
Congruence Types*

Gilles Barthe1•3 and Herman Geuvers2•3

1 Centrum voor Wiskunde en Informatica (CWI),
Amsterdam, The Netherlands, gillestcvi.nl

2 Faculty of Mathematics and Informatics,
Technical. University of Eindhoven, The Netherlands, hermanChrin. tue .nl

3 Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands

Abstract. We introduce a type-theoretical framework in which canon
ical term rewriting systems can be represented faithfully both from the
logical and the computational points of view. The framework is based on
congruence types, a new synta:c which combines inductive, algebraic and
quotient types. Congruence types improve on existing work to combine
type theoriea with algebraic rewriting by making e:i;plicit the fact that
the term-rewriting systems under consideration are initial models of an
equational theory. As a result, the interaction gustavo:thesisween the type
theory and the algebraic types (rewriting systems) is much more power
ful than in previous work. Congruence types can be used (i) to introduce
initial models of canonical term-rewriting systems (ii) to obtain a suit
able computational behavior of a definable operation (iii) to provide an
elegant solution to the problem of equational reasoning in type theory.

1 Introduction

The combination of type systems with algebraic rewriting systems has given
rise to algebraic-functional languages, a class of very powerful programming lan
guages (see for example [4, 9, 12, 22]). Yet these frameworks only allow for a
limited interaction between the algebraic rewriting systems and the type theory.
For example, if :Z:. is defined as an algebraic type, one cannot define the abso
lute value or prove that every integer is either positive or negative. This serious
objection to algebraic-functional languages is in fact due to the absence of in
duction principles for algebraic types and so one might be tempted to formulate
such principles. However, the task is not so easy if we want to have:

- dependent elimination principles: the naive approach which consists in adding
the elimination principle directly to the algebraic type, as done in Clean
((27]), is limited to non-dependent elimination principles. For example, one
could not prove from such an induction principle on ~ that every integer is
either positive or negative.

* This work was partially supported by the Esprit project 'Types: types for programs
and proofs'.

37

- confluence of the reduction relations on legal terms: the computations attached
to induction principles and those attached to algebraic types do not interact
satisfactorily. What is usually required in programming languages is that the
induction principle can only be applied to canonical values (i.e. closed alge
braic terms in normal form). Without this restriction the reduction relation
fails to be locally con:O.uent.

To solve these problems, we opt for a two-level approach, in which every alge
braic type is accompanied by the inductive type of its signature and related to
it by suitable axioms for quotients4 • For the case of .Z, this amounts to hav
ing an inductive type Z with constructors Q, ! and p (the type of terms of the
signature of /Z) and an algebraic type Z with constants 0 : Z, s : z__.z and
p: z__.z and rewrite rules p(s:t)-+:t and s(p:i:)-+:i:. The interaction between the
types Zand Z is axiomatised by two maps: a 'class' map [-] : Z --t Z a.nd a
'representant' map rep : Z --t Z, some reduction rules which specify the com
putational behavior of these maps (in particular, rep is forced to be the unique
map which assigns to every 'class' a representant in normal form and [.]is forced
to be the unique morphism of algebras from Z to Z) and a logical axiom (which
states that there is no confusion, i.e. that the [.]map does identify exactly those
terms which are provably equal for the theory of integers). In this way, one can
transfer both the non-dependent and dependent induction principles (of Z) to
the algebraic type (Z) without affecting the con:fluence of the system. We claim
that such a formalism, which we call congroence types, is suited for representing
canonical term-rewriting systems in a faithful way (both from the logical and
the computational points of view).

We see three important uses of congruence types.

- Represent initial models of term-rewriting systems, such as /Z. (They cannot
be defined as inductive types, because they arise as a quotient of an inductive
type). In this case we are mainly interested in the quotient type (Z) and we
use the inductive type (Z) to reason over the quotient type.

- Obtain a better computational behavior of a definable operation on an in
ductive type. This is achieved by defining an inductive type with 'extra' con
structors and adding rewrite rules to specify the behavior of the extra con
structor so that it represents the function we have in mind. How this works is
best illustrated by an example. Consider the inductive type of natural num
bers and the addition function+ on it. Then one has+ (s:i:) y - s(+ :z: y)
but (in general) not + :z: (sy) - s(+ :i: y). Hence + has an unsatisfac
tory computational behavior. Now, consider the rewriting system (N, R),
where N is the signature with constant 0, unary function s and binary sym
bol + and the set of rewrite rules R consists of + :i: 0 -+ :z:, + 0 :z: -+ :z:,
+ (+ :z: y) z --t + :z: (+ y z), + sz y -+ s(+ :z: y) and + :z: sy -+ s(+ :z: y).
The congruence type defined from this set of rewrite rules gives rise to an
inductive type N with constructors Q., ! and + and an algebraic type with
the reduction rules R. In this framework, + has a suitable computational

• The re&der is refered to [6, 13, 20, 21] for a type-theoretic account of quotients.

