238 research outputs found

    The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes

    Get PDF
    Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment

    Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in E. coli

    Get PDF
    Gene regulatory networks consist of direct interactions, but also include indirect interactions mediated by metabolism. We investigate to which extent these indirect interactions arising from metabolic coupling influence the dynamics of the system. To this end, we build a qualitative model of the gene regulatory network controlling carbon assimilation in E. coli, and use this model to study the changes in gene expression following a diauxic shift from glucose to acetate. In particular, we compare the steady-state concentrations of enzymes and transcription regulators during growth on glucose and acetate, as well as the dynamic response of gene expression to the exhaustion of glucose and the subsequent assimilation of acetate. We find significant differences between the dynamics of the system in the absence and presence of metabolic coupling. This shows that interactions arising from metabolic coupling cannot be ignored when studying the dynamics of gene regulatory networks.Les rĂ©seaux de rĂ©gulation gĂ©niques sont composĂ©s d'interactions directes, mais incluent aussi des interactions indirectes dues au couplage avec le mĂ©tabolisme. Nous Ă©tudions dans quelle mesure ces interactions indirectes influencent la dynamique du systĂšme. Dans ce but, nous avons construit un modĂšle qualitatif du rĂ©seau de rĂ©gulation gĂ©nique contrĂŽlant l'assimilation du carbone chez E. coli et nous utilisons ce modĂšle pour Ă©tudier la rĂ©ponse gĂ©nique lors d'une diauxie glucose-acetate. Plus prĂ©cisĂ©ment, nous comparons les concentrations Ă  l'Ă©tat stationnaire des enzymes et des rĂ©gulateurs globaux lors d'une croissance sur glucose et sur acetate, ainsi que la dynamique de l'expression de gĂšnes suite Ă  l'Ă©puisement du glucose. Nous trouvons des diffĂ©rences significatives entre la dynamique prĂ©dite en absence et en prĂ©sence des interactions indirectes. Nos rĂ©sultats montrent que les interactions dues au couplage avec le mĂ©tabolisme doivent ĂȘtre prises en compte quand on s'intĂ©resse Ă  la dynamique de rĂ©seaux de rĂ©gulation gĂ©niques

    The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic network of the TOL plasmid pWW0 of the soil bacterium <it>Pseudomonas putida </it>mt-2 for catabolism of <it>m-</it>xylene is an archetypal model for environmental biodegradation of aromatic pollutants. Although nearly every metabolic and transcriptional component of this regulatory system is known to an extraordinary molecular detail, the complexity of its architecture is still perplexing. To gain an insight into the inner layout of this network a logic model of the TOL system was implemented, simulated and experimentally validated. This analysis made sense of the specific regulatory topology out on the basis of an unprecedented network motif around which the entire genetic circuit for <it>m-</it>xylene catabolism gravitates.</p> <p>Results</p> <p>The most salient feature of the whole TOL regulatory network is the control exerted by two distinct but still intertwined regulators (XylR and XylS) on expression of two separated catabolic operons (<it>upper </it>and <it>lower</it>) for catabolism of <it>m</it>-xylene. Following model reduction, a minimal modular circuit composed by five basic variables appeared to suffice for fully describing the operation of the entire system. <it>In silico </it>simulation of the effect of various perturbations were compared with experimental data in which specific portions of the network were activated with selected inducers: <it>m-</it>xylene, <it>o-</it>xylene, 3-methylbenzylalcohol and 3-methylbenzoate. The results accredited the ability of the model to faithfully describe network dynamics. This analysis revealed that the entire regulatory structure of the TOL system enables the action an unprecedented metabolic amplifier motif (MAM). This motif synchronizes expression of the <it>upper </it>and <it>lower </it>portions of a very long metabolic system when cells face the head pathway substrate, <it>m-</it>xylene.</p> <p>Conclusion</p> <p>Logic modeling of the TOL circuit accounted for the intricate regulatory topology of this otherwise simple metabolic device. The found MAM appears to ensure a simultaneous expression of the <it>upper </it>and <it>lower </it>segments of the <it>m-</it>xylene catabolic route that would be difficult to bring about with a standard substrate-responsive single promoter. Furthermore, it is plausible that the MAM helps to avoid biochemical conflicts between competing plasmid-encoded and chromosomally-encoded pathways in this bacterium.</p

