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Introduction 
The intention of this paper is to present to a general audience of theoretical computer scientists some of the 
basic concepts, facts and developments in the area of Term Rewriting Systems. We do not aim at a com
plete historical account, even though the title may hint in that direction. Our aim would be fulfilled if some 
interest is raised, which subsequently may lead to consulting more extensive surveys such as Huet & 
Oppen [80], Klop [90), Dershowitz & Jouarmaud [90]. Especially the last survey pays much attention to 
the more recent developments in Tenn Rewriting Systems. 

The concept of a Term Rewriting System (TRS) is paradigmatic for the study of computational proce
dures. Already half a century ago, the A.-calculus, probably the most well-known Term Rewriting System, 
played a crucial role in mathematical logic with respect to formalizing the notion of computability; much 
later the same TRS figured in the fundamental work of Scott, Plotkin and others leading to a break
through in the denotational semantics of programming languages. More recently, the related system of 
Combinatory Logic was shown to be a very fruitful tool for the implementation of functional languages. 
(Turner [79), Barendregt [89]). Even more recently another related family of TRSs, that of Categorical 
Combinatory Logic, has emerged, yielding a remarkable connection between concepts from category the
ory and elementary steps in machine computations (Curien [861. Hardin [89]). 

Term Rewriting Systems are attractive because of their simple syntax and semantics-at least those 
TRSs that do not involve bound variables such as A.-calculus, but involve the rewriting of terms from a 
first order language. 11ris simplicity facilitates a satisfactory mathematical analysis. On the other hand 
TRSs provide a natural medium for implementing computations, and in principle even for parallel compu
tations. This feature makes TRSs interesting for the design of parallel reduction machines. 

Another field where TRSs play a fundamental role is the analysis and implementation of abstract data 
type specifications, with respect to consistency properties, computability theory (Goguen & Meseguer 
[85]), decidability of word problems (Knuth & Bendix [70)), theorem proving (Hsiang (85)). 

In recent years, a strong impulse for the study of Term Rewriting Systems (including extensions of 
the usual rewriting format) is given by the design of functional programming languages such as Miranda 
(Turner [85]). Another strong impulse is given by efforts of many researchers to combine and integrate 
logic programming with functional programming (Dershowitz & Plaisted [87], Holldobler [89]). 
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1. CHURCH-ROSSER 

1.1. Combinatory Logic 

A good starting point is the Tenn Rewriting System, or TRS for short, called Combinatory Logic (CL). 
Originally devised by SchOnfinkel [24] in an attempt to eliminate bound variables from Predicate Logic, 
the system was rediscovered by H. Curry and played the central role in his foundational program of 
'illative Combinatory Logic'. Here we will not pay attention to the foundational aspects of CL, and merely 
consider the system of the following three equations in the first order language with binary function sym
bol Ap (application), constant symbols S, K, I and variables x, y, z, ... as in Table l(a): 

a b 
Ap{Ap{Ap(S, x), y), z) = Ap(Ap(x, z), Ap(y, z)) ((S·x)"y)·z = (x·z)·(y·z) 
Ap{Ap(K, x), y) =X (K·x)·y =X 
Ap(l,x) =X l·x =X 

c d 
Sxyz = xz(yz) Sxyz ~ xz(yz) 
Kxy "x Kxy ~ x 
Ix =X Ix ~ x 

Table 1 

For better readability we write instead of the binary prefix operator Ap an infix dot (Table 1 (b)). To en
hance readability even more we leave away the dot and save several pairs of brackets under the convention 
of association to the left: restore missing bracket pairs as leftmost as possible (Table l(c)). This is the form 
in which the equations of CL usually are presented. Actually, the equations have a direction, from left to 
right; applications of the equations consisting of replacing an instantiated left-hand side (in some context) 
by the corresponding instantiated right-hand side tend to simplify the tenn in some sense. For the K- and 1-
equation this is clear, for the S-equation it is less clear but may be clear after subsequent elaborations. 
Notationally the direction is represented as in Table 1 (d); and this is our first example of a Term Rewriting 
System. Henceforth CL will denote this TRS. 

So, in general, a TRS is a pair (L, R) where L is some signature, listing the function symbols (with 
their' arities ') and constant symbols, and R is a set of reduction rules (or rewrite rules) of the form t-? s. 
Here t, s E Ter(L), the set of terms over :L. Two restrictions are imposed on the form of reduction rules: t 
must not be a variable, and s does not contain occurrences of variables that do not already occur in t. (It is 
not hard to think of an intuitive motivation for these restrictions; also, there are several points in the subse
quent development of the theory where they are required.) The reduction rules are used as one expects 
from familiarity with equational logic: they induce reduction steps (rewrite steps) C[tcr]-? C[scr] for arbi
trary contexts C[] and substitutions cr. A substitution er is a map from Var, the set of variables, to Ter(L); 
it is extended to a map from Ter(L) to Ter(L) in a homomorphic way. A context is a term with a 'hole' 0; 
e.g. SK(o l)x is a CL-context. The instantiated left-hand side tcr of a reduction rule t --7 s is called a redex 
(reducible expression) with contractum scr. Often we will write just R instead of (:E, R) and Ter(R) instead 
of Ter(L). 

We have now defined the one step reduction relation --7 on Ter(R). The transitive reflexive closure of 
--7 is written as-»; also the notation --7 •is often used. The reflexive closure of --7 is --t"'. The equivalence 
relation generated by --7 is '=', called convertibility. It should not be confused with=, denoting syntactical 
identity. 

Let us return to CL and play with some examples in order to appreciate the great expressive power of 
this TRS and to illustrate the concepts and notations introduced thus far. As CL was originally devised by 
Curry as a theory about functions, it is to be expected that function composition o can be defmed: indeed, 
abbreviating S(KS)K as B we have the reduction sequence in Table 2 (1), establishing that Bxyz-» 
x(yz), and a fortiori that Bxyz = x(yz). So Bxy is x o yin prefix notation. 
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(1) Bxyz= S(KS)Kxyz-> KSx(Kx)yz-> S(Kx)yz-> Kxz(yz)-> x(yz) 

(2) CllX = Sllx -> lx(lx) -> !xx-> xx 
(3) COOl= Sll(Sll) -> l(Sll)(l(Sll)) -> l(Sll)(Sll) -> Sll(Sll) 
(4) P,. ro(BFro) _,, BFro(BFro)....,. F(ro(BFro)) = FP 

(5) Cxyz = S(BBS)(KK)xyz __,. xzy 

(6) Wxy"' SS(Kl)xy....,. xyy 
(7) Yx s WS(BWB)x...,. BWBx(BWBx) _,. x(BWBx(BW8x)<4- x(Yx) 

Table2 

Another aspect of CL is that it admits self-application. Abbreviating Sii as co, we have a 'self-applicator': 
cox-+> xx as in Table 2 (2). This leads to the term 0)(0 admitting a cyclic reduction as in Table 2 (3). 

CL-terms without variables (so, only built from S, K, I) are also called combinators. As observed 
earlier (Scott [75]), combinators are fun. Much of the fun derives from the fact that every CL-term F has a 
fixed point P: for, consider P = ro(BFw), then we have FP = P, in fact P-+> FP (Table 2 (4)). This fea
ture embodies the possibility of recursive definitions and is exploited to implement functional program
ming languages as in the TRS called SKIM (S-K-1-Machine) described in Turner [79] (see Table 3). 

Sxyz -> xz(yz) Uz(Pxy) -> zxy 
Kxy ->X QQllij T xy ->X 
Ix ->X QQllij F xy ->Y 
Cxyz ->XZY Anm -7 ll±Jll 
Bxyz -> x(yz) Mnm -7 n..m 
Yx -> x(Yx) Enn -> T 
Po(Pxy) -> x Enm -> F ifn;tm 
P1(Pxy) -> y 

Table 3 

This TRS has infinitely many constants: apart from the constants S, K, .... , E there is a constant n for 
each natural number n E N. There are also infinitely many reduction rules, because the last four rules (for 
A, M, E) are actually rule schemes; e.g. An m ~ .l1±lll stands for all reduction rules A .Q. .Q. ~ .Q., A .Q.1 
~ 1 ..... , A :IT fil ~ 1Q.Q , ... . (Historically, such reduction rules were called 8-rules by Church.) In 
fact, the extra constants in SKIM are introduced for reasons of efficient implementation; they can all be 
defined using only Sand K, in such a way that 'reduction is respected'. Definitions of B, Care in Table 
2. (To define the fixed point operator Y of SKIM, we should take a definition different from the one in 
Table 2 (7): note that there a conversion is established which is not a reduction.) For the other definitions 
one may consult Barendregt [84] or Hindley & Seldin [86]. 

CL derives its expressive power from the property of combinatory completeness: for every CL-term 
N containing no other variables than x1, ... , Xn. there is a combinator M such that Mx 1 ... Xn-» N. 
Combinatory completeness implies the existence of a fixed point combinator, yielding the following 're
cursive definition principle': for every 'reduction equation' ~x1 ... Xn-» C[~]. where C[] contains no other 
variables than x1, ... , Xn, one can find a combinator as a solution for~· (It is not hard to extend this prin
ciple to multiple recursion.) In fact, combinatory completeness, and hence the recursive definition princi
ple, holds for every applicative extension of CL, like SKIM; somewhat remarkably it does not hold as 
soon as a function symbol is added to CL with arity ~ 1. 

The salient fact about reduction in CL and its extension SKIM is: 

1.1.l. THEOREM. (i) CL and SKIM have the Church- Rosser property (or: are confluent). 
This means that V't, s, r 3u (t -» s & t ->> r => s -» u & r-» u). 
Or, equivalently, "ir, s 3u (r = s => s-» u & r-+> u). (See Figure I.) 
(ii) Both TRSs have the unique normal form property. 
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We have to explain the statement in (ii). A tennis a 
normal form, or in nonnal fonn, if it does not con
tain redexes as subterms. Equivalently: t is in nor
mal fonn if there does not exist an s such that t --+ 
s. A TRS has the unique normal form property, ab
breviated UN, if whenever two normal fonns are 
convertible, they must be identical: \ft, s (t = s & 
t, s are nonnal forms => t = s). 

