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Abstract
The first-order theory of rewriting is decidable for finite left-linear right-ground rewrite systems.
We present a new tool that implements the decision procedure for this theory. It is based on tree
automata techniques. The tool offers the possibility to synthesize rewrite systems that satisfy
properties that are expressible in the first-order theory of rewriting.
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1 Introduction

Dauchet and Tison [4] proved that the first-order theory of rewriting is decidable for ground
rewrite systems. In this theory one can express properties like confluence

∀ s ∀ t ∀u (s→∗ t ∧ s→∗ u =⇒ ∃ v (t→∗ v ∧ u→∗ v))

and normalization

∀ s ∃ t (s→∗ t ∧ ¬∃u (t→ u))

The decision procedure in [4] is based on tree automata techniques and easily extends to
left-linear right-ground rewrite systems. Key ingredients are tree automata that accept
encodings of n-ary relations on terms, ground tree transducers for certain binary relations
on terms, as well as several closure properties corresponding to the logical operations of the
first-order theory of rewriting.

We implemented the decision procedure in the new First-Order Rewriting Tool, FORT
for short. It takes as input a left-linear right-ground TRS R and a first-order formula ϕ
and reports whether R satisfies the property expressed by ϕ. We extended the theory with
additional predicates in order to increase expressibility. For instance, the formula

∀ s ∀ t ∀u (s→! t ∧ s −→‖ u =⇒ t = u ∨ ∃ v (u→+ v ∧ v ε−→ t))

can be handled by our tool. In addition, FORT can be used to synthesize left-linear right-
ground rewrite systems that satisfy a property expressible in the first-order theory of rewriting,
using a simple generate-and-test algorithm. Additional input parameters guide the search.
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36:2 Automating the First-Order Theory of Rewriting for Left-Linear Right-Ground TRS

The remainder of this paper is organized as follows. In Section 2 the first-order theory of
rewriting is formally defined and the supported predicates are presented. The tree automata
techniques underlying the decision procedure implemented in FORT are covered in Section 3
and in Section 4 we explain how formulas are mapped to the constructions of the preceding
section. Synthesis is the topic of Section 5. In Section 6 we briefly explain how FORT is
used and present some implementation details. The power of FORT is illustrated by several
experiments in Section 7. We conclude in Section 8 with related work and ideas for future
work.

2 First-Order Theory of Rewriting

We assume familiarity with term rewriting [1]. We consider first-order logic over a language
L without function symbols. The language contains the following binary predicate symbols:

→ →+ →∗ →! −→‖ ε−→ >ε−−→ ↔ ↔∗ ↓ =

As models we consider finite TRSs (F ,R) such that the set of ground terms T (F) is non-
empty, which is equivalent to the requirement that the signature F contains at least one
constant symbol. The set of ground terms serves as domain for the variables in formulas over
L. The interpretation of the predicate symbol → in (F ,R) is the one-step rewrite relation
→R over T (F). The other predicate symbols are interpreted in a similar fashion: →! denotes
normalization: s→!

R t if s→∗R t and t is a normal form of R, −→‖ denotes a parallel rewrite
step, ε−→ denotes one-step rewriting at the root position, >ε−−→ denotes one-step rewriting below
the root, and ↔∗ denotes convertibility. The predicate symbols →∗, →!, ↔, and ↓ can be
expressed in terms of the other predicate symbols:

s→∗ t ⇐⇒ s→+ t ∨ s = t s↔ t ⇐⇒ s→ t ∨ t→ s

s→! t ⇐⇒ s→∗ t ∧ ¬∃u (t→ u) s ↓ t ⇐⇒ ∃u (s→∗ u ∧ t→∗ u)

We included them for convenience. For the same reason, L contains symbols denoting
standard properties of (terms of) TRSs:

CR(t) ⇐⇒ ∀u ∀ v (t→∗ u ∧ t→ v =⇒ u ↓ v) CR ⇐⇒ ∀ t CR(t)
WCR(t) ⇐⇒ ∀u ∀ v (t→ u ∧ t→ v =⇒ u ↓ v) WCR ⇐⇒ ∀ t WCR(t)