    METABOLIC MODELING AND OMICS-INTEGRATIVE ANALYSIS OF SINGLE AND MULTI-ORGANISM SYSTEMS: DISCOVERY AND REDESIGN

    Get PDF
    Computations and modeling have emerged as indispensable tools that drive the process of understanding, discovery, and redesign of biological systems. With the accelerating pace of genome sequencing and annotation information generation, the development of computational pipelines for the rapid reconstruction of high-quality genome-scale metabolic networks has received significant attention. These models provide a rich tapestry for computational tools to quantitatively assess the metabolic phenotypes for various systems-level studies and to develop engineering interventions at the DNA, RNA, or enzymatic level by careful tuning in the biophysical modeling frameworks. in silico genome-scale metabolic modeling algorithms based on the concept of optimization, along with the incorporation of multi-level omics information, provides a diverse array of toolboxes for new discovery in the metabolism of living organisms (which includes single-cell microbes, plants, animals, and microbial ecosystems) and allows for the reprogramming of metabolism for desired output(s). Throughout my doctoral research, I used genome-scale metabolic models and omics-integrative analysis tools to study how microbes, plants, animal, and microbial ecosystems respond or adapt to diverse environmental cues, and how to leverage the knowledge gleaned from that to answer important biological questions. Each chapter in this dissertation will provide a detailed description of the methodology, results, and conclusions from one specific research project. The research works presented in this dissertation represent important foundational advance in Systems Biology and are crucial for sustainable development in food, pharmaceuticals and bioproduction of the future. Advisor: Rajib Sah

    ModĂ©lisation de rĂ©seaux biochimiques bactĂ©riens – Un aller-retour entre donnĂ©es et modĂšles

