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Preface 

Networks are natural aids to our understanding and depiction of all aspects of life. Biology is not 

an exception. Amongst several of the known biological networks, metabolic networks are proba-

bly the best studied networks in terms of physical laws governing their structure and operation. 

Furthermore, wide conservancy from microscopic bacteria to humans is what makes metabolic 

networks still more appealing to study in detail. Metabolic networks are comprised of the mo-

lecular machinery that processes food in order to generate energy and basic building blocks for 

growth. Consequently, cellular metabolic networks directly influence all other physiological proc-

esses, like it is said in India: “we are what we eat” and “food is the most sacred”. Although much is 

known about different reactions that occur during metabolism, it is relatively poorly understood 

how these reactions are systematically regulated. Indeed, one of the most important and fascinat-

ing aspects of the metabolism is its adaptability and robustness towards different environmental 

and genetic changes. This flexibility of metabolic networks is due to several regulatory mecha-

nisms. How this regulation is exerted over a complex network of reactions? Are there any simple 

and general rules governing their operation? How did such regulatory circuits emerge during evo-

lution? This thesis is an effort towards answering these questions, and a result of little less than 

three years of my work as a PhD student. 

Although human metabolic network would have been an obvious choice for this study, I have 

focused almost entirely on yeast metabolism. This is primarily because of the better knowledge-

base available for investigating yeast metabolism and its regulation. Some of the general principles 

understood from yeast will form a basis for understanding operation of human metabolic net-

works. Nonetheless, this thesis makes a decent contribution towards gaining new insights into 

metabolic regulation and for exploiting this knowledge for designing microbial cells in silico. 

The title of my PhD project in the beginning was “Analysis of pathway structures in yeast”; which 

then over time evolved to “Systems Biology of Metabolic Networks: Uncovering Regulatory and Stoichiomet-

ric Principles”. Although this change also reflects the trend in current research, the driving force 

behind this change is not the buzz words, but rather the changes in my way of thinking about biol-

ogy in general. 

Although I wish and hope that this thesis will be a useful reading for people from many different 

backgrounds, some familiarity with basic biology jargon and understanding of some fundamental 

statistical concepts is perhaps taken for granted. I sincerely apologize if it is so, and in such case I 

wish that at least the general approach is clear enough to follow the work. Since my skills with 
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writing have not yet been tested for people outside a narrow field, it will be very nice to have 

your comments/suggestions on this thesis. 

The title page of this thesis quotes a sentence from Lewis Carroll’s Alice's Adventures in Wonderland. 

I read this marvelous book in the beginning of my PhD and it is one of my favorites. I have used 

several quotes from this book and from the other work of Lewis Carroll Through the Looking Glass 

throughout this thesis (in the beginning of most of the chapters and few other places in the be-

ginning of the thesis). All quotes are thus borrowed from one of these two books. Several chap-

ters also start with a picture/sketch. All photographs are taken by me during the period of this 

work, and none for this specific purpose. Although the pictures and the quotes are not directly 

related to each other, they are connected through the theme of the chapter. These pictures and 

quotes are complementing and sometimes partly concluding the story. Any way, 'what is the use of a 

book without pictures or conversations?’ 
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Alice laughed. "There's no use trying," she said: "one can't believe impossible things."  "I daresay 

you haven't had much practice," said the Queen. "When I was your age, I always did it for half-

an-hour a day. Why, sometimes I've believed as many as six impossible things before breakfast." 



PhD Thesis, Kiran R. Patil 

VI 

Synopsis 

Understanding the general principles governing the functioning of metabolic networks is a major 

objective of the work presented in this thesis. Functionality of metabolic networks can be viewed 

from two aspects, viz., stoichiometric and regulatory. All possible modes of operations of meta-

bolic networks (feasible flux space) are confined by the stoichiometry (and thermodynamics). 

Regulation then imposes additional constraints that determine which of the numerous possible 

phenotypes is observed under a given condition. It is relatively easy and intuitive to understand 

and interpret stoichiometric aspects of metabolic function in light of mass and (to limited extent) 

energy balance laws. In contrast, operation of regulatory circuits and their effects on cellular op-

erations has been to large extent a descriptive science. Nonetheless, new opportunities to uncover 

and test principles of regulation are being opened through the availability of large amount of mo-

lecular abundance data on genome-wide scale. Several of the existing approaches in this direction, 

however, are data-driven and thus lack potential to be generalized and extrapolated to different 

species. Thus new algorithms built on hypotheses and data rather than data-only are necessary for 

integration of omics data and discovery of biologically meaningful patterns. 

Cellular response to genetic and environmental perturbations is often reflected and/or mediated 

through changes in the metabolism. Such metabolic changes are often exerted through transcrip-

tional changes induced by complex regulatory mechanisms coordinating the activity of different 

metabolic pathways. It is difficult to map such global transcriptional responses by using tradi-

tional methods, because many genes in the metabolic network have relatively small changes at 

their transcription level. I therefore developed an algorithm that is based on hypothesis-driven 

data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By 

using information on the metabolic network topology from genome-scale metabolic reconstruc-

tion, it is shown possible to reveal patterns in the metabolic network that follow a common tran-

scriptional response. Thus, the algorithm enables identification of so-called reporter metabolites 

(metabolites around which the most significant and coordinated transcriptional changes occur) 

and a set of connected genes with significant and coordinated response to genetic or environ-

mental perturbations. The results imply that cells respond to perturbations by changing the ex-

pression pattern of several genes involved in the specific part(s) of the metabolism in which a 

perturbation is introduced. These changes then are propagated through the metabolic network 

because of the highly connected nature of metabolism. Although structure of the regulatory net-

work determines the details of how the transcriptional regulatory program is executed, the meta-
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bolic network itself seems to guide this machinery, which we see as the consequence of the fact 

that metabolic regulation has been designed and evolved for and around the metabolites. 

Since flow of mass through each metabolite is subjected to stoichiometric and thermodynamic 

constraints, I argue that the coordinated expression of the genes surrounding a metabolite is 

partly a thermodynamic necessity. Is this requirement reflected in the evolution of metabolic 

genes? This question was addressed through systemic analysis of gene modules emerging from 

the metabolic network topology with respect to their sequence evolution rates, shared promoter 

sequence motifs and transcriptional co-regulation. The sequence conservancy was found to be 

significantly over-represented in gene modules associated with the metabolites that are crucial for 

survival of yeast. It is further shown that several of these gene modules share sequence motifs in 

their promoter regions and also exhibit a high degree of transcriptional co-regulation evaluated 

across a large gene-expression dataset. These results imply that the topology of metabolic net-

work constraints the evolution of regulatory circuits. In yeast some of these regulatory circuits are 

built around the evolutionary conserved metabolic neighbors. Thus network topology sheds light 

on the link that connects organization and operation of regulatory circuits to the evolution of 

DNA sequences. This is a significant step forward in terms of understanding the emergence of 

regulatory circuits, whose existence is generally taken for granted. Some of these regulatory cir-

cuits are closely knitted over and constrained by the network topology, which signifies mass and 

energy balance constraints. 

Another outcome of the work presented in this thesis is the demonstration of the importance of 

highly connected metabolites in regulation and functionality of the metabolic network. Many of 

the highly connected metabolites (such as redox and energy co-factors) are usually omitted a priori 

from the analysis of transcriptome and other omics data. Here it is shown that not only such 

omission is unnecessary, but it may also critically affect the results obtained. Since highly con-

nected metabolites glue the network together, their role in terms of transcriptional regulation is 

significant for understanding and interpreting global changes in the network. 

The algorithmic platform developed for integration of transcriptome data was extended to me-

tabolome data. This analysis enabled the deduction of whether the regulatory response at the 

level of each reaction was predominantly subjected to hierarchical or metabolic regulation. Fi-

nally, the thesis also presents a new algorithm (OptGene) for exploiting stoichiometric opera-

tional principles of metabolic networks for in silico identification of metabolic engineering targets. 

Computational efficiency and flexibility of the OptGene algorithm makes it a versatile and useful 

tool for identification and screening of large number of metabolic engineering strategies. Indeed, 
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some of the strategies identified in silico for improved succinic acid production in yeast were suc-

cessfully verified in vivo. 

Overall, the work presented in this thesis comprises significant conceptual and algorithmic ad-

vances towards uncovering operational and evolutionary principles underlying complex metabolic 

networks. 
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Dansk sammenfatning 

I forbindelse med industriel udnyttelse af mikroorganismer til produktion af kemikalier er der 

stor interesse for at analysere funktionen af metabolske netværk, herunder specielt opnå indsigt i 

hvordan aktiviteten af forskellige grene i sådanne netværk er reguleret. Idet metabolismen spiller 

en central rolle i funktionen af alle levende celler, er der også stor interesse for metoder til analyse 

af metabolske netværk i naturvidenskabelige studier samt i forbindelse med kortlægning af meka-

nismerne bag stofskifte relaterede sygdomme. I dette studium er der udviklet forskellige nye 

bioinformatiske metoder til analyse af levende cellers stofskifte. Metoderne er baseret på anven-

delsen af metabolske modeller til integration af både transkriptionsdata og metabolome-data. 

Således er det vist at cellers respons til ændringer i deres miljø eller deres genetiske baggrund, i 

stor udstrækning involverer koordineret ekspression af et stort antal gener der er involveret i spe-

cielle metabolske moduler. Dette peger på at metabolismen er involveret i overordnet regulering 

af cellers respons til ændringer i deres miljø, en hypotese der er underbygget af at gener der koder 

for centrale enzymer i cellens metabolisme er evolutionsmæssigt mere konserveret end gennem-

snittet af gener i genomet. De udviklede metoder er illustreret anvendt på en række data, specielt 

fra studier af bagegær men også for andre organismer, og har i flere tilfælde ført til betydelig ny 

biologisk indsigt i hvordan metabolismen er reguleret. I et videre arbejde er det demonstreret 

hvordan metabolske modeller kan anvendes til design af nye cellefabrikker. Dette har involveret 

udvikling af en ny computer algoritme der identificerer hvilke gener der skal modificeres for at 

opnå en forbedret cellefabrik. Anvendelse af denne algoritme demonstreret anvendt for flere 

eksempler, og videre eksperimentel verifikation en computer forudsagt design strategi er kort 

beskrevet. Afhandlingen demonstrerer derfor anvendelse af metabolske modeller både til analyse 

af store datasæt, til anvendelse i systembiologi, og til design af  nye cellefabrikker, til anvendelse i 

metabolic engineering. 
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Chapter 1 

Chapter 1: Introduction 

 

 

 

 

 

The White Rabbit put on his spectacles. `Where shall I begin, please your Majesty?' he asked.  

"Begin at the beginning,", the King said, very gravely, "and go on till you come to the end: then 

stop". 
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1.1 “Systems” and “Systems Biology” 

The use of a well defined system (and thus system boundaries) for analyzing and predicting behavior 

of physical systems1 was a standard practice taught to me in various thermodynamic, physics, 

mathematics and chemical engineering courses. However, it took a while before I realized that 

defining a system is not only one of the ways to analyze a scientific question but is the only way 

to do so. The origin of this fact does not lie in the nature of a particular problem, but in the very 

nature and limitations of human beings in terms of abstracting the reality for creating a conven-

ient perception of the universe2. Consequently, any problem of either describing or predicting a 

phenomenon inherently implies the definition of a particular set of objects and boundaries, and 

thus, a system under investigation. The question of whether a system under investigation is al-

ways clearly and completely defined is both subjective and dependent on the nature of the prob-

lem. In fact, such difficulties and ambiguities force certain assumptions in order to simplify the 

problem conceptually and help defining a system, at least to some extent. Following are certain 

definitions of a system as documented at Wikipedia3: 

System: System (from the Latin (systēma), and this from the Greek σύστημα (sustēma)) is an 

assembly of elements comprising a whole with each element related to other elements. Any ele-

ment which has no relationship with any other element of the system, cannot be a part of that 

system. A subsystem is then a set of elements which is a proper subset of the whole system. 

System (Thermodynamic): A thermodynamic system is defined as that part of the universe that 

is under consideration. A real or imaginary boundary separates the system from the rest of the 

universe, which is referred to as the environment or surroundings (sometimes called a reservoir.) 

A useful classification of thermodynamic systems is based on the nature of the boundary and the 

quantities flowing through it, such as matter, energy, work, heat, and entropy. A system can be 

                                                 

 

1 Recursive nature of this statement is discussed in the following text. 
2 Here I take freedom to leave the task of defining boundaries for “universe system” up to the readers. 
3 http://en.wikipedia.org/wiki/Main_Page 
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anything, for example a piston, a solution in a test tube, a living organism, or a planet, etc. See 

figure 1.1 for an example of a thermodynamic system. 

 

 

Figure 1.1.  General concept of a system as used in thermodynamics. If E1, E2 and E3 denote the energies cross-

ing the system boundary, then the energy balance equation for this system can be written as E1 = E2 + E3. 

An interesting part of these definitions is the underlined text “a system can be anything”. This 

statement clearly reflects the difficulties encountered in understanding the concept of a system. 

However, if we accept the hypothesis discussed in the beginning regarding nature and limitations 

of our perception about the universe, this apparent ambiguity can be cleared. Thus any definition 

of the systems is ambiguous by nature, but the extent of ambiguity decreases with imposed (ei-

ther forced or conveniently defined) assumptions and restrictions on the desired accuracy of the 

descriptions/predictions. 

The most striking difference between the above two definitions of systems is the a priori condi-

tion of relatedness forced by the first definition. This plainly contradicts “a system can be any-

thing”. I will adapt the thermodynamic definition of the system in light of my views regarding the 

nature of systems. Moreover the first definition is very imprecise as: 

1) It does not define “element”. 

2) It does not define what kind of relations is expected between the elements. 

3) Even though nature of relationship between elements is defined, it does not explain 

whether such relationships can/should always be established a priori? 

4) Most importantly, it does not force existence of any boundaries, and thus makes it con-

ceptually difficult to use in a systematic way. 
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However, the second definition is the one that may seem closer to the one used in this thesis. 

This is because although the first definition fails to define a system, it helps to represent a sys-

tem, once defined. 

Examples of the usefulness of a thermodynamic definition of a system are widespread in several 

engineering disciplines (classical example is the Carnot heat engine to produce work by using 

thermal energy). In contrast, it is only recently that the term systems biology is being used exten-

sively4. Since the title of this thesis starts with the term “Systems Biology”, I will try to justify its 

use here by attempting to define this term from my viewpoint. First I maintain that “Systems 

Biology” stands for “study of biological entities as systems”. Naturally, the recursive nature of 

this definition (here due to the term entity) can not be avoided as for the general concept of a sys-

tem. In this spirit it can be argued that all biological study is systems biology (and similarly all 

sciences are systems sciences) since one can not even define a scientific problem without having a 

definition of the underlying system (although this is not always done explicitly). Although such an 

argument is completely valid from a definition point of view, it is possible to draw a boundary (at 

least to a certain extent) between biology and systems biology based on the application (and 

mode of application) of the assumptions denominating the systems under investigation. The first 

definition of a system can help to draw such boundary as it gives a convenient representation of a 

well defined system.  

Any investigation of a biological system that addresses and accounts for the defined interactions between defined 

components under investigation (in terms of their contribution in describing/predicting the behavior/properties of 

the system) can be called a systems biology problem.  

The word “defined” should be emphasized here, as it indirectly sets the boundaries of a system 

and thus makes the definition more complete. The need for this restriction may not be apparent 

in many cases. However, if we think about all potential unknown factors that might affect the 

properties and behavior of the systems (e.g. unknown/weak interactions), the need for clearly 

                                                 

 

4 Google search for “Systems Biology” yielded 6.66 million results on 17 July 2006. 
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defining the boundary of a system is immediately apparent. This definition is rigorous and other 

generally accepted definitions of systems biology can be seen as special instances of this defini-

tion. The definition presented here is not intended to classify existing biological research, but 

only to justify and clarify usage of this term in the title this thesis. This is important as, e.g., ac-

cording to this definition mere measurements of certain biological properties for large number of 

molecules/cells (e.g. measurement of growth rates for many mutants, measurement of 

mRNA/protein/metabolite abundances on a genome-scale) does not fit into here-defined defini-

tion of systems biology. However, if the same experiment and its outcome are analyzed and de-

fined from hypothesis driven systems perspective, e.g. as quantitative description of the behavior 

of hypothesized connectivity between components (e.g. genes); it will then fall under here-

defined definition of systems biology. 

1.1.1 Implications of systemic analysis for solving biological problems 

The rigorous definition of a system is difficult to use in biological problems due to the inherent 

complexity of the components and interactions. It may also be argued whether it is really neces-

sary, as the system level analysis is always inherently accounted for, whether rigorously defined or 

not. The real implications of using rigorous definitions can be exemplified by analogy with other 

fields of science where it has proven to be extremely useful. Such disciplines include electrical 

engineering, mechanical engineering and computer engineering. I will use an example from soft-

ware programming to partially illustrate the applicability of a systems approach. One of the most 

popular programming paradigms used in modern software engineering is object-oriented pro-

gramming. The notion of object-oriented programming is centered on the concept of an object. 

An object is a conceptual part of a program that performs a specific defined task. It differs from 

the traditional function in the sense that the object can have its own data and functions that can 

be made invisible for the rest of the program. Moreover, such objects can be used to create more 

objects with inherited properties. This simple concept brought a revolution in programming prac-

tice in terms of improved program clarity and reusability of code. Thus, a new program can be 

created by fitting together different old objects; like lego bricks fitted together to build toys. Simi-

lar concepts are also used in electrical engineering, e.g. different standard devices such as transis-

tors, resistors, condensers etc. are used to build many different devices such as televisions, radios 

and computers. In the field of mechanical/construction engineering certain standard designs of 

small parts are used in many devices and automobiles. Furthermore, in chemical engineering 

standard unit operation devices such as distillation columns, filters etc. are used in almost all 

chemical plants. Although design details of a part/object/unit can vary depending on the need, 

generalized functional assignment to objects offers enormous help in designing complicated sys-
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tems in short time and allows the use of previous experience to be used efficiently in designing 

new products/processes (e.g. imagine the time that will take to design a new car from scratch 

without using standardized parts). 

If examined closely, it can be seen that this advantage of object-oriented design can be attributed 

to the efforts made to carefully define the functionality of each part in terms of their in-

put/output parameters (system boundaries) and their general design (system architecture).  I 

thereby argue that similar efforts in systems biology will help us in the future to put together dif-

ferent levels of knowledge to get a holistic picture of the cellular machinery. An ancient Indian 

story of an elephant and blind men (Figure 1.2) is a good illustration of the need for systemic 

integration. According to the story, six blind men were trying to describe the shape of an ele-

phant by touching it. However, since each man was feeling different part of the elephant’s body, 

each of them described it as a different shape. A wise man helped them to understand that all of 

them were right and the elephant has all those shapes.  Thus, the story implies that the complete 

picture of the reality can be obtained only by integrating knowledge from different levels of 

analysis. In consequence and parallel, this process of systemic integration will also help us to de-

sign biological parts and whole systems with desired functionality. A scientific discipline referred 

to as synthetic biology (Bork, 2005)5 aims at achieving this goal. 

 

                                                 

 

5 Present day synthetic biology is still in the very beginning of this process. 
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Figure 1.2.  Depiction of an ancient Indian story where six blind men are trying to understand the structure of an 

elephant by feeling different parts of an elephant. The story conveys the idea that the true picture of reality can 

only be perceived through the integration of all different view points. 

1.2 Miscellaneous background information 

1.2.1 Molecular operations of cell and metabolism 

Modern cellular biology is usually understood and studied in light of a flow diagram (based on 

central dogma (Crick, 1970)) depicting how information encoded in genes (genotype) is reflected 

at the level of cellular function and state (phenotype) (Figure 1.3a). Information stored in the 

genes is in the form of sequence order comprised of four nucleotides (Adenine, Thymine, Gua-

nine and Cytosine). A triplet (e.g. ATG) codes for one of the 20 amino-acids. Several of the 

amino acids joined together constitute a protein. Thus a gene codes for a specific protein via 

transcription (DNA to mRNA) and translation (mRNA to protein). 
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Figure 1.3. (a) Central dogma in molecular biology. DNA replication can be thought as information flow (back-

up) from genome to genome. Information coded in genes flows to proteins via transcription and translation. 

Proteins may play variety of functional roles in a cell. Only three roles are shown as examples. (b) Enzymes 

catalyze chemical transformation of metabolites. The rate of enzyme catalyzed reaction (flux) is not only a func-

tion of enzyme availability and properties, but also concentration of substrates and products. Several of such 

enzymatic steps constitute a metabolic network where products of some reaction (/s) serve as substrates for other 

reaction (/s), thus creating an interconnected reaction web. The overall function of a metabolic network can then 

be viewed as utilizing environmentally available nutrients to generate energy and building molecules for growth 

and maintenance of the cell. 

One of the important roles6 played by proteins is as catalyst for chemical and/or physical trans-

formation of various chemical substances. Such proteins are usually referred to as enzymes. To-

gether, these enzymes create a network of reactions where substrates (food) available in the envi-

ronment is broken down to generate energy and building block molecules. Generated energy is 

                                                 

 

6 Other example roles for proteins include signal transduction, transcriptional regulation, structural element etc. 
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then used to assemble these building blocks towards creating new cells and for maintaining the 

existing cells. The whole process is termed metabolism which operates through a metabolic net-

work (Figure 1.3b). The term metabolite is generally used to refer to only relatively “low” mo-

lecular weight compounds and excludes all cellular substances that are genetically encoded (e.g. 

RNA and proteins) (Jewett et al., 2006). 

