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Abstract. We introduce a type-theoretical framework in which canon
ical term rewriting systems can be represented faithfully both from the 
logical and the computational points of view. The framework is based on 
congruence types, a new synta:c which combines inductive, algebraic and 
quotient types. Congruence types improve on existing work to combine 
type theoriea with algebraic rewriting by making e:i;plicit the fact that 
the term-rewriting systems under consideration are initial models of an 
equational theory. As a result, the interaction gustavo:thesisween the type 
theory and the algebraic types (rewriting systems) is much more power
ful than in previous work. Congruence types can be used (i) to introduce 
initial models of canonical term-rewriting systems (ii) to obtain a suit
able computational behavior of a definable operation (iii) to provide an 
elegant solution to the problem of equational reasoning in type theory. 

1 Introduction 

The combination of type systems with algebraic rewriting systems has given 
rise to algebraic-functional languages, a class of very powerful programming lan
guages (see for example [4, 9, 12, 22]). Yet these frameworks only allow for a 
limited interaction between the algebraic rewriting systems and the type theory. 
For example, if :Z:. is defined as an algebraic type, one cannot define the abso
lute value or prove that every integer is either positive or negative. This serious 
objection to algebraic-functional languages is in fact due to the absence of in
duction principles for algebraic types and so one might be tempted to formulate 
such principles. However, the task is not so easy if we want to have: 

- dependent elimination principles: the naive approach which consists in adding 
the elimination principle directly to the algebraic type, as done in Clean 
((27]), is limited to non-dependent elimination principles. For example, one 
could not prove from such an induction principle on ~ that every integer is 
either positive or negative. 

* This work was partially supported by the Esprit project 'Types: types for programs 
and proofs'. 
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- confluence of the reduction relations on legal terms: the computations attached 
to induction principles and those attached to algebraic types do not interact 
satisfactorily. What is usually required in programming languages is that the 
induction principle can only be applied to canonical values (i.e. closed alge
braic terms in normal form). Without this restriction the reduction relation 
fails to be locally con:O.uent. 

To solve these problems, we opt for a two-level approach, in which every alge
braic type is accompanied by the inductive type of its signature and related to 
it by suitable axioms for quotients4 • For the case of .Z, this amounts to hav
ing an inductive type Z with constructors Q, ! and p (the type of terms of the 
signature of /Z) and an algebraic type Z with constants 0 : Z, s : z__.z and 
p: z__.z and rewrite rules p(s:t)-+:t and s(p:i:)-+:i:. The interaction between the 
types Zand Z is axiomatised by two maps: a 'class' map [-] : Z --t Z a.nd a 
'representant' map rep : Z --t Z, some reduction rules which specify the com
putational behavior of these maps (in particular, rep is forced to be the unique 
map which assigns to every 'class' a representant in normal form and [.]is forced 
to be the unique morphism of algebras from Z to Z) and a logical axiom (which 
states that there is no confusion, i.e. that the [.]map does identify exactly those 
terms which are provably equal for the theory of integers). In this way, one can 
transfer both the non-dependent and dependent induction principles (of Z) to 
the algebraic type (Z) without affecting the con:fluence of the system. We claim 
that such a formalism, which we call congroence types, is suited for representing 
canonical term-rewriting systems in a faithful way (both from the logical and 
the computational points of view). 

We see three important uses of congruence types. 

- Represent initial models of term-rewriting systems, such as /Z. (They cannot 
be defined as inductive types, because they arise as a quotient of an inductive 
type). In this case we are mainly interested in the quotient type (Z) and we 
use the inductive type (Z) to reason over the quotient type. 

- Obtain a better computational behavior of a definable operation on an in
ductive type. This is achieved by defining an inductive type with 'extra' con
structors and adding rewrite rules to specify the behavior of the extra con
structor so that it represents the function we have in mind. How this works is 
best illustrated by an example. Consider the inductive type of natural num
bers and the addition function+ on it. Then one has+ (s:i:) y - s(+ :z: y) 
but (in general) not + :z: (sy) - s(+ :i: y). Hence + has an unsatisfac
tory computational behavior. Now, consider the rewriting system (N, R), 
where N is the signature with constant 0, unary function s and binary sym
bol + and the set of rewrite rules R consists of + :i: 0 -+ :z:, + 0 :z: -+ :z:, 
+ (+ :z: y) z --t + :z: (+ y z), + sz y -+ s(+ :z: y) and + :z: sy -+ s(+ :z: y). 
The congruence type defined from this set of rewrite rules gives rise to an 
inductive type N with constructors Q., ! and + and an algebraic type with 
the reduction rules R. In this framework, + has a suitable computational 

• The re&der is refered to [6, 13, 20, 21] for a type-theoretic account of quotients. 
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behavior and N gives indeed a suitable representation of N. Note that in 
this case we are again interested in the quotient type N. 