Statement (i) of 1.1.1, the Church-Rosser theo- Figure 1 

rem for CL and SKIM, requires a nontrivial proof. 
Later on we will mention a confluence criterion by means of which the Church-Rosser property (or CR for 
short) can be derived very quickly from an inspection of only the left-hand sides of the reduction rules. 
(1bis confluence criterion is the property of 'orthogonality' enjoyed by both 1RSs.) Statement (ii) follows 
almost trivially from (i), the confluence (CR) property. Indeed, we have in general: CR =>UN. 

1.2. Repeated variables 

Above, in the system SKIM, we encountered the rules En n-+ T for all 'numerals' n. One may ask why 
we do not simply replace this infinity of reduction rules by the single rule Exx--+ T. This reduction rule is 
called 'non-left-linear'. A term is linear when it contains no repeated variables; a rule is left-linear when its 
left-hand side is linear. 

Rather surprisingly, SKIM with the rule scheme En n--+ T replaced 
by the single rule Exx --+ T would no longer be confluent-even though 
the resulting 1RS is weakly confluent (has the weak CR property, 
WCR). A TRS is weakly confluent if \ft, s, r 3u (t -+ s & t--+ r => 
s ....,. u & r....,. u). (See Figure 2.) 

In fact, the same state of affairs holds also for CL extended with the 
non-left-linear rule Dxx--+ T (we use D to avoid confusion with the E of 
SKIM; D can be read as 'discriminator'). 

1.2.1. THEOREM. Let R be CL extended with the rule Dxx--+ T. Then R 
Figure2 

is weakly confluent, but not confluent. Yet, R has the unique normal form property. Further
more, the equational theory of CL u {Dxx--+ T} is conservative over that of CL 

The weak confluence is easily established by simple casuistics. The essence of the proof of non-confluen
ce is as follows. Consider the 'ad hoe' TRS (ad hoe in contrast with the general purpose character of CL) 
with rules: Dxx--+ T, Fx -t Dx(Fx), P--+ FP. (So the signature consists of the application operator Ap, 
not visible due to the 'applicative notation' explained above, and of constants D, T, F, P, and nothing 
else.) Now we have P--+ FP--+ DP(FP)--+ D(FP)(FP))--+ T, hence FP-+> T and FP-+> FT. For the 
confluence property, the terms T and FT should have a common reduct. However, Tisa nonnal fonn, 
and FT admits as only reductions: FT--+ DT(FT)--+ DT(DT(FT) --+ DT(DT(DT(FT))) --+ .... 

Therefore confluence fails-for the ad hoe TRS. Now, using fixed point constructions as hinted at in 
Section 1.1, one can define the ad hoe TRS in CL u { Dxx --+ T}, thereby respecting the reduction rela
tion, and obtain the non-confluence of CL u { Dxx --+ T}. 

For a more precise account of theorem 1.2.1 and its proof, see Klop [80] and Klop & de Vrijer [89]. 

1.3. Newman's Lemma and Abstract Reduction Systems 

As we have seen in 1.2, weak confluence does not neces
sarily imply confluence. 1bis fact is already apparent by 
considering the 1RS with only the constants A, B, C, D 
and reduction rules B --+ A, B --+ C, C --+ B, C --+ D. 
1bis TRS does also not have the property UN. Figure 3 

An obvious thought is to use WCR in a tiling procedure to find common reducts. If the tiling suc
ceeds, we get a successfully completed reduction diagram as in Figure 4(a). Here we may have to use 
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some 'empty steps' to keep matters in a rectangular shape (these are the shaded steps). Some experiments 
show that if the reduction diagram, constructed by tiling on the basis of the WCR property, grows into an 
infinite reduction diagram, there always arise irifinite reductions. (See Figure 4(b) for the simplest infinite 
reduction diagram, and Figure 4(c) for an infinite diagram with a curious fractal-like border.) 

Figure 4 

Indeed, the following lemma states that if there are no infinite reductions, then the tiling procedure must 
succeed. We use the abbreviation SN (Strong Normalization.) to indicate that there are no infinite reduc
tions. A TRS with the property SN is also said to be termin.atin.g or (Huet [80]) n.oetherian.. 

1.3.1. NEWMAN'S LEMMA. SN & WCR ~ CR. 

Various proofs have been given of this fundamental lemma. The (too) complicated proof in Newman [42] 
(Theorem 3) uses numerical estimations. Another proof can be given using a version of Konig's Lemma 
for infinite, finitely branching "dag's" (directed acyclic graphs). Klop [90] contains a proof by means of 
'proof orderings', using multisets. Huet [80] contains an elegant proof using noetherian induction. A 
rather similar proof, equally elegant, is in Barendregt [84]: assuming SN, we need only to prove for 
confluence that no point is 'bad', where a point is bad if it reduces to different normal forms. From WCR 
it follows that ift is bad, then t-+ t' for some bad t'. Hence, by SN, no bad points exist. 

Just like the implication CR~ UN that we noted above, Newman's Lemma is a proposition about 
Abstract Reduction. Systems; the term structure of a TRS does not play a role. An Abstract Reduction 
System or ARS for short, is a set equipped with one or more binary relations, that are called reduction re
lations in view of the applications to TRSs or other rewriting systems. So an ARS has the form J!I. - (A, 
-+)in case it has only one reduction relation-+, or J!I. =(A, (-+i)ieI) in the general case. The notions CR, 
WCR, SN apply already to ARSs. For a collection of facts (mostly criteria for confluence) holding for 
ARSs, we refer to Staples [75] and Klop [90]. Here we mention a few of the most important of them. 

1.3.2. LEMMA. Let A= (A, (-+aJaei) be an.ARS such that for all a,~ E I we have that-+a commutes 
with-+13. (This means: 't/a, b,c eA3deA (a-ab & a-13c ~ b-13d &c-a d; seeFigureS(a).) 
Then.A (i.e. the union-+= Ua.e1 -+a} is confluent. 

This lemma is known as the Lemma of Hindley-Rosen. The proof is trivial, but the lemma is very useful. 

Figure 5 
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Another simple but useful lemma is: 

1.3.3. LEMMA (Huet [80]). Let (A, --7) be an ARS. Suppose that Va, b, c EA 3dE A (a --7 b & a --7 c 
~ b-* d & c --7"' d). (A reduction relation --7 with this property is called 'strongly confluent'; see Figure 
5(b).) Then --7 is confluent (see Figure S(c)). 

The next lemma strengthens Newman's Lemma (see Figure S(d)): 

1.3.4. LEMMA (Winkler & Buchberger [83]). Let (A, --7, > ) be an ARS where the 'reduction' relation> 
is a partial order and SN. (So> is well-founded.) Suppose a --7 b implies a> b. Then the following are 
equivalent: (a) --7 is confluent, (b) whenever a --7 band a --7 c, there is a --7-conversion b = d 1 H d1 H 

... H dn = c (for some n;;:: 1) between b, c such that a> di (i = l, ... ,n). Here each His --7 or f-. 

To conclude this sample of confluence criteria for ARSs we mention an unpublished result of N.G. de 
Bruijn that recently was brought to our attention and which is a considerable strengthening of Huet's 
strong confluence lemma 1.3.3. In contrast with the previous lemma's, this one is not easy to prove. We 
use the following notation: 
Let ~ = (A, (--70 )ne 1) be an ARS with I a par
tial order. Then, for a, b E A, a -* <n b means 
that there is a sequence of reduction steps from 
a to b, each reduction step having index < n. 
Analogously a-*~ bis defined. Furthermore, 
--70 = is the reflexive closure of --70 . 

1.3.5. LEMMA (De Bruijn [78]). 
Figure 6 

Let~= (A, (--70 )ne 1) be an ARS with I a well-founded linear order. Suppose that 
(i) Va, b, c, n 3d, e, f (a --70 b & a --70 c ~ b-*~ f & c -*<n d --+0 "'e -*<n f), and 
(ii) Va, b, c, n, k 3d, e, f (k < n & a --+n b & a --7k c ~ b-* <n f & c -*<led --+n"' e -* <n f). 
Then ~is confluent. 

1.4. Disjoint unions of Term Rewriting Systems 

After the intermezzo about Abstract Reduction Systems we return to Term Rewriting Systems. Often a 
TRS can be partitioned in some parts that have a disjoint alphabet (or signature). Let us denote for 1RSs 
R1, R2 having disjoint alphabets with R1 EEl R2 the TRS that results by taking the union of R1, R2, both 
with respect to the alphabets and the sets of reduction rules. (If it is not required that the alphabets are dis
joint we denote the union just by R1 u R2 .) If for a property P we have: R1 EEl R2 t= P <=> R1 t= P & R2 
t= P, we call Pa modular property. (Here t= is informally used as abbreviation for 'satisfies'.) A pleasant 
state of affairs is that we have: 

1.4.1. THEOREM (Toyama [87b]). Confluence is a modular property ofTRSs. 

This theorem has useful applications. For instance, consider the extension of CL with a binary discrimina
tor: 

Sxyz -t xz(yz), Kxy -t x , Ix -t x. O(x, x) -t T. 

This extension CL EEl {D(x, x) --7 T) is confluent, because CL is and because the one rule TRS (D(x, x) 
--7 T) also is confluent, as is easily seen by an application of Newman's Lemma. This should be con
trasted with our earlier observation that the extension CL u { Dxx --7 T) is not confluent. Indeed, the latter 
is not a disjoint union since Dxx ~ T is in fact Ap(Ap(D, x), x) --7 T, revealing that there is an overlap in 
alphabets between CL and Dxx --7 T. 