1.2.2 Structure and operation of metabolic networks 

Remarkably, the basic architecture of metabolic networks is largely conserved across several dif-

ferent species ranging from microscopic bacteria to plants and humans (Peregrin-Alvarez et al., 

2003). Thus the cellular machinery fueling distinct functionality and phenotypes is founded on 

identical metabolic processes. Understanding of these general organizational principles of meta-

bolic networks can be facilitated by graph-theoretical representation of metabolic networks (Fig-

ure 1.4). Enzymes and metabolites can be viewed as nodes in this network, while interactions 

between them form edges. The number of neighbors for a node is referred to as its degree. The 

study of network properties based on its connectivity is called topological analysis. Metabolic 

networks generally form a fully connected network, i.e., it is possible to travel from any node to 

all other nodes in the network. The number of edges traversed in such path is referred to as the 

distance between two nodes. Metabolic networks in different species show similar scale-free to-

pology (Strogatz, 2001) where few metabolites are involved in large number of reactions (also 

known as hubs), while most of metabolites take part in small number of reactions (Jeong et al., 

2000). Metabolic hubs also bestow interesting small-world property to these networks (Fell and 

Wagner, 2000); meaning no two nodes (enzymes or metabolites) in a metabolic network are too 

far from each other. For example, any two nodes enzymes/metabolites in yeast metabolic net-

work are on average 5 edges away from each other. Nevertheless, the high connectivity in meta-

bolic networks must always be seen only in the context of stoichiometric restrictions on the flow 

of materials. In this aspect, metabolic networks differ from other networks such as protein-

protein interaction networks, electrical grids and internet. 
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Figure 1.4. Graph theoretical representation of metabolic networks. A group of reactions (a)  are generally rep-

resented as pathways (b) where co-factors and other highly connected metabolites are depicted only at individual 

reaction level. (c) Graphical representation where enzymes/reactions and metabolites form nodes and interaction 

among them as edges. Such graph is essentially bi-partite, as neither enzyme nor metabolite nodes are directly 

connected to other nodes in the same category. 

Metabolic networks across different species are, however, different in many aspects. Differences 

are more evident at the level sequences/structures of individual enzymes and the regulation of 

enzymes in response to environmental/genetic challenges. Regulation of enzyme production is 

necessary for an organism in order to: i) allocate resources optimally so as to produce only en-

zymes that are necessary under given conditions and only in required amounts, and  ii) avoid ex-

cess (or too less) amounts of enzymes which may result in unbalanced distribution of substrates 

that are entering the cell. In order to further elaborate on the concept of metabolic regulation, it 

is necessary to define the term “flux”. In metabolic context, flux for a certain reaction refers to 
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the amount of substrates processed (or products produced) per unit time7. The integrated effect 

of fluxes through different reactions in a network can be observed in the phenotype of a cell (e.g. 

amounts of substrate consumed and final products and by-products formed, growth rate of an 

organism etc.). Due to the highly interconnected nature of metabolic networks and stoichiometric 

constraints, fluxes are to a large extent inter-dependent. Indeed, inter-dependencies between 

fluxes can be systematically mapped in a flux-coupling graph (Burgard et al., 2004) where two 

flux nodes influencing each other are connected by an edge. Interestingly, although not unex-

pectedly, the flux-coupling graph also shows a scale-free topology marked by few hub fluxes 

(Burgard et al., 2004). 

Organization and operation of metabolic networks is traditionally viewed and understood in 

terms of ensemble of pathways. Pathways are comprised of groups of enzymes acting towards 

production/breakdown of certain metabolites (/group of metabolites). Glycolysis and TCA cycle 

are familiar examples of pathways. Although the concept of a pathway is widely used and very 

useful for pictorial representation, the definition of a pathway is very vague from stoichiometric 

point of view. An alternative and more comprehensive way of understanding the operation of 

metabolism is through the enumeration of all possible combination of reactions that can sustain a 

balanced flow from substrates to final products (Schuster et al., 2000). Each such combination 

(termed Elementary Flux Mode) can then be seen as a definition of a stoichiometrically “com-

plete” pathway. An important fact is that the number of such possible routes is of the order of 

millions, even in a simple microbial metabolic network (Klamt and Stelling, 2002). Any active 

metabolism at a steady state can be represented as a linear combination of these elementary flux 

modes. What are the factors/mechanisms responsible for particular phenotype under given con-

ditions? It appears that this choice is achieved via coordinated regulation of enzymes. Thus, not 

only a single enzyme is regulated for its optimal operation (for example see (Dekel and Alon, 

                                                 

 

7 It is customary and convenient to normalize this quantity with respect to a certain measurable parameter. For ex-
ample, ethanol produced per unit time per unit biomass. 
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2005)), but also the whole network is subject to regulation for optimal network functionality (for 

example see (Ibarra et al., 2002)). 

Regulation of enzymes can occur at the level of transcription, translation or post-translational 

modifications (e.g. phosphorylation). Furthermore, enzyme activity may be regulated by small 

effector molecules. The flux through a reaction is dependent not only on the availability and ac-

tivity of the enzyme, but also on the concentrations of substrates, products and effectors (Nielsen 

and Oliver, 2005) (Nielsen, 2003). Such relationships are usually non-linear. Additionally, due to 

the interconnected nature of the metabolic network, all steps in the metabolism can in principle 

influence all other steps. Consequently, understanding, simulation and prediction of both dy-

namic and steady state operations of metabolic network are challenging tasks. 

1.3 Statistics/probability concepts used 

1.3.1 Student’s t-test, p-value and Z-score 

One of the common problems encountered in biological data analysis is the comparison of fea-

tures measured between two conditions or strains. For example, it is often needed to decide 

whether the expression of a gene has altered between the reference and the modified strain. Since 

the expression of a gene can vary to a certain extent even within the same strain (or under identi-

cal experimental conditions), it is necessary to repeat the experiment several times to know the 

distribution of its expression level. Student’s t-test can then be used to compare, for example, 

expression levels of a gene between two conditions. The t-test provides a p-value which signifies 

the confidence that can be placed on the hypothesis that the expression has changed significantly. 

A p-value of 0.05 means, with 95 % confidence, that the expression of the gene is changed. In 

other words, p-value denotes the probability that the observed difference in the mean expression 

levels under two conditions is simply by chance. Since the t-test is based on the assumption of 

normal distribution of variables, in the case where this assumption is not valid, other statistical 

tests (e.g. rank-sum test) should be used. 

A p-value can also be interpreted as a fraction of the area under a standard normal distribution 

curve (the total area equals 1 and so does the probability of any event for which the p-value is 

calculated). Thus, by using a cumulative distribution function (CDF) for the standard normal 

function, p-value can be converted to a Z-score (figure 1.5). Note that the x-axis is (1-p), which 

results in higher Z-score for low p-values. 
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Figure 1.5. Normal cumulative distribution function (CDF). 

1.3.2 Central limit theorem 

Problems dealing with the large biological networks often require calculating the properties of a 

group of entities (e.g. genes) rather than single element. The simplest way to do this is to calculate 

the mean or average value of the property for the group under consideration. Thus, it is of inter-

est to know how the distribution of mean values will look like for a sample of given size. Once 

this distribution is known, it can be used to access whether the mean value of the group under 

consideration is significantly higher (or lower) than the expected value.  An example could be a 

question such as whether the fold changes in the expression levels of all genes in the TCA cycle 

(let’s say 20 genes) is significantly higher than expected in a given experiment. If the distribution 

of the fold changes for individual genes (population) is normal, the resulting distribution of 

means of gene groups of size 10 (samples) will also be a normal and a p-value can be easily calcu-

lated by using normal CDF. In case where the distribution for the population is not normal, cal-

culation of p-value is not trivial. However, the central limit theorem states that irrespective of the 

distribution of the population, the distribution of means always tends to be normal. The distribu-

tion approaches to normality with the increased group size. The mean of the samples equals to 

the population mean, while the variance equals [population variance/group size]. Thus, even 

when the data is not normally distributed, the p-value based on the distribution of means can be 

calculated easily by using the central limit theorem and normal CDF. 
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1.3.3 Pearson correlation coefficient 

Pearson correlation coefficient indicates the strength and direction of the correlation between 

two variables. This coefficient is often used to measure the strength of correlation between ex-

pression levels of two genes. Significantly correlated genes may imply a common biological 

mechanism governing their expression or a close functional relationship. 

1.4 Overview of the thesis 

Metabolism is one of the key cellular processes providing necessary precursor molecules and free 

energy necessary for biosynthesis and maintenance. This central role of metabolism is evident by 

two facts. Firstly, several of the metabolic pathways are well conserved across different domains 

of life (Peregrin-Alvarez et al., 2003); and secondly, the cellular response to genetic and environ-

mental perturbations is often reflected and/or mediated through changes in the metabolism. 

Consequently, it is not surprising that several diseases (e.g. diabetes, cancer, obesity) are closely 

associated with metabolic disorders/malfunctioning. Moreover, the metabolism of micro-

organisms is largely used as cell factories for producing a variety of chemical and pharmaceutical 

products. Recently, mammalian cell cultures are also being used for producing several products 

through cellular metabolism. Thus, understanding of organizational and functional principles of 

metabolic networks is an essential pre-requisite for devising rational strategies, not only for com-

bating diseases, but also for metabolic engineering of the cell factories. 

Owing to the topological and regulatory complexity of metabolism, emergent systemic properties 

play as important role in the operation of metabolism as the properties of its constituting com-

ponents. My research ideas are hence centered on understanding the biological logic behind large-

scale organization, operation and design of cellular metabolism from a systems perspective. Since 

cellular metabolism, as reflected in the metabolite levels and fluxes, is an integrated result of mass 

balance constraints and regulation, the organization of this thesis can also be broadly classified 

into stoichiometric (& topological) and regulatory analysis of metabolism (Table 1.1). Stoichiome-

try represents the mass balance constraints on a metabolic network at (pseudo-) steady state and 

can be viewed as limits on the possible operational modes in n-dimensional flux space. Regulatory 

networks impose additional constraints on this solution space and thus together these two decide 

what metabolic phenotype will be observed under given conditions (Figure 1.5). For the sake of 

simplicity and practicality, the analysis presented in this thesis is focused on the (pseudo-) steady 

state operation of metabolism. Such assumptions are to a large extent justifiable for several appli-

cations concerning fast growing microbial systems. 
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Figure 1.5. Constraints on the metabolic phenotype. This schematic shows a metabolic system consisting of 

three fluxes. Stoichiometric constraints (originating from mass balance law) define feasible space (yellow cone), 

while regulation imposes additional constraints (blue plane) and in result may alter the observed phenotype. The 

optimal solution refers to observed phenotype under the assumption that cellular metabolism operate so as to 

optimize a certain task (objective function). 

A major part of this study is devoted to the analysis of transcriptional regulation in metabolic 

networks. A question that attracted my attention was how cells respond (or will respond) to a 

given perturbation if such information is not coded in the genome a priori. The number of such 

possible disturbances is practically infinite (Figure 1.6). 

 

 

Figure 1.6. Perturbation space for biological systems. A cell can be subjected to any of, or combination of, per-

turbations at genetic or environmental level. The disturbance can also be a function of time. Since all axes have 

practically infinite limits, it is interesting to study how cells with finite memory and capabilities respond to per-

turbations in orderly manner. 

It can be deduced by induction that the space of possible transcriptional responses will also be 

infinite, as the space of possible disturbances. Furthermore, for many of such unexpected distur-

bances the transcriptional response has been found to be altered rationally. Since there is no way 
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that all possible responses can be coded in a genome of a finite size, the way that infinite re-

sponses can be generated has to be based on the guiding principles or rules that are coded in the 

genome. In the case of transcriptional responses in metabolic networks, the metabolic network 

itself is a common denominator for all perturbations (and response to perturbations). Hence the 

principles of transcriptional regulation in a metabolic network must stem from network proper-

ties, e.g. the topology of the network. Thus most of the transcriptional analysis presented in this 

thesis is knitted over the topology of metabolic networks. 

The living matter as we see it today is a result of (at least) several millions of years of evolution. 

This evolution is generally thought of as an optimization process. Objective functions of evolu-

tionary optimization are not immediately evident, partly due to incomplete knowledge about pre-

sent state and partly due to insufficient information about past environment and genetic factors 

influencing the evolution. However, it is clear that the optimization process is still underway and 

can be understood and manipulated in terms of its objective function in some simple systems 

(Dekel and Alon, 2005) (Ibarra et al., 2002) (Chatterjee and Yuan, 2006).  On the other hand, it is 

thought that several biological systems have already reached a close-to-optimal solution. In either 

case, the properties, behavior and response of living matter can only be understood in light of its 

past. Much like a country or a culture can not be understood without understanding its history. 

Thus regulation of metabolism can only be completely understood in terms of the evolution of 

the metabolic network. Consequently, part of this thesis is also dedicated towards understanding 

the evolutionary basis underlying mechanisms and organization of metabolic regulation. 

Table 1.1 puts different chapters in this thesis into three broad categories, viz., stoichiometry cen-

tered analysis, regulation of metabolism and evolution of metabolism. Chapter 2 reviews the cur-

rent research on the use of genome-scale models in metabolic engineering. Metabolic engineering 

is a science of (re-) designing metabolic networks so as to obtain a desired metabolic phenotype, 

e.g. increased production of metabolites from microbial cells. Metabolic engineering thus repre-

sents one of the problems where systems biology approach will be of great use. Genome-scale 

models of metabolism form a basis for such system level analysis of metabolic networks as a 

whole. Indeed, most if the subsequent work is based on the use of genome-scale metabolic mod-

els as a scaffold for systems analysis of metabolic networks. Most of the discussion in chapter 2 is 

stoichiometry related as the primary use of genome-scale models so far has been for stoichiomet-

ric analysis. 

Chapter 3 introduces a novel algorithm (reporter algorithm) where genome-scale metabolic mod-

els have been brought to the forefront of the transcriptome data analysis. This chapter also pre-
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sents a fundamental algorithmic structure for conceptual understanding of organization of tran-

scriptional response in metabolic networks. Chapter 4 discusses some improvements over the 

part of the algorithm presented in the previous chapter. The next chapter (Chapter 5) extends the 

reporter algorithm for the analysis of the metabolome data. Furthermore, it also discusses a strat-

egy for deducing the logic of multi-level regulation in metabolic networks by combined analysis 

of the transcriptome and the metabolome data. 

The sixth chapter addresses the problem of metabolic regulation from the evolution point of 

view. This work also uses a large scale transcriptome data to deduce significant regulatory pat-

terns. Two additional gene expression datasets are also analyzed to complement the hypothesis of 

metabolite centered regulatory architecture. Once strong evidences of metabolite centered regula-

tion has been furnished in the previous chapters, chapter 7 then provides a more detailed analysis 

of metabolome data and draws certain general conclusions regarding the nature of regulation in 

metabolic networks. 

Chapter 8 presents an algorithm (OptGene) that exploits stoichiometric operating principles of 

metabolic networks in order to identify metabolic engineering targets. Although no regulatory 

information is directly included in the analysis, the OptGene algorithm certainly forms a platform 

for devising an extensive methodology where stoichiometric analysis is married with the regula-

tory principles learned in the previous chapters. The next chapter briefly discusses the work on 

experimental verification of some of the strategies identified by the OptGene. 

Chapter 10 summarizes a few other small stories built along with the main work in the thesis. 

Although, most of the work is still ongoing, it deserves a place in this thesis for the sake of com-

pleteness. Finally, chapter 11 runs through some of my thoughts about directions of future re-

search in the field of metabolic systems biology. 

 

Table 1.1 Broad classification of the work presented in this thesis. 

Theme Chapters 

Stoichiometry centered analysis 1,2,8,9 

Regulation of metabolism 1,2,3,4,5,7,10 

Evolution of metabolism 1,6,10 
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Chapter 2 

Chapter 2: Use of genome-scale microbial models for 
metabolic engineering 
This chapter is based on the publication: 
Patil, K. R., Akesson, M. & Nielsen, J. Use of genome-scale microbial models for metabolic engineering. Current 
Opinion in Biotechnology 15, 64-69 (2004). 

 

 

 

 

"Then you should say what you mean." the March Hare went on. "I do," Alice hastily replied; 

"at least -- at least I mean what I say -- that's the same thing, you know." "Not the same thing a 

bit!" said the Hatter, "Why, you might just as well say that 'I see what I eat' is the same thing as 

'I eat what I see'!" "You might just as well say," added the March Hare, "that 'I like what I get' 

is the same thing as 'I get what I like'!" "You might just as well say," added the Dormouse, who 

seemed to be talking in his sleep, "that 'I breathe when I sleep' is the same thing as 'I sleep when I 

breathe'!" "It is the same thing with you," said the Hatter, and here the conversation dropped, and 

the party sat silent for a minute 
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2.1 Summary 

Metabolic engineering serves as an integrated approach to design new cell factories by providing 

rational design procedures and valuable mathematical and experimental tools. Mathematical 

models play an important role for phenotypic analysis, but they may also be used for design of 

optimal metabolic network structures. The major challenge for metabolic engineering in the post-

genomic era is to broaden its designing methodologies to incorporate the biological data on 

whole genome-scale, and genome-scale stoichiometric models of microorganisms represent a first 

step in this direction. 

2.2  Introduction 

The metabolic capabilities of different microorganisms for producing valuable compounds are 

widely exploited in the pharmaceutical and chemical industry. Furthermore, there is an increasing 

trend to replace chemical production processes with biotech routes based on microbial fermenta-

tions. As microorganisms are typically evolved for survival and growth in their natural habitat, it 

is often necessary to retrofit the genotype of the applied cell factory to obtain a desired pheno-

type. Through the use of directed genetic modifications using genetic engineering it has become 

possible to realize the metabolic potentials of many different microorganisms, an approach re-

ferred to as metabolic engineering (Nielsen, 2002).  

In metabolic engineering the ‘metabolic design problem’ may be approached through the con-

struction of a mathematical or in silico model of the metabolic network in question. This model 

can then be used to ‘design’ an improved metabolic network by suggesting changes in the geno-

type of microorganism, and techniques from modern molecular biology may subsequently be 

used to realize these new ‘designs’ and perform an experimental evaluation. Despite the promis-

ing use of mathematical models of metabolic networks in metabolic engineering, these models 

do, however, not only find application in industrial biotechnology as they represent a platform 

for in silico biology and hence play a role in medical and life science applications. 

The complex nature of cellular metabolism and regulation often poses difficulties in metabolic 

engineering, e.g. when the flux through a specific pathway needs to be increased, and it is there-

fore often necessary to analyze the metabolism as a whole. The availability of complete genome 

sequences for several microorganisms has opened an opportunity to develop metabolic models 

on a genomic scale. Furthermore, the progress in experimental biology has shifted the focus of 

modern biology from traditional ‘local’ reductionist approach to ‘global’ holistic perspective of 

the cellular processes.  This has resulted in the establishment of very large experimental data-
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bases, or so-called omics databases, and much information on different microorganisms is there-

fore becoming available. A key question, however, still is to extract all the relevant information 

from these datasets and employ it for designing efficient industrial processes. Hence, the major 

challenge for metabolic engineering in this post-genomic era is to broaden its designing method-

ologies to incorporate the biological data on whole genome-scale. Genome-scale models repre-

sent a first step in this direction and as the reliability and accuracy of predictions/hypotheses 

generated by a model is directly linked to the nature and level of abstraction in the model used, it 

is important to constantly evaluate the value of applying genome-scale models in metabolic engi-

neering. 

In this review, we focus on the value of applying genome-scale microbial models in metabolic 

engineering. We also address the issue of using various genome-scale omics data sets for extract-

ing information that can be applied in metabolic engineering.  

2.3 Modeling of metabolic networks  

The models that are widely used in metabolic engineering can broadly be grouped into two 

classes, viz., stoichiometric models and kinetic models (Nielsen, 2002;Gombert and Nielsen, 

2000;Wiechert, 2002). Stoichiometric models describe the metabolic network as a set of 

stoichiometric equations representing the biochemical reactions in the system (Fig. 2.1). At steady 

state, mass balance constraints on the metabolite pools in the system can be used to determine 

the intracellular metabolic fluxes. The model is often represented as a stoichiometric matrix with 

the elements representing stoichiometric coefficient of the different metabolites in the metabolic 

network. The corresponding equation system is often underdetermined and analysis of the model 

requires imposing additional constraints (Vallino and Stephanopoulos, 2000;Stephanopoulos, 

1999). In metabolic flux analysis (MFA) a number of exchange fluxes are measured to render a 

determined equation system. The former approach can also be effectively combined with addi-

tional information supplied by measurement of labeling pattern of certain metabolites, and is 

often referred to as metabolic network analysis (MNA) (Christensen and Nielsen, 2000;Klapa et 

al., 2003;Van Winden et al., 2003). In predictive studies, a specified objective function can be 

employed to determine an optimum flux distribution via linear programming, a methodology 

known as flux balance analysis (FBA) (varma et al., 1993;Kauffman et al., 2003). In contrast to 

these approaches, where a particular flux solution is sought for, one may also analyze the topol-

ogy of the metabolic network through the use of convex analysis and the concepts of Elementary 

Flux Modes or Extreme Pathways (Schuster et al., 2000;Schilling et al., 2000;Klamt and Stelling, 

2003;Palsson et al., 2003). 
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Kinetic models, on the other hand, define the metabolic system by combining kinetics informa-

tion about specific cellular process with known stoichiometry (Gombert and Nielsen, 

2000;Cronwright et al., 2002;Prathumpai et al., 2003). Thus in principle kinetic models capture 

the dynamic properties of the metabolic network, but a major problem associated with setting up 

kinetic models are the lack of kinetic data and the difference between in vivo and in vitro kinetic 

parameters (Gombert and Nielsen, 2000).  