- Use the quotient structure to prove properties of the algebra of terms (the 
inductive type). In this case the quotient structure acts as an oracle to de
rive a statement about the algebra of terms. Consider the congruence type 
associated to the theory of groups: the inductive type corresponds to the 
set of terms of the theory of groups and the quotient type corresponds to 
the free group over infinitely many elements. To know whether an equation 
{ s, t) is a theorem of the theory of groups, it is enough to know whether 
[s] = [t]. The gain here is that if [s] and [t] have a common reduct, then the 
conclusion is immediate. This use of congruence types is very important in 
proof-checking and is the basis of lean proof-checking, a two-level approach 
to formal mathematics for efficient equationa.l reasoning introduced in [7] 
and further developed in [10]. 

In this paper we want to emphasize especially the usefulness of congruence types 
and therefore we discuss three examples in quite some detail. Furthermore, we 
give a definition of the general syntax and an overview of the meta-theory of the 
system. The paper is organised as follows. In section 2, we discuss related work. 
In section 31 the more technical motivations of congruence types are discussed 
and we treat the integers as a motivating example of the syntax. In section 4, 
the syntax is given in detail {for the calculus of constructions) and we give some 
of the meta-theory {without proof). In section 5 we give two further examples 
of congruence types and their possible applications to programming and proof
checking. In the :final section we suggest some extensions of the framework. 

Related work 

Congruence types are at the junction of several fundamental concepts and pro
gramming paradigms. They combine features of inductive ([25, 26, 24]), algebraic 
([12, 4, 22]) and quotient types ([6, 13, 21]). Congruence types arise as a special 
form of quotient type where the underlying type is inductively defined and where 
the equivalence relation is given by a canonical term-rewriting system. 

Congruence types and inductive types Congruence types are more expressive 
than inductive types because they allow to introduce initial models of canonical 
term-rewriting systems instead of initial models of signatures. They can be seen 
as a variant of the congruence types of Backhouse et al. which allow the intro
duction of initial models of arbitrary specifications ([2, 3]). Their work differs 
from ours in two respects; first, they focus on specifications and not on canoni
cal term-rewriting systems, so there is no question of giving a computationally 
faithful representation of the rewrite rules. Second, their formalism requires a 
very strong form of equality as it is present for example in ITT. 

Congruence types and pattern-matching It is possible to use congruence types to 
give a computationally faithful representation of definable operators on inductive 
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types. In effect, congruence types share some of the power of pattern-matching 
as introduced by Coquand in [14]. See section 4.1. 

Congruence types and algebraic rewriting Congruence types are also more ex
pressive than algebraic rewriting because of the presence of elimination princi
ples. They are closely related to J ouannaud and Okada's algebraic functional 
paradigm ((4, 22)). In algebraic functional languages, (higher-order) constants 
are defined by rewrite rules, whereas they are defined inductively in the frame
work of congruence types. An advantage of congruence types is that the elim
ination principles can be used to reason over the data structures, a possibility 
which is ruled out in algebraic-functional languages. See section 2. 

Applications of congruence types to proof-checking Congruence types provide a 
suitable framework to ease the problem of equational reasoning in proof-checking. 
As argued in [10], they also lay the foundations for a theoretical study of the 
interaction between computer algebra systems and proof-checkers. See section 
4.2. 

Prerequisites and terminology 

The paper assumes some familiarity with pure type systems ((5, 17]), inductive 
types (see for example (26]) and first-order term-rewriting ((15, 23]). A signature 
is a pair E = (Fn, Ar) where Fn is a set (the set of function symbols) and 
Ar : Fn --+ N is the arity map. Term-rewriting systems are defined as usual. 
By canonical term-rewriting system, we mean confluent and terminating term
rewriting system. An algebraic type is a type corresponding to a term-rewriting 
system. 