WN(t) ⇐⇒ ∃u (t→! u) WN ⇐⇒ ∀ t WN(t)
UN(t) ⇐⇒ ∀u ∀ v (t→! u ∧ t→! v =⇒ u = v) UN ⇐⇒ ∀ t UN(t)

NFP(t) ⇐⇒ ∀u ∀ v (t→ u ∧ t→! v =⇒ u→! v) NFP ⇐⇒ ∀ t NFP(t)
NF(t) ⇐⇒ ¬∃u (t→ u) UNC ⇐⇒ ∀ t ∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

The acronyms stand for the Church-Rosser property or confluence (CR), the weak Church-
Rosser property or local confluence (WCR), (weak) normalization (WN), unique normal forms
(UN), the normal form property (NFP), and unique normal forms with respect to conversion
(UNC). On the other hand, the unary predicate symbol Fin◦ defined as

Fin◦(t) ⇐⇒ {u | t ◦ u} is finite

for every boolean combination ◦ of the binary predicate symbols was added to L as it strictly
increases expressibility. For example, it allows to express the important termination (strong
normalization) property:

SN(t) ⇐⇒ Fin→+(t) ∧ ¬∃u (t→∗ u ∧ u→+ u)
SN ⇐⇒ ∀ t Fin→+(t) ∧ ¬∃u (u→+ u)
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It should be stressed that the above properties are restricted to ground terms. So CR stands
for ground-confluence, which is different from confluence, even in the presence of ground
terms; consider e.g. the TRS consisting of the rules f(x)→ x and f(x)→ c.

3 Tree Automata

Most of the results presented in this section are well-known. We refer to [3] for further details.
We consider bottom-up tree automata A = (F , Q,Qf ,∆) consisting of a finite signature F
with T (F) 6= ∅, a finite set Q of states with Q ∩ F = ∅, a set Qf ⊆ Q of final states, and a
set ∆ of transition rules. Every transition rule has one of the following two shapes:

f(α1, . . . , αn)→ β with f ∈ F and α1, . . . , αn, β ∈ Q, or
α→ β with α, β ∈ Q.

Transition rules of the second shape are called ε-transitions. We view A as a ground TRS
(F ∪Q,∆). The induced rewrite relation is denoted by →A or simply → if A can be inferred
from the context. The language L(A) accepted by A is the set of ground terms in T (F)
that can be rewritten to a final state. A subset T ⊆ T (F) is regular if there exists a tree
automaton A with L(A) = T .

Every regular language is accepted by a tree automaton A without ε-transitions. Moreover,
it may be assumed that A is deterministic (no two different transition rules of A have the
same left-hand side) and completely defined (for every f(α1, . . . , αn) there exists a transition
rule with this left-hand side).

I Theorem 1. The class of regular languages is effectively closed under union, intersection,
and complement.

The constructions employed in the proof are well-known. In the decision procedure for
the first-order theory of rewriting for left-linear right-ground TRSs they are used to encode
the propositional connectives ∧, ∨, and ¬.

I Theorem 2. The following problems are decidable:

instance: a tree automaton A and a ground term t

question: t ∈ L(A)?

instance: a tree automaton A
question: L(A) = ∅?

instance: tree automata A and B
question: L(A) ⊆ L(B)?

To cope with the predicate symbols in our language we use tree automata that operate
on n-tuples of ground terms.

I Definition 3. For a signature F we let F (n) = (F ∪{⊥})n. Here, ⊥ /∈ F is a fresh constant.
The arity of a symbol f1 · · · fn ∈ F (n) is the maximum of the arities of f1, . . . , fn. Given
terms t1, . . . , tn ∈ T (F), the term 〈t1, . . . , tn〉 ∈ T (F (n)) is defined inductively:

〈t1, . . . , tn〉 =
{
t1 · · · tn if t1, . . . , tn are constants
f(u1, . . . , um) otherwise

where f = root(t1) · · · root(tn) has arity m and ui = 〈s1, . . . , sn〉 with

sj =
{
tj |i if i ∈ Pos(tj)
⊥ otherwise

The following example illustrates the above definition.