2.4 Current status of genome-scale metabolic models  

Attempts to use genomic information in building metabolic models has resulted in genome-scale 

models of the metabolic networks operating in Escherichia coli (Edwards and Palsson, 2000;Reed et 

al., 2003), Haemophilus influenzae (Edwards and Palsson, 1999), Helicobacter pylori (Schilling et al., 

2002), and Saccharomyces cerevisiae (Forster et al., 2003a).  These models have been built using bio-

logical information from several sources (see Fig. 2.1) and incorporate the majority of metabolic 

reactions occurring in the metabolism of the studied microorganisms. These models are essen-

tially stoichiometric models and do not explicitly contain kinetic information, regulatory mecha-

nisms and other cellular processes.  The main reason behind this is lack of information and in-

complete understanding of complex cellular regulation. Thus it appears that we are still far from 

the goal of a complete in silico representation of the cellular metabolism. However, the 

stoichiometric genome-scale models themselves present a challenging task to extract, understand 

and use all the information contained in them. Indeed several predictions obtained from the 

analysis of these models have shown some promise in connecting genotype with phenotype 

(Price et al., 2003) and on the other end it has also been shown that the network structure (e.g. as 

defined by the stoichiometric model) can be used to deduce some regulatory information (Stelling 

et al., 2002;Beard et al., 2002;Schuster et al., 2002b). In this section we will briefly review some of 

the results that are of interest from metabolic engineering perspective. 

2.4.1 Elucidation of design objectives of microbial metabolic networks and predicting optimal 
phenotypic behavior 

Experimental and in silico studies with Escherichia coli (Edwards et al., 2001;Ibarra et al., 2002)  has 

demonstrated that metabolic network of Escherichia coli  has been evolved for optimization of the 

specific growth rate. Similar results were obtained for the growth of Saccharomyces cerevisiae under 

glucose limited conditions (Famili et al., 2003) and in both studies, a good correspondence was 

observed between experimental measurements and in silico predictions of substrate uptake rates, 

metabolite secretion rates and cell growth rates. 
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Figure 2.1. Stoichiometric modeling of metabolic networks. The knowledge about presence and stoichiometry 

of metabolic reactions in a particular microorganism may be extracted from various information sources (e.g. 

annotated genome information, biochemical text-books, published literature and pathway databases). This 

stoichiometric information is then summarized in a stoichiometric matrix S and a mass balance is set up under a 

steady-state assumption. This results in an underdetermined linear model, which can be analyzed by two differ-

ent approaches. (a) The first approach, where a unique solution for the model is sought for under the given envi-

ronment, the solution is obtained by constraining and/or determining some of the fluxes. In Metabolic Flux 

Analysis a number of exchange fluxes are measured to render a determined equation system, while in Metabolic 

Network Analysis in addition of constraining some fluxes, further information generated by measurement of 

labeling pattern of certain metabolites is used to determine the unique solution. Flux Balance Analysis uses lin-

ear optimization to determine the optimum solution with a defined objective function. (b) In the second ap-

proach, instead of looking for a single solution to the model, all possible steady-state solutions are enumerated 

via so called Elementary Flux Modes or Extreme Pathways using convex analysis. 
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In case of Saccharomyces cerevisiae the computed P/O ratio and energy maintenance requirements 

were also found to be quantitatively in agreement with experimental results.  The work of Bur-

gard and Maranas (Burgard and Maranas, 2003) provides a mathematical framework for testing 

whether the hypothesized metabolic objective function is consistent with experimentally investi-

gated flux data and they show that the flux data obtained by isotopomer studies for both aerobic 

and anaerobic cultivations of Escherichia coli supports the hypothesis of optimal growth rate.  

2.4.2 Predicting outcomes of genetic manipulation 

Though the assumption of optimality in wild type cells may be justifiable (Edwards et al., 

2001;Ibarra et al., 2002;Famili et al., 2003), Segre and coworkers (Segre et al., 2002) have demon-

strated that this is not necessarily the case with genetically engineered strains which have not been 

exposed to long term evolutionary pressures and the flux distribution and phenotypic behavior of 

genetically engineered strains can be better explained through the hypothesis that such strains 

undergo minimal redistribution of fluxes with respect to the wild-type strain.. Nevertheless, gene 

deletion analysis using FBA and genome-scale models have showed good correlation with ex-

perimental data in predicting the essentiality of the genes for growth of the microorganism. The 

success rate of predictions were found to be 88 % for Saccharomyces cerevisiae (Forster et al., 

2003b;Famili et al., 2003), 86 % for Escherichia coli (Edwards and Palsson, 2000;Edwards et al., 

2001) and 60 % for Helicobacter pylori (Schilling et al., 2002).  Though the success rate of gene dele-

tion analysis is quite high, the failure in predicting the correct outcome can prove to be of parti-

cular importance in metabolic engineering as it indicates either incomplete or incorrect informa-

tion and can lead to false predictions of metabolic designs. The microbial physiology can poten-

tially play an interactive role in such cases, which will lead to an improved metabolic engineering 

performance of genome-scale models (Nielsen and Olsson, 2002).  

A gene addition analysis using mixed-integer optimization along with FBA has demonstrated the 

in silico increase in amino acid production by Escherichia coli (Burgard and Maranas, 2001) using a 

stoichiometric model (Pramanik and Keasling, 1997). Application of genetic perturbation analysis 

in metabolic engineering has already been demonstrated by Nissen and coworkers (Nissen et al., 

1997) by using MFA. 

2.5 Improving the predictions  

Beard and co-workers (Beard et al., 2002) have used Energy Balance Analysis (EBA) which 

eliminates the thermodynamically infeasible results from FBA. Analysis of an Escherichia coli  ge-

nome-scale model using EBA and FBA together resulted in the same optimal specific growth rate 
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but different flux distributions and improved predictions over gene deletion analysis using FBA 

(Edwards and Palsson, 2000;Edwards et al., 2001). In an attempt to incorporate regulatory in-

formation into genome-scale stoichiometric models, Covert and coworkers (Covert et al., 

2001;Covert and Palsson, 2002) introduced additional constraints through the use of Boolean 

operators and it has been also shown that it results in elimination of a large number of extreme 

pathways that are otherwise found (Covert and Palsson, 2003). In a complementary approach, a 

dynamic FBA problem was solved for diauxic shift in Escherichia coli, and qualitative agreement 

with experimental data was observed and the authors point out that such formulation can poten-

tially be used to simulate a system in a dynamic environment (Mahadevan et al., 2002). 

2.6 Using pathway analysis 

The use of pathway analysis for successful redirection of metabolic fluxes from carbohydrate 

metabolism to biosynthesis of aromatic compounds in Escherichia coli (Liao et al., 1996) presents 

one of the early examples of metabolic engineering using pathway analysis. Recently Elementary 

Flux Mode analysis has been applied to a genetically engineered strain of Saccharomyces cerevisiae 

producing biodegradable plastic poly-β-hydroxybutyrate (Carlson et al., 2002). These examples 

demonstrate the use of pathway analysis in predicting the results of network/environment modi-

fication in silico. Pathway analysis offers possibilities for assessing structural and functional prop-

erties of metabolic networks by enumerating all possible solutions defined by the stoichiometry 

(Schuster et al., 2000;Schilling et al., 2000), however, use of pathway analysis approach in ge-

nome-scale models is essentially limited due to the combinatorial complexity of large metabolic 

networks (Klamt and Stelling, 2002).  

2.7 Metabolic engineering potential of genome-scale models 

The ability of genome-scale models to predict phenotypic changes resulting from genetic modifi-

cations offers a basis for rational selection of genetic targets for successful metabolic engineering 

and can for instance be used for hypothesis testing, that is, evaluation of proposed genetic modi-

fications. While it seems that many "wild-type" organisms have evolved to optimize their growth 

yield (Edwards et al., 2001;Ibarra et al., 2002;Famili et al., 2003;Burgard and Maranas, 2003), the 

objective of a metabolic engineer will typically be different, for example maximum production of 

a desired compound. The above-mentioned tools may here be used to assess the maximum theo-

retical yield for the bioconversion in question or to search for reactions in a database that would 

increase the yield further (Burgard and Maranas, 2003). Even though some insight can be ob-

tained from the optimal routes through the metabolic network, it should be emphasized that 
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these predictions does not necessarily point at the required targets for genetic modification. Evo-

lutionary strategies have been suggested as a means to obtain the predicted properties but it 

should be recognized that while it is easy to select for optimal growth, it would be much harder 

to design experiments that will select for optimal production (see Chapter 8 for discussion on 

some strategies to overcome this difficulty). 

For some products, it can be exploited that there is coupling between optimal growth and en-

hanced production, typically for by-products from the primary metabolism. One can then, while 

using cellular growth as the objective and observing the effect on the desired production rate, 

quickly screen through suitable genes to delete from the host organism or genes/reactions to add 

from a database. This strategy was recently applied to identify novel targets for increasing ethanol 

yield and xylose uptake rate in Saccharomyces cerevisiae (Forster, 2003). As there may be multiple 

optima with the same growth yield, it may be appropriate to verify both lower and upper bounds 

for the production rate in question, which was exemplified in a case study of succinate produc-

tion in Aspergillus niger (David et al., 2003). It has also been shown that the nested problem of 

searching for gene deletions leading to optimal production while fulfilling optimal growth can be 

re-formulated as a single-level optimization problem (Burgard et al., 2003). 

2.8 Use of genome-scale ‘omics’ data 

The availability of genome-scale transcriptomics, proteomics and metabolomics data offer new 

challenges to use this data, along with physiological studies, for metabolic engineering and func-

tional genomics of microorganisms (Nielsen and Olsson, 2002;Sanford et al., 2002;Phelps et al., 

2002). To effectively use the data from different levels of cellular processes it is necessary to de-

velop appropriate model structures and algorithms which allow examination of the global struc-

ture and properties of the metabolism while still be able to analyze at the molecular level where 

actual target of metabolic engineering will be identified (Ideker and Lauffenburger, 2003). In this 

context, genome-scale models representing the knowledge on metabolic networks can play an 

important role. For example in interpretation of gene expression data (Hanisch et al., 

2002;Kuffner et al., 2000) and also as an complement to other data sets containing physical and 

functional interactions (Ideker et al., 2002). 

An algorithm for combining metabolomics data with pathway analysis, which can be used to as-

sign function to genes with unknown function, was suggested by Forster and coworkers (Forster 

et al., 2002). Åkesson and coworkers (Akesson et al., 2004) have demonstrated that incorporating 

even the simplest form of regulatory information, namely the presence or absence of a particular 
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gene, from gene expression data improves the predictions of flux distributions obtained from 

genome-scale model of Saccharomyces cerevisiae.  Bro et al. (Bro, 2003) demonstrated a successful 

application of genome wide expression data where the galactose uptake rate in Saccharomyces cere-

visiae was increased by 70 %. This work also demonstrates and highlights an important issue of 

using known pathway information while analyzing the genome-wide data, which when used 

alone, can pose difficulties for using statistical analysis in identifying metabolic engineering tar-

gets. 

 

 

Figure 2.2. Applications of genome-scale models in metabolic engineering. Genome-scale models can serve to 

test and score the biochemical hypotheses about genetic manipulation in the metabolism. In combination with 

pathway databases, they may also be used for high throughput in silico screening of a large number of gene in-

sertion and/or deletion mutants. The metabolic networks incorporated in the genome-scale models can also be 

useful for interpretation of experimental results, for instance in integrative analysis of omics data or serving as 

templates for simplified models to be used in e.g. metabolic network analysis. 
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2.9 Conclusions 

In spite of the limitations on kinetics information of many cellular processes, presently available 

genome-scale models can play an important role in metabolic engineering of microbial cells. Fig-

ure 2.2 illustrates some key potential uses of current genome-scale models in metabolic engineer-

ing. The power of genome-scale models to predict outcomes of genetic manipulation can be used 

to score the biochemical hypotheses for manipulation of genotype. Alternatively, a large number 

of gene addition and/or deletion mutants can be screened in silico to generate and score a library 

of hypotheses. The significance of such scores/hypotheses will be highly dependent on the reli-

ability and gravity of the model but nevertheless this can serve as an important guideline for pri-

oritization of hypotheses to be tested in vivo. In addition to the design problem, the models may 

also be important for analysis and interpretation of omics data as discussed above. The metabolic 

networks embedded in the models can also be used as a reference/parent model from which a 

reduced model is generated depending on the context of problem, and this model can then be 

used, e.g. in the analysis of 13C labeling experiments or metabolic design. This could be of inter-

est since the complexity of genome-scale models can sometimes pose difficulties in analysis of a 

specific problem. 
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Chapter 3 

Chapter 3: Uncovering transcriptional regulation of me-
tabolism by using metabolic network topology 
This chapter is based on the publication: 
Patil, K. R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. 
PNAS 102, 2685-2689 (2005). 

 

 

 

 

 

"It seems very pretty,' she said when she had finished it, `but it's RATHER hard to under-

stand!' (You see she didn't like to confess, ever to herself, that she couldn't make it out at all.) 

`Somehow it seems to fill my head with ideas -- only I don't exactly know what they are!” 
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3.1 Abstract 

Cellular response to genetic and environmental perturbations is often reflected and/or mediated 

through changes in the metabolism, since the later plays a key role in providing Gibbs free energy 

and precursors for biosynthesis. Such metabolic changes are often exerted through transcrip-

tional changes induced by complex regulatory mechanisms coordinating the activity of different 

metabolic pathways. It is difficult to map such global transcriptional responses by using tradi-

tional methods, as many genes in the metabolic network have relatively small changes at their 

transcription level. We therefore developed a novel algorithm that is based on hypothesis driven 

data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By 

using information on the metabolic network topology from genome-scale metabolic reconstruc-

tion, we show that it is possible to reveal patterns in the metabolic network that follow a com-

mon transcriptional response. Thus, the algorithm enables identification of so-called reporter me-

tabolites (metabolites around which the most significant transcriptional changes occur) and a set of 

connected genes with significant and coordinated response to genetic or environmental perturba-

tions. We find that cells respond to perturbations by changing the expression pattern of several 

genes involved in the specific part(s) of the metabolism where a perturbation is introduced. 

These changes are then propagated through the metabolic network, due to the highly connected 

nature of those. 

3.2 Introduction 

Linking the genome to its functioning metabolism is of substantial interest not only in studying 

human diseases (Peltonen and McKusick, 2001) but also for identifying metabolic engineering 

targets in biotechnological applications (Patil et al., 2004) (Chapter 2)(Nielsen and Olsson, 2002). 

Transcriptional analysis represents a high-throughput and genome-wide approach for linking the 

set of expressed genes to functional metabolism of the cell. Indeed, several studies using genome-

wide gene expression analysis have shown that the transcriptional regulation plays an important 

role in regulating metabolism in response to perturbations (Ihmels et al., 2004;DeRisi et al., 

1997;Miki et al., 2001). Although many statistical methods and clustering algorithms provide tools 

to analyse such transcriptomics data (Eisen et al., 1998;Herrero et al., 2004;Sherlock, 2000), these 

methods seldom provide insight into the regulatory architecture of the metabolic networks with-

out intelligent analysis of the results (up-down regulation of genes of interest or correlation be-

tween genes of interest). This is primarily due to the hypothesis that there may be all to all interac-

tions amongst the genes being analysed, resulting into many biologically nonsignificant results. 

One of the ways to address this problem is to integrate known biological interactions, e.g. pro-
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tein-protein interactions, in the analysis of transcription data (Ideker et al., 2001). Such an ap-

proach essentially reduces the degrees of freedom in data analysis using knowledge of molecular 

interactions occurring in the cell. The organization and functioning of the cell can be viewed as a 

complex network of molecular interactions. These interactions are mediated not only by physical 

contacts between individual molecules (e.g. protein-protein and protein-DNA interactions), but 

also result from the functional coupling of certain molecules or groups of molecules (Lee et al., 

2004). Cellular metabolism can thus also be viewed as a network of functional interactions be-

tween enzymes and metabolites. This metabolic network represents the channels for the flow of 

material and generation of Gibbs free energy, which are constrained by the conservation laws of 

mass and energy. Consequently, we hypothesized that the topology of the interactions involved in 

metabolism can be used to understand the underlying regulatory mechanisms (e.g. at transcrip-

tional level) controlling this flow of mass and energy. To test this hypothesis, we developed a 

novel algorithm that integrates gene expression data with topological information from genome-

scale metabolic models. This enabled systematic identification of so-called reporter metabolites that 

represent hot spots in terms of metabolic regulation.  This is one of the first attempts to infer the 

global role of a metabolite based on mRNA expression patterns and metabolic stoichiometry 

without direct measurement of metabolite concentration. The algorithm also identifies the sig-

nificantly correlated metabolic subnetworks following direct or indirect perturbations of the me-

tabolism. 

3.3 Algorithm 

Figure 3.1 schematically illustrates the proposed algorithm, which is described step by step in the 

following. 

3.3.1 Graph-theoretical representation of the metabolic network 

The complete metabolic network in the cell can be represented as a bipartite undirected graph, 

here referred to as a metabolic graph (Figure 3.1) (Supplementary material). In this metabolic 

graph, metabolites as well as enzymes are represented as nodes and interactions between them 

are represented as edges. Thus a metabolite node is connected to all the enzyme nodes that cata-

lyse a reaction involving that particular metabolite, and an enzyme node is connected to all the 

metabolites that take part in the corresponding reaction. This graph is bi-partite since neither 

metabolite nor enzyme nodes are directly connected amongst them. 

We also define a unipartite undirected graph, here referred to as enzyme (or reaction) interaction 

graph (Figure 3.1) (Supplementary material). In this graph only enzymes are represented as the 
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nodes, and the two enzymes sharing a common substrate in the corresponding reactions are con-

nected to each other. Thus edges in this graph represent the metabolites shared by two enzymes. 

Some enzymes catalyse several different reactions, and these enzymes are represented by a single 

node. This node is linked to all enzyme nodes that are connected to the different reactions car-

ried out by this enzyme.  

3.3.2 Mapping and scoring of transcription data  

The transcriptional data used in this study can be classified into two categories. The first category 

includes data where two different strains (or conditions) are compared and with multiple meas-

urements for each strain (or condition). We refer to this data type as the differential data. The 

second category of data is multidimensional data, e.g. gene expression measured over a time 

course or with analysis of multiple strains, with or without multiple measurements at the same 

time point or strain.   

Differential data can be mapped on the enzyme nodes of the metabolic or enzyme-interaction 

graph with a specification of the significance of differential gene expression. Here we used the 

student’s t-test to obtain p-values, with pi representing the significance of the change for each 

enzyme. Each pi can subsequently converted to a Z-score of the enzyme node (Zni) using the in-

verse normal cumulative distribution (CDF, θ-1). 

)1(1
ini pZ −= −θ  

In the case of multidimensional data, the absolute Pearson correlation coefficient, Pj is calculated 

between all pairs of nodes (enzymes) connected by an edge in the enzyme-interaction graph. The 

Pj of an edge can be converted to a Z-score for that edge (Zej) using the normal CDF. 

)(1
jej PZ −= θ  

The Z-score follows a standard normal distribution for a random data, where p-values or Pearson 

coefficients follow a uniform distribution. 

3.3.3 Method for identification of Reporter Metabolites 

In order to identify the reporter metabolites each metabolite node in the metabolic graph is 

scored based on the normalized transcriptional response of its neighbouring enzymes. In case of 

differential data, the normalized transcriptional response was calculated as size-independent ag-

gregated Z-scores of the k neighbouring enzymes. 
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Zmetabolite scores can be corrected for the background distribution by subtracting the mean (μk) and 

dividing by the standard deviation (σk), of the aggregated Z-scores of several sets of k enzymes 

chosen randomly from the metabolic graph. 
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For multidimensional data, the neighbouring enzymes of a metabolite in the metabolic graph are 

represented as enzyme interaction graph with all enzymes connected to each other and hereby Z-

scores for each edge (Zej) can be calculated as described before. Subsequently Zmetabolite score can be 

calculated and corrected for the background distribution in the same way as for differential data. 

The scoring used for identifying reporter metabolites is basically a test for the null hypothesis, 

“neighbour enzymes of a metabolite in the metabolic graph show the observed normalized tran-

scriptional response by chance”. The metabolites with the highest score  (typically up to 10) are 

defined as reporter metabolites, and these mark spots in the metabolism where there is substantial 

regulation either to maintain homeostasis, i.e. a constant level of the metabolite, or to adjust the 

concentration of the metabolite to another level required for proper functioning of the metabolic 

network. 

3.3.4 Method for identification of highly correlated subnetworks 

As the next step in uncovering the transcriptionaly correlated parts of the metabolism following a 

perturbation, we addressed the problem of identifying highly correlated connected sub graphs 

(subnetworks) within the enzyme interaction graph.  Firstly we define the score Zs of a connected 

subnetwork, which characterizes the biological activity, or the aggregate transcriptional response 

of subnetwork as: 

∑
∈

=
sen

ejnis Z
k

Z
/

/
1  

We used the Z-score of the node, Zni, in case of differential data and Z-score of the edge, Zej, in 

case of multi-dimensional data. As in case of the reporter metabolites, we corrected the Zs score for 

the background distribution of the subnetworks of the same size, randomly sampled from the 

same network. 
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Finding the subnetwork with the highest score is a NP-hard problem and was approached by 

using a simulated annealing algorithm (Ideker et al., 2002) (see Supplementary material for the 

details of the implemented algorithm). Within the identified subnetwork further subnetworks 

may be searched by repetition of the algorithm over the subnetwork previously obtained (sub-

networks reported in Table 3.2 and Supplementary Table S-3.3 were obtained after applying the 

simulated annealing to larger subnetworks resulting from analysis of the whole metabolic net-

work).  We also note that simulated annealing is a stochastic method and does not guarantee that 

the global optimal solution is found. Moreover the resulting subnetwork solution might differ 

depending on the initial conditions and the parameters. We addressed these problems by repeat-

ing the simulated annealing search several times (about 10) and selecting the subnetwork with the 

highest score. We observed that it was possible to obtain robust solutions with high scores and 

biological significance by optimizing the parameters of simulated annealing. 