2 Motivation 

For every term-rewriting system S = (E, 'R), one can reason on the initial model 
Ts of S by induction on the structure of the terms. This form of reasoning 
implicitly uses the universality of Ts as a quotient of T:n and the initiality of 
Tn. In type theory (or any formal system), such a reasoning is only possible if 
the relationship between T:n and Ts is made explicit. Congruence types provide 
an axiomatic framework in which the relationship between the initial E-algebra 
and the initial S-model is described axiomatically. The idea is to introduce two 
types E and S simultaneously; these types should respectively correspond to Tn 
and Ts (so we will confuse E with Tn and S with Ts). Every function symbol 
f of arity n induces two maps, f_ and f such that: 

- if qi:E, ... ,qn:E, then fq1 · · ·qn: E, 
- if ai:S, ... , an:S, then fa1 ···an: S. 

Hence every E-term t induces two terms f. and t of respective type E and S. 
Equality in S is forced by the rewriting rules of 'R. Now the crucial step is to 
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relate S and E by suitable axioms. As Ts is a quotient of T]], we can inspire 
ourselves from the standard rules for quotients ([6]). First, there must be a 
canonical 'class' map [-] from E to S; it is the unique morphism of E-algebras 
and satisfies for every function symbol f of arity n and t1, ... , t,. elements of E, 

Type theory is a computational framework, so it is natural to see this equality 
as a computation rule (from the left to the right). In a second instance, we must 
ensure that the two standard criterions for quotients hold: 

- no junk: the map [-] from E to S is surjective; 
- no confusion: for every two terms s and t, S f- s :::: t ~ [s] = [t], where 

the first equality S f- - = - is the deductive closure of the rewrite rules. 

In the syntax for quotient types, there are two alternatives to ensure the no junk 
condition: by the introduction of a map rep from S to E which picks a repre
sentative for each equivalence class or by adding a logical axiom that enforces 
the surjectivity of [-]. We prefer the first alternative over the more traditional 
second approach, because it can be given a computational meaning; the idea is 
that rep should assign to every equivalence class c the unique term t in 'normal 
form' 5 such that [t] = c. Note that the behavior of rep is completely specified 
on closed terms by the above requirement, hence rep is not a choice operator 
and does not alter the constructive character of type theory. The behavior of 
rep is forced by several rewrite rules. First, one must have the computation rule 
[rep x] = x for every x in S. Second, we roust impose the further computation 
rule 

rep(f(t1 1 • •• ,t,.)) =[(rep t1, ... ,rep t,.)) 

provided f(t1, ... , tn.) is a closed term in normal form {this corresponds exactly 
to our intuition of rep). The restriction to closed terms is necessary to preserve 
confluence. 

As for the no confusion rule, it is ensured axiomatically. The rule expresses 
the fact that, if two elements of E are in the same class, then they are in the least 
equivalence relation that contains the rewrite relation (seen as a relation on E). 
This is achieved by adding a constant noconf that takes a proof p of [a] =s [b] 
and returns a proof noconf p of Rs a b, where Rs is the (impredicatively defined) 
least equivalence relation containing the rewrite relation. 

A worked out example: the integers One of the starting points of our in
vestigation was the representation of the set Z of integers in type theory. Despite 
being a fairly simple data type, it has no direct representation in type theory; it 
can either be defined as a "quotient" of N x N, where N is the inductively defined 
~ype of natural numbers, or as an inductive type using some encoding ([11]), or 
~s an algebraic type, i.e. a term-rewriting system (without induction principle). 

& The rewriting relation is defined on S so the notion of a term (in E) in 'normal form' 
is an informal one. 
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However, none of these solutions captures adequately the structure of Z. If we 
see lZ as a canonical term-rewriting system, then the first two definitions are not 
computationally faithful. On the other hand, if lZ is represented as an algebraic 
type, the representation of Z is unsatisfactory from a logical point of view; for 
example, one cannot prove that every integer is either positive or negative nor 
define the absolute value of an integer. 

On the other hand, congruence types provide a suitable representation of 
LZ. lZ can be defined with congruence types by introducing simultaneously an 
algebraic type Z corresponding to ~ and an inductive type Z corresponding to 
the signature of lZ and by relating them by suitable rules for quotient types. 
In this formalism, the representation of Z. is computationally faithful and it is 
possible to derive from the induction principle on Z several standard induction 
principles on Z. The rules are as follows. 