Is termination (SN) also modular? No: Toyama [87a] gives the following simple counterexample. 
Take R1 = { F(O, 1, x) --7 F(x, x, x)) and R2 = ( or(x, y) --7 x, or(x, y) --+ y); both TRSs are terminating. 
They are also disjoint. However R1 EEl R2 has an infinite reduction: 

F(or(O, 1 ), or(O, 1 ), or(O, 1 )) -t F(O, or(O, 1 ). or(O, 1 )) -t F(O, 1, or(O, 1)) -t F(or(O, 1 ), or(O, 1 ), or(0, 1 )). 
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In view of the fact that R2 is not confluent, one may conjecture that 'confluent & terminating' (usually 
called 'complete', sometimes also 'canonical') is a modular property, but this also fails as a more compli
cated counterexample shows (Toyama [87a]). However: 

1.4.2. TiiEOREM (Toyama, Klop & Barendregt [89]). 
Let R1, R2 be left-linear TRSs. Then R1 E0 R2 is complete !ff R1 and R2 are complete. 

(Reminder: A TRS is left-linear if no rule contains repeated variables in its left-hand side.) 
Some useful information concerning the inference of SN for R1 E0 R2 from the SN property for R1 

and R2 separately is given in Theorem 1.4.4. 

1.4.3. DEFINmON. (i) A rewrite rule t ~ s is a collapsing rule (c-rule) ifs is a variable. (ii) A rewrite rule 
t ~ s is a duplicating rule (d-rule) if some variable has more occurrences ins than it has in t. 
Example: F(x, x) ~ G(x, x) is not ad-rule, but F(x, x) ~ H(x, x, x) is. Also P(x) ~ G(x, x) is ad-rule. 

1.4.4. TiiEOREM. Let R1 and R2 be TRSs both with the property SN. 
(i) If neither R1 nor R2 contain c-rules, R1 EB R2 is SN. 
(ii) If neither R1 nor R2 contain d-rules, R1 EB R2 is SN. 
(iii) If one of the TRSs R1. R2 contains neither c- nor d-rules, R1 E0 R2 is SN. 

Statements (i) and (ii) are proved in Rusinowitch [87]; statement (iii) is proved in Middeldorp [89b]. 
Another useful fact, proved in Middeldorp [89a], is that UN is a modular property. More on the theme of 
modular properties can be found in recent work of Kurihara & Kaji [88] and Kurihara & Ohuchi [89]. 

1.5. Decidability 

As is to be expected, most properties of TRSs are undecidable. Consider only TRSs with finite signature 
and finitely many reduction rules. Then it is undecidable whether confluence holds, and also whether ter
mination holds (Huet & Lankford [78], Klop [90]). (Even for TRSs with only one rule tennination is un
decidable.) However, for ground TRSs (where all rules are between ground tenns, i.e. no rule contains 
variables), confluence is decidable (Dauchet et al. [87], Oyamaguchi [87]). Also termination is decidable 
for ground TRSs (Huet & Lankford [78]). 

For particular TRSs it may also be undecidable whether two tenns are convertible, whether a term has 
a normal fonn, whether a term has an infinite reduction. A TRS where all these properties of terms are un
decidable is CL (Barendregt [84]). 

2. KNUTH-BENDIX 

2.1. Equational Logic 

We will now explain two important applications that TRSs, and especially complete TRSs, have in Equa
tional Logic: to decide word problems, and to solve equations in some equational theory. Equational Logic 
is concerned with equational theories (or equational specifications) of the form C:t. E) where I. is a signa
ture as before and E is a set of equations over I:. 

We suppose familiarity with the semantics of Equational Logic, that is, with the concept of a I:.-algebra 
5t and the notion 5t I= t = s, expressing validity of the equation t = s between I.-tenns in Jl If all equa
tions of E are valid in the algebra .Jll, we write 5t I= E. Tue variety of I.-algebras defined by an equational 
specification (l:, E). notation Alg(.:E, E), is the class of all :I:.-algebras ;t such that ;t I= E. 
Instead of 'r/ 5t E Alg(.:E, E) 5t I= t = s, we write O:. E) I= t = s. 

A simple inference system for Equational Logic is given in Table 4. If an equation t = s between r.
terms is derivable by means of this inference system, using the equations of (I:, E) as axioms, we write 
(I., E) f- t = s. We then have the well-known completeness theorem 2.1.1. 

2.1.1. TIIBOREM (Birkhoff [35]). Let (I., E) be an equational specification. Then for all t, s e Ter(I:): 

O:. E) f- t = s ~ (I:, E) I= t = s. 
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Axioms (in addition to the equations in E): 

t=t 
Inference rules: 

from t1 = 12 infer t2 = 11 

from t1 = 12. t2 = 13 infer 11 = 13 
from 11 = t2 infer t1 [x:= t] = t2[X:= t] 

from t1 = 12 infer t[x:= t1] = t[X:= t2] 

Table4 

(reflexivity) 

(symmetry) 

(transitivity) 

(substitution ( 1)) 

(substitution (2)) 

The validity problem or uniform word problem for CE, E) is: given an equation t = s between l:.-terms, 
decide whether or not (l:, E) I= t = s. According to Birkhoff's completeness theorem this amounts to de
ciding (l:, E) I- t = s. Now we can state why complete TRSs (i.e. TRSs which are SN and CR, termina
ting and confluent) are important. Suppose for the specification (E, E) we can find a complete TRS (l:, R) 
such that for all terms t, s e Ter(E): t =R s <=> (E, E) I- t = s. (Here =R is the convertibility relation of 
R.) Then, provided R has only finitely many rewrite rules, we have a positive solution for the validity 
problem, obtained by this simple algorithm: reduces and t to their respective normal forms s', t' and com
pare; t =R s iff t' = s'. 

2.1.2. Groups, L-R algebras and R-L algebras: an example 

To illustrate the use of complete TRSs for equational specifications we tum to the classical example given 
in Knuth & Bendix [70]. Apart from the three axioms for group theory as in the first column of Table 5, 
one may consider two closely related theories: the three axioms for L-R theory, and three axioms for R-L 
theory. At first sight it is not clear whether these different theories determine different varieties. Let us call 
an algebra satisfying L-R theory an L-R algebra, and likewise for a R-L algebra. Now Knuth & Bendix 
[70] find complete TRSs for these theories as in the table. 

group theory: L-R theory: R-Ltheory: 
9'X=X 9'X=X x·9 =X 
l(x)·X=9 x·l(x) =9 l(x)·X=8 
(x·y)·z = x·(y·z) (x·y)·z = x·(y·z) (x·y)·z = x·(y·z) 

completion: completion: completion: 
8'X4X 9·X4X 
X'94X x·94x 
l(X)·X49 l(X)·X49 
x·l(X)49 x·l(X)4e 
(x·y)·z 4 x·(y·z) (x·y)·z 4 x·(y·z) (x·y)·z 4 x·(y·z) 
1(8)48 1(9)48 1(8)48 
l(x·y) 4 l(y)·l(x) l(x·y) 4 l(y)·l(x) l(x·y) 4 l(y)·l(x) 
x'(l(x)·y) 4 y x·(l(x)·y) 4 y 

9'X41(1(x)) 
l(x)·(x·y) 4 y l(x)·(x·y) 4 y 

x·l(l(y)) 4 x·y 
l(l(X))4X 

x·8 4 l(l(x)) 
l(l(l(x))) 4 l(x) l(l(l(x))) 4 l(x) 

x'(y· l(y)) 4 x 
l(l(x))·y 4 x·y 

x·(l(l(y))·z) 4X·(y·z) 
x·(y·(l(y)·z)) 4 x·z 
l(x)'(x·y) 4 l(l(y)) 

Tab!e5 

From these completions it is immediately clear that the three varieties indeed are different. Oearly, it fol
lows that each group is also an L-R algebra and a R-L algebra. Furthermore, the equation x·e = x is not 
derivable in L-R theory, because the normal forms of left-hand side and right-hand side of this equation, 



358 

with respect to the L-R completion, are l(l(x)) and x, so syntactically different. Hence (by Birkhoff's 

completeness theorem) there is an L-R algebra which is not a R-L algebra. Also, there is a R-L algebra 

which is not an L-R algebra because in R-L theory the equations e·x = x and x·l(x) = e are not derivable. 

Finally, it is clear that the variety of groups is the intersection of the other two varieties. The strategy of 

deciding validity problems in a positive way by providing a complete TRS does not work always; even for 

very simple O:. E) with solvable validity problem it may be impossible to find a complete TRS R with the 

same equality. A typical obstacle is the presence in E of equations expressing commutativity of some 

operator. E.g., consider the specification with signature: a constant 0, and a binary function A, and sup

pose E = {A(x, y) = A(y, x)}. Then there is no complete TRS 'for' E with the same signature :E. 

Discovering the one-line proof is left to the reader. 

2.2. Critical pair completion 

So, in spite of the drawback that we just mentioned, it is important to be able to find complete TRSs for 

equational specifications. The seminal paper Knuth & Bendix (70] demonstrated a method, Knuth-Bendix 

completion or critical pair completion, that does the job-at least fairly often. The best way to get an un

derstanding of the method is to complete by hand the specification of groups as in Table 5, which amounts 

to two pages of computation. Here we will consider a simpler example, which is less spectacular than the 

group completion, but shorter. 
Consider the following equational specification (or theory) E of the integers (Z) with 0, +,successor 

Sand predecessor P (left column, (a)): 

(a) O+X=X (b) (1) O+ x~x 

X+O =X (2) x+O~x 

S(x) + y = S(x + y) (3) S(x) +y ~S(x + y) 

x+ S(y) = S(x + y) (4) x+S(y)~S(x+y) 

x + P(y) = P(x + y) (5) x + P(y) ~ P(x + y) 

P(S(x)) = x (6) P(S(x)) ~ x 

(Since this specification is intended to be symmetrical with respect to pennuting S and P one might expect 

also the equations S(P(x) = x and P(x) + y = P(x + y) to be included in E. Actually these equations are 
derivable.) 

