 0 < €1, €9, ..., €, < 1, very tiny numbers (close to zero);
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e the columns corresponding to all elements 6;,,..., 0;_,..., 05 ,..., 0, (of course, these elements
should not be all 0y, 65,..., 6,, but only a part of them) that occur in all uncertainties are null

(i.e., all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(6;, U...U6;,) =1 (total ignorance), which doesn’t bring any

information to the fusion.

5.5 Fourth infinite class of counter examples

This infinite class of counter-examples concerns Dempster’s rule of conditioning defined as [A] :

ZX,Yezf-),(XmY):B m(X)ma(Y)
1- Zx,yeze,(xmy):w m(X)ma(Y)

VB €29, m(B|A) =

where m(.) is any proper basic belief function defined over 2° and ma(.) is a particular belief function

defined by choosing ma(A) = 1 for any A € 2° with A # ().

5.5.1 Example with © = {6;,...,0s}

Let’s consider © = {61, ..., 05}, one expert and a certain body of evidence over 05, with the mass matrix:

01 02 O3 | 0,U05 | 05U bg

mi(.) 03] 0]04]| 02 0.1

me,()| 0 | 1] 0 0 0

e Using Dempster’s rule of conditioning, one gets: m(.|¢2) = 0/0 for all the masses.

e Using the DSm classical rule, one gets:

m(91ﬂ92|92) =0.3 m(92ﬂ93|92) =04 m(920(94U95)|92) =0.2 m(920(95U96)|92) =0.1

e If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the

hybrid DSm rule, one gets:

mh(91U92|92) =0.3 mh(92U93|92) =0.4 mh(92U94U95|92) =0.2 mh(92U95U96|92) =0.1

5.5.2 Another example with © = {0,,...,6s}

Let’s change the previous counter-example and use now the following mass matrix:

011 602 | 03 | 0,U05 | 05U B¢

mi() | 11010 0 0
me,() | 0] 11]0 0 0
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e Using Dempster’s rule of conditioning, one gets: m(.|62) = 0/0 for all the masses.
e Using the DSm classical rule, one gets: m(6; N 6#2|f2) = 1, and others 0.
e If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the
hybrid DSm rule, one gets: my, (61 U 02]02) = 1, and others 0.
5.5.3 Generalization

Let © = {61,02,...,6,}, where n > 2, and two basic belief functions/masses m1(.) and mg(.) such that
there exist 1 < (i # j) < n, where m1(6;) = m2(6;) = 1, and 0 otherwise. Then Dempster’s rule of

conditioning can not be applied because one gets division by zero.

5.5.4 Example with © = {0,,0,,03,0,} and ignorance

Let’s consider © = {01, 605,61, 62}, one expert and a certain ignorant body of evidence over 65 U 64, with

the mass matrix:

01 | 62 | 63U0,

my(.) 0307 0

m93U94(.) 0 0 1

e Using Dempster’s rule of conditioning, one gets 0/0 for all masses m(.|65 U 6y).

e Using the classical DSm rule, one gets: m(61 N(63U04)|03U604) = 0.3, m(62N(03U04)|03Ub04) = 0.7

and others 0.

e If now one finds out that all intersections are empty (Shafer’s model), using the hybrid DSm rule,

one gets m (6, U O3 U 04|05 UBy) = 0.3, m(62 Ub3 U403 U80s) = 0.7 and others 0.

5.5.5 (Generalization

Let © = {61,602,...,0,,0041,...,0h+m}, for n > 2 and m > 2. Let’s consider the mass mq(.), which is a
row of its values assigned for 61,60, ...,6,, and some unions among the elements 6,41, ..., 01y such
that all unions are disjoint with each other. If the second mass m4(.) is a conditional mass, where A
belongs to {01,602, ...,0,} or unions among 6,11, ..., O,4m, such that m;(A) = 0, then Dempster’s rule
of conditioning can not be applied because one gets division by zero, which is undefined. [We did not
consider any intersection of 6; because Dempster’s rule of conditioning doesn’t accept paradoxes]. But

the DSm rule of conditioning does work here as well.
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5.5.6 Example with a paradoxical source

A counter-example with a paradox (intersection) over a non-refinable frame, where Dempster’s rule of
conditioning can not be applied because Dempster-Shafer theory does not accept paradoxist/conflicting

information between elementary elements 6; of the frame O:

Let’s consider the frame of discernment © = {61, 62}, one expert and a certain body of evidence over

0>, with the mass matrix:

01 O | 1 NOy | B, U0O,

mi(l) |02]01] 04 0.3

me,(.) | 0 | 1 0 0

Using the DSm rule of conditioning, one gets

and the sum of fusion results is equal to 1.

Suppose now one finds out that all intersections are empty. Using the hybrid DSm rule when 61 N6y =

(), one has:

mp (61 NO2|02) =0
mp(0102) = m(61162) + [ma(61)m2(61 N 02) + ma(61)ma (61N 62)] =0
i (02]02) = m(0]02) + [y (B2)mz (01 1 02) + ma(02)ma (61 M 62)] = 0.4 + 0.1(0) + 1(0.4) = 0.8
mp (01 U 62]02) = m(61 U 62]02) + [ma(61)m2(62) + m2(61)ma(62)]
+ [m1 (61 N O2)ma (61 U B2) + ma(61 N Oa)mq (61 U BO2)] + [mq(61 N O2)ma (61 N 6)]
=0+ [0.2(1) + 0(0.1)] + [0.4(0) + 0(0.3)] + [0.4(0)]

= 0.2+ (0] + [0] + [0] = 0.2

5.6 Conclusion

Several infinite classes of counter-examples to Dempster’s rule of combination have been presented in this
chapter for didactic purposes to show the limitations of this rule in the DST framework. These infinite
classes of fusion problems bring the necessity of generalizing the DST to a more flexible theory which
permits the combination of any kind of sources of information with any degree of conflict and working on
any frame with exclusive or non-exclusive elements. The DSmT with the hybrid DSm rule of combination

proposes a new issue to satisfy these requirements based on a new mathematical framework.
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Chapter 6

Fusion of imprecise beliefs
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Abstract: In this chapter one studies, within the DSmT framework, the case when
the sources of information provide imprecise belief functions/masses, and we gener-
alize the DSm rules of combination (classic or hybrid rules) from scalar fusion to
sub-unitary interval fusion and, more generally, to any set of sub-unitary interval
fusion. This work generalizes previous works available in literature which appear
limited to IBS (Interval-valued Belief Structures) in the Transferable Belief Model
framework. Numerical didactic examples of these new DSm fusion rules for dealing

with imprecise information are also presented.
6.1 Introduction

n the previous chapters, we had focused our efforts on the fusion of precise uncertain and conflicting /-
Iparadoxical generalized basic belief assignments (gbba). We mean here by precise gbba, basic belief
functions/masses m(.) defined precisely on the hyper-power set D® where each mass m(X), where X
belongs to D@, is represented by only one real number belonging to [0, 1] such that Y v e m(X) = 1.
In this chapter, we extend the DSm fusion rules for dealing with admissible imprecise generalized basic
belief assignments m!(.) defined as real subunitary intervals of [0, 1], or even more general as real sub-
unitary sets [i.e. sets, not necessarily intervals]. An imprecise belief assignment m?(.) over D® is said

admissible if and only if there exists for every X € D® at least one real number m(X) € m!(X) such that

123
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> xepe M(X) = 1. The idea to work with imprecise belief structures represented by real subset intervals
of [0,1] is not new and we strongly encourage the reader to examine the previous works of Lamata &
Moral and also Denceux for instance on this topic in [Bl [, 2] and references therein. The proposed works
available in the literature, upon our knowledge were limited only to sub-unitary interval combination in
the framework of Transferable Belief Model (TBM) developed by Smets [I2, [T3]. We extend the approach
of Lamata & Moral and Denceux based on subunitary interval-valued masses to subunitary set-valued
masses; therefore the closed intervals used by Denceux to denote imprecise masses are generalized to any
sets included in [0,1], i.e. in our case these sets can be unions of (closed, open, or half-open/half-closed)
intervals and/or scalars all in [0, 1]. In this work, the proposed extension is done in the context of the
DSmT framework, although it can also apply directly to fusion of IBS within TBM as well if the user
prefers to adopt TBM rather than DSmT.

In many fusion problems, it seems very difficult (if not impossible) to have precise sources of evidence
generating precise basic belief assignments (especially when belief functions are provided by human ex-
perts), and a more flexible plausible and paradoxical theory supporting imprecise information becomes
necessary. This chapter proposes a new way to deal with the fusion of imprecise, uncertain and con-
flicting source of information. The section presents briefly the DSm rule of combination for precise
belief functions. In section B3 we present the operations on sets for the chapter to be self-contained and
necessary to deal with imprecise nature of information in our framework. In section B4 we propose a
method to combine simple imprecise belief assignment corresponding only to sub-unitary intervals also
known as IBS (Interval-valued belief structures) in [I]. In section [ we present the generalization of
our new fusion rules to combine any type of imprecise belief assignment which may be represented by the
union of several sub-unitary (half-) open intervals, (half-)closed intervals and/or sets of points belonging
to [0,1]. Several numerical examples are also given. In the sequel, one uses the notation (a, b) for an open

interval, [a,b] for a closed interval, and (a,b] or [a,b) for a half open and half closed interval.

6.2 Combination of precise beliefs

6.2.1 General DSm rule of combination

Let’s consider a frame of discernment of a fusion problem © = {6;,0s,...,60,}, its hyper-power set D®
(i.e. the set of all propositions built from elements 6; of © with N and U operators (see chapter B), and k
independent (precise) sources of information By, Ba, ..., By with their associated generalized basic belief

assignments (gbba) my(.), ma(.), ..., mi(.) defined over D®. Let M be the mass matrix



6.2. COMBINATION OF PRECISE BELIEFS 125

mi1 Miz ... Migd
mo1  M22 ... Maog
M =
Mkl Mg2 - Mid |
where d = | D® | is the dimension of the hyper-power set, and m;; € [0,1] for all 1 < i < k and

1 < j < d, is the mass assigned by source B; to the element A; € D®. We use the DSm ordering
procedure presented in chapter Bl for enumerating the elements Ay, As, ..., Ay of the hyper-power set
D®. The matrix M characterizes all information available which has to be combined to solve the fusion
problem under consideration. Since mi(.), ma(.), ..., mi(.) are gbhba, the summation on each row of
the matrix must be one. For any (possibly hybrid) model M(O), we apply the DSm general rule of
combination (also called hybrid DSm rule) for & > 2 sources to fuse the masses (see chapter H) defined

for all A € D® as:

o) (4) £ 6(A)[S1(4) + Sa(4) + Ss(A)] (6.1)
@(A) is the characteristic non emptiness function of the set A, i.e. ¢(A) =1if A ¢ 0 and ¢(4) =0
otherwise. @ = {{), D} represents the set absolutely empty and of all relatively empty elements belonging
to D® (elements/propositions which have been forced to empty set in the chosen hybrid model M(©)).
If no constraint is introduced in the model, @ reduces to {(}} and this corresponds to the free DSm model
(see chapterH). If all constraints of exclusivity between elements 6; € © are introduced, the hybrid model
M(O) corresponds to Shafer’s model on which is based Dempster-Shafer Theory (DST) [9]. S1(A), S2(A)
and Ss(A) are defined by

k
SIOE D DR | £ 0 62)
X1,Xg,...,X,eD® =1
(X1NX2N..NXk)=A

k
Sa(A) £ > [[mi(x3) (6.3)
X1,X9,. X, €0 =1
[U=A]V[UEDN(A=L})]
k

S3(A) £ Z Hmi(Xi) (6.4)

(X1UXqU...UXp)=A
(X1NXgN...NX)eD

where I; £ 6, U6y U... U6, and U = u(X;)Uu(Xo)U...Uu(X}). u(X) is the union of all singletons
6; that compose X. For example, if X is a singleton then u(X) = X; if X = 6; N6 or X = 61 Uy then
w(X) = 60y Uby; if X = (6, N6) U3 then u(X) = 6; U by U3, etc; by convention u(()) = 0.
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6.2.2 Examples

Let’s consider at time ¢ the frame of discernment © = {61, 62,03} and two independent bodies of evidence

B and By with the generalized basic belief assignments m1(.) and ma(.) given by:

AEDG ml(A) mg(A)

0 0.1 0.5
05 0.2 0.3
05 0.3 0.1

61 N6 0.4 0.1

Table 6.1: Inputs of the fusion with precise bba

Based on the free DSm model and the classical DSm rule (§2), the combination denoted by the

symbol @ (i.e. m(.) = [m1 @ mz](.)) of these two precise sources of evidence is

AeD® | m(A) =[m ®ms)(A)
01 0.05
0 0.06
03 0.03
6, N O 0.52
6, N O3 0.16
02 N O3 0.11
61 Nb2N 03 0.07

Table 6.2: Fusion with DSm classic rule

Then, assume at time ¢ + 1 one finds out for some reason that the free DSm model has to be changed
by introducing the constraint 6; N 6 = () which involves also 61 N 03 N 03 = (. This characterizes the
hybrid-model M we have to work with. Then one uses the general hybrid DSm rule of combination for
scalars (i.e. for precise masses m(.) and ma(.) to get the new result of the fusion at time t+1. According

to (I, one obtains m(f; N6y = 0) = 0, m(61 N6 N 03 = 0) =0 and
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Ae D® m(A)

6, | 0.05+[0.1(0.1) + 0.5(0.4)] = 0.26
62 | 0.06+[0.2(0.1) + 0.3(0.4)] = 0.20
65 | 0.03+[0.3(0.1) + 0.1(0.4)] = 0.10

01 Nos 0.16
02 N O3 0.11
01 U6y 0+ [0.13] + [0.04] =0.17

Table 6.3: Fusion with hybrid DSm rule for model M
6.3 Operations on sets

To manipulate imprecise information and for the chapter to be self-contained, we need to introduce
operations on sets as follows (detailed presentations on Interval Analysis and Methods can be found
in [3, @, 6 [7, §]). The interval operations defined here about imprecision are similar to the rational inter-
val extension through the interval arithmetics [I0], but they are different from Modal Interval Analysis
which doesn’t serve our fusion needs. We are not interested in a dual of an interval [a,b], used in the
Modal Interval Analysis, because we always consider a < b, while its dual, Du([a,b]) = [b,a], doesn’t
occur. Yet, we generalize the interval operations to any set operations. Of course, for the fusion we only

need real sub-unitary sets, but these defined set operations can be used for any kind of sets.

Let S; and S be two (unidimensional) real standard subsets of the unit interval [0, 1], and a number

k €10, 1], then one defines [I1] :
e Addition of sets

N inf(51 H Sg) = 1nf(51) + lnf(Sg)
SlESQ = SQESl = {:Z? | xr = 81+SQ, S1 € 81,52 S SQ} with
sup(Sy B S2) = sup(S1) + sup(Sz2)

and, as a particular case, we have

inf({k) B S) = k + inf(Ss)
{k}BﬂSQZSQBH{k}: {,T | x=k+ s9,89 ESQ} with

sup({k} B .S2) = k + sup(S2)

Ezxamples:

[0.1,0.3] B [0.2,0.5] = [0.3,0.8] because 0.1 + 0.2 = 0.3 and 0.3+ 0.5 = 0.8;
(0.1,0.3] 8 [0.2,0.5] = (0.3,0.8];

[0.1,0.3] 8 (0.2,0.5] = (0.3,0.8];

0.1,0.3) B [0.2,0.5] = [0.3,0.8);
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0.1,0.3] B[0.2,0.5) = [0.3,0.8);

(0.1,0.3] B (0.2,0.5) = (0.3,0.8);

0.7,0.8] B[0.5,0.9] = [1.2, 1.7];

{0.4}B[0.2,0.5] = [0.2,0.5] B {0.4} = [0.6,0.9] because 0.4 + 0.2 = 0.6 and 0.4 + 0.5 = 0.9;
{0.4} 8 (0.2,0.5] = (0.6,0.9];

{0.4}B1[0.2,0.5) = [0.6,0.9);

{0.4}H(0.2,0.5) = (0.6,0.9).
Subtraction of sets

inf (S, B .S2) = inf(S1) — sup(Sa2)
NER=)) £ {CC | T =81 — S9,81 € 51,82 € SQ} with
sup(S; B S2) = sup(Sy) — inf(S2)

and, as a particular case, we have

inf({k} B S2) = k — sup(Ss2)
(k}BSs = {x| 2=k s2,5 € Ss} with ’ ’

sup({k} B S2) = k — inf(Ss)

inf(S; B{k}) = inf(S2) — k
and similarly for Se B {k} with

sup(S2 B {k}) = sup(S2) — k
Ezxamples:
[0.3,0.7]B10.2,0.3] = [0.0,0.5] because 0.3 — 0.3 = 0.0 and 0.7 — 0.2 = 0.5;
0.3,0.7] 8 {0.1} = [0.2,0.6];
{0.8} 2[0.3,0.7] = [0.1,0.5] because 0.8 — 0.7 = 0.1 and 0.8 — 0.3 = 0.5;
0.1,0.8] 2 [0.5,0.6] = [0.5,0.3];
[0.1,0.8] 2[0.2,0.9] = [~0.8, 0.6];

[0.2,0.5]810.1,0.6] = [—0.4,0.4].
Multiplication of sets

N inf (S, @ S2) = inf(Sy) - inf(S2)
S1E|S2:{CC|CC251~SQ,81 € 51,892 ESQ} with

Sup(S1 B} Sz) = sup(Sl) . Sup(Sg)
and, as a particular case, we have

1nf({k} Cl Sg) =k- lnf(Sg)
{k}E\SQZSQE\{k}:{$|$=k-82,82ESQ} with

Sup({k} CJ SQ) =k- sup(Sg)
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Ezxamples:
[0.1,0.6] =1 [0.8,0.9] = [0.08,0.54] because 0.1-0.8 = 0.08 and 0.6 - 0.9 = 0.54;

0.1,0.6) @ {0.3} = {0.3} @ [0.1,0.6] = [0.03,0.18] because 0.3 -0.1 = 0.03 and 0.3 - 0.6 = 0.18.

e Division of sets

In our fusion context, the division of sets is not necessary since the DSm rules of combination
(classic or hybrid ones) do not require a normalization procedure and thus a division operation.
Actually, the DSm rules require only addition and multiplication operations. We however give here
the definition of division of sets only for the reader’s interest and curiosity. The division of sets is

defined as follows:
inf(S1 @ S2) = inf(S1)/ sup(S2)
If0 ¢ Sg, then 51155 4 {,T | T = 81/82781 S Sl, So € SQ} with sup(S1 | S2) = Sup(Sl)/jnf(S2) if 0 g So

sup(S1 @ S2) = +o0 if 0 € S
If 0 € Sy, then S1 @S2 = [inf(S1)/ sup(Sz), +00)

and as some particular cases, we have for k # 0,

inf S2) = k/sup(S
(k} @Sy = {a| 2 = k/ss, where s5 € S5\ {0}} with (1k} @ 82) = b/ sup(53)
sup({k} @ S2) = k/ inf(Ss)
and if 0 € Sy then sup({k} @ S2) = 00

One has also as some particular case for k # 0,

inf(Se @ {k}) = inf(S2)/k
So{k} ={x |z = so/k,where so € Sa} with

sup(Se 1 {k}) = sup(S2)/k

Ezxamples:

[0.4,0.6] 1 [0.1,0.2] = [2, 6] because 0.4/0.2 = 2 and 0.6/0.1 = 6;

[0.4,0.6] 1 {0.4} = [1,1.5] because 0.4/0.4 =1 and 0.6/0.4 = 1.5;

{0.8} @ [0.2,0.5] = [1.6,4] because 0.8/0.2 = 4 and 0.8/0.5 = 1.6;

[0,0.5] 7 [0.1,0.2] = [0,5]: [0,0.5] 1 {0.4} = [0,1.25] because 0/0.4 = 0 and 0.5/0.4 = 1.25;

[0.3,0.9] @ [0,0.2] = [1.5,400) because 0.3/0.2 = 1.5 and since 0 € (S2 = [0,0.2]), sup([0.3,0.9] &
0,02]) = +o0;

[0,0.9] & [0,0.2] = [0, +00):

{0.7}1@a[0,0.2] = [3.5, +00) because 0.7/0.2 = 3.5 and 0 € (Sz = [0,0.2]), sup({0.7} &[0, 0.2]) = +o0;
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{0} 210,0.2] = [0, +00): [0.3,0.9] @ {0} = +o0:
[0,0.9] 1 {0} = +oc:

0.2,0.7] 21 [0,0.8] = [0.25, +00).

These operations can be directly extended for any types of sets (not necessarily sub-unitary subsets
as it will be shown in our general examples of section 6), but for simplicity, we will start the presentation

in the following section only for sub-unitary subsets.

Due to the fact that the fusion of imprecise information must also be included in the unit interval [0, 1]
as it happens with the fusion of precise information, if the masses computed are less than 0 one replaces
them by 0, and similarly if they are greater than 1 one replaces them by 1. For example (specifically in

our fusion context): [0.2,0.4] B [0.5,0.8] = [0.7, 1.2] will be forced to [0.7, 1].

6.4 Fusion of beliefs defined on single sub-unitary intervals

6.4.1 DSm rules of combination

Let’s now consider some given sources of information which are not able to provide us a specific/precise
mass m;; € [0,1], but only an interval centerecﬂ in myj, ie. Ijj = [mj — €5, mi; + €] where 0 < ¢;; <1
and I;; C [0,1] for all 1 <7 <k and 1 < j < d. The cases when I;; are half-closed or open are similarly
treated.

Lemma 1: if A, B C [0,1] and « € [0, 1] then:

inf(A@ B) = inf(A) - inf(B) inf(A @ B) = inf(A) + inf(B)
sup(A @ B) = sup(A4) - sup(B) sup(A @ B) = sup(A) + sup(B)
inf(a- A) = - inf(A) inf(a + A) = a + inf(A)

sup(a - A) = a - sup(4) sup(a+ A) = a + sup(A)

We can regard a scalar « as a particular interval [, @], thus all operations of the previous lemma
are reduced to multiplications and additions of sub-unitary intervals. Therefore, the DSm general rule
(7)), which operates (multiplies and adds) sub-unitary scalars, can be extended to operate sub-unitary

intervals. The formula (G1]) remains the same, but m;(X;), 1 <i <k, are sub-unitary intervals I;;. The

1This interval centered assumption is not important actually but has been adopted here only for notational convenience.
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mass matrix M is extended to:

mi1 — €11 Mi2 — €12 ... Mid — €1d
. Mma1 — €21 M22 — €22 ... M2qd — €24
inf(M) =

M1 — €1 Mk2 — €k2 ... Mkd — €kd

mi1 + €1 Miz2+ €12 ... Mid+ €14

mao1 + €21 Moz + €22 ... Mad+ €24
sup(M) =

Mi1 + €kl Mi2 +€k2 ... Mid + €kd

Notations: Let’s distinguish between DSm general rule for scalars, noted as usual m @) (A), or m;(X;),

etc., and the DSm general rule for intervals noted as mfw(@)(A), or m!(X;), etc. Hence, the DSm general

rule for interval-valued masses is:

inf () (4)) £ 6(A) [311“{(14) + 85 (A) + 55 (A) (6.5)
with i
ST(A) £ > [ inf(m (X))
X1,Xg,....,X,enp® =1
(XlﬁXQO...ﬁXk):A
k
Syi(A) £ > [ [int(mi (x3))
X1,X9,..-, X, €0 =1
[U=A]V[UEDN(A=L})]
k
S3(A) = > [T inf(m] (x.))
X1,Xg,...,X,eD® =1
(X1UXqU...UX})=A
(X1NXgN...NX})€ED
and
Sup (o) (A)) 2 6(4)[STP(4) + S5 (4) + 55 (4)] (6.6)
with

k
51 (A) £ > [[swp(m! (X))
X1,Xg,..,X,ep® =1

(X1NX2N..NX,)=A

k
S3"P(4) & > sl
X1,X9,.0s X, €D =1
[U=AIV[UEDA(A=I,)]

s e 3 [Lsueoml(x0)

(X1UXgU...UXp)=A
(X1NXaN...NX)ED

Actually formula (G3H) results from applying the hybrid DSm rule for scalars to the matrix inf(M),
while formula (B8] results from applying the hybrid DSm rule for scalars to the matrix sup(M). The
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bounds of the DSm classic rule for the free DSm model are given for all A € D® by Sinf(A) and S7"P(A).
Combining (GH) and (EH), one gets directly:

mfvl(@) (A) = [inf mfvt(@)(A), sup mfvl(@) (A)] (6.7)

Of course, the closeness of this interval to the left and/or to the right depends on the closeness of the
combined intervals I;;. If all of them are closed to the left, then mf\/[(@) (A) is also closed to the left. But,
if at least one is open to the left, then mfw(@)(A) is open to the left. Similarly for the closeness to the

right. Because one has Vi =1,...,kandVj=1,...,d:

lim (inf(M)) = lim (sup(M)) =M (6.8)

€ij"0 €j5—

It results the following theorem.
Theorem 1: VA€ D®, Vi=1,...,kand Vj = 1,...,d, one has:

limipn,, (A) £ lime,, o (inf(ml o, (4)))
lim mf\/l(@)(A) = [lim(A), lim (A)] with ! M©)

€;;—0 inf;; sup;;

(6.9)
limgup,, (4) 2 T, —o(sup(mhy e)(4)))
In other words, if all centered sub-unitary intervals converge to their corresponding mid points (the

imprecision becomes zero), then the DSm rule for intervals converges towards the DSm rule for scalars.

Normally we must apply the DSm classical or hybrid rules directly to the interval-valued masses, but
this is equivalent to applying the DSm rules to the inferior and superior bounds of each mass. If, after
fusion, the sum of inferior masses is < 1 (which occurs all the time because combining incomplete masses
one gets incomplete results) and the sum of superior masses is > 1 (which occurs all the time because
combining paraconsistent masses one gets paraconsistent results), then there exist points in each resulted

interval-valued mass such that their sum is 1 (according to a continuity theorem - see section B02).

6.4.2 Example with the DSm classic rule

Let’s take back the previous example (see section BZ2), but let’s now suppose the sources of information
give at time ¢t imprecise generalized basic belief assignments, i.e. interval-valued masses centered in the
scalars given in section B2 of various radii according to table B4l

Based on the free DSm model and the classical DSm rule applied to imprecise basic belief assignments

following the method proposed in previous section, one has:

m!(61) = [0.05,0.15] @ [0.4, 0.6] = [0.020, 0.090]
m!(62) = [0.1,0.3) @ [0.1,0.5] = [0.010, 0.150]

m!(05) = [0.15,0.45] @ [0,0.2] = [0,0.090]
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AeD® | mi(A) m3(A)
6, |[0.05,0.15] | [0.4,0.6]
02 0.1,0.3] | [0.1,0.5]
05 |[0.15,0.45] | [0,0.2]

61N6y | [0.2,0.6] | [0.05,0.15]

Table 6.4: Inputs of the fusion with imprecise bba

m? (6, N 6s) = [[0.05,0.15] @ [0,0.2]] B [[0.4,0.6] @ [0.15, 0.45]] = [0,0.030] & [0.060, 0.270] = [0.060, 0.300]

m! (65 N 63) = [[0.1,0.3] @ [0,0.2]] B [[0.1,0.5] @ [0.15, 0.45]] = [0, 0.06] B [0.015,0.225] = [0.015, 0.285)]

m! (6 N0y N B3) = [[0.15,0.45] @ [0.05, 0.15]] BB [0, 0.2] @ [0.2, 0.6]]
= [0.0075,0.0675] B8 [0,0.12]

= [0.0075, 0.1875]

m! (6, N 6y) = [[0.2,0.6] @ [0.05, 0.15]] 8B [[0.05, 0.15] & [0.05, 0.15]] B8 [[0.4, 0.6] = [0.2, 0.6]|FB
[[0.1,0.3] @ [0.05,0.15]] B8 [[0.1,0.5] & [0.2, 0.6] |8
[[0.05,0.15) @ [0.1, 0.5]] 8 [[0.4,0.6] = [0.1,0.3]]
= [0.010,0.90] B [0.0025,0.0225] B [0.08, 0.36] 8 [0.005, 0.045] B

0.02, 0.30] &8 [0.005, 0.075] 8 [0.04, 0.18] = [0.1625, 1.0725] = [0.1625, 1]

The last equality comes from the absorption of [0.1625, 1.0725] into [0.1625, 1] according to operations on
sets defined in this fusion context. Thus, the final result of combination m!(.) = [m{ @ mi](.) of these

two imprecise sources of evidence is given in table B3

AeD® | ml(A)=[mleml](A)
6, [0.020,0.090]
0 [0.010,0.150]
0 [0,0.090]

611 6, [0.1625,1.0725 — 1]

6,06, [0.060, 0.300]

651 63 [0.015,0.285]

6101 651 0 [0.0075,0.1875]

Table 6.5: Fusion with DSm classic rule for free DSm model

There exist some points, for example 0.03, 0.10. 0.07, 0.4, 0.1, 0.2, 0.1 from the intervals [0.020, 0.090], .. .,

[0.0075,0.1875] respectively such that their sum is 1 and therefore the admissibility of the fusion result
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holds. Note that this fusion process is equivalent to using the DSm classic rule for scalars for inferior

limit and incomplete information (see table B0l), and the same rule for superior limit and paraconsistent

information (see table ).

Table 6.6: Fusion with DSm classic rule on lower bounds

AeD® | miPf(A) | mi(A) | minE(A)
01 0.05 0.4 0.020
02 0.1 0.1 0.010
03 0.15 0 0
61 N6 0.2 0.05 0.1625
61 N3 0 0 0.060
02 N 63 0 0 0.015
01 N62N 03 0 0 0.0075

AeD® | mi"P(A) | my'P(A) | mSP(A)
01 0.15 0.6 0.090
0 0.3 0.5 0.150
03 0.45 0.2 0.090
01 N6 0.6 0.15 1.0725 — 1
0, N3 0 0 0.300
02 N 63 0 0 0.285
01 N62N 03 0 0 0.1875

Table 6.7: Fusion with DSm classic rule on upper bounds

6.4.3 Example with the hybrid DSm rule

Then, assume at time ¢+ 1, that one finds out for some reason that the free DSm model has to be changed
by introducing the constraint 6; N #3 = @) which involves also 6; N Oy N 63 = (). One directly applies the

hybrid DSm rule for set to get the new belief masses:

m! (61) = [0.020,0.090] B [[0.05,0.15] & [0.05, 0.15]] B [[0.4, 0.6] & [0.2, 0.6]]

= [0.020,0.090] 88 [0.0025, 0.0225] B [0.08, 0.36] = [0.1025, 0.4725]
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m! (f3) = [0.010,0.150] 8 [[0.1,0.3] & [0.05,0.15]] BB [[0.1, 0.5] @ [0.2, 0.6]]

= [0.010,0.150] B8 [0.005, 0.045] B [0.02, 0.30] = [0.035, 0.495)

m! (63) = [0,0.090] 8 [[0.15,0.45] @ [0.05, 0.15]] 8 [[0, 0.2] @ [0.2, 0.6]]

= [0,0.090] B [0.0075,0.0675] &8 [0, 0.12] = [0.0075, 0.2775]

m! (61 U 62) = [[02,0.6] @ [0.05, 0.15]] B [[0.05, 0.15] & [0.1, 0.5]] BB [[0.4, 0.6] = 0.1, 0.3]]
= [0.010,0.090] & [0.005,0.075] B [0.04, 0.18] = [0.055, 0.345]
ml (61 N 6y) = mI(0; Ny N O3) = 0 by definition of empty masses (due to the choice of the hybrid

model M). m!(6; N 63) = [0.060,0.300] and m’(f2 N 63) = [0.015,0.285] remain the same. Finally, the

result of the fusion of imprecise belief assignments for the chosen hybrid model M, is summarized in

table
A€ D® ml(A) = [mP(A), ms"P(A)]
6, [0.1025,0.4725]
0, [0.035, 0.495]
0 [0.0075, 0.2775]
N6, 20 0,0] =0
6, N 0 (0,060, 0.300]
0, N 0 [0.015,0.285)]
6, N0:n65 20 0,0] = 0
6, U6, [0.055, 0.345)]

Table 6.8: Fusion with hybrid DSm rule for model M

The admissibility of the fusion result still holds since there exist some points, for example 0.1, 0.3, 0.1,
0, 0.2, 0.1, 0,0.2 from the intervals [0.1025,0.4725], ..., [0.055, 0.345] respectively such that their sum is
1. Actually in each of these examples there are infinitely many such groups of points in each respective

interval whose sum is 1. This can be generalized for any examples.