38

behavior and N gives indeed a suitable representation of N. Note that in
this case we are again interested in the quotient type N.

- Use the quotient structure to prove properties of the algebra of terms (the
inductive type). In this case the quotient structure acts as an oracle to de
rive a statement about the algebra of terms. Consider the congruence type
associated to the theory of groups: the inductive type corresponds to the
set of terms of the theory of groups and the quotient type corresponds to
the free group over infinitely many elements. To know whether an equation
{ s, t) is a theorem of the theory of groups, it is enough to know whether
[s] = [t]. The gain here is that if [s] and [t] have a common reduct, then the
conclusion is immediate. This use of congruence types is very important in
proof-checking and is the basis of lean proof-checking, a two-level approach
to formal mathematics for efficient equationa.l reasoning introduced in [7]
and further developed in [10].

In this paper we want to emphasize especially the usefulness of congruence types
and therefore we discuss three examples in quite some detail. Furthermore, we
give a definition of the general syntax and an overview of the meta-theory of the
system. The paper is organised as follows. In section 2, we discuss related work.
In section 31 the more technical motivations of congruence types are discussed
and we treat the integers as a motivating example of the syntax. In section 4,
the syntax is given in detail {for the calculus of constructions) and we give some
of the meta-theory {without proof). In section 5 we give two further examples
of congruence types and their possible applications to programming and proof
checking. In the :final section we suggest some extensions of the framework.

Related work

Congruence types are at the junction of several fundamental concepts and pro
gramming paradigms. They combine features of inductive ([25, 26, 24]), algebraic
([12, 4, 22]) and quotient types ([6, 13, 21]). Congruence types arise as a special
form of quotient type where the underlying type is inductively defined and where
the equivalence relation is given by a canonical term-rewriting system.

Congruence types and inductive types Congruence types are more expressive
than inductive types because they allow to introduce initial models of canonical
term-rewriting systems instead of initial models of signatures. They can be seen
as a variant of the congruence types of Backhouse et al. which allow the intro
duction of initial models of arbitrary specifications ([2, 3]). Their work differs
from ours in two respects; first, they focus on specifications and not on canoni
cal term-rewriting systems, so there is no question of giving a computationally
faithful representation of the rewrite rules. Second, their formalism requires a
very strong form of equality as it is present for example in ITT.

Congruence types and pattern-matching It is possible to use congruence types to
give a computationally faithful representation of definable operators on inductive

39

types. In effect, congruence types share some of the power of pattern-matching
as introduced by Coquand in [14]. See section 4.1.

Congruence types and algebraic rewriting Congruence types are also more ex
pressive than algebraic rewriting because of the presence of elimination princi
ples. They are closely related to J ouannaud and Okada's algebraic functional
paradigm ((4, 22)). In algebraic functional languages, (higher-order) constants
are defined by rewrite rules, whereas they are defined inductively in the frame
work of congruence types. An advantage of congruence types is that the elim
ination principles can be used to reason over the data structures, a possibility
which is ruled out in algebraic-functional languages. See section 2.

Applications of congruence types to proof-checking Congruence types provide a
suitable framework to ease the problem of equational reasoning in proof-checking.
As argued in [10], they also lay the foundations for a theoretical study of the
interaction between computer algebra systems and proof-checkers. See section
4.2.

Prerequisites and terminology

The paper assumes some familiarity with pure type systems ((5, 17]), inductive
types (see for example (26]) and first-order term-rewriting ((15, 23]). A signature
is a pair E = (Fn, Ar) where Fn is a set (the set of function symbols) and
Ar : Fn --+ N is the arity map. Term-rewriting systems are defined as usual.
By canonical term-rewriting system, we mean confluent and terminating term
rewriting system. An algebraic type is a type corresponding to a term-rewriting
system.

2 Motivation

For every term-rewriting system S = (E, 'R), one can reason on the initial model
Ts of S by induction on the structure of the terms. This form of reasoning
implicitly uses the universality of Ts as a quotient of T:n and the initiality of
Tn. In type theory (or any formal system), such a reasoning is only possible if
the relationship between T:n and Ts is made explicit. Congruence types provide
an axiomatic framework in which the relationship between the initial E-algebra
and the initial S-model is described axiomatically. The idea is to introduce two
types E and S simultaneously; these types should respectively correspond to Tn
and Ts (so we will confuse E with Tn and S with Ts). Every function symbol
f of arity n induces two maps, f_ and f such that:

- if qi:E, ... ,qn:E, then fq1 · · ·qn: E,
- if ai:S, ... , an:S, then fa1 ···an: S.