We will now perform an 'intuition 
guided' completion of E. First let us adopt 
as rewrite rules all equations from E, ori
ented from left to right This yields rules ( 1 -
6) as above in column (b).This is not yet a 
complete TRS; though it is terminating (as 
will be seen later), it is not confluent. The 
reason is that there is an overlap between the 
left-hand sides of (3), (5) that is harmful: 
S(x) + P(y) reduces with (3) to S(x + P(y)) 
and with (5) to P(S(x) + y). These two 
terms form what is called a critical pair. The 
terms can be reduced further: S(x + P(y)) 
~ S(P(x + y)) and P(S(x) + y) ~ P(S(x 
+ y)) ~ x + y, but then we are stuck since 
S(P(x + y)) and x + y are normal forms 
with respect to (1 - 6). So confluence fails. 

O+x_.x 
x+O_.x 
S(x) + y --> S(x + y) 
x + S(y) __. S(x + y) 
x + P(y) --+ P(x + y) 
P(S(x))--> x 

Figure 7 

123456810 

lll 
from3. 6 

from 1, 7 cancel 7 

from3,8 

from5, 9 csnc6'9 

Actually, this is not the only critical pair generated by (1 - 6); there are also overlaps between (1), (2), 

between (1), (4), between (1), (5), between (2), (3), between (3), (4), between (5), (6). But these critical 

pairs are harmless. For instance, (5), (6) yield the critical pair P(x + S(y)), x + y. These terms have a 

common reduct: P(x + S(y)) ~ P(S(x + y))-+ x + y. 



359 

We try to solve the problem of non-confluence posed by the tenns S(P(x + y)) and x + y in a drastic 
way: we simply add as a new rule (7) S(P(x + y))-+ x + y. Now the critical pair given by (3), (5) is 
harmless too. However, new critical pairs arise: overlap between (1), (7) yields S(P(O + y)) with as 
reducts 0 + y, S(P(y)). This causes us to adopt a new rule: (8) S(P(y)) -+ y. We can cancel (7) now, as 
it is a consequence of (8). We consider the possible overlaps: the overlap between (8), (6) is harmless; 
likewise between (8), (4). But not the one between (8), (3), which causes the introduction of rule (9): 
S(P(x) + y) -+ x + y. In this way we continue, and luckily after a few more steps as in Figure 7 we reach 
a successful conclusion: a 1RS R where all critical pairs are harmless. Moreover, R is tenninating; this can 
be seen by noting that all our rules were chosen such that they respected the recursive path ordering (to be 
explained in the next section) obtained by putting + > S and + > P. 

Let us give a precise definition of critical pairs: 

2.2.1. DEFINITION. Let the TRS R contain the rewrite rules r: t-+ sand r': t'-+ s'. Suppose r, r' are 
'standardized apart', i.e. renamed such that they have no variables in common. Suppose furthermore that t 
= C[u], u not a variable, and that u and t' can be unified with most general unifier cr. Then t<J = Ccr[uc:l] = 
Ccr[t'cr] is subject to an r'-reduction as well as an r-reduction, with result: Ccr[s'cr] respectively so. Now 
(C0 [s'0 ], sO) is called a critical pair of R. 

If r, r' are (renamed versions ot) the same rewrite rule, we moreover require that the context C[] is not 
the trivial context. 

Note that if C[ ] in the above situation is trivial (so that t, t' unify 'at the root') two critical pairs are 
obtained which are mirror-images: (s'a, scr) and (so, s'O). Such critical pairs are sometimes called 
'overlays'. (See the chess-board-like table in Figure 7, where it is mentioned which pairs of rules of our 
example above give rise to critical pairs. The grey squares denote overlays.) 

A critical pair (s, t) is convergent ifs, t have a common reduct (3r s -11> r & t -i. r), notation: s J. t. 
The significance of the fact that all critical pairs (s, t) are 'harmless', i.e. convergent, is expressed by the 
following lemma. 

2.2.1. CRITICAL PAIR LEMMA (Huet [80]). A TRS is weakly confluent if! all its critical pairs are 
convergent. 

Convergence of all critical pairs is not sufficient for confluence; a counterexample is the A8CD-1RS in 
Figure 3 (Section 1.3), with critical pairs (overlays) (A, C). (C. A), (8, 0), (D, 8). However, in addi
tion to termination, it is sufficient for confluence, according to Newman's Lemma, and we have: 

2.2.2. THEOREM (Knuth & Bendix [70]). A terminating TRS is confluent if! all its critical pairs are 
convergent. 

As we noted above, convergence of all critical pairs is sufficient for weak confluence, but not for conflu
ence. Huet [80] gave a criterion for critical pairs, stronger than convergence, which does imply confluence 
while not requiring termination as in the Knuth-Bendix theorem. First define parallel reduction as follows: 
t -+11 sift reduces to s via a reduction sequence consisting of contracting a set of disjoint redexes in t. 
Thus, if ticri -+ sicri (i = 1, ... , n) are contractions, i.e. instances of reduction rules ti -+ Si (i = l, ... , n), 
then C[t1cr1, ... , tnCJn] -+11 C[s101, ••• , sncrn]. 

2.2.3. THEOREM (Huet [80]). Let R be a left-Linear TRS such that we have s -+11 tfor every critical pair 
(s, t). Then R is confluent. 

Note the direction involved here. As far as we know, it is an open problem whether the reverse condition 
also imp).ies confluence: for all critical pairs (s, t) we have t -+11 s. Also open seems to be the problem 
whether confluence is implied by the property:for all critical pairs (s, t) we have s -+31 t or t -+31 s. 

The example of a completion above merely intended to give the flavour of a critical pair completion. 
Actual completion algorithms (for some simple versions see Klop [90]) would not start with adopting ori
ented versions of all equations that are initially given, as we did above. Rather, there will be a step by step 
conversion of E into a complete 1RS R (if possible; the algorithm may fail), with as intermediate stages 
pairs (E', R'), where E' contains some equations and R' contains some rewrite rules. 
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An important aspect in critical pair completion algoritluns is that we need to have an ordering of tenns 
at our disposal, guiding us (or the algorithm) how to choose orientations. Thus, at the start of a comple
tion procedure, one must provide the algoritlun with a so-called reduction ordering on terms; this is a well
founded partial order among terms which is closed under substitutions and contexts, i.e. if s > t then 
C[sa] > C[ta] for all substitutions a and contexts C( ]. 

The original specification E does not prove x + y = Y + x (this follows immediately from the fact that x 
+ y and y + x are different normal forms of R); yet for all ground terms t, s we have E I- t + s = s + t. 
That is: x + y = y + x is valid in the initial algebra of E. Such an equation is called an inductive theorem 
(since its validity is usually proved with induction to the structure of ground terms). Completion tech
niques provide the means to prove inductive theorems without using induction ("inductionless induction"); 
another phrase in this respect is "proof by consistency". For an account of proof by consistency applica
tions, see Dershowitz & Jouannaud [90] and Bachmair [88]. 

To conclude this section about completion, we mention an important recent development in proving 
correctness of completion algorithms. This is the method of proof orderings, introduced by Bachmair, 
Dershowitz & Hsiang [86]; for details we refer also to Dershowitz & Jouannaud [90], Klop [90]. 

2.3. Termination 

Clearly, tennination is an important property of TRSs (see Newman's Lemma), and therefore it is impor
tant to have methods to prove termination. In general, it is undecidable whether a TRS is terminating, but 
some quite sophisticated methods have been devised to prove tennination for many TRSs. We present the 
most powerful of these methods (in a simplified version), known as the method of recursive path order
ings. (Actually, there are some refinements of the method which are even stronger; they are not discussed 
here.) The method is based on a powerful theorem of Kruskal [60], which is too beautiful not to mention 
even in a short survey. 

Lett, s e Ter(l:). We say that t is embeddable ins, notation t << s, ifs -s t with respect to the TRS 
(l:, S) consisting of the rules F(t1, ... , tn)-+ ti for all 1 s:; is:; n and all n-ary Fe l:. (S stands for simplifi
cation.) Example: F(H(A), B) « F(G(H(A), A}, H(B)). Note that not F(A, B) « F(G(A, B), A). 

2.3.1. KRUSKAL'S TREE THEOREM. Let t1. t2 .... be a a sequence of terms, such that in the sequence 
only finitely many symbols (function symbols, constants, variables) appear. Then for some i, j with i < j 
we have ti << tj. 

Let us now define the recursive path ordering. We will define it using some auxiliary terms using 
markers. Let l:* = l: v {F* IF e l:} (Fa function or constant symbol from l:; F* has the same arity as 
F). Example: if F(H(A), B) e Ter(l:), then F*(H*(A), B) e Ter(l:*). Note that Ter(E) i;: Ter(l:*). Now 
suppose l: finite and suppose that function and constant symbols of :r. are partially ordered by >.We de
fine a reduction relation c:> on Ter(l:*). with the following reduction rules. 