The inductive type Z of ground terms of the theory of integers with con
structors Q, !! and E· Z is given by the standard rules for an inductive type 

I- z: 0 

with the elimination rules 

I'l-t:.£. I'l-t:.£_ 
I'l-!!t:Z.. I'l-Et:Z 

I' I- C : Z -+ * I' I- a : Z I' I- f o : CQ 
r I- f. : JI'/; : £...Ox -+ C(!:Z:) r I- fp : [fa : £..C:c -+ C(p:c) 

r I- € [fo, /,, fp] a : c a 
I' I- C : D I' I- a : Z I' I- f o : C 

r 1- f. : z... -+ c -+ c r r- f p : £. -+ c -+ c 
I' I- E [fo, f., fp] a : 0 

The term-rewriting system Z is introduced via the rules 

I- z: 0 I- 0: z I'l-t:Z I'l-t:Z 
I'l-st:Z I'l-pt:Z 

The axioms for quotients, that relate Zand Z, are represented by the rules 

r I- a : z... I' I- a : z r I- p : [a] =z [b] 
I' I- [a): Z I' I- rep a: Z I' I- noconf p: Rz a b. 

Here, Rz is the least equivalence relation on Z that is closed under the rewrite 
rules. More precisely: for a, b:Z, 

Rza b := JIS:B._-+£,.--+Mqrel(S)-+(JI:z::Z.S (e(!:c)) :z:)-+(II:z::Z.S fa(E:z:)) :c)-+S a b 

where eqrel (S) denotes that Sis an equivalence relation. There is a new conver
sion rule, which extends the reduction-expansion rule to take into account the 
new reduction relations6 • 

6 Note that in pure type systems, this rule is equivalent to the standard conversion rule; 
the equivalence follows from the subject reduction lemma and the Church-Rosser 
property of ,8-reduction on pseudo-terms ([5]). One consequence of the equivalence 
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I' f- a: A I' I- A': */D A ""*f3'JM A' or A' -f3xip A 
I' f- a: A' 

The computational behavior of the system is specified by .8-reduction and three 

other reduction relations: 

- £-reduction (The computational meaning of the elimination principles over 

the inductive type K.) 

E [fo, f,, !,.] Q. --+, fo 
E [fo,f,,f,.] (!:i:)--+, f, :i: (E [fo,f,,f,.] :i:) 
E [fo, f., !1 ] (~:i:) --+, fp :z: ( E [fo, f,, fp] :z:) 

These reduction rules are the standard ones for inductive types. 
- p-reduction (Given by the term-rewriting system defining ~.) 

s(p:i:) --+p :z: p(s:z:) --+p :i: 

- x-rednction (The computational meaning of quotients.) 

[rep :z:] --+x :z: 
[Q] --+x 0 

rep 0 --+x Q 
[!:z:] --+x s[ :i: l 

rep ( st) --+x ! (rep t) 
fp:i:] --+x p[:z:] 

rep (Pt) --+x E. (rep t) 

where in the last two rules it is respectively assumed that st and pt are closed 
algebraic terms (i.e built from 0, s and p) in normal form. 

One of the main advantages of our definition is that it suppresses the burden 
of providing equality proofs when reasoning about integers. Indeed, the equality 
between integers is computational and handled by the reduction relations. It 
makes them very attractive to use in proof-checking. Furthermore, our definition 
also captures the logical content of Z as one can prove that all the standard 
induction principles for Z hold for Z. The first induction principle is proof by 
induction, which stipulates that for every predicate P on Z, 

if PO and V:c E Z.pos :i:, P'l:-+ P(sz) and V:c E Z.neg :c, P:i:-+ P(p:i:) then V:i; E Z.P:i: 

where being positive (pos) and being negative (neg) are suitably defined predi
cates. A similar non-dependent elimination principle over 0 can be defined. For 
P : D, one can build from 

Jo: P, f,: Jfa,: Z.(pos :z:)--+ P-+ P and f1 : Jfa: Z.(neg :i:)--+ P--+ Pa term 
F(fo,f,,fp) of type Z-+ P. 

is that for every two convertible legal types A and B, there exists a conversion path 
through legal types; this property is called soundness in [19]. Soundness is a very 
desirable property of the system because it ensures that non-typable terms do not 
play any role in derivations. 

In presence of 1>-reduction, one cannot rely on subject reduction or con:fluence of 
the combined reduction relation on the set of pseudo-terms to prove soundness. The 
solution is to replace the conversion rule by the reduction-expansion rule (see [4]). 
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The construction of these terms is rather intricate and involves the definition of 
a normal form map nf : Z -+ Z with suitable properties. The construction will 
be reported elsewhere. 