Hence every E-term t induces two terms f. and t of respective type E and S.
Equality in S is forced by the rewriting rules of 'R. Now the crucial step is to

40

relate S and E by suitable axioms. As Ts is a quotient of T]], we can inspire
ourselves from the standard rules for quotients ([6]). First, there must be a
canonical 'class' map [-] from E to S; it is the unique morphism of E-algebras
and satisfies for every function symbol f of arity n and t1, ... , t,. elements of E,

Type theory is a computational framework, so it is natural to see this equality
as a computation rule (from the left to the right). In a second instance, we must
ensure that the two standard criterions for quotients hold:

- no junk: the map [-] from E to S is surjective;
- no confusion: for every two terms s and t, S f- s :::: t ~ [s] = [t], where

the first equality S f- - = - is the deductive closure of the rewrite rules.

In the syntax for quotient types, there are two alternatives to ensure the no junk
condition: by the introduction of a map rep from S to E which picks a repre
sentative for each equivalence class or by adding a logical axiom that enforces
the surjectivity of [-]. We prefer the first alternative over the more traditional
second approach, because it can be given a computational meaning; the idea is
that rep should assign to every equivalence class c the unique term t in 'normal
form' 5 such that [t] = c. Note that the behavior of rep is completely specified
on closed terms by the above requirement, hence rep is not a choice operator
and does not alter the constructive character of type theory. The behavior of
rep is forced by several rewrite rules. First, one must have the computation rule
[rep x] = x for every x in S. Second, we roust impose the further computation
rule

rep(f(t1 1 • •• ,t,.)) =[(rep t1, ... ,rep t,.))

provided f(t1, ... , tn.) is a closed term in normal form {this corresponds exactly
to our intuition of rep). The restriction to closed terms is necessary to preserve
confluence.

As for the no confusion rule, it is ensured axiomatically. The rule expresses
the fact that, if two elements of E are in the same class, then they are in the least
equivalence relation that contains the rewrite relation (seen as a relation on E).
This is achieved by adding a constant noconf that takes a proof p of [a] =s [b]
and returns a proof noconf p of Rs a b, where Rs is the (impredicatively defined)
least equivalence relation containing the rewrite relation.

A worked out example: the integers One of the starting points of our in
vestigation was the representation of the set Z of integers in type theory. Despite
being a fairly simple data type, it has no direct representation in type theory; it
can either be defined as a "quotient" of N x N, where N is the inductively defined
~ype of natural numbers, or as an inductive type using some encoding ([11]), or
~s an algebraic type, i.e. a term-rewriting system (without induction principle).

& The rewriting relation is defined on S so the notion of a term (in E) in 'normal form'
is an informal one.

41

However, none of these solutions captures adequately the structure of Z. If we
see lZ as a canonical term-rewriting system, then the first two definitions are not
computationally faithful. On the other hand, if lZ is represented as an algebraic
type, the representation of Z is unsatisfactory from a logical point of view; for
example, one cannot prove that every integer is either positive or negative nor
define the absolute value of an integer.

On the other hand, congruence types provide a suitable representation of
LZ. lZ can be defined with congruence types by introducing simultaneously an
algebraic type Z corresponding to ~ and an inductive type Z corresponding to
the signature of lZ and by relating them by suitable rules for quotient types.
In this formalism, the representation of Z. is computationally faithful and it is
possible to derive from the induction principle on Z several standard induction
principles on Z. The rules are as follows.

The inductive type Z of ground terms of the theory of integers with con
structors Q, !! and E· Z is given by the standard rules for an inductive type

I- z: 0

with the elimination rules

I'l-t:.£. I'l-t:.£_
I'l-!!t:Z.. I'l-Et:Z

I' I- C : Z -+ * I' I- a : Z I' I- f o : CQ
r I- f. : JI'/; : £...Ox -+ C(!:Z:) r I- fp : [fa : £..C:c -+ C(p:c)

r I- € [fo, /,, fp] a : c a
I' I- C : D I' I- a : Z I' I- f o : C

r 1- f. : z... -+ c -+ c r r- f p : £. -+ c -+ c
I' I- E [fo, f., fp] a : 0

The term-rewriting system Z is introduced via the rules

I- z: 0 I- 0: z I'l-t:Z I'l-t:Z
I'l-st:Z I'l-pt:Z

The axioms for quotients, that relate Zand Z, are represented by the rules

r I- a : z... I' I- a : z r I- p : [a] =z [b]
I' I- [a): Z I' I- rep a: Z I' I- noconf p: Rz a b.

Here, Rz is the least equivalence relation on Z that is closed under the rewrite
rules. More precisely: for a, b:Z,

Rza b := JIS:B._-+£,.--+Mqrel(S)-+(JI:z::Z.S (e(!:c)) :z:)-+(II:z::Z.S fa(E:z:)) :c)-+S a b

where eqrel (S) denotes that Sis an equivalence relation. There is a new conver
sion rule, which extends the reduction-expansion rule to take into account the
new reduction relations6 •

6 Note that in pure type systems, this rule is equivalent to the standard conversion rule;
the equivalence follows from the subject reduction lemma and the Church-Rosser
property of ,8-reduction on pseudo-terms ([5]). One consequence of the equivalence

42

I' f- a: A I' I- A': */D A ""*f3'JM A' or A' -f3xip A
I' f- a: A'

The computational behavior of the system is specified by .8-reduction and three

other reduction relations:

- £-reduction (The computational meaning of the elimination principles over

the inductive type K.)