(1) 

(2) 

(3) 

(4) 

F(t) 

F*(t) 

F*(t) 
F*(p, G(s), q) 

Q F*(t) 

Q G(F*(t), ... , F*(t)) ifF > G 

Q lj (i = l, ... ,n) 

Q F(p, G*(s), q) 

Table 6 

Here t = t1 •... , tn and s = s1, ... ,Sm with t,, Sj e Ter(l:*). Furthermore, F, G e l: are function symbols 
with arities n, m ~ 0 respectively (so in rule (2) there are in the right-hand side m copies of F*(t)). In rule 
(1), (2) the arity of F may be O; in rule (3), (4) it is clear that the arity of F has to be at least 1. In (4), p, 
G(s), q is a sequence ofn elements from Ter(:E*), where p, q may be empty sequences. Since c:> is a re
duction relation, it is understood that reduction steps according to (1-4) may be performed within a :E*
context. With c:>* we denote the transitive reflexive closure of c:>. with c:>+ the transitive closure. Note 
that the simplification reduction -l'> s is contained in c:>*, i.e. ifs - s t then s c:>* t. 
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Intuitively, attaching a marker as in rule (1) signifies a command to make the tenn smaller. The other 
rules express one step of the execution of this command, which is fully executed if all markers have dis
appeared. Dearly, c.::> on Ter(I:'") is not terminating; see the reduction rule (2). However, the restriction of 
Q+ to Ter(E), the set of unmarked tenns, is tenninating (SN). This is proved by first showing that c.::>+ is 
a strict partial order. (The difficult part here is to show the acyclicity.) Now tennination follows at once 
from Kruskal's Tree Theorem: suppose there is an infinite sequence t1 c.::>+ t2 ~+ ••• of l:-terms. Then for 
some i < j we have t1 << ti• i.e. ti -+> s t1. and therefore t1 ~· t1. But then we have a cycle: t1 ~+ tj ~· t1. 

So c.::>+ is a well-founded ordering on Ter(l:). This ordering is called the recursive path ordering. 
(Usually, the ordering is defined such that it is preserved under pennutations of the arguments t of a term 
F(t); we will not do so here.) The recursive path ordering can be used for termination proofs of TRSs as 
follows. Let (E, R) be a TRS with finite l:. (The method can be extended to deal with infinite signatures, 
however.) Suppose the function and constant symbols of l: can be partially ordered in such a way that for 
the corresponding recursive path order ~+ we have, for every reduction rule s -+ t of R, that s ~+ t. 
Then (since s ~+ t implies C[s<J] ~+ C[t<J] for every context C[] and instantiation a) it follows immedi
ately that -+ must be tenninating too. It is instructive to see the method at work in the following example 
of Dershowitz: 

-{-.x) ~ x 

-.(x vy) ~ (-.X)/\ (-.y) 

-.(x" y) ~ (-.x) v (-,y) 

X/\ (y V z) ~ (x " y) v (x " z) 

(y v z)" x ~ (y A x) v (z " x) 

Table 7 

Order the operators as follows:...,>"> v. Now we have e.g. for the second rule -,(xv y) c.::>+ (-.x)" 
( -,y), since: 

-.(xv y) Q -.*(xv y) Q (-.*(xv y))" (-.*(xv y)) Q (-.(xv* y))" (-.*(xv y)) Q 

(-.x) A (-.*(xv y)) Q (-.x)" (-.(xv* y)) Q (-.x)" (-.y). 

Likewise for the other rules. Hence the reduction relation-+, computing disjunctive normal fonns, is 
tenninating. 

Just as we encountered the presence of commutativity axioms x + y = y + x in E as an obstacle for 
finding a complete TRS R for E, we encounter problems in proving termination via the recursive path 
ordering (rpo) method of a TRS containg a rewrite rule expressing associativity of an operator: (x + y) + z 
-+ x + (y + z). In fact, the rpo method will not work in this case as is easily seen. However, in contrast 
with the obstacle of commutativity axioms, this time the problem is surmountable: an extension of the rpo 
method with a lexicographic component will do the job of proving termination. For details we refer to 
Dershowitz [87), an extensive survey of termination proof methods. 

An interesting fact is proved in Kurihara & Ohuchi [89): 'simple termination' is a modular property (in 
contrast with the general case, see section 1.4). A TRS is simply terminating if the tennination can be 
proved by the rpo method (or by some other termination proof methods, like polynomial orderings, not 
discussed here). 

2.4. Narrowing 

After our discussion of one major application of complete TRSs, viz. deciding validity of equations in an 
equational theory, we will now briefly discuss another major application: solving equations in an equa
tional theory. If (I:, E) is an equational theory, we write [t = sTIE for the set of solutions of the equation t 
= sin E, i.e. {a I Er- tO" = sCS}. A solution a is a substitution as defined earlier, i.e. a map from Var, the 
set of variables, to Ter(E). Let SUB be the set of all substitutions, and if 'X ~ SUB, let a'X denote { crt It 
E 'X}. (Here crt is the compQsition of a, t written in the usual logic programming notation; in ordinary 
mathematical notation it would be t • a.) Now noting that for every substitution a we have [t = s]E ;i 
cr [tO" = s°1JE, there is in principle the possibility of a stepwise determination of [t = sTIE· 



This stepwise detennination consists of 
two kinds of steps. The first is as just 
described: guess a component cr of a 
solution and narrow [t = s]E to cr [to= 
sOJIE· The second is: apply an equation 
of E in one of the sides of the equation 
t = s at hand. Clearly, a step of the 
second kind preserves equality of the 
solution set. By an iteration of such 
steps, alternating between steps of the 
first kind and steps of the second kind, 
we may reach the solution set of a triv
ial equation r = r (that is SUB): 

[t = s]E ;;;1 c [t<>= s°lJE = 
cr [r = sOJIE ;:i acr' [r-0'= s<HY']E = 

••• ;;;1 ••• ;;;1 cra' ... cr(n) [r = rllE· 
The last solution set of this 'narrowing' 
chain has as a most general element the 
substitution cro' ... cfn). The word nar-
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narrowing step on terms 

Figure 8 

rowing has been given a fonnal content: it denotes a certain method, based on tenn rewriting, to perfonn a 
stepwise detennination of [t = s]E as described. A narrowing step combines a step of the first kind and 
one of the second. Actually, the narrowing relation is defined on tenns, as in the following definition. 
Suppose Eis given as (or equivalent to) a TRS R. 

2.4.1. DEFINITION. Let tenn t contain the subterrn u, sot= C[u] for some context C[ ]. We say that t is 
narrowable into t', at the (nonvariable) subterm u f;; t, using rewrite ruler: t1-?t2 of R, via cr=mgu(u, t1), 
if t': (C[t2])cr. Notation: t "*u.r.a t'. Sometimes we will drop mention of u, r; but not of cr. 

(Here 'mgu' abbreviates 'most general unifier'.) 
We now extend the narrowing transfonnation, which was defined on terms, to equations: if t • cr t', 

then t=s ''*cr t'=s0 and likewise S=t •a s<>=t' are said to be narrowing steps on equations. As we have 
seen, the word narrowing actually refers to the solution sets: if t=S • cr t'=scr then [t=s]R ;;;l cr[t'=Scr]R. 
Note how narrowing cuts down the search space for detennining the solution set, first by using the direc
tional aspect of a TRS, and second by perfonning substitutions which are as 'small' (as general) as pos
sible. However, there is a price to be paid: to ensure completeness of the narrowing method for solving 
equations, we must require that the underlying TRS is ... complete. For more precise information on the 
subject of completeness of narrowing, we refer to Holldobler [89] or one of the extensive surveys men
tioned before. We conclude this subsection by drawing attention to the fact that the narrowing relation on 
terms is actually a generalization of reduction: if t -7 s then t "'* cr s for some cr that leaves the variables 
occurring in t unaffected. 

3. BEYOND 

3.1. Orthogonality 

From the previous chapters it is clear that the two main obstacles to obtain confluence of a TRS are: the 
presence ofrepeated variables (non-left-linear reduction rules), and the presence of critical pairs (overlap
ping reduction rules). Both obstacles need to be fatal for confluence. In the presence of non-left-linear 
rules we may have confluence, provided the TRS in question is not 'too strong'. For example, R1 =CL v 
{D(x, X)-7 T} is confluent, but the stronger system R2 =CL u {Dxx~ T} is not. The former TRS can be 
viewed as a sub-TRS of the latter; namely, by restricting tenn fonnation in R2 such that each D has to have 
two 'arguments' (i.e. each D appears in a subtenn (Dst}) we have a sub-TRS which is 'isomorphic' to 
R1. There is a more precise sense in which R2 can be said to be stronger: R2 is still combinatory complete 
but R1 is not. (It is not hard to show that R1 does not possess a ground term F, built from S, K, I, D, 
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satisfying Fx --+ D(x, 1).) Also the other potential obstacle, the presence of critical pairs, does not per se 
prohibit confluence as the Knuth-Bendix theorem 2.2.2 shows. Nevertheless, the presence of one or two 
of these obstacles requires extra conditions in order to ensure confluence. 

A particularly attractive class ofTRSs arises if we forbid both obstacles, repeated variables as well as 
critical pairs. lb.is is the class of orthogonal TRSs, characterized by the definition that all reduction rules 
are left-linear and non-overlapping. A comment on the terminology is in order. Instead of orthogonal, in 
the literature also the phrases 'consistent', 'left-linear and non-ambiguous' and 'regular' are used. The last 
term was introduced in Klop [80] and subsequently adopted by some authors, but is deemed objectionable 
by other authors. Dershowitz proposed in private communication to employ the term 'orthogonal' and 
since this term has in the present context exactly the right intuitive connotations, we adopt this term. 

The orthogonality requirement allows the development of a sizeable amount of theory, of which the 
basic fact is the following. 

3.1.1. THEOREM. All orthogonal term rewriting systems are corrfluent. 

Various proofs have been given of this theorem, e.g. the one in Rosen [73]. Note that the theorem is also 
an immediate consequence of Huet's theorem 2.2.3: since there are no critical pairs, the condition of that 
theorem is trivially satisfied. Intuitively, the theorem can be understood very well by realizing that in an 
orthogonal TRS the reduction steps in a reduction diagram, constructed in order to find a common reduct, 
move in an orthogonal way 'through each other' (see Figure 9), thereby retaining their identity. The 
orthogonality, in the sense of independence, of reductions in an orthogonal TRS can be understood by the 
following reformulation of the absence of critical pairs. Let a redex pattern be a left-hand side of a reduc
tion rule where the variables have been replaced by 0, the symbol denoting an empty place. As an exam
ple, consider the three redex patterns of the TRS CL, in the notation with explicit application operator: 

Ap(Ap{Ap(S, D), D), D), Ap(Ap(K, D ), D) , Ap(l,D). 