    Get PDF
    With the advent of new technologies, experimental data in biology has exploded in size and complexity. It is now possible to simultaneously quantify different components of the cell at metabolic, transcriptomic, proteomic, and phenotypic levels. Connecting these different multi-scale and dynamic datasets provides an integrated view of cellular growth and informs us about the underlying molecular networks of genes, RNAs, proteins and metabolites that control the adaptation of the cell to the environment. This is the perspective offered by math-ematical modelling and computer simulation, allowing the association of different microscopic and macroscopic scales. This is a difficult problem however, because of the noise and the heterogeneity of the data, and of the size and the nonlinearity of the models. As a consequence, a large number of datasets are only partially analysed and underexploited. This manuscript describes the work I have carried out to improve the utilization of experimental data to gain a better understanding of the adaptation of bacterial growth to a changing environment. This work has been carried out within the Ibis project-team (Inria, UniversitĂ© Grenoble Alpes) with my colleagues, especially the students that I have had the chance to supervise. After the introductory Chapter 1, I describe in Chapter 2 the modelling of cellular networks using ordinary differential equations as well as simplification and approximation of the models depending on the nature of the available data and the questions addressed. These principles are applied in Chapter 3 to the qualitative analysis of the dynamics of gene networks in the context of the carbon starvation response in Escherichia colibacteria. With the general trend of biology becoming increasingly quantitative, modelling studies require obtaining reliable gene expression and metabolomic data, the analysis of which requires the development of suitable methods described in Chapter 4. Chapter 5 examines the strong link between the activity of the cellular gene expression machinery and bacterial growth rate. This understanding is used to develop a synthetic strain of E. coliwhose growth control makes it possible to divert the flow of precursors for growth towards the bioproduction of molecules of biotechnological interest. In Chapter 6, large-scale reconstructions of central carbon metabolism are used as platforms to interpret datasets regarding the post-transcriptional regulation of central carbon metabolisminE. coli. Chapter 7 is dedicated to the genome-scale analysis of mRNA decay by means of dynamic transcriptomics data. I describe in Chapter 8 ongoing and future projects towards the integrative analysis of microbial growth and resource allocation strategies. The scientific developments of these projects are expected to shape my own research activity in the coming years and that of the future project-team, under creation, that I will lead.Avec l’arrivĂ©e des nouvelles technologies, les donnĂ©es expĂ©rimentales en biologie ont explosĂ© en taille et complexitĂ©. Il est dĂ©sormais possible de quantifier en mĂȘme temps diffĂ©rents composants de la cellule au niveau mĂ©tabolique, transcriptomique, protĂ©omique et de caractĂ©ristiques phĂ©notypiques comme le taux de croissance. Relier ces diffĂ©rents jeux de donnĂ©e smulti-Ă©chelles et dynamiques permet d’obtenir une vision intĂ©grĂ©e de la croissance cellulaire,en nous renseignant sur la façon dont les rĂ©seaux molĂ©culaires sous-jacents de gĂšnes, ARN,protĂ©ines et mĂ©tabolites contrĂŽlent l’adaptation des cellules Ă  leur environnement. C’est le cadre qu’offrent la modĂ©lisation mathĂ©matique et la simulation informatique, en permettant d’associer les diffĂ©rentes Ă©chelles microscopiques et macroscopiques. C’est cependant un problĂšme difficile, du fait du bruit et de l’hĂ©tĂ©rogĂ©nĂ©itĂ© des donnĂ©es d’une part, et de la taille et la forme non-linĂ©aire des modĂšles d’autre part. La consĂ©quence est qu’un grand nombre de jeux de donnĂ©es ne sont que partiellement analysĂ©s et sous-exploitĂ©s.Ce manuscrit dĂ©crit les travaux que j’ai menĂ©s pour amĂ©liorer l’utilisation de donnĂ©es expĂ©rimentales afin d’obtenir une meilleure comprĂ©hension de l’adaptation de la croissance bactĂ©rienne Ă  un environnement changeant. Ces travaux ont Ă©tĂ© menĂ©s au sein de l’équipe-projet Ibis (Inria, UniversitĂ© Grenoble Alpes) avec mes collĂšgues, en particulier les Ă©tudiants que j’ai eu la chance d’encadrer. AprĂšs un premier chapitre d’introduction, je dĂ©cris en chapitre 2 les concepts de base de la modĂ©lisation des rĂ©seaux biochimiques. Je dĂ©taillerai en particulier les reconstructions du mĂ©tabolisme cellulaire Ă  l’échelle du gĂ©nome et la modĂ©lisation cinĂ©tique des rĂ©actions enzymatiques, dont les concepts sont utilisĂ©s dans plusieurs travaux prĂ©sentĂ©s dans ce manuscrit. La grande dimension et non linĂ©aritĂ© des modĂšles cinĂ©tiques complique l’estimation de leurs paramĂštres et l’analyse de leur dynamique. Je prĂ©senterai des travaux sur des simplifications appropriĂ©es pour ces modĂšles selon la nature des donnĂ©es Ă  disposition et les questions abordĂ©es, comme la rĂ©duction de modĂšles d’équations diffĂ©rentielles ordinaires (ODE) par sĂ©paration des Ă©chelles de temps ou l’approximation des modĂšles ODE par des modĂšles linĂ©aires par morceaux. Du fait de leur dĂ©rivation rigoureuse, les modĂšles simplifiĂ©s retiennent les principales caractĂ©ristiques des modĂšles ODE. Ces approches seront utilisĂ©es pour les diffĂ©rents modĂšles dynamiques prĂ©sentĂ©s dans ce manuscrit. Dans le chapitre 3, je prĂ©sente des travaux d’analyse de la dynamique d’un rĂ©seau de rĂ©gulation gĂ©nique contrĂŽlant la rĂ©ponse Ă  la privation en carbon de la bactĂ©rie Escherichiacoli. Lors de ces travaux, l’absence de donnĂ©es quantitatives dans la littĂ©rature ne permettait pas d’utiliser un modĂšle ODE pour dĂ©crire la dynamique du systĂšme. J’ai plutĂŽt analysĂ© la dynamique d’une version linĂ©aire par morceaux de ce modĂšle par une approche de modĂ©lisation et simulation qualitative. Je dĂ©crirai le principe de cette approche avec un exemple simple et son application Ă  l’étude du rĂ©seau de la rĂ©ponse au manque de source de carbone. Cette approche a permis pour la premiĂšre fois de relier la croissance d’E. coliavec les principaux rĂ©gulateurs transcriptionnels de la bactĂ©rie, et de comprendre les cascades de rĂ©gulations mises en place lors de la rĂ©ponse Ă  une privation en glucose ou du rĂ©dĂ©marrage de croissance sur ce sucre.L’évolution de la biologie en une science quantitative permet d’obtenir de nombreusesviidonnĂ©es d’expression gĂ©nique et du mĂ©tabolisme cellulaire. La fiabilitĂ© de ces donnĂ©es nĂ©cessite le dĂ©veloppement de mĂ©thodes d’analyse adaptĂ©es dĂ©crites dans le chapitre 4. Je dĂ©crirai des travaux sur l’analyse de donnĂ©es de gĂšnes rapporteurs et l’analyse de donnĂ©es de mĂ©tabolomique afin de pouvoir reconstruire des profils d’activitĂ©s de promoteurs et de concentrations de protĂ©ines dans le premier cas, et des vitesses d’import et secrĂ©tion de mĂ©tabolites extracellulaires,ainsi que des taux de croissance dans le second cas. Les donnĂ©es quantitatives utilisĂ©es dans le reste du manuscrit ont Ă©tĂ© analysĂ©es grĂące Ă  ces approches. Le chapitre 5 s’intĂ©resse au lien Ă©troit entre activitĂ© de la machinerie cellulaire d’expression gĂ©nique et taux de croissance bactĂ©rien. A l’aide de modĂšles simples intĂ©grant des donnĂ©es expĂ©rimentales de gĂšnes rapporteurs, nous montrons le rĂŽle clĂ© jouĂ© par la machinerie d’expression gĂ©nique dans l’adaptation globale de l’expression des gĂšnes au cours de la croissance. Ces travaux montrent que le fonctionnement des rĂ©seaux biochimiques ne peut ĂȘtre dĂ©connectĂ© de l’état physiologique de la cellule. Cette comprĂ©hension est utilisĂ©e pour l’ingĂ©nierie d’une souched’E. colisynthĂ©tique dont le contrĂŽle de la croissance permet de divertir les flux de prĂ©curseurs pour la croissance vers la bioproduction de molĂ©cules d’intĂ©rĂȘt biotechnologique. Dans le chapitre 6, de grandes reconstructions du mĂ©tabolisme et diffĂ©rents jeux de donnĂ©es (mĂ©tabolomique, activitĂ©s spĂ©cifiques) sont utilisĂ©es pour Ă©tudier la rĂ©gulation post-transcriptionnelle du mĂ©tabolisme central carbonĂ© chezE. coli. Ces travaux ont permis d’expliquer les consĂ©quences physiologiques de l’attĂ©nuation du gĂšne de la protĂ©ine CsrA et d’identifier des ARNm cibles de cette protĂ©ine. Nous avons en outre pu montrer que chezE. coliĂ©galement, le glycogĂšne joue un rĂŽle de stockage de sucre qui sert de source d’énergie pour faciliter la transition de la croissance bactĂ©rienne d’une source de carbone Ă  une autre.Le chapitre 7 s’intĂ©resse Ă  la dĂ©gradation de l’ensemble des ARNm d’E. coli. Je dĂ©crirai le dĂ©veloppement d’un modĂšle simple reposant sur des approches de quasi-Ă©quilibre et permettant de prĂ©dire la cinĂ©tique de dĂ©gradation de chacun des ARNm cellulaires de la bactĂ©rieE. coli. Nous avons pu formuler de nouvelles hypothĂšses sur le rĂŽle possible de la compĂ©tition entre ARNm pour leur fixation au dĂ©gradosome lors de l’adaptation de la croissance bactĂ©rienne Ă  des changements environnementaux. Nous montrons Ă©galement que ce mĂ©canisme de compĂ©tition joue un rĂŽle physiologique grĂące Ă  une approche de modĂ©lisation non linĂ©aire Ă  effets mixtes utilisant le modĂšle mĂ©canistique de la dĂ©gradation des ARNm et des jeux de donnĂ©es de transcriptomique dynamique mesurant la cinĂ©tique de disparition des ARNm cellulaires.Le chapitre 8 est dĂ©diĂ© Ă  des projets en cours et futurs sur l’analyse intĂ©grative de la croissance microbienne et les stratĂ©gies d’allocation de ressources des bactĂ©ries. Les travaux menĂ©s dans le cadre de ces projets vont dĂ©finir mon activitĂ© scientifique dans les annĂ©es Ă  venir et celle de la future Ă©quipe-projet, en cours de crĂ©ation, dont je prendrai la direction

