282 research outputs found

    Term rewriting systems from Church-Rosser to Knuth-Bendix and beyond

    Get PDF
    Term rewriting systems are important for computability theory of abstract data types, for automatic theorem proving, and for the foundations of functional programming. In this short survey we present, starting from first principles, several of the basic notions and facts in the area of term rewriting. Our treatment, which often will be informal, covers abstract rewriting, Combinatory Logic, orthogonal systems, strategies, critical pair completion, and some extended rewriting formats

    Deciding Confluence and Normal Form Properties of Ground Term Rewrite Systems Efficiently

    Full text link
    It is known that the first-order theory of rewriting is decidable for ground term rewrite systems, but the general technique uses tree automata and often takes exponential time. For many properties, including confluence (CR), uniqueness of normal forms with respect to reductions (UNR) and with respect to conversions (UNC), polynomial time decision procedures are known for ground term rewrite systems. However, this is not the case for the normal form property (NFP). In this work, we present a cubic time algorithm for NFP, an almost cubic time algorithm for UNR, and an almost linear time algorithm for UNC, improving previous bounds. We also present a cubic time algorithm for CR

    Confluence of Layered Rewrite Systems

    Get PDF
    We investigate a new, Turing-complete class of layered systems, whose linearized lefthand sides of rules can only be overlapped at the root position. Layered systems define a natural notion of rank for terms: the maximal number of redexes along a path from the root to a leaf. Overlappings are allowed in finite or infinite trees. Rules may be non-terminating, non-left-linear, or non-right- linear. Using a novel unification technique, cyclic unification, we show that rank non-increasing layered systems are confluent provided their cyclic critical pairs have cyclic-joinable decreasing diagrams

    Combining Algebra and Higher-Order Types

    Get PDF
    We study the higher-order rewrite/equational proof systems obtained by adding the simply typed lambda calculus to algebraic rewrite/equational proof systems. We show that if a many-sorted algebraic rewrite system has the Church-Rosser property, then the corresponding higher-order rewrite system which adds simply typed ß-reduction has the Church-Rosser property too. This result is relevant to parallel implementations of functional programming languages. We also show that provability in the higher-order equational proof system obtained by adding the simply typed ß and η axioms to some many-sorted algebraic proof system is effectively reducible to provability in that algebraic proof system. This effective reduction also establishes transformations between higher-order and algebraic equational proofs, transformations which can be useful in automated deduction

    Higher-Order Beta Matching with Solutions in Long Beta-Eta Normal Form

    Get PDF
    Higher-order matching is a special case of unification of simply-typed lambda-terms: in a matching equation, one of the two sides contains no unification variables. Loader has recently shown that higher-order matching up to beta equivalence is undecidable, but decidability of higher-order matching up to beta-eta equivalence is a long-standing open problem. We show that higher-order matching up to beta-eta equivalence is decidable if and only if a restricted form of higher-order matching up to beta equivalence is decidable: the restriction is that solutions must be in long beta-eta normal form

    Congruence types

    Get PDF

    Automating the First-Order Theory of Rewriting for Left-Linear Right-Ground Rewrite Systems

    Get PDF
    The first-order theory of rewriting is decidable for finite left-linear right-ground rewrite systems. We present a new tool that implements the decision procedure for this theory. It is based on tree automata techniques. The tool offers the possibility to synthesize rewrite systems that satisfy properties that are expressible in the first-order theory of rewriting

    On Unfolding Completeness for Rewriting Logic Theories

    Full text link
    Many transformation systems for program optimization, program synthesis, and program specialization are based on fold/unfold transformations. In this paper, we investigate the semantic properties of a narrowing-based unfolding transformation that is useful to transform rewriting logic theories. We also present a transformation methodology that is able to determine whether an unfolding transformation step would cause incompleteness and avoid this problem by completing the transformed rewrite theory with suitable extra rules. More precisely, our methodology identifies the sources of incompleteness and derives a set of rules that are added to the transformed rewrite theory in order to preserve the semantics of the original theory.Alpuente Frasnedo, M.; Baggi, M.; Ballis, D.; Falaschi, M. (2010). On Unfolding Completeness for Rewriting Logic Theories. http://hdl.handle.net/10251/863
    • …
    corecore