Now in a CL-term, even though it may contain nested redexes, it is easily seen not to be possible that the 
patterns of these redexes overlap (example: Figure lO(b)). So, reduction of some redex R does not disturb 
(the pattern of) a super-redex S containing R, nor does it disturb a sub-redex $' contained by R (though 
the reduction of R may multiply $' into a number n ;;::: 0 of copies). In general, in an orthogonal TRS, re
dex patterns do not overlap, which is just a rephrasing of the statement that there are no critical pairs. 
(Note, for contrast, the heavy overlapping into a term from the TRS R in section 2.2 as in Figure lO(a).) 

Figure 9 Figure 10 

So CL is an orthogonal TRS. Also its extension SKIM is orthogonal, hence confluent. 
Many interesting theorems can be proven for orthogonal TRSs. We mention two fundamental ones. 

Let WN (Weak Normalization) be the property of a TRS that every term has a normal form (though infi
nite reductions may exist). Let NE (non-erasing) be the syntactical property of a TRS which holds if in 
every rewrite rule t--+ s, both sides t, s contain the same variables (so CL is not NE). Let WIN (Weak 
Innermost Normalization) be the property of a TRS stating that every term has a normal form which can be 
reached by an innermost reduction, i.e. a reduction in which only redexes are contracted that do not prop
erly contain other redexes. The properties SN, WN, WIN can also be specialized to individual terms: 
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SN(t) states that t has no infinite reductions, WN(t) means that t has a normal form, WIN(t) that t has a 
nonnal form reachable by innennost reduction. Now we have the following facts. 

3.1.2. THEOREM (O'Donnell [77]). (i) For orthogonal TRSs: NE=> (WN ~SN). 
(ii) For orthogonal TRSs: WIN~ SN. 
(iii) For every term tin an orthogonal. TRS: WIN(t) ~ SN(t). 

3.2. Strategies and sequentiality 

Since terms may have a nonnal fonn as well as an infinite reduction, one is interested in fonnulating 
'strategies' that as much as possible avoid the infinite reductions and are heading for the normal fonn. 
Formally, we define: 

3.2.1. DEFINITION. (i) Let R be a TRS. A one step or sequential reduction strategy lF for R is a map from 
Ter(R) to Ter(R) such that t-+ JF(t), if t is not in normal form, and t = JF(t) if t is a normal form. 
(ii) Likewise, lF is a many step or parallel reduction strategy for R, if t-+ + JF(t) if t is not in nonnal form, 
and t = lF(t) if t is a normal form. 
(iii) A reduction strategy is normalizing when it finds the nonnal form whenever it exists, i.e. if t has a 
normal form t', then 3n JF!l(t) = t'. 
We consider five of the main strategies. First, two sequential strategies: (1) the leftmost outermost (or 
normal order) strategy; (2) the leftmost innermost strategy. In the first, each time the leftmost outermost 
redex is contracted; in the second, the leftmost of the innermost redexes. Next, there are these three paral
lel strategies: (3) the parallel outermost strategy; (4) the parallel innermost strategy; and (5) the 'full substi
tution' (or Gross-Knuth) strategy. In the third, all outermost redexes are contracted in one parallel 'step'; 
in the fourth, all innermost redexes. Of course, outermost redexes are pairwise disjoint, so perfomling this 
parallel step is unproblematic, and likewise for the innermost redexes. Actually, the definition of strategies 
( 14) makes sense for arbitrary TRSs; this is not so for the full substitution strategy, where each time a 
'parallel' step is performed consisting of contracting all rede:xes present at that time. For general TRSs, 
this notion is not well-defined, but for orthogonal TRSs there can be shown to be an unequivocal result of 
contracting all redexes that are already present at once. We restrict our consideration of strategies in the se
quel to orthogonal TRSs; not much can be said for the general case. 

The two innermost strategies are not interesting from the point of view of normalization; in fact, they 
are 'anti-normalizing', finding infinite reductions whenever possible. 

Although finding normal forms is important, we are often interested in terms that do not have a nor
mal form, but rather an 'infinite nomlal form'. (We will not attempt a formal definition of infinite normal 
form here.) For example, in SKIM one can define, using combinatory completeness and the fixed point 
combinator, temls cp, A* such that: 

<p ..... Pl(A"'ip(PQ.ip)) 
A*xy ..... P(A(Pox)(Poy))(A*(P1 x)(Pw)). 

Here P, Po, P1 are the pairing, respectively unpairing constants from SKIM, and A is addition (see Table 
3). Using pairing, we may have infinite sequences of natural numbers, or rather potentially infinite se
quences, i.e. terms t such that t =to, tk - P Ilk lk+1 (sot represents the sequence no. n1, 112 .... ). Now 
A* represents pointwise addition of such infinite sequences, and as one may check, cp represents these
quence of Fibonacci numbers. A closer analysis of <p will reveal that this tenn has no normal foml. Yet we 
need a strategy to compute the 'infinite normal form' of cp, since there are also reductions of cp that make 
no progress towards the infinite normal form. A normalizing strategy will not do now. Here we need a 
stronger version: a 'cofinal' reduction strategy. 

3.2.2. DEFINI'TION. IF is a cofinal reduction strategy if for every reduction t - s there is an n such that 
s- JFll(t). 

Clearly, a cofinal strategy is normalizing; but the reverse need not be the case. 
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3.2.3. TIIEOREM. For all orthogonal TRSs: 

(i) The parallel outermost reduction strategy is normalizing, although not necessarily cojinal. 
(ii) The 'full substitution' reduction strategy is cofinal, hence normalizing. 
(iii) The leftmost outermost reduction strategy is normalizing for 'left-normal' TRSs. 

In (iii), a 1RS is left-normal if for every reduction rule t ~ s, in t the variables are to the right of the func
tion and constant symbols (in the linear tenn notation). E.g. CL is left-nonnal, SKIM is not due to the rule 
for U. Proofs of (i-iii) can be found e.g. in O'Donnell [77] or Klop [80]. 

A paradigm example in considerations of sequential versus parallel reduction is Berry's TRS, with the 
three rules: 

F(A, B, x) ~ 0 , F(x, A, B) ~ 1 , F(B,x,A) ~ 2. 

When added to, say, CL, the resulting 1RS seems to require a parallel reduction strategy for nonnaliza
tion. For, in a tenn F(p, q, r) there seems at first sight to be no computable way of detecting the 'right' re
dex; selecting a redex in say r, we might find ourselves in the case that p, q, reduce to A. 8 respectively, 
and then our selection of a redex in r was useless. Likewise, by symmetry, for selections of a redex in one 
of the other two arguments. Note that it is undecidable whether indeed p, q reduce to A, B respectively. 
(The same problem occurs with the rules [QI(x, 1r.U.e.)--+ ~. QI(t.we.. x) --+ t.r.u.a}; however, in contrast 
with the present example, these are not orthogonal.) Actually, it has been claimed in some papers that CL 
together with Berry's 1RS does not admit a computable sequential normalizing strategy. However, there 
is the following remarkable fact 

3.2.4. THEOREM (Kennaway [89]). Every orthogonal TRS possesses a computable, sequential, 
normalizing reduction strategy. 

In general, the algorithm involved in Kennaway's theorem is, however, too complicated to be of more 
than theoretical interest. So, the task remains to isolate a (decidable) class of orthogonal 1RSs for which 
'feasibly computable' sequential normalizing strategies exist. This complicated problem was successfully 
tackled by Huet & Levy (79]. Moreover, the sequential strategy that they established has the virtue ofnot 
only being normalizing, but also of being efficient: no wasteful reductions are performed. 
They defined a property of orthogonal 

~g~~~ --~'1•• 
must contract one of the descendants of 
that redex. Since, as proved in Huet & 
Levy [79], repeated contraction of a 
needed redex inevitably finds the nor
mal form if it exists, we have therefore 

testing for indices 

Figure 11 

a normalizing sequential strategy that is computable by a simple algorithm. 
One may ask why we are interested in sequential strategies when parallel strategies (parallel outermost 

and full substitution) are available that are normalizing for all orthogonal 1RSs. The reason is that we do 
not want to be forced to evaluate in parallel; maybe we have only a reduction machine at our disposal that 
operates in a sequential way. 

Let us describe now the algorithm in Huet & Levy [79] detecting needed redexes. In general, it is 
undecidable whether a redex in a tenn 1s needed. However, for strongly sequential TRSs the algorithm 
will always point to at least one needed redex. 

First, the signature l: is extended with a constant n (playing the same role as the symbol O). Terms 
M, N, ... are henceforth over the alphabet l: u {'2} and are also called n-terms. Mis aprefu: of N if M 
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results from N by replacing some subterms of N by n. A redex compatible term is a prefix of a redex. A 
new reduction -7ro is defined: if P is a redex compatible term, P == n, then C[P] -7roC[n] for arbitrary n
contexts q ]. The reduction -7ro is confluent and terminating; the -700-normal form of M, notation ro(M), 

is called the fixed part of M. 
Now suppose that a term M, without Q's and not in nonnal form, is given and that we want to 

determine among the outermost redexes of M one that is needed. To that end, all outermost redexes of M 
are replaced by n, result C(Q, .. ., OJ where all O's are displayed. Ann-occurrence in C[Q, .. ., Q] is called 
an index, when the following "i-test" is positive. Replace the n-occurrence under investigation by a fresh 
symbol i (see Figure 11). Now determine the fixed pan. If and only if the test-symbol i is preserved in the 
fixed part, it indicates an index-n. The redex present in the original M at the place of this n, is a needed 
one. As remarked earlier, repeated contraction of a needed redex is a normalizing sequential strategy. 