 

 

 

Figure 3.1. Illustration of the proposed algorithm for identifying reporter metabolites and subnetwork structures 

signifying transcriptional regulated modules. A metabolic network (set of reactions) is converted to a bipartite 

graph (metabolic graph) and a unipartite graph (enzyme interaction graph) representation. Gene expression data 

from a particular experiment is then used to identify highly regulated metabolites (reporter metabolites) and 

significantly correlated subnetworks in the enzyme interaction graph. 
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3.4 Results  

We implemented the algorithm for analysis of transcription data from the yeast Saccharomyces cere-

visiae. Besides its use as a cell factory, this yeast is extensively used as a model system for studying 

human diseases (Botstein et al., 1997). We used the recently reconstructed genome-scale meta-

bolic network of S. cerevisiae (Forster et al., 2003a) to generate the metabolic and the reaction in-

teraction graphs, and subsequently applied the algorithm to many yeast gene expression datasets 

to illustrate the algorithm. 

3.4.1 Deletion of a gene encoding an enzyme 

We first analysed transcription data from a wild-type strain of S. cerevisiae and a mutant with dele-

tion of the gene GDH1, which encodes for NADPH dependent glutamate dehydrogenase – an 

enzyme that plays an important role in ammonia assimilation. Physiological analysis of this strain 

demonstrated an effect on redox metabolism, as observed through increased ethanol yield and 

decreased glycerol yield (Bro et al., 2004). However, conventional transcriptome analysis of this 

mutant, where differentially expressed genes are identified using a statistical test (e.g. t-test analy-

sis with Bonferroni correction) did not enable identification of the overall effect of this genetic 

perturbation on the metabolism. Despite these results, using our novel algorithm we identified 

several key reporter metabolites, which include: ammonia, glucose 6-phosphate, fructose 6-

phosphate and sedoheptulose 7-phosphate (Table 3.1). The fact that ammonia (both intracellular 

and extra-cellular ammonia) is identified as a reporter metabolite is biologically reasonable, as ammo-

nia assimilation has been altered. It may intuitively be more difficult to understand why the three 

sugar phosphates appear as reporter metabolites. However, these three metabolites represent branch 

points between the Embden Meyerhof Parnas (EMP) pathway and the pentose phosphate (PP) 

pathway. Upon deletion of GDH1 the requirement for NADPH in connection with cellular 

growth is reduced by more than 40% (Nissen et al., 2000), and this reduces the requirement for 

shunting glucose through the pentose phosphate pathway, which acts as the primary source for 

NADPH in S. cerevisiae.  

Looking at the highly correlated metabolic subnetwork we found the high scoring subnetwork to 

consist of 181 genes distributed in 68 MIPS functional categories (Mewes et al., 2004) (Supple-

mentary Figure S-3.2), of which 31% belong to MIPS functional categories amino acid metabo-

lism and transport, carbohydrate utilization and nucleotide metabolism. Further analysis of the 

181 genes subnetwork resulted in identification of a 34 genes subnetwork (Table 3.2). This sub-

network consists of 10 genes (apart from GDH1) encoding enzymes catalysing oxido-reductive 

reactions involving the co-factors NADPH/NADH, clearly demonstrating the effect of GDH1 
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deletion on redox metabolism. In fact, these co-factors represent the main links in this subnet-

work, which involves two key nodes in the cellular metabolism (Fig. 3.2): 1) the node between the 

EMP pathway and the PP pathway and 2) the node around α-ketoglutarate. The first node is 

known to be controlled by the requirement for NADPH. The decrease in expression of genes of 

the PP pathway is consistent with a decreased flux through this pathway in a similar mutant 

(Moreira dos et al., 2003). The second node is directly perturbed, and it makes sense that this 

results in a transcriptional response of enzymes around this node. It has indeed been shown that 

in a gdh1Δ mutant the level of α-ketoglutarate is increased (DeLuna et al., 2001), and this is con-

sistent with a decreased expression of the genes KGD and LSC, both encoding enzymes down-

stream of α-ketoglutarate. 

3.4.2 Deletion of a gene encoding regulatory protein 

In order to further evaluate the method, we also analysed transcription data from a grr1Δ mutant 

of S. cerevisiae compared with a wild-type strain, both grown at high glucose concentrations 

(Westergaard et al., 2004). Grr1p is a ubiquitin-protein ligase that plays a role in glucose repres-

sion (Flick et al., 2003). Overall it is known that Grr1p deactivates the Rgt1p transcriptional re-

pression of several hexose transporters, and the important role of Grr1p in regulating sugar 

transporters is clearly seen from the list of reporter metabolites identified in this case (Table 3.1). 

Among the 10 most important reporter metabolites 6 are hexoses, all transported by the group of 

HXT-genes in S. cerevisiae. The other reporter metabolites include glutamine, orthophosphate and 

glycogen. Glutamine is playing a key role in the nitrogen metabolism, which is normally consid-

ered also to be regulated by Grr1p, even though a direct link has not been established (Bernard 

and Andre, 2001). Orthophosphate is involved in a large number of reactions in the central car-

bon metabolism, and the identification of this reporter metabolite is a clear indication of the multi-

tude of effects caused by deletion of GRR1. In the grr1Δ mutant, a high scoring metabolic sub-

network of 204 genes was identified, and further analysis of this network resulted in identification 

of a 52 genes subnetwork (Table 3.2). Besides several genes encoding sugar and amino acid 

transporters that are known to be regulated by Grr1p, this subnetwork also contains many other 

genes involved in amino acid metabolism. 
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Fig. 3.2. Parts of Saccharomyces cerevisiae metabolism that are represented in the subnetwork identified for the 

gdh1Δ dataset. Genes present in the subnetwork are given in boxes. 

3.4.3 Multi-dimensional data 

To illustrate the application of the method for analysis of transcription data measured over sev-

eral different environmental conditions, we analyzed transcription data for S. cerevisiae grown on 

four different carbon sources, glucose (a hexose), maltose (a disaccharide), and two C-2 com-

pounds, ethanol and acetate(Daran-Lapujade et al., 2004). For analysis of this type of dataset it is 

intuitively more difficult to interpret the results in terms of the changes in physiology as the data 

spans a multi-dimensional space. However, the reporter metabolites (Table 3.1) still reflect the meta-
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bolic reprogramming in response to the changes in carbon source. Maltose is an obvious reporter 

metabolite as enzymes involved in uptake and metabolism of this sugar are induced only in the 

presence of maltose. The presence of glyoxylate and carnitine as reporter metabolites is due to the 

key roles of these metabolites during growth on C-2 compounds (Gancedo and Gancedo, 1997). 

Appearance of H+ as a reporter metabolite illustrates the ability of the algorithm to identify metabo-

lites indirectly involved in metabolism, as transport of maltose and acetate is coupled with proton 

transport across the cell membrane. We also performed a pair wise comparison of the four car-

bon sources and the results are provided in the Supplementary material. 

3.5 Large-scale reporter metabolite analysis  

To further evaluate the algorithm, we performed reporter metabolite analysis of about 47 transcrip-

tional datasets (Supplementary material). In all these cases, reporter metabolites provided useful in-

formation about the metabolic changes underlying the particular experiment, e.g., the reporter me-

tabolites identified for the comparison of carbon and nitrogen limited conditions clearly show the 

underlying metabolic changes in major pathways for utilization of these substrates. We also found 

that relatively few metabolites were identified as reporter metabolites for many of the conditions 

analysed. This is due to the fact that similar types of perturbations are introduced in many of 

these studies (e.g. change in substrate, comparison between aerobic and anaerobic conditions).  

Nevertheless it is interesting to note that one-third of the all the metabolites in the metabolic 

graph were identified as a reporter metabolite in at least one of the studies (see Supplementary mate-

rial for the complete distribution). Moreover, the average rank of any metabolite (defined as 

arithmetic average of ranks of a metabolite, based on Zmetabolite score, from all conditions analysed) 

was found to be more than 150, further illustrating the uniqueness of reporter metabolites for the 

particular experiment. 
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Table 3.1. Reporter metabolites (metabolites with highest neighbor subnetwork scores) for gdh1Δ, grr1Δ and 

carbon-sources datasets. 

gdh1Δ   grr1Δ   Carbon source 

Fructose 6-phosphate 

Glucose 6-phosphate 

NH3xt 

NH3 

GABAxt 

CTP 

Fructose 1,6-bisphosphate 

Sedoheptulose 7-phosphate 

CO2M 

N-Acetyl-L-glutamate 5-

semialdehydeM 

15 

11 

3 

32 

2 

8 

4 

 

5 

 

12 

2 

5 

6 

- 

7 

- 

1 

4 

 

2 

 

- 

- 

L-Glutamine 

GLCxt 

Mannose 

Fructose 

FRUxt 

Glycogen 

Orthophosphate 

Glucose 

MANxt 

Homocitric acid 

20 

14 

15 

14 

12 

4 

65 

28 

11 

2 

5 

- 

2 

3 

- 

- 

3 

6 

- 

2 

Maltose 

Carnitine 

(R)-Pantoate 

Glyoxylate 

6P-gluconate 

Episterol 

3-Demethylubiquinone-9M 

H+EXT 

3-Phosphonooxypyruvate 

1-Phosphatidyl-1D-myo-inositol 

4P 

4 

3 

2 

6 

5 

2 

2 

42 

3 

4 

1 

1 

1 

5 

1 

- 

- 

- 

1 

2 

Only the top ten scoring metabolites are shown. The first number behind the reporter metabolite is the number of 
neighbors to the reporter metabolite (or the number of reactions in which the reporter metabolite participates in) 
and the second number is the number of KEGG pathways in which the reporter metabolite appears. The metabo-
lite names ending with ‘M’ and ‘xt’ indicate that the metabolite is present in mitochondrial compartment and 
extra-cellular medium respectively. Since KEGG pathways do not classify metabolites in this fashion, the corre-
sponding fields in the table are empty.  

Table 3.2.  Genes included in the subnetworks obtained by analysis of gene expression datasets for gdh1Δ, 

grr1Δ and carbon-sources.  

gdh1Δ grr1Δ Carbon source 

PFK2 PMP2 PFK1 QNS1 MEP2 

GDH1 ADE3 PFK26 HTS1 UGP1 

SAM1 BIO3 ERG6 SAH1 PCT1 

PRS2 TKL1 TRP5 TPS3 GND1 

ALD6 SCS7 BNA1 HOM6 PUR5 

YML082W ASP1 KGD1 LEU4 LSC1 

ARG5 MET13 PUT4 UGA4 

HXK1 HXT3 MAL32 STL1 DIP5 

YGL186C TAT2 MUP1 SHM2 ADE3 

YER053C FBP1 ARO2 GLC3 ARO3 

ADE6 HIS7 GUA1 RIB1 ACS2 HIS1 

PFK2 YDR341C URA6 ARG1 ADE12 

CPA2 PDC5 LEU2 LEU1 MDH3 

YAR075W ADH5 GAD1 ASN2 MET22 

SER2 GDH3 PNC1 ILV1 YMR293C 

LYS21 LYS20 KGD1 NDI1 RIP1 CYB2 

ACH1 XKS1 PGI1 INO1 PGM2 

HXK1 HXT2 ACS1 MET22 ARO2 THR4 

SER1 GSH1 INM1 TOR1 PRO1 PIK1 

PRS2 FUR1 QRI1 LYS20 NAT2 HMGS 

HMG1 PAN5 ERG3 YJR078W ERG11 

ERG25 YBR006W ERG2 CAT2 CIT2 

AAT2 BAT2 BAP2 SAM3 BIO2 MDH2 

FDH1 GCV1 DFR1 GND2 GND1 PCK1 

SOL3 NDH2 YFL030W ICL1 SFC1 MLS1 

ACH1 PGM1 

The subnetworks listed were obtained through simulated annealing search in a larger subnetwork (see Algorithm 
description and Supplementary Table S-3.2). For the subnetwork from the gdh1Δ dataset, bold names represent 
enzymes directly involved in redox metabolism. 



Reporter metabolites: Transcriptional regulation and network topology          PhD Thesis, Kiran R. Patil 

39 

3.6 Discussion 

Reporter metabolites and corresponding subnetworks from all three cases, representing three differ-

ent types of perturbations (namely deletion of a gene encoding enzyme, deletion of a gene encod-

ing regulatory protein and change in environment of cell) clearly project the metabolic changes 

following these perturbations. As the transcriptional changes at individual gene levels are small, 

these are not identified using conventional statistical significance tests or clustering methods 

(Supplementary material), whereas our hypothesis driven analysis of transcription data enables 

identification of small and co-ordinated changes in expression levels. We also note that several of 

the identified reporter metabolites are involved in a relatively large number of reactions (Table 3.1) 

that are distributed in several different KEGG (Kyoto Encyclopedia of Genes and Genomes) 

(Kanehisa et al., 2004) pathways. Thus, mapping of transcriptional changes onto KEGG path-

ways, as often done for visual representation of the transcriptional changes may be misleading. 

The metabolic graph of S. cerevisiae consists of 2000 nodes (825 metabolites and 1175 reactions) 

and 4196 edges, while the reaction interaction graph has 1175 nodes and 57217 edges. Notably, a 

large fraction of these edges represent interactions due to energy and redox cofactors giving 

highly connected graphs (the average path length between any two nodes is 5.17 and 2.49 for the 

metabolic graph and the reaction interaction graph, respectively) with “small world proper-

ties”(Fell and Wagner, 2000;Jeong et al., 2000). The high degree of connectivity of the metabolic 

network implies that the disturbance at any node in the network can affect all branches of the 

metabolism and hence demands a global control. This can be seen from the subnetwork analysis 

where we found large significant subnetworks spanning all branches of the metabolism (Supple-

mentary Table S-3.2). Such changes are, however, centred on the perturbed node (/s), as can be 

seen from the reporter metabolite analysis that identifies such nodes in the metabolism.  

Owing to the high connectivity of the metabolic network, the here-reported algorithm is found to 

be quite robust to alterations in the metabolic graph (e.g. removal of certain metabolites). To 

evaluate this, we removed some of the highly connected co-factors from the graph and studied 

the effect on the network connectivity and subnetworks obtained for the GDH1 dataset (Sup-

plementary material). It was possible to obtain about 75 % overlap with the original subnetwork 

even after the removal of both redox co-factors (NAD+/NADH and NADP+/NADPH) and 

ATP/ADP pair, which resulted in 27 % reduction in the number of edges. The result was most 

sensitive to the removal of NADP+/NADPH, which is consistent with the fact that GDH1 en-

codes for a NADPH dependent enzyme. Notably, the removal of NAD+/NADH did not influ-
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ence the results significantly even though it resulted in a substantial decrease in the number of 

edges in the network 

Although the regulatory network structure defines the details of how the transcriptional regula-

tory program is executed, the metabolic network itself seems to guide this machinery, which we 

see as the consequence of the fact that metabolic regulation has been designed and evolved for 

and around the metabolites. We exploited this hypothesis by developing an effective algorithm that 

enables understanding the transcriptional changes of the metabolism following genetic and envi-

ronmental perturbations. Apart from uncovering the architecture of the transcriptional changes 

following known perturbations, our approach will also be useful in identifying the effects of un-

known or poorly characterized disturbances, e.g. deletion of ORF with unknown function or 

exposure to a drug, and hereby provide clues to the role of the ORF or the drug on the cellular 

metabolism. 

Acknowledgements: We are grateful to I. Rocha and M. Åkesson for fruitful discussions. We also thank J. Vil-

ladsen, M. Hjortsø, G. Lettier, A. P. Oliveira, T. Grotkjær and M. Jewett for helpful suggestions. 

3.7 Supplementary material  

3.7.1 Supplementary methods 

Graph-theoretical representation of the metabolic network 

A set of metabolic reactions can be represented as a graph with metabolites and/or reactions 

(enzymes) as nodes and interaction between them as edges. For example: 

 HXK : GLC + ATP = G6P + ADP . 

 PGI : G6P = F6P . 

 PFK : F6P + ATP = F16P + ADP . 

 FBP : F16P = F6P . 

 

The above set of four reactions can be visualized as a bi-partite metabolic graph and an enzyme 

interaction graph as shown in Supplementary figure S-3.1. 
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Figure S-3.1. Bi-partite and enzyme interaction representation of the metabolic network. 

Simulated annealing algorithm 

The algorithm used to find highly correlated subnetworks in an enzyme interaction graph is a 

slightly varied version of the algorithm proposed by Ideker et al. (Ideker et al., 2002). An enzyme 

interaction graph G consists of a set of nodes (enzymes) and edges (interactions due to shared 

metabolites). Each node in the graph G is associated with a binary variable marking it visible or 

invisible. Gsub denotes the sub graph of G induced by the visible nodes. The score of the graph 

Gsub at any iteration i, Zs
i, is defined as the score of the highest-scoring connected component of 

Gsub.  

Simulated annealing is performed from the starting temperature Tstart, which geometrically de-

creases to Tend in N number of iterations. Ti denotes the temperature at iteration i. With these 

parameters defined, simulated annealing proceeds in the following steps. 

Initialize Gsub by setting each node to visible/invisible with equal probability. Different initialisa-

tion scheme, e.g. all visible nodes, can be used depending on the nature of the problem. 

For i = 1 to N DO 

Randomly select a node of G and toggle its state (visible/invisible); 

Compute the score Zs
i
 for sub graph Gsub; 

IF (Zs
i
  > Zs

i-1) THEN keep the change, i.e. keep the selected node toggled; 

ELSE keep the change with probability i
i
s

i
s TZZep /)( 1−−= ; 
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Quench the resulting Gsub at T = 0, to explore all adjoining possibilities so as to ensure the local 

maximum. 

Output the high-scoring connected components of the resulting sub graph Gsub.  

In order to improve the efficiency of the algorithm we used following set of heuristics. 

Hubs (highly connected nodes) in the network tend to decrease the performance of the algo-

rithm, as addition of such nodes changes the size of the connected components drastically. To 

avoid this we use the same heuristic as used by Ideker et al. (Ideker et al., 2002). When adding a 

hub to the network, all neighbours that are not part of the high-scoring component, are removed 

from the subnetwork (i.e. made invisible) simultaneously. 

In case of multi-dimensional data, subnetworks are scored using the edge scores. Moreover, to 

improve the efficiency of the algorithm, we employed a two-stage simulated annealing algorithm. 

In the first stage, edges are toggled instead of the nodes. The resulting sub graph from the first 

stage is then used for the next simulated annealing stage where nodes are toggled as described 

before. This heuristic increased the speed and efficiency of the algorithm by an order of magni-

tude. 

We also extended the algorithm to search for more than 1 subnetworks simultaneously (Ideker et 

al., 2002).  

Although we searched for more than one subnetworks simultaneously, we found a single high 

scoring subnetwork and several small, low scoring subnetworks in all cases studied. 

3.8 Supplementary Discussion 

3.8.1 Distribution of subnetwork genes into different functional categories 

The subnetworks obtained from the analysis of gdh1Δ, grr1Δ and carbon-sources datasets con-

sisted of 181, 204 and 179 genes respectively (Supplementary Table S-3.2). The distribution of 

the genes from gdh1Δ subnetwork into different MIPS functional categories (Mewes et al., 2004) 

is shown in Supplementary Figure S-3.2. Amongst these genes, 25 % belong to the MIPS func-

tional categories amino acid metabolism and transport, carbohydrate utilization and nucleotide 

metabolism. It seems natural that the amino acid metabolism is likely to be effected upon deleting 

the main route for ammonia assimilation. The effect on the carbon metabolism is likely to be a 

consequence of the interactions with the amino acid metabolism through the supply of precursor 

metabolites, particularly through many transamination reactions. Finally, deletion of GDH1 will 
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affect the glutamate and glutamine levels in the cells, and as glutamine serves as amino-donor in 

the nucleotide metabolism, deletion of GDH1 may have an indirect influence on the expression 

of genes involved in nucleotide metabolism. This shows that the transcriptional regulatory pro-

gram of cell, following a single genetic perturbation, is global and spread across many branches of 

the metabolic network. Notably, we also obtained such a widespread response for the subnet-

works obtained from the analysis of other two datasets.  

C-compound_and_carbohydrate_utilization
amino_acid_metabolism
lipid,_fatty_acid_and_isoprenoid_biosynthesis
biosynthesis_of_vitamins ,_cofactors,_and_prosthetic_groups
cellular_import
purine_nucleotide_metabolism
amino_acid_transport
nitrogen_and_sulfur_utilization
glycolys is_and_gluconeogenesis
C-compound_and_carbohydrate_transport

 

Figure S-3.2.  Distribution of the genes from high scoring subnetwork for gdh1Δ dataset into different MIPS 

functional categories. For simplicity, only first ten categories with highest numbers of entries are shown. 

3.8.2 Pair wise comparison of different carbon sources 

In addition to the collective analysis of the carbon-sources dataset, we also performed pair wise 

analysis of the gene expression data for different carbon sources, with p-values calculated using t-

test. The results of this analysis are summarized in Supplementary Table S-3.1 and Supplementary 

Table S-3.3.  Reporter metabolites, together with the subnetworks, clearly identify the parts of the 

metabolism most affected due to a change in the carbon source. 
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3.8.3 Clustering analysis of the carbon sources dataset 

Results of cluster analysis of the carbon-sources dataset were compared with the results obtained 

using here reported algorithm. Carbon sources dataset was subjected to k-means and self organiz-

ing map (SOM) clustering(Sturn et al., 2002). In order to enable comparison between clustering 

and subnetworks, clusters were ranked using normalized scores similar to that used for scoring 

subnetworks.  Cluster-scores were calculated by considering a cluster as subnetwork, with all 

member genes connected to each other. Supplementary Table S-3.4 shows overlap between the 

genes present in the subnetwork, identified using our method, and high scoring clusters. We note 

that only about 10% of the genes within the subnetwork identified with our method are repre-

sented in a given cluster.   