FSCD 2016
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I Example 4. Consider the ground terms s = f(g(a), f(b, b)), t = g(g(a)), and u = f(b, g(a)).
We have 〈s, t, u〉 = fgf(ggb(aa⊥), f⊥g(b⊥a, b⊥⊥)).

I Definition 5. A regular relation is an n-ary relation R on ground terms such that its
encoding {〈t1, . . . , tn〉 | (t1, . . . , tn) ∈ R} is regular. The class of all n-ary regular relations is
denoted by RRn.

An RR1 relation is just a regular language. The following result is an immediate con-
sequence of Theorem 1.

I Theorem 6. The class of regular relations is effectively closed under boolean operations.

I Definition 7. Let R be an n-ary relation over T (F).
If n > 2 and 1 6 i 6 n then the i-th projection Πi(R) of R is the relation

{(t1, . . . , ti−1, ti+1, . . . , tn) | (t1, . . . , tn) ∈ R}

If 1 6 i 6 n+ 1 then the i-th cylindrification Ci(R) of R is the relation

{(t1, . . . , ti−1, u, ti, . . . , tn) | (t1, . . . , tn) ∈ R and u ∈ T (F)}

If σ is a permutation on {1, . . . , n} then σ(R) denotes the relation

{(tσ(1), . . . , tσ(n)) | (t1, . . . , tn) ∈ R}

I Theorem 8. The class of regular relations is effectively closed under projection, cylindri-
fication, and permutation.

In the decision procedure projection is used to encode existential quantification, whereas
cylindrification is used to combine relations of different arity. An important limitation of
binary regular relations is that they are not closed under transitive closure [3, Exercise 3.1].

I Definition 9. A ground tree transducer (GTT for short) is a pair G = (A,B) of tree
automata over the same signature F . A pair of ground terms (s, t) is accepted by G if
s →∗A · ∗B← t. The set of all accepted pairs is denoted by R(G). A binary relation R on
ground terms is a GTT relation if R = R(G) for some GTT.

I Theorem 10. The class of GTT relations is effectively closed under inverse and transitive
closure.

I Theorem 11. If G1 = (A1,B1) and G2 = (A2,B2) are GTTs with disjoint sets of states
and G = (A1 ∪ A2,B1 ∪ B2) then R(G)+ = (R(G1) ∪R(G2))+.

I Lemma 12. Every GTT relation is a regular relation.

The final result in this section is an easy generalization of a result of Dauchet and
Tison [4, 5]. The proof is given in the appendix.

I Lemma 13. If R is a binary regular relation then FinR is a regular predicate.

4 Automation

In this section we explain how first-order formulas are translated into tree automata manip-
ulations. We start the discussion with the binary relation symbols of L. Throughout this
section, R denotes a finite left-linear right-ground TRS over a finite signature F .
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I Lemma 14. The relations =, →R,
ε−→R, and

>ε−−→R are regular.

Rather than giving the proof, we illustrate the constructions on a simple example.

I Example 15. Consider the TRS R consisting of the rules f(x, a)→ g(b) and g(a)→ f(a, b).
The (encoding of the) identity relation = is accepted by the tree automaton

aa→ > bb→ > gg(>)→ > ff(>,>)→ >

For ε−→R we use the following tree automaton (with X as unique final state):

fg(α, β)→ X ab→ α a⊥ → γ gf(δ, ε)→ X
a⊥ → β bb→ α b⊥ → γ aa→ δ

gb(γ)→ α g⊥(γ)→ γ ⊥b→ ε

fb(γ, γ)→ α f⊥(γ, γ)→ γ

By combining the previous two automata and adding the transitions

gg(X)→ X ff(X,>)→ X ff(>,X)→ X

we obtain a tree automaton that accepts →R. For
>ε−−→R we add instead

gg(X)→ X′ ff(X,>)→ X′ ff(>,X)→ X′

gg(X′)→ X′ ff(X′,>)→ X′ ff(>,X′)→ X′

and make X′ the unique final state.