Not for all orthogonal TRSs we will find an index-0 when running the i-test on all .Q-occurrences in 
C[Q, .. ., .Q]. But for strongly sequential olthogonal TRSs the i-test will find at least one index-n in every 
C[Q, ... , n] as defined above. This fact can even be taken as a definition of strongly sequential TRSs. 
Moreover, strong sequentiality is a decidable property of TRSs; the proof is rather intricate. It is imponant 
to realize that all concepts involved in the definition of index and of strong sequentiality are independent of 
the right-hand sides of the reduction rules; this is what makes strong sequentiality decidable. 

3.3. Conditional rewriting 

A very prominent place in investigations of term rewriting in the last years is taken by the theme of 
conditional rewriting. Conditional Equational Logic originated in Universal Algebra, from the need to deal 
with conditional equations for algebraic structures, as for instance a left-cancellation law xy = xz -7 y = z. 
Conditional equations were also studied in the field of Abstract Data Types, not only because they provide 
easier specifications, but also because they can be shown to have a greater expressive power. Further
more, conditional equations tum out to be an essential ingredient in Equational Logic Programming (Holl
dobler [89)), an attempt to integrate logic programming and functional programming. 

We will write conditional equations in the form e <= e1, ... , en where e, e1, ... , en are equations 
between first order terms. The reversed implication is used in accordance with the usual logic 
programming notation; its right-hand side e1, .. ., en is the conjunction of these equations. Much of 
Equational Logic (section 2.1) generalizes easily to Conditional Equational Logic, such as initial algebra 
semantics and a completeness theorem analogous to Birkhoff's completeness theorem 2.1.1; a simple 
version of a complete inference system can be found in Klop [90). 

After orientation of the head equation e, we have a conditional rewrite rule: 

t-7S <= t1=S1, ... ,tn=Sn. (•) 

Here we require that t ~ s is an ordinary rewrite rule, i.e. t must not be a variable and s contains no more 
variables than t (although this condition is less natural now). A Conditional Term Rewriting System 
(CTRS) consists of (a signature :E and) a set R of conditional rewrite rules. Actually, there is some 
ambiguity in the definition of a CTRS, due to the possible interpretations of the equality signs in the 
conditional pan t1 = s1 , ... , tn = Sn. We will consider the three main interpretations. The terminology 
stems from Dershowitz, Okada & Sivakumar [87, 88]. 

( 1) Semi-equational CTRSs. Here the'=' in (•)is convertibility of the rewrite relation -7 (the definition 
of'=' and '-7' thus depend on each other, but this is no problem since the conditions are positive). 

(2) Join CTRSs. Here '=' is interpreted as joinabiliry or convergence( J,, see 2.2.1 ), i.e. having a com-
mon reduct. 

(3) Normal CTRSs. Here '=' is interpreted as-» J, defined as: t-» is if t __.> s and s is a normal form. 

The definition of critical pairs in a CTRS (of one of the above types) is slightly more complicated than for 
the unconditional case. It will now have a conditional form too. If t -7 s <= E and t' _, s' <= E' are 
conditional rewrite rules, then by a definition analogous to 2.2.1 we find in case of overlap oft and t' the 
critical pair (Ccr[s'0 ], s 0 ) <= E0 , E'0 , also written as a conditional equation Ccr[s'cr] = scr <= Ecr, E'cr. The 
critical pair t = s <= E is called feasible in Dershowitz, Okada & Sivakumar [87, 88], if there is a 
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substitution a such that E0 is true. Critical pair t = s <= E is ca11ed joinable if for all a such that Ea is true, 
s0 ..1. t0 . The following theorem is the conditional analogue of the Knuth-Bendix theorem 2.2.2. 

3.3.1. THEOREM (Dershowitz, Okada & Sivakumar (87, 881). (i) Let R be a semi-equational CTRS. 
Then: if R is terminating and all critical pairs are join.able, R is confluent. 
(ii) Let R be a join CTRS. Then: if R is decreasing and all critical pairs are joinable, R is confluent. 

Here R is decreasing (a propeny stronger than termination) if it has a decreasing ordering, i.e. an ordering 
>on Ter(R) satisfying: (1) >is well-founded; (2) t c s ~ t < s (c is the proper subterm ordering); (3) t 
-+ s ~ t > s; (4) for each rewrite rule t-+ s <= 11 0 s1 , ... , tn O Sn and each a we have ta> tia, Sia (i 
= 1, ... ,n). Here 0 is=, .J,, -l'> !· 

In general, the propeny of being a normal form is not decidable in a CTRS. (This is not surprising, 
since being a normal form depends on some conditions that refer to convertibility or reduction and hence 
may be undecidable.) However, for decreasing CTRSs being a normal form is decidable. 

For more about conditional rewriting, we refer to Kaplan (84, 85], Dershowitz & Plaisted [87]. For 
conditional critical pair completion see Ganzinger [87]. Recently, Middeldorp [89c] generalized Toyama's 
theorem 1.4.1 to the case of CTRSs, showing that also in the conditional case (for all three types above 
mentioned) confluence is a modular propeny. We conclude this section by mentioning a confluence the
orem for orthogonal CTRSs; a CTRS is called orthogonal if its unconditional part, that is the TRS arising 
after removing all conditions from the conditional rewrite rules, is an orthogonal TRS as defined in 3.1. 

3.3.2. THEOREM (Bergstra & Klop (86]). Orthogonal semi-equational and orthogonal normal CTRSs are 
confluent. Orthogonal join CTRSs are in general not even weakly confluent. 

3.4. Other rewrite formats 

We conclude by mentioning some important other rewriting formats that could not be discussed in this 
paper. An useful extension of the 'pure' rewrite format is equational term rewriting, where one rewrites 
not terms but equivalence classes of terms. For instance, it is sometimes convenient to work modulo 
commutativity and/or associativity of some operators; recall the problems, discussed in section 2 above, 
that commutativity and associativity axioms present to pure term rewriting. For a treatment of this subject 
we refer to Dershowitz & Jouannaud (90]. Another rewrite format is that of graph rewriting, introduced to 
avoid duplications of subterms in reductions. For implementations this is of crucial importance. For an 
introduction and further references we refer to Barendregt et. al. [87]. Also not covered here are term 
rewriting systems with bound variables, or Combinatory Reduction Systems as they are called in Klop 
(80, 90]. For instance, !..-calculus is a TRS with bound variables. 

As said in the Introduction, the design of functional programming languages poses many stimulating 
questions to the study of TRSs. E.g. Peyton Jones [87] introduces A.-calculus with patterns, with (instead 
of the usual ~-reduction rule of the ordinary A.-calculus) the reduction rule (A.P. MJN ~ M0 , if a= mgu(P, 
N) exists. Here Pisa linear term built from 'constructors' and free variables (a 'pattern'). (Without the 
linearity, i.e. if P may contain repeated variables, the system is not Church-Rosser.) With P = x we get 
the ~-reduction rule. (We have not defined the concept of 'constructors'. An interesting calculus, without 
referring to constructors, and in the syntax of pure A.-calculus, arises if P above is taken to be a linear A.
calculus term in normal form.) How much of the well-known theory of the A.-calculus can be generalized 
to this extension? 

Another feature, common in the practice of functional programming, is the use of reduction rules with 
priorities assigned to them: 

w.2~1 

Wt X ~ JI1L!l1 X (Wt (W'.fil! X)) 

Here the first rule should be 'tried' first; only if it is not applicable, the second one may be used. Without 
this priority assignment, the specification would of course be erroneous. The mechanism of rule priorities 
is not without some nasty problems; it is studied in Baeten et.al. (88]. 
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As a third example, we mention the question how to translate (or interpret) rewrite systems into each 
other. Peyton Jones [87] contains a translation of a subset of Miranda into the pure !..-calculus. In general, 
it is known that not every TRS can, in a direct sense, be translated into A.-calculus, not even every ortho
gonal ms with the constructor discipline (an example is Berry's TRS). As far as we know, at present it is 
not rigorously established what subclasses ofTRSs (say of orthogonal constructor TRSs) can be 'directly 
defined' into A.-calculus, by finding A.-terms for the operators of the TRS such that reductions are respec
ted. (1bis is a vague definition, but part of the question is to find the right notions here. For some propo
sals in this direction see 0 'Donnell [85] .) 

Acknowledgements 
r am much obliged to Roel de Vrijer for many detailed criticisms and in general for his help in getting my efforts to write this 
paper confluenl and terminating. (Yet, the paper is not complete, but that is solely due to the author.) 

Thanks are also due to the Computer Science Department of the Universita degli Studi di Milano, where a part of this 
paper was written in a stimulating and hospitable environment created by, among others, Giovanni Degli Antoni and Nico
letta Sabadini. 

References 
BACHMAIR, L. (1988). Proof by consistency in equational theories. In: Proc. 3rd Symp. on Logic in Computer Science, 
Edinburgh. 228-233. 
BACHMAIR, L., DERSHOWlTZ, N. & HSIANG, J. (1986). 0 rderings for equational proofs. In: Proc. of the IEEE Syrop. 
on Logic in Computer Science, Cambridge, Massachusetts, 346-357. 

BAETEN, J.C.M., BERGSTRA, J.A., KLOP, J.W. & W.P. Weijland. (1988). Term rewriting systems with rule priorities. 
TCS 67 (J 989) 283-301. 
BARENDREGT, H.P. (1984). The Lambda Calculus, its Synlax and Semanlics. 2nd ed. North-Holland 1984. 

BARENDREGT, H.P. (1989). Functional programming and lambda calculus. In: Handbook of Theoretical Computer Science 
(ed. J. van Leeuwen), North-Holland, Amsterdam. 