6.5 Generalization of DSm rules for sets

In this section, we extend the previous results on the fusion of admissible imprecise information defined

only on single sub-unitary intervals to the general case where the imprecision is defined on sets. In
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other words, in the previous section we dealt with admissible imprecise masses having the form m!(A) =
[a,b] C [0,1], and now we deals with admissible imprecise masses having the form m!(A) = [a1,b]U... U
[, b U (c1,d1)U. ..U (cn,dn) U (e1, fi]U...U(ep, fp]Ulg1,h1) U...Ulgg, hg) U{A1,..., Ar} where all

the bounds or elements involved into m!(A) belong to [0, 1].

6.5.1 General DSm rules for imprecise beliefs

From our previous results, one can generalize the DSm classic rule from scalars to sets in the following

way: VA # 0 € D®,

m!(A) = > 1T} mfx) (6.10)

(X1NXaN...NX})=A

where Z and H represent the summation, and respectively product, of sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in the following way:

Mhye)(A4) £ 6(4) @ [ S1(4) B S5 (4) B 55 (4) (6.11)

@(A) is the characteristic non emptiness function of the set A and S{(A), SI(A) and SI(A) are defined
by

S{(A) & > [T i) (6.12)

X1,X2,..,X,€DOi=1,....k
(X1NXqNn...NX})=A

S3(4) = > [T mix) (6.13)

X1,X2,..,X€0 1=1,...k
U= ALV U DA (A= 1,)]

CHEVE DY [I|mix (6.14)

X1,X2,..,X,€DOi=1,....k
(X1UXgU...UX)=A
(X1NXgN...NX})ED

In the case when all sets are reduced to points (numbers), the set operations become normal operations

with numbers; the sets operations are generalizations of numerical operations.

6.5.2 Some lemmas and a theorem

Lemma 2: Let the scalars a,b > 0 and the intervals I, > C [0,1], with a € I; and b € I5. Then

obviously (a +b) € 1 BI; and (a-b) € I [ I».

Because in DSm rules of combining imprecise information, one uses only additions and subtractions of

sets, according to this lemma if one takes at random a point of each mass set and one combines them
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using the DSm rules for scalars, the resulting point will belong to the resulting set from the fusion of

mass sets using the DSm rules for sets.

Lemma 3: Let © = {0;,0,...,0,} and K > 2 independent sources of information, and d = dim(D®).

By combination of incomplete information in DSmT, one gets incomplete information.

Proof: Suppose the masses of the sources of information on D® are for all 1 < j < K, represented
by the mass-vector m; = [m;,, mj,, ..., m;,] with 0 < Zle mj, < 1. According to the DSm network
architecture, no matter what DSm rule of combination is applied (classic or hybrid), the sum of all

resulted masses has the form:

K

[T +mg+. o +my) < (Ax1x...x1)=1 (6.15)
————

Jj=1 K times

Lemma 4: By combination of paraconsistent information, one gets paraconsistent information.

Proof: Using the same notations and similar reasoning, one has forall1 < j < K, m; = [m;,, m;,,...,m;,],

with Zle mj, > 1. Then

—

(mj1+mj2+...+mjd)>(1><1><...><1):1
—_—————

K times

Jj=1

Lemma 5: Combining incomplete (sum of masses < 1) with complete (sum of masses = 1) information,

one gets incomplete information.

Lemma 6: Combining complete information, one gets complete information.

Remark: Combining incomplete with paraconsistent (sum of masses > 1) information can give any

result. For example:

o If the sum of masses of the first source is 0.99 (incomplete) and the sum of masses of the second source

is 1.01 (paraconsistent), then the sum of resulted masses is 0.99 x 1.01 = 0.9999 (i.e. incomplete)

e But if the first is 0.9 (incomplete) and the second is 1.2 (paraconsistent), then the resulted sum of

masses is 0.9 x 1.2 = 1.08 (i.e. paraconsistent).

We can also have: incomplete information fusionned with paraconsistent information and get complete

information. For example: 0.8 x 1.25 = 1.
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Admissibility condition:

An imprecise mass on D® is considered admissible if there exist at least a point belonging to [0, 1] in
each mass set such that the sum of these points is equal to 1 (i.e. complete information for at least a

group of selected points).

Remark: A complete scalar information is admissible. Of course, for the incomplete scalar information
and paraconsistent scalar information there can not be an admissibility condition, because by definitions

the masses of these two types of informations do not add up to 1 (i.e. to the complete information).

Theorem of Admissibility:

Let a frame © = {6;,0,,...,0,}, with n > 2, its hyper-power set D® with dim(D®) = d, and K > 2
sources of information providing imprecise admissible masses on D®. Then, the resulted mass, after
fusion of the imprecise masses of these sources of information with the DSm rules of combination, is also

admissible.

Proof: Let s;, 1 < j < K, be an imprecise source of information, and its imprecise admissible mass

m; = [mfl,mé, e ,mjl-d]. We underline that all mjl-r, for 1 < r < d, are sets (not scalars); if there is a
scalar a, we treat it as a set [a,a]. Because m! is admissible, there exist the points (scalars in [0,1])
I

J17

I

Gare MG, € m§d such that Zle m$ = 1. This property occurs for all sources of

s s
thm thm

information, thus there exist such points m} for any 1 < j < K and any 1 <r < d. Now, if we fusion,
as a particular case, the masses of only these points, using DSm classic or hybrid rules, and according to

lemmas, based on DSm network architecture, one gets complete information (i.e. sum of masses equals

to 1). See also Lemma 2.

6.5.3 An example with multiple-interval masses

We present here a more general example with multiple-interval masses. For simplicity, this example is a
particular case when the theorem of admissibility is verified by a few points, which happen to be just on
the bounders. More general and complex examples (not reported here due to space limitations), can be
given and verified as well. It is however an extreme example, because we tried to comprise all kinds of
possibilities which may occur in the imprecise or very imprecise fusion. So, let’s consider a fusion problem
over © = {61,062}, two independent sources of information with the following imprecise admissible belief

assignments
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Ae D® mi(A) mj(A)
0, 0.1,0.2] U {0.3} 0.4,0.5]
6, | (0.4,0.6)U[0.7,0.8] | [0,0.4]U {0.5,0.6}

Table 6.9: Inputs of the fusion with imprecise bba

Using the DSm classic rule for sets, one gets

m’(01) = ([0.1,0.2] U {0.3}) @ [0.4,0.5]

=([0.1,0.2] @ [0.4,0.5]) U ({0.3} @ [0.4,0.5))

= [0.04,0.10] U [0.12,0.15]

m!(62) = ((0.4,0.6) U[0.7,0.8]) @ (0,0.4] U {0.5,0.6})

139

= ((0.4,0.6) @ [0,0.4]) U ((0.4,0.6) @ {0.5,0.6}) U ([0.7,0.8] @ [0, 0.4]) U ([0.7,0.8] @ {0.5,0.6})

= (0,0.24) U (0.20,0.30) U (0.24, 0.36) U [0, 0.32] U [0.35, 0.40] U [0.42, 0.48]

=[0,0.40] U [0.42,0.48)

m? (6, N 6) = [([0.1,0.2] U{0.3}) @ ([0,0.4] U {0.5,0.6})] B [[0.4,0.5] @ ((0.4,0.6) U [0.7,0.8])]

= [([0.1,0.2] 1[0, 0.4]) U ([0.1,0.2] & {0.5,0.6}) U ({0.3} &1 0,0.4]) U ({0.3} @ {0.5,0.61)]

B [([0.4,0.5] @ (0.4,0.6)) U ([0.4,0.5] @ [0.7,0.8])]

= [[0,0.08] U [0.05,0.10] U [0.06, 0.12] U [0,0.12] U {0.15,0.18} B [(0.16, 0.30) U [0.28, 0.40]]

= [[0,0.12] U {0.15,0.18}] BB (0.16, 0.40)]

= (0.16,0.52] U (0.31,0.55] U (0.34, 0.58]

= (0.16,0.58]

Hence finally the fusion admissible result is given by:

A e D® | mi(A) = [ml ®mi](A)
6, | [0.04,0.10] U [0.12,0.15]
0 [0,0.40] U [0.42, 0.48]

610 65 (0.16,0.58]

6, U6, 0

Table 6.10: Fusion result with the DSm classic rule
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If one finds out that 6; N6 4 () (this is our hybrid model M one wants to deal with), then one uses the
hybrid DSm rule for sets [@II): mh (61 N 62) = 0 and m} (61 U 62) = (0.16,0.58], the others imprecise

masses are not changed. In other words, one gets now with hybrid DSm rule applied to imprecise beliefs:

A€ | mi () = mf @ mi)(4)
0, [0.04,0.10] U [0.12,0.15]
05 [0,0.40] U [0.42, 0.48]
000,20 0
61 U 6, (0.16,0.58]

Table 6.11: Fusion result with the hybrid DSm rule for M

Let’s check now the admissibility conditions and theorem. For the source 1, there exist the pre-
cise masses (m1(f;) = 0.3) € (]0.1,0.2] U {0.3}) and (mi(f2) = 0.7) € ((0.4,0.6) U [0.7,0.8]) such
that 0.3 + 0.7 = 1. For the source 2, there exist the precise masses (mi(61) = 0.4) € ([0.4,0.5]) and
(m2(62) = 0.6) € ([0,0.4] U {0.5,0.6}) such that 0.4 + 0.6 = 1. Therefore both sources associated with

mi(.) and mi(.) are admissible imprecise sources of information.

It can be easily checked that the DSm classic fusion of m(.) and ms(.) yields the paradoxical basic
belief assignment m(0;) = [m1 @ ma](01) = 0.12, m(f2) = [m1 & ma](f2) = 0.42 and m(6; N b) =
[m1 @ m2](61 N 62) = 0.46. One sees that the admissibility theorem is satisfied since (m(6;) = 0.12) €
(m!(61) = [0.04,0.10]U[0.12,0.15]), (m(fa) = 0.42) € (m!(62) = [0,0.40] U [0.42,0.48]) and (m(61 M) =
0.46) € (m!(61 N 62) = (0.16,0.58]) such that 0.12 + 0.42 + 0.46 = 1. Similarly if one finds out that
61 N 62 = O, then one uses the hybrid DSm rule and one gets: m(6; N#2) = 0 and m (6, U 63) = 0.46; the

others remain unchanged. The admissibility theorem still holds.

6.6 Conclusion

In this chapter, we proposed from the DSmT framework, a new general approach to combine, imprecise,
uncertain and possibly paradoxical sources of information to cover a wider class of fusion problems. This
work was motivated by the fact that in most of practical and real fusion problems, the information is
rarely known with infinite precision and the admissible belief assignment masses, for each element of the
hyper-power set of the problem, have to be taken/chosen more reasonably as sub-unitary (or as a set of
sub-unitary) intervals rather than a pure and simple scalar values. This is a generalization of previous
available works proposed in literature (mainly IBS restricted to TBM framework). One showed that it
is possible to fusion directly interval-valued masses using the DSm rules (classic or hybrid ones) and

the operations on sets defined in this work. Several illustrative and didactic examples have been given
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throughout this chapter to show the application of this new approach. The method developed here can

also combine incomplete and paraconsistent imprecise, uncertain and paradoxical sources of information

as well. This approach (although focused here only on the derivation of imprecise basic belief assignments)

can be extended without difficulty to the derivation of imprecise belief and plausibility functions as well

as to imprecise pignistic probabilities according to the generalized pignistic transformation presented in

chapter [ This work allows the DSmT to cover a wider class of fusion problems.
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Abstract: This chapter introduces a generalized pignistic transformation (GPT)
developed in the DSmT framework as a tool for decision-making at the pignistic
level. The GPT allows to construct quite easily a subjective probability measure
from any generalized basic belief assignment provided by any corpus of evidence. We
focus our presentation on the 3D case and we provide the full result obtained by the

proposed GPT and its validation drawn from the probability theory.
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7.1 A short introduction to the DSm cardinality

ne important notion involved in the definition of the Generalized Pignistic Transformation (GPT)
Ois the DSm cardinality introduced in chapter Bl (section BZ2) and in [I]. The DSm cardinality of
any element A of hyper-power set D€, denoted Caq(A), corresponds to the number of parts of A in the cor-
responding fuzzy/vague Venn diagram of the problem (model M) taking into account the set of integrity
constraints (if any), i.e. all the possible intersections due to the nature of the elements 6;. This intrinsic
cardinality depends on the model M (free, hybrid or Shafer’s model). M is the model that contains A,
which depends both on the dimension n = |©| and on the number of non-empty intersections present in
its associated Venn diagram. The DSm cardinality depends on the cardinal of © = {6;,0,...,0,} and
on the model of D® (i.e., the number of intersections and between what elements of © - in a word the
structure) at the same time; it is not necessarily that every singleton, say 6;, has the same DSm cardinal,
because each singleton has a different structure; if its structure is the simplest (no intersection of this
elements with other elements) then Caq(0;) = 1, if the structure is more complicated (many intersections)
then Caq(0;) > 1; let’s consider a singleton 6;: if it has 1 intersection only then Caq(6;) = 2, for 2 inter-
sections only Caq(6;) is 3 or 4 depending on the model M, for m intersections it is between m + 1 and 2™
depending on the model; the maximum DSm cardinality is 2*~! and occurs for §; Uy U. .. U6, in the free
model M7; similarly for any set from D®: the more complicated structure it has, the bigger is the DSm
cardinal; thus the DSm cardinality measures the complexity of en element from D®, which is a nice char-
acterization in our opinion; we may say that for the singleton 6; not even || counts, but only its structure
(= how many other singletons intersect 6;). Simple illustrative examples have already been presented in
chapter Bl One has 1 < Capq(A) < 2" — 1. Caq(A) must not be confused with the classical cardinality

|A| of a given set A (i.e. the number of its distinct elements) - that’s why a new notation is necessary here.

It has been shown in [I], that Caq(A), is exactly equal to the sum of the elements of the row of D,
corresponding to proposition A in the u,, basis (see chapter Bl). Actually Caq(A) is very easy to compute

by programming from the algorithm of generation of D® given in chapter Bl and in [2].

If one imposes a constraint that a set B from D® is empty (i.e. we choose a hybrid DSm model),
then one suppresses the columns corresponding to the parts which compose B in the matrix D,, and the
row of B and the rows of all elements of D® which are subsets of B, getting a new matrix D’,, which
represents a new hybrid DSm model M’. In the u, basis, one similarly suppresses the parts that form

B, and now this basis has the dimension 2" — 1 — Caq(B).
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7.2 The Classical Pignistic Transformation (CPT)

We follow here Smets’ point of view [§] about the assumption that beliefs manifest themselves at two
mental levels: the credal level where beliefs are entertained and the pignistic level where belief functions
are used to make decisions. Pignistic terminology has been coined by Philippe Smets and comes from
pignus, a bet in Latin. The probability functions, usually used to quantify the beliefs at both levels,
are actually used here only to quantify the uncertainty when a decision is really necessary, otherwise we
argue as Philippe Smets does, that beliefs are represented by belief functions. To take a rational decision,
we propose to transform generalized beliefs into pignistic probability functions through the Generalized
Pignistic Transformation (the GPT) which will be presented in the following. We first recall the Classical
Pignistic Transformation (the CPT) based on Dempster-Shafer Theory (DST) and then we generalize it

within the Dezert-Smarandache Theory (DSmT) framework.

When a decision must be taken, we use the expected utility theory which requires to construct a proba-
bility function P{.} from basic belief function m(.) [8]. This is achieved by the so-called classical Pignistic
Transformation. In the Transferable Belief Model (the TBM) context [7] with open-world assumption,
Philippe Smets derives the pignistic probabilities from any non normalized basic belief assignment m(.)

(i.e. for which m(@) > 0) by the following formula [8]:

XNA mX
P{A}:ch‘é' |;| |1_(m()@) (7.1)

where |A| denotes the number of worlds in the set A (with convention [@|/|@] = 1, to define P{0}).
P{A} corresponds to BetP(A) in Smets’ notation [§]. Decisions are achieved by computing the expected
utilities of the acts using the subjective/pignistic P{.} as the probability function needed to compute
expectations. Usually, one uses the maximum of the pignistic probability as decision criterion. The max.
of P{.} is often considered as a prudent betting decision criterion between the two other alternatives (max
of plausibility or max. of credibility which appears to be respectively too optimistic or too pessimistic).

It is easy to show that P{.} is indeed a probability function (see [1).

It is important to note that if the belief mass m(.) results from the combination of two independent
sources of evidence (i.e. m(.) = [m1 @ m2](.)) then, at the pignistic level, the classical pignistic probabil-
ity measure P(.) remains the same when using Dempster’s rule or when using Smets’ rule in his TBM
open-world approach working with m(@)) > 0. Thus the problem arising with the combination of highly
conflicting sources when using Dempster’s rule (see chapter H), and apparently circumvented with the
TBM at the credal level, still fundamentally remains at the pignistic level. The problem is only trans-

ferred from credal level to pignistic level when using TBM. TBM does not help to improve the reliability
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of the decision-making with respect to Dempster’s rule of combination because the pignistic probabilities
are strictly and mathematically equivalent. In other words, if the result of the combination is wrong or
at least very questionable or counter-intuitive when the degree of the conflict m()) becomes high, then

the decision based on pignistic probabilities will become inevitably wrong or very questionable too.

Taking into account the previous remark, we rather prefer to adopt from now on the classical
Shafer’s definition for basic belief assignment m(.) : 2® — [0,1] which imposes to take m () = 0 and
> xeso m(X) = 1. We adopt therefore the following definition for the Classical Pignistic Transformation
(CPT):

Play= 3 B fmx) r2)
Xe20

7.3 A Generalized Pignistic Transformation (GPT)

7.3.1 Definition

To take a rational decision within the DSmT framework, it is necessary to generalize the Classical Pignistic
Transformation in order to construct a pignistic probability function from any generalized basic belief
assignment m(.) drawn from the DSm rules of combination (the classic or the hybrid ones - see chapter
M. We propose here the simplest and direct extension of the CPT to define a Generalized Pignistic

Transformation as follows:

Cm(XNA)

VA € D°, P{A} = ) e

XeD®

m(X) (7.3)

where Caq(X) denotes the DSm cardinal of proposition X for the DSm model M of the problem under

consideration.

The decision about the solution of the problem is usually taken by the maximum of pignistic proba-
bility function P{.}. Let’s remark the close ressemblance of the two pignistic transformations ([C2) and
[3). Tt can be shown that [3) reduces to () when the hyper-power set D€ reduces to classical power
set 29 if we adopt Shafer’s model. But ([3) is a generalization of (Z2) since it can be used for computing

pignistic probabilities for any models (including Shafer’s model).

7.3.2 P{.} is a probability measure

It is important to prove that P{.} built from GPT is indeed a (subjective/pignistic) probability measure

satisfying the following axioms of probability theory [4, B]:
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e Axiom 1 (nonnegativity): The (generalized pignistic) probability of any event A is bounded by 0
and 1

0<P{A} <1
e Axiom 2 (unity): Any sure event (the sample space) has unity (generalized pignistic) probability

P{S} =1

e Axiom 3 (additivity over mutually exclusive events): If A, B are disjoint (i.e. AN B = @) then
P(AUB) =P(A)+ P(B)

The axiom 1 is satisfied because, by the definition of the generalized basic belief assignment m(.), one
has Va; € D, 0 < m(a;) < 1 with 37 cpe m(a;) = 1 and since all coefficients involved within GPT

are bounded by 0 and 1, it follows directly that pignistic probabilities are also bounded by 0 and 1.

The axiom 2 is satisfied because all the coefficients involved in the sure event S £ 6; U6y U ... U6,

are equal to one because Ca (X NS)/Ca(X) = Cm(X)/Cm(X) = 1, s0 that P{S} =", cpe m(a;) = 1.

The axiom 3 is satisfied. Indeed, from the definition of GPT, one has

Co(X N (AU B))
Cm(X)

P{AUB}= >

XeD®

m(X) (7.4)
But if we consider A and B exclusive (i.e. AN B = (), then it follows:
CMXN(AUB))=Cm(XNA)UXNB))=Cm(XNA) +Cm(XNB)

By substituting Cap (X N (AU B)) by Cm(X N A) + Cm(X N B) into [, it comes:

Cm(XNA) +Cm(X NB)

P{AUB} = X;@ el (X)
. CM(XQA)m CM(XQB)m
S L om0 2 Toam )
= P{A} + P{B}

which completes the proof. From the coefficients %)((;;4) involved in ([Z3), it can also be easily checked

that A C B = P{A} < P{B}. One can also easily prove the Poincaré’ equality: P{AU B} = P{A} +
P{B} — P{AnN B} because CM(X N(AUB) =Cm((XNA)UXNB))=Cu(XNA) +Cm(XNB)—
Cm(X N (AN B)) (one has substracted Caq(X N (AN B)), i.e. the number of parts of X N (AN B) in the
Venn diagram, due to the fact that these parts were added twice: once in Caq(X N A) and second time

in Cr(X N B).
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7.4 Some examples for the GPT

7.4.1 Example for the 2D case

e With the free DSm model:

Let’s consider © = {1,602} and the generalized basic belief function m(.) over the hyper-power set
D® = {0,601, N6,01,05,0, Uby}. Tt is easy to construct the pignistic probability P{.}. According
to the definition of the GPT given in ([Z3]), one gets:
P{0}=0
1 2
P{Hl} = m(@l) + im(eg) + m(91 N 92) + gm(Gl U 92)
1 2
P{eg} = m(@z) + §m(91) + m(é‘l N 92) + gm(91 U 6‘2)
1 1 1
P{91 n 92} = 5m(92) + 57%(91) + m(é‘l N 92) + gm(91 U 6‘2)

P{91 U 92} = P{@} = m(@l) + m(@z) + m(6‘1 n 92) + m(6‘1 U 92) =1
It is easy to prove that 0 < P{.} <1 and P{0; U6y} = P{01} + P{62} — P{61 N b2}

e With Shafer’s model:

MO

If one adopts Shafer’s model (we assume 61 N 6o (), then after applying the hybrid DSm rule of

combination, one gets a basic belief function with non null masses only on 61, 65 and 6; U #;. By
applying the GPT, one gets:
P{0}=0

P{6: N6} =0
P{6r} = m(®h) + 5m(6y U6)
P02} = m(8:) + 5m(61 U6)
P{6, U0} =m(01) +m(02) + m(61 UBs) =1

which naturally corresponds in this case to the pignistic probability built with the classical pignistic

transformation ([C2).

7.4.2 Example for the 3D case

e With the free DSm model:
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X[ < | [ [S0 < ogg
o ! < 1 o | (3/4) < 1

Qo 1 < 1 Q11 (2/4) < (2/4)
as | (1/2) < (1/2) app | (3/5) < (3/5)
o 1 < 1 a3 | (3/5) < (4/5)
as | (2/3) < (2/3) as | (3/5) < (3/5)
Qg 1 < 1 Qa1s (3/6) < (4/6)
ar | (2/3) < (2/3) aie | (3/6) < (3/6)
as | (3/4) < (3/4) arr | (3/6) < (4/6)
ag | (2/4) < (2/9) ais | (3/7) = (4/7)

. C XNa C XNa
Table 7.1: Coefficients "gj(\A(X)G) and Né(,\,l(x)l())

Let’s consider © = {6y, 0s,03}, its hyper-power set D® = {ay,..., a1} (with a5, i = 0,...,18
corresponding to propositions shown in table Bl of chapter Bl and the generalized basic belief as-
signment m(.) over the hyper-power set D®. The six tables presented in the appendix show the full
derivations of all generalized pignistic probabilities P{«;} for i = 1,...,18 (P{0} = 0 by definition)
according to the GPT formula (Z3)).

Note that P{a15} = 1 because (61 U2 U 63) corresponds to the sure event in our subjective prob-
ability space and ), - pe m(a;) = 1 by the definition of any generalized basic belief assignment

m(.) defined on D®.

b

It can be verified (as expected) on this example, although being a quite tedious task, that Poincaré

s equality holds:

P{A U UAY = > (-)p{ 4} (7.5)
Ic{1,...,n} el
T40

It is also easy to verify that YA C B = P{A} < P{B} holds. By example, for (ag £ (6, U63)Nb) C
a1p 2 63) and from the expressions of P{ag} and P{a10} given in appendix, we directly conclude

that P{as} < P{a10} because

CM(XﬂOéﬁ) < CM(Xﬂalo)
Cm(X) = Cm(X)

VX € D°, (7.6)

as shown in the table above.
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e Example with a given hybrid DSm model:

Consider now the hybrid DSm model M # M7 in which we force all possible conjunctions to be
empty, but #; N @ according to the second Venn diagram presented in Chapter Bl and shown in
Figure In this case the hyper-power set D® reduces to 9 elements {ay, ..., ag} shown in table
of Chapter Bl The following tables present the full derivations of the pignistic probabilities
P{a;} fori=1,...,8 from the GPT formula ([Z3)) applied to this hybrid DSm model.

Plai} = Plas} = Plas} = Plas} =
(1/Dm(ar) | (0/1)m(eq) | (1/)m(ar) | (1/1)m(en)
+(0/1)m(az) | +(1/1)m(az2) | +(0/2)m(az) | +(0/1)m(az2)
+(1/2)m(as) | +(0/2)m(as) | +(2/2)m(as) | +(1/2)m(as)
+(1/2)m(ea) | +(0/2)m(aa) | +(1/2)m(ea) | +(2/2)m(as)
+(1/3)m(as) | +(0/3)m(as) | +(2/3)m(as) | +(2/3)m(as)
+(1/3)m(ag) | +(1/3)m(as) | +(2/3)m(ae) | +(1/3)m ()
+(1/3)m(az) | +(1/3)m(a7) | +(1/3)m(az) | +(2/3)m(a7)
+(1/4)m(as) | +(1/4)m(as) | +(2/4)m(as) | +(2/4)m(as)

Plas} = Plag} = Plaz} = Plag} =
(1/Dm(er) | (1/Dm(ar) | (1/)m(eq) | (1/1)m(ar)
+(0/1)m(az) | +(1/1)m(az2) | +(2/2)m(az) | +(2/2)m(az2)
+(2/2)m(az) | +(2/2)m(as) | +(1/2)m(az) | +(2/2)m(as)
+(2/2)m(aa) | +(1/2)m(ca) | +(2/2)m(aa) | +(2/2)m (o)
+(3/3)m(as) | +(2/3)m(as) | +(2/3)m(as) | +(3/3)m(as)
+(2/3)m(ap) | +(3/3)m(as) | +(2/3)m(ap) | +(3/3)m(ae)
+(2/3)m(az) | +(2/3)m(a7) | +(3/3)m(az) | +(3/3)m(ar)
+@B/4)m(as) | +(3/4)m(as) | +(3/4)m(as) | +(4/4)m(as)

Table 7.3: Derivation of P{as £ 6; U6}, P{ag = 6 U b3}, P{ay 2 62 U603} and P{ag = 6, Uy U b3}

e Example with Shafer’s model:

Consider now Shafer’s model M? # M7 in which we force all possible conjunctions to be empty

according to the third Venn diagram presented in Chapter Bl In this case the hyper-power set
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D® reduces to the classical power set 2© with 8 elements {ayp, ..., a7} explicated in table of
Chapter Bl Applying, the GPT formula [Z3), one gets the following pignistic probabilities P{c;}
for ¢ = 1,...,7 which naturally coincide, in this particular case, with the values obtained directly

by the classical pignistic transformation [Z2):

P{on} = Plag} = Plas} =
(1/)m(az) | (0/1)m(ea) | (0/1)m(a1)
+(0/)m(az) | +(1/1)m(az) | +(0/1)m(az)
+(0/1)m(as) | +(0/1)m(as) | +(1/1)m(as)
+(1/2)m(aa) | +(1/2)m(e) | +(0/2)m(as)
+(1/2)m(as) | +(0/2)m(as) | +(1/2)m(as)
+(0/2)m(as) | +(1/2)m(ag) | +(1/2)m(os)
+(1/3)m(az) | +(1/3)m(az) | +(1/3)m(az)

Plag} = P{as} = P{ag} = P{ar} =
(1/Dm(ar) | (1/D)m(eq) | (0/)m(ar) | (1/1)m(en)
+(1/)m(az) | +(0/1)m(az) | +(1/1)m(az) | +(1/1)m(az2)
+(0/)m(az) | +(1/1)m(as) | +(1/)m(az) | +(1/1)m(as)
+(2/2)m(ea) | +(1/2)m(aa) | +(1/2)m(ea) | +(2/2)m(as)
+(1/2)m(as) | +(2/2)m(as) | +(1/2)m(as) | +(2/2)m(as)
+(1/2)m(ag) | +(1/2)m(cs) | +(2/2)m(ae) | +(2/2)m(ce)
+(2/3)m(az) | +(2/3)m(a7) | +(2/3)m(az) | +(3/3)m(ar)

Table 7.5: Derivation of P{O[4 £ 91 UQQ}, P{O[5 £ 91U93}, P{O&G £ 92U93} and P{O&7 £ 91U92U93} =1

7.5 Conclusion

A generalization of the classical pignistic transformation developed originally within the DST framework
has been proposed in this chapter. This generalization is based on the new theory of plausible and
paradoxical reasoning (DSmT) and provides a new mathematical issue to help the decision-making under
uncertainty and paradoxical (i.e. highly conflicting) sources of information. The generalized pignistic
transformation (GPT) proposed here allows to build a subjective/pignistic probability measure over the
hyper-power set of the frame of the problem under consideration for all kinds of models (free, hybrid
or Shafer’s model). The GPT coincides naturally with the classical pignistic transformation whenever

Shafer’s model is adopted. It corresponds with the assumptions of classical pignistic probability general-
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Appendix: Derivation of the

P{Oég} =
m(a1)
+(1/2)m(az)
+m(as)
1/2 044)
+(2/3)m(as)
1/3)m(o)
2/3)m(arr)
2/4 m(ag)

tt++t+ Attt
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GPT for the 3D free DSm model

P{()Zl(]} =
m(ay)
+m(as)
+(1/2)m(es)
+m (o)
+(2/3)m(as)
+m(ag)
+(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(ag)
+m(a10)

+ o+ttt

Plan} =
m(a)
+(1/2)m(az)
+m(as)
+m(ay)
+m(as)
+(2/3)m(a)
+(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(ay)
+(2/4)m(a10)
+m(a11)
+(4/5)m(a12)
+(3/5)m(as3)
+(3/5)m(a14)
+(3/6)m(ass)
+(4/6)m(aus)
+(4/6)m(a1r)
+(4/7)m(a1s)

+(3/4)m(ag)

+(3/4)m(ay
+m(a11)

0)

Derivation of P{a1}, P{as} and P{as} Derivation of P{a1o}, P{a11} and P{a12}

Plas} =
m(a1)
+(1/2)m(az)
+m(as)
+m(ay)
+m(as)
+(2/3)m(as)
+(2/3)m(az)
+(3/4)m(as)
+(2/4)m(ag)
+(2/4)m(au0)
+(3/4)m(a11)
+(3/5)m(an2)
+(3/5)m(aa13)
+(3/5)m(a1a)
+(3/6)m(c15)
+(3/6)m(aae)
+(3/6)m(a7)
+(3/T)m(azs)

Plagt =
m(a1)
+m(as)
+(1/2)m(as)
+m(ay)
+(2/3)m(as)
+m(as)
+(2/3)m(az)
3/4)m(as)
2/4)m(ay)
3/4)m (a1
2/4)m(aqy

+(3/4)
(2/4)
(3/4)
(2/4)
(3/5)
( )m(ms
(3/5)
(3/6)
(3/6)
(3/6)
B/7)

S S e

)
)

P{()Zl(]} =
m(o)
+m(as)
+(1/2)m(as)
+m(ay)
+(2/3)m(as)
+m(ag)
+(2/3)m(az)
+(3/4)m(as)
+(2/4)m(ag)
+m(a1g)

P{Oén} =
m(a)
+(1/2)m(az)
+m(as)
+m(ay)
+m(as)
+(2/3)m(ag)
+(2/3)m(ar)
+(3/4)m(as)
+(2/4)m(ag)
+(2/4)m(a10)
+m(a11)
+(4/5)m(a1z2)
+(3/5)m(as3)
+(3/5)m(a14)
+(3/6)m(ass)
+(4/6)m(aus)
+(4/6)m(a1r)
+(4/7)m(a1s)

+(3/4)m(ag)

+(3/4)m(ay,
+m(a11)

0)

Plagt =
m(az)
+m(ae)
+m(as)
+(1/2)m(cs)
+(2/3)m(as)
+(2/3)m(as)
+m(ar)
+(3/4)m(as)
+m(ayg)
(2/4)m(u10

m(alz
m(m:&

)

)
)

P{(Xlﬁ} =
m(a1)

+m(ag)
+(3/4)m(au0)
+m(a11)
+m(o2)
+(4/5)m(a13)
+m(o4)
+(5/6)m(aqs)
+m(aie)
+(5/6)m(as7)
+(6/7)m(ass)

+m(ag)
+(3/4)m(ay)
+m(a10)
+m(a11)
+m(a12)
+m(ais)
+(4/5)m(aa)
+(5/6)m(aus)
+(5/6)m(c6)
+m(agr)
+(6/7)m(a1s)

Derivation of P{az}, P{as} and P{ag} Derivation of P{a16}, P{a17} and P{a15}
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Chapter 8

Probabilized logics related to DSmT

and Bayes inference

Frédéric Dambreville
Délégation Générale pour I’Armement, DGA/CTA/DT/GIP/PRO
16 Bis, Avenue Prieur de la Cote d’Or
94114, Arcueil Cedex France

Abstract: This work proposes a logical interpretation of the mon hybrid Dezert
Smarandache Theory (DSmT). As probability is deeply related to a classical seman-
tic, it appears that DSmT relies on an alternative semantic of decision. This se-
mantic is characterized as a probabilized multi-modal logic. It is noteworthy that
this interpretation justifies clearly some hypotheses usually made about the fusion
rule (ie. the independence between the sensors). At last, a conclusion arises: there
could be many possible fusion rules, depending on the chosen semantic of decision;
and the choice of a semantic depends on how the actual problem is managed. Illus-
trating this fact, a logical interpretation of the Bayesian inference is proposed as a

conclusion to this chapter.