It is difficult to see the underlying metabolic changes, following the changes in carbon source, 

from the results of cluster analysis. Firstly, all the genes appear in at least one of the clusters, as 

opposed to the reduced set of metabolites (reporter metabolites) and genes (subnetwork) ob-

tained with here reported algorithm. Secondly, our algorithm allows relatively weakly correlated 

genes to be grouped together as a subnetwork. Subnetwork may contain genes that are correlated 

to a lesser degree within subnetwork as compared with some of the genes outside this subnet-

work, a consequence of imposing structural constraints on possible interactions. This can be seen 

from Supplementary Figure S-3.3. Also, it should be noted that the usual clustering methods ac-

count for direction of the changes, which could result in loss of information since metabolic 

genes are often negatively correlated, e.g. up-regulation of glucose transporters and down regula-

tion of maltose transporters.  

 

 

Figure S-3.3.  Gene expression profiles for (a) one of the high scoring subnetworks and (b) one of the high scor-

ing clusters obtained with SOM. 
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3.8.4 Robustness of the algorithm towards removal of co-factors 

Redox co-factors (NAD+/NADH, NADP+/NADPH) and energy co-factors (ATP/ADP) con-

nect different metabolic pathways to create a densely connected metabolic network. For example, 

the reaction interaction graph for S. cerevisiae has relatively high number of edges (>57000) as 

opposed to number of nodes (1175). Any node in this graph is on average less than 3 nodes away 

from any other node. From biological point of view, a perturbation at any node in the network 

can propagate rapidly to virtually every “corner” of the metabolic network. This demands a truly 

global regulatory program to act against such perturbations, as reflected in our findings on sub-

networks. We also found that such regulatory actions of the cell are centred on the perturbed 

node, which would help to control the effects of the perturbation most effectively.  

Supplementary figure S-3.4 shows the distribution of number of metabolites contributing for an 

edge in an enzyme interaction graph of S. cerevisiae. Most of the edges are contributed by 2 or 4 

metabolites. Thus removal of a certain metabolite can still keep the high connectivity between 

nodes through other metabolites. This leads to high robustness of the subnetwork search algo-

rithm, as network connectivity remains high even though certain edges are removed from the 

graph. To illustrate this, we removed certain highly connected co-factors from the metabolic 

network and searched for high scoring subnetwork using GDH1 dataset. The results are summa-

rized into Supplementary table S-3.5 that lists number of edges removed; graph diameter and 

overlap with the original subnetwork. The graph diameter (average distance between any two 

nodes) was relatively insensitive to the removal of many co-factors. Consequently, it was possible 

to obtain almost 75 % overlap with the original subnetwork even after removal of both redox co-

factors and ATP/ADP pair, that resulted into 27 % reduction in the number of edges. The most 

sensitive deletion was that of NADP+/NADPH, which is consistent with the fact that GDH1 

encodes for NADPH dependent enzyme. Remarkably, the deletion of NAD+/NADH was less 

influential, even though it resulted into removal of more edges from the network. This once again 

illustrates the principle of “changes around the perturbed node” and effectiveness of our algo-

rithm to capture these changes. It should also be noted that the reporter metabolite analysis is insen-

sitive to metabolite removal, except for the metabolites that are removed. 
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Figure S-3.4.  Number of metabolites contributing for an edge in an enzyme interaction graph of Saccharomyces 

cerevisiae. 

3.8.5 Distribution of Reporter metabolites obtained from several datasets 

We identified the reporter metabolites for around 47 transcriptional datasets for the yeast S. cerevisiae. 

Supplementary table S-3.6 lists the corresponding reporter metabolites. The average rank of any me-

tabolite (defined as arithmetic average of ranks of a metabolite, based on Zmetabolite score, from all 

conditions analysed) was more than 150 (Supplementary figure S-3.5 shows the complete distri-

bution) illustrating the uniqueness of the Reporter metabolites for the particular experiment. Al-

though we found that certain metabolites appeared frequently as reporter, about one-third of the 

metabolites were reporter in at least one of the datasets (Supplementary figure S-3.6 shows the 

complete distribution). 

 

Figure S-3.5.  Histogram of the average rank of a metabolite in several different datasets analysed. 
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Figure S-3.6.  Histogram of the frequency of a metabolite being classified as a reporter metabolite in several 

different datasets analysed. 

3.8.6 Supplementary note 

A key requirement for application of our method is the availability of a genome-scale model for 

the metabolism, but the metabolic networks have been reconstructed for several microorganisms 

(Price et al., 2003) and this opens for a wide application of our method for analysing different 

cellular systems. If the metabolic network has not been reconstructed for a given cellular system 

one may rapidly obtain at least a rough network structure from KEGG (Kanehisa et al., 2004) 

which would still result into good subnetwork analysis due to the robustness of the algorithm 

towards the missing information. 

Table S-3.1. Reporter metabolites for pair-wise comparison of the different carbon sources. 

Glucose-Maltose   Glucose-Ethanol   

alpha-D-Glucose 

FRUxt 

Maltose 

MANxt 

Ethanol 

GLCxt 

Oxygen 

28 

12 

4 

11 

5 

14 

16 

6 

- 

1 

- 

1 

- 

2 

beta-D-Fructose 6-phosphate 

GLCxt 

alpha-D-Glucose 

6-Phospho-D-gluconate 

FumarateM 

alpha-D-Mannose 

FRUxt 

15 

14 

28 

5 

4 

15 

12 

5 

- 

6 

1 

- 

2 

- 
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3-Phospho-D-glyceroyl phosphate 

UbiquinolM 

Methanethiol 

5 

9 

1 

2 

- 

- 

2-Oxoglutarate 

Carnitine 

Urea 

21 

3 

4 

12 

1 

4 

Glucose-Acetate   Maltose-Ethanol   

Isocitrate 

alpha-D-Glucose 6-phosphate 

beta-D-Fructose 6-phosphate 

alpha-D-Glucose 

6-Phospho-D-gluconate 

Chitosan 

alpha-D-Mannose 

Glyoxylate 

D-Glucose 1-phosphate 

beta-D-Fructose 1,6-bisphosphate 

5 

11 

15 

28 

5 

2 

15 

6 

7 

4 

3 

6 

5 

6 

1 

1 

2 

5 

7 

4 

Carnitine 

Allantoate 

dUTP 

Maltose 

CARxt 

Glyoxylate 

Oxaloacetate 

dCTP 

Ergosta-5,7,24(28)-trienol 

ITP 

3 

3 

3 

4 

1 

6 

8 

2 

2 

2 

1 

1 

1 

1 

- 

5 

9 

1 

1 

1 

Maltose-Acetate   Ethanol-Acetate   

Glyoxylate 

Ergosta-5,7,24(28)-trienol 

Acetyl-CoA 

3-Phospho-D-glyceroyl phosphate 

Chitosan 

Maltose 

Malate 

1L-myo-Inositol 1-phosphate 

CO2M 

CarnitineM 

6 

2 

19 

5 

2 

4 

8 

2 

12 

2 

5 

1 

23 

2 

1 

1 

7 

3 

- 

- 

 

Chitosan 

alpha,alpha-Trehalose 

2-Dehydro-3-deoxy-D-arabino-heptonate 

7-phosphate 

(S)-LactaldehydeM 

N-(L-Arginino)succinate 

Chitin 

NADHM 

Carbamoyl phosphate 

AcetateM 

dUMP 

2 

4 

3 

 

1 

2 

5 

12 

3 

2 

4 

1 

1 

1 

 

- 

3 

1 

- 

6 

- 

1 

Only the top ten scoring metabolites are shown. The first number behind the reporter metabolite is the number of 
neighbors to the reporter metabolite (or the number of reactions in which the reporter metabolite participates in) 
and the second number is the number of KEGG pathways in which the reporter metabolite appearsThe metabo-
lite names ending with ‘M’ and ‘xt’ indicate that the metabolite is present in mitochondrial compartment and 
extracellular medium respectively. Since KEGG pathways do not classify metabolites in this fashion, the corre-
sponding fields in the table are empty. 
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Table S-3.2.  Genes included in the larger subnetworks obtained by analysis of gene expression datasets for 

gdh1Δ, grr1Δ and carbon-sources. 

gdh1Δ grr1Δ Carbon source 

HXK1 PMP2 VHT1 AGP3 PHO84 

TDH1 AAC3 ORT1 CAR1 MSR1 PET9 

DIC1 SFC1 YEL047C FLX1 YML082W 

MEP3 DUR1 MEP2 DAL3 MEP1 

URA8 HEM3 GDH3 YEL041W IDH1 

PUT1 UTR1 KGD1 ALD4 MET13 

MAE1 MET12 TRR2 ARG5 ARG8 

AAT1 LYS9 ADE3 QNS1 SRT1 UGP1 

RAM1 IPP1 NPT1 MSK1 LSC1 LEU4 

ILV3 CDS1 HTS1 HIP1 HNM1 CKI1 

MET3 HXK2 HXT5 SUC2 GAL2 

HXT14 HXT1 MAL32 EXG1 FKS1 

BGL2 EXG2 GAL10 TPS3 CHS2 

TPS1 YNK1 FOL2 YJL068C GPX2 

URA1 HEM14 HEM15 SCS7 BNA1 

CTT1 YJR078W VAP1 UGA4 HEM2 

ITR1 LYP1 PUT4 BAP2 SAM1 MET1 

ERG6 BIO3 SAH1 YJR105W THR1 

PFK2 DED81 ASP1 GNP1 LCB1 

PPT2 CIT2 HMG2 ALD6 IDP3 BAT2 

GFA1 SER1 GDH1 CYS3 YIL167W 

TRP5 TKL1 ARO3 RIB5 FBP1 RHR2 

GPD2 ADH5 GPD1 FDH1 HOM6 

ZWF1 TRR1 ARA1 GND1 ERG4 

NCP1 ERG9 TSC10 LCB4 ASN2 

PFK1 APA2 HOR2 INM1 HIS2 PFK26 

CYR1 DUT1 PCT1 ERG20 MUQ1 

CPT1 PRS2 PRS1 PGM1 TSL1 PGI1 

YGR043C ERG26 PDC5 PSD2 SOL2 

SOL3 FUN63 YAR075W ADE17 

SHM2 IMD3 PUR5 ENO2 ENO1 

PCM1 DAL7 MLS1 YLR231C DYS1 

NDI1 ADH3 SPE4 URA4 DPM1 PMT2 

ILV2 PSD1 GCV2 ACO1 DAL2 DAL1 

DAL4  

GLK1 PMA1 THI7 DIP5 FEN2 

YIL145C AAC3 YER053C TDH1 

PET9 HXK1 HXT7 SUC2 HXT4 

HXT6 HXK2 HXT5 MAL32 HXT3 

YGR287C HXT2 NTH2 HXT16 STL1 

HXT1 ADE4 COX10 PSA1 

YGL245W AAC1 PFK2 QNS1 IDH1 

ODC1 IDP2 ADE3 PFK1 FOL3 

PGK1 THI20 CDC19 TRP3 ABZ1 

GNP1 BPH1 ACS2 RIB1 ADE12 

RHR2 GUT2 SDH3 SFC1 LSC2 

ECM40 CIT1 CTP1 MAL31 

YGL186C APT2 TRP4 PRS5 HIS1 

PCK1 ARO3 ARO2 ARO7 FBP1 

ARO4 ENO2 PYC1 YDR341C FAB1 

ARG1 MVD1 ARG3 CAR1 FBP26 

CPA2 ARO8 BAP3 FCY2 TAT2 BIO5 

BIO2 HIP1 MUP1 MHT1 SPE3 DYS1 

NDI1 ALD4 MAE1 PUT2 CYB2 RIP1 

URA1 GPX1 HYR1 BNA1 SUR2 

ALD6 GND1 LYS9 ARO9 LYS21 

NAT1 MLS1 YFL030W YFR055W 

PNC1 ILV1 GDH2 HIS7 ADE6 KRS1 

ADE1 MET22 TPS2 SAM1 GLC3 

THR4 SER1 LYS1 MDH3 LEU2 

PDC5 GAD1 ASN2 THR1 GUA1 

DED81 ASP1 YMR293C GDH3 

HOM2 GPH1 SER2 SHM2 ADE8 

URA2 ASN1 URA5 DUT1 YNK1 

KRE2 RNR1 GSC2 TPS1 CHS2 

TSL1 URA6 XKS1 TKL2 PUS1 

PGM2 INO1 PGI1 PMI40 FUR1 

YJR105W GLN1 AAT2 LYS20 CAT2 

CRC1 ACH1 ERG10 KGD1 MDH1 

FUM1 OSM1 LSC1 YCR024C POT1 

FOX2 SER33 ADH4 SER3 ADH5 

GLT1 ADH1 YAR075W NDH1 IMD4 

FUN63 PUR5 GSY1 GSY2 TRR1 

ECM17 ERG3 ERG24 ERG25 ERG2 

URA4 LEU1 MET6 HIS3 ICL1 SOL1 

SOL4 SOL3 ACO1 YJL200C  

GLK1 PMA2 HXK1 PMA1 PFK1 PRS5 

FOL1 PCK1 GCV1 PNC1 YMR293C 

FMT1 DFR1 GND2 HOM2 PHO84 

TDH1 GPD2 MDH2 DIC11 SFC1 

FUM1 MLS1 YFL030W ICL1 PDC6 

IDP3 GDH2 DIP5 GNP1 GFA1 HIS7 

UGA1 HOM6 ERG24 NDH1 COQ3 

COQ6 GND1 ERG5 PAN5 NCP1 

YBR006W PRO2 ECM17 ERG9 ERG3 

BNA1 YJR078W ERG11 CTA1 HYR1 

ERG25 HMG1 NAT2 LYS20 SER1 

AGP1 FEN2 MAL31 NHA1 HNM1 

BPH1 SAM3 UGA4 ITR1 TAT1 AAT2 

BAT2 BAP2 MHT1 SPE3 OPI3 MET6 

CYS4 BIO2 CIT2 CAT2 AGP2 CRC1 

ACS1 RAM1 COX10 MET22 ARO2 

ARO7 TPS2 THR4 ADE1 YER053C 

LSC1 MSE1 PPA2 MSW1 INM1 GSH1 

FAD1 FLX1 POX1 GUT2 FBA1 TPI1 

GUT1 FAA2 PRO1 TOR1 HTS1 PIK1 

YNK1 SEC59 PMT5 QRI1 CYR1 

APT2 PRS2 FUR1 URA5 RNR1 KTR2 

DPM1 PMT1 FKS1 FUN63 PDE2 

YJR105W SAM1 ARO1 URK1 KRE2 

FBP26 HIS2 RIB5 ADE6 MET14 

DED81 THR1 HOM3 HIS4 ERG8 

ACH1 GAL7 PGM1 RKI1 TKL2 TAL1 

PIS1 IPT1 CHO2 YLR089C ARG8 

IDH1 PSD1 ADH3 ALD5 PUT2 ACO1 

DLD1 HMGS ERG2 ADH1 FDH1 

NDH2 ECM31 SOL3 ATP1 ENO2 

GPM3 HXT7 SUC2 HXT3 NTH2 HXT5 

HXT2 HXT10 HXT8 MAL32 FSP2 

YGR287C YJL216C  
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Table S-3.3. Genes included in the secondary subnetwork for pairwise comparison of the different carbon 

sources. 

Glucose-Maltose Glucose-Ethanol Glucose-Acetate 

FBA1 TDH2 CPA2 HEM13 PDC1 

SPE1 ADH1 YAR075W SFA1 IMD3 

ADH2 PUR5 NDH1 COQ3 RIP1 DYS1 

ACP1 HEM1 CIT1 LEU4 ALD4 POX1 

YNK1 MUQ1 URA5 ACS2 MET17 

GNP1 FCY2 MAL31 MMP1 PDE1 

ADE1 PFK26 DPL1 GSY1 ADE17 

ERG3 BNA1 TPI1 MAL32 HXT8 FSP2 

HXT1 HXT4 

HXK1 PMA2 TDH1 ALD3 CDA2 MDH2 

FDH1 GCV1 MEP1 GDH3 GDH1 STL1 

HXT5 YJL216C HXT2 HXT4 UGA1 

IDP2 YPL276W PCK1 GND1 GND2 

CIT2 CAT2 SFA1 NDH1 DYS1 ADH1 

GCV2 IDH1 KGD1 YAT1 CIT1 FUM1 

SFC1 TAL1 FBP1 TKL2 BAP2 DUR3 

DAL2 DAL5 SAM3 BIO5 

HXK1 HXT7 YJL216C HXT6 NTH1 

HXT2 CPA2 PFK2 GLN1 TDH1 FDH1 

IDP2 GDH3 GND1 ERG1 HEM14 

YPL276W MDH2 NDH2 SDH3 FUM1 

MLS1 LYS20 YAT1 CRC1 IDH1 PSD1 

ACO1 CIT2 ACH1 CDA2 ACS1 CDA1 

TRP4 PCK1 PFK26 FBP1 TAL1 ICL1 

ICL2 ADH1 RKI1 SOL4 INO1 

Maltose-Ethanol Maltose-Acetate Ethanol-Acetate 

TDH1 PHO84 PHO11 MAL31  DUR3 

DAL2 DAL5 MUP3 SAM3 FUM1 SFC1 

MDH2 YEL041W PDA1 GCV2 YAT1 

CRC1 AGP2 YCR024C MET12 PCK1 

AAT2 STL1 HXT8 MAL32 FSP2 GDH3 

HEM3 DCD1 YNK1 DUT1 ACS1 

CDA2 ADK1 CIT2 ERG5 FDH1 PDC1 

YPL276W ADH1 

GLK1 HXT8 MAL32 FSP2 CPA2 

PHO11 TDH1 SAM1 PFK2 POX1 

DUT1 DCD1 PDX3 ERG3 GDH3 GND1 

ERG5 FDH1 TDH2 SER2  FBP1 TPS2 

YPL276W MDH2 MAL31 FUM1 MLS1 

ACH1 CDA2 CIT2 PCK1 CDC19 ICL1 

ICL2 NDH2 ACP1 PSD1 IDH1 ACO1 

ADH1 RKI1 OPI3   INO1 

CDC19 AAC1 TPS2 GSH2 GPX1 PDX3 

MEP1 ASP1 ARG1 ARG4 FUM1 MDH1 

ALD5 PDA1 IDH1 ACO1 ARO1 CKI1 

CPA2 ARO3 HOM2 SAM1 GLT1 ADH1 

PDE2 ATH1 TPS3 CHS3 CDA2 CDA1  

 

Table S-3.4.  Comparison of cluster analysis of carbon source data with subnetwork obtained using here re-

ported algorithm. Number of genes common between high scoring subnetwork and highest scoring clusters ob-

tained with different clustering methods are listed.  

Clustering method Size of cluster Number of genes common with subnet-
work 

K-means (k=10) 

K-means (k=15) 

K-means (k=20) 

SOM (9 nodes) 

SOM (25 nodes) 

SOM (49 nodes) 

144 

83 

66 

272 

134 

72 

13 

13 

0 

31 

13 

8 
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Table S-3.5.  Effect of metabolite removal on the connectivity in the reaction-interaction graph and subnetwork 

search. 