BARENDREGT, H.P., VANEEKELEN, M.CJ.D., GLAUERT, J.R.W., KENNAWAY, J.R., PLASMEIJER, M.J. & 
SLEEP, M.R. (1987). Term graph rewriting. In: Proc. PARLE Conf., Springer LNCS 259, 141-158. 

BERGSTRA, J.A. & KLOP, J.W. (1986). Conditional rewrite rules: confluence and termination. JCSS 32 (3), 323-362. 

BIRKHOFF, G. (1935). On the structure of abstract algebras. In: Proc. of the Cambridge Philosophical Society 31, 433-454. 

DE BRUUN, N.G. (1978). A note on weak diamond properties. Memorandum 78-08, Eindhoven Univ. of Technology, 1978. 

CURIEN, P.-L. (1986). Categorical combinators, sequential algorithms andfanctionalprogramming. Research Notes in 
Theoretical Computer Science, Piunan, London 1986. 

DAUCHET, M., TISON, S., HEUILLARD, T. & LESCANNE, P. (1987). Decidability of the confluence of ground term 
rewriting systems. In: Proc. of the 2nd Symp. on Logic in Computer Science, Ithaca, NY, 1987, 353-359. 

DERSHOWI1Z, N. (1987). Termination of rewriting. J. of Symbolic Computation 3 (1&2), 69-115, 1987. Corrigendum: 
Vol.4, No.3, 409-410. 

DERSHOWlTZ, N. & JOUANNAUD, J.-P. (1989). Rewrite systems. To appear as Chapter 15 of Vol.B of "Handbook of 
Theoretical Computer Science", North-Holland, 1989. (Rapport de R&:herche no.478, Unite Associ6e au CNRS UA 410: AL 
KHOWARJZMI, Avril 1989.) 

DERSHOWTIZ, N., OKADA, M. & SIVAKUMAR, G. (1987). Confluence of Conditional Rewrite Systems. In: Proc. of 
the lst International Workshop on Conditional Term Rewrite Systems, Orsay, Springer LNCS 308, 31-44. 

DERSHOWI1Z, N., OKADA, M. & SIVAKUMAR, G. (1988). Canonical Conditional Rewrite Systems. In: Proc. of 9th 
Conf. on Automated Deduction, Argonne, Springer LNCS 310, 538-549. 

DERSHOWlTZ, N. & PLAISTED, D.A. (1987). Equational Programming. In: Machine Intelligence 11 (eds. J.E. 
Hayes, D. Michie and J. Richards), Oxford University Press, 21-56. 

GANZINGER, H. (1987). A completion procedure for conditional equations. In: Proc of the lst Intern. Workshop on 
Conditional Term Rewriting Systems, Orsay 1987, Springer LNCS 308, 1988, 62-83. 

GOGUEN, J.A. & MESEGUER, J. (1985). lnitiality, induction, and computability. In: Algebraic methods in semantics 
(eds. M. Nivat and J.C. Reynolds), Cambridge University Press 1985, 459-542. 

HARDIN, T. (1989). Confluence results for the pure Strong Categorical Logic CCL. A.-calculi as subsystems of CCL. 
Theor. Comput Sci. Fundamental Studies, Vol.65, Nr.3, 1989, 291-342. 

HINDLEY, J.R. & SELDIN, J.P. (1986). lnlroduction to Combinators and A.-Calculus. London Mathematical Society 
Student Texts, Nr.l, Cambridge University Press 1986. 

HOLLDOBLER, S. (1989). Foundations of Equational Logic Programming. Springer Lecture Notes in A.I. 353. 

HSIANG, J. (1985). RejutaJional Theorem Proving using Term-Rewriting Systems. Artificial Intelligence, 25, Vo!.3, 1985. 



369 

HUET, G. (1980). Confluent reductions: Abstract properties and applications to tenn rewriting systems. IACM, Vol.27, 
No.4 (1980), 797 -821. 

~UET, G. & LANKFORD, D.S. (1978). On the uniform halting problem for term rewriting systems. Rep. 283, !RIA. 

HUET, G. & L~VY, J .• J. (1979). Call-by-need computations in non-ambiguous linear term rewriting systems. Rapport 
INRIA nr.359. 

HUET, G. & OPPEN, D.C. (1980). Equations and rewrite rules: A survey. In: Fonnal Language Theory: Perspectives and 
Open Problems (ed. R. Book), Academic Press, 1980, 349-405. 

KAPLAN, S. (1984). Conditional Rewrite Rules. TCS 33(2,3), 1984. 

KAPLAN, S. (1985). Fair conditional term rewriting systems: Unification, termination and confluence, Recent Trends in 
Data Type Specification (ed. H.-J. Kreowski), Infonnatik-Fachberichte 116, Springer-Verlag, Berlin, 1985. 

KENNA WAY, J.R. (1989). Sequential evaluation strategies for parallel-or and related reduction systems. Annals of Pure and 
Applied Logic43 (1989) 31-56. 

KLOP, J.W. (1980). Combinatory Reduction Systems. Mathematical Centre Tracts Nr.127, CWI, Amsterdam. 

KLOP, J.W. (1990). Term Rewriting Systems, in: Handbook of Logic in Computer Science (eds. S. Abramsky, D. Gabbay 
and T. Maibaum) Vol.1, Chapter 6, Oxford University Press, to appear. 

KLOP, J.W. & DE VRIJER, R.C. (1989). Unique Normal Forms for Lambda Calculus with Surjecrive Pairing. Information 
and Computation 80 (2), 97-113. 

KNUTH, D.E. & BENDIX, P.B. (1970). Simple word problems in universal algebras. In: Computational Problems in 
Abstract Algebra (ed. J. Leech), Pergamon Press, 1970, 263-297. 

KRUSKAL, J.B. (1960). Well-Quasi-Ordering, the Tree Theorem, and Vazsonyi's Conjecture. Trans. AMS 95, 210-225. 

KURIHARA, M. & KAil, I. (1988). Modular Term Rewriting Systems: Termination, Confluence allli Strategies. Report, 
Hokkaido University. 

KURIHARA, M. & OHUCffi, A. (1989). Modularity of Simple Termination of Term Rewriting Systems.Report 89-SF-31, 
Hokkaido University, Sapporo, 1989. 

MIDDELDORP, A. (l 989a). Modular aspects of properties of term rewriting systems related to normal forms. In: Proc. of 
3rd Intern. Conf. on Rewriting Techniques and Applications, Chapel Hill, Springer LNCS 355, 263-277. 

MIDDELDORP, A. (1989b). A sufficient condition for the termination of the direct sum of term rewriting systems. In: Proc. 
of 4th IEEE Symposium on Logic in Computer Science, Pacific Grove, 396-401. 

MIDDELDORP, A. (1989c). Confluence of the Disjoint Union of Conditional Tenn Rewriting Systems. Report CS-R8944, 
Centre for Mathematics and Computer Science, Amsterdam 1989. 

NEWMAN, M.H.A. (1942). On theories with a combinatorial definition of "equivalence". Annals of Math. 43 (2), 223-243. 

O'DONNELL, M.J. (1977). Computing in systems described by equations. Springer LNCS 58. 

0 'DONNELL, M.J. (1985). Equational logic as a programming language. The MIT Press, Cambridge MA, 1985. 

OYAMAGUCHI, M. (1987). The Church-Rosser property for ground term rewriting systems is decidable. Theoretical 
Computer Science 49 (1 ). 

PEYTON JONES, S.L. (1987). The Implementation of Functional Programming Languages. Prentice-Hall 1987. 

ROSEN, B.K. (1973). Tree-manipulating systems and Church-Rosser theorems. JACM, Vol.20 (1973), 160-187. 

RUSINOWITCH, M. (1987). On termination of the direct sum of term rewriting systems IPL 26, 65-70. 

SCH6NFINKEL, M. (1924). Uber die Bausteine der mathematischen Logik. Math. Annalen 92, 305-316. Translated as: On 
the building blocks of mathematical logic, in From Frege to GOdel, ed. J. van Heyenoort, Harvard Un. Press, 1967, 355-366. 

SCOTT, D.S. (1975). Some philosophical issues concerning theories of combinators. In: Proc. of Symposium 'i..-calculus 
and Computer Science Theory', (ed. C. BOhrn), Rome 1975, Springer LNCS 37, 346-366. 

STAPLES, J. (1975). Church-Rosser theorems for replacement systems. In: Algebra and Logic (ed. J. Crosley), Springer 
Lecture Notes in Mathematics 450, 291-307. 

TOY AMA, Y. (1987a). Counterexamples to termination for the direct sum of Term Rewriting Systems. Information 
Processing Letters 25, 141-143. 

TOY AMA, Y. (1987b). On the Church-Rosser property for the direct sum of term rewriting systems. IACM, Vol.34, No.l, 
1987, 128-143. 

TOYAMA, Y., KLOP, J.W. & BARENDREGT, H.P. (1989). Termination for the direct sum of left-linear term rewriting 
systems. In: Proc. of 3rd Intern. Conf. on Rewriting Techniques and Applications, Springer LNCS 355, 477-491. 

TURNER, D.A. (1979). A new implementation technique for applicative languages. Software Practice and Experience, 
Vol.9, 1979, 31-49. 

TURNER, D.A .. (1985). Miranda: a non-strict functional language with polymorphic types. In: Proc. of the IFIP Intern. 
Con!. on Functional Programming Languages and Computer Architectw-e, Nancy. Springer LNCS 201, 1985. 

WINKLER, F. & BUCHBERGER, B. (1983). A criterion for eliminating unnecessary reductions in the Knuth-Bendix algo
rithm. In: Proc. of the Coll. on Algebra, Combinatorics and Logic in Computer Science, GyOr, Hungary, Sept. 1983. 