8.1 Introduction

‘ N T hen a non deterministic problem appears to be too badly shaped, it becomes difficult to make a

coherent use of the probabilistic models. A particular difficulty, often neglected, comes from the
interpretation of the raw data. The raw data could have a good probabilistic modelling, but in general
such informations are useless: an interpretation is necessary. Determining the model of interpretation,

and its probabilistic law, is the true issue. Due to the forgotten/unknown case syndrome, it is possible
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that such model cannot be entirely constructed. In some cases, only a rather weak approximation of the
model is possible. Such approximated model of interpretation may produce paradoxical results. This is

particularly true in information fusion problems.

Several new theories have been proposed for managing these difficulties. Dempster Shafer Theory
of evidence [Il B] is one of them. In this paper, we are interested in the Dezert Smarandache Theory
(DSmT) [3], a closely related theory. These theories, and particularly the DSmT, are able to manipulate
the model contradictions. But a difficulty remains: it seems uneasy to link these various theories. In
particular, their relation with the theory of probability seems unclear. Such a relation is perhaps not
possible, as could claim some authors, but it is necessary: it is sometimes needed to combine methods
and algorithms based on different theories. This paper intends to establish such relations. A probabilized
multi-modal logic is constructed. This probabilized logic, intended for the information fusion, induces the
same conjunctive fusion operator as DSmT (ie. operator @). By the way, the necessity of independent
sources for applying the operator @ is clarified and confirmed. Moreover, this logical interpretation in-
duces a possible semantic of the DSmT, and somehow enlightens the intuitions behind this theory. Near
the end, the paper keeps going by giving a similar interpretation of the Bayes inference. Although the
Bayes inference is not related to the DSmT, this last result suggests that probabilized logics could be a

possible common frame for several non deterministic theories.

Section is beginning by a general discussion about probability. It is shown that probabilistic
modellings are sometimes questionable. Following this preliminary discussion, two versions of the theory
of evidence are introduced: the historical Dempster Shafer Theory and the Transferable Belief Model
of Smets [§]. Section makes a concise presentation of the Dezert Smarandache Theory. The short
section establishes some definitions about probability (and partial probability) over a set of logical
propositions. These general definitions are needed in the following sections. Section gives a logical
interpretation of the DSmT on a small example. This section does not enter the theory too deeply:
the modal logic associated to this interpretation is described with practical words, not with formulae!
Section generalizes the results to any cases. This section is much more theoretic. The modal logic is
defined mathematically. Section proposes a similar logical interpretation of the Bayesian inference.

Section concludes.
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8.2 Belief Theory Models

8.2.1 Preliminary: about probability

This subsection argues about the difficulty to modelize “everything” with probability. Given a measurable
universe of abstract events (or propositions) Q = {w;, i € I}, a probability P could be defined as a bounded

and normalized measure over 2. In this paper, we are interested in finite models (I is finite).

A probability P could also be defined from the probabilities p(w) of the elementary events w € 2. The

density of probability p should verify (finite case):
p:Q—RT,

and:

Zp(w)zl.

wes

The probability P is recovered by means of the additivity property:
VACQ, P(A) = pw).
weA

It is important to remember how such abstract definitions are related to a concrete notion of “chance”
in the actual universe. Behind the formalism, behind the abstract events, there are actual events. The
formalism introduced by the abstract universe 2 is just a modelling of the actual universe. Such a
model is expected to be more suitable to mathematical manipulations and reasoning. But there is no
reason that these actual events are compatible with the abstract events. Probability theory assumes
this compatibility. More precisely, probability assumes that either the abstract and actual events are
the same, either there is a mapping from the actual events to the abstract events (figure Bl). When this
mapping hypothesis is made, the density function makes sense then, in regard to the observation. Indeed,

a practical construction of p becomes possible with a frequentist taste:
1. Set p(w) =0 for all w €
2. Make N tossing of an actual event. For each tossed event, a, do:
(a) Select the w € 2 such that a maps to w,
(b) Set p(w) = p(w) +1,
3. Set p(w) ~ % p(w) for allw € Q.

The next paragraph explains why the mapping from the actual events to the abstract events is not always

possible and how to overcome this difficulty.
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Actual universe (observations) Abstract universe (representation)
X X X . X — X — X o
° X ° ° ° X ° °
—
[ ] [ ] [ ] [ ] [ ] [ ] L] L]
[ ] [ ] [ ] [ ] [ ] [ ] L] L]

An abstract event is a connected component; in this example,

the x-ed observations map to the unique x-ed component

Figure 8.1: Event mapping: probabilist case

8.2.1.1 The impossible quest of the perfect universe

It is always possible to assume that there is a perfect universe, where all problems could be modeled, but
we are not able to construct it or to manipulate it practically. However, we are able to think with it. Let

A be the actual universe, let €2 be the abstract universe, and let Z be this perfect universe.

The structure of 2 is well known; it describes our modelling of the actual world. This is how we interpret
the observations. Practically, such interpretation is almost always necessary, while the raw observation
may be useless. But 2 is only an hypothesis: our knowledge about the observation is generally insufficient

for a true interpretation.

The universe A is observed, but like Z its structure is not really known: although an observation is
possible, it is not necessary possible to know the meaning, the true interpretation, of this observation.

For example, what is the meaning of an observation for a situation never seen before?

The universe Z is perfect, which means that it contains the two other, and is unknown. The word contains

has a logical signification here, ie. the events/propositions of A or ) are macro-events/macro-propositions

of Z (figure B2)):
ACP(Z) and QCP(2),

with the following exhaustiveness (x) and coherence (c) hypotheses for A and §2:

X.Z:Ua:Uw,

acA weN

cl. [a1,a2 € A, a1 #agl = a1 Nax =0,

c2. [wi,wr €N, wy #wo] = wi Nwe =10.
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Actual universe Perfect universe Abstract universe
[ ] [ ] > [ ] [ ) [ ] [ ] [ ] [ ) [ ] [ ) [ ] [ ]
1 3 a b
[ ] [ ] .4 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
<——  —
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] ¢ [ ] [ ] [ ]
5 6 e
[ [ ] [ ] [ ] [ ] [ ] [ ] [ ] .d [ ] [ ] [ ]

An abstract event (ie. a,b,c,d,e) is a — connected component

An actual event (ie. 1,2,3,4,5,6) is a = connected component

Figure 8.2: Event mapping: general case

The exhaustiveness and coherence hypotheses are questionable; it will be seen that these hypotheses

induce contradictions when fusing informations.

Of course, the abstract universe 2 is a coherent interpretation of the observations, when any actual
event a € A is a subevent of an abstract event w € 2. But since the interpretation of A is necessarily
partial and subjective, this property does not hold in general. The figure B2 gives an example of erroneous
interpretation of the observations: the actual event 5 intersects both the abstract event d and the abstract
event c. More precisely, if an actual event a € A happens, there is a perfect event z € a which has
happened. Since Z contains (ie. maps to) €2, there is an unique abstract event, w € €2, which checks z,
ie. z € w. As a conclusion, when a given actual event a happens, any abstract event w € 2 such that
wNa # ) is likely to happen. Practically, such situation is easy to decide, since it just happens when a
doubt appears in a measure classification. The table Bl refering to the example of figure B2 gives the

possible abstract events related to each tossed observation.

Finally, it does not seem possible to define a density of probability for unique abstract events from
partially decidable observations. But it is possible to define a density function for multiple events.

Again, a construction of such function, still denoted p, is possible in a frequentist manner:
1. Set p(¢) =0 for all ¢ C Q,
2. Make N tossing of an actual event. For each tossed event, a, do:
(a) Define the set ¢(a) = {w € Q/wNa #0},
(b) Set p(¢(a)) = p(d(a)) +1,

3. Set p(¢) ~ +p(¢) for all ¢ C Q.
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Tossed observation Possible abstract events
[ )
[ ] [ ] [ ) [ )
1 a B ° ¢ °
[ ] [ ] [ )
[ )
[ ] [ ) [ )
[ ] [ ] a
2
[ )
[ )
° b
3 [ ) [ )
[ ]
[ )
[ ]
[ )
[ )
b
[ ) [ )
ol
[ )
[ )
[ ]
[ ]
5 o—° o 70d
[ ]
[ )
[ )
b [ ]
[ ) [ ] [ ] [ ) [ )
6 9 [ ] ¢ [ ] y €
[ ) [ ] [ ] [ ) [ )
[ )
[ )

Table 8.1: Event multi-mapping for figure

In particular, p(0) = 0.

In the particular case of table Bl, this density is related to the probability of observation by:

pla,ct =p(1), pla} =p(2), p{b} =p(3) +p4), p{c,d} =p(5), p{b,c,e} = p(6).
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The previous discussion has shown that the definition of a density of probability for the abstract events
does not make sense, when the interpretations of the observations are approximative. However, it is
possible to construct a density for multiple abstract events. Such a density looks quite similarly to the

Basic Belief Assignment of DST, defined in the next section.

8.2.2 Dempster Shafer Theory
8.2.2.1 Definition

A Dempster Shafer model [, 2, B] is characterized by a pair (2, m), where Q is a set of abstract events
and the basic belief assignment (bba) m is a non negatively valued function defined over P(2), the set

of subsets of 2, such that:
m(@) =0 and Z m

A DSm (2, m) could be seen as a non deterministic interpretation of the actuality. Typically, it is a tool

providing informations from a sensor.

8.2.2.2 Belief of a proposition

Let ¢ C Q be a proposition. Assume a basic belief assignment m. The degree of belief of ¢, Bel(¢), and
the plausibility of ¢, P1(¢), are defined by:

Bel(9) = Y m(y) and Pl¢)= Y m().
YCo YNo#£D
Bel and P1 do not satisfy the additivity property of probability. Bel(¢) and Pl(¢) are the lower and upper

measures of the “credibility” of the proposition ¢. These measures are sometimes considered as the lower

bound and the upper bound of the probability of ¢:

Bel(¢) < P(¢) < P1(¢) .

This interpretation is dangerous, since it is generally admitted that probability and DST are quite different

theories.

8.2.2.3 Fusion rule

Assume two bba my and ms, defined on the same universe (2, obtained from two different sources. It is

generally admitted that the sources are independent. Then, the bba mj @ mq is defined by:
m1 ®ma(0) =0,

m1 @ ma(¢ Z 1(1)ma(tha) , where Z=1—> " ma(¢r)ma(t) .
Nipa= h1Mpa=0

The operator @ describes the (conjunctive) information fusion between two bba.
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The normalizer Z is needed since the bba is zeroed for the empty set (). Except some specific cases, it is

indeed possible that:

mi(Y1)ma(v2) >0, (8.1)

PrNe=0. (8.2)

In particular, the property ([B3) is related to an implied coherence hypothesis; more precisely, since the

universe () is defined as a set of events, the intersection of distinct singletons is empty:

V{wl}, {(UQ} C Q, {wl} 75 {(AJQ} = {wl} N {(AJQ} =0.

Notice that this hypothesis is quite similar to the hypothesis ¢2. of sectionBZ1l. The coherence hypothesis
seems to be the source of the contradictions in the abstract model, when fusing informations. Finally,
Z < 1 means that our abstract universe (2 has been incorrectly defined and is thus unable to fit the both
sensors. Z measures the error in our model of interpretation. This ability of the rule & is really new in

comparison with probabilistic rules.

8.2.3 Transferable Belief Model

Smets has made an extensive explanation of TBM [§]. This section focuses on a minimal and somewhat

simplified description of the model.

8.2.3.1 Definition

A Transferable Belief Model is characterized by a pair (Q2,m), where 2 is a set of abstract events and the

basic belief assignment m is a non negatively valued function defined over P(2) such that:

> om(g)=1.

pCQ

In this definition, the hypothesis m() = 0 does not hold anymore.

8.2.3.2 Fusion rule

Smets’ rule looks like a refinement of Dempster and Shafer’s rule:

my@ma(9) = D mi(dr)ma(ye) .
P1Npa=¢

Notice that the normalizer does not exist anymore. The measure of contradiction has been moved into

m(0). This theory has been justified from an aziomatization of the fusion rule.
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8.2.3.3 TBM generalizes DST

First, notice that any bba for DST is a valid bba for TBM, but the converse is false because of ). Now,
for any bba my of TBM such that mq(0) < 1, construct the bba A(my) of DST defined by:

mr(9)

A(mp)(@) =0 and Yo C Q: ¢ #0, Almr) (@) = T—mr(0)

A is an onto mapping. Any bba mp of DST is a bba of TBM, and A(mp) =mp .

A is a morphism for ®. IE. A(mpi ®mrs2) = A(mri1) @ Almrs).
Proof. By definition, it is clear that:
A(mp1) ® Almr2)(0) =0 = A(mr1 @ mra)(0) .

Now, for any ¢ C 2, such that ¢ # 0:
> Almra)(W)A(mr2)(¢)

A 7 oA ) 0) = P1NYP2=¢
(mr1) ® A(mr,2)() Yo D Almra)W)A(mre)(¥)
OF£D P1NP2=¢
mr,1 (1) mr 2(1b2)
_ wlr%:as = mra(@) ~ T=mra() N wlr%;wmm(wl)mﬂﬂ%)
B mr. (Y1) mr2(Ys) Z Z mr,1(Y1)mr2(Y2)
(;) %%_ T mra®) " T-mra0) 57 vitwno
mr1 ®mra2(p) mpy @mra(d)
- Z mr1 D mT,2(¢) S 1- mr,1 & mT-,Z(@) B A(mT’l @ mT72)(¢) '
¢#£0

oono

Since A is an onto morphism, TBM is a generalization of DST. More precisely, a bba of TBM contains
more information than a bba of DST, ie. the measure of contradiction m(@), but this complementary
information remains compatible with the fusion rule of DST.

The Dezert Smarandache Theory is introduced in the next section. This theory shares many common
points with TBM. But there is a main and fundamental contribution of this theory. It does not make
the coherence hypothesis anymore and the contradictions are managed differently: the abstract model
is more flexible to the interpretation and it is not needed to rebuild the model in case of contradicting

Sensors.

8.3 Dezert Smarandache Theory (DSmT)

Both in DST and in TBM, the difficulty in the model definition appears when dealing with the con-
tradictions between the informations. But contradictions are unavoidable, when dealing with imprecise

informations. This assertion is illustrated by the following example.
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B&W example. Assume a sensor s; which tells us if an object is white (W) or not (NW), and gives
no answer (NA;) in litigious cases. The actual universe for this sensor is A; = {W,NW,NA;}. Assume
a sensor sp which tells us if an object is black (B) or not (NB), and gives no answer (NA3) in litigious
cases. The actual universe for this sensor is Ay = {B,NB,NAy}. These characteristics are not known,
but the sensors have been tested with black or white objects. For this reason, it is natural to model
our world by © = {black, white}. When a litigious case happens, its interpretation will just be the pair

{black, white} . Otherwise the good answer is expected. The following properties are then verified:
B,NW C black and W,NB C white.

The coherence hypothesis is assumed, that is black N white = (). The event black N white is impossible.
This model works well, as long as the sensors work separately or the objects are still black or white. Now,
in a true universe there are many objects which are neither white and neither black, and this without
any litigation. For example: gray objects. Assume that the two sensors are activated. Then, the fused
sensors will answer NW NNB , which will be interpreted by blackNwhite. This contradicts the coherence

hypothesis.

Conclusion. This example is a sketch of what generally happens, when constructing a system of de-
cision. Several sources of information are available (two sensors here). These sources have different
discrimination abilities. In fact, these discrimination abilities are not really known, but by running these
sources on several test samples (black and white objects here), a model of theses abilities is obtained
(here it is learned within € that our sensors distinguish between black and white objects). Of course, it
is never sure that this model is complete. It is still possible actually that some new unknown cases could
be discriminated by the information sources. In the example, the combination of two sensors made it
possible to discriminate a new class of objects: the neither black, neither white objects. But when fusing
these sensors, the new cases will become contradictions regarding the coherence hypothesis. Not only the
coherence hypothesis makes our model contradictory, but it also prevents us from discovering new cases.
The coherence hypothesis should be removed! Dezert and Smarandache proposed a model without the

coherence hypothesis.

8.3.1 Dezert Smarandache model

In DST and TBM, the coherence hypothesis was implied by the use of a set, 2, to represent the ab-
stract universe. Moreover, the set operators N, U and ¢ (ie. set complement) were used to explain the
interactions between the propositions ¢ C €. In fact, the notion of propositions is related to the notion
of Boolean Algebra. Sets together with set operators are particular models of Boolean Algebra. Since
DSmT does not make the coherence hypothesis, DSmT cannot rely on the set formalism. However, some

boolean relations are needed to explain the relations between propositions. Another fundamental Boolean
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Algebra is the propositional logic. This model should be used for the representation of the propositions
of DSmT. Nevertheless, the negation operator will be removed from our logic, since it implies itself some
coherence hypotheses, eg. ¢ A 7¢ = L ! By identifying the equivalent propositions of the resulting logic,
an hyper-power set of propositions is obtained. Hyper-power sets are used as models of universe for the
DSmT.

8.3.1.1 Hyper-power set

Let @ = {¢;/i € I} be a set of propositions. The hyper-power set < ® > is the free boolean pre-algebra

generated by ® and the boolean operators A and V:
D <P>SA<DI><DI>V<DP>C<D>

and A,V verify the properties:

Commutative. pAN Y=y ANpand oV =9V ¢,

Associative. pN(WAN) = (dAY)Anand ¢V (Y V)= (dV )V,

Distributive. ¢ A (Y Vn)=(¢AY)V(¢An) and ¢V (pAn) = (V) A(oVn),

Idempotent. p ANdp=¢ and ¢V ¢ = ¢,

Neutral sup/sub-elements. ¢ N (¢V V) =d¢ and ¢V (A1) = ¢,
for any ¢, 9, ne< ® >.
Unless more specifications about the free pre-algebra are made, this definition forbids the propositions to
be exclusive (no coherence assumption) or to be exhaustive. In particular, the negation operator, —, and

the never happen/always happen, L /T, are excluded from the formalism. Indeed, the negation is related

to the coherence hypothesis, since T is related to the exhaustiveness hypothesis.

Property. It is easily proved from the definition that:

Vo) €< B> dAD=d = dVP=1.

The order < is a meta-operator defined over < ® > by:

< = PANY=¢ = dVYP =1,

The order < is a meta-operator defined over < ® > by:

p<y < [¢p<yandp#p].

The hyper-power set order < is the analogue of the set order C .
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8.3.1.2 Dezert Smarandache Model

A Dezert Smarandache model (DSmm) is a pair (®,m), where the (abstract) universe ® is a set of
propositions and the basic belief assignment m is a non negatively valued function defined over < ® >

such that:

> me)=1.

pe<d>
8.3.1.3 Belief Function

The belief function Bel is defined by:

Vpe<® >, Bel(g) = Y m(¥). (8.3)

PeE<P>:p<o
Since propositions are never exclusive within < ® >, the (classical) plausibility function is just equal to

1. The equation ([B3) is invertible:

Vo e<® >, m(¢) =Bel(¢) — Y m(y).

PYe<d>p<op
8.3.2 Fusion rule

For a given universe ¢, and two basic belief assignments m, and msg, associated to different sensors, the

fused basic belief assignment is mq @ ms , defined by:

mi@ma(d) = > ma(d)ma(vs) . (8.4)

P1Ap2=¢

8.3.2.1 Dezert & Smarandache’s example

Assume a thief (45 years old) witnessed by a granddad and a grandson. The witnesses answer the
question: is the thief young or old? The universe is then ® = {young,old}. The granddad answers that

the thief is rather young. Its testimony is described by the bba:
mq(young) = 0.9 and mq(young V old) = 0.1 (slight unknown) .
Of course, the grandson thinks he is rather old:
ma(old) =0.9 and ma(young Vold) = 0.1 (slight unknown) .

How to interpret the testimonies? The fusion rule says:

my @ ma(young A old) = 0.9801 (highly contradicts — third case)
my @ ma(young) = my & ma(old) = 0.0099
my @ ma(young V old) = 0.0001

Our hypotheses contradict. There were a third case: the thief is middle aged.
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8.3.2.2 Comments

In DSmT, there is not a clear distinction between the notion of conjunction, A, the notion of third case
and the notion of contradiction. The model does not decide for that and leaves this distinction to our
last interpretation. It is our interpretation of the model which will make the distinction. Thus, the
DSm model avoids any over-abstraction of the actual universe. Consequently, it never fails although
we could fail in the last instance by interpreting it. Another good consequence is that DSmT specifies
any contradiction/third case: the contradiction ¢ A v is not just a contradiction, it is the contradiction

between ¢ and .

8.4 Probability over logical propositions

Probabilities are classically defined over measurable sets. However, this is only a manner to modelize the
notion of probability, which is essentially a measure of the belief of logical propositions. Probability could
be defined without reference to the measure theory, at least when the number of propositions is finite.
In this section, the notion of probability is explained within a strict logical formalism. This formalism is

of constant use in the sequel.

Intuitively, a probability over a set of logical propositions is a measure of belief which is additive (disjoint
propositions are adding their chances) and increasing with the proposition (weak propositions are more
probable). This measure should be zeroed for the impossible propositions and full for the ever-true
propositions. Moreover, a probability is a multiplicative measure for independent propositions. The
independence of propositions is a meta-relation between propositions, which generally depends on the

problem setting.

These intuitions are formalized now. It is assumed that the reader is used with some logical notions.

8.4.1 Definition

Let L be at least an extension of the classical logic of propositions, that is L contains the operators A, V,
- (and, or, negation) and the propositions L, T (always false, always true) . Assume moreover that some
propositions pairs of L are recognized as independent propositions (this is a meta-relation not necessarily
related to the logic itself). A probability p over L is a IR" valued function such that for any proposition
¢ and ¢ of L:

Additivity. p(¢ A) +p(¢V ) = p(¢) +p(¥),
Coherence. p(L) =0,

Finiteness. p(T) =1,
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Multiplicativity. When ¢ and v are independent propositions, then p(¢ A ) = p(¢)p(v)) .

8.4.2 Property

The coherence and additivity implies the increaseness of p:

Increaseness. p(¢p AY) < p(¢).
Proof. Since ¢ = (¢ A1) V (¢ A1) and (¢ A) A (¢ A=) = L, it follows from the additivity:

p(¢) +p(L) =p(o AY) +pld A ).
From the coherence p(L) =0, it is deduced p(¢) = p(¢p A1) + p(¢p A —)) . Since p is non negatively
valued, p(¢) > p(¢ A9).

ooo

8.4.3 Partially defined probability

In the sequel, knowledges are alternately described by partially known probabilities over a logical system.

Typically, the probability p will be known only for a subset of propositions £ C L.

Partial probabilities have been investigated by other works [9], for the representation of partial knowl-
edge. In these works, the probabilities are characterized by constraints. It is believed that this area
has been insufficiently investigated. And although our presentation is essentially focused on the logical
aspect of the knowledge representation, it should be noticed that it is quite related to this notion of
partial probability. In particular, the knowledge of the probability for a subset of propositions implies
the definition of constraints for the probability over the whole logical system. For example, the knowledge

of m = p(¢ A ) implies a lower bound for p(¢) and p(v) : p(¢) > 7 and p(¢) > 7.

The next section introduces, on a small example, a new interpretation of DSmT by means of proba-
bilized logic.
8.5 Logical interpretation of DSmT: an example

A bipropositional DSm model A = ({¢1, ¢2}, m) is considered. This section proposes an interpretation

of this DSm model by means of probabilized modal propositions.

8.5.1 A possible modal interpretation

Consider the following modal propositions:
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U . Unable to decide between the ¢;’s,
«; . Proposition ¢; is sure ; No Other Information (NOI),
I. Contradiction between the ¢;’s .
It is noticeable that these propositions are exclusive:
Va,be {Ua,a0,I}, aZb=aAb= 1. (8.5)

These propositions are clearly related to the propositions ¢; :

I <1 Nda, d1, P2, O1V o [the contradiction I implies everything]
a; < ¢iy ¢1V o, fori=1,2 [ov; implies ¢; and ¢1 V ¢] (8.6)
U< o1V [U only implies ¢1 V ¢o]

These propositions are also exhaustive; ie. in the universe @, either one of the propositions I, ay, as, U
should be verified:
I\/O&l\/ag\/UEgbl\/(bQ. (87)

Since the propositions «;, U, I are characterizing the knowledge about ¢; (with NOI), the doubt or the
contradiction, it seems natural to associate to these propositions a belief equivalent to m(¢;), m(é1 V ¢2)

and m(¢1 A ¢2) . These beliefs will be interpreted as probabilities over I, U and «; :

p(I) = m(o1 A ¢2) , p(U)=m(¢1Vd2).  plag) =m(e;), fori=1,2. (8-8)

Such probabilistic interpretation is natural but questionable: it mixes probabilities together with bba.
Since the propositions ¢; are not directly manipulated, this interpretation is not forbidden however. In
fact, it will be shown next that this interpretation implies the fusion rule @ and this will be a posterior

justification of such hypothesis.

8.5.2 Deriving a fusion rule

In this section, a fusion rule is deduced from the previous probabilized modal interpretation. This rule
happens to be the (conjunctive) fusion rule of DSmT.
Let A; = ({¢1,¢2},m;) be the DSm models associated to sensors j = 1,2 working beside the same

abstract universe {¢1, ¢2} . Define the set of modal propositions S; = {I;, a1, a2, U, } :
U; . Unable to decide between the ¢;’s, according to sensor j,
aj; . Proposition ¢; is sure and NOI, according to sensor j,

I; . Contradiction between the ¢;’s, according to sensor j .
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The propositions of S; verify of course the properties (8H), (6), D) and F), the subscript ; being
added when needed. Define:

5251/\52:{&1/\a2/a1651 andaQESQ}.

Consider a = a1 A as and b = by A by, two distinct elements of S. Then, either a; # by or as # by . Since

S; verifies (B1), it follows a1 A by = L or ag A be = L, thus yielding:
(al /\ag)/\(bl /\bg) = (al /\bl)/\(ag/\bg) =1.

S is made of exclusive elements. It is also known from () that ¢1 V ¢ =/ a; ; S; is exhaustive.

a; €S

It follows:
1V g2 = (¢1V g2) A (d1V h2) = /\ \V a=\a.

j=la;€S; a€S

S is exhaustive. In fact, S enumerates all the possible cases of observation. It is thus reasonable to think
that the fused knowledge of these sensors could be constructed from S. The question then arising is:
what is the signification of a proposition a; A az € S?7 It is remembered that a proposition of S; just tells
what is known for sure according to sensor j. But the semantic for combining sure or unsure propositions

is quite natural
® unsure -+ unsure = unsure
e unsure 4+ sure = sure
e sure + sure = sure OR contradiction
e anything + contradiction = contradiction

In particular contradiction arises, when two informations are sure and these informations are known

contradictory. This conduces to a general interpretation of S':

A I a1 22 Us

I; | Contradiction | Contradiction | Contradiction | Contradiction

a11 | Contradiction ¢1 is sure Contradiction ¢1 is sure
a12 | Contradiction | Contradiction @9 is sure @9 is sure
U; | Contradiction ¢1 is sure @2 is sure Unsure

At last, any proposition of S is a sub-event of a proposition I, ay, g or U, defined by:
U . The sensors are unable to decide between the ¢;’s,
«; . The sensors are sure of the proposition ¢; , but do not know anything else,

I . The sensors contradict .

Mn fact, the independence of the sensors is implicitly hypothesized in such combining rule (refer to next section).
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Since S is exhaustive, the propositions U, «;, I are entirely determined by S :

o [ = (Il A _[2) V (Il A agl) V (Il A\ agg) \Y (Il N Ug) \Y (0411 A 12)\/

(0412 A IQ) \Y (Ul A\ 12) \Y (0112 A\ 0121) \Y (0111 A\ a22) R
o (O = (0411' A\ OéQi) \Y (Ul A\ 0121') \Y (0411' A UQ) s
o U= U1 A\ UQ .

The propositions I, «;, U are thus entirely specified and since S is made of exclusive elements, their

probabilities are given by:
o p(I) =p(I1 AN12) +p(I1 A1) + (11 Aagg) +p(Iy AU2) + - - + plarr Aag),
o p(a;) = plari A azi) +p(Us A ag;) + plasi AUs),
e p(U) =p(U1 AU2).

At this point, the independence of the sensors is needed. The hypothesis implies p(a; A az) = p(a1)p(az).

The constraints &) for cach sensor j then yield:
o p(I) =mi(¢1 A d2)ma(d1 A ¢2) +mi(p1 A d2)ma(d1) + -+ + ma(p1)ma(¢2),
o plai) = ma(di)ma(gs) +mi(gr V da)ma(d;) +ma(di)ma(r V d2)
o p(U) =ma(¢1 V d2)ma(¢1 V ¢2).
The definition of my @ ms implies finally:
p(I) =mi@ma(dr Ad2),  plag) =m1@ma(¢s),  and  p(U)=mi @©ma(1Vds).

Our interpretation of DSmT by means of probabilized modal propositions has implied the fusion rule & .

This result is investigated rigorously and generally in the next section.

8.6 Multi-modal logic and information fusion

This section generalizes the results of the previous section. The presentation is more formalized. In
particular, a multi-modal logic for the information fusion is constructed. This presentation is not fully

detailed and it is assumed that the reader is acquainted with some logical notions.

8.6.1 Modal logic

In this introductory section, we are just interested in modal logic, and particularly in the T-system. There

is no need to argue about a better system, since we are only interested in manipulating the modalities
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0, -0, ¢ and —o.
Being given ® a set of atomic propositions, the set of classical propositions, C'(®) more simply denoted

C, is defined by:
e dC(C,LeCandTel,
e Ifp,peC, then ¢ C,pNpeC,pVepeCand p -y €.
The set of modal propositions, M (®) also denoted M, is constructed as follows:
e CCM,
e If g € M, then O¢p € M and ¢¢p € M ,
o Ifp,pe M, ,then peM,pNYpeM,pVipe M and ¢ —p € M.

The proposition O¢ will mean that the proposition ¢ is true for sure. The proposition ¢¢ will mean that
the proposition ¢ is possibly true.

In the sequel, the notation - ¢ means that ¢ is proved in T. A proposition ¢ such that - ¢ is also called
an axiom. The notation ¢ =1 means both - ¢ — ¢ and F ¢ — ¢.

All axioms are defined recursively by assuming some deduction rules and initial axioms.
Modus Ponens (MP). For any proposition ¢,1 € M , such that - ¢ and - ¢ — ¢, it is deduced + ¢ .
Classical axioms. For any ¢,1,n € M, it is assumed the axioms:

1LFT,

29— (W—9),

3 F—=(@—=9)—=((n—9)—O—1),
(¢ = ) = (26— ¥) — ¢),

5 1 =-T,

W~

6. p = p=-9VY,
S QN = (20 V).