The term F behaves as a kind of'primitive recursor for the integers'. Indeed, 
one can check that the following equalities hold: 

F lo I, 11 0 =/3•x.P lo 
F lo I, 11 (s t) =f3•x.P I, t q (F lo I, IP t) 
F lo I. f, (pt) =13.-x.p I, t q (Flo f, IP t) 

where in the second rule, st is a closed term in normal form and q a proof of 
pos t and in the last rule, pt is a closed term in normal form and q a proof 
that neg t. In contrast, the dependent elimination principle over * does not have 
such a clear computational meaning. It seems to emphasize the necessity to sep
arate between propositions and objects, as it is done in the present system by 
putting the sets on the kind-level. Our view is that only inhabitation is central 
to propositions, so that the computational meaning of the elimination principle 
over propositions is not crucial. On the contrary, both inhabitation and compu
tational behavior of the inhabitants are important in the case of objects, so the 
computational meaning of the elimination principle over objects must be clear. 
Still, one can get an elimination principle for * which is computationally mean
ingful by strengthening mildly the induction hypotheses. (So, this elimination 
principle is logically weaker). Indeed, one can easily construct a term G of type 

'r/P: Z-+ *.PO-+ (Vz: Z.Prc-+ P(src))-+ ('r/rc: Z.Pz-+ P(prc))-+ 'r/z: Z.Pz 

that satisfies reductions that are similar to the ones for F above. 

3 The calculus of constructions with congruence types 

3.1 Syntax 

We start from a (finite) collection S1 = (Ei. 'R1 ), .•• , S 1 = (L'n, 'R,,.) of canon
ical term-rewriting systems. We let F = U.=i, ... ,n. F11, and F = {[JI E F}. The 
set of pseudo-terms is defined by the abstract syntax: 

T =VI* IDITTIDV: T.Tl.AV: T.TIS•IE•IFTlFTl[T]lrep Tlnoconf Tle,[T] T 

The rules for derivation are those of the Calculus of Constructions (see Ap
pendix) extended by the rules for congruence types. The rules are divided in 
four categories. 

- formation and introduction rules: these rules introduce the congruence types 
and all the constructors. As motivated earlier, congruence types are intro
duced as kinds. 



I- s.: 0 
I' I- a : E, I' I- a : Ei 
I' I- (a] : s, I' I- rep a : S; I- Ei: 0 

I' I- a 1 : S, I' I- am : S, I' I- ai : JJ, I' I- am : E, 
~~-=-.,.--,,--~~~~--~~-

I' I- f a.1 •.. am : s, r I- Lai ... am : E, 

where it is assumed that f E :F, has a.rity m; 
- elimination rules: these are the standard elimination rules for inductive types; 

let E; have constructors Ji, ... , f.,., of respective arity m1, ... , m..,.,. 

I' I- a : Ei I' r P : E, -+ * 
r I- E; : II x1 ... Xmj :E,.Pxi - ... -+ Pxmi -+ P(f; x 1 ... Xm;) (1 :S j :S n.;] 

fi(Ei, ... , E.,..]a: Pa 
I' I- a : E, I' I- P : 0 
I' I- E;: I1x1 ... Zm-:Ei.P-+ · · ·-+ P-+ P [1 :S j :Sn;] 

fi(E1, ... , E.,.,] a: P 

- logical rule: the no confusion rule is formalised by defining the closure of 'R, 
as a. relation on E;. The relation is defined impredica.tively and denoted by 
a bus de language by n,. 

I' I- p: [a] =s, [b] 
I' I- noconf p : n, a b 

- reduction rule: the reduction rule has to be extended so as to take into account 
the new reduction relations associated to congruence types. 

I' r a: A I' I- A' : */D A -*/jx•P A' or A' --++f3x•P A 
I' I- a: A' 

The new reduction relations are i-reduction (which specifies the computational 
behavior of the elimination principles), x-reduction (which specifies the compu
tational behavior of quotient types) and p-reduction (which embeds the reduction 
relation of the term-rewriting systems into the type theory). The rules are: 

- £-reduction: if f; E :F; is ofarity m; 1 <;[E](f;a1 • • • a.n;) -+, E;a1 · ··a,.,.; ( E; [E]ai) · · · ( e;[E]am;), 

- p-reduction: for every rewriting ntle I -+ r, there is a rule l --+ P r, 
- x.-reduction: the rules a.re 