E [fo, f,, !,.] Q. --+, fo
E [fo,f,,f,.] (!:i:)--+, f, :i: (E [fo,f,,f,.] :i:)
E [fo, f., !1] (~:i:) --+, fp :z: (E [fo, f,, fp] :z:)

These reduction rules are the standard ones for inductive types.
- p-reduction (Given by the term-rewriting system defining ~.)

s(p:i:) --+p :z: p(s:z:) --+p :i:

- x-rednction (The computational meaning of quotients.)

[rep :z:] --+x :z:
[Q] --+x 0

rep 0 --+x Q
[!:z:] --+x s[:i: l

rep (st) --+x ! (rep t)
fp:i:] --+x p[:z:]

rep (Pt) --+x E. (rep t)

where in the last two rules it is respectively assumed that st and pt are closed
algebraic terms (i.e built from 0, s and p) in normal form.

One of the main advantages of our definition is that it suppresses the burden
of providing equality proofs when reasoning about integers. Indeed, the equality
between integers is computational and handled by the reduction relations. It
makes them very attractive to use in proof-checking. Furthermore, our definition
also captures the logical content of Z as one can prove that all the standard
induction principles for Z hold for Z. The first induction principle is proof by
induction, which stipulates that for every predicate P on Z,

if PO and V:c E Z.pos :i:, P'l:-+ P(sz) and V:c E Z.neg :c, P:i:-+ P(p:i:) then V:i; E Z.P:i:

where being positive (pos) and being negative (neg) are suitably defined predi
cates. A similar non-dependent elimination principle over 0 can be defined. For
P : D, one can build from

Jo: P, f,: Jfa,: Z.(pos :z:)--+ P-+ P and f1 : Jfa: Z.(neg :i:)--+ P--+ Pa term
F(fo,f,,fp) of type Z-+ P.

is that for every two convertible legal types A and B, there exists a conversion path
through legal types; this property is called soundness in [19]. Soundness is a very
desirable property of the system because it ensures that non-typable terms do not
play any role in derivations.

In presence of 1>-reduction, one cannot rely on subject reduction or con:fluence of
the combined reduction relation on the set of pseudo-terms to prove soundness. The
solution is to replace the conversion rule by the reduction-expansion rule (see [4]).

43

The construction of these terms is rather intricate and involves the definition of
a normal form map nf : Z -+ Z with suitable properties. The construction will
be reported elsewhere.

The term F behaves as a kind of'primitive recursor for the integers'. Indeed,
one can check that the following equalities hold:

F lo I, 11 0 =/3•x.P lo
F lo I, 11 (s t) =f3•x.P I, t q (F lo I, IP t)
F lo I. f, (pt) =13.-x.p I, t q (Flo f, IP t)

where in the second rule, st is a closed term in normal form and q a proof of
pos t and in the last rule, pt is a closed term in normal form and q a proof
that neg t. In contrast, the dependent elimination principle over * does not have
such a clear computational meaning. It seems to emphasize the necessity to sep
arate between propositions and objects, as it is done in the present system by
putting the sets on the kind-level. Our view is that only inhabitation is central
to propositions, so that the computational meaning of the elimination principle
over propositions is not crucial. On the contrary, both inhabitation and compu
tational behavior of the inhabitants are important in the case of objects, so the
computational meaning of the elimination principle over objects must be clear.
Still, one can get an elimination principle for * which is computationally mean
ingful by strengthening mildly the induction hypotheses. (So, this elimination
principle is logically weaker). Indeed, one can easily construct a term G of type

'r/P: Z-+ *.PO-+ (Vz: Z.Prc-+ P(src))-+ ('r/rc: Z.Pz-+ P(prc))-+ 'r/z: Z.Pz

that satisfies reductions that are similar to the ones for F above.

3 The calculus of constructions with congruence types

3.1 Syntax

We start from a (finite) collection S1 = (Ei. 'R1), .•• , S 1 = (L'n, 'R,,.) of canon
ical term-rewriting systems. We let F = U.=i, ... ,n. F11, and F = {[JI E F}. The
set of pseudo-terms is defined by the abstract syntax:

T =VI* IDITTIDV: T.Tl.AV: T.TIS•IE•IFTlFTl[T]lrep Tlnoconf Tle,[T] T

The rules for derivation are those of the Calculus of Constructions (see Ap
pendix) extended by the rules for congruence types. The rules are divided in
four categories.

- formation and introduction rules: these rules introduce the congruence types
and all the constructors. As motivated earlier, congruence types are intro
duced as kinds.