I Lemma 16. The relation −→‖ R is a GTT relation.

I Example 17. The GTT G = (A,B) with

A a → α g(α) → α a → β f(α, β) → ι1 g(γ) → ι1 a → δ B
b → α f(α, α) → α g(β) → ι2 f(δ, γ) → ι2 b → γ

accepts the relation −→‖ R for the TRS R of the previous example.

I Lemma 18. The relations →∗R, →
+
R, and ↔∗R are regular relations.

Proof. The relation →∗R = −→‖ +
R is a GTT relation according to Lemma 16 and Theorem 10,

and hence regular according to Lemma 12. To obtain the regularity of →+
R, the construction

in the proof of Lemma 12 [3, Proposition 3.2.7] is slightly modified. For↔∗R = (−→‖ R ∪ R −→‖)+

we additionally use Theorem 11. J

Note that we cannot use the equivalence of ↔∗R and (→R ∪ R←)+ ∪ = in the above
proof since →R ∪ R← is not a GTT relation and binary regular relations are not closed
under transitive closure.

For the remaining binary relations we use the formulas given in Section 2 in combination
with the closure properties of Section 3. We have to be careful when combining relations with
union and intersection because there may be a mismatch in the dimension of the involved
relations. Consider the binary relations R1 = {(s, t) | s → t} and R2 = {(t, u) | t → u}.
Their union is the ternary relation R1 ∪R2 = {(s, t, u) | s→ t or t→ u}, so before applying
the union construction we have to cylindrify R1 and R2 suitably. Also permutation is needed
if the order of terms in the participating relations is different.

FSCD 2016
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Existential quantification is implemented using projection (Definition 7 and Theorem 8).
Formulas are normalized in such a way that implications and universal quantifications
are eliminated using the known equivalences (ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ and ∀xϕ ≡ ¬∃x¬ϕ).
Furthermore, negations are pushed inside and double negations are eliminated. We do not
transform formulas into prenex normal form since this typically increases the dimension of the
relations, with a corresponding increase in the computation time for the closure operations.

We illustrate the decision procedure on a small example.

I Example 19. Suppose we want to determine whether a given left-linear right-ground
TRS R is (weakly) normalizing. We use the formula φ = ∀ s ∃ t (s →∗ t ∧ ¬∃u (t → u))
for this purpose. The computed (tree automata representations of the) relations are listed
below:
1. GTT relation for {(s, t) | s −→‖ R t} (Lemma 16)
2. GTT relation for {(s, t) | s→∗R t} (Theorem 10)
3. RR2 relation for {(s, t) | s→∗R t} (Lemma 12)
4. RR2 relation for {(t, u) | t→R u} (Lemma 14)
5. RR1 relation for {t | ∃u (t→R u)} (projection Π2)
6. RR1 relation for {t | ¬ ∃u (t→R u)} (complement)
7. RR2 relation for {(s, t) | ¬ ∃u (t→R u)} (cylindrification C1)
8. RR2 relation for {(s, t) | s→∗R t ∧ ¬∃u (t→R u))} (intersection)
9. RR1 relation for {s | ∃ t (s→∗R t ∧ ¬∃u (t→R u))} (projection Π2)
10. RR1 relation for {s | ¬ ∃ t (s→∗R t ∧ ¬∃u (t→R u))} (complement)

Then R satisfies φ if and only if the final language is empty (Theorem 2).

The logic supports the shorter formula ∀ s ∃ t (s →! t) to test for normalization. The
relation {(s, t) | s→! t} is implemented as {(s, t) | s→∗ t ∧ NF(t)}. For the NF predicate
our tool FORT employs the explicit construction presented in Comon [2, Section 4.2] rather
than the implicit encoding ¬∃u (t→ u) given in the preceding example. For small TRSs
there is little difference, but if the left-hand sides have a larger depth or contain functions
symbols of a higher arity, the explicit construction is more efficient.