 

Table S-3.6.  Reporter metabolites for different gene expression datasets. (Please see Supplementary table S-3.7 

for the short description and the source of the data) 

Data-Title Reporter metabolites 

AER-C-N Glyoxylate, L-Asparagine, L-Alanine, SERxt, ASNxt, GLNxt, ALAxt, GLUxt, L-Proline, GLYxt 

AER-C-P Glyoxylate, Isocitrate, sn-Glycerol 3-phosphate, FADH2M, Guanosine, S-Methylmethionine, MMETxt, L-

Phenylalanine, METxt, Malonyl-[acyl-carrier protein] 

AER-C-S NADH, NAD+, GTP, Sulfate, Adenylylsulfate, O-Acetyl-L-homoserine, D-Ribose 1-phosphate, L-Homoserine, 2-

Amino-3-carboxymuconate semialdehyde, 2,3-Dehydroacyl-[acyl-carrier-protein] 

AER-N-P ALAxt, GLYxt, L-Tyrosine, L-Leucine, L-Phenylalanine, HISxt, L-Isoleucine, L-Valine, METxt, PROxt 

AER-N-S H+EXT, NH3xt, L-Asparagine, L-Aspartate, 2-Hydroxybutane-1,2,4-tricarboxylate, L-Cysteine, CYSxt, GLYxt, 2-

OxoglutarateM, Sulfate 

AER-P-S Pyruvate, Glycogen, Sulfate, Sulfite, alpha,alpha'-Trehalose 6-phosphate, UDP, METxt, Adenylylsulfate, 1-(5'-

Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole, N6-(1,2-Dicarboxyethyl)-AMP 

ANA-C-

AER-C 

NAD+, GLUxt, NADH, Isocitrate, AcetaldehydeM, L-Alanine, SERxt, Ferricytochrome cM, Ferrocytochrome cM, 

ALAxt 

ANA-C-N IMP, L-Asparagine, ILExt, VALxt, R-S-Alanylglycine, Cys-Gly, PHExt, L-Phenylalanine, LEUxt, TYRxt 

Metabolites removed Number of edges Diameter of reaction 
interaction graph 

% Overlap with the high 
scoring subnetwork for gdh1 
case 

None 57217 2.7289 100 (34/34) 

NAD+, NADH 55686 (97.3 %) 2.7584 91 (31/34) 

NADP+, NADPH 55601 (97.1 %) 2.7583 85 (29/34) 

ATP, ADP 44733 (78 %) 2.9357 88 (30/34) 

NAD+, NADH, NADP+, 

NADPH 

54059 (94.4 %) 2.7773 79 (27/34) 

NAD+, NADH, NADP+, 

NADPH, ATP, ADP 

41554 (72.6 %) 3 73 (25/34) 
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ANA-C-P Thiamin, THMxt, L-Histidine, HISxt, sn-Glycerol 3-phosphate, D-4'-Phosphopantothenate, Xanthosine 5'-phosphate, 

L-Alanine, Tetrahydrofolyl-[Glu](n), L-Asparagine 

ANA-C-S Sulfate, SLFxt, 2-Amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine, 2-Amino-7,8-dihydro-4-hydroxy-6-

(diphosphooxymethyl)pteridine, Dihydropteroate, 4-Aminobenzoate, Glycolaldehyde, AcetaldehydeM, IsocitrateM, 3'-

Phosphoadenylylsulfate 

ANA-N-

AER-N 

H+M, OrthophosphateM, ADPM, Ferrocytochrome cM, Ferricytochrome cM, ATPM, UbiquinolM, Ubiquinone-9M, L-

Alanine, (R)-LactateM 

ANA-N-P METxt, L-Alanine, L-Phenylalanine, sn-Glycerol 3-phosphate, L-Asparagine, Glyoxylate, PHExt, ASNxt, GLNxt, 

ALAxt 

ANA-N-S Glyoxylate, METxt, H+EXT, PHExt, NADPHM, L-Alanine, ALAxt, MALxt, SLFxt, GLYxt 

ANA-P-

AER-P 

Oxygen, UbiquinolM, Ubiquinone-9M, H+M, Ferricytochrome cM, Ferrocytochrome cM, 6-Phospho-D-gluconate, 

OrthophosphateM, CO2M, Oxaloacetate 

ANA-P-S Orthophosphate, L-Cystathionine, Sulfite, Sulfate, 3-Phosphonooxypyruvate, Hydrogen sulfide, 3-

Hydroxyanthranilate, Adenylylsulfate, NADP+, 3-Phospho-D-glycerate 

ANA-S-

AER-S 

OrthophosphateM, ADPM, H+M, NADP+M, Ferrocytochrome cM, Ferricytochrome cM, ATPM, NADPHM, Isocit-

rateM, NADP+ 

GDS104 2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate, OxaloglutarateM, 6-Phospho-D-gluconate, dTDP, Oxalosuc-

cinate, D-Ribulose 5-phosphate, 2,5-Diamino-6-hydroxy-4-(5'-phosphoribosylamino)-pyrimidine, D-erythro-1-

(Imidazol-4-yl)glycerol 3-phosphate, GTP, Oxaloglutarate 

GDS108 1-Phosphatidyl-1D-myo-inositol 4-phosphate, 10-Formyltetrahydrofolate, 1-(5'-Phosphoribosyl)-5-amino-4-(N-

succinocarboxamide)-imidazole, IsocitrateM, 1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate, Glutathione, 1-(5'-

Phosphoribosyl)-5-amino-4-imidazolecarboxamide, CMP, 5,10-Methenyltetrahydrofolate, Guanine 

GDS109 Xanthosine 5'-phosphate, (R)-5-Phosphomevalonate, Glutathione, D-Ribose 1-phosphate, H2O2, alpha-D-Mannose 

1-phosphate, (R)-S-Lactoylglutathione, alpha-D-Glucose 6-phosphate, NADH, Ergosta-5,7,24(28)-trienol 

GDS113 5-Phospho-alpha-D-ribose 1-diphosphate, GMP, D-Ribose 5-phosphate, 5,10-MethylenetetrahydrofolateM, al-

pha,alpha'-Trehalose 6-phosphate, beta-D-Fructose 1,6-bisphosphate, AMP, UDPglucose, L-Glutamine, alpha-D-

Glucose 6-phosphate 

GDS114 PyrophosphateM, NADP+, 3-Phospho-D-glyceroyl phosphate, NADPH, AMPM, Maltose, ATPM, Pyrophosphate, 

Xanthosine 5'-phosphate, Dolichyl phosphate 

GDS115 5-Phospho-alpha-D-ribose 1-diphosphate, D-Glyceraldehyde 3-phosphate, PhosphatidylserineM, Xanthosine 5'-

phosphate, Carnitine, IMP, 3-Phospho-D-glyceroyl phosphate, D-Ribose 5-phosphate, alpha,alpha-Trehalose, Ade-

nylylsulfate 

GDS124 Xanthosine 5'-phosphate, D-Galactose 1-phosphate, Ergosta-5,7,24(28)-trienol, Cytosine, Ubiquinone-9M, CMP, 

Episterol, 2-Phospho-D-glycerate, CYSxt, Inosine 

GDS16 NADPHM, Ubiquinone-9M, UbiquinolM, alpha,alpha-Trehalose, NADHM, D-Glucono-1,5-lactone 6-phosphate, Car-

nitine, 3-Phospho-D-glyceroyl phosphate, 2-Hydroxybutane-1,2,4-tricarboxylate, alpha-D-Glucose 6-phosphate 
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GDS19 beta-D-Fructose 6-phosphate, 3-Phosphonooxypyruvate, Xanthosine 5'-phosphate, IMP, 5,10-

Methylenetetrahydrofolate, THMxt, Sulfite, 5-Phosphoribosylamine, L-Asparagine, Phosphoenolpyruvate 

GDS20 Xanthosine 5'-phosphate, D-Ribose 5-phosphate, AMP, Homocysteine, 3-Phospho-D-glyceroyl phosphate, ATP, 

Orotate, N6-(1,2-Dicarboxyethyl)-AMP, Phytosphingosine, Orotidine 5'-phosphate 

GDS21 beta-D-Fructose 6-phosphate, Orthophosphate, 5-Phospho-alpha-D-ribose 1-diphosphate, Sedoheptulose 7-

phosphate, D-Glyceraldehyde 3-phosphate, Glycogen, D-Erythrose 4-phosphate, IMP, 2-OxoglutarateM, Adenosine 

GDS30 AMP, Xanthosine 5'-phosphate, alpha-D-Glucose, Maltose, UDP, 5-Phospho-alpha-D-ribose 1-diphosphate, IMP, 

THMxt, 3-Phospho-D-glyceroyl phosphate, 1,3-beta-D-Glucan 

GDS32 alpha-D-Glucose, GLCxt, NAD+M, FRUxt, MANxt, Succinate, D-Galactose, myo-Inositol, NADHM, Ethanolamine 

phosphate 

GDS33 D-Fructose, GLCxt, FRUxt, alpha-D-Mannose, MANxt, alpha-D-Glucose, Acetaldehyde, L-Threonine, 2-

Oxoglutarate, Mannan 

GDS354 5-Phospho-alpha-D-ribose 1-diphosphate, 6-Phospho-D-gluconate, alpha,alpha'-Trehalose 6-phosphate, L-

Glutamine, Glycogen, Spermidine, AMP, 1-(5'-Phosphoribosyl)-5-amino-4-(N-succinocarboxamide)-imidazole, Zy-

mosterol, 5-Phosphoribosylamine 

GDS362 Xanthosine 5'-phosphate, Isocitrate, Acetaldehyde, Ethanol, Pyruvate, (S)-LactateM, 3',5'-Cyclic AMP, Uracil, Mal-

tose, Tetrahydrofolyl-[Glu](n) 

GDS37 D-Erythrose 4-phosphate, Sedoheptulose 7-phosphate, Xanthosine 5'-phosphate, Glutathione, D-Glyceraldehyde 3-

phosphate, 4,4-Dimethylzymosterol, 4-Aminobutanoate, dADP, Acetate, beta-D-Fructose 6-phosphate 

GDS457 FRUxt, alpha-D-Mannose, MANxt, D-Fructose, alpha-D-Glucose, GLCxt, H+EXT, Maltose, L-Serine, Mannan 

GDS600 ATP, 1-Phosphatidyl-D-myo-inositol, Isopentenyl diphosphate, ADP, 3-Nonaprenyl-4-hydroxybenzoate, Glycogen, 

all-trans-Nonaprenyl diphosphate, 3-Phospho-D-glyceroyl phosphate, tRNAM, (R)-5-Phosphomevalonate 

GDS608 NADP+M, ADPM, Xanthosine 5'-phosphate, D-Ribose 5-phosphate, ATPM, OrthophosphateM, NADPHM, al-

pha,alpha'-Trehalose 6-phosphate, 2-OxoglutarateM, 2-Phospho-D-glycerate 

HAP1-WT S-Adenosyl-4-methylthio-2-oxobutanoate, 8-Amino-7-oxononanoate, 7,8-Diaminononanoate, H+EXT, CoA, Uracil, 

Cytosine, Palmitoyl-CoA, tRNA(Lys), L-lysyl-tRNA(Lys) 

ROX1-WT 5,10-MethenyltetrahydrofolateM, 10-FormyltetrahydrofolateM, FormateM, TetrahydrofolateM, Sodium, NAxt, L-

Cysteine, ADPM, CYSxt, OrthophosphateM 

GDS69 D-Glucose 1-phosphate, 2-Phospho-D-glycerate, D-Fructose, alpha-D-Glucose, TRPxt, MANxt, alpha-D-Glucose 6-

phosphate, 3-Phospho-D-glyceroyl phosphate, H+EXT, GLCxt 
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Table S-3.7.  Short description and source of the datasets used for the analysis reported in the Supplementary 

table S-3.6. 

Data-Title Data-

type* 

Short description Source**

AER-C-N D Aerobic chemostat, Carbon-limited Vs. Nitrogen limited. 1 

AER-C-P D Aerobic chemostat, Carbon-limited Vs. Phosphorous limited. 1 

AER-C-S D Aerobic chemostat, Carbon-limited Vs. Sulphur limited. 1 

AER-N-P D Aerobic chemostat, Nitrogen-limited Vs. Phosphorous limited. 1 

AER-N-S D Aerobic chemostat, Nitrogen -limited Vs. Sulphur limited. 1 

AER-P-S D Aerobic chemostat, Phosphorous -limited Vs. Sulphur limited. 1 

ANA-C-AER-

C 

D Chemostat, Aerobic Vs Anaerobic, Carbon-limited 1 

ANA-C-N D Anaerobic chemostat, Carbon-limited Vs. Nitrogen limited. 1 

ANA-C-P D Anaerobic chemostat, Carbon-limited Vs. Phosphorous limited. 1 

ANA-C-S D Anaerobic chemostat, Carbon-limited Vs. Sulphur limited. 1 

ANA-N-AER-

N 

D Chemostat, Anaerobic Vs Aerobic, Nitrogen-limited 1 

ANA-N-P D Anaerobic chemostat, Nitrogen-limited Vs. Phosphorous limited. 1 

ANA-N-S D Anaerobic chemostat, Nitrogen -limited Vs. Sulphur limited. 1 

ANA-P-AER-P D Chemostat, Anaerobic Vs Aerobic, Phosphorous-limited 1 

ANA-P-S D Anaerobic chemostat, Phosphorous -limited Vs. Sulphur limited. 1 

ANA-S-AER-S D Chemostat, Anaerobic Vs Aerobic, Sulphur-limited 1 

GDS104 M Temporal analysis of the developmental program of sporulation 2 

GDS108 M Menadione exposure time course 2 

GDS109 M Hydrogen peroxide response time course 2 

GDS113 M Dithiothrietol exposure time course 2 

GDS114 M Stationary phase time course 2 

GDS115 M Amino acid and adenine starvation time course 2 
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GDS124 M Cell cycle, cdc15 block-release time course 2 

GDS16 M Heat shock from 25 C to 37 C time course 2 

GDS19 M Nitrogen depletion time course 2 

GDS20 M Hyper-osmotic shock time course 2 

GDS21 M Carbon sources (glucose, raffinose, galactose, fructose, sucrose or ethanol) 2 

GDS30 M Diamide treatment time course 2 

GDS32 M Steady-state temperature (17 C, 21 C, 25 C, 29 C and 37 C, compared to cells grown at 33 

C) 

2 

GDS33 M Hypo-osmotic shock time course 2 

GDS354 M Lithium response in yeast 2 

GDS362 M Aging in yeast 2 

GDS37 M Diauxic shift time course 2 

GDS457 M Response to constitutive activation of the Ras/cAMP signal transduction pathway 2 

GDS600 M Deubiquitinating enzyme UBP10 inactivation 2 

GDS608 M Filamentous-form growth on solid media 2 

HAP1-WT D Wild-type Vs Hap1-Null 3 

ROX1-WT D Wild-type Vs Rox1-Null 3 

GDS69 M Conditions of excess copper or copper deficiency 2 

* D : Differential 
   M: Multi-dimensional 
** 1. Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. (2003) J Biol. Chem 278, 3265-3274. 
    2. NCBI-GEO Datasets (http://www.ncbi.nlm.nih.gov/entrez/) 
    3. Ter Linde, J. J. & Steensma, H. Y. (2002) Yeast 19, 825-840. 
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Chapter 4 

Chapter 4: Optimality assessment and performance im-
provement of simulated annealing algorithm for finding 
biologically active subnetworks 
Manuscript describing the results in this chapter is under preparation. 

 
 

 

"Are we nearly there?" Alice managed to pant out at last. "Nearly there!" the Queen repeated. 

"Why, we passed it ten minutes ago! Faster!" 
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4.1 Abstract 

Bio-molecular networks of functional and physical interactions are being increasingly used as a 

platform to integrate genome-scale omics datasets. One of the interesting problems in such an 

integrative analysis is to identify connected subnetworks in large bio-molecular interaction net-

works that show maximum correlated response to a perturbation. This problem is NP-hard and 

hence usually attempted with the stochastic algorithms such as simulated annealing. However, 

simulated annealing does not guarantee to find the global optimal solution. In the present work 

we first report a method to estimate the upper bound on the global optimal score. Using the 

principles underlying this method we propose a set of heuristics that significantly improved the 

performance of a simulated annealing algorithm. We demonstrate the applicability of the pro-

posed methodology for analysis of gene expression data for the yeast Saccharomyces cerevisiae. Two 

important bio-molecular interaction networks, protein-protein and enzyme interaction network, 

were used as data integration platform. 

4.2 Background 

Biological systems at cellular level can be viewed as an interaction network of molecules operat-

ing towards a set of objectives. This network-view of the cell is not only a convenient visual rep-

resentation but also offers a conceptual framework for the modeling of the complex cellular sys-

tems. Interactions in such networks arise not only due to the physical contact between two mole-

cules (e.g. protein-protein, protein-DNA interaction) but also due to the functional associations 

(e.g. synthetic lethality, metabolic function). Bio-molecular networks form the basis of several 

systems biology approaches and have been successfully used to uncover the underlying transcrip-

tional regulatory networks in the protein-protein/protein-DNA interaction networks (Ideker et 

al., 2002) and metabolic networks (Patil and Nielsen, 2005) (Chapter 3). Consequently gene ex-

pression data analysis has moved to a new era where integration with the biological networks is 

an essential part of the analysis. However, this methodology is not limited for the gene expression 

data alone but can also be used for the analysis and integration of several other omics datasets, 

such as proteomics (unpublished results) and metabolomics (Chapter 5). 

One of the key problems in such an integrative data analysis is to identify connected subnetworks 

with maximum collective response to a perturbation, which can be quantified a subnetwork 

score. The score for each individual node in the network is based on its response observed in the 

experiment. This problem is NP-hard (Ideker et al., 2002) and usually solved with stochastic algo-

rithms such as simulated annealing. However, simulated annealing algorithm does not guarantee 
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to find the global optimal solution and consequently may lead to an incomplete picture of the 

underlying biological phenomenon. Moreover, the “degree of optimality”, or the closeness of the 

final solution to the global optimum is not evident from the algorithm, thus making it difficult to 

access the significance of the solution. In the present work we address this issue from an algo-

rithmic point of view. We first developed a method to estimate the upper and the lower bound 

on the global optimal score. Apart from providing an useful measure of the “degree of optimal-

ity” for final solution, we use the underlying principles to suggest a new set of heuristics. We 

show that these heuristics result in significant performance improvement for simulated annealing. 

The applicability of the proposed methodology is illustrated for two examples from each of the 

two important classes of the biological networks, namely, protein-protein interaction networks 

and metabolic networks (enzyme interaction networks (Patil and Nielsen, 2005) (Chapter 3)). 

4.3 Problem definition 

The bio-molecular interaction network under study can be regarded as a graph with nodes repre-

senting molecules (e.g. proteins) and interaction between them as edges. Each node then can be 

assigned a score based on its response observed in a particular experiment. Node scores were 

calculated based on the significance of change in the gene expression levels between two condi-

tions (or between two mutants). P-value of each node, obtained by using student’s t-test (pi), can 

be converted to a Z-score by using inverse normal cumulative distribution function (CDF, θ-1). 

)1(1
ini pZ −= −θ      (1) 

Any subgraph of size k can then be scored using size-independent aggregated Z-score: 

∑=
k

is Z
k

Z 1      (2) 

Zs scores need to be corrected for the background distribution by subtracting the mean (μk) and 

dividing by the standard deviation (σk) of the aggregated Z-scores of several sets of k nodes cho-

sen randomly from the parent graph. 
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Zs
corrected characterizes the biological activity, or the aggregate transcriptional response of the sub-

network. The problem addressed here is to find the subnetwork with the maximum Zs
corrected 

score (global optimal solution). 

4.3.1 Simulated annealing algorithm for subnetwork finding 

Simulated annealing algorithm has been described in chapter 3 (supplementary material). 

4.3.2 Interaction networks and transcriptome data used 

Two biologically important cellular networks, namely protein-protein interaction (PPI) network 

and reaction interaction network (Patil and Nielsen, 2005) (Chapter 3), were used in this study. 

Both networks are from Saccharomyces cerevisiae (bakers yeast) which is not only an industrially im-

portant microorganism but also has been used as a model organism to study human diseases. 

Protein-protein interaction network used consists of 3783 nodes and 23764 edges (obtained from 

EMBL, http://www.embl.org). This network shows a scale-free topology (Strogatz, 2001) which 

is characterized by few hubs (nodes with high degree), with rest of the nodes having relatively 

low degree. Unlike majority of the studies, where only high confidence subset of network is con-

sidered, we used the entire network. The rationale behind this choice is that the networks of large 

size will become increasingly available, and the existing low-confidence interactions (several of 

which also represent important biological information) may find their way into search algorithms 

(A.P. Oliveira, personal communication). Gene expression data for a reference strain and mutant 

deleted in HXK2 was used with PPI network. P-values for each node were calculated by using 

student’s t-test. 

As a second example of interaction network, an enzyme interaction graph was constructed for 

Saccharomyces cerevisiae which consisted of around 700 nodes and 50000 edges. The average number 

of edges per node is much higher in the reaction interaction graph as compared to the PPI graph. 

Since the reaction interaction graph has much lower diameter (~2.6), the number of possible 

subnetworks is much higher as opposed to the PPI graph with the same number of nodes. Gene 

expression data for a reference strain and mutant deleted in GDH1 was used with the enzyme 

interaction network. P-values for each node were calculated by using student’s t-test. 

4.4 Results and discussion 

4.4.1 Upper bound on global optimal score 

We consider a hypothetical network where all nodes are connected to all other (a complete 

graph). Since the mean and the standard deviation of the background score (equation 3) are func-
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tions of k alone (given the data), the subnetwork consisting of k top-scoring nodes will be the 

maximum scoring subnetwork. Consequently, the upper bound for the global optimal score can 

be determined by considering maximum scoring subnetworks of all sizes in the hypothetical 

complete graph. These results can be conveniently visualized by plotting the maximum possible 

score against k (hereafter referred as boundary plot). Boundary plots for the yeast PPI network 

(with the HXK2 data) and the enzyme interaction network (with the GDH1 data) is shown in 

figure 4.1. The region below the maximum score curve defines the “feasible” region for the sub-

network score. Thus the “degree of optimality” or the confidence on the optimality of any sub-

network solution can be estimated based on the distance from the global optimal solution and 

the optimal solution for size k of that subnetwork. 

It is also possible to define the lower bound for the subnetwork score in the similar way as for 

the upper bound. Thus, the lowest scoring subnetwork of size k will be comprised of the lowest 

scoring k nodes. Although the lowest scoring subnetworks have not been a subject of biological 

importance, it may reveal some interesting features of the data. However, in this study focus is on 

maximum scoring subnetwork and for this purpose we define an “algorithmic lower bound” for 

the optimal score. 

4.4.2 Algorithmic lower bound 

The global optimal solution for the complete graph (the point with the maximum score on the 

upper bound curve) implies that if the k nodes at that point (k*) would have been forming a 

completely connected subnetwork in the network under question, that network would have been 

global optimal as well, irrespective of the topology of the rest of the network. Thus if we calcu-

late the scores of the subnetwork (/s) formed by k* nodes, then the maximum amongst those 

scores is defined as the algorithmic lower bound. From the definition of upper bound curve and 

algorithmic lower bound it can be expected that any algorithm used should perform at least to 

obtain the score equal to the algorithmic lower bound. 

 



Heuristics for simulated annealing algorithm            PhD Thesis, Kiran R. Patil 

61 

 

Figure 4.1. Maximum score curve and algorithmic lower bound for: (a) PPI network and HXK2 data and, (b) 

Enzyme interaction network and GDH1 data. Area between maximum score curve and algorithmic minimum 

score line (shaded area) denotes the expected performance area for subnetwork finding algorithms. 