I- s.: 0
I' I- a : E, I' I- a : Ei
I' I- (a] : s, I' I- rep a : S; I- Ei: 0

I' I- a 1 : S, I' I- am : S, I' I- ai : JJ, I' I- am : E,
~~-=-.,.--,,--~~~~--~~-

I' I- f a.1 •.. am : s, r I- Lai ... am : E,

where it is assumed that f E :F, has a.rity m;
- elimination rules: these are the standard elimination rules for inductive types;

let E; have constructors Ji, ... , f.,., of respective arity m1, ... , m..,.,.

I' I- a : Ei I' r P : E, -+ *
r I- E; : II x1 ... Xmj :E,.Pxi - ... -+ Pxmi -+ P(f; x 1 ... Xm;) (1 :S j :S n.;]

fi(Ei, ... , E.,..]a: Pa
I' I- a : E, I' I- P : 0
I' I- E;: I1x1 ... Zm-:Ei.P-+ · · ·-+ P-+ P [1 :S j :Sn;]

fi(E1, ... , E.,.,] a: P

- logical rule: the no confusion rule is formalised by defining the closure of 'R,
as a. relation on E;. The relation is defined impredica.tively and denoted by
a bus de language by n,.

I' I- p: [a] =s, [b]
I' I- noconf p : n, a b

- reduction rule: the reduction rule has to be extended so as to take into account
the new reduction relations associated to congruence types.

I' r a: A I' I- A' : */D A -*/jx•P A' or A' --++f3x•P A
I' I- a: A'

The new reduction relations are i-reduction (which specifies the computational
behavior of the elimination principles), x-reduction (which specifies the compu
tational behavior of quotient types) and p-reduction (which embeds the reduction
relation of the term-rewriting systems into the type theory). The rules are:

- £-reduction: if f; E :F; is ofarity m; 1 <;[E](f;a1 • • • a.n;) -+, E;a1 · ··a,.,.; (E; [E]ai) · · · (e;[E]am;),

- p-reduction: for every rewriting ntle I -+ r, there is a rule l --+ P r,
- x.-reduction: the rules a.re

(rep :z:] -+x :z:

[f t1 · · · tm] -+x f [t1] · · · [tm]
rep(! ti ... tm) -+x f.. (rep t1) ... (rep tm)

In the last rule, it is assumed that f t 1 ... tm is a. closed algebraic term in
(p-)normal form or that f is a fundamental constructor, i.e. for a.11 E-terms
t1 1 ... ,tm, the normal form of f(ti, ... ,tm) is f(ti, ... ,t~) where the t~'s
are the normal forms of the t/s. In section 4.1, we will justify this slight
weakening of the proviso.

45

3.2 Meta-Theory

There are some important properties to be established before we can safely use
the extension of CC with Congruence Types. These are the Church-Rosser prop
erty for the well-typed terms, subject-reduction (which ensures that reduction
preserves typing), consistency (as a logical system, saying that not all types are
inhabited by a closed term) and decidability of typing (it is decidable if in a
given context I', a pseudo-term M has type A). These properties will of course
depend on the specific algebraic rewrite rules that we have added, but remember
that we only consider canonical (i.e. Church-Rosser and strongly normalizing)
term-rewriting systems.

It turns out that all the standard results for the Calculus of Constructions
hold for its extension with congruence types. Note however that proofs are com
plicated by the fact that ,BxLp-reduction is not confluent on pseudo-terms (see
[12) for a counterexample). A relatively easy fact, but nevertheless a key obser
vation is the following.

Lemma 1 The /3xip-reduction is Weak Church-Rosser (WCR) on the set of
pseudoterms. {That is, if M --+tJx•P M1 and M --+tJx•P M2, then there is a
term Q such that M 1 -++ f3x•P Q M 2 -++ fJx.•P Q ·)

The subject reduction property (SR) can also be proved. Because .Bxip
reduction is not Church-Rosser on the pseudo-terms, this involves some extra
technicalities that were developped in [4) for the addition of algebraic rewriting
to CC.

Proposition 2 (Subject Reduction) If I' I- a A and a ---+f3x•P a', then
I' I- a': A.

Termination is a modular property of CC with congruence types, under the
mild restriction that the term-rewriting systems are non-duplicating7 . We do not
know whether strong normalisation pertains if the restriction to non-duplicating
term-rewriting systems is dropped.

Theorem 3 (Strong Normalization) Let S1, ... , S.,,, be canonical, non-duplicating
term-rewriting systems. Then CC e:z:tended with the congruence types associated
to S1 1 ••• 1 S.,,, is strongly normalising.

The proof is an adaptation of the semantical proof of strong normalisation
for CC with (first-order) inductive types given in [18].

Corollary 4 1. CC with Congruence Types satisfies the Church-Rosser prop
erty. (If M is well-typed and M _,.fJ'X.•P M1 and M _,.fJx.•P M2, then there is
a term Q such that M1 --++fJx.•P Q M2 -++fJx.•P Q.)