    MI-NODES multiscale models of metabolic reactions, brain connectome, ecological, epidemic, world trade, and legal-social networks

    Get PDF
    [Abstract] Complex systems and networks appear in almost all areas of reality. We find then from proteins residue networks to Protein Interaction Networks (PINs). Chemical reactions form Metabolic Reactions Networks (MRNs) in living beings or Atmospheric reaction networks in planets and moons. Network of neurons appear in the worm C. elegans, in Human brain connectome, or in Artificial Neural Networks (ANNs). Infection spreading networks exist for contagious outbreaks networks in humans and in malware epidemiology for infection with viral software in internet or wireless networks. Social-legal networks with different rules evolved from swarm intelligence, to hunter-gathered societies, or citation networks of U.S. Supreme Court. In all these cases, we can see the same question. Can we predict the links based on structural information? We propose to solve the problem using Quantitative Structure-Property Relationship (QSPR) techniques commonly used in chemo-informatics. In so doing, we need software able to transform all types of networks/graphs like drug structure, drug-target interactions, protein structure, protein interactions, metabolic reactions, brain connectome, or social networks into numerical parameters. Consequently, we need to process in alignment-free mode multitarget, multiscale, and multiplexing, information. Later, we have to seek the QSPR model with Machine Learning techniques. MI-NODES is this type of software. Here we review the evolution of the software from chemoinformatics to bioinformatics and systems biology. This is an effort to develop a universal tool to study structure-property relationships in complex systems

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    Modelling sponge-symbiont metabolism

    Get PDF
    • 

    corecore