EN|

It is deduced from these axioms that:

e The relation - ¢ — v is a pre-order with a minimum | and a maximum T: L is the strongest

proposition, T is the weakest proposition,

e The relation = is an equivalence relation.
Modal axioms and rule. Let ¢,¢ € M.

i. From F ¢ is deduced - O¢ ; axioms are sure. This does not mean = ¢ — O¢ which is false!
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ii. F0O(¢ — ¢) — (O¢ — Ov) ; when the inference is sure and the premise is sure, the conclusion

is sure,
iii. F O¢ — ¢; sure propositions are true,

iv. ©¢ = -0-¢; is unsure what cannot be false for sure.

It is deduced that the proposition O¢ is stronger than ¢ which is stronger than ¢¢.
Notation. In the sequel, 1) < ¢ means -1 — ¢, and 1) < ¢ means both ) < ¢ and ¢ £ ).

The logical operators are compatible with =. Denote ¢,= = {¢ € M/¢ = ¢}, the class of
equivalence of ¢. Let ¢, 1) € M, ¢ € ¢,= and 1/; € ¢/= . Then holds:

o 9 E(p— )= o e (9= o IAYE(DAY))=
hd QZ)V1/;€ (¢v¢)/5 b EIQSE (D¢)/E hd ngA)E(O(b)/E
The logical operators over M are thus extended naturally to the classes of M by setting:
e e ) o b= AU S (OAY)=
® ¢/E \/1/)/5 2 (¢ V 7/})/5 b D¢/E 2 (D(b)/z b <>¢/E 2 (0¢)/5

From now on, the class ¢,= is simply denoted ¢.

Hyper-power set. Construct the subset of classical propositions F'(®) recursively by the properties

® C F(®) and Vo, € F(?), [Ny € F(P) and ¢V € F(P)]. The hyper-power of &, denoted < & >,

is the set of equivalence classes of F(®) according to the relation =:
< >=F(®)= = {4)=/ b F(®)} .

8.6.1.1 Useful theorems
Let ¢, € M.

1. F(Op AOy) — O(p Ath) and = O(¢ A p) — (D¢ A D)

2. F(opVorp) = o(p V) and F o(p V) — (00 Vo))

3. F(O¢VvOy) = 0O(p V) but ¥ O(¢p V) — (O V Ov)

4. Fo(p A1) = (0d Aoyp) but ¥ (0d A orh) — o(p A1)

Proof. Theorem [ and theorem Pl are dual and thus equivalent (rules[dand iv.). It is exactly the same
thing for theorem Bl and theorem El
Proof of F (O¢ A Oy) — O(d A 1).

Classical rules yield the axiom:
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Fo— (= (6 AY))

Rule i. implies then:

FO(¢— (¥ = (6 AY)))

Applying rule ii. twice, it is deduced:
8¢ — 0 — (¢ AY))

F0O¢ — (O — D(g Ay))

The proof is concluded by applying the classical rules.
Proof of - O(¢p A ) — (O A O).
Classical rules yield the axioms:
F(@AY) = ¢and - (pAY) — ¢

Rule i. implies then:

FB(@AY) — ¢) and EO((¢ AY) — ¢)
Applying rule ii., it is deduced:

FO(¢ A¢) — 06 and F O(p A ¢) — T

The proof is concluded by applying the classical rules.

Proof of F (O¢ Vv Oy) — O(h V ).

Classical rules yield the axioms:

= (¢ V) and - — (9 V)

Rule i. implies then:

06 — (6 V1)) and - D( — (6 V )

Applying rule ii., it is deduced:

FOp — O(p V) and - Oy — O(d V)

The proof is concluded by applying the classical rules.

Why ¥ O(¢ V) — (O¢ vV OY) ?

To answer this question precisely, the Kripke semantic should be introduced. Such discussion is
outside the scope of this paper. However, some practical considerations will clarify this assertion.
When ¢V ) is sure, does that mean that ¢ is sure or ¢ is sure? Not really since we know that ¢ or
1 is true, but we do not know which one is true. Moreover, it may happen that ¢ is true sometimes,

while v is true the other times. As a conclusion, we are not sure of ¢ and are not sure of .

This example is a counter-example of - O(¢ V ) — (O¢ vV OY).
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8.6.2 A multi-modal logic

Assume that several informations are obtained from different sources. Typically, these informations
are modalities such as “according to the source o, the proposition ¢ is sure”. Such a modality could
be naturally denoted O,¢ (a modality depending on o). A more readable notation [¢|o] 2 O,¢ is
prefered. Take note that [¢|o] is not related to the Bayes inference (¢|o)! Now, the question arising is
how to combine these modalities? For example, is it possible to deduce something from [¢1|o1] A [p2|o2] 7
Without any relations between heterogeneous modalities, it is not possible to answer this question. Such
a relation, however, is foreseeable. Assume that the source 7 involves the source o, ie. 7 — 0. Now
assume that the proposition ¢ should be known from the source o, ie. [¢|o]. Since 7 involves o, it is
natural to state that ¢ should be known from the source 7, ie. [¢|7]. This natural deduction could be
formalized by the rule:
F7— o implies F [¢|o] — [9|7] .

With this rule, it is now possible to define the logic.

The set of multi-modal propositions, mM (®) also denoted mM, is defined recursively:
e CCmM,
o If ;0 € mM , then [¢|o] € mM ,
o If p,p e mM , then ~¢p e mM , pANYpEmMM, pVp € mM and ¢ — ¢ € mM .
The multi-modal logic obeys to the following rules and axioms:
Modus Ponens.
Classical axioms. Axioms [ to [,
Modal axioms and rule. Let 0,7, ¢, € mM .

m.i. From F ¢ is deduced F [¢|o]: axioms are sure, according to any sources,

m.ii. F [¢p — |o] — ([¢|o] — [¢]o]) . If a source of information asserts a proposition and recognizes

a weaker proposition, then it asserts this weaker proposition,

m.iil. F [¢p|o] — ¢. The sources of information always tell the truth. If a source asserts a proposition,

this proposition is actually true,
m.iv. b 7 — o implies F [¢|o] — [¢|7]. Knowledge increases with stronger sources of informa-

tion.

The axiom m.iii. is questionable and may be changed. But the work presented in this paper is restricted

to this axiom.
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It is also possible to consider some exotic rules like ¢ = [¢| L], ie. a perfect source of information L
yields a perfect knowledge of the propositions ¢. Similarly, the modality [¢|T] could be interpreted as
the proposition “¢ is an absolute truth” or “¢ has a proof” : one does not need any source of information

to assert an absolute truth. ..

8.6.3 Some multi-modal theorems
8.6.3.1 Modal theorems map into multi-modal logic

Let 4 € M be a modal proposition. Let ¢ € mM be a multi-modal proposition. Let u[o] € mM be the
multi-modal proposition obtained by replacing O by [-|o] and ¢ by —[— - |o] in the proposition g. Then

F p implies F pfo].

8.6.3.2 TUseful multi-modal theorems

If the source o asserts ¢ and the source T asserts v, then the fused sources assert ¢ N :

= ([olo] A [lr]) — [6 Adlo AT)

Proof. From the axioms F (c A7) — o and F (0 AT) — 7, it is deduced:

= ¢lo] — [glo AT,

and
Flr] = WloAr].

From the useful theorems proved for modal logic, it is deduced:
[Blo ATIAlo AT] =@ Aplo AT
The proof is concluded by applying the classical rules.
ooao
If one of the sources o or T asserts ¢, then the fused sources assert ¢ :
= ([elo] v Iglr]) — [dlo AT].
Proof. This results directly from F [¢|o] — [d|o A 7] and F [@|T] — [p|lo A T].

ooo

The converse is not necessarily true:

¥ [glo nT]— ([glo] v [gl7]) -
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In fact, when sensors are not independent and possibly interactive, it is possible that the fused sensor o AT
works better than o and T separately! On the other hand, this converse property could be considered as
a necessary condition for the sensor independence. This discussion leads to the introduction of a new

axiom, the independence ariom m.indep. :

m.indep. F [p|lo AT] — ([¢|a] Vv [¢|7’]) .

8.6.4 Semnsor fusion
8.6.4.1 The context

Two sensors, o and 7, are generating informations about a set of atomic propositions ® . More precisely,
the sensors will measure independently the probability for each proposition ¢ €< ® > to be sure. In this

section, it is discussed about fusing these sources of information.

This problem is clearly embedded in the multi-modal logic formalism. In particular, the modality [-|o]
characterizes the knowledge of o about the universe < ® >. More precisely, the proposition [¢|o] explains
if ¢ is sure according to ¢ or not. This knowledge is probabilistic: the working data are the probabilities

p([¢lo]) and p([¢|7]) for ¢ €< @ >. The problem setting is more formalized in the next section.

Notation. From now on, the notation p[¢|o] is used instead of p([¢|o]) . Beware that p[¢|o] is not

the conditional probability p(4|o)!

8.6.4.2 Sensors model and problem setting

The set of multi-modal propositions, mM (0), is constructed from the set © = ®U{c, 7} . The propositions
o and 7 are referring to the two independent sensors. The proposition o A 7 is referring to the fused
sensor. It is assumed for sure that \/¢€<D ¢ is true:

I—l\/¢

PED

Consequently:

T

=T,

[v¢cm4

PED

v

PP

J-fy:

PED

Il

PP

|-

The sensors ¢ and 7 are giving probabilistic informations about the certainty of the other propositions.

and: )
p|\ ¢

Lopcd

aml —p[\/ ¢

PP

%_4v¢

PpeD

More precisely, it is known:
plglo] and plo|r], forany p €< P > .

Since the propositions o and 7 are referring to independent sensors, it is assumed that:
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e The axiom m.indep. holds for ¢ and 7,

e Forany ¢, €< ® >, p([¢|o] A [¢[7]) = pl@lalp[y|r].

A pertinent fused information is expected:

How to compute p[p|lo A T] for any ¢ e< P > ¢

8.6.4.3 Constructing the fused belief

Defining tools. The useful propositions ¢(?) are defined for any ¢ €< ® >:

A
¢ = [plo] A ﬁ( \/ [z/1|o]> .
PESD> <
The same propositions ¢(7) are defined for 7 :

[d)lT]Aﬂ( V WJIT])-

PeLP>p<ep

e

¢(T)

Properties.

The propositions $\7) are exclusive:
DAY =1, for any ¢ # 1.

Proof. Since [¢|o] A [¢]|o] = [¢ A Plo], it is deduced:

¢ A7) = [¢Aw|a]w< \/ [nla]) w( \ [nla]) :

nin<e <y

It follows:

¢ APl = [¢Aw|o]A< A ﬁ[n|o]> A( A ﬁ[n|o]> :

nn<¢ n:n<tp
Since ¢ A < ¢ or ¢ A1) < 1p when ¢ Z 1, the property is deduced.

ooo

Lemma: \/ [Wlo] < [¢lo] .
Pip<ep

Proof. The property ¢ < ¢ implies successively - ¢ — ¢, F [ — ¢|o] and F [¢|o] — [¢|o]. The lemma

is then deduced.
aoOoo

The propositions ¢\7) are exhaustive:

\/ @) = [¢|c], and in particular: \/ ) =T.
< PpeE<D>
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Proof. The proof is recursive. First, the smallest element of < ® > is up = A sc<o> ¢ and verifies:

w9 = [plo] .
Secondly:
\/ (@) = ¢l v < \/ ¢(U)> = ¢ v < \/ \/ n(d)) = ¢ v < \/ [¢|0]> )
prp<e prhp<o hp<¢ nin<YP <

Since () = [¢|o] A ﬁ(\/w<¢[¢|a]) and \/ ., 4[¥]0] < [¢lo] , it follows:

\ 9 =[¢lo].

Pip<¢

The second part of the property results from:

\/ ) = \/ @ and [\/qﬁ

peE<D> w?wSV¢;¢e®¢ oee

ol =T.

ooo

The propositions ™) are also exclusive and exhaustive:

¢TI NPT =1, for any ¢ £ 1),

and:

\V ¢ =T.

PpESDP>

It is then deduced that the propositions ¢(©) A7) are exclusive and exhaustive.H

Vo1, 1, da, e €< @ >, (¢1,91) # (B, 02) = (67 AT A (B Ay =1,  (8.9)

and:

Vo (A =T. (8.10)

P, peE<DP>

From the properties (B9) and [I0), it results that the set:

2={6@ nv /oy eca>]

is a partition of T. This property is particularly interesting, since it makes possible the computation of

the probability of any proposition factorized within X:

VACE,p(\/(b)—Zp((b). (8.11)

PEN PEN

2The notation (¢1,%1) = (¢2,%2) means ¢1 = ¢2 and 1 = 2.
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Factorizing ¢(°"7). Tt has been shown that F ([p|o] A [1]7]) — [¢ A2|o A 7]. Tt follows:

o\ (@lo] Afelr) = le ATl (8.12)

PAYP<n

The axiom m.indep. says b [n|o A 7] — ([n|o] V [n|7]). Since [\/¢€<D¢’a] = [V¢e<1>¢’ﬂ =T, it is

deduced:
F[nloAT]—><([77IU]A{V¢€¢¢‘TD ([Vaestlo] » nl7>>-
At last
plonr =\ (ol AWIr) . (8.13)
PAY<n

It is then deduced:

gloAT) = [¢|0/\T]/\ﬁ<\/ [wlo/\T]> - ( V ([nla]/\[CIT])> /\ﬁ<\/ V ([nIU]/\[CIT])> :

$<o INC<d $<d NACKH
Now:
Virco(llo] ALl = Vireas ((v£<n5<a>) A (vx<< xw))
= Vonczo Vezy Vazc (€7 AXT) =V, e (017 ACT)
At last:

¢enT) = <VnA<s¢(W(U) A Cm)) A= <\/w<¢> Varccw (1 A Cm))

- (vnAC<¢(n(U) A Cm)) . (vn/\<<¢(77(0) A C(T))> )

Since ¥ is a partition, it is deduced the final results:

dTNT) = \/ 7@ A ¢ (8.14)
NN(=9
and:
p(6") = " p(n' 7 A¢T). (8.15)
nNAC=¢

This last result is sufficient to derive p[¢|c A 7], as soon as we are able to compute the probability over

>.. The next paragraph explains this computation.
The probability over X.

Computing p(¢(?)) and p(¢(7) . These probabilities are computed recursively from p[¢|o] and
p[o|7] . More precisely, it is derived from the definition ¢(?) = [$|o] A ﬁ(\/q/j<¢[z/1|o]) and the property
[9|o] = \/de, ¥(?) that:

9 = [olo] A ﬂ< Y, W) .

P<
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Since the propositions ¢(?) are exclusive and V<o (@) < [¢|a], it follows:

p(¢'7) = plglo] = D () . (8.16)

P<

This equation, related to the Moebius transform, is sufficient for computing p((b(")) recursively.

Deriving p(gb("’”')) . First, it is shown recursively that:

p(¢@ AT = p(¢)p(™) . (8.17)

Proof - step 1. For the smallest element yu = /\¢€<<D> ¢, it happens that p(?) = [u|o] and p(™) = [u|7].
Since [u|o] and [u|7] are independent propositions, it follows then p(u(®) A u(7)) = p(u("))p(,u(”) .

Proof - step 2. Being given ¢,1 €< ® > assume p(n(") A C(T)) = p( ) (Q(T)) for any n,{ e< ® >
such that (7 < ¢ and ¢ <¥) or (n < ¢ and ( < ¥). From [¢|o] =V, -4 n'@) and [1h|7] = Vey ¢

it is deduced:

[Blo] A [5]7] = <\/ . a)) A (\/ <<r>> SAVAVATIN

n<o <y n<é (<
It follows:
p(Blol Aflr]) =D > p(n A¢t)
n<é (<o
plolo] = > p(n'”)
n<é
plelr] = > p(¢™)
=

Now, [¢|o] and [¢|7] are independent and p([¢|o] A [¢|7]) = p[¢|o]p[v|7] . Then:

Z Zp(n(d) /\<( Z Z (U) C(T)

n<¢ (<y n<¢ (<

From the recursion assumption, it is deduced p(qﬁ(") A 1/)(")) = p(gb("))p(d)(”) .
oogd

From the factorization ®IH), it is deduced:

p(¢" ) = > p(n)p(¢™) (8.18)

nNAC=¢

This result relies strongly on the independence hypothesis about the sensors.

Back to [¢|o A 7]. Reminding that [plo AT] =V, ., (@A) the fused probability p[¢lo A 7] is

deduced from p(z/J("AT)) by means of the relation:

plolo ATl =Y p("7) . (8.19)
v<é
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Conclusion. It is possible to derive an exact fused information p[ploc A 7] , ¢ €< ® > from the
informations p[p|o] , ¢ €< ® > and p[o|7] , ¢ €< ® > obtained from two independent sensors o and 7.

This derivation is done in 3 steps:
e Compute p(gb(")) and p((b(T)) by means of (B4,
e Compute p(¢° 7)) by means of [§IX),

e Compute p[¢|o A 7] by means of (BT .

8.6.4.4 Link with the DSmT

It is noteworthy that the relation (BIH) looks strangely like the DSmT fusion rule 4, although these
two results have been obtained from quite different viewpoints. In fact the similarity is not just related
to the fusion rule and the whole construction is identical. More precisely, let us now consider the problem

from the DSmT viewpoint.

Let be defined for two sensors o and 7 the respective bba m, and m., over < ® >. The belief function

associated to these two bba, denoted respectively Bel, and Bel, , are just verifying:

Bel,(¢) = > mo(¢) and Bel.(¢) = > m,(4).
<o <o

Conversely, the bba m, is recovered by means of the recursion:

Vo €< ® >, mo(¢) = Belo(¢) — > mq(1)) .
Pp<¢

The fused bba m, @& m, is defined by:

Mmye D m7(¢) = Z ma(¢>m7 (77) :
PAN=¢

Now make the hypothesis that the probabilities p[¢|o] and p[p|7] are initialized for any ¢ €< & > by:

plglo] = Belo(¢) and  p[¢|7] = Bel-(4) .
Then, the following results are obviously obtained:
o p(¢\7) =my(¢) and p(¢(7) =m, (),
o p(¢°"7) =ms ©mq(9),
e plp|o A 7] = Bel, @ Bel,(¢) , where Bel, @ Bel, is the belief function associated to ms & m. .

From this discussion, it seems natural to consider the probabilized multi-modal logic mM as a possible

logical interpretation of DSmT.
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Evaluate the consequence of the independence axiom. By using the axiom m.indep. , it is possible
to prove (BI3)). Otherwise, it is only possible to prove (8I2), which means that possibly more belief
is put on the smallest propositions, in comparison with the independent sensors case. Such a property
expresses a better and more precise knowledge about the world. Then it appears, accordingly to the
mM interpretation of DSmT, that the fusion rule ® is an optimal rule only for fusing independent and

(strictly) reliable sensors.

8.7 Logical interpretation of the Bayes inference

Notation. In the sequel, ¢ < 9 is just an equivalent notation for (¢p — @) A (¢ — ).

General discussion. The Bayes inference explains the probability of a proposition 1, while is known

a proposition ¢. This probability is expressed as follows by the quantity p(i|¢@) :

p(@ AY) = p(@)p(¥lo) .

From this implicit and probabilistic definition, (1)|¢) appears more like a mathematical artifice than an
actual “logical” operator. However, (1|¢) has clearly a meta-logical meaning although it is intuitive and
just implied: it characterizes the knowledge about ¥, when a prior information ¢ is known. In this
section, we are trying to interpret the Bayes operator ( | ) as a logical operator. The author admits
that this viewpoint seems extremely suspicious: the Bayes inference implies a change of the probabilistic
universe, and then a change of the truth values! It makes no sense to put at the same level a conditional
probability with an unconditional probability! But in fact, there are logics which handle multiple truths:
the modal logics, and more precisely, the multi-modal logics. However, the model we are defining here is
quite different from the usual modal models.

From now on, we are assuming a same logic involving the whole operators, ie. A, =, V, — and (| ), and

a same probability function p defined over the resulting propositions.

When defining a logic, a first step is perhaps to enumerate the intuitive properties the new logic should
have, and then derive new language and rules. Since a probability is based on a Boolean algebra, this
logic will include the classical logic. A first question arises then: is the Bayes inference (| ) the same
inference than in classical logic ? More precisely, do we have (¥|¢) = ¢ — ¢ ? If our logical model is

coherent with the probability, this should imply:

p(Y]¢) = p(¢ — V) =p(=d V) .

Applying the Bayes rule, it is deduced:

p(o ANY) = p(d)p(=d V) = (p(d A1) +p(d A —))(1 —p(p A ).
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This is clearly false: eg. taking p(¢ A =) = I and p(¢ A p) = 1 results in 5 = 1%! The Bayes inference
(¥|@) is not a classical inference. Since it is a new kind of inference, we have to explain the meaning of

this inference.

The Bayes inference seems to rely on the following principles:

e Any proposition ¢ induces a sub-universe, entirely characterized by the Bayes operator (-|¢). For
this reason, (-|¢) could be seen as a conditional modality. But this modality possesses a strange
quality: the implied sub-universe is essentially classical. From now on, (-|¢) refers both to the

modality and its induced sub-universe,

e The sub-universe (-|T) is just the whole universe. The empty universe (-|.L) is a singularity which

cannot be manipulated,

e The sub-universe (-|¢) is a projection of the sup-universe (which could be another sub-universe)
into ¢. In particular, the axioms of (-|¢) result from the propositions which are axioms within the

range ¢ in the sup-universe. Moreover, the modus ponens should work in the sub-universes,

e Any sub-proposition (¢|¢) implies the infered proposition ¢ — 1 in the sup-universe. This last
point in not exactly the converse of the previous point. The previous point concerns axioms, while
any possible propositions are considered here. This (modal-like) difference is necessary and makes

the distinction between (| ) and —,
e Since sub-universes are classical, the negation has a classical behavior: the double negation vanishes,

e The sub-universe of a sub-universe is the intersected sub-universe. For example, “considering blue

animals within a universe of birds” means “considering blue birds”.

In association with the Bayes inference is the notion of independence between propositions, described by
the meta-operator x , which is not an operator of the logic. More precisely, v is independent to ¢, ie.
1 X ¢, when it is equivalent to consider ¢ within the sub-universe ¢ or within the sup-universe. Deciding
whether this meta-operator is symmetric or not is probably another philosophical issue. In the sequel,
this hypothesis is made possible in the axiomatization but is not required. Moreover, it seems reasonable
that complementary propositions like ¢ and —¢ cannot be independent unless ¢ = T. In the following

discussion, such a rule is proposed but not required.

8.7.1 Definitions
8.7.1.1 Bayesian modal language
The set of the Bayesian propositions bM is constructed recursively:

e C CbHM,



8.7. LOGICAL INTERPRETATION OF THE BAYES INFERENCE 185

o If ¢,4) € bM , then (|¢) € bM ,

o If ¢, € bM , then ~¢p € DM , pNYp € bM , ¢V € bM and ¢ — 1p € bM .

8.7.1.2 Bayesian logical rules
The logic over bM obeys the following rules and axioms:

e (lassical axioms and modus ponens,
b.i. (¢|T) = ¢; the sub-universe of T is of course the whole universe,

b.ii. It is assumed ¥ —¢. Then, - ¢ — ¢ implies b (¥|¢) ; axioms within the range ¢ are axioms of the

sub-universe (-|¢) ,

b.iii. It is assumed ¥ —¢. Then, - (¥ — n|¢) — ((¥|¢) — (n|¢)); when both an inference and a
premise are recognized true in a sub-universe, the conclusion also holds true in this sub-universe.

This property allows the modus ponens within sub-universes,

b.iv. It is assumed ¥ —¢. Then, - (Y|¢p) — (¢ — ) ; the modality (-|¢) implies the truth within the
range ¢,

b.v. It is assumed ¥ —¢. Then, ~(—|p) = (V|@); there is no doubt within the modality (-|¢). Sub-

universes have a classical negation operator. However, truth may change depending on the propo-

sition of reference ¢,

b.vi. It is assumed ¥ —(¢ A z/))H Then, ((77|1/))‘¢)
(-|@) is the intersected sub-universe (-|d A1),

(n|Y A @) ; the sub-universe (-|1p) of a sub-universe

b.vii. ¥ X ¢ means F (Y|¢) < ¥ ; a proposition 1 is independent to a proposition ¢ when it makes no

difference to observe it in the sub-universe (-|¢) or not,
b.viii. (optional) ¢ x ¢ implies ¢ x 9 ; the independence relation is symmetric,

b.ix. (optional) Assuming ¢ X ¢ and F ¢ V ¢ implies - ¢ or - ¢ ; this uncommon logical rule explains
that complementary and non trivial propositions cannot be independent. EG. to an extreme degree,
¢ and —¢ are strictly complementary and at the same time are not independent unless ¢ = T or

o= 1.

These axioms leave the modality (| L) undefined, by requiring the condition ¥ —¢ for any deduction on
the sub-universe (-|¢). In fact, the modality (-|L) is a singularity which cannot be defined according to
the common axioms and rules. Otherwise, it would be deduced from + L — ¢ that - (¢|L); this last
deduction working for any ¢ would contradict the negation rule =(=¢|L) = (¢|L). Nevertheless, the

axioms b.vii. and b.viii. induces a definition of x for any pair of propositions, except (L, L1).

31t will be proved that the hypothesis ¥ —(¢ A ) implies the hypotheses ¥ —¢ and ¥ (—)|) .
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8.7.2 Properties
8.7.2.1 Probability over bM

A probability p over bM is defined according to the definition of section B4]. In particular, since the

meta-operator X characterizes an independence between propositions, it is naturally hypothesized that:

¢ x 1 implies p(¢p AY) = p(d)p(v) .

8.7.2.2 Useful theorems
Sub-universes are classical. It is assumed ¥ —¢. Then:
o (~¢l¢) =~ (¥l9),
o W And) = (Yo) A (o),
o (¥ Vnlo) = (Ylo)V (nl¢),
o (¥ —nlg) = ¥le) — (nl9) .
Proof. The first theorem is a consequence of axiom b.v.

From axiom b.iii., it is deduced F (=¢) V 5|¢) — (=(¢[¢) V (n]¢)) . Applying the first theorem, it
is deduced F (=) V n|¢) — ((—¢[¢) V (n]@)) . At last:

= Vale) — (W) v (1)) - (8.20)
It is deduced - =((¥|¢) V (n]¢)) — —(¢ V n|¢) and, by applying the first theorem,
= ((=¢l9) A (=ml9)) — (= A-mlg) .
At last:
= ((@le) A () — (v Anle) .
Now, it is deduced from ¢ — ((¢¥ An) — @) that:
= (W An) —[) -
By applying the axiom b.iii. :
=@ Anlg) — (¥]6) .
It is similarly proved that F (¥ A n|¢) — (n]|¢) and finally:
F (@ Anlg) — ((Wle) A (1]9)) -
The second theorem is then proved.
Third theorem is a consequence of the first and second theorem.

Last theorem is a consequence of the first and third theorem.

ooo
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Inference property. It is assumed ¥ —¢. Then (¢|¢) A d = ¢ A . In particular, the hypothesis
¥ —(¢ A1) implies the hypotheses ¥ —¢ and ¥ (—)|¢) .

Proof. From b.iv. it comes F (¢p|¢p) — (¢ — ). ThenF —(¢ — ¥) — = (¢|¢p) and F (dA—Y) — (—)|@) .
It follows F (¢ A ) — (¢|¢) and finally:

F (o AY) — ((Wlo) Ag) -
The converse is more simple. From F (¢¢) — (¢ — 1), it follows:
F(@lo) Ad) = (0= D) Ag) .
Since (¢ — 1) A ¢ = ¢ A1), the converse is proved.

ooo

Intra-independence. It is assumed ¥ —¢. Then (n|¢) x (¥|¢) is equivalently defined by the property
= ((ly) < n|¢).

Proof.
((nl) < n|o) = ((lv)|o) < (ld) = (nle AY) < (n|¢)

= (o A (¥l9)) < (o) = ((ld)|(W]e)) < (n]e) -

oono

Independence invariant. v x ¢ implies = X ¢.
Proof.
(—|p) & —p = =(¥[@) & = = (Plg) = ¢ .

oono

Inter-independence. It is assumed ¥ —¢. Then (|¢) X ¢.

Proof. From axiom b.vi.:
(W1)9) = Wlo A o) = (¥]9) .
It is deduced (1|¢) x ¢.

ooo

Corollary: assuming the rules b.viii. and b.iz., the hypotheses ¥ —¢ and ¥ (—|¢) imply the hypothesis
F=(ony).

Proof. Assume - —(¢ A ). Then = =(¢ A (¥|¢)) and - —¢ V =(|¢) . Since (—¢)[¢) x ¢, it follows
@ X (—1)|@) from rule b.viii. And then —¢ x =(¢|¢) . Now, applying the rule b.ix. to F —¢V —(¥|9),
it is deduced F —¢ or F =(¢|¢) .

ooo
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A proposition is true in its proper sub-universe. It is assumed ¥ —¢. Then + (¢|¢) .

Proof. Obvious from F ¢ — ¢.

oogd

Narcissist independence. It is assumed ¥ —=¢ . Then, ¢ x ¢ implies I ¢ and conversely . In particular,
¢ X ¢ implies ¢ = T .

Proof.
(Plg) = d=T = 0p=¢.

oono

Non transitivity (modus barbara fails). It is assumed ¥ —¢ and ¥ —¢. Then

¥ (Wlo) — ((lv) — (nl9)) -

Proof. The choice ¢ = T, n = ¢ and ¢ Z T is a counter example:
(Tlg) = ((=0]T) = (=¢l¢)) =T — (= — L) =¢.
oOoo

8.7.2.3 Axioms and rules extend to sub-universes

Assume ¥ —¢. The rules and axioms of bM extend on the sub-universe (-|¢):

e b9 implies F (19),

o It is assumed ¥ =(¢ A p). Then F (¢ — n|¢) implies = ((n|e)[¢)

o It is assumed ¥ ~(¢ A %)) Then I ((n — ¢|)|¢) — ((n¥) — (C[¥)[9),
o It is assumed * ~(¢ A ). Then i ((n|¢))|¢) — (¥ — nl¢).

Proof. + ¢ implies - ¢ — ¢ and then & (¢|¢). First point is then proved.

It is successively implied from F (¢ — 7|@) :
= (lg) — (nlé)
= ((nlo)|(¥19)) ,
= (n]o A (¢]0))
= (nlo Avb)
= ((nlv)|e) -
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Second point is then proved.
By applying axiom b.iii. and first point, it comes:
= (1= <) = (@l = €)|9) -

It follows:
= ((n = <lv)|o) — ((lv) — Clv)|o) -

Third point s proved.

By applying axiom b.iv. and first point, it comes:

F ((ly) — (@ —n)|e) .

It follows:
F((l)|o) — (& — nl¢) .

Fourth point is proved.

oOono

8.7.2.4 Bayes inference

It is assumed ¥ —¢ . Define p(1|¢) as an abbreviation for p((1|¢)) . Then:

p(¥[@)p(d) =p(@ A1) .
Proof. This result is implied by the theorems (¢|¢) A ¢ = ¢ A and (V|¢) X ¢.

ooo

8.7.2.5 Conclusion

Finally, the Bayes inference has been recovered from our axiomatization of the operator (-|-). Although
this result needs more investigation, in particular for the justification of the coherence of bM , it appears
that the Bayesian inference could be interpreted logically as a manner to handle the knowledges. A
similar result has been obtained for the fusion rule of DSmT. At last, it seems possible to conjecture that

logics and probability could be mixed in order to derive many other belief rules or inferences.

8.8 Conclusion

In this contribution, it has been shown that DSmT was interpretable in the paradigm of probabilized
multi-modal logic. This logical characterization has made apparent the true necessity of an independence

hypothesis about the sensors, when applying the & fusion rule. Moreover, it is expected that our work
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has given some clarifications about the semantic associated with the conjunctive rule of DSmT.

A similar logical interpretation of the Bayes inference has been constructed, although this preliminary
work should be improved. At last, it seems possible to handle probabilized logics as a relatively general
framework for manipulating non deterministic informations. This is perhaps a generic method for con-
structing new customized belief theories. The principle is first to construct a logic well adapted to the
problem, second to probabilize this logic, and third to derive the implied new belief theory (and forget

then the mother logic!) :

. . Probabilized .
Classical Logic \ Probability
! > !
/
New Logic . New Belief Theory
propositions

It seems obviously that there could be many theories and rules for manipulating non deterministic infor-
mations. This is not a new result and I feel necessary to refer to the works of Sombo, Lefévre, De Brucq

and al. [6, @, [1] , which have investigated such questions.