1 A term-rewriting system is non-duplicating if for every rule l -+ T a.nd variable
:r:, occ(:r:,l) ~ occ(:r:,1) where for every term t, occ(:r:,t) denotes the number of
occurences of :r: in t.

46

£. CC with Congruence Types is consistent. (There is no closed term M with
f- M: LJ

3. CC with Congruence Types has decidable typing.

The first is due to Newman's Lemma (SN &; WCR imply CR). The second
follows by showing that a closed term of type l. (:= Ila:* .a) can never be in
normal form in our system. This involves some more technical facts about the
possible structure of inhabitants of types ofa specific form. (Note that in presence
of congruence types, this reasoning is slightly more complicated then for the
Calculus of Constructions, because of the no confusion rules.) The consistency
can also be proved in a more direct way by extending the proof-irrelevance
model or the realisability model for CC to the case for congruence types. The
third follows because for two well-typed terms it is decidable whether they have
a common reduct.

4 Examples

4.1 The natural numbers with addition

Traditionally, the natural numbers are defined as an inductive type N with two
constructors, zero and successor. Then addition, multiplication and other prim
itive recursive functions can all be defined inductively. One of the problems of
this approach is that the computational behavior of these operations can be
quite unsatisfactory. For example, if we define addition inductively on the first
component, we have the reduction rule s:i: + y -+ s(z + y) but in general not
z + sy-+ s(z + y) (if :i: and y are variables, then the reduction does not hold).
Hence + has not the expected computational behavior. This fact was already
pointed out in [14] as a motivating example to introduce pattern-matching in
type theory. Congruence types offer an alternative approach to define a type of
natural numbers with well-behaved arithmetical operations. Consider the term
rewriting system N = (N, 'R.N) where N is the signature consisting of one con
stant 0, one unary function symbols and one binary function symbol + and 'R.N
is the term-rewriting system given by the reduction rules

+zO-+:i:

+ 0 :i:-+ :i:

+ (+ z y) z-+ + :i: (+ y z)

+ sz y -+ s(+ :i: y)
+zsy-+s(+zy)

We claim that N gives a suitable representation of N. In particular, one can prove
the standard induction principles for natural numbers. However, the weakening
of the proviso in the rules for x-reduction (rep (ft) -+ /(rep t) if f is a fun
damental constructor) is essential to derive the standard ;limination principles
for N. The key fact is that in the present example s and O are fundamental

47

constructors, hence rep (st) ___.. ~(rep t) for an arbitrary term t. Note that, as
N is inductively definable, every closed algebraic term reduces to a. fundamental
algebraic term, i.e. one built from the fundamental constructors.

Congruence types and pattern-matching It is particularly interesting to compare
our syntax with pattern-matching as introduced in [14]. Both offer a means to
give a computationally adequate representation of definable operations on induc
tive types. Technically, this is achieved by different means. The most important
differences between pattern-matching and congruence types are summarised be
low.

- Pattern-matching is schematic and can be used repeatedly to define new op
erators in the same way as the elimination principle. In contrast, congruence
types are specific: they only provide a faithful representation of those opera
tors introduced as constructors. For example, substraction will not have the
expected computational behavior in the above definition of N. Moreover,
pattern-matching can be used to define (for example) predicates, which is
not possible with congruence types.

- The structure of rewrite rules allowed is more liberal in the syntax of con
gruence types than in the syntax of pattern-matching. For example, the rule
+ (+ :z: y) z--+ + :z: (+ y z) does not satisfy the criterion given in [14).

4.2 The free group over a set of atoms

Oracle types is another syntax for introducing term-rewriting systems in type
theory, obtained from congruence types by forgetting the rep constructor and its
associated reduction rules. In [10, 8], Barthe et al. have proposed oracle types as a
theoretical framework to study the combination of proof-checkers and computer
algebra systems. Indeed, oracle types can be viewed as an interface between a
logical system (type theory with inductive types) and a calculational system
(the computer algebra system, modelled by p-reduction). The two systems are
correlated by the no confusion rule, which can be seen as some kind of soundness
result. In this context, the no confusion rule can be read as follows.

Let (E, 1l) be a canonical term-rewriting system and let s, t be two
E-terms. Every computation on [s] and [t] (the computer algebra rep
resentations of s and t) which yields a common reduct can be lifted to
a proof that s and t are in the deductive closure of R (viewed as an
equational theory).

