Combining Algebra and Higher-Order Types

Abstract

We study the higher-order rewrite/equational proof systems obtained by adding the simply typed lambda calculus to algebraic rewrite/equational proof systems. We show that if a many-sorted algebraic rewrite system has the Church-Rosser property, then the corresponding higher-order rewrite system which adds simply typed ß-reduction has the Church-Rosser property too. This result is relevant to parallel implementations of functional programming languages. We also show that provability in the higher-order equational proof system obtained by adding the simply typed ß and η axioms to some many-sorted algebraic proof system is effectively reducible to provability in that algebraic proof system. This effective reduction also establishes transformations between higher-order and algebraic equational proofs, transformations which can be useful in automated deduction

    Similar works