5 Synthesis

Our tool can also be used to synthesize TRSs that satisfy properties given by the user. This
may be interesting for finding counterexamples and non-trivial TRSs for exam exercises as
well as competitions. Furthermore, we envisage the use of FORT in courses on term rewriting.

The synthesis algorithm for ground TRSs is shown in Figure 1. Of the five input
parameters, the formula φ must be supplied whereas the other four are optional. If the
signature F is not given, we enumerate all finite signatures in a dovetailing manner and call
the procedure repeatedly. The default values for the other optional parameters are n = 3,
m = 4, and d = m− 1. The outer while loop incrementally constructs the signature F . The
current candidate G ⊆ F is used to compute the set of terms T from which the rewrite rules
are constructed. Terms in T must satisfy the given depth and size restrictions. In the for
loop we enumerate all candidate ground TRSs that have no more than n rules, starting from
the ones with the fewest rules. In the inner while loop we consider the set of ground TRSs
R′ consisting of i rewrite rules. We select the smallest R ∈ R′ in some fixed total order >
on TRSs and test whether R is normalized, which means in this context that no smaller
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Input: • closed first-order formula φ over L
• signature F • maximum size of terms m
• maximum number of rules n • maximum depth of terms d

Output: • TRS R satisfying φ

G := ∅;
while F \ G 6= ∅ do

G := G ∪ {(f, a)} with (f, a) ∈ F \ G of minimum arity a;
T := {t ∈ T (G) | |t| 6 m and depth(t) 6 d};
R := T × T ;
for i = 0 to min(n, |R|) do

R′ := {S ⊆ R | S consists of i pairs};
while R′ 6= ∅ do

select smallest R ∈ R′ (with respect to some total order >);
if R is normalized and R � φ then return R;
R′ := R′ \ {R}

od

od

od;
return failure

Figure 1 Procedure for synthesizing TRSs.

(with respect to >) TRS exists (in the original R′) that can be obtained from R by renaming
constant symbols (within G). This test is done to avoid calling the decision tool on a TRS
for which an earlier call on a renamed version of the TRS was unsuccessful. If R′ passes this
test we use the decision tool to determine whether R satisfies the formula φ.

The procedure is easily extended to left-linear right-ground TRSs. We have an additional
optional input parameter v for the number of variables. Its default value is one. A set T ′ of
linear terms with variables sorted in some fixed order (to keep the set small) is computed
and the set of candidate TRSs is extended to T ′ × T .

6 Interface

Precompiled binaries to run FORT from the command line are available from

http://cl-informatik.uibk.ac.at/software/FORT

FORT can be used as decision tool via the following command

./fort -D <file> [<verbosity>] "<formula>"

where <formula> specifies the property that should be tested on the TRS given in <file>.
The syntax of TRSs follows the standard TPDB format.1 The optional <verbosity>

1 https://www.lri.fr/~marche/tpdb/format.html
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parameter takes a value in {0, 1, 2}. The higher the value, the more detailed the output will
be. The default value is 0. The syntax of the formula is explained in the file description.txt.
The quotation marks around the formula are essential. The basic command to synthesize
TRSs is

./fort -S <file>

where <file> must contain the line

(FORMULA <formula>)

and may contain the lines

(SIGNATURE <F>) (VARIABLES <V>) (RULES <R>) (SIZE <S>) (DEPTH <D>)

corresponding to the optional parameters that were described in the preceding section. The
signature <F> is specified as a comma separated list of function symbols and arities. For
example, (a 0, g 1, h 1) specifies a constant a and two unary symbols g and h. The
information in <file> can also be passed to FORT via the command line options

-f "<F>" -v <V> -r <R> -s <S> -d <D>

7 Experiments

In this section we illustrate FORT on a number of examples. After reporting on some
experiments we performed with the decision tool, we turn to the synthesis part.