(rep :z:] -+x :z: 

[f t1 · · · tm] -+x f [t1] · · · [tm] 
rep(! ti ... tm) -+x f.. (rep t1) ... (rep tm) 

In the last rule, it is assumed that f t 1 ... tm is a. closed algebraic term in 
(p-)normal form or that f is a fundamental constructor, i.e. for a.11 E-terms 
t1 1 ... ,tm, the normal form of f(ti, ... ,tm) is f(ti, ... ,t~) where the t~'s 
are the normal forms of the t/s. In section 4.1, we will justify this slight 
weakening of the proviso. 
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3.2 Meta-Theory 

There are some important properties to be established before we can safely use 
the extension of CC with Congruence Types. These are the Church-Rosser prop
erty for the well-typed terms, subject-reduction (which ensures that reduction 
preserves typing), consistency (as a logical system, saying that not all types are 
inhabited by a closed term) and decidability of typing (it is decidable if in a 
given context I', a pseudo-term M has type A). These properties will of course 
depend on the specific algebraic rewrite rules that we have added, but remember 
that we only consider canonical (i.e. Church-Rosser and strongly normalizing) 
term-rewriting systems. 

It turns out that all the standard results for the Calculus of Constructions 
hold for its extension with congruence types. Note however that proofs are com
plicated by the fact that ,BxLp-reduction is not confluent on pseudo-terms (see 
[12) for a counterexample). A relatively easy fact, but nevertheless a key obser
vation is the following. 

Lemma 1 The /3xip-reduction is Weak Church-Rosser (WCR) on the set of 
pseudoterms. {That is, if M --+tJx•P M1 and M --+tJx•P M2, then there is a 
term Q such that M 1 -++ f3x•P Q M 2 -++ fJx.•P Q ·) 

The subject reduction property (SR) can also be proved. Because .Bxip
reduction is not Church-Rosser on the pseudo-terms, this involves some extra 
technicalities that were developped in [4) for the addition of algebraic rewriting 
to CC. 

Proposition 2 (Subject Reduction) If I' I- a A and a ---+f3x•P a', then 
I' I- a': A. 

Termination is a modular property of CC with congruence types, under the 
mild restriction that the term-rewriting systems are non-duplicating7 . We do not 
know whether strong normalisation pertains if the restriction to non-duplicating 
term-rewriting systems is dropped. 

Theorem 3 (Strong Normalization) Let S1, ... , S.,,, be canonical, non-duplicating 
term-rewriting systems. Then CC e:z:tended with the congruence types associated 
to S1 1 ••• 1 S.,,, is strongly normalising. 

The proof is an adaptation of the semantical proof of strong normalisation 
for CC with (first-order) inductive types given in [18]. 

Corollary 4 1. CC with Congruence Types satisfies the Church-Rosser prop
erty. (If M is well-typed and M _,.fJ'X.•P M1 and M _,.fJx.•P M2, then there is 
a term Q such that M1 --++fJx.•P Q M2 -++fJx.•P Q.) 

1 A term-rewriting system is non-duplicating if for every rule l -+ T a.nd variable 
:r:, occ(:r:,l) ~ occ(:r:,1) where for every term t, occ(:r:,t) denotes the number of 
occurences of :r: in t. 
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£. CC with Congruence Types is consistent. (There is no closed term M with 
f- M: LJ 

3. CC with Congruence Types has decidable typing. 

The first is due to Newman's Lemma (SN &; WCR imply CR). The second 
follows by showing that a closed term of type l. (:= Ila:* .a) can never be in 
normal form in our system. This involves some more technical facts about the 
possible structure of inhabitants of types ofa specific form. (Note that in presence 
of congruence types, this reasoning is slightly more complicated then for the 
Calculus of Constructions, because of the no confusion rules.) The consistency 
can also be proved in a more direct way by extending the proof-irrelevance 
model or the realisability model for CC to the case for congruence types. The 
third follows because for two well-typed terms it is decidable whether they have 
a common reduct. 