In the remaining of this section, we illustrate how Barthe et al. have used con
gruence/ oracle types to give a partial solution to the problem of equational
reasoning in proof-checking.Consider the term-rewriting system G = (G, 'llo)
where G is the signature of groups extended with infinitely many constants and
Ro is the Knuth-Bendix completion of the axioms of the theory of groups. That
is, Ro consists of the rules

o e :z: -+p :z:

o :z:: e -+p :z:

o ;z: (o y z) -+po (o :i: y) z

o(i:i:):z:-+pe

o:r:(ix)-+pe

48

i e -+p e

o (o ;z: (i z)) z -+p ;z:

o (o :z: z) (i z) -+p :z:

i(i:i:)-+p:Z:

i (o :i: y) -+po (i y) (i ;z:)

The congruence type generated by G consists of two parts: the free group G over
infinitely many elements and the inductive set of terms of the theory of groups
(the infinite collection of constants serves as the set of variables). The interaction
between the two types allows a simple solution to equational problems of the
theory of groups. Assume we can derive

I'l-H:O r 1- oH : H -+ H -+ H I' I- iH : H -+ H -+ H

and we have a proofof the fact that (H, OH, eH, iH) satisfies the axioms of groups
(we work with Leibniz equality). Assume that we want to decide whether a =H b.
One possible way to solve the problem is to find two inhabitants s, t of G and an
assignment8 a such that [s]a -+> a and [t]a -+> b (in fact, there are optimal such
sand t). By the conversion rule, the problem can be reduced to [s]a =H [t]a·
But, by definition of RG, this is an immediate consequence of Ra st. (Note
that we are implicitely using the soundness theorem for equational logic, which
is an easy consequence of the impredicative definition of RG.) Now congruence
types offer a decision procedure for solving RG s t, simply by checking whether
[s] = [t] (because of the no confusion rule).

5 Final remarks

We have presented a new syntax of congruence types and shown how the syntax
can be used to give a faithful representation of canonical term-rewriting systems
in type theory. In this paper, we have restricted our attention to unsorted term
rewriting systems. In the future, it seems natural to extend the framework to
cover other case of term-rewriting systems such as:

- many-sorted term-rewriting systems: the extension would allow to introduce
strongly normalising type theories {with explicit substitutions) as congruence
types;

- higher-order term-rewriting systems: the extension of our framework to higher
order specifications would allow to consider congruence types generated by
first-order languages (quantification has to be introduced as a higher-order
constructor).

- non-standard term-rewriting systems: many theories, such as commutative
theories, fall out of the scope of this paper because they do not yield canonical

8 Assignments and their extension to interpretations of terms are defined as usual.

49

term-rewriting systems. It would be interesting to investigate the theory
of congruence types when the term-rewriting systems under consideration
are conditional or priority rewriting systems or are defined modulo a set of
equations.

Another important direction for research is the application of congruence and
oracle types in proof-checking. Extending the framework of oracle types to cover
many forms of rewriting would enable the two-level approach of [8, 10] to be
extended to a significant class of problems, including for example a decision
procedure to detect logical equivalence of formulae of propositional logic.

References

1. S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Com
puter Science. Oxford Science Publications, 1992.

2. R. Backhouse, P. Chisholm, and G. Malcolm. Do-it-yourself type theory (part I).
BEATCS: Bulletin of the European Auociationfor Theoretical Computer Science,
34:68-110, 1988.

3. R. Backhouse, P. Chisholm, and G. Malcolm. Do-it-yourself type theory (part II).
BEATCS: Bulletin of the European Association for Theoretical Computer Science,
35:205-244, 1988.

4. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalisation
and confluence in the algebraic A-cube. In Proceedings of LICS'91,, pages 406-415.
IEEE Computer Society Press, 1994.

5. H.P. Barendregt. Lambda calculi with types. In Abramsky et al. [l], pages 117-
309. Volume 2.

6. G. Barthe. Extensions of pure type systems. In Dezani-Ciancaglini and Plotkin
[16], pages 16-31.

7. G. Barthe. Formalising algebra in type theory: fundamentals and applications to
group theory. Manuscript. An earlier version appeared as technical report CSI
R9508, University of Nijmegen, under the title 'Formalising mathematics in type
theory: fundamentals and case studies', 1995.

8. G. Barthe and H. Elbers. Towards lean proof checking. Manuscript, 1996.

9. G. Barthe and H. Geuvers. Modular properties of algebraic pure type systems. In
G. Dowek, J. Heering, K. Meinke, and B. Moller, editors, Proceedings of HOA '95,
Lecture Notes in Computer Science. Springer-Verlag, 1996. To appear.

10. G. Barthe, M. Ruys, and H. Barendregt. A two-level approach towards lean proof
checking. In S. Berardi and M. Coppo, editors, Proceedings of TYPES'95, Lecture
Notes in Computer Science. Springer-Verla.g, 1996. To appear.

11. G. Betarte. A machine-assisted proof that the integers form an integral domain.
Master's thesis, Department of Computer Science, Chalmers University, 1993.

12. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of
LICS'88, pages 82-90. IEEE Computer Society Press, 1988.

13. R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W.
Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki,
and S.F. Smith. Implementing Mathematics with the NuPrl Development System.
Prentice-Hall, inc., Englewood Cliffs, New Jersey, first edition, 1986.

50

14. T. Coquand. Pattern matching in type theory. In B. Nordstrom, ed-
itor, Informal proceeding" of LF'9!, pages 66-79, 1992. Available from
http://www.dcs.ed.a.c.uk/lfcsinfo /research/ types-bra./proc /index.html.