The combined confluence2 and termination3 problem databases contain 65 left-linear
right-ground TRSs. When testing for confluence, FORT reports that 42 of these TRSs
are (ground-)confluent, 14 are non-(ground-)confluent, and the remaining 9 TRSs exceed
the given time limit of 60 seconds. (Ground-confluence coincides with confluence on our
collection of TRSs.) Not surprisingly, designated confluence provers4 like ACP, CSI, and
Saigawa are considerably faster than FORT, but only CSI subsumes FORT on the 65 left-linear
right-ground TRSs (45/19/1 in less than 2 minutes, compared to the 8 minutes of FORT).
Next we compare the following three different but equivalent formulations of confluence:

forall s, t, u (s ->* t & s ->* u => t join u) 631s, 10 timeouts (1)
forall s, t, u (s ->* t & s -> u => t join u) 484s, 9 timeouts (2)
forall t, u (t <->* u => t join u) 895s, 13 timeouts (3)

The total time spent by FORT (using a 60 seconds time limit) is given in the right column.
The computation of ↔∗ is much more expensive than →∗. Moreover, intersecting the RR3
relations R1 = {(s, t, u) | s →∗ t} and R2 = {(s, t, u) | s →∗ u} is more expensive than
intersecting R1 with R3 = {(s, t, u) | s→ u}. The numbers explain why the second formula
(called semi-confluence in [1]) is selected as translation of the predicate CR.

2 http://cops.uibk.ac.at/
3 http://termination-portal.org/wiki/TPDB
4 http://coco.nue.riec.tohoku.ac.jp/tools/

http://cops.uibk.ac.at/
http://termination-portal.org/wiki/TPDB
http://coco.nue.riec.tohoku.ac.jp/tools/
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Table 1 Intermediate automata sizes for TRS #74 of the confluence database.

property → →∗ ↔∗ ∩1 ∩2 ∩3 ∩4 time

(1) 82 1162 2184 33088 1723 5.2s
(2) 37 82 472 2184 15187 910 2.1s
(3) 82 1634 2184 43076 19237 27.1s

To give an idea of the sizes of the computed tree automata, we present detailed information
in Table 1 for TRS #74

a→ c f(x, c)→ f(c, c) d→ f(a, c) f(a, b)→ d
b→ c f(c, x)→ f(c, c) d→ f(c, b)

of the confluence database. Here ∩1 corresponds to the conjunction in the subformula that
represents the peak (absent for property (3)) and ∩2 the one from the join t ↓ u. The next
two columns correspond to the implication in the three properties before (∩3) and after (∩4)
trimming the automata. As can be seen, trimming intermediate automata, although time
consuming, has a significant impact.

We performed a similar experiment for the normal form property (NFP):

forall s, t, u (s -> t & s ->! u => t ->* u) 187s, 4 timeouts
forall t, u (t <->* u & NF(u) => t ->* u) 863s, 13 timeouts
forall t (WN(t) => CR(t)) 496s, 7 timeouts

justifying the selection of the first formula.
The time required to synthesize a TRS varies vastly, depending on the property, the

additional options, and the size of the smallest TRS fulfilling the property. Hence, the options
should be chosen with care.

I Example 20. We start with looking for non-confluent TRSs having unique normal forms
(UN & ∼CR). With the option (VARIABLES 0) the ground TRS

a→ a b→ a b→ g(a)

is generated in about 18 seconds. Generating a one-rule TRS with the option (RULES 1)
produces g(g(x))→ h(g(g(a))) in a bit more than 2 seconds.

I Example 21. Next we consider the formula

¬∀ t Fin ε←−(t) (FORMULA ∼forall t Fin(e<-,t))

which distinguishes ground TRSs from left-linear right-ground (but not ground) ones. Without
any options FORT produces the single rule g(x)→ c in a fraction of a second. The formula

¬∀ t Fin6=(t) (FORMULA ∼forall t Fin(∼=,t))

is true for TRSs that are not ARSs. FORT produces the empty TRS over the signature
consisting of two constants and a unary function symbol. To ensure the existence of a function
symbol of arity n > 1 we can use the formula ∃ s ∃ t (s −→‖ t ∧ ¬(s→ t) ∧ ¬(s = t)), which
results in the single rule a → b over a signature containing an additional binary function
symbol f.