4 Examples 

4.1 The natural numbers with addition 

Traditionally, the natural numbers are defined as an inductive type N with two 
constructors, zero and successor. Then addition, multiplication and other prim
itive recursive functions can all be defined inductively. One of the problems of 
this approach is that the computational behavior of these operations can be 
quite unsatisfactory. For example, if we define addition inductively on the first 
component, we have the reduction rule s:i: + y -+ s(z + y) but in general not 
z + sy-+ s(z + y) (if :i: and y are variables, then the reduction does not hold). 
Hence + has not the expected computational behavior. This fact was already 
pointed out in [14] as a motivating example to introduce pattern-matching in 
type theory. Congruence types offer an alternative approach to define a type of 
natural numbers with well-behaved arithmetical operations. Consider the term
rewriting system N = (N, 'R.N) where N is the signature consisting of one con
stant 0, one unary function symbols and one binary function symbol + and 'R.N 
is the term-rewriting system given by the reduction rules 

+zO-+:i: 

+ 0 :i:-+ :i: 

+ (+ z y) z-+ + :i: (+ y z) 

+ sz y -+ s( + :i: y) 
+zsy-+s(+zy) 

We claim that N gives a suitable representation of N. In particular, one can prove 
the standard induction principles for natural numbers. However, the weakening 
of the proviso in the rules for x-reduction (rep (ft) -+ /(rep t) if f is a fun
damental constructor) is essential to derive the standard ;limination principles 
for N. The key fact is that in the present example s and O are fundamental 
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constructors, hence rep (st) ___.. ~(rep t) for an arbitrary term t. Note that, as 
N is inductively definable, every closed algebraic term reduces to a. fundamental 
algebraic term, i.e. one built from the fundamental constructors. 

Congruence types and pattern-matching It is particularly interesting to compare 
our syntax with pattern-matching as introduced in [14]. Both offer a means to 
give a computationally adequate representation of definable operations on induc
tive types. Technically, this is achieved by different means. The most important 
differences between pattern-matching and congruence types are summarised be
low. 

- Pattern-matching is schematic and can be used repeatedly to define new op
erators in the same way as the elimination principle. In contrast, congruence 
types are specific: they only provide a faithful representation of those opera
tors introduced as constructors. For example, substraction will not have the 
expected computational behavior in the above definition of N. Moreover, 
pattern-matching can be used to define (for example) predicates, which is 
not possible with congruence types. 

- The structure of rewrite rules allowed is more liberal in the syntax of con
gruence types than in the syntax of pattern-matching. For example, the rule 
+ (+ :z: y) z--+ + :z: (+ y z) does not satisfy the criterion given in [14). 

4.2 The free group over a set of atoms 

Oracle types is another syntax for introducing term-rewriting systems in type 
theory, obtained from congruence types by forgetting the rep constructor and its 
associated reduction rules. In [10, 8], Barthe et al. have proposed oracle types as a 
theoretical framework to study the combination of proof-checkers and computer 
algebra systems. Indeed, oracle types can be viewed as an interface between a 
logical system (type theory with inductive types) and a calculational system 
(the computer algebra system, modelled by p-reduction). The two systems are 
correlated by the no confusion rule, which can be seen as some kind of soundness 
result. In this context, the no confusion rule can be read as follows. 

Let (E, 1l) be a canonical term-rewriting system and let s, t be two 
E-terms. Every computation on [s] and [t] (the computer algebra rep
resentations of s and t) which yields a common reduct can be lifted to 
a proof that s and t are in the deductive closure of R (viewed as an 
equational theory). 

In the remaining of this section, we illustrate how Barthe et al. have used con
gruence/ oracle types to give a partial solution to the problem of equational 
reasoning in proof-checking.Consider the term-rewriting system G = (G, 'llo) 
where G is the signature of groups extended with infinitely many constants and 
Ro is the Knuth-Bendix completion of the axioms of the theory of groups. That 
is, Ro consists of the rules 



o e :z: -+p :z: 

o :z:: e -+p :z: 

o ;z: (o y z) -+po (o :i: y) z 

o(i:i:):z:-+pe 

o:r:(ix)-+pe 
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i e -+p e 

o (o ;z: (i z)) z -+p ;z: 

o (o :z: z) (i z) -+p :z: 

i(i:i:)-+p:Z: 

i (o :i: y) -+po (i y) (i ;z:) 

The congruence type generated by G consists of two parts: the free group G over 
infinitely many elements and the inductive set of terms of the theory of groups 
(the infinite collection of constants serves as the set of variables). The interaction 
between the two types allows a simple solution to equational problems of the 
theory of groups. Assume we can derive 

I'l-H:O r 1- oH : H -+ H -+ H I' I- iH : H -+ H -+ H 

and we have a proofof the fact that (H, OH, eH, iH) satisfies the axioms of groups 
(we work with Leibniz equality). Assume that we want to decide whether a =H b. 
One possible way to solve the problem is to find two inhabitants s, t of G and an 
assignment8 a such that [s]a -+> a and [t]a -+> b (in fact, there are optimal such 
sand t). By the conversion rule, the problem can be reduced to [s]a =H [t]a· 
But, by definition of RG, this is an immediate consequence of Ra st. (Note 
that we are implicitely using the soundness theorem for equational logic, which 
is an easy consequence of the impredicative definition of RG.) Now congruence 
types offer a decision procedure for solving RG s t, simply by checking whether 
[s] = [t] (because of the no confusion rule). 