At last, a common framework for both DSmT and Bayesian inference could be certainly derived by fusing

the logics mM and bM .
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Chapter 9

On conjunctive and disjunctive

combination rules of evidence

Hongyan Sun and Mohamad Farooq
Department of Electrical & Computer Engineering
Royal Military College of Canada
Kingston, ON, Canada, K7K 7B4

Abstract: In this chapter, the Dempster-Shafer (DS) combination rule is examined
based on the multi-valued mapping (MVM) and the product combination rule of mul-
tiple independent sources of information. The shortcomings in DS rule are correctly
interpreted via the product combination rule of MVM. Based on these results, a new
justification of the disjunctive rule is proposed. This combination rule depends on
the logical judgment of OR and overcomes the shortcomings of DS rule, especially, in
the case of the counter-intuitive situation. The conjunctive, disjunctive and hybrid
combination rules of evidence are studied and compared. The properties of each rule
are also discussed in details. The role of evidence of each source of information, the
comparison of the combination judgment belief and ignorance of each rule, the treat-
ment of conflicting judgments given by sources, and the applications of combination
rules are discussed. The new results yield valuable theoretical insight into the rules
that can be applied to a given situation. Zadeh’s example is also included in this
chapter for the evaluation of the performance and the efficiency of each combination

rule of evidence in case of conflicting judgments.
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9.1 Introduction

ombination theory of multiple sources of information is always an important area of research in
Cinformation processing of multiple sources. The initial important contribution in this area is due
to Dempster in terms of Dempster’s rule [I]. Dempster derived the combination rule for multiple in-
dependent sources of information based on the product space of multiple sources of information and
multi-valued mappings. In the product space, combination-mapping of multiple multi-valued mappings
is defined as the intersection of each multi-valued mapping, that is, an element can be judged by combi-
nation sources of information if and only if it can be judged by each source of information simultaneously,
irrespective of the magnitude of the basic judgment probability. Shafer extended Dempster’s theory to
the space with all the subsets of a given set (i.e. the power set) and defined the frame of discernment,
degree of belief, and, furthermore, proposed a new combination rule of the multiple independent sources
of information in the form of Dempster-Shafer’s (DS) combination rule [2]. However, the interpretation,
implementation, or computation of the technique are not described in a sufficient detail in [2]. Due to
the lack of details in [2], the literature is full of techniques to arrive at DS combination rule. For exam-
ple, compatibility relations [3, 4], random subsets |5, |6l [7], inner probability [8, @], joint (conjunction)
entropy [I0] etc. have been utilized to arrive at the results in [2]. In addition, the technique has been
applied in various fields such as engineering, medicine, statistics, psychology, philosophy and account-
ing [I1], and multi-sensor information fusion [12, [T3} T4} [TH, [[6] etc. DS combination rule is more efficient
and effective than the Bayesian judgment rule because the former does not require a priori probability
and can process ignorance. A number of researchers have documented the drawbacks of DS techniques,
such as the counter-intuitive results for some pieces of evidence [I7, [[8, [[9], computational expenses and

independent sources of information [20, 21].

One of the problems in DS combination rule of evidence is that the measure of the basic probability
assignment of combined empty set is not zero, i.e. m(f)) # 0, however, it is supposed to be zero, i.e.
m(0) = 0. In order to overcome this problem, the remaining measure of the basic probability assignment
is reassigned via the orthogonal technique [2]. This has created a serious problem for the combination
of the two sharp sources of information, especially, when two sharp sources of information have only one
of the same focal elements (i.e. two sources of information are in conflict), thus resulting in a counter-
intuitive situation as demonstrated by Zadeh. In addition, DS combination rule cannot be applied to
two sharp sources of information that have none of the same focal elements. These problems are not

essentially due to the orthogonal factor in DS combination rule (see references [22, 23]).

In general, there are two main techniques to resolve the Shafer problem. One is to suppose m(0) # 0

or m(f) > 0 as it is in reality. The Smets transferable belief model (TBM), and Yager, Dubois &
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Prade and Dezert-Smarandache (DSm) combination rules are the ones that utilize this fact in refer-
ences [20), 24 25| 26l 27, 28]. The other technique is that the empty set in the combined focal elements is
not allowed and this idea is employed in the disjunctive combination rule [22, 23, 29, B0, BT]. Moreover,
E. Lefevre et al. propose a general combination formula of evidence in [32] and further conjunctive com-

bination rules of evidence can been derived from it.

In this chapter, we present some of work that we have done in the combination rules of evidence.
Based on a multi-valued mapping from a probability space (X, , u) to space S, a probability measure
over a class 2° of subsets of S is defined. Then, using the product combination rule of multiple informa-
tion sources, Dempster-Shafer’s combination rule is derived. The investigation of the two rules indicates
that Dempster’s rule and DS combination rule are for different spaces. Some problems of DS combina-
tion rule are correctly interpreted via the product combination rule that is used for multiple independent

information sources. An error in multi-valued mappings in [I1] is pointed out and proven.

Furthermore, a novel justification of the disjunctive combination rule for multiple independent sources
of information based on the redefined combination-mapping rule of multiple multi-valued mappings in
the product space of multiple independent sources of information is being proposed. The combination
rule reveals a type of logical inference in the human judgment, that is, the OR rule. It overcomes the
shortcoming of DS combination rule with the AND rule, especially, the one that is counter-intuitive, and
provides a more plausible judgment than DS combination rule over different elements that are judged by

different sources of information.

Finally, the conjunctive and disjunctive combination rules of evidence, namely, DS combination rule,
Yager’s combination rule, Dubois and Prade’s (DP) combination rule, DSm’s combination rule and the
disjunctive combination rule, are studied for the two independent sources of information. The properties
of each combination rule of evidence are discussed in detail, such as the role of evidence of each source
of information in the combination judgment, the comparison of the combination judgment belief and
ignorance of each combination rule, the treatment of conflict judgments given by the two sources of
information, and the applications of combination rules. The new results yield valuable theoretical insight
into the rules that can be applied to a given situation. Zadeh’s example is included in the chapter
to evaluate the performance as well as efficiency of each combination rule of evidence for the conflict

judgments given by the two sources of information.
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9.2 Preliminary

9.2.1 Source of information and multi-valued mappings

Consider n sources of information and corresponding multi-valued mappings [I]. They are mathemat-
ically defined by n basic probability spaces (X;,Q;, ;) and multi-valued mappings I'; which assigns a
subset I';x; C S to every z; € X;, i =1,2,...,n. The space S into which I'; maps is the same for each

1, namely: n different sources yield information about the same uncertain outcomes in S.

Let n sources be independent. Then based on the definition of the statistical independence, the

combined sources (X, 2, 1) can be defined as

X=X xXox...xX, (9.1)
Q= xWx...xQ, (9.2)
b= i1 X g X X iy (9.3)
for all x € X, T is defined as
I'e=TxNnTyxn...NT,x (9.4)

The definition of I" implies that z; € X; is consistent with a particular s € S if and only if s € T';x;,
fori=1,2,...,n, and consequently z = (x1,x2,...,x,) € X is consistent with s if and only if s € I';z;

foralli=1,2,...,n [II.

For finite S = {s1,52,...,n}, suppose Ss,s,...5, denotes the subset of S which contains s; if §; =1
and excludes s; if §; =0, for j =1,2,...,n. Then the 2" subsets of S so defined are possible for all I';z;

(i=1,2,...,n), and partition X; into

Xi= U X9, (9.5)
6162...0m
where
Xéi)tbén ={x; € X;,Tsx; = Ss5,6,..5,} (9.6)
and define [T]

PSsa.s, = (X5, 5,) (9.7)
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9.2.2 Dempster’s combination rule of independent information sources

Based on (@) - @), the combination of probability judgments of multiple independent information

sources is characterized by [I] p((;?&mén, 1=1,2,...,n. That is

_ 1) (2) (n)
P§182...6, = E , Psys saPs@ge 5@ - Pymysm) s (9.8)
5_5(1)6(2) 6("7') 1 2 n 1 2 n 1 2 n
i=0; 0p -0

Equation (@) indicates that the combination probability judgment of n independent information
sources for any element Ss,5,...5, of S equals the sum of the product of simultaneously doing probability
judgment of each independent information source for the element. It emphasizes the common role of each

independent information source. That is characterized by the product combination rule.

9.2.3 Degree of belief

Definition 1:
If © is a frame of discernment, then function m : 2 — [0,1] is calledﬂ a basic belief assignment

whenever

m(0) =0 (9.9)

and

> om(A) =1 (9.10)

ACO

The quantity m(A) is called the belief mass of A (or basic probability number in [2]).

Definition 2:
A function Bel : 2© — [0, 1] is called a belief function over © [2] if it is given by
Bel(A) = > m(B) (9.11)
BCA

for some basic probability assignment m : 2© — [0, 1].

Definition 3:
A subset A of a frame O is called a focal element of a belief function Bel over © [2] if m(A) > 0. The

union of all the focal elements of a belief function is called its core.

Theorem 1:
If © is a frame of discernment, then a function Bel : 2© — [0,1] is a belief function if and only if it

satisfies the three following conditions [2:

Lalso called basic probability assignment in [2].
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1.
Bel()) = 0 (9.12)
2.
Bel(©) = 1 (9.13)
3. For every positive integer n and every collection Ay, ..., A, of subsets of O,
Bel(AiU...UA,) = > (=)™ Bel(nie;4)) (9.14)
Ic{1,...,n}
140
Definition 4:
The function P1: 2 — [0,1] defined by
Pl(A) =1 — Bel(A) (9.15)

is called the plausibility function for Bel. A denotes the complement of A in 2©.
Definition 5:

If © is a frame of discernment, then a function Bel : 2® — [0, 1] is called Bayesian belief [2] if and

only if
1. Bel(®) =0 (9.16)
2. Bel(®) =1 (9.17)
3. IfA,BCO®and ANB=0,then  Bel(AU B) = Bel(A) + Bel(B) (9.18)

Theorem 2:
If Bel : 2© — [0, 1] is a belief function over ©, Pl is a plausibility corresponding to it, then the following

conclusions are equal [2]
1. The belief is a Bayesian belief.
2. Each focal element of Bel is a single element set.

3. VA C O, Bel(A) + Bel(A) = 1.

9.2.4 The DS combination rule

Theorem 3:

Suppose Bel; and Bely are belief functions over the same frame of discernment © = {61,602,...,0,}
with basic belief assignments m; and mo, and focal elements A;, Ao, ..., Ay and By, Bo, ..., B;, respec-
tively. Suppose

> mi(A)ma(B;) < 1 (9.19)

i,
AiﬂB]‘:@
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Then the function m : 2® — [0, 1] defined by m () = 0 and

Z my(A;)ma(B;)
AnB—A
1= > mi(A)ma(B;)

1,J
AiﬁBj:@

m(A) = (9.20)

for all non-empty A C © is a basic belief assignment [2]. The core of the belief function given by m is
equal to the intersection of the cores of Bel; and Bels. This defines Dempster-Shafer’s rule of combination

(denoted as the DS combination rule in the sequel).

9.3 The DS combination rule induced by multi-valued mapping

9.3.1 Definition of probability measure over the mapping space

Given a probability space (X,Q, 1) and a space S with a multi-valued mapping;:

r'X—§8 (9.21)

Vee X, Tz CS (9.22)

The problem here is that if the uncertain outcome is known to correspond to an uncertain outcome

s € I'z, then the probability judgement of the uncertain outcome s € I'z needs to be determined.

Assume S consists of n elements, i.e. S = {s1,892,...,5,}. Let’s denote Ss,s,...5, the subsets of S,

where §; =1 or 0,7=1,2,...,n, and

56166, = U 8i (9.23)
1#5,0;=1,0;=0

then from mapping (I21)-(LZ2) it is evident that Ss,s,. s, is related to I'z. Therefore, the 2° subsets

such as in equation [@IZ3) of S yield a partition of X

X= J Xss.s. (9.24)
5152...5n
where
X5165..5, =1z € X, Tx = S5,5,...6, (9.25)

Define a probability measure over 2% = {Ss,5, s, } as M : 2% = {Ss,5, 5.} — [0,1] with

0,55,55...6, =0
M(S5,5,...5,) = (9.26)

w(X5155...60)
T (X ) 2 061628, #0
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where M is the probability measure over a class 2° = {Ss,s,...5, } of subsets of space S which I' maps X

into.

9.3.2 Derivation of the DS combination rule

Given two n = 2 independent information sources, then from equation ([LJ), we have

_ 1 (1) 2 (2)
1(X5,5,...6,) = > (XG50 s D (X5 ) (9.27)
— (1) (2)
TXs169. 00 =D X0y 5 MUOX g5 s

From equation ([@28), if Ss,s,...5, 7 0, we have for i = 1,2

1 D(Xs,55.5.) = MD(S5.5,...5.)(1 — D (Xo0..0)) (9.28)

and

M(X5152~..5n) = M(S5152...5n)(1 - /J'(XOOO)) (929)

where equations ([@I28) and ([Zd) correspond to information source 4, (i = 1,2) and their combined

information sources, respectively. Substituting equations (I2Z8)-(EZZ9) into equation ([EZ7), we have

ST MO (S5 )M (Ssysy.sp) 1 — 1V (X5 o)1 — 1P (XE) o))

M(S _ 9=6'5" 9.30
(S5165...6,,) 1 — pu(Xoo..0) .
and
1 2 ! 2
[1— 150 I~ P XG) )] [1— n O XG0 Il — (XG0 o)
— 1/ v (D) 2) (v (2)
1 — pu(Xoo...0) Z M( )(X5i5§~~~5%)u( )(Xzs;’é;’...é;{)
LX), X,
1
_ 5 o (9.31)
> MY (Ss6..0, )M (Sopsy...o7)

Ssr st 1 NS s 1 70
sq6h..50, Ssrrst i 7

Substitute (@3 back into [@30), hence we have

> MW(S555..60 )YMP (Sspsy._.570)
Ss15,...57,VSstrsy . 511 =55165...6n
M(S515,..6,) = —— VI EIT (9.32)
1 > (Ss1s5...57) (Ssysy...sm)
Ssrsy...on NSsysy . o =0
When 55152”,% = (Z),
M (S5,5,..5,) = 0 (9.33)

Thus, equations [@I32) and [@33)) are DS combination rule. Where space S = {s1, s2,...,8,} is the

frame of discernment.
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The physical meaning of equations ([@8) and (@I32)-@33) is different. Equation [LJ) indicates the
probability judgement combination in the combination space (X, €, ) of n independent information
sources, while equations ([@32)-33) denotes the probability judgement combination in the mapping
space (S,2°, M) of n independent information sources. The mappings of I and T';, (i = 1,2, ...,n) relate
equations ([@8) and ([@32)-([@33). This shows the difference between Dempster’s rule and DS combination

rule.

9.3.3 New explanations for the problems in DS combination rule

From the above derivation, it can be seen that DS combination rule is mathematically based on the prod-
uct combination rule of multiple independent information sources as evident from equations (@1I)- (@J).
For each of the elements in the space, the combination probability judgement of independent information
sources is the result of the simultaneous probability judgement of each independent information source.
That is, if each information source yields simultaneously its probability judgement for the element, then
the combination probability judgement for the element can be obtained by DS combination rule, re-
gardless of the magnitude of the judgement probability of each information source. Otherwise, it is the

opposite. This gives raise to the following problems:

1. The counter-intuitive results

Suppose a frame of discernment is S = {s1, 2, s3}, the probability judgments of two independent

information sources, (X;, Q;, i;), i = 1,2, are my and ma, respectively. That is:

(Xl, Ql,,ul) : ml(sl) = 099, m1(52) =0.01

and

(Xg, Qg,ug) : m2(82) = 0.01, m2(83) =0.99
Using DS rule to combine the above two independent probability judgements, results in
m(sz) =1,m(s1) =m(s3) =0 (9.34)

This is counter-intuitive. The information source (X1, {1, 11) judges s1 with a very large probability
measure, 0.99, and judges so with a very small probability measure, 0.01, while the information
source (Xa, 9, p2) judges s3 with a very large probability measure, 0.99, and judges sy with a very
small probability measure, 0.01. However, the result of DS combination rule is that s; occurs with
probability measure, 1, and others occur with zero probability measure. The reason for this result
is that the two information sources simultaneously give their judgement only for an element sy of

space S = {s1, s2, s3} although the probability measures from the two information sources for the
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element are very small and equal to 0.01, respectively. The elements s; and s3 are not judged by
the two information sources simultaneously. According to the product combination rule, the result

in equation (@34 is as expected.

It should be pointed out that this counter-intuitive result is not completely due to the normalization
factor in highly conflicting evidence [T, [I8, [T9] of DS combination rule. This can be proven by the

following example.

Suppose for the above frame of discernment, the probability judgments of another two independent

information sources, (X;, Q;, i1;), i = 3,4, are my and my, are chosen. That is:
(X3, Qg,ug) : mg(sl) = 0.99, mg(S) =0.01

and

()(47 Q4,/L4) : m4(83) = 0.99, m4(S) =0.01

The result of DS combination rule is
m’(s1) = 0.4975,m/(s3) = 0.4975,m’(S) = 0.0050

This result is very different from that in equation (@3] although the independent probability
judgements of the two information sources are also very conflicting for elements s; and s3. That
is, the information source, (X3, Qs, u3), judges s1 with a very large probability measure, 0.99, and
judges S with a very small probability measure, 0.01, while the information source (X4, 4, 114)
judges s3 with a very large probability measure, 0.99, and judges S with a very small probability

measure, 0.01.

This is due to the fact that the same element S = {s1, $2,53} of the two information sources
includes elements s; and s3. So, the element s; in the information source, (X3, Qs3, us), and the
element S = {s1, 82,83} in the information source, (X4, 4, 14) have the same information, and
the element S = {s1, s2, s3} in information source, (X3, {3, u3), and the element s3 in information
source, (X4, 4, pq) have the same information. Thus, the two independent information sources can
simultaneously give information for the same probability judgement element S = {s1, s2, 3}, and
also simultaneously yield the information for the conflicting elements s; and s3, respectively. That

is required by the product combination rule.

2. The combination of Bayesian (sensitive) information sources

If two Bayesian information sources cannot yield the information about any element of the frame
of discernment simultaneously, then the two Bayesian information sources cannot be combined

by DS combination rule. For example, there are two Bayesian information sources (X1, 1, p1)
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and (Xa,9, u2) over the frame of discernment, S = {s1, $2,83,54}, and the basic probability

assignments are, respectively,
(Xl,Ql,/J,l) : ml(sl) = 0.4, m1(82) =0.6

and

(Xg, Qg, /1,2) : m2(83) = 0.8, m2(84) =0.2

then their DS combination rule is
m(s1) = m(s2) =m(ss) =m(sq) =0

This indicates that every element of the frame of discernment occurs with zero basic probability
after DS combination rule is applied. This is a conflict. This is because the source (X1,Q1, p1)
gives probability judgements for elements s; and s of the frame of discernment, S = {s1, s2, $3, 84},
while the source (Xaq, 9, u2) gives probability judgements for elements s3 and s4 of the frame of dis-
cernment, S = {s1, S2, 83, s4}. The two sources cannot simultaneously give probability judgements
for any element of the frame of discernment, S = {s1, $2, s3,84}. Thus, the product combination

rule does not work for this case.

Based on the above analysis, a possible solution to the problem is to relax the conditions used in
the product combination rule (equations (@I)-(@4l)) for practical applications, and establish a new

theory for combining information of multiple sources (see sections Bl and ).

9.3.4 Remark about “multi-valued mapping” in Shafer’s paper

On page 331 of [I1] where G. Shafer explains the concept of multi-valued mappings of DS combination
rule, the Dempter’s rule is considered as belief, Bel(T) = P{z|I'(z) C T,VT C S}, combination. The

following proof shows this is incorrect.

Proof: Given the two independent information sources, equations ([@II)-([@d) become as the followings:

X = X1 X XQ (935)
Q= Ql X QQ (936)
=1 X 2 (9.37)

Iz =T1aNTaz (9.38)
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then
Bel(T') # Bel; (T') @ Bela(T)

in fact, VI' C S,
{T'(z) €T} % {T(21) ST} N{T(22) € T}

hence,

{z€ XT(z) CT} # {21 € X1|D(x1) C T} x {2 € Xo|T(z2) C T}

i.e. the product combination rule in equations ([I33)-([@38)) is not satisfied by the defined belief Bel(T') =
P{z|l'(x) C T,VT C S}. Therefore, the combination belief cannot be obtained from equations (3H)-
@3]) with the belief, Bel(T) = P{z|T'(z) C T,VT C S}. When we examine the product combination
rule in equations ([@I)- (@), it is known that the combination rule is neither for upper probabilities, nor
for lower probabilities (belief), nor for probabilities of the type, ps,s,...5, = #(Xs,5,...6,) []. It is simply

for probability spaces of multiple independent information sources with multi-valued mappings.

9.4 A new combination rule of probability measures over map-
ping space

It has been demonstrated in section @3 that DS combination rule is mathematically based on the product
combination rule of multiple independent information sources. The combination probability judgment of n
independent information sources for each element is the result of the simultaneous probability judgment
of each independent information source. That is, if each information source yields simultaneously its
probability judgment for the element, then the combination probability judgment for the element can
be obtained by DS combination rule regardless of the magnitude of the judgment probability of each
information source. Otherwise, such results are not plausible. This is the main reason that led to
the counter-intuitive results in [I'd, [[8, [[9]. We will redefine the combination-mapping rule I using n
independent mapping I';, ¢ = 1,2,...,n in order to relax the original definition in equation (@) in
section The combination of probabilities of type p((;?élm s, in the product space (X, Q, ) will then
be realized, and, furthermore, the combination rule of multiple sources of information over mapping space
S will also be established.

9.4.1 Derivation of combination rule of probabilities pg?(;% 5

Define a new combination-mapping rule for multiple multi-valued mappings as

Il'e =T1xUTYyzxU... U,z (9.39)
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It shows that x; € X is consistent with a particular s € S if and only if s € I';z;, for i = 1,2,...,n,
and consequently z = {z1,z2,...,2,} € X is consistent with that s if and only if there exist certain

1€ {1,2,...,n}, such that s € T';z;.

For any T' C S, we construct sets

T={reX,TeCT} (9.40)
Ti = {Jil e X;,I'x; C T} (941)

and let
NT) = (T) (9.42)
A (T) = m(Ty) (9.43)

Hence,
T=TyxTox...xT, (9.44)

and

MT) = AX(T) x XB(T) % ... x XW(T) (9.45)

Consider a finite S = {s1, s2, 3} and two independent sources of information characterized by p(%)o, pgio)o,

p(()i1)07 p(()i())l7 pgil)()7 pglglv pg)ll)l and pgil)lv 1= 172 Suppose /\(Z) (T)a (Z = 15 2) Corresponding to T = (Z)a {51}7
{2}, {83}, {s1, 82}, {s2,53}, {s1,83}, {51, 52,53} is expressed as Alg Algo: Aios Avars Aldos Al A

and )\gil)l, i =1,2. Then for i =1, 2,

/\((320 = p&))o (9.46)
Ao = pboo + 136 (9.47)
Ao = Pboo + Poio (9.48)
)‘E)io)l = péi))o + P(()io)l (9.49)
Afto = Poo + pioo + pbio + Lo (950
A6y = ploo + P00 + Pooh + Pich (9.51)
/\E)il)l = E)iOO + p(()i1)0 + pg)io)l + pg)il)l (9.52)
M9y = w80 + 0500 + p6% + bt + P + {01 + pith + s (9.53)

If A5, 6,55 and ps, 6,5, (0; = 1 or 0,4 =1,2,3) are used to express the combined probability measure of
two independent sources of information in spaces S = {s1, s2, 3} and (X, Q, 1), respectively, then based

on equation ([@4H) and through equations ([@48)-([@53)), the following can be obtained
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Dooo = p((J%J)Op((J%J)O (9.54)

1 2 1 2 1 2
P100 = PSobDion + Pioobogn + PiooPioh (9.55)

1 2 1 2 1 2
Po10 = PSobDoth + Potoboge + Potopsis (9.56)

1) (2 1) (2 1) (2
Poor = p(()o)opéo)l + p(()O)lpE)O)O + p(()o)lpéo)l (9.57)

1) (2 1) (2 1) (2 1) (2
D110 = P((Joop§1)o + Pgoop((n)o + Pgoopgl)o + P((Jlopgo)o

1) (2 1) (2 1) (2 1) (2 1) (2
+ p((Jl)Opgl)O + Pgl)op((ao)o + Pgl)opgo)o + Pgl)op((n)o + pgl)()p§1)() (9.58)

1) (2 1) (2 1) (2 1) (2
Pio1 = P((Jo)opgo)l + Pgo)opt(ao)l + Pgo)opgo)l + P((Jo)lpgo)o

1) (2 1) (2 1) (2 1) (2 1) (2
+ p(()o)lpgo)l + pgo)lpéo)o + pgo)lpgo)o + pﬁo)lpéo)l + p§0)1p§0)1 (9.59)

1) (2 1) (2 1) (2 1) (2
Poi1 = p(()o)opél)l + p((n)opéo)l + p((n)opél)l + p(()O)lpE)I)O

1) (2 1) (2 1) (2 1) (2 1) (2
+ p(()o)lpél)l + p(()l)lpE)O)O + p((n)lpél)o + pg1)1pg)o)1 + p81)1pg)1)1 (9.60)

1) (2 1) (2 1) (2 1) (2
pi11 = p((JOOpgl)l + ngOp((Jl)l + pgoopgl)l + p((JlOpgo)l

1) (2 1) (2 1) (2 1) (2 1) (2
+ p((Jl)Opgl)l + p((JO)lpgl)O + p((JO)lpgl)l + p((Jl)lpgo)O + p(gl)lpgo)l

1) (2 1) (2 1) (2 1) (2 1) (2
+ p((Jl)lpgl)O + p((Jl)lpgl)l + Pgo)lp((n)o + Pgo)lpél)l + pgo)lpgl)o

1) (2 1) (2 1) (2 1) (2 1) (2
+ pgo)lpgl)l + Pgl)opéo)l + Pgl)opél)l + Pgl)opgo)l + pgl)opgl)l

1) (2 1) (2 1) (2 1) (2 1) (2
+ pgl)lpg)o)o + pgl)lpgo)o + pgl)lpg)l)o + pgl)lpg)o)l + p§1)1pg)1)1

) (2 ) (2 ) (2
+ p§1)1p§0)1 + pgl)lpgl)o + p§1)1p§1)1 (9.61)

For the case of S = {s1, $2,...,8n}, the general combination rule is

_ } : 1) (2
p6162...6n - p(;;(;é“.(;;p(;i/éé/“.(;x (962)
5 =5,U8"
i=1,2,....m

for all (8,85, ...,0. 87,84, ... 8.

9.4.2 Combination rule of probability measures in space S

Define a probability measure over 25 = {S5,5, 5.} as M : 25 = {S5,5, 5. } — [0, 1] with

0, Ss.6...56, = S00..0
M(Ss,6,...6,) = (9.63)

#(X5165...5,)
Toi(Xoe 0] O6182..6n # S00...60

where M is the probability measure over a class 25 = {Ss,5,...5, } of subsets of space S and I" maps X

into S.
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The combination rule:

Given two independent sources of information (X;, €, u;), ¢ = 1,2, and the corresponding mapping

space, S = {s1, $2,...,8n} = {Ss,5,...5, }, where I'; maps X; into S. Based on equation ([I62), we have

1 2
1(X6,55...6,) = Z M(l)(X(gg()s;.,.(;;@)ﬂm(X(gg)ag..,s;{)
5;=6,U6"
i=1,2,...n

From equation [@63)), for any Ss,s,...s,, # Soo...0, there exists

UL, ) =MD (S5, 5,)(1 - p (X))

2 2
WO XD ) =M (855, 5,)(1 - u®(XE) o))

and

(X5165...6,) = M(Ss,5,...5,) (1 — 11(Xoo0...0))

such that equation ([@64l) becomes

S MO (Ss5.5,)MP (Ss,5,..5,)[1 — 1V (XS o)1 — 1P (X )]

5, =5,U57'

i=1,2,...,n
M(S =—
(85,65...5,) 1 — u(Xoo...0)
and
[1 = p DX I — DX o)) 1
1 — u(Xoo..0) Z MU 55’6’ 6;)M(2)(S5i’5§’~~545)
51087 #0
i=1,2,...,n
Substitute ([@E9) into (@6,
> MW (Sssy 60 )MP (Ssrsy.sn)
5i=61U5"
i=1,2,...n

M(Ss,5,..6,) =

51081 0
i=1,2,...,n

1 2
= E MO (Ss;5,...50)M P (Ssysy..o07)
5 =608
i=1,2,....n

If Ss,6,...5, = Soo...0, we define

M (S5,5,..5,) =0

1= > MO(Ssys.5 )M (Sspsy. o)

(9.64)

(9.65)

(9.66)

(9.67)

(9.68)

(9.69)

(9.70)

(9.71)

Hence, equations (70)- [@71I) express the combination of two sources of information, (X;, Q;, u;), 1= 1,2,

for the mapping space, S = {s1, $2,...,5n} = Ss,5,...6,, where I'; maps X; into S.
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9.5 The disjunctive combination rule

Based on the results in section @4 the disjunctive combination rule for two independent sources of in-

formation is obtained as follows:

Theorem 4:

Suppose © = {61,0s,...,0,} is a frame of discernment with n elements. The basic probability
assignments of the two sources of information, (X7,Q1,u2) and (Xa,Qo, u2) over the same frame of
discernment are mi and ms, and focal elements Ay, As, ..., Ay and Bi, Bo, ..., By, respectively. Then

the combined basic probability assignment of the two sources of information can be defined as
m(C) = (9.72)

Proof: Since m()) = 0 by definition, m is a basic probability assignment provided only that the m(C)

sum to one. In fact,

Z m(C) = m(D) + Z m(C)

cCcoe cce
= C%0
=Y > m1(Ai)ma(B;)
cce C=A,UB;

C#0 ie{1,2,...k},j€{1,2,....1}

= > m1(Ai)ma(B;)
AiUBj;é@
i€{1,2,....,k},je{1,2,...,1}

=Y mi(A) Y ma(B))

A, CO Bj ce
A1¢® BJ#@
Hence, m is a basic probability assignment over the frame of discernment © = {61,6,,...,6,}. Its

focal elements are

Based on theorem 4, theorem 5 can be stated as follows. A similar result can be found in [29, BI].

Theorem 5:



9.5. THE DISJUNCTIVE COMBINATION RULE

If Bel; and Bel, are belief functions over the same frame of discernment © = {61, 65, ..

probability assignments m; and ms, and focal elements Ay, As, ..., Ay and By, Ba, ..

then the function m : 2° — [0, 1] defined as

0, C=10

Z ml(Ai)mg(Bj), C 75 (Z)

C:AiUBj

209

., 0, } with basic

., By, respectively,

(9.73)

yields a basic probability assignment. The core of the belief function given by m is equal to the union of

the cores of Bel; and Bels.

Physical interpretations of the combination rule for two independent sources of information are:

1. The combination rule in theorem 4 indicates a type of logical inference in human judgments, namely:

the OR rule. That is, for a given frame of discernment, the elements that are simultaneously

judged by each source of information will also be judgment elements of the combined source of
information; otherwise, it will result in uncertainty so the combination judgments of the elements

will be ignorance.

. The essential difference between the new combination rule and DS combination rule is that the
latter is a type of logical inference with AND or conjunction, while the former is based on OR
or disjunction. The new combination rule (or the OR rule) overcomes the shortcomings of DS
combination rule with AND, such as in the counter-intuitive situation and in the combination of

sharp sources of information.

. The judgment with OR has the advantage over that with AND in treating elements that are not
simultaneously judged by each independent source of information. The OR rule gives more plausible
judgments for these elements than the AND rule. The judgment better fits to the logical judgment

of human beings.

Example 1

Given the frame of discernment © = {6;,6-}, the judgments of the basic probability from two sources of

information are mi; and ms as follows:
ml(el) = 027 m1(92) = 04., mq (91,92) = 04

m2(91) = 047 m2(92) = 04., m2(91,92) =0.2

Then through theorem 4, the combination judgment is

m(@l) = 008, m(92) = 016, m(91, 92) = 076
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Comparing the combined basic probabilities of #; and -, the judgment of 65 occurs more often than 64,
but the whole combination doesn’t decrease the uncertainty of the judgments, which is evident from the

above results.