FSCD 2016
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I Example 22. Finding a locally confluent but not confluent TRS R is easy. FORT produces
the two-rule TRS

g(g(c))→ c g(g(c))→ g(g(g(c)))

when giving the formula (WCR & ∼CR). The well-known abstract counterexample by Kleene

a b c d

is found by restricting the search to ARSs. This can be done either by extending the formula
to (WCR & ∼CR & forall t Fin(∼=,t)) or by using the option (DEPTH 0). Moreover, the
default value for the maximal number of rewrite rules has to be increased to at least four
(RULES 4). If we impose the condition that R−1 is terminating (cf. [11]), the TRS

a→ b a→ g(a) b→ g(g(b))

is produced with (WCR & ∼CR & forall t Fin(<-,t) & ∼exists u (u +<- u)).

8 Conclusion

Concerning related work, we are not aware of any other tree-automata based tool for
synthesizing TRSs nor of any tool that allows properties to be specified by an arbitrary
first-order formula in the theory of rewriting. Jiresch [6] developed a synthesis tool to
attack the well-known open problems (RTA LOOP #13) concerning the sufficiency of certain
restricted joinability conditions on critical pairs of left-linear TRSs.

Zantema [11] developed the tool Carpa+ for synthesizing TRSs that satisfy properties
which can be encoded as SMT problems. The TRSs that can be synthesized form a small
extension of the class of ARSs: A single unary function symbol f is permitted and rules must
have the form a→ b, a→ f(b), or f(a)→ b, where a and b are constants. The properties are
restricted to those that can be encoded into the conjunctive fragment of SMT-LRA (linear
real arithmetic). The predecessor tool Carpa synthesized combinations of ARSs with help of
a SAT solver. It was used to show the necessity of certain conditions in abstract confluence
results [8, Section 5].

We conclude by mentioning some ideas for future work. The most interesting extension
is the generation of witnesses for existential formulas or formulas with free variables. The
efficiency of FORT can certainly be improved, e.g. by converting its sequential code into
multi-threaded code. Optimizing the synthesis algorithm for ARSs is easily possible. Support
for combinations of TRSs (e.g., to express commutation) is also useful. The enumeration
algorithm can be improved, for instance by having the values that restrict the search space
increase over time. The question whether rewrite strategies can be incorporated is less easy
to answer. A major obstacle is that the subterm relation is not expressible in the first-order
theory of rewriting (cf. [3, Exercise 3.13]). Going beyond left-linear right-ground TRSs is a
non-trivial matter. Dropping either restriction, one quickly faces an undecidable first-order
theory, even when one-step rewriting (→) is the only predicate symbol [9, 7, 10]. Formalizing
the underlying theory into an interactive theorem prover like Isabelle/HOL will be a major
undertaking, but a necessary step to ensure that the answers and TRSs produced by FORT
are correct.

Acknowledgements. We thank Bertram Felgenhauer for reporting a mistake in the earlier
implementation of projection.
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A Proof of Lemma 13

Proof. The proof is based on the sketch in Dauchet and Tison [5]. Let A = (F (2), Q,Qf ,∆)
be the tree automaton that accepts the binary regular relation R. The set Q∞ is defined as
follows:

Q∞ = {q ∈ Q | 〈⊥, t〉 →∗A q for infinitely many terms t ∈ T (F)}

The set Q∞ is computed by constructing a graph with states as nodes. For every transition
rule ⊥f(q1, . . . , qn)→ q in ∆ we add transitions from q1, . . . , qn to q. Now, q ∈ Q∞ if there
exists a cycle from which q can be reached.