5 Final remarks 

We have presented a new syntax of congruence types and shown how the syntax 
can be used to give a faithful representation of canonical term-rewriting systems 
in type theory. In this paper, we have restricted our attention to unsorted term
rewriting systems. In the future, it seems natural to extend the framework to 
cover other case of term-rewriting systems such as: 

- many-sorted term-rewriting systems: the extension would allow to introduce 
strongly normalising type theories {with explicit substitutions) as congruence 
types; 

- higher-order term-rewriting systems: the extension of our framework to higher
order specifications would allow to consider congruence types generated by 
first-order languages (quantification has to be introduced as a higher-order 
constructor). 

- non-standard term-rewriting systems: many theories, such as commutative 
theories, fall out of the scope of this paper because they do not yield canonical 

8 Assignments and their extension to interpretations of terms are defined as usual. 
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term-rewriting systems. It would be interesting to investigate the theory 
of congruence types when the term-rewriting systems under consideration 
are conditional or priority rewriting systems or are defined modulo a set of 
equations. 

Another important direction for research is the application of congruence and 
oracle types in proof-checking. Extending the framework of oracle types to cover 
many forms of rewriting would enable the two-level approach of [8, 10] to be 
extended to a significant class of problems, including for example a decision 
procedure to detect logical equivalence of formulae of propositional logic. 
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The Calculus of Constructions 

We now give a precise definition of the Calculus of Constructions and at the same 
time we fix some terminology. See for example [5, 17] for more information. 

In CC there a.re two specific constants, * and D. The first represents the 
universe of types (so we shall say that <J' is a type if u : *) and the second 
represents the universe of kinds (so we shall say that A is a kind if A: D). The 
universe * is a specific example of a kind, so it will be the case that * : D. To 
present the derivation rules for CC we first fix the set of pseudoterms from which 
the derivation rules select the (typable) terms. 
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Definition 5 The set T of pseudoterms is defined by the following abstract syn-
tax 

T = VI * IDITTIHV: T.TjA v : T.T 

where V is a countable set of variables. Both II and A bind variables and we have 
the usual notions of free variable and bound variable. The substitution of N for 
v in M is denoted by M[N/v]. On T we have the usual notion of /3-reduction, 
denoted by --+13. We also adopt from the untyped A calculus the conventions 
of denoting the transitive reflexive closure of --+13 by -{3 and the transitive 
symmetric closure of -{3 by =13. 

The typing of terms is done under the assumption of specific types for the free 
variables that occur in the term. These a.re listed in a context, which is a sequence 
of declarations v1 :T1 , .•• , v,. :T11 , where the v0 a.re distinct variables and the 1i 
are pseudoterms. Contexts are denoted by the symbol I'. For I' a context and 
v a variable, v is said to be I' -fresh if it is not among the variables that are 
declared in r. 

Definition 6 The Calculus of Constructions {CC) is the typed A-calculus with 
the following deduction rules. 

Aziom 

Start 

Weakening 

Product 

Application 

I-*: 0 
I' I- A: */D 

I', :z:: A I- x: A 
I'l-t:A I'l-B:*/D 

I',:z:: BI- t: A 
I' I- A : s1 I', :z:: A I- B : s2 

I' I- II x : A.B : s2 

I'l-t:IIx:A.B I'l-u:A 
I' I- tu: B[u/:z:] 

Ab . I',:i;:Al-t:B I'l-II'J;:A.B:*fo 
straction r I- AX : A.t : II :r, : A.B 

Conversion 
r I- u : A r I- B : */D 

I'l-u:B 

if :z: <!. r 

if :c rt. I' 

if A --+13 B or B --+13 A 

The set of terms of CC is defined by Term ={A I :JI', B[I' I- A: B v I' I- B: A]}. 