Example 2 (the counter-intuitive situation)

Zadeh’s example:

The frame of discernment about the patient is © = {M, C, T }where M denotes meningitis, C' repre-

sents contusion and 7' indicates tumor. The judgments of two doctors about the patient are
my1(M)=0.99, mi(T)=0.01

my(C) = 0.99, my(T) = 0.01

Combining these judgments through theorem 4, results in
m(M UC) =0.9801, m(MUT)=0.0099, m(CUT)=0.0099, m(T)=0.0001

From m(M UT) = 0.0099 and m(C'UT) = 0.0099, it is clear that there are less uncertainties between
T and M, as well as T and C; which implies that T' can easily be distinguished from M and C. Also,
T occurs with the basic probability m(T) = 0.0001, i.e. T probably will not occur in the patient. The
patient may be infected with M or C. Furthermore, because of m(M U C) = 0.9801, there is a bigger
uncertainty with 0.9801 between M and C, so the two doctors cannot guarantee that the patient has
meningitis (M) or contusion (C) except that the patient has no tumor (7). The patient needs to be

examined by more doctors to assure the diagnoses.

We see the disjunctive combination rule can be used to this case very well. It fits to the human

intuitive judgment.

9.6 Properties of conjunctive and disjunctive combination rules

In the section, the conjunctive and disjunctive combination rules, namely, Dempster-Shafer’s combination
rule, Yager’s combination rule, Dubois and Prade’s (DP) combination rule, DSm’s combination rule and
the disjunctive combination rule, are studied. The properties of each combination rule of evidence are
discussed in detail, such as the role of evidence of each source of information in the combination judgment,
the comparison of the combination judgment belief and ignorance of each combination rule, the treatment
of conflict judgments given by the two sources of information, and the applications of combination rules.
Zadeh’s example is included in this section to evaluate the performance as well as efficiency of each

combination rule of evidence for the conflict judgments given by the two sources of information.
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9.6.1 The combination rules of evidence
9.6.1.1 Yager’s combination rule of evidence

Suppose Bel; and Bely are belief functions over the same frame of discernment © = {61, 6,,...,0,} with
basic probability assignments m; and ms , and focal elements Ay, Az, ..., A and By, B, ..., By,
respectively. Then Yager’s combined basic probability assignment of the two sources of information can

be defined as [20]

Y mu(A)gma(By),  C#6,0
c=Ans,
my (C) = §m1(@)ma(©) + > ma(Aj)ma(B;), C=6 (9.74)
ahy =0
0, C=0

9.6.1.2 Dubois & Prade (DP)’s combination rule of evidence

Given the same conditions as in Yager’s combination rule, Dubois and Prade’s combined basic probability

assignment of the two sources of information can be defined as [26]

i, %,
mpp(C) = C=4iNB; C=A;UB; (9.75)

9.6.1.3 DSm combination rules of evidence

These rules are presented in details in chapters[ll and Bl and are just recalled briefly here for convenience

for the two independent sources of information.

e The classical DSm combination rule for free DSm model 27]

¥CeD®,  m(C)= Y mi(A)ma(B) (9.76)

A,BeD®
ANB=C

where D® denotes the hyper-power set of the frame © (see chapters B and Bl for details).

e The general DSm combination rule for hybrid DSm model M

We consider here only the two sources combination rule.

VAED®,  mpe)(A) £ ¢(A)|S1(A) + S2(A) + S3(A) (9.77)
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where ¢(A) is the characteristic non emptiness function of a set A, i.e. ¢(A) =1if A ¢ 0 and
#(A) = 0 otherwise, where @ £ {@r,0}. @ is the set of all elements of D® which have been
forced to be empty through the constraints of the model M and 0 is the classical/universal empty

set. S1(A) = muqre)(A), S2(A), S3(A) are defined by (see chapter H)

2
Si(A) 2 > [[ma(x0) (9.78)
X1,X,eD® =1
X1NX2=A

2
Sa(A) £ > [[mi(x3) (9.79)
X1,X2€0 =1
U=AIVIUED)N(A=1})]

2
S3(A) = Z Hmi(Xi) (9.80)
X1,X,eD® =1
X1UX2=A
X1NX2€0

with U £ u(X7)Uu(X2) where u(X) is the union of all singletons #; that compose X and I; £ 6; U6
is the total ignorance. Sj(A) corresponds to the classic DSm rule of combination based on the
free DSm model; S2(A) represents the mass of all relatively and absolutely empty sets which is
transferred to the total or relative ignorances; S3(A) transfers the sum of relatively empty sets to

the non-empty sets.

9.6.1.4 The disjunctive combination rule of evidence

This rule has been presented and justified previously in this chapter and can be found also in [22, 23] [29]

30, 311

Suppose © = {01,602, ...,0,} is a frame of discernment with n elements (it is the same as in theorem 3).
The basic probability assignments of the two sources of information over the same frame of discernment
are my; and me, and focal elements Ay, As, ..., Ap and By, Bs, ..., By, respectively. Then the combined

basic probability assignment of the two sources of information can be defined as

mpis(C) = C:f&Zqu (9.81)
0, cC=0
for any C' C ©. The core of the belief function given by m is equal to the union of the cores of Bel; and

B612 .
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Given two independent sources of information defined over the frame of discernment © = {6,605}, their

basic probability assignments or basic belief masses over © are

S1:

S2:

mi (91) = 047

m2(91) = 057

mi (92) = 037

m2(92) = 037

m1(91 U 92) = 03

m2(91 U 92) =0.2

Then the results of each combination rule of evidence for the two independent sources of information

are as follows. For the frame of discernment with n elements, similar results can be obtained.

S2 (ms) \ S1(my) {61} (0.4) {62} (0.3) {61,605} (0.3)
{61} (0.5) {61} (0.2) {0, N {62} = k (0.15) | {61} (0.15)
{62} (0.3) {01} N {62} = K (0.12) {62} (0.09) {6} (0.09)
{61,605} (0.2) {61} (0.08) {62} (0.06) {61,605} (0.06)

Table 9.1: The conjunctive combination of evidence (DS)

S2 (ms) \ S1(m1) {61} (0.4) {62} (0.3) {61,605} (0.3)
{6,} (0.5) {61} (0.2) {01y N {6} = © (0.15) | {61} (0.15)
{62} (0.3) (0,3 N {62} = © (0.12) {62} (0.09) {62} (0.09)
{61,605} (0.2) {61} (0.08) {62} (0.06) {61,605} (0.06)

Table 9.2: The conjunctive and disjunctive combination of evidence (Yager)

S2 (ms) \ S1(m1) {61} (0.4) {62} (0.3) {61,605} (0.3)
{61} (0.5) {61} (0.2) {01y N {62} = {61} U {62} (0.15) | {61,602} (0.15)

{62} (0.3) {0} N {62} = {61} U {6} (0.12) {6} (0.09) {6} (0.09)
{61,65} (0.2) {61} (0.08) {62} (0.06) {61,65} (0.06)

Table 9.3: The conjunctive and disjunctive combination of evidence (Dubois-Prade)

Property 1: the role of evidence of each source of information in the combination judgment:

1. With DS combination rule of evidence [2], the combined judgment for element 6; (i = 1,2) consists

of two parts. One is from the simultaneous support judgment of two sources of information for

the element 6; (i = 1,2) and the other is that one of two sources of information yields a support

judgment, while the second source is ignorant for the element 6, (i = 1,2) (i.e. ignorance). The
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Ae DO my | ma || ©(A) | S1(A) | S2(A) | S5(A) || mae)(A)
0 oo o 0 0 0 0
0} 04 05 1 | 043 | o 0 0.43
(62) 0303 1 | 024 | o 0 0.24
00030 ol o |l o [ o027 | o 0 0
6, U6} 0302 1 | 006 | o | 027 0.33

Table 9.4: The hybrid DSm combination of evidence

52 (m2) \ 51 (m1) {01} (0.4) {02} (0.3) {61,062} (0.3)

{0.} (0.5)

{0.} (0.2)

{01} U {02} (0.15)

{01,062} (0.15)

{02} (0.3)

{01} U {02} (0.12)

{62} (0.09)

{01,062} (0.09)

{61,602} (0.2)

{61,602} (0.08)

{61,602} (0.06)

{61,602} (0.06)

Table 9.5: The disjunctive combination of evidence

combined total ignorance is from the total ignorance of both sources of information. The failure
combination judgment for some element is from the conflict judgments given by two sources of

information for the element.

2. The difference between Yager’s combination rule of evidence [20]] and DS combination rule of evi-
dence [2] is that the conflict judgments of combination given by two sources of information for some

element is considered to be a part of combined ignorance i.e. it is added into the total ignorance.

3. Dubois and Prade’s combination rule of evidence [26] is different from that of Yager’s combination
rule [20] in that when two sources of information give the conflict judgments for an element in the
frame of discernment, one of two judgments is at least thought as a reasonable judgment. The
conflict judgments of combination for the two conflict elements are distributed to the judgment

corresponding to union of the two conflict elements.

4. The classical DSm combination rule of evidence [27] is different from those of Dubois and Prade’s

[26], Yager’s [20] and DS [2]. The conflict judgments given by two sources of information for an
element in the frame of discernment are considered as paradox. These paradoxes finally support
the combination judgment of each element 6; (i = 1,2). For the hybrid DSm combination rule, see
chapter Bl it consists of three parts. The first one is from the classic DSm rule of combination based
on the free-DSm model;the second one is the mass of all relatively and absolutely empty sets which

are transferred to the total or relative ignorance, while the third one is the mass that transfers the

all relatively empty sets to union of the elements that are included in the sets.
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5. With the disjunctive combination rule of evidence [22, 23| 29, 30, B1], the combination judgment
for each element is only from the simultaneous support judgment of each source of information
for the element 6; (i = 1,2). The combined ignorance consists of the combination of conflict
judgments given by two sources of information, the combination of the ignorance given by one
source of information and the support judgment for any element given by another source, and the
combination of the ignorance from both sources of information simultaneously. There is no failure

combination judgment. However, the combined belief is decreased and the ignorance is increased.

6. The combination rules of evidence of DS and the classical DSm are the conjunctive rule, the dis-
junctive combination rule of evidence is the disjunctive rule, while the combination rule of evidence

of Yager, Dubois & Prade, and the hybrid DSm are hybrid of the conjunctive and disjunctive rules.

Property 2: the comparison of combination judgment belief (Bel(.)) and ignorance (Ign(.) = PI(.) —

Bel(.)) of each combination rule is:

Belps(ei) > Belem(Hi) > Bele(Hi) > Bely(Hi) > BelDis(Hi), 1 =1,2 (982)

Ignpg(6:) < Ignpg,,(0:) > Ignpp(6;) < Igny (0;) <Ignp,(6:), i=1,2 (9.83)

In fact, for the above two sources of information, the results from each combination rule are as the

following:
Combination rule || m(61) | m(62) | m(©) || Bel(f1) | Bel(f2) | Bel(©) || Ign(f1) | Ign(bs)
DS 0.589 | 0.329 | 0.082 0.589 0.329 1 0.082 0.082
Yager 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33
DP 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33
Hybrid DSm 0.43 0.24 0.33 0.43 0.24 1 0.33 0.33
Disjunctive 0.20 0.09 0.71 0.20 0.09 1 0.71 0.71

From the results in the above table, it can be observed that the hybrid DSm’s, Yager’s and Dubois &
Prade’s combination judgments are identical for the two independent sources of information. However,
for more than two independent sources of information, the results of combination judgments are as in
equations ([I82) and [@X3J) (i.e. the results are different, the hybrid DSm model is more general than

Dubois-Prade’s and Yager’s, while Dubois-Prade’s model has less total ignorance than Yager’s).
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Property 3: The conflict judgments given by two sources of information for the frame of discernment:

Under DS combination rule, the combined conflict judgments are thought as failures and are deducted
from the total basic probability assignment of combination, while under Yager’s combination rule, they
are thought as the total ignorance; under Dubois & Prade’s combination rule; they are distributed to the
union of the two conflict elements. That means one of conflict judgments is at least reasonable. Under
the classical DSm combination rule, they constitute paradoxes to support the combined judgment belief
of each element, and are also thought as a new event that takes part in the subsequent judgment when
new evidences occur. While for the hybrid DSm combination rule, the treatment of conflict evidence is
similar to Dubois & Prade’s approach. For the disjunctive combination rule, the conflict judgments of
combination constitute ignorance, and take part in the subsequent judgment when the new evidences

occur.

Property 4: using them in applications:

Based on properties 1-3, when the two independent sources of information are not very conflict, the
disjunctive combination rule is more conservative combination rule. The combined results are uncertain
when conflict judgments of two sources of information occur and hence the final judgment is delayed until
more evidence comes into the judgment systems. Also, the combined judgment belief for each element
in the frame of discernment is decreased, and ignorance is increased as the new evidences come. Hence,
the disjunctive combination rule is not more efficient when we want the ignorance be decreased in the
combination of evidence. It is fair to assume that for the case when the two (conflict) judgments are not
exactly known which one is more reasonable, however, at least one of them should provide a reasonable
judgment. But DS combination rule is contrary to the disjunctive combination rule. It can make the final
judgment faster than other rules (see equations ([IR2)-[@XXJ)), but the disjunctive combination rule will
make less erroneous judgments than other rules. The cases for the combination rules of the hybrid DSm,
Dubois & Prade, and Yager’s combination rule fall between the above two. For the other properties, for
instance, the two conflict independent sources of information, see the next section and the example that

follows.

9.6.3 Example

In this section, we examine the efficiency of each combination rule for conflict judgments via Zadeh’s
famous example. Let the frame of discernment of a patient be © = { M, C, T} where M denotes meningitis,

C represents contusion and 7T indicates tumor. The judgments of two doctors about the patient are
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mi(M) =0.99,m(T) =001 and  ma(C) = 0.99, my(T) = 0.01

The results from each combination rule of evidence are:

Rules m(T) | m(MUC) | m(CUT) | m(MUT) | m(©)
DS 1 0 0 0 0

Yager 0.0001 0 0 0 0.9999
DPp 0.0001 0.9801 0.0099 0.0099 0
Hybrid DSm || 0.0001 0.9801 0.0099 0.0099 0
Disjunctive || 0.0001 0.9801 0.0099 0.0099 0

The basic belief masses m(MNC), m(CNT) and m(MNT') equal zero with all five rules of combination
and the belief of propositions M NC, CNT, MNT, MUC, CUT, MUT, M, C, T and MUCUT are

given in the next tables:

Rules BelM NC) | Bel(CNT) | Bel(MNT) | Bel(MUC) | Bel(CUT) | Bel(MUT)
DS 0 0 0 0 0 0
Yager 0 0 0 0 0
DP 0 0 0 0.9801 0.01 0.01
Hybrid DSm 0 0 0 0.9801 0.01 0.01
Disjunctive 0 0 0 0.9801 0.01 0.01
Rules Bel(M) | Bel(C) | Bel(T) || Bel(MuUCUT)
DS 0 0 1 1
Yager 0 0 0.0001 1
DP 0 0 0.0001 1
Hybrid DSm 0 0 0.0001 1
Disjunctive 0 0 0.0001 1

Comparison and analysis of the fusion results:

1. DS combination judgment belief of each element is:

Belps(T) =1,  Belpg(M) = Belps(C) =0
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It means that the patient must have disease T with a degree of belief of 1 and must not have diseases
M and C, because their degrees of belief are 0, respectively. It is a counter-intuitive situation with
Belps,1(M) = Belps2(C) = 0.99, Belps1(T) = Belps2(T) = 0.01. Moreover, in spite of the basic
probability assignment values over diseases T', M and C, the judgment of the two doctors for DS
combination rule will always be T with the degree of belief of 1, and each M and C with degree
of belief of 0. It shows DS combination rule is not effective in this case. The main reason for this

situation has been presented in sections
2. Yager’s combination judgment belief of each element is:
Bely (T") = 0.0001, Bely (M) = Bely (C) =0

This degree of belief is too small to make the final judgment. Therefore, Yager’s combination rule
of evidence will wait for the new evidence to come in order to obtain more accurate judgment. The

reason for this result is that the rule transforms all conflict judgments into the total ignorance.

3. For Dubois & Prade’s combination rule, there is
Bele(T) = 0.0001, Bele(M U C) = 0.9801, Bele(M U T) = Bele(C U T) =0.01

This result is the same as that of the disjunctive combination rule and the hybrid DSm combination
rule. With a belief of T', Belpp(7T') = 0.0001, we can judge that the patient having disease T is less
probable event. Furthermore, Belpp(M UT) = Belpp(C UT) = 0.01, hence the patient may have
disease M or C. Also, Belpp(M U C) = 0.9801, this further substantiates the fact that the patient
has either M or C, or both. For the final judgment, one needs the new evidence or diagnosis by

the third doctor.

Based on the judgments of two doctors, the different judgment results of each combination rules are
clearly demonstrated. For this case, the results from Dubois & Prade’s rulr, the hybrid DSm rule and
from the disjunctive combination rule are more suitable to human intuitive judgment; the result from
Yager’s combination rule, can’t make the final judgment immediately because of less degree of judgment
belief and more ignorance, while the results of DS combination rule is counter-intuitive. These results
demonstrate the efficiency of each combination rule for the conflict judgments given by two sources of

information for the element in the frame of discernment.

9.7 Conclusion

In this chapter, DS combination rule is examined based on multi-valued mappings of independent in-
formation sources and the product combination rule of multiple independent information sources. It is

obtained that Dempster’s rule is different from DS combination rule and shortcomings in DS combination
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rule are due to the result of the product combination rule. The drawback in the explanation of multi-
valued mappings when applied to Dempster’s rule were pointed out and proven. Furthermore, based
on these results, a novel justification of the disjunctive combination rule for two independent sources of
information based on the redefined combination-mapping rule of multiple multi-valued mappings in the
product space of multiple sources of information mappings has been proposed. The combination rule
depends on the logical judgment of OR. It overcomes the shortcomings of Dempster-Shafer’s combina-
tion rule, especially, in resolving the counter-intuitive situation. Finally, the conjunctive and disjunctive
combination rules of evidence, namely, Dempster-Shafer’s (DS) combination rule, Yager’s combination
rule, Dubois & Prade’s (DP) combination rule, DSm’s combination rule and the disjunctive combination
rule, are studied for the two independent sources of information. The properties of each combination
rule of evidence are discussed in detail, such as the role of evidence of each source of information in
the combination judgment, the comparison of the combination judgment belief and ignorance of each
combination rule, the treatment of conflict judgments given by the two sources of information, and the
applications of combination rules. The new results yield valuable theoretical insight into the rules that
can be applied to a given situation. Zadeh’s typical example is included in this chapter to evaluate the
performance as well as efficiency of each combination rule of evidence for the conflict judgments given by

the two sources of information.
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MinC combination rules
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Abstract: Both DSm and minC rules of combination endeavor to process conflicts
among combined beliefs better. The nature of conflicts as well as their processing
during the belief combination is sketched. An presentation of the minC combination,
an alternative to Dempster’s rule of combination, follows. Working domains, struc-
tures and mechanisms of the DSm and minC' combination rules are compared in the

body of this chapter. Finally, some comparative examples are presented.

10.1 Introduction

he classical DSm rule of combination, originally presented in [3, [6], has served for combination of
Ttwo or several beliefs on the free DSm model. Later, a hybrid DSm combination rule has been
developed to be applicable also on the classical Shafer (or Dempster-Shafer, DS) and the hybrid DSm
model. The present state of the DSm rule is described in Chapter Bl see Equations (E)-ET0).

Partial support by the COST action 274 TARSKI is acknowledged.

223



224 CHAPTER 10. COMPARISON BETWEEN DSM AND MINC COMBINATION RULES

MinC combination (minimal conflict/minimal contradiction) rule introduced in [2 €] is an alternative
to the Dempter’s rule of combination on the classical DS model. This rule has been developed for better
handling of conflicting situations, which is a weak point of the classical Dempster rule. A brief description

of the idea of the minC combination is presented in Section

Both arguments and results of the DSm rule are beliefs in a DSm model, which admits intersections
of elements of the frame of discernment in general. The minC combination serves for combination of clas-
sical belief functions (BFs) where all intersections of elements (of the frame of discernment) are empty

and their resulting basic belief masses should be 0.

For finer processing of conflicts than the classical normalization in Dempster rule, a system of different
types of conflict (or empty set) is introduced. For representation of intermediate results, generalized BFs
serve on generalized frames of discernment which contains elements of the classical DS frame of discern-

ment and correspondent types of conflict.

Even if the two developed approaches were originally different (disjoint), as well as the paradigms of
both approaches, the intermediate working generalized beliefs of the minC combination are similar to
those in the free DSm model, and the way of combination on the generalized level is analogous to that
in the free DSm model. This surprising fact is the main reason why we compare these two seemingly

incomparable, and originally quite disjoint approaches.

Now, after the development of the DSm combination for any hybrid DSm model, it is, moreover,
possible to compare behavior of both approaches on classical BFs, i.e. in the application domain of the

minC combination.

10.2 Conflict in belief combination

In the DSm combination, which is specially designed for conflicting situations, there are no problems

with conflicts.

The common similar principle for Dempster rule, the minC combination and the DSm combination
rule is that the basic belief assignment/mass (bbm) m;(X), assigned to set X by the first basic belief
assignment (bba) my, multiplied by bbm m2(Y"), assigned to set Y by the second bba mea, is assigned to
the set X N'Y by the resulting bba mys, i.e. m1(X)m2(Y) is a part of mi2(X NY).
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This principle works relatively nicely if sets X and Y are not disjoint. There is also no problem for
the DSm rule because X NY is always an element of D® and its positive value is accepted even in the

case of sets X and Y without any common element of ©.

In Dempster’s rule, disjoint X and Y tend to a conflict situation. All the conflicts are summed up
together and reallocated onto 2® by normalization in the classical normalized Dempster’s rule, see [9],
or stored as m((}) in the non-normalized Dempster’s rule in Transferable Belief Model (TBM) by Smets,
see [I0L [TT]. Tt is a fact that in Smets’ approach the normalization is only postponed from the combination
process phase to the decisional one, as the normalization is the first step of computation of the classical
pignistic transformation in TBM. The non-normalized Dempster rule commutes with the normalization,
hence the pignistic probability is always the same in both the cases of normalized and non-normalized

Dempster’s rule.

A weak point of Dempster’s rule — combination of conflicting beliefs is caused by normalization or by
grouping all the conflicts together by the non-normalized version of Dempster’s rule. Therefore, different
types of conflict were introduced and a minC combination rule has been developed for a better handling

of conflicting situations.

10.3 The minC combination

The minC combination (the minimal contradiction/conflict combination) of belief functions was developed
[2, 4] with an effort to find a new associative combination which processes conflicts better than Dempster’s
rule. The classical Shafer model from Dempster-Shafer theory is supposed for both input and resulting
belief functions. The minC combination is a generalizatiorﬂ of the un-normalized Dempster’s rule. m(() is
not considered as an argument for new unknown elements of the frame of discernment, m(() is considered
as a conﬂictH arising by conjunctive combination. To handle it, a system of different types of conflicts is

considered with respect to sets which produce the conflicts.

10.3.1 A system of different types of conflicts

We distinguish conflicts according to the sets to which the original bbms were assigned by m;. There is
only one type of conflict among the belief functions defined on a binary frame of discernment, hence the

minC combination coincides with the non-normalized conjunctive rule there.

1Note that, on the other hand, the minC combination approach is a special case of an even more general approach of

combination belief functions ’per elements’, see [3]
2The term “contradiction” is used in [2, B], while we use “conflict” here in order to have a uniform terminology.
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In the case of an n-ary frame of discernment we distinguish different types of conflicts, e.g. {6;}x{62},
{601} x{02,05}, {61} x{02}x{0s}, {6:,6;, 0k} x{0n,0n,0,} etc. The symbol x serves here for a denotation
of conflicts, it is not used as any new operation on sets. Thus e.g. {01} x {62,03} simply denotes the

conflict between sets {61} and {6s,63}.

We assume that products of the conflicting bbms are temporarily assigned (we all the time keep in
mind that Shafer’s constraints should be satisfied) to the corresponding conflicts: e.g. mq({61})m2({62})
is assigned to the conflict {61} x {f2}. In this way we obtain so called generalized bbas, and generalized

BFs on a generalized frame of discernment given by ©.

When combining 2 BFs defined on 3D frame © = {61,02,05} we obtain the following conflicts as
intersections of disjoint subsets of ©: {01} x{62}, {01} x{03}, {02} x{0s}, {01,602} x{0s}, {61,03} x{0=},
and {92, 93} X {91}

Because we need a classical BF as a result of the combination, we have to reallocate bbms assigned
to conflicts among subsets of © after the combination. These bbms are proportionalized, i.e. propor-
tionally distributed, among subsets of © corresponding to the conflicts. A few such proportionalizations
are presented in H]. Unfortunately, all these proportionalizations break required associativity of the
conjunctive combination. To keep the associativity as long as possible we must be able to combine the

generalized belief functions with other BFs and generalized BFs. From this reason other conflicts arise:

e.g. {01} x {02} x {03}, ({61,021 x{01,03}) x {02} x {03}, ({61,02} x{03}) x ({62} x{03}), etc.

A very important role for keeping associativity is played by so called partial or potential conflicts H,
e.g. a partial conflict {01,602} x {62,603} which is not a conflict in the case of combination of two beliefs
{61,602} N {62,605} = {62}, but it can cause a conflict in a later combination with another belief, e.g. pure
or real conflictl] {01, 02} x {02,603} x {61, 05} because there is {01,602} N {62,035} N{61,05} = 0, in Shafer’s

model.

In order not to have an infinite number of different conflicts, the conflicts are divided into classes of
equivalence ~ which are called types of conflicts, e.g. {01} x{02} ~ {02} x{01} ~ {01} x{02}x{02}x{02} x
{601} x {01} x {61}, etc. The minC combination works with these classes of equality (types of conflict)

instead of the set of all different conflicts. For more details see [].

3 Potential contradictions in the original terminology of [2 £
4 A real contradiction in |2, H.
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The conflicts are considered ”per elements” in the following way: conflict {61,602} x {05} is considered
as a set of elementary conflicts {{61} x{0s}, {02} x{03}}, i.e. set of conflicts between/among single-
tons. Analogically, potential conflict {61,602} x {62,035} is considered as a set of elementary conflicts
{{01}x{02}, {61}x{0s}, {02}, {02} x{03}}, where {f3} ~ {02} x {02} is so called trivial conﬂicH, i.e. no
conflict in fact. Note that any partial conflict contains at least one trivial conflict. The set of elementary
conflicts is constructed similarly to the Cartesian product of conflicting sets, where {61} x {02} x ... x {0;}
is used instead on n-tuple [61, 02, ..., 0x]. As the above equivalence ~ of elementary conflicts is used, we
have elementary conflicts of different n-arity in the same set, thus we do not use n-tuples as it is usual in
the Cartesian product. The idea of ”conflicts per elements” was generalized also for non-conflicting sets

in the ”combination per elements”, see [3].

For further decreasing of the number of types of conflicts we consider only minimal conflicts in the
following sense: {01} x {62}, {03}, are minimal conflicts of the set {{61}x {62}, {05}, {61} x {02} x {03},
{011 x{02}x{04}x{05}, {601} x{03}x{05}}; i.e. the set of singletons contained in a minimal conflict is mini-
mal from the point of view of inclusion among all sets of singletons corresponding to elementary conflicts.
Thus {{01}x{02},{0s}} ~ {{01}x{02}, {03}, {01} x{02} x{Os}, {01} x {02} x{0a}x {05}, {61} x {03} x{05}}.
Our concentration only to minimal conflicts brings us a simplification, which is closer to Shafer’s model,

and it has no influence on associativity of combination.

In this way we obtain 8 types of conflicts ({01 }x{02}, {01}x{0s}, {02}x{0s}, {01} x{02}x{03}, {{01}x
{02}, {613x{03}}, {{01p<{02}, {021x{Os}}, {{O1 {03}, {O21x{0s}}, {{61}x{02}, {61}x{03}, {O2}x{03}})
and 3 types of potential conflicts ({{61}, {02} x{0s}}, {{02}, {61} x{0s}}, {{0s}, {01} x{02}}) in a
3D case © = {01,03,05}. Together with 7 non-conflicting subsets of © we have 18 sets of conflicts to
which nonnegative bbms can be assigned in the 3D case, or 18 elements of a generalized 3D frame of

discernment.

10.3.2 Combination on generalized frames of discernment

As minC combination has a nature of a conjunctive rule of combination, m(X)ma(Y') is assigned to
X NY,if it is non-empty, or to X xY otherwise. More precisely the least representative of the type of
conflict of X XY is considered instead of X xY. It is unique but an order of elementary conflicts and
an order of elements inside elementary conflicts. A fixation of these orders enables a unique selection of
representatives of ~ classes of conflicts. A complete 18x18 table of minC combination for 3D is presented
n [2 4]. We include here only an illustrative part of it, see Table M1l The resulting value m°(Z) of the

generalized bba is computed as a sum of all m;(X)m2(Y") for which the field of the complete table in the

5 A trivial contradiction.
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row corresponding to X and column corresponding to Y contains Z. In other words, generalized m°(2)
is computed as a sum of all m;(X)mz(Y) for which Z=XnNY if ( X CY)V C X)or Z ~ XxY
otherwise, where ~ is the equivalence of conflicts from the previous subsection (Z and X XY are in the

same ~ class of conflicts.); i.e.

m®(Z) = E ma(X)ma(Y) + E m1(X)ma(Y). (10.1)
Z=XnY ZnXXY

In order to decrease the size of the table below, the following abbreviations are used in this table:
A stands for {A}, similarly AB stands for {A, B}, and ABC stands for {A, B,C}, A x B stands for
{A} x {B}, similarly A x BC stands for {A} x {B,C}, x stands for {A} x {B} x {C}, OA stands for
O{A}, and O stands for {A, B} x {A,C} x {B,C}, and similarly.

A B AB ABC | AxB | AxBC | x O OA
A A AxB A A AxB | AxBC | x| AxBC A
B AxB B B B AxB| AxB | x| BxAC | Bx AC
C AxC BxC | CxAB C X AxC | x |CxAB | Cx AB
BC A x BC B OB BC AxB | AxBC | x O O
AC A B x AC OA AC Ax B | AxBC | x O OA
AB A B AB AB Ax B | AxBC | x O OA
ABC A B AB ABC | AxB | AxBC | x O OA

Ax B Ax B Ax B Ax B AxB | AxB Ax B X Ax B Ax B

AxC AxC X AxC AxC X X X AxC AxC

BxC X BxC BxC BxC X AxC X BxC BxC

AxBC||AxBC | AxB |AxBC | AxBC | AxB | AxBC | x| AxBC | Ax BC

B x AC AxB | BxAC | BxAC | Bx AC | Ax B Ax B x | Bx AC | B x AC

C x AB AxC Bx(C |CxAB | Cx AB X AxC x | CxAB | C x AB

X X X X X X X X X X
O AxBC | Bx AC O O AxB | AxBC | x O O
OA A B x AC OA OA Ax B | AxBC | x O OA
OB A x BC B OB OB Ax B | AxBC | x O |
ac Ax BC | Bx AC O ac AxB | AxBC | x O O

Table 10.1: A partial table of combination of 2 generalized BFs on © = {A, B, C}.

The minC combination is commutative and associative on generalized BFs. It overcomes some dis-
advantages of both Dempster’s rules (normalized and un-normalized). This theoretically nice combining

rule has however a computational complexity rapidly increasing with the size of the frame of discernment.
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10.3.3 Reallocation of belief masses of conflicts

Due to the belief masses being assigned also to types of conflicts and partial conflicts, the result of the
minC combination is a generalized belief function even if it is applied to classical BFs. To obtain a
classical belief function on Shafer’s model we have to do the following two steps: we first reassign the
bbms of partial conflicts to their non contradictive elements and then we proportionalize bbms of pure
(real) conflicts. Because of a different nature of pure and partial conflicts, also these two steps of bbms

reallocation are different.

10.3.3.1 Reallocation of gbbms of partial conflicts

Gbbms of partial conflicts (potential contradictions) are simply reassigned to the sets of their trivial
conflicts, i.e. to the sets of their non-contradictive elements (e.g. m®({6;,6;} x {6;,6x}) is reallocated to
{0;}). We denote resulting gbba of this step with m! to distinguish it from gbba m® on the completely
generalized level. Thus we obtain m!({6;,0;} x {6;,0;}) = 0 and m'({6;}) is a sum of all m°(X), where
{6;} is maximal nonconflicting part of X. Nothing is performed with gbbms of pure conflicts in this step,

hence m!(Y) = m®(Y) for any pure conflict Y.