From figure 4.1 it can be seen that in case of the enzyme interaction network the area between 

maximum score curve and algorithmic minimum score line (shaded area) is relatively small. This 

is consequence of very high connectivity (per node) in the network. Moreover, the simulated 

annealing algorithm performed in the shaded area for enzyme interaction graph. In contrast, 

simulated annealing search in the PPI graph with random initial condition resulted in several so-

lutions below the algorithmic lower bound (data not shown), showing the far from optimal na-

ture of the solutions obtained. Hence only the PPI network was investigated further for im-

provement. 

4.4.3 Proposed heuristics 

Based on the nature of the global optimum in a complete graph, we propose the following set of 

heuristics to improve the performance of the simulated annealing algorithm. 

Lower bound initialization 

All k* nodes (forming global optimal subgraph for the given graph) are initiated to 1 (visible) and 

rest to 0 (invisible). 

P0 initialization 
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Each node is initialized to 1 based on its p-value (or Z-score). Higher the Z-score, higher is the 

probability to be set to 1. 

P1 initialization 

Reporter score (similar to reporter metabolite score (Patil et al., 2004) (Chapter 2)) is calculated 

for each node. Reporter score is the normalized and background corrected collective score for 

the nearest neighbors of the protein under consideration. Then each node is initialized to 1 based 

on its reporter score, higher the score higher the probability to be set to 1. 

P0P1 initialization 

Combination of P0 and P1 initialization. A node is probabilistically set to 1 if either the Z-score 

or the reporter score is high. 

The lower bound initialization heuristic is directly implied by the optimality curve. The other heu-

ristics (P0, P1 and P0P1) were derived based on the stochastic nature of the simulated annealing. 

Since the network under consideration is not complete, the lower bound initialization may possi-

bly lead to the local optimum. P0 heuristic may help in such cases. P1 heuristic follows from the 

fact that the reporter score of each node reflects how good are the neighbours of that node and 

hence whether it is acting as a bridge between two (or more) high scoring nodes. 

4.4.4 Performance of the algorithm employing proposed heuristics 

To test the proposed heuristics, we analyzed the gene expression data from HXK2 experiment 

for subnetwork finding in PPI graph. The results were compared with simulated annealing with-

out employing any of the proposed heuristics (i.e. randomly initiated). In order to enable a fare 

comparison, all instances (including the base algorithm) were optimized for the starting tempera-

ture and the hub diameter (data not shown). The parameter optimization was also based on the 

results of 10 independent runs. Each instance of the algorithm (employing one of the heuristics) 

was run for 100 times and the resulting solutions were used to evaluate the performance. The 

results of the comparison are summarized in figure 4.2 which shows the mean, standard deviation 

and maximum scores obtained for each instance of the algorithm. Figure 4.1 (a) shows the opti-

mality curves for the same problem. 
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Figure 4.2. Comparison of different initialization heuristics. All heuristics performed better than random initia-

tion. Lower bound initialization performed best. 

All heuristics performed well compared to random initialization. Although the maximum score 

obtained from several runs is not so low for random case, very high standard deviation means 

that the algorithm must be run many times to get a good solution. On the other hand, very low 

standard deviation for heuristics means that a good solution can be obtained in first (or very few) 

run (/s). Moreover, the heuristics were found to be much less sensitive to simulated annealing 

parameters compared to random case (data not shown). Thus while implementing the heuristics; 

it is not necessary to do complete parameter optimization. 

4.5 Conclusions 

Heuristics proposed in this study seem to work very well on the chosen dataset and network. 

This will result in significant reduction in computational time for solving data integration prob-

lems and will also increase the confidence in the obtained solutions. However, it is necessary to 

test the heuristics on different networks (with different topologies) and different datasets (differ-

ent distribution of p-values). Since, our heuristics are based on some theoretical considerations; it 

is likely that they will also perform well in these cases. The optimality curve, on the other hand, is 

also an important result. This will certainly help in evaluating the performance for different algo-

rithms, and will also help in giving confidence to the results obtained. This will especially be im-

portant when strong biological conclusions are drawn based on such analysis. 
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Chapter 5 

Chapter 5: Integration of metabolome data with meta-
bolic networks reveals reporter reactions 
This chapter is based on the publication: 
Cakir T.*, Patil, K.R.*, Önsan , Z. İ., Ülgen, K. Ö., Kırdar, B. & Nielsen, J. “Integration of Metabolome data with 
metabolic networks reveals reporter reactions”, Molecular Systems Biology, accepted (2006). * These authors con-
tributed equally to this work. 

 

 
 

 

 

'What is the use of a book', thought Alice, 'without pictures or conversations?' 
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5.1 Extended Synopsis 

Cellular metabolism, as reflected in the metabolite levels and fluxes, is an integrated result of 

mass balance constraints and regulation at several different levels. Consequently analysis of cellu-

lar metabolite levels, generally referred to as metabolomics, is an important step in the post-

genomic era towards understanding of the biological logic behind large-scale organization and 

operation of cellular metabolism. Although it is now possible to quantitatively measure many 

intra-cellular metabolites, interpreting such data is a difficult task owing to the high connectivity 

in the metabolic network and inherent inter-dependency between enzymatic regulation, metabo-

lite levels and fluxes. Here we present a hypothesis-driven algorithm (Figure 5.1) for the integra-

tion of metabolome data with topology of genome-scale metabolic models and thereby identify 

the reactions (reporter reactions) significantly responding to the environmental/genetic perturba-

tions through changes in metabolite levels. The algorithm is analogous to the algorithm devel-

oped by us earlier for identification of reporter metabolites using transcriptome data (Patil and 

Nielsen, 2005). For demonstration of the algorithm we use two recently collected metabolome 

datasets for the yeast Saccharomyces cerevisiae, corresponding to an environmental and a genetic per-

turbation (Boas-Villas et al., 2005; Devantier et al., 2005), to illustrate the applicability of the algo-

rithm. 

Analytical methods available to date for metabolome measurements cover only a small fraction of 

the metabolites present in genome-scale metabolic models. Consequently, lack of quantitative 

data for several metabolites presents a major hurdle in integration of metabolome data and net-

work topology. We therefore apply a pathway analysis based pre-processing of the genome-scale 

yeast model to derive a reduced model with increased fraction of measured metabolites. In this 

way, the yeast genome-scale model including three compartments (mitochondria, cytosol and 

extra-cellular space) with 844 metabolites and 1175 reactions was reduced to a two-compartment 

model (intra-cellular and extra-cellular space) with 178 metabolites participating in 139 reactions, 

which corresponded to more than 47% of the quantitative metabolome data used in this study 

(84 metabolites).  The first dataset (Villas-Boas et al., 2005) allowed the examination of the effect 

of a perturbation related to an altered redox metabolism resulting from a gene deletion and aero-

bic/anaerobic growth; while the second dataset (Devantier et al., 2005) was used for studying the 

effect of very-high-gravity fermentation media on metabolic phenotype. 
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Significance of change for each of the measured metabolites was quantified as p-values calculated 

by using the u-test. To address the problems arising due to unavailability of data for over 50% of 

the metabolites (after pre-processing), p-values estimated from uncharacterized peaks in GC-MS 

spectra were randomly assigned to the 94 metabolites that remained unmeasured in the reduced 

metabolic model. These p-values were then converted to Z-scores which will be normally distrib-

uted for a random dataset. Each reaction in the model was then scored by using the Z-scores of 

its neighboring metabolites. 

 

∑= kmetabolitereaction Z
k

Z ,
1  

 

To account for the random assignment of scores to unmeasured metabolites, calculations were 

repeated 1000 times and the resultant scores were averaged. Thus, the final scores represent the 

significance of reactions partially independent on the true levels of the un-quantified metabolites. 

Top scoring reactions are hereby termed reporter reactions. 

As metabolite levels are governed by changes in fluxes and enzyme activities, reporter reactions 

indicate the significance of how those reactions respond to the perturbation under study. Re-

porter scores of reactions participating in selected pathway structures across the analyzed pertur-

bations are consistent with the previously reported findings and/or the expectations based on the 

type of the perturbation. The here reported algorithm thus enabled identification of key reactions 

in the yeast metabolism affected by genetic and environmental perturbations. Reporter reaction 

analysis is an attempt to infer the differential reaction significance based on metabolite measure-

ments, and hence provides a basis for understanding the underlying cellular processes responding 

to the perturbations. 

We also show that our method, in combination with transcriptome data (Devantier et al., 2005) 

may provide information on whether a given reaction is likely to be regulated at the metabolic 

level or at the hierarchical level (ter Kuile and Westerhoff, 2001). The Z-score of a reaction calcu-

lated by our approach can be treated as an indicator of metabolic regulation; whereas the degree 

of hierarchical regulation of reactions can be approximated by the Z-scores calculated based on 

the changes in gene expression levels. By comparing the Z-scores emerging from different omics 

approaches, in this case metabolomics and transcriptomics, the underlying reasoning for regula-
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tion of reactions included in our reduced model could be hypothesized. For the 121 reactions in 

the model having corresponding genes associated with them, the analysis allowed determination 

of the reactions with potential regulation at metabolic, hierarchical, or at both levels. Our results 

indicate that although there are many metabolically regulated reactions in the network, regulation 

is predominantly hierarchical. 

This study can be regarded as one of the first steps towards the integration of different types of 

omics data by using metabolic networks as a scaffold in order to understand the architecture of 

metabolic regulatory circuits. Furthermore, our model driven analysis forms a platform for the 

integration of other types of omics data, such as proteomics, and hence allow genome-scale iden-

tification of regulation in the metabolism. 

 

REFERENCES 

Devantier R, Scheithauer B, Villas-Bôas SG, Pedersen S, Olsson, L (2005) Metabolite profiling 

for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol. 

Bioeng. 90: 703-714. 

Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using meta-

bolic network topology. Proc Nat Acad Sci USA 102: 2685-2689 

ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and meta-

bolic regulation of the glycolytic pathway. FEBS Letters 500: 169-171. 

Villas-Bôas SG, Moxley JF, Åkesson M, Stephanopoulos G, Nielsen J (2005) High-throughput 

metabolic state analysis: the missing link in integrated functional genomics. Biochemical J. 388: 669-

677. 



Metabolome data and reporter reactions                                     PhD Thesis, Kiran R. Patil 

68 

5.2 Abstract 

Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in 

metabolic networks and inherent inter-dependency between enzymatic regulation, metabolite 

levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data 

with metabolic network topology. The algorithm thus enables identification of reporter reactions, 

which are reactions where there are significant coordinated changes in the level of surrounding 

metabolites following environmental/genetic perturbations. Applicability of the algorithm is 

demonstrated by using data from Saccharomyces cerevisiae. The algorithm includes preprocessing of a 

genome-scale yeast model such that the fraction of measured metabolites within the model is 

enhanced, and hereby it is possible to map significant alterations associated with a perturbation 

even though a small fraction of the complete metabolome is measured. By combining the results 

with transcriptome data we further show that it is possible to infer whether the reactions are hier-

archically or metabolically regulated. Hereby the reported approach represents an attempt to map 

different layers of regulation within metabolic networks through combination of metabolome 

and transcriptome data. 

5.3 Introduction 

One of the goals of systems biology is to obtain overall quantitative description of cellular sys-

tems. This is currently not achievable since the number of components and interactions involved 

in these systems is quite large resulting in a very large parameter space. Thus, methods are re-

quired to reduce the dimensionality and particularly identify key regulatory points in the many 

different cellular processes. Metabolism is a good starting point to develop such analysis methods 

as it is studied in great detail and well annotated. Furthermore, genome-scale metabolic models 

have been developed for many different cellular systems (Edwards and Palsson, 2000;Forster et 

al., 2003a;Sheikh et al., 2005), and besides their use for simulation of cellular function (Edwards 

et al., 2001;Famili et al., 2003;Price et al., 2004) these models can serve as scaffolds for analysis of 

genome-scale biological data (Covert et al., 2004;Borodina and Nielsen, 2005). This has been 

demonstrated recently for analysis of transcriptome data, where the use of genome-scale meta-

bolic models enabled identification of co-regulated sub-networks and reporter metabolites (Patil 

and Nielsen, 2005) (Chapter 3). Although transcriptome data provides an overview of the global 

regulation in the metabolism, understanding of cellular physiology is incomplete without knowl-

edge of metabolome owing to the high connectivity in metabolic networks and inherent inter-

dependency between enzymatic regulation, metabolite levels and fluxes (Nielsen, 2003). Metabo-

lites, acting as intermediates of biochemical reactions, play a crucial role within a living cell by 
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connecting many different operating pathways. Metabolite levels are determined by the concen-

trations and the properties of the surrounding enzymes, making their levels a complex function 

of many cellular regulatory processes in different dimensions. Thus, the metabolome represents a 

snapshot of the functioning metabolism of the cell and hence provides valuable information 

about regulation of several different cellular processes (Villas-Boas et al., 2005b). Consequently, 

in recent years there has been increased focus on analysis of the metabolome (Sumner et al., 

2003;Bino et al., 2004;Villas-Boas et al., 2005b). Even though traditional data analysis methods 

like principal component analysis, clustering analysis and chemometrics have shown to be effi-

cient for analysis of this kind of data (Raamsdonk et al., 2001;Allen et al., 2003), there are some 

limitations with these methods for uncovering the underlying biological principles (Weckwerth et 

al., 2004). Furthermore, there are still only few example studies on the use of metabolome data to 

understand regulatory principles in metabolism (for an example see (Kummel et al., 2006)). 

Functional analysis of cellular metabolism and in particular integration of metabolome data with 

other omics-data demands (semi-)quantitative measurements of key metabolites. However, a 

problem with metabolomics is the scarcity of targeted quantitative data, and often metabolome 

analysis is (at best) semi-quantitative even though there is a trend towards more quantitative 

analysis (Nielsen and Oliver, 2005). Although it is currently not yet possible to quantify all the 

metabolites in a cellular system (Goodacre et al., 2004;Fernie et al., 2004), a high-throughput GC-

MS method that allows semi-quantitative identification of several metabolites in S. cerevisiae was 

recently developed (Villas-Boas et al., 2005c;Devantier et al., 2005a). In the latter studies, the lev-

els of 52 unique metabolites (out of 584 reported unique metabolites in the genome-scale yeast 

model (Forster et al., 2003a)) were determined in genetically different yeast strains under different 

environmental conditions. Specifically, metabolites playing important roles in the central carbon 

metabolism and amino acid biosynthesis could be identified. 

In order to understand the regulatory principles underlying the changes in metabolite levels we 

developed an algorithm that enables integration of such quantitative metabolome data with ge-

nome-scale models by using a graph theoretical representation of the metabolism. We demon-

strate the application of this algorithm for the metabolome data reported by Villas-Bôas et al. 

(Villas-Boas et al., 2005c) and Devantier et al. (Devantier et al., 2005a). We use the significance of 

changes in the metabolite levels to identify reporter reactions around which the most significant 

coordinated metabolite changes are observed. Reporter reaction analysis is an attempt to infer the 

differential reaction significance based on metabolite measurements, and hence provides a basis 

for understanding the underlying cellular processes responding to the perturbations. We further 
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demonstrate that through combination with transcriptome data, reporter reactions may provide 

clues on whether regulatory control at a given reaction node is at the metabolic level or at the 

hierarchical level. 

5.4 Results and discussion 

5.4.1 Model Preprocessing  

Due to the large chemical diversity of the metabolome there is currently no single analytical 

method that enables analysis of the complete metabolome. Even the best analytical methods re-

ported to date for metabolome analysis therefore only cover a small fraction of the metabolites 

present in genome-scale metabolic models. The unavailability of data for a large number of me-

tabolites is one of the major problems associated with mapping (and hence integration) of me-

tabolome data on to genome-scale metabolic networks. In order to overcome this fundamental 

problem we pre-processed the genome-scale model of Förster et al. (2003) so as to obtain a re-

duced model where the fraction of experimentally measured metabolites was enriched. This 

processing was done by systematically eliminating unmeasured metabolites from the metabolic 

network. We note that the model pre-processing is dependent on the metabolome data that are 

available, and the pre-processing will have to be done for each case. However, following the 

flow-chart depicted in Supplementary Figure S-5.1 this pre-processing is relatively straight for-

ward and can easily be done also for other metabolic networks. 

The yeast genome-scale model includes three compartments (mitochondria, cytosol and external 

space) with 844 metabolites (559 cytosolic, 164 mitochondrial, 121 external) and 1175 reactions 

(Forster et al., 2003a). Within the context of this model, metabolites present in more than one 

compartment are treated as if they are different entities in each compartment. However, the ex-

perimental data used in this analysis (and most of the datasets available to date) can only differen-

tiate between extracellular and intracellular space. Since metabolite levels in different cellular 

compartments are not available, the cytosolic/mitochondrial compartmentation of the model was 

removed and corresponding metabolites were represented as one, with their corresponding reac-

tions conserved. Also, there are a number of duplicate reactions due to the presence of isoen-

zymes in the model, and these reactions were lumped into single reactions since metabolome data 

alone does not provide information that enables distinction between the operations of different 

isoenzymes. As a result, the ‘processed’ model (Uncompartmented model, UNCOMP) consists 

of 677 metabolites (559 internal, 118 external) with 725 reactions, including transport reactions. 

With this model the experimental data used here amount to about 12 % of these 677 metabolites 

(52 internal, 32 external). 
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Enzyme subsets are enzymes that always operate together in fixed flux proportions at steady state 

(Pfeiffer et al., 1999) (Schuster et al., 2002a); often representing enzymes in linear pathways. Ac-

cordingly, the intermediate metabolites in enzyme subsets can be assumed to be similarly affected 

by the perturbations. The uncompartmented model (UNCOMP) was further reduced in size by 

using METATOOL 4.3 (Pfeiffer et al., 1999) (Dandekar et al., 2003) and thus representing each 

enzyme subset as a single reaction. The resulting model (Enzyme-subset model, ENZSUB-1) 

consists of 563 metabolites and 590 reactions and it has about 15 % of the metabolites measured 

within the data used. Since the removal of the metabolites in linear pathways also led to the omis-

sion of 6 measured metabolites, the reactions containing these metabolites were restored back 

into the ENZSUB-1 model. To further increase the fraction of the measured metabolites, poten-

tially inactive (or potentially low flux) reactions were removed. This was done by using Flux Bal-

ance Analysis (FBA) (Varma and Palsson, 1994) (Kauffman et al., 2003) for simulation of fluxes 

at specific environmental conditions used in the experiments (aerobic and anaerobic batch culti-

vation in glucose-limited minimal media). The ENZSUB-1 model was used to simulate the fluxes 

with the objective of optimum growth. Then, the maximum and the minimum flux for each reac-

tion in the model were obtained by constraining the specific growth rate between its optimum 

value and 50% of the optimum. Reactions that had zero flux in the FBA analysis (at both opti-

mum values) were considered as potentially invariant between the studied perturbations and thus 

omitted from the ENZSUB-1 model. The resulting model had 349 reactions involving 267 me-

tabolites. The here-used FBA-based approach for model reduction does not necessarily imply 

that the eliminated reactions are inactive and that the metabolites involved in these reactions not 

present in the cell. However, it is assumed that as these reactions are likely to carry very low 

fluxes under the studied conditions, the associated metabolite pools are likely to be weakly af-

fected due to changes in the fluxes through these reactions.  Although this approach is useful, the 

assumption is not fool-proof as we indeed found certain measured metabolites that were inter-

mediates in pathways with zero fluxes (Pimelic Acid, PIMExt, Myristic Acid, C140xt, trans-4-

hydroxy-L-proline, Itaconate, Nicotinate, 4-Aminobenzoate, THMxt). The first six of these me-

tabolites were detected as ‘invariant’ by the FBA approach due to the fact that that these metabo-

lites are not connected to the overall network (Forster et al., 2003a). However, here we restored 

back reactions involving these measured metabolites, and the resulting model comprised a total 

of 285 metabolites participating in 361 reactions (Supplementary Figure S-5.1). Even though cer-

tain reactions may be removed from the analysis by using this approach, the algorithm will still 

correctly identify reporter reactions, given the metabolome dataset. The resulting metabolic net-



Metabolome data and reporter reactions                                     PhD Thesis, Kiran R. Patil 

72 

work, ENZSUB-2 model, was substantially enriched in terms of the content of measured me-

tabolites (now accounting for about 30%). 

In order to further focus the analysis only on reactions involving measured metabolites, EN-

ZSUB-3 was constructed by keeping only reactions that involved at least one measured metabo-

lite. Additionally, only one member of the NADH/NAD+, NADPH/NADP+, FADH2/FAD+ 

cofactor pairs, when available, was retained in the remaining reactions since the levels of mem-

bers of each pair were assumed to be interdependent. The resulting metabolic network, EN-

ZSUB-3, included a total of 178 metabolites participating in 139 reactions, which corresponds to 

more than 47% of the available quantitative metabolome data (Supplementary Figure S-5.1).  The 

139 reactions included in the model are given in the Supplementary Table 1. 

The significance of change in the levels of metabolites between any two conditions was calculated 

by applying a statistical test (see methods section). However, it is difficult to deduce which reac-

tions in the cell are affected most by only judging the significance of the change in metabolite 

levels, since the number of the metabolic reactions in the cell is high and one metabolite usually 

appears in more than one reaction. Thus, we calculated a normalized Z-score for each reaction 

based on the z-values of its neighboring metabolites (p-values of individual metabolites were 

converted to Z-scores by using inverse normal cumulative distribution function, see methods 

section). Here we assume that the calculated reaction Z-scores can be regarded as an indicator of 

the significance of how the reactions respond to the studied perturbation at metabolic level. This 

assumption is based on the fact that metabolite levels are governed by changes in fluxes and en-

zyme activities (Nielsen, 2003). Reactions exhibiting significant changes (typically z > 1.28, corre-

sponding to p< 0.10) for the perturbations analyzed were identified by using the graph represen-

tation of the derived metabolic model, ENZSUB-3, and listed in Table 5.1 and Table 5.2. A loose 

cut-off was deliberately chosen since we did not want to be too-biased in the light of the fact that 

measurements were not available for all of the metabolites in the model, and thus the resultant p-

values are in fact, in general, shifted to high values due to randomly selected p-values for those 

unmeasured metabolites. 
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Figure 5.1. Reporter reaction algorithm to identify differential reaction significance by integrating metabolome 

data with metabolic networks. Quantitative metabolome data obtained from perturbation experiments is inter-

preted in terms of significance of change, and mapped onto the stoichiometric network which is represented as 

bi-partite undirected graph, to identify reporter reactions. 