Next we define an automaton A′ = (F , Q ∪ Q̄, Q̄f ,∆ ∪ ∆′). Here, Q̄ is a copy of
Q where every state is dashed: q ∈ Q̄ if and only if q ∈ Q. For every transition rule
fg(q1, . . . , qn)→ q ∈ ∆ we have the following rules in ∆′:

fg(q1, . . . , qn)→ q̄ if qi ∈ Q∞ for some i > arity(f) (1)
fg(q1, . . . , q̄i, . . . , qn)→ q̄ for all 1 6 i 6 n (2)

Finally we define the automaton B = (F , QB, QBf ,∆B) as the complement of the second
projection Π2(R(A′)) of A′. Since the construction for projection does not change (final)
states, we have QB = Q ∪ Q̄ and QBf = QB \ Q̄f . We show L(B) = {t ∈ T (F) | FinR(t)}.
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36:12 Automating the First-Order Theory of Rewriting for Left-Linear Right-Ground TRS

⊆ Let t = f(t1, . . . , tn) ∈ T (F) and assume that FinR(t) does not hold, i.e., the set
U = {u ∈ T (F) | (t, u) ∈ R} is infinite. Since the signature F is finite, infinitely many
terms u in U have a depth greater than t. Hence there exists a position p /∈ Pos(t)
such that the set U ′ = {u ∈ U | p ∈ Pos(u)} is infinite. For every u ∈ U ′ we have
〈t, u〉|p = 〈⊥, u|p〉. Since 〈t, u〉 is accepted by A and Q is finite, there must exist a state
q′ such that 〈⊥, u|p〉 →∗A q′ for infinitely many terms u ∈ U ′. Therefore q′ ∈ Q∞. By
construction of A′, there must be a transition rule f ′g(q1, . . . , qm)→ q̄ in ∆′ of type (1)
such that qi = q′ for some i > arity(f ′). Pick any u ∈ U ′ such that 〈⊥, u|p〉 →∗A q′. We
distinguish two cases, depending on the position p.

If u|p is a direct subterm of u then f = f ′, i = p, and q̄ ∈ Q̄f by construction of A′.
Note that p > arity(f) because p /∈ Pos(t). Since (t, u) ∈ R(A′), t ∈ Π2(R(A′)) and
thus t /∈ L(B) according to the definition of B.
Otherwise, the dash of q̄ is propagated upwards using transition rules of type (2), such
that we obtain 〈t, u〉 →∗A′ q̄f for some q̄f ∈ Q̄f . Hence (t, u) ∈ R(A′) and we complete
the proof as in the previous case.

⊇ Let t = f(t1, . . . , tn) ∈ T (F) and assume t /∈ L(B). By construction of B there exists a
term u = g(u1, . . . , um) ∈ T (F) such that 〈t, u〉 ∈ L(A′). Hence there exists a transition
rule fg(q1, . . . , qk) → q̄f in ∆′ with k = max(n,m) and q̄f ∈ Q̄f . We distinguish two
cases, depending on the transition rule.

Suppose the transition rule is of type (2). Hence there exists a state qi ∈ Q̄ with
1 6 i 6 n such that 〈ti, ui〉 →∗A′ qi and there must be a position p ∈ Pos(ui) \ Pos(ti)
such that 〈⊥, ui|p〉 →∗A′ q for some state q ∈ Q∞. By definition of Q∞, 〈⊥, s〉 →∗A′ q

and thus also 〈t, u[s]ip〉 →∗A′ q̄f for infinitely many terms s ∈ T (F). Hence the set
{u | (t, u) ∈ R} is infinite and therefore FinR(t) does not hold.
Suppose the transition rule is of type (1). So qi ∈ Q∞ for some i > n and thus
m > n. Hence 〈⊥, ui〉 →∗A′ qi and there exist infinitely many other terms s such that
〈⊥, s〉 →∗A′ qi and 〈t, u[s]i〉 →∗A′ q̄f . Hence the set {u | (t, u) ∈ R} is infinite and
FinR(t) does not hold as before. J
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