10.3.3.2 Proportionalization of gbbms of pure conflicts

Let us present two ways how to accomplish a proportionalization of gbbms which has been assigned by
mP to pure (real) conflicts . The basic belief mass of a conflict X x Y between two subsets of © can be

proportionalized, i.e. reallocated according to the proportions of the corresponding non-conflicting bbms:
a) among X,Y, and X UY as originally designed for so called proportionalized combination rule in [I].

b) among all nonempty subsets of X UY. This way combines the original idea of proportionalization

with the consideration of conflict ”per elements”.

For a conflict X of several subsets of a frame of discernment X1, X3, ..., X C 0, e.g. for {01} x {02} x {05}
and O ~ {{61} x {02}, {01} x {03},{02} x {03} } ~ {61,602} x {61,603} x {02,053} in 3D and further conflicts
from nD case, we have to generalize the above description of proportionalization in the following way.

The bbm of contradiction X = X; x X5 X ... X X} can be proportionalized:
a) among all unions U'Zzl X; of j <k sets X; from {X1, Xo, ..., Xi}.
b) among all nonempty subsets of X7 U Xo U ... U Xp.

For an explicit expression, the conflicts of the subsets of 3D © = {6, 05,03} should be proportionalized
among, see Table The bbms of conflicts in the first column should be proportionalized by the
proportionalization ad a) among sets in the second column and by the proportionalization ad b) among

the sets in the third column.
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If gbbms m!'(X;) = 0 for all X; then we divide the proportionalized gbbm m!(X; x X5 x ... x
X1) by number of the sets among them the gbbm should be proportionalized, i.e. by 2¥ — 1 in the

proportionalization a) and by 2™ — 1, where m = | X; U Xo U ... U X}| in the case b).

Type of conflict Proportionalization ad a) Proportionalization ad b)
{01} {02} {01}, {02}, {61, 0>} {01}, {02}, {61, 0,}
{01} x{62,03} {61}, {02,05},{61,02,65} P({61,02,05}) — 0
{01,02} x {61,603} x {02,605} || {01,602}, {01,035}, {02,05},{01, 62,05} P({61,02,05}) — 0
{01} x {02} x {03} P({01,02,05}) — 0 P({01,02,05}) — 0

Table 10.2: Proportionalizations on a 3D frame of discernment

A proportionalization of the types of the conflicts from the Table is the same even if {61, 62,05} C O.
Hence we can see from the Table that the proportionalization is something like ’local normalization’ on the

power set of ©' C © in the case b) or on a subset of such power set. E. g. m*({0; }x{62,03}) is proportional-

m!({6:})

ized with proportionalization a) among {61}, {62, 03}, {01, 02, 05} so that AT T (102,051 - (002,057

1
m! ({61} x{02,03}) is assigned to {6}, ml({91})+m11£?{9(2{22}(9)?£2n1({91,92,93}) m! ({61} x{02,03}) is assigned to

1
{02,035}, and ml({91})+m“f({(§29)19’f}2)’3_321({91)92)93}) m! ({01} x{02,05}) is assigned to {61,602, 03}. Analogically

' ({62.05)) : o
ATE T (T ({8 DT (00 D+t (00 DT (0 g rm (onazgsp M ({01} X {02,03}) is assigned

to {602,05} with proportionalization b), and similarly for other subsets of {61, 62, 03}. For single elemen-
tary conflicts both the proportionalizations coincide, see e.g. the 1st and the 4th rows of the Table
Specially there is the only proportionalization in the 2D case because, there is the only conflict and it
is an elementary one. This proportionalization actually coincides with the classical normalization, see

examples in Section [IZH

Let us remember that neither the reallocation of gbbms of partial conflicts nor the proportionalization
does not keep associativity of minC combination of the generalized level. Hence we have always to keep in
the consideration and to save the generalized version of the result to be prepared for a later combination

with another belief.

10.3.4 Summary of the idea of the minC combination
We can summarize the process of the minC combination of n > beliefs as follows:
1. we apply (n — 1) times the generalized version of minC, to compute ghba m°, see formula ([);

2. after we once apply a reallocation of gbbms of the partial conflicts to produce ghbba m! and finally

we once apply the proportionalization a) or b) to obtain the final bbm m. If we want to keep as
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much as possible of associativity for future combining, we have to remember also the gbbm m° and

continue further combination (if there is any) from it.

10.4 Comparison

10.4.1 Comparison of generalized frames of discernment

As has been already mentioned in the introduction of this chapter, DSm and minC rules of combination
arise from completely different assumptions and ideas. On the other hand, 18 different subsets of a frame
of discernment and types of conflicts and potential conflicts (7+8+3) in 3D case or 18 elements of a
generalized 3D frame of discernment correspond to 18 non empty elements of hyper-power set D® in the
free DSm model. Moreover, if we rewrite subsets of the frame of discernment, e.g. {6;,6,,6x}, and sets of
elementary conflicts as unions of their elements, e.g. {6;,0;, 0} ~ 6;U6,U0;, and conflicts as intersections,
e.g. {0i} x{0;} ~ 0:00;, {0:,0;} x{0s, Ox} ~ (0:060;)N(0:U0), {{0:1{0;}, {05 1x{0n }, {0:}>{0; {0k } } ~
(0; N6;) U (6; N6k) U (0; NB; Ny), then we obtain the following:

{01} ~ 01 =9

{02} ~ 02 = axg

{03} ~ 05 = an

{01,602} ~ 01 U0z = a5

{01,03} ~ 01 U 03 = e

{62,03} ~ 02 U 05 = auz

{61,02,05} ~ 01 UbyUb5 = s

{01} x {02} ~ 01N b2 = s

{01} x{0s} ~ 01N 05 = a3

{02} x {03} ~ 02N 05 = s

{6‘1} X{92,6‘3} = {{Hl}x{ﬁg}, {91}X{6‘3}} ~ 01N (6‘2 U 93) = Qa7
{02} x {01,035} = {{01} x{02},{02} x {03} } ~ 02N (61 U b3) = ae
{03} < {01,023 = {{03} x{01},{03} x {02} } ~ 0N (61 U b2) = a5

{01} x {02} x {03} ~ 01 NB2NO3 =y
{{01} x {02}, {01} x {03}, {02} x{03}} ~ (61 NO2) U (A1 NO3) U (A1 Nb3) = as
0601 = {{61},{02} x{03}} ~ 01 U (62N 03) = a4
06y = {{02}, {01} x{03}} ~ 02U (81 Nb3) = aq3
065 = {{03}, {61} x{0=2}} ~ 03U (81 Nb2) = aqa.
Thus a generalized frame of discernment from the minC approach uniquely corresponds to D€ — ().

Hence the minC approach is an alternative way how to generate Dedekind’s lattice.
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10.4.2 Comparison of principles of combination

For bbms of two non-conflicting sets X,Y C © both the minC and the DSm rules assign the product of
the belief masses to the intersection of the setsH. If one of the sets (or both of them) is (are) conflicting,
then the minC combination assigns the product of their bbms to the conflict X x Y. Similarly as above,
we can consider this conflict as an intersection X NY. We should verify whether X NY really corresponds

to the corresponding field of the minC combination table.

As first example, let’s denote by definition A; = {61,03} x ({63} x {01,62}), then one has

A~ (91 U 93) N (93 n (91 U 92)) = (91 n (93 n (91 U 92))) U (93 n (93 N (91 U 92)))
= (93 n (91 n (91 U 92))) U (93 n (91 U 6‘2)) = (93 n 6‘1) U (93 n (91 U 6‘2)) = (93 N (91 U 92))

~ {03} x {01,0-}

As second example, let’s denote Az £ ({01} x {62} x {83}) x {{61} x {62}, {01} x {03}, {62} x {65} }, then

one has

A2 ~ (91 n 92 n 93) X ((91 n 92) U (91 N 93) U (92 n 93))
~ (6116051 805) N (61N 6) U (81 Ns) U (B N 65))
=0, N0:N050 (01 N62) U (61 N6O3)U (621 63)) = (61 N0 N 63) U (01 NO2N605) U (61 N6 N 6O5)

=01 002003 ~ {01} x {62} x {63}
As third example, let’s denote Az = 0{0;} x (01 x {62,603}), then one has

Az = {{61},{02 x O3} } x (61 x {02,05})
~ (61U (B21605)) N (61N (62U B3)) = (61U (621 63)) N (61 N (62 U B5))
= (6; N (61N (62U03))) U (62N 65)) N (61N (62U 63))
=(01N(O2U03)) U ((B2NBO3)N (01 N (02U b3)))
= (61N (B2U0))U((2NbB3N 01 Nb2)U(62N03N6; NO3))
= (01N (OB2U603)) U ((B1 NO2N0O3) U (61 Nb2NB3))
)

= (91 n (92 Ués)) U (91 NN 93) = (91 n (92 U 93)) ~ (91 X {92,6‘3})

6We have to mention here that the minC combination rule has never been formulated as a k-ary operator for combination
of k > 2 belief sources, analogically to the DSm combination rule, see Equations @Z) and @H). Nevertheless, it is
theoretically very easy to explicitly formulate it similarly to the DSm rule for k£ sources. Moreover, because of its associativity
on the generalized level we can obtain the same result by step-wise ((k—1)-times) application of the binary form, and continue

with reallocation of bbms of conflicts as is usual.
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In the case of {61, 03} x {01,062} ~ (01U03)x (6;U02) ~ (61U03)N(61Ub2) = (01N(61U62)U(03N(01Ub:) =
(01M0, U0, N02)U(03N01UO3NO2) = (01)U(03N01)U(03N02) = (01)U(03N02) ~ {{b1}, {02x03}} ~ O{0:}
we can show again that minC combination of bbms of sets {61,803}, {61, 02} corresponds to the intersec-
tion of the corresponding elements of D®: (#; U #3) and (6, U 6s), i.e. to 6; U (63 N ). Moreover,
this shows a rise and the importance of a partial conflict (or potential contradiction) between two
sets with non-empty intersection {61,605} N {01,602} = {61} in Shafer’s model. This intersection {6;}
which is used in Dempster’s rule, is different from the generalized minC and the free DSm intersection

{6‘1, 93} N {91, 92} ~ (6‘1 U 93) N (91 U 6‘2) = (91) U (6‘3 n 92) ~ D{Hl} on the generalized level.

Analogically we can verify that all the fields in the complete minC combination table uniquely cor-
respond to intersections of corresponding sets. For a general nD case it is possible to verify that the
similarity relation ~ on conflicts corresponds with properties of the lattice {©,N,U}. Thus the minC

combination equation ([[ILJ]) corresponds with the classical DSm combination equation EII).

Hence the minC combinatiorH on a generalized level fully corresponds to the DSm combination rule

on a free DSm model.

10.4.3 Two steps of combination

Because minC is not designed for the DSm model but for the classical Shafer’s model, we have to compare
it in the context of the special Shaferian case of the hybrid DSm rule. According to the present develop-
ment state of the hybrid DSm rule, see Chapter B, in the first step all the combination is done on the free
DSm model — it is fully equivalent to the generalized minC combination — and in the second step con-
straints are introduced. The second step is analogous to the reallocation in the minC approach. It does
not explicitly distinguish anything like partial conflicts and pure conflicts, but analogically to the minC
combination, bbms are reallocated in two different ways. An introduction of constraints can joint two or
more elements of D, e.g. see Example 4 in Chapter Bl where the element ayg is joined with the element
a4, and the elements a9, and «q; are joined with ay3 and a9 respectively. Gbbms of such elements
are actually reallocated within this process. Really, the gbbms m s (ag), maqs(a10), and maqs(a11)
are reallocated to m g0 (a14), mago(a13) and m o (a12) respectively, as an analogy of the reallocation of
partial conflicts in the minC approach. We can verify that the elements ag, ayg, a1 really correspond
to the partial conflicts of the minC approach. The step 2 consists further in grouping of all empty sets
together and in the reallocation of their bbms. This action fully corresponds to a proportionalization of

pure conflicts in the minC approach.

"For a comparison of the minC combination with other approaches for combination of conflicting beliefs, see [g].
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Hence, the only principal difference between the minC and the DSm combination rules consists in
reallocation of the bbms of conflicting (or empty) sets to non-conflicting (non-empty) ones, i.e. to the
subsets of the frame of discernment, because the reallocation performed in the 2nd step of the hybrid

DSm combination does not correspond to any of the above proportionalizations used in minC either.

10.4.4 On the associativity of the combination rules

As it was already mentioned both the DSm rule and the minC combination rule are fully associative on
the generalized level, i.e. on the free DSm model in DSm terminology. Steps 2 in both the combina-
tions, i.e. the introduction of constraints in DSm combination and the reallocation of conflicts including
both the proportionalizations, do not keep associativity. If we use results of combination with all the con-

straints as an input for another combination, we obtain suboptimal results, see Section 2.8 in Chapter Hl

In order to keep as much associativity of the combination on the generalized level as possible, we have
to use n-ary version of DSm rule. In the case where k input beliefs have been already combined, we have
to save all the k input belief functions. If we want to combine the previous result with the new (k + 1)th
input my41, then we have either to repeat all the n-ary combination for k + 1 inputs this time, or we
can use the free DSm result of the previous combination (the result of the last application of the Step 1)
and apply the binary Step 1 to combine the new input (we obtain the same result as with an application
of n-ary version for k + 1 inputs). Nevertheless, after it we have to apply n-ary version of the Step 2 for

introduction of all constraints at the end.

There is another situation in the case of the minC combination. Because we consider only minimal
conflicts, the result of the Step 2 depends only on the generalized result m® of the Step 1 and we need
not the input belief functions for the reallocation of partial conflicts and for the proportionalization. The
non-normalized combination rule including the generalized one, provides the same result either if n-ary
version is used for k inputs or if step-wise k — 1 times the binary version is applied. Hence binary version
of the generalized minC combination and unary reallocation satisfy for the optimal results in the sense
of Chapter @l If we already have k inputs combined, it is enough to save and store only the generalized
result instead of all inputs. We perform the generalized combination with the input myy; after. And in
the end we perform Step 2 for obtaining classical Shaferian result. Of course it is also possible to store

all the inputs and to make a new combination, analogically, to the DSm approach.

10.4.5 The special cases

Specially in the 2D case minC corresponds to Dempster’s rule — there is only one type of conflict and

both the presented proportionalizations a) and b) coincide with normalization there. While the 2D DSm
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corresponds to Yager’s rule, see [12], where m;(X)m2(Y) is assigned to X NY if it is non-empty or to ©
for X NY = (), and it also coincides with Dubois-Prade’s rule, see [7], where m1(X)m2(Y) is assigned to
X NY if it is non-empty or to X UY otherwise. To complete the 2D comparison, it is necessary to add
that the classical DSm combination rule for the 2D free DSm model corresponds to the non-normalized

Dempster’s rule used in TBM. For examples see Table in SectionA

In an nD case for n > 2 neither the minC nor DSm rule correspond to any version of Dempster’s or
Yager’s rules. On the other hand the binary version of the hybrid DSm rule coincides with Dubois-Prade’s
rule on Shafer’s model, for an example see Table [LA in SectionTTH

10.4.6 Comparison of expressivity of DSm and minC approaches

As the minC combination is designed for combination of classical belief functions on frames of discern-
ment with exclusive elements, we cannot explicitly express that 2 elements of frame have a non-empty
intersection. The only way for it is a generalized result of combination of 2 classical BFs. On the other
hand, even if the hyper-power set D® has more elements than the number of parts in the corresponding
Venn’s diagram, we cannot assign belief mass to 6; but not to 63 in DSm approach. I. e. we cannot
assign bbms in such a way that for generalized pignistic probability, see Chapter [ the following holds:
P(61) > 0 and P(f2) = 0. The intersection 61 N 62 is always a subset both of 8; and 2. Hence from
m(61) > 0 we always obtain P(6; N6z) > 0 and P(f2) > 0. We cannot assign any gbbm to 6; — 63. The
only way how to do it is to add an additional constraint #; N #y = (), but such a constraint should be
applied to all beliefs in the model and not only to one or several specific ones. As Shafer’s model has
already all the exclusivity constraints, the above described property is not related to it. Hence both the
DSm approach and the minC combination have the comparable expressivity on Shafer’s model. The DSm

approach utilizes, in addition to it, its capability to express positive belief masses of the intersections.

10.5 Examples

In this section we present a comparison on examples of combination. The first 2D example simply
compares not only the DSm and minC combination rules but also both the normalized and non-normalized
Dempster’s rule, Yager’s rule, and Dubois-Prade’s rule of belief combination, see Table M3 Because the

proportionalizations a) and b) coincide in the 2D case, and subsequently the corresponding bbas m'll% and

ml{)Q also coincide, we use m™"¢ for m‘f; = mll’)Q. This example enables us to make a wide comparison,
but it does not really discover a nature of the presented approaches to the belief combination. For

this reason we present also a more complicated 3D example, see Tables 4 and LA, which show us
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how conflicts and partial conflicts arise during combination, how constraints are introduced, and how

proportionalizations are performed.

mu | ma |mid | mif” | mly | myEnC  mIEM | Y, | mB | m,
0~ {61} 0.6 | 0.2 | 0.48 | 0.48 | 0.48 | 0.6000 | 0.48 | 0.48 | 0.48 |0.6000
0o~ {62} 0.1]03]0.17 017 | 0.17 | 0.2125 | 0.17 | 0.17 | 0.17 |0.2125
0rU0y ~ {01,05} 03] 05015035 0.15 | 01875 | 0.15 | 0.35 | 0.35 |0.1875
0Ny ~ {03x{0} ~ 0 0.20 0.20 0.20

Table 10.3: Comparison of combination of 2D belief functions

Table [ provides a comparison of combination of 3D belief functions based on the free DSm model
with the classic DSm rule and on Shafer’s model with the hybrid DSm rule. The 5th column (mfé‘f)
gives the result of the combination of the sources 1 and 2 obtained with the classic DSm rule based on
the free DSm model. The 7th column (m{‘ggf ) gives the result of the combination of the sources 1, 2 and
3 obtained with the classic DSm rule based also on the free DSm model. Column 6 (mfgo) presents the
result of the hybrid DSm combination of sources 1 and 2 based on Shafer’s model M°. Column 8 (mfglgo )
presents the result of the hybrid DSm combination of sources 1, 2 and 3 based on Shafer’s model MP.
Column 9 and 10 shows the results obtained when performing suboptimal fusion. ® stands for the DSm
rule on the free DSm model and blank fields stand for 0.

0

Table [IH presents the results drawn from the minC combination rule. m® corresponds to the gbba on

the generalized frame of discernment, m' to the gbba after reallocation of bbms of partial conflicts, m®

to the bba after proportionalization a) and mb to the bba after proportionalization b). m?zbg denotes
) )

(mlig@m3)0, and mjqv3 denotes (mig@mg)b), where @ stands for the generalized minC combination,

blank fields stand for 0.

Table M@ presents the results of several rules of combination for 3D belief functions for sources 1 and 2
on Shafer’s model, i.e. on the hybrid DSm model M (for the source bbas m1,mz, and m3 see Table [[TLA).
me corresponds to the bba of the minC combination (the minC combination of m; and mso or my, ms

and mg respectively) with proportionalization a); mb) corresponds to the bba of the minC combination

TBM

with proportionalization b); mM’ corresponds to the bba of the DSm combination. m corresponds

Y

to the bba of the combination with the TBM’s non-normalized Demspter’s rule; m* corresponds to the

DB

bba of the Yager’s combination; m corresponds to the bba of Dubois-Prade’s combination and m®

corresponds to the bba of the normalized Dempster’s combination.
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ma | ma | | mig [ | ity | by | it oma)™ | (ol oma) ™"

ag o~ {91} 031101102 0.19 0.20 | 0.165 | 0.188 0.216 0.258
a1~ {92} 0.2 10.1] 0.1 0.15 0.17 | 0.090 | 0.109 0.119 0.145
o]~ {93} 0.1 1021 0.1 0.14 0.16 | 0.088 | 0.110 0.119 0.150
a1y~ {91,6‘2} 0.1 {1 0.0 0.2 0.03 0.08 | 0.021 | 0.056 0.058 0.112
g~ {91,6‘3} 0.1 10.1]0.2 0.06 0.13 | 0.030 | 0.082 0.073 0.125
arr ~  {602,03} 0.0 0.21] 0.1 0.04 0.09 | 0.014 | 0.039 0.035 0.068
oy~ {91,92,03} 0.2 1 03] 0.1 0.06 0.17 | 0.006 | 0.416 0.017 0.142
ar  ~ {01}x{6:} 0.05 0.106 0.054

as ~ {01}x{65} 0.07 0.120 0.052

g~ {02}x{03} 0.05 0.074 0.033

a7~ {0 1x{0s,05 0.06 0.083 0.038

g ~{02)x{01,05 0.03 0.060 0.047

a5 ~{03}x{01,0, 0.02 0.048 0.040

oy o~ X 0.022

ag  ~ m 0.009

oy~ 06, 0.01 0.023 0.042

a1z~ 06, 0.02 0.019 0.026

g~ 063 0.02 0.022 0.031

Table 10.4: Comparison of combination of 3D belief functions based on DSm rules of combination.

We can see that during the combination of 2 belief functions a lot of types of conflict arise, but some
of them still remain with 0 bbm (a3 ~ X and ag ~ O). We can see how these conflicts arise when the
3rd BF is combined. We can see the difference between the combination of 3 BFs on the generalized
level (see mYy5) and the suboptimal combination of the 3rd belief with an intermediate result to which
constraints have already been introduced (see (m2°™ @m3)? and (ml{)2 @ms3)?). We can see how the

gbbms are reallocated among the subsets of © during the second step of minC combination and finally

how the gbbms of all pure conflicts are reallocated in both ways a) and b).

The final results of DSm and minC combinations are compared in Table TGl We can note that
the small subsets of © (singletons in our 3D example) have greater bbms after the minC combination
while the great sets (2-element sets and namely whole {61, 63,03} in our case) have greater bbms after
application of the DSm combination rule. I. e. the DSm combining rule is more cautious than the minC

combination within the reallocation of the conflicting gbbms. Thus we see that the minC combination
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0 1 a) b) 0 1 a) b) 0

mig | My My My Migg | Mi23 | M3 My23 | Mygegy | Mi2b3
g~ {01} 0.19 | 0.20 | 0.2983 | 0.2889 | 0.165 | 0.165 | 0.4031 | 0.4068 | 0.2396 | 0.4113
g~ {62} 0.15 | 0.17 | 0.2318 | 0.2402 | 0.090 | 0.090 | 0.2301 | 0.2306 | 0.1360 | 0.2319
a1y~ {05} 0.14 | 0.16 | 0.2311 | 0.2327 | 0.088 | 0.088 | 0.2288 | 0.2363 | 0.1364 | 0.2372

ays ~ {61,602} 0.03 | 0.03 | 0.0362 | 0.0383 | 0.021 | 0.021 | 0.0390 | 0.0377 | 0.0253 | 0.0354

arg ~ {61,003} 0.06 | 0.06 | 0.0762 | 0.0792 | 0.030 | 0.030 | 0.0586 | 0.0549 | 0.0376 | 0.0522

a7 ~ {09,605} 0.04 | 0.04 | 0.0534 | 0.0515 | 0.014 | 0.014 | 0.0264 | 0.0249 | 0.0172 | 0.0236

a1s ~ {61,0,05} | 0.06 | 0.06 | 0.0830 | 0.0692 | 0.006 | 0.006 | 0.0140 | 0.0088 | 0.0069 | 0.0084
as ~ {61}x{6:} || 0.05 | 0.05 0.106 | 0.106 0.0769
as ~ {6.}x{63} || 0.07 | 0.07 0.120 | 0.120 0.0754
ay ~ {B:)x{6s} || 0.05 | 0.05 0.074 | 0.074 0.0473
ar  ~{61}x{6,,65}| 0.06 | 0.06 0.083 | 0.083 0.0392
ag  ~{02}x{61,65}| 0.03 | 0.03 0.060 | 0.060 0.0560
as  ~{03}x{61,6,} 0.02 | 0.02 0.048 | 0.048 0.0504
ap o~ x 0.022 | 0.022

ag  ~ 0 0.009 | 0.009

ay ~ 06 0.01 0.023 0.0235
a3 ~ 06, 0.02 0.019 0.0141
a2 ~ 06 0.02 0.022 0.0182

Table 10.5: Comparison of combination of 3D belief functions with the minC rule.

rule produces more specified results than the DSm rule does. The last three columns of the table show
us that the DSm and the minC with both the proportionalizations produce results different from those
of Yager’s rule and of both the versions of Dempster’s rule (see mY, mT™Z and m® respectively).
While binary DSm result on Shafer’s model (M) coincides with the results of Dubois-Prade’s rule of
combination.

Let us present numeric examples of parts of computation m®, m!, m®, and m® for readers which
are interested in detail. We begin with a non-conflicting set {61,62}, i.e. with a5 = 61 U 63 in the DSm
notation. It is an intersection with itself or with the whole © = {61, 63,03} (i.e. §; Uf2 U035 in DSm), and
it is not ~ equivalent to any other element of D®. Thus m{y (61 Ufs) = my (01 Ub)ma (01 Ubs) +my (61U
02)ma (61 U2 Ub3)+my (61 UO2Ub3)ma(61Ub2) = 0.1-0.040.1-0.34-0.0-0.2 = 0.004-0.03+0.00 = 0.03. 15
is a non-conflicting element of D®, hence it is not further reassigned or proportionalized, i. e. its bbm will

not be decreased. ajs is not a non-conflicting part of any other element of D®, thus m1,(ay5) = m9y(ass).
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0 a b 0 a b
mfé‘ ml% m1)2 m%% m1%3 m1)23 mriF2BM m%/2 mgp m%
ag ~ {61} 0.20 | 0.2983 | 0.2889 | 0.188 | 0.4031 | 0.4068 | 0.20 | 0.20 | 0.20 | 0.2778
alg ~ {62} 0.17 | 0.2318 | 0.2402 | 0.109 | 0.2301 | 0.2306 | 0.17 | 0.17 | 0.17 | 0.2361

ain ~ {63} 0.16 | 0.2311 | 0.2327 | 0.110 | 0.2288 | 0.2363 | 0.16 | 0.16 | 0.16 | 0.2222

a5 ~ {01,062} || 0.08 | 0.0362 | 0.0383 | 0.056 | 0.0390 | 0.0377 | 0.04 | 0.04 | 0.08 | 0.0556

arg ~ {601,605} || 0.13 | 0.0762 | 0.0792 | 0.082 | 0.0586 | 0.0549 | 0.06 | 0.06 | 0.13 | 0.0833

arr ~ {02,605} || 0.09 | 0.0534 | 0.0515 | 0.039 | 0.0264 | 0.0249 | 0.03 | 0.03 | 0.09 | 0.0417

arg ~{61,02,03}|| 0.17 | 0.0830 | 0.6992 | 0.416 | 0.0140 | 0.0088 | 0.06 | 0.34 | 0.17 | 0.0833

0 0.28

Table 10.6: Comparison of combinations of sources 1 and 2 on Shafer’s model (i.e. on the hybrid DSm

model M?).

m'lg(ozw) > m}y(a15) because gbbms of some other elements are proportionalized, among others, also to

ay5. For the same reason it holds also mll’)2 (a15) > mliy(ags).

A potential conflict O{0;} ~ (61 UO2) N (01 Ub3) = 14 is equivalent to O{0;} x O{61}, to O{61} x X,
and to X x 0{61}, where {1} C X in Shafer’s model, see Table [T} or a4 = (61 U b)) N (61 U b3)
is an intersection of itself with X, where a4 € X C 607 U6y U 63 in the DSm terminology. I.e.
my(ara) = mP(01 N (62 U 03)) = my(cna)ma(aa) + mq (01 U Oz)ma (61 U b3) + my (61 Ubs)ma(6y Ubs) +
m1 (a14) (ma(01U02)+ma (61 U03)+mo (01 U02U603))+ (m1 (61 Ub2)+mq (61 UO3)+mq (01 U02U03) )ma(ais) =
0.0-0.04+0.1-0.140.1-0.040.0- (0.140.140.2) + (0.040.140.3)-0.0 = 0+0.01-+0-+0+0 = 0.01. arg = {61}
is a non-conflicting part of 6; N(62U03), thus m¥(ay4) is reallocated to 1. On the other hand {6, } is not a
non-conflicting part of any other element of D®, hence m!(ag) = m®(ag) +m®(a14) = 0.19+0.01 = 0.20.

After this reallocation, the bbm of a4 equals 0, hence m!(a14) = m“)(al4) =mb (a14) = 0.

A pure conflict {01} x {02,035} ~ 01N (02U03) = a7 is contained in 24 fields of the full minC combina-
tion table (for its part see Table [Ml), e. g. in the fields corresponding to {A} x ({A} x {B,C}), {A} x
{B,C}, {A,B} x ({A} x {B,C}), but only some of them correspond to the Shaferian input beliefs (i.
e. only some of them are positive). Thus m!(az) = m®(az) = m1(61)ma(f2 U bs) + mq (02 UO3)ma(61) =
0.3-0.240.1-0.0=0.06+ 0.00 = 0.06. As a7 is a pure conflict, thus its bbm is not changing dur-
ing the reallocation substep, and it is proportionalized among {61}, {602,605}, {61, 02,603} with the pro-

portionalization a), and among all the subsets of © = {6;,0,,03} with the proportionalization b).

1 m’ (61) _ 0.20 _ 0.20 _ : .
Thus m (067) . ml(91)+m1(92U03):—m1(01U92U03) = OOGm = OOGm = 0.040 is reaSblgned to

S | m' (62063) _ 0.04 _ 0.04 _ . .
01 = ag; m*(ar) - m1(01)+m1(92U92)+211(91U92U93) = 0.06 55570017005 = 0-065755 = 0.008 is reassigned
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_ ) 1 m! (01U02U03) _ 0.06 _ 0.06 _ .
to 92 U 93 = 7, and m (017) . ml(01)+m1(02U193)i—m?(91U02U03) = OOGm = 006@ = 0.012 is

reassigned to 61 U 0y U 03 = ays with the proportionalization a). As belief masses 0.05m =

0.05- 0.5 = 0.0250 and 0.07% = 0.07-0.4762 = 0.0333 are analogically proportionalized with

the proportionalization a) also to 61, so we obtain m'f%(@l) = m!(61) + 0.040 + 0.0250 + 0.0333 =
0.2000 + 0.040 4+ 0.0250 + 0.0333 = 0.2983. A value mll’)Q(Hl) is computed analogically; where e.g.

0.20 _ 0.20 _ _ : ; ; 1
0.06 5350 7501670 035700670 0i50.0 — 0-06575 = 0.06-0.2777 = 0.0166 is proportionalized from m (7).

10.6 Conclusion

In this chapter we have compared two independently developed approaches to combination of conflicting
beliefs. Motivations and the starting points of the approaches are significantly different. The classical
frame of discernment with mutually exclusive elements is the starting point for the minC combination,
whereas the free DSm model is the starting point for the classical DSm approach. The approaches were
originally rather complementary than comparable.

Surprisingly, the internal combining structures and mechanisms of both these combination rules are
the same and the results of the classical DSm rule for the free DSm model are the same as the intermediate
results of the minC combination on a generalized frame of discernment. Nevertheless, this common step
is followed by reallocation of the belief masses temporarily assigned to conflicts to obtain classical belief
functions as results in the case of the minC combination.

After the recent development of versions of the DSm rule for Shafer’s model and for general hybrid
DSm models, which consider 2 steps of combination, the minC combination becomes an alternative to
the special case of the DSm combination rule for Shafer’s model.

The first step — a combination on a generalized frame — is the same again. Also a reallocation of
the generalized basic belief masses of potential conflicts is analogous. The main difference consists in
different reallocations of the generalized basic belief masses (gbbm) of pure conflicts: it is a reassigning
of the gbbms to the union of the corresponding sets in the DSm rule, whereas a proportionalization in
the minC approach.