15. N. Dershowitz and J-P. Joua.nna.ud. Rewrite systems. In J. van Leeuwen, ed
itor, Formal model1 and aemantic1. Handbook of Theoretical Computer Science,
volume B, pages 243-320. Elsevier, 1990.

16. M. Dezani-Cia.nca.glini and G. Plotkin, editors. Proceeding1 of TLCA '95, volume
902 of Lecture Notea in Computer Science. Springer-Verlag, 1995.

17. H. Geuvers. Logic1 and type 1yatem1. PhD thesis, University of Nijmegen, 1993.
18. H. Geuvers. A short and :B.exible proof of strong normalisation for the calculus

of constructions. In P. Dybjer, B. Nordstrom, and J. Smith, editors, Proceeding1
of TYPES'94, volume 996 of Lecture Note& in Computer Science, pages 14-38.
Springer-Verla.g, 1995.

19. H. Geuvers and B. Werner. On the Church-Rosser property for expressive type sys
tems a.nd its consequence for their meta.theoretic study. In Proceedinga of LICS'94,
pages 320-329. IEEE Computer Society Press, 1994.

20. M. Hofmann. A simple model for quotient types. In Deza.ni-Cia.ncaglini and
Plotkin [16], pages 216-234.

21. B. Ja.cobs. Categorical logic and type theory. 199-. Book. In preparation.
22. J-P. Jouanna.ud and M. Okada.. Executable higher-order algebraic specification

languages. In Proceeding& of LICS'91, pages 350-361. IEEE Computer Society
Press, 1991.

23. J-W. Klop. Term-rewriting systems. In Abra.msky et al. [1], pages 1-116. Volume
2.

24. Z. Luo. Computation and Rea1oning: A Type Theory for Computer Science. Num
ber 11 in International Series of Monographs on Computer Science. Oxford Uni
versity Press, 1994.

25. B. Nordstrom, K. Petersson, a.nd J. Smith. Programming in Martin-Lof'1 Type
Theory. An Introduction. Number 7 in International Series of Monographs on
Computer Science. Oxford University Press, 1990.

26. C. Paulin-Mohring. Inductive definitions in the system Coq. Rules and properties.
In M. Bezem and J-F. Groote, editors, Proceedinga of TLCA '93, volume 664 of
Lecture Notea in Computer Science, pages 328-345. Springer-Verlag, 1993.

27. M.J. Plasmeijer and M.C.J.D. van Eekelen. Clean 1.0 reference manual. Tech
nical report, Department of Computer Science, University of Nijmegen, 1996. In
preparation.

The Calculus of Constructions

We now give a precise definition of the Calculus of Constructions and at the same
time we fix some terminology. See for example [5, 17] for more information.

In CC there a.re two specific constants, * and D. The first represents the
universe of types (so we shall say that <J' is a type if u : *) and the second
represents the universe of kinds (so we shall say that A is a kind if A: D). The
universe * is a specific example of a kind, so it will be the case that * : D. To
present the derivation rules for CC we first fix the set of pseudoterms from which
the derivation rules select the (typable) terms.

51

Definition 5 The set T of pseudoterms is defined by the following abstract syn-
tax

T = VI * IDITTIHV: T.TjA v : T.T

where V is a countable set of variables. Both II and A bind variables and we have
the usual notions of free variable and bound variable. The substitution of N for
v in M is denoted by M[N/v]. On T we have the usual notion of /3-reduction,
denoted by --+13. We also adopt from the untyped A calculus the conventions
of denoting the transitive reflexive closure of --+13 by -{3 and the transitive
symmetric closure of -{3 by =13.

The typing of terms is done under the assumption of specific types for the free
variables that occur in the term. These a.re listed in a context, which is a sequence
of declarations v1 :T1 , .•• , v,. :T11 , where the v0 a.re distinct variables and the 1i
are pseudoterms. Contexts are denoted by the symbol I'. For I' a context and
v a variable, v is said to be I' -fresh if it is not among the variables that are
declared in r.

Definition 6 The Calculus of Constructions {CC) is the typed A-calculus with
the following deduction rules.

Aziom

Start

Weakening

Product

Application

I-*: 0
I' I- A: */D

I', :z:: A I- x: A
I'l-t:A I'l-B:*/D

I',:z:: BI- t: A
I' I- A : s1 I', :z:: A I- B : s2

I' I- II x : A.B : s2

I'l-t:IIx:A.B I'l-u:A
I' I- tu: B[u/:z:]

Ab . I',:i;:Al-t:B I'l-II'J;:A.B:*fo
straction r I- AX : A.t : II :r, : A.B

Conversion
r I- u : A r I- B : */D

I'l-u:B

if :z: <!. r

if :c rt. I'

if A --+13 B or B --+13 A

The set of terms of CC is defined by Term ={A I :JI', B[I' I- A: B v I' I- B: A]}.