In spite of this difference, we can also consider the DSm introduction of constraints as an alternative

to a reallocation of the belief masses of conflicts in the minC approach.
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Chapter 11

General Fusion Operators from

Cox’s Postulates

Denis de Brucq
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Abstract: This chapter presents new important links between the most important
theories developed in literature for managing uncertainties (i.e. probability, fuzzy
sets and evidence theories). The Information fusion introduces special operators o
in the probability theory, in the fuzzy set theory and in the theory of evidence. The
mathematical theory of evidence and the fuzzy set theory often replace probabilities
in medicine, economy and automatics. The choice between these three quite distinct
theories depends on the intrinsic nature of the data to combine. This chapter shows
that same four postulates support actually these apparently distinct theories. We
unify these three theories from the four following postulates: non-contradiction, con-
tinuity, universality, context dependence and prove that a same functional equation
is supported by probability theory, evidence theory and fuzzy set theories. In other
words, the same postulates applied on confidences, under different conditions, either
in the dependence or independence situation, imply the same foundation for the var-
ious modern theories of information fusion in the framework of uncertainty by using
deductions that we have unified. The independence between elementary confidences

have not to be understood in the sense of probabilistic meaning.
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11.1 About uncertainty

n medical fields as in economics and control, one notes the limitation of the additive probabilities due
Ito the too strong constraints imposed. The modification of basic axioms to overcome these limitations
leads to different numerical theories and one finds approaches such as fuzzy set theory. By considering
the notion of lower probabilities and upper probabilities, one obtains the credibility and the plausibiliy
functions of Dempster-Shafer’s theory of evidence [6]. The 60’s has seen the development of theories that
are not directly linked to probabilities. For instance, Zadeh invented fuzzy set theory in 1965 [I5]; he

then created the possibility theory in 1978 [T6].

With the four postulates, which are the basis of the machines on confidences without adding the
additivity postulate that leads to probabilities and by considering the independence of the achievement

of these confidences, we obtain the fuzzy set theory.

In fact, we have observed that both basic equalities of information fusion are two continuous, com-
mutative and associative operations on confidences. Let © be a discrete body of evidence called frame of

discernment. Thus, both combinations can be written in terms of probabilities:
VA,B C O, P(ANB)2 P(A) P(B/A)2 P(B) P(A/B)
and in term of membership functions:
VA, B C O — panp(@) £ pa) A (@)

These two operations had to verify the same basic postulates required to model data fusion.

When analyzing imprecise and uncertain data, all the usual techniques must be changed. It is a fact
that logic is only an abstract construction for reasoning and physical laws are only models of material
system evolutions. Nothing proves that logic can describe correctly all fusions. Moreover, imprecise and
uncertain analyses as in this chapter show that an infinity of fusions are possible. From the principles of
this chapter, it is possible to introduce a fusion denoted by the operator o with any increasing function
from [0, 1] onto [0,1]. More precisely, with two beliefs z,y instead of the product z x y to describe the
fusion we write z o y. For example instead of the probability P(A N B) = P(A)P(B) of the intersection
AN B of two independent sets A, B, we write the belief [A and B/e] = [A/e] o [B/e], the fusion o of the

two beliefs [A/e] and [B/e]. Any equation of this book may be changed with this transformation.

Moreover, the hypothesis that the sum of masses of disjoint sets is equal to 1 is a global hypothesis

and seems to be hazardous.
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We demonstrate that the fusion operation o is mainly described by a simple product after transfor-
mation. This previous transformation of confidence ¢(A4) = [A/e] on A in the environment e is made by
using a continuous and strictly monotone function w. This result is easily understood by comparing the
transformation w with the Fourier transformation. The latter transforms the composition product of two
functions into the product of their Fourier transform. We observe that convolution is commutative and
associative. Similarly, Demspster-Shafer fusion is also commutative and associative. Communality of a
fusion is the simple product of the communalities of the sources. Without commutativity or associativity

other developments are necesary.

11.1.1 Probabilistic modelling

The probability theory has taken a leap during the 17t" century with the study of games for luck calculus.
The ultimate objective of probability theory is the study of laws governing the random phenomena, that
is the presence of uncertainty. For many years, probabilistic methods have generated many debates, in
particular among defenders of the frequentist approach, the objective approach and the subjective ap-
proaches. Historically, the formulation of the axiomatic basis and the mathematical foundation of the

theory are due to Andrel Kolmogorov in 1933.

Let an uncertain experiment be described by the sample space €2 whose elements, denoted w are the
possible results of that experiment. Let A € P () be subset of Q. The subset A is a random event for
this theory and the event is said to occur when the result w of the experiment belongs to A. The collection
of all the subsets of Q, P (), cannot always be associated to the set A of possible random events in Q.
For logical coherence purposes, one restricts A to a o-algebra, a subset of P () which is closed under
countable union and under complement. Thus, the pair (2,.4) is a measurable space and a probability

measure P over (€,.4) is then a positive real-valued function of sets with values in [0, 1] and defined over

A.

Definition 1. A probability measure P over (0, A) is an application of A with values in [0,1] satisfying

the following axioms (Kolmogorov’s axioms): i) For all A € A
0<P(A)<1land P(Q) =1 (11.1)
1) (additivity)  For any finite family {A;,i € I} of mutually exclusive events, we have:
P (U Ai> => P(4) (11.2)

111) sequential monotonic continuity in § For any sequence { An,n > 1} of events decreasing to the empty

set O that is Ay D Ay D A3 D ... and NA, =0, we have

lim P (4,) = 0 (11.3)
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P (A) characterizes the probability that the event A occurs. If P is a probability measure on (€2, .4),

the triple (2,4, P) is a probability space. From the previous axioms, one easily deduces the following

properties:
Ay C Ay = P(A)) < P(Ay), (11.4)
P(0) =0, (11.5)
P(A)=1-P(4), (11.6)
P(A;UAy) =P (A)) +P(A) — P(A1NAy). (11.7)

The conditional probability is one of the most useful notions in probability theory. In practice, it is
introduced to allow reasoning on events of a referential. For instance, in the case of an exhaustive draw,
it is concerned with the probability of an event A, under the condition that an event E occurs. The
random event E represents the environment that is usually expressed as ¥ = e. There is no reason for

having symmetry between event A and the environment e.

Definition 2. Let (2, A, P) be a probability space, the conditional probability P (A/E) of an event A
given E such that P (E) > 0 is defined as:

P(ANE)

P(A/B) = —F

(11.8)

If P(FE) =0, this definition has no sense. If A C E then P(A/E) = %, and one has P (E/E) = 1.

Obviously, the conditional probability P (A/FE) will be seen as the probability of A when FE becomes

the certain event following additional information asserting that E satisfies to (P (E) = 1).

The equation ([LF) is generalized by using the well known Bayes’ theorem. If one considers an event
E of which we can estimate, a priori, the probability (P (E) # 0) and a finite partition {Hj, ..., H,, } of Q
(set of mutually exclusive hypotheses describing n modalities of the realization of E). The Bayes’ formula
then yields:
P(E/H;) P (H;)

n

> P(E/H;) P(H;)

P (H;/E) = (11.9)

The conditional probabilities ([Td) allow the modification of the a priori probability of event H;, ac-

cording to the new knowledge on the realization £ = e.

Definition 3. Let (2, A, P) be a probability space and let A and E be two events of A. The events A

and E are two independent events if and only if

P(ANE)=P(A)P(E). (11.10)
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Property 1. Let (2, A, P) be a probability space and let A and E, two events of A.
If P(E) > 0, then A and E are two independent events if and only if

P(A/E)=P(A). (11.11)

Thus, if A and E are two independent events and if E is not impossible then the probability of A is

not modified if one receives information on F being realized.

11.1.2 The mathematical theory of evidence

The evidence theory or Dempster-Shafer’s theory (DST) of belief functions was born during a lecture
on inference statistics given by Arthur Dempster at Harvard University during the 60’s. Dempster’s
main idea has been reinterpreted by Glenn Shafer in his book entitled “A Mathematical Theory of Evi-

dence” [12].

Let us consider two spaces  and ©, and a multivalued relation I" associating the subset I' (w) C © to
each element w € Q. Let assume that P is a probability measure defined on (£2,.4) made of the o-algebra
A of the subsets of 2. Considering that P represents the probability of occurrence of an uncertain event
w € Q, and if it is established that this event w is in correspondence with the events 6 € I' (w), what

probability judgment can we make about the occurrence of uncertain events 6 € ©7

Dempster’s view is that the above consideration leads to the concept of compatible probability mea-
sures. He then refers to the envelope delimited by the lower probability and upper probability of this

probability family.

The probability space (€2, .4,P) is the information source which allows the quantification of the (im-

perfect) state of knowledge over the new referential © by means of T'.

In this study, (2, P,T',0) is called belief structure. By using these mathematical tools, Shafer has
proposed another interpretation to Dempster’s work. This new interpretation identifies the lower and

upper probabilities of the family of compatible measures of probability as authentic confidence measures.

Definition 4. Let © be a finite space and 2° (= P (0)) the power set of ©. A credibility functimﬂ Cr
is an application of 2° with values in [0, 1] which satisfies the following conditions :

(i) Cr(0) =0,

(1) Cr(©) =1,

1The belief function Cr is denoted Bel in 2
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(iit) For all integer n and all family of subsets A1, ..., A, of ©

Cr(A,U...UA,) (=D Or(Mier 4;) (11.12)

(]

The condition (ii¢) is called the general suradditivity condition. When n = 2, (12) becomes,
Cr (Al U Ag) >Cr (Al) + Cr (AQ) —Cr (Al n Ag) . (1113)

The credibility function allows to quantify the partial information in ©. In theory, other functions are

associated to Cr, which are equivalent to it:
e The plausibility function, dual to the credibilities.

e The elementary probability mass function (also called basic belief assignment or mass function)

which is obtained from the credibility function by means of the Mdbius transform.

Definition 5. The basic belief assignment is the function m : 2 — [0, 1], that satisfies the following

property
> m(4) =1 (11.14)
Ae2@
with
m (0) = 0. (11.15)

The evidence theory is often described as a generalization of probabilistic methods to the treatment

of uncertainty as it can handle events which are not necessarily exclusive.

Hence the advantage of being able to represent explicitly the uncertainty from imprecise knowledge.
The human being easily handled imprecise knowledge. For example, it does not indicate his age to the
day near, or his height to the inch near, even if it has access to sufficient information. A mathematical
formulation of the imprecisions has come from Lofti Zadeh through the fuzzy set theory [15]. The
modelling of uncertainties due to the imprecisions of knowledge gives rise to possibility theory that

constitutes with the fuzzy set theory the general framework of the fuzzy logic.

11.1.3 Fuzzy logic

The fuzzy logic appeared in 1965 with Lofti Zadeh’s work. The development of the fuzzy logic was
mainly motivated by the need for a conceptual framework that can address the issue of uncertainty and
lexical imprecision. From this work, it is necessary to keep the need of formalizing the representation and
the processing of imprecise or approximate knowledge with the intention to treat systems with a strong

complexity, in which human factors are often present. Thus, fuzzy logic intervenes to deal with imperfect
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knowledge.

The fuzzy logic is based on two main subject matters [9]: fuzzy set theory and modelling of approxi-

mate reasoning in the framework of possibility theory.

The definition of a fuzzy subset answers the need to represent imprecise knowledge. The concept
was introduced to avoid abrupt changes of a class to another(black to the white, for example) and to
authorize elements so that they cannot belong completely either to one of the classes or to another (to be
gray in the example). In a reference set ©, a fuzzy subset of © is characterized by a membership function
u w.r.t. A, defined as:

ta:© —[0,1]

which is the extension of the classical membership function y, indicator function of the set A that is:
xa:0 —{0,1}.

To emphasize the difference with the ordinary sets of ©, we use lower case letters for the fuzzy sets

of ©.

Definition 6. Let a be a fuzzy set of © and let o be a real value in [0,1]. The o — cut a, is the subset
of © defined by:
4o 210 € 0; 1o (0) > a}. (11.16)

Then Vo, 8 € [0,1],

a<f=apCaq

and V0 € O,
o () =sup{a €[0,1]; 0 € an}. (11.17)

This allows the passage from the fuzzy sets to ordinary sets and gives immediately the fuzzy versions

of the usual operations used for ordinary sets.

Property 2. Let a and b be two fuzzy sets of © defined by their membership functions u, and py, one

has:
o cquality: a=b<=V0 €O, pu,(0)=u(0)
o inclusion: ACb<= V0O, pn,0)<u(0)
o union: aUb+«— V0 €O, pqup(0) =max (g (0), 1 (0))
o intersection: aNb«— V0 € ©, piqnp (0) = min (g (6) , 1o (0))

e complement: @ —— V0 € O, puz(0) = (1 — pa (0))
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The uncertainties about the truth of a statement are not verified in the case of the fuzzy set theory.

The possibility theory was introduced in 1978 by Lofti Zadeh in order to manipulate non-probabilistic
uncertainties for which the probability theory does not give any satisfactory solution. The possibility
theory provides a framework in which imprecise knowledge and uncertain knowledge can coexist and can

be treated jointly.

Possibility theory provides a method to formalize subjective uncertainties on events. It informs us in
which measure the realization of an event is possible and in which measure we are sure without having
any evaluation of probabilities at our disposal. One presents the possibility theory in a general form that

introduces the concepts of possibility measure and necessity measure.

Consider either the frame €2 (experiment space) or © (space of hypotheses). Set A4, a family of subsets
of  or subsets of ©. When 2 or O are finite then A is the set of all subsets.

Definition 7. A possibility measure Pos is an application of A C P(®) in [0,1] such that:
i) Pos (0) =0, Pos(©) = 1.

1) for any finite family {A;,i € I} of events, one has:

Pos (U Ai> = Sl;.p {Pos (A;)}. (11.18)

According to Zadeh, this is the most pessimistic notion or the most prudent notion for a belief. One

has in particular:

max (Pos (A), Pos (A)) =1 (11.19)
and then:
Pos (A) 4+ Pos (4) > 1. (11.20)
11.1.4 Confidence measures

Definition : A confidence measure ¢ is an application of P (), parts of ©, in [0, 1] which verifies the

following properties:
i) c(0)=0and c(©) =1
ii) (monotony) VA,Be€ P(0), ACB=c(A) <c¢(B)
iii) (continuity) For all increasing or decreasing sequences (A, )y of elements of P (©), one has :

lime(A,) =c(limA4,,).
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Consequently, one has: V A, B € P (0),
¢c(ANB) <min(c(A4),c(B)) and max(c(A),c(B)) <c(AUB).

The probabilities, the fuzzy sets, the possibility measures are special cases of the general notion of

confidence measures.

11.2 Fusions

As with Physics, the information fusion modelling aims at giving the best possible description of the

experimental reality. Let us give the postulates [I4] that information fusions need to satisfy.

11.2.1 Postulates

1. Coherence or noncontradiction
2. Continuity of the method
3. Universality or completeness

4. No information refusal

A first consequence is that postulates 2 and 3 leads to use real numbers to represent and compare
degrees of confidence. However postulate 4 leads to hypothetical conditioning: the confidence degree is

only known conditionally upon the environment, the context.

The confidence granted to event A € P (©) in the environment e is noted [A/e].

From Edwin Thompson Jaynes [I0]: Obviously, the operation of real human brains is so complicated
that we can make no pretense of explaining its mysteries; and in any event we are not trying to explain,
much less reproduce, all the aberrations and inconsistencies of human brains. To emphasize this, instead
of asking, "How can we build a mathematical model of human common sense?” let us ask, ”How could
we build a machine which would carry out useful plausible reasoning, following clearly defined principles

expressing an idealized common sense?”

11.2.2 Machine on confidence

We develop the approach essentially based on Cox’s work [B] later detailed by Tribus [I4] while criticized.

i = impossible = 0 < [A/e] < ¢ = certain =1
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The various possible relations are listed by setting u = [A A B/e] that expresses the confidence pro-

vided by the fusion of A and B within the environment e. Let’s define:
2 [A/e] v = [A/Be] y = [B/e] w = [B/Aé]

Eleven functional relations are possible: v = Fy (z,v), u = F» (z,y), u = F3(z,w), u = Fy(v,y),
u = Fs(v,w), u = Fs (y,w), u = F; (z,v,y), u = Fg (z,v,w), u = Fy (z,y,w), u = Fig (v,y,w) and

u=F (z,0,y,w)

Because of the postulates, the functions F5, Fg, Fig and Fj; have to be discarded. The symmetries

induce simplifications. The functional relations capable to meet the aspirations, are:

u = FQ(xay):FZ(yux)
u = F3($,W):F4(U,y)
u = F?(%Uay):Fg(%%w)

The associativity condition on the fusion confidence
[AANBAC/e]=[AN(BAC)/e]=[(ANB)AC/e]

discards F7.

On the other hand, F5 et F5 verify the same associativity equation. By calling o the common operation
describing all the possible fusions between the confidences, this unique equation processes two different

situations:
e First case: u = Fy (z,y) = F> (y,x)
[ANB/e] =[A/e] o [B/Ae] = [B/e] o [A/Be]
e Second case: u = F3 (z,w) = Fy (v,y)
[AANB/e] =[A/e]o[B/el.
This second case was not considered by Cox, the consequences of which constitutes the first results

of this paper.

11.2.3 Operator

e First case:

[B/Ae] < [B'/Ae] => [AA BJe] < [ANB'/e].
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The first case implies strict inequalities on the second variable. The mathematician Aczél [I] has
given the proof based on the strict monotony of one of both variables. The general solution for the

functional equation being such that:
w([ANB/e]) =w([A/e]) w([B/Ae]) = w([B/e]) w([A/Be]) (11.21)
where w is a continuous strictly-monotone function of [0, 1] onto [0,1]. Thus,

[ANB/e] = w™ ! (w([A/e])w ([A/Be])) = [A/e] o [B/Ac]

The fusion operation o is described by a simple product of real numbers after transformation. This
previous transformation of confidence ¢(A) = [A/e] on A in the environment e is made by using
a continuous and strictly monotone function w. This result is easily understood by comparing the
transformation w with the Fourier transformation. The latter transforms the composition product

of two functions into the product of their Fourier transform.

The first case with additional properties gives the probability theory. The problem is to know if

there is a similar property in the second case.

e Second case: The strict monotony is not obvious.

If [A/e] < [A/e] and [B/e] < [B’/e] then [A A B/e] < [A" A B'/e]. On the other hand, one has the
commutativity property and o has all the characteristics of a triangular norm, common notion in
data processing [9]. In this second case, the confidence fusions are associated to the t-norms. The

second case implies the fuzzy theory.

11.3 T-norm

Definition: A triangular norm - called t-norm - is a function o : [0,1] x [0,1] — [0, 1] that verifies the

following conditions for all z,y, z,t in [0, 1]
i) (commutativity) zoy=gyoux
ii) (associativity) (xoy)oz==x0(yoz)
iii) (isotony) if z<zandy <t, (xoy) < (zot)
iv) (neutral element 1) (zo0l) =2

Example 1. The operator o = min is a t-norm; this is the upper t-norm. For all x,y in [0, 1]

(x oy) < min (z,y)
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Lemma 1. If the associated t-norm is strictly increasing, the operator on the confidences is written as
follows: w[ANB/e] = w([A/e]) w[B/e] where w is a continuous and strictly increasing bijection of

[0,1] onto [0,1].
According to the additional hypothesis, we retrieve: [A A B/e] = w™(w ([A/e]) w ([B/€])).

Theorem 1. The fuzzy operator [A N Bje]l = [A/e] A[B/e] = inf {[A/e],[B/e]} is the limit of a sequence

of strictly monotone operators o,.

Proof: Let (T},)n>0 be the family of strictly monotone t-norms such that:

Vn>1, Th(z,y)= ! = w; ! (wn (z)wn(y))  with w, = exp— (1 —x) .

/5" ()" ’

For all n > 1, w, is a continuous and strictly increasing bijection of [0, 1] onto [0, 1]. We have for all

z,y
lim T (z,y) =

n—oco l—i-max((%m) , (%))

In fact, if 0 <a <b
N
lim ¥a" +67 = lim b (1 + (%) ) —b
therefore

lim T'(x,y) = f~! (max (f (z), f ()))

where f(z) = =2
max (f (x), f (y)) = f (min(z,y))

Since f is strictly decreasing on [0, 1], it follows that

lim T (z,y) = min(z,y) N

n—oo

Here are the results obtained for several fusion operators. On x-axis,  increases by 0.1 jumps and equally

on y-axis, y increases by 0.1 jumps.
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e Result obtained with the product operator: z oy 2o« y

0.0100
0.0200
0.0300
0.0400
0.0500
0.0600
0.0700
0.0800
0.0900
0.1000

0.0200
0.0400
0.0600
0.0800
0.1000
0.1200
0.1400
0.1600
0.1800
0.2000

0.0300
0.0600
0.0900
0.1200
0.1500
0.1800
0.2100
0.2400
0.2700
0.3000

0.0400
0.0800
0.1200
0.1600
0.2000
0.2400
0.2800
0.3200
0.3600
0.4000

0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000

0.0600
0.1200
0.1800
0.2400
0.3000
0.3600
0.4200
0.4800
0.5400
0.6000

0.0700
0.1400
0.2100
0.2800
0.3500
0.4200
0.4900
0.5600
0.6300
0.7000

0.0800
0.1600
0.2400
0.3200
0.4000
0.4800
0.5600
0.6400
0.7200
0.8000

0.0900
0.1800
0.2700
0.3600
0.4500
0.5400
0.6300
0.7200
0.8100
0.9000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

e Result obtained with the operator:

xony:1+7\b/(

1

1

=)+ (5

)

— for n = 3.

0.0810
0.0975
0.0995
0.0999
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

0.0975
0.1656
0.1905
0.1973
0.1992
0.1998
0.1999
0.2000
0.2000
0.2000

0.0995
0.1905
0.2538
0.2838
0.2947
0.2984
0.2996
0.2999
0.3000
0.3000

0.0999
0.1973
0.2838
0.3460
0.3794
0.3933
0.3982
0.3996
0.4000
0.4000

0.1000
0.1992
0.2947
0.3794
0.4425
0.4784
0.4937
0.4987
0.4999
0.5000

0.1000
0.1998
0.2984
0.3933
0.4784
0.5435
0.5810
0.5959
0.5996
0.6000

0.1000
0.1999
0.2996
0.3982
0.4937
0.5810
0.6494
0.6872
0.6988
0.7000

0.1000
0.2000
0.2999
0.3996
0.4987
0.5959
0.6872
0.7605
0.7955
0.8000

0.1000
0.2000
0.3000
0.4000
0.4999
0.5996
0.6988
0.7955
0.8772
0.9000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

. . A
As soon as n = 3 we observe how near this operator approximates z oy =

e Result obtained with the fusion operator: x oy 2 min(z,y)

min(z,y).

0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000
0.1000

0.1000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000
0.2000

0.1000
0.2000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3000
0.3000

0.1000
0.2000
0.3000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000
0.4000

0.1000
0.2000
0.3000
0.4000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.6000
0.6000
0.6000
0.6000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.7000
0.7000
0.7000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.8000
0.8000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
0.9000

0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

255



256 CHAPTER 11. GENERAL FUSION OPERATORS FROM COX’S POSTULATES

It was not obvious to obtain the functions w,. The fuzzy operator o = min comes from a limit of
fusions oy, each admitting after confidence transformation w, [A/e] and w, [B/e], a decomposition in a

conventional product of real numbers.

11.3.1 Independence-interdependence

The second functional relation
w ([ANB/e]) =w([Afe]) w([B/e])

is discarded if we consider there is a link between the knowledge of two facts in a given environment.
This constraint, admitted by Cox then by Tribus, is however not valid for all uncertainty models. Let
us give two examples for which the argument given by Tribus is insufficient. In the probability theory,
randomly taking of balls with or without replacement leads to two different models. The testimony of

different persons is another example. The testimonies can be obtained separately or in a meeting.

Thus, because of the acquisition conditions of the knowledge, the postulates lead to two distinct the-

ories: the probability theory and the fuzzy logic.

In addition, from the four basic postulates explained above and valid for the three theories (proba-
bility theory, evidence theory and fuzzy logic), and while adding the hypothesis of interdependence and
admitting a postulate of precision leading to the additive rule, one would obtain the probabilities as well

as the transition probabilities and therefore the credibilities.

11.3.2 T-norm description

We have also obtained a result characterizing the t-norms by correcting and extending a previous demon-

stration [I1]. This is our third result.
Theorem 2. Let o be a continuous t-norm of [0,1] x [0,1] — [0,1]. Then, the interval [0,1] is the union
1. of closed intervals [b, c] over which the equality s o s = s is satisfied and

2. of open intervals (a,b) for which aoa = a and bob =b and for which the inequality so s # s is
satisfied.
For the intervals [b,c| of first kind : Yz € [b,c], Wy € [z,1], xoy=xAy
For each second kind interval (a,b) there exists a function w strictly increasing from [a,b] into [0, 1]
such that w(b) =1
IfVs € (a,b) sos#a then w(a) = 0 and Y,y € [a,b] xoy=w!(w(z)w(y))

If 3s € (a,b) sos=a thenw(a) >0 and Vo,y € [a,b] xoy=w"!(w(z)w(y))Va
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On each like-interval (a,b), the operation o can be constant when x varies from a. However, the
interval within the function is really constant depending upon the value of the second variable y. The

separation curve {(z,y) € [a,b] X [a,b];2 0y = a} in the space [a,b] X [a,]] is given by the equality

w(zoy) = w(a) = w(z)w(y).
This theorem results from the lemmas hereafter.
Lemma 2. The set {x € [0,1];T(z,z) = x} is a union of closed intervals of the interval [0, 1].

Any adherence point s of a sequence (s,;n € N,T(s,,s,) = s,) satisfies T'(s,s) = s with respect
to the continuity of T, and therefore s belongs to the closed interval. Thus, for example, the set
{[O] , [3—1n, 3%] ;n €N } constitutes an infinite family of closed intervals. On each of the open intervals
of the countable infinity of the complementary set, it is sufficient to define a t-norm by means of a

continuous and increasing function w. Each of these functions w depends on the open interval under

consideration.

Lemma 3. If « exists in the open interval (0,1) such that T(a, ) # « then there are two real values
a,b satisfying the inequalities 0 < a < a < b < 1 as well as the equalities T(a,a) = a and T(b,b) = b.

Furthermore, for all real values in the open interval (a,b), the inequality T (s, s) # s is satisfied.

Lemma 4. Let T be a continuous t-norm. For all pair (x,y) of [0,1] such that there exists a, x < a <y
with T'(a,a) = a, we have:

T(x,y) =z =min(z,y).

Any continuous t-norm 7' coincides over [0, 1] x [0,1] with the min function, except for the points

(x,y), <y for which one cannot find a real o such that:
z<a<yetT(aa)=a.
One has to study the behavior of T' in the regions [a,b] X [a, b] of the intervals [a, b] of the second kind.

Lemma 5. Consider the associative and commutative operation o of [a,b] X [a,b] — [a,b] which is
continuous and decreasing with respect to both variables and such that aoa = a and bob = b but such that
for all s in the open interval (a,b), one has the inequality s o s # s. Let u be in the closed interval [a,b],
upper bound of v such that vov = a, that is such that u 2 sup{v € [a,b];v0v = a}. The operation o is
strictly increasing for each of both variables wherever x oy # a, and if u = a then o is strictly increasing

over [a,b] X [a,b].

Lemma 6. Under valid conditions of application of lemmald, if u = a, then for all o in (a,b) and for

all nonzero positive rational number q, the real power a®? is defined and is a real number in the (a,b).
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Remark 1. It can easily be verified that:

oIn

and thus:

rm ° rm-+4sn

n r sn n r
almoa®s = asm o®sm = v sm = ao(ﬁ"’_g)

Lemma 7. Under valid conditions of application of lemmall, if u = a the application q € Q% — a7 €

(a,b) is strictly decreasing and satisfies to limg_.o a®? = b and lim,_,o, a°? = a.

. . A . . .
Lemma 8. The application r € [0,00) — a°" = sup{a’?;r < q} is continuous and decreasing and

a° £ inf {a®;q < r}.

Lemma 9. Under valid conditions of application of lemma B, if w > a, one defines the application
r € [0,00) — u°" in [a,b] as previously. With u°" strictly decreasing over [0,2] such that u°® = b,

u°? =a, and for allr > 2 u°" =a.

Lemma 10. Under valid conditions of application of lemma, if u > a, one defines for all a € (a,b),
the application r € [0, 00[— a°" in [a,b]. In this case, there is a positive real number ro such that a°" is

strictly decreasing over [0,7¢], and a°® = b, a°™ = a, and for allT > 19 " =a .

Lemma 11. Consider the associative and commutative operation o of [a,b] X [a,b] — [a,b] continuous
and strictly increasing with respect to both variables such that a oa = a and bob = b but one has the
inequality s o s # s for all s in the open interval (a,b). Therefore, there is a continuous and strictly

increasing function w such that:
roy=w "(w(x)w(y)) Va=max(a,w (w(z)w(y))) (11.22)

The results of the lemmas finish the justification of the theorem

11.4 Conclusions

Finally, the same postulates applied on confidences, in different environments (either in dependence
or independence situation), imply the same foundation for the various modern theories of information
fusion in the framework of uncertainty by using deductions that we have unified. The independence
between elementary confidences does not need to be understood in the probabilistic sense. The formula
P(A/e) = P(A) of the probability of A in the environment e has no sense. One has to find another

conceptualization of the notion of independence moving away from the probabilistic concept.

We must make new models when fusion analysis is to be applied in all situations. We take the simple
example of logical implication

P and Q=R
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Every logical proposition P, @, R takes only one of the two numerical values 0,1. Yet with Probability
these propositions are able to take any numerical value in the interval [0, 1] to represent the statistical
limit of existence when the experiment is repeated as often as possible. Nowadays, the numbers [P/e],

[@Q/€e] and [R/e] only give the intuitive beliefs when the conditions e on the surroundings are well defined.

To be more explicit, let take a plausible medical situation. Many patients present chaotic neurologic

disorders. Does the deterministic chaos P with the drug @ result in the end of illness R?

We have no reason in such a medical situation to introduce the limitation of logical implication. More-
over, we have the fusion ”and” about the two beliefs [P/e] on the disorder P and [@/e] on the efficiency
of drug @ and we expect this fusion to give precisely the belief [R/e] of the recovery R from the two
beliefs [P/e] and [Q/e].

In addition, let us take the discussion of Zadeh’s example, discussed in Chapter Bl in order to make

a new analysis with our fusion principles. One has the values

(M standing for Meningitis, C for contusion and T for tumor) for the masses from Dempster-Shafer

renormalization where the normalization coefficient is

1 —m(0) = 0.0001

From our principles, it is possible to give a belief for the global model. Without renormalization the

two doctors give the beliefs

[T/e], =0.01  [I/e]s =0.01

With the principles of this chapter, the numerical value for any fusion arising from these two beliefs
is equal to or less than 0.01 = min([T"/e]1, [T'/e€]2). So the Dempster-Shafer normalization is not a fusion!
The normalization is in contradiction with the arguments of this chapter. Note that the hybrid DSm rule
of combination proposed in Chapter [l provides in this example explained in details in Chapter B (Section

BE3T) Cr(T) = m(T) = 0.0001 < min([T/e]1, [T /e]2) which is coherent with a confidence measure.

The probable explanation is that the Dempster-Shafer normalization is the only mistake of the model.
One supposes global cohesion between initial mass values coming from Demspster-Shafer rules. In math-
ematics, we know it is often impossible to adjust analytical functions in the whole complex plan C; global

cohesion is impossible! For example the logarithmic function is defined in any neighbourhood but it is not
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defined in the whole complex plan. The global cohesion is probably the mistake. The DSmT framework
seems to provide a better model to satisfy confidence measures and fusion postulates. Some theoretical

investigations are currently done to fully analyze DSmT in the context of this work.

Another way to explain losses of mass in Dempster-Shafer theory is to introduce new sets. In any
probability diffusion, we observe occasionally probability masses loading infinity with an evolution. Let
us take the mass 1 in position {n} and increase n to infinity we have no more mass on the real line
R. Similarly, let us take the masses 0.5 on {—n} and 0.5 on {n}; this time we load {—oc} and {oc},
n increasing to infinity. In Dempster-Shafer model, one sometimes loads the empty set {0} and (or) an

extra set, only to explain vanishing masses.

Probably Dempster-Shafer renormalization is the only mistake of the model because false global prop-

erty of masses is supposed. It is important to know the necessary axioms given renormalization truth.

Surroundings are so different that fusion described only by product is certainly a construction that is

too restrictive.

The processing in concrete application of the results presented here suppose additional hypotheses,
since any information fusion introduces monotone functions strictly increasing whose existence is proven
in this paper. These functions (not only one!) remain to be identified for each application. Theoretical
considerations should allow to keep certain typical families of functions. Experimental results would next

identify some unknown parameters if some parameterized family of such functions.

Applications of such a methodology on the information fusion such as air pollution measures given

by sensors will be processed.

Moreover, during its time evolution, the information data fusion can thus be described by successive

t-norms amongst which probability should be introduced.
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