Metabolome data and reporter reactions                                     PhD Thesis, Kiran R. Patil 

74 

 

Table 5.1. Reactions with significant z-scores (p < 0.10, z > 1.28) in response to genetic perturbations by altered 

redox metabolism and environmental perturbation by oxygen availabilitya,b,c. The number of measured metabo-

lites and the total number of metabolites for each reaction are also given in parentheses. The explicit form of the 

reactions can be followed from Supplementary Table 1. 

Genetic Perturbation (aerobic) Genetic Perturbation 

 (anaerobic) 
Environmental Perturbation (wild 
type strain) 

VALsyn                (4/4) 2.90 AGX1                   (4/4) 2.67 UGAES (5/5) 2.41 

ALT                      (4/4) 2.83 ALT                      (4/4) 2.35 ALT                  (4/4) 2.34 

LEUsynES (5/6) 2.66 PROsc (2/3) 2.08 AGX1               (4/4) 2.34 

TYRsyn                (3/4) 2.54 LEUsynES (5/6) 1.80 CAR2               (3/4) 1.95 

CAR2                   (3/4) 2.50 ASP3-1                (2/3) 1.78 LEUsynES (5/6) 1.95 

PHEsynES     (3/5) 2.25 U46_                    (3/4) 1.64 TYRsyn            (3/4) 1.92 

AGX1                   (4/4) 2.01 CHA1p                 (2/3) 1.58 VALsyn     (4/4) 1.87 

AAT                      (4/4) 1.86 PHEsynES     (3/5) 1.57 PHEsynES     (3/5) 1.74 

ILEsynES (6/7) 1.77 PUT1                   (2/3) 1.55 SERsynES (4/6) 1.67 

SUCsc                  (2/3) 1.66 VALsyn     (4/4) 1.54 GAD1               (2/3) 1.47 

SDH                     (2/3) 1.63 GLY1                   (2/3) 1.50 GDH13             (3/4)) 1.44 

HISsynES (4/10) 1.58 SERsynES (4/6) 1.41 ASP3-1             (2/3) 1.39 

ASP3-1                (2/3) 1.57    GDH2               (3/4) 1.38 

GDH2                   (3/4) 1.55    MYRsc (2/2) 1.36 

DLD                      (2/4) 1.51    ILEsynES (6/7) 1.36 

UGAES  (5/5) 1.48    HISsynES (4/10) 1.34 

SERsynES (4/6) 1.46    GLYsyn (2/4) 1.30 

LEU4                    (2/4) 1.36    U155_ (4/4) 1.29 

FUM (2/2) 1.28       

aReactions specific to each perturbation are given in bold letters. bES means that the corresponding reaction is an 
enzyme subset consisting of combination of more than one reaction. csc in some of the reaction names stands for 
‘secretion’, indicating that they are secretion reactions. 
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Table 5.2.  Effect of media change (standard medium vs. VHG medium) on each strain analyzed by the devel-

oped approach.  Reactions with significant z-scores (p < 0.10, z > 1.28) are showna. z-scores of the gene expres-

sion changes are also given for comparison. zRE: z-scores of reactions calculated by the developed approach, zGE: 

z-scores of genes/gene groups calculated from asscociated p-values from transcriptome data. The number of 

measured metabolites and the total number of metabolites for each reaction are also given in parentheses. 

Media Change for laboratory strain  

(CEN.PK113-7D) 

Media Change for industrial strain  

(Red Star) 

  zRE zGE   zRE zGE 

ALT                                         (4/4) 2.50 2.48 ALT                                     (4/4) 2.48 1.80 

AGX1                                      (4/4) 2.45 0.86 AGX1                                   (4/4) 2.31 2.21 

UGA ES                                    (5/5) 2.18 1.69 UGA ES                                (5/5) 2.23 0.38 

ECM40                                    (3/4) 1.85 2.39 U155_                                  (4/4) 2.01 - 

GLUsc                                     (2/3) 1.85 1.17 ASN                                    (4/7) 1.85 0.54 

ASN                                        (4/7) 1.84 2.30 TYRsyn                                (3/4) 1.84 3.41 

CAR2                                      (3/4) 1.74 0.57 GLUsc                                 (2/3) 1.81 0.79 

LYSsyn ES (7/8) 1.67 2.46 PHEsyn ES                            (3/5) 1.65 0.98 

TRP23                                     (3/5) 1.67 1.31 TRP23                                 (3/5) 1.65 0.78 

ASP3-1                                   (2/3) 1.47 1.45 PROsc                                 (2/3) 1.45 0.90 

CHA1p                                    (2/3) 1.47 0.93 ALAsc                                  (2/3) 1.45 0.75 

U42_ -43_                               (2/3) 1.47 - GLYsc                                  (2/3) 1.45 0.80 

ASPsc                                     (2/3) 1.43 2.09 LACsc                                  (2/3) 1.45 0.86 

PROsc                                    (2/3) 1.43 1.40 PYRsc                                  (2/3) 1.45 0.86 

ALAsc                                     (2/3) 1.43 1.90 SUCsc                                (2/3) 1.45 - 

GLYsc                                     (2/3) 1.43 1.66 CITsc                                   (2/3) 1.45 - 

LACsc                                     (2/3) 1.43 0.81 AKGsc                                (2/3) 1.45 - 

PYRsc                                     (2/3) 1.43 0.81 U88_                                    (2/3) 1.43 - 

SUCsc                                     (2/3) 1.43 - GAD1                                  (2/3) 1.43 1.21 
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GLY1                                       (2/3) 1.41 0.41 ILEsynES                       (6/7) 1.42 1.90 

VALsc                                     (2/3) 1.38 1.55 ASP3-1                                (2/3) 1.41 1.34 

PHEsyn ES                               (3/5) 1.36 1.66 U42_-43_                             (2/3) 1.41 - 

GAD1                                      (2/3) 1.29 1.46 LEUsynES        (5/6) 1.38 0.91 

    ASPsc                                  (2/3) 1.29 0.86 

    ARG5,6-8ES                          (4/8) 1.28 0.88 

a Reactions specific to each perturbation are given in bold letters. 

5.4.2 Effect of an altered redox metabolism and oxygen availability 

As a first demonstration of our approach we considered data from metabolome analysis of two 

different S. cerevisiae strains, a wild type laboratory strain (CEN.PK.113-7D) and a redox engi-

neered strain, which was carried out in batch cultures under two different environmental condi-

tions (aerobic and anaerobic) in standard mineral media with glucose as the sole carbon source 

(Villas-Boas et al., 2005c). The redox engineered strain carrying a deletion of the NADPH-

dependent glutamate dehydrogenase encoded by GDH1 and an over-expression of the NADH-

dependent glutamate dehydrogenase encoded by GDH2 was constructed by dos Santos et al. 

(2003). Three different perturbations were analyzed here: genetic change under both aerobic and 

anaerobic conditions (wild type versus redox engineered strain), and environmental change for 

the wild type strain (aerobic versus anaerobic). Since it was reported that sample-to-sample vari-

ability exceeds flask-to-flask variability, replicate samples from different shake flasks were treated 

equivalently (Villas-Boas et al., 2005c). Accordingly, the metabolome dataset includes around 15 

intracellular and 9 extracellular replicates for each experimental condition. The dataset used in 

this study is available in the supplemental material as normalized abundances of GC-MS peaks. 

Comparison of the wild type and mutant strains revealed that the genetic changes do not alter the 

basic growth characteristics in aerobic (dos Santos et al., 2003) and anaerobic (Nissen et al., 2000) 

batch cultivations. Our approach, however, captures the associated changes in different cellular 

pathways by identifying a number of significantly affected reactions due to these perturbations. 

The detected reactions (Table 5.1) belong to many different amino acid pathways, indicating a 

widespread effect of the mutation on the cellular metabolism. The present integrated approach 

also differentiates between the genetic perturbation under aerobic and anaerobic conditions as 

there are reactions that are specific to each condition. 
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Genetic perturbations (wild type versus redox engineered) used in the present study are directly 

related to a changed redox metabolism. Environmental perturbation (aerobic versus anaerobic) is, 

however, also associated with a changed redox metabolism due to the direct effect of oxygen 

availability on the operation of the TCA cycle and the pentose phosphate pathway, and hence on 

the redox state of the cell. This is also reflected in the identified reporter reactions since a number 

of common significantly changed reactions are observed for the two different types of perturba-

tion (Table 5.1, Supplementary Table 5.2). 

The glutamate decarboxylase reaction (GAD1) appears as a significantly changed reaction specific 

to the environmental perturbation of the wild type cells, which implies a major role of this reac-

tion during respiratory growth (Table 5.1). Indeed, it was reported (McCammon et al., 2003) that 

the defects in any of the 15 TCA cycle genes, associated with the slowing down of the respiratory 

metabolism, result in a substantial decrease in the mRNA levels of GAD1, which is in agreement 

with our findings. GAD1 constitutes the first step of the glutamate catabolic pathway towards 

succinate (Coleman et al., 2001). The downstream steps of the pathway are catalyzed by Uga1p 

and Uga2p (UGAES), which are affected most by the environmental perturbation (Table 5.1). 

Detection of all reactions of this pathway (GAD1, UGAES) as responsive to the oxygen availabil-

ity (Figure 5.2a) indicates that they have a key role in succinate production via glutamate under 

anaerobic conditions where the yeast is secreting succinate. In fact, this pathway was found to be 

activated during oxidative (Coleman et al., 2001) or osmotic (sugar) (Erasmus et al., 2003) stress 

to control the redox balance of the cell. 

Although the glyoxylate cycle is generally believed to be repressed during growth on glucose, 

Villas-Bôas et al. (Villas-Boas et al., 2005a) found that an alternative pathway for glyoxylate bio-

synthesis is active in S. cerevisiae. Examination of the Z-scores of reactions involving glyoxylate for 

all the analyzed perturbations revealed that AGX1 (reaction of enzyme encoded by YFL030w), 

which enables synthesis of glyoxylate from glycine, has much higher scores for all the perturba-

tions compared to the reactions of the glyoxylate pathway (ICL and MLS) (Figure 5.2b). Thus, 

our analysis supports the presence of an alternative pathway catalyzed by AGX1 leading to the 

biosynthesis of glyoxylate from glycine. 

Reporter reaction analysis also identifies that the genetic perturbation results in metabolic 

changes around the genes that are perturbed (Figure 5.2c). Thus, the reaction responsible for the 

over-expressed gene in the redox-engineered strain, GDH2, has a significant Z-score for the ge-

netic perturbation under aerobic condition. It should be mentioned that a genetic perturbation of 

a gene should not necessarily result in that the corresponding reaction comes out as a reporter 
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reaction,  as certain genetic perturbations may lead to only small changes in metabolite levels. 

However, in this case there are two genetic modifications around α-ketoglutarate and glutamate 

(deletion of GDH1 and over-expression of GDH2) which leads to identification of GDH2 as 

reporter. For the genetic change under anaerobic conditions, the detected significance of GDH2 

is comparably lower. However, an indirect effect of the genetic modification in the glutamate 

biosynthesis can be observed from the presence of transaminase activity associated with some of 

the identified reporter reactions for this perturbation (conversion of glutamate to α-ketoglutarate 

by ALT, LEUsynES, PHEsynES, VALsyn, SERsynES, Table 5.1, Supplementary Table 2). On the 

other hand, the aerobic-anaerobic shift for the wild-type gives rise to nearly the same Z-score for 

GDH2 reaction as the genetic perturbation under aerobic conditions. One explanation for this 

similarity in behavior would be that oxygen availability may have a direct effect on glutamate de-

hydrogenase genes; that is, cessation of oxygen uptake or manipulation of redox metabolism may 

result in similar effects on this node in the metabolism.  In fact, in chemostat cultures, GDH2 is 

associated with a significant transcription change when subjected to the same environmental per-

turbation (Piper et al., 2002).  On the other hand, it is not possible to make a definite interpreta-

tion about the effect of the mutation on the deleted gene, GDH1, by looking at the Z-score of 

GDH13 reaction since the reaction catalyzed by Gdh1p is identical with that catalyzed by Gdh3p. 

Consequently, what is reflected by this Z-score is the ‘combined’ response of these two enzymes. 

The reason that the GDH13 reaction is not identified as a reporter reaction whereas the GDH2 

reaction is identified can only be explained by either a different response in the co-factor level as 

a consequence of the perturbations, i.e. the NADPH/NADP+ levels do not change as much as 

the NADH/NAD+ levels, or due to measurement errors of these co-factors (these co-factors are 

inherently difficult to measure). 

Since the TCA cycle activity is known to be low under anaerobic conditions, the associated effect 

of genetic mutation under this condition is expected to be weaker than the other two perturba-

tions analyzed. The Z-scores for the SDH and FUM reactions (both being part of the TCA cycle) 

are clearly in agreement with this expectation (Figure 5.2d). These two reactions are also mem-

bers of the electron transport system, and this further explains why the metabolites surrounding 

these reactions exhibit remarkably weaker coordinated change in the genetic perturbation under 

anaerobic condition than in the other perturbations. 

Similarly, the Z-scores of key reactions involving oxaloacetate suggest that these reactions are 

mainly affected in the redox engineered strain under aerobic conditions (Figure 5.2e), and AAT, a 

transamination reaction leading to the conversion of oxaloacetate to aspartate, appears to be the 
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key reaction where oxaloacetate is involved. There is no literature data available about the effect 

of the genetic perturbation on this metabolic reaction but as the genetic perturbation results in a 

changed ratio of glutamate to 2-oxoglutarate (Villas-Boas et al., 2005c) that may have effected 

this important transamination reaction. 
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Figure 5.2. Example pathway structures based on Z-scores of reactions, which demonstrate the metabolomic 

response of the selected reactions in the reported case studies, viz., the effect of an altered redox metabolism and 

aerobic/anaerobic growth. The dashed lines correspond to the cut-off of 1.28 (p = 0.10). See text for detailed 

discussion. a) Glutamate catabolic pathway. b) Glyoxylate metabolism. c) Glutamate dehydrogenation reactions. 

d) TCA cycle. e) Oxaloacetate metabolism. 
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5.4.3 Effect of very-high-gravity fermentation 

As a second demonstration of our approach we used metabolome data from two different S. 

cerevisiae strains, a laboratory strain (CEN.PK.113-7D) and an industrial strain used for fuel etha-

nol production (hereafter termed as “Red Star”). For both strains the data were obtained from 

anaerobic batch cultures under two different cultivation conditions; exponential growth in a glu-

cose containing standard mineral media and the stationary phase in a maltodextrin containing 

very-high-gravity (VHG) mineral media (Devantier et al., 2005a). Environmental perturbations 

obtained through variation in the media were analyzed here for each strain. The intracellular me-

tabolome dataset includes 4 replicates for the standard medium and 8 replicates for the VHG 

medium. The extracellular metabolome dataset has 6 replicates for each condition. The complete 

dataset is available in the supplemental material. 

As for the first case study discussed above, the two media perturbations analyzed revealed the 

same trend for the glyoxylate reactions, pointing to substantial regulation of the AGX1 reaction 

node in both perturbations (data not shown). In case of the glutamate metabolism, all the reac-

tions have noticeably higher Z-scores, except GDH2, implying that this pathway is highly af-

fected by VHG associated media changes. All of the TCA cycle reactions shown in Figure 5.2d 

have very low Z-scores, in accordance with the fact that the cycle is barely operational under any 

of the experimental conditions studied (anaerobic fermentations). For reactions involving ox-

aloacetate, AAT again appears to play the major role as observed in the first data set, in parallel 

with the graph shown in Figure 5.2e. 

The reaction governed by Gad1p, which catalyzes decarboxylation of glutamate – a reaction that 

is generally considered to be associated with stress, is found to be significantly changed in both 

strains when the media was changed (Table 5.2). A noticeably lower score was obtained for com-

parison of the two strains grown on the standard medium (results not shown), which shows that 

the standard medium imposes less stress compared with the VHG medium where sugar and 

ethanol stresses are predominant. The appearance of all reactions (GAD1, UGAES) involved in 

the glutamate catabolic pathway as reporter reactions when the media is perturbed (Table 5.2) 

points to the fact that this perturbation has a major effect on the amino acid metabolism, and 

probably also on the redox balance in the cell. The results of transcriptome analysis for the same 

strains in standard and VHG media (Devantier et al., 2005b) indicate that the strains have differ-

ences in their redox balancing confirming our finding. 
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A large number of transport reactions were found to have significant Z-scores (Table 5.2). GC-

MS analysis of extracellular metabolites in the VHG medium revealed many more metabolites 

compared to what is found in the standard medium, explaining the appearance of transport reac-

tions as significant. The here-reported algorithm allowed us to identify and quantify the secretion 

reactions which are mostly affected from the media change, by integrating both intracellular and 

extracellular measurements to the reaction network. Secretion of a number of amino acids (glu-

tamate, aspartate, proline, alanine and glycine), and succinate, pyruvate and lactate are commonly 

and significantly regulated in response to media perturbation for both the laboratory and the red 

star strain.  On the other hand, detection of strain-specific secretion patterns (valine, citrate and 

alpha-ketoglutarate, Table 5.2) points to differences in operation of the metabolic network in the 

two strains, possibly arising from the difference in the redox metabolism of the two strains. 

Since the change in the fermentation medium led to ethanol and osmotic stress for both strains 

(Devantier et al., 2005a), it is not surprising that many of the reactions are shared in the identified 

lists for the two strains in the media comparison (Table 5.2). Transcriptome analysis of this data-

set revealed that a substantial part of the significantly changed genes were involved in protein 

synthesis and amino acid metabolism (Devantier et al., 2005b).  Thus, amino acid pathway reac-

tions detected by our analysis (Table 5.2) are in accordance with the transcriptome data. Absence 

of amino acid synthesis in VHG media due to the cessation of growth in the stationary phase can 

be a possible cause of the observed differences. 

5.4.4 Integration of metabolome data with transcriptome data for understanding regulation 

For the latter case study, where the effect of a VHG medium was analyzed on the metabolome of 

laboratory and industrial strains, there was also performed genome wide expression analysis 

(Devantier et al., 2005b). This basically enables further evaluation of mode of regulation for the 

different reactions in the reduced metabolic network. ter Kuile & Westerhoff (ter Kuile and 

Westerhoff, 2001) introduced the concept of metabolic regulation and hierarchical regulation, 

where the first indicates that regulation of flux is at the level of enzyme kinetics, i.e. through 

changes of the metabolite levels, and the second indicates that regulation of flux is at the level of 

enzyme production/activity (transcription/translation/post-translational modification). As both 

metabolite data and transcription data are available for this case study, we looked into whether it 

was possible to identify the type of regulation at the individual reaction level. A major obstacle 

for this kind of analysis is, however, that we do not have information about changes in fluxes for 

the analyzed conditions, and such data would also be difficult to obtain. Although there are effi-

cient methods for obtaining data on the metabolic fluxes in the central carbon metabolism 
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(Nielsen, 2003), it is difficult to get good estimates for the fluxes in all pathways of the metabolic 

network analyzed here, and even though the fluxes can be calculated by using flux balance analy-

sis, this method is not well suited to give precise estimates for the actual fluxes in networks where 

there are redundant pathways. In order to proceed with analysis we therefore assumed that 

whenever there was a coordinated significant change in metabolite levels around a reaction, then 

it is very likely that the flux through this reaction is also changing. However, there is no guarantee 

that the flux through this reaction is also changed as there could also be a change in the enzyme 

concentration, or there could even be altered allosteric regulation of the enzyme, thus keeping the 

flux unchanged. Thus, our assumption may result in identification of some false positives, but 

still the analysis would clearly lead to identification of reactions around which there is at least one 

level of regulation (and possibly several levels of regulation), and we will therefore refer to these 

reactions as being metabolically regulated. For all the reactions that are not identified as reporter 

reactions we can not infer anything about whether the flux has changed, but still we can deduce 

from the transcription data whether there has occurred regulation at the hierarchical level, and 

even though this does not necessarily mean hierarchical regulation of the flux we will refer to 

these reactions as being hierarchically regulated. This deduction can still be informative as indica-

tor of the logic of transcriptional regulatory machinery governing gene expression. For cases 

where there was a significant change at the transcriptional level for an identified reporter reaction 

we considered this to be a situation where there was mixed regulation. 

The metabolic network includes several enzymes (hence reactions) governed by multiple genes. 

Thus, in order to infer about the significance of change in expression levels for the reactions we 

summed the transcript levels for all genes coding for the same reaction before applying the statis-

tical test. The p-values of transcripts were then calculated by using a t-test with unequal variance, 

and further converted into Z-scores to enable a comparison with the Z-scores of reactions based 

on metabolome data. 

Using this approach we grouped all the reactions of the metabolic network into whether they 

were metabolically or hierarchically regulated (or a combination or not regulated at all) for the 

VHG dataset. To score the magnitude of the regulation at the hierarchical and metabolic levels 

we used the corresponding Z-scores. Hereby the qualitative evaluation of Z-scores emerging 

from the transcriptome and the metabolome data enabled us to get an indication of regulation 

within the metabolic network (see Supplementary Figure S-5.2, Supplementary Table 3). The 

cases where only the transcript Z-score is significantly changed can be scored as points with pos-

sible hierarchical regulation, whereas the opposite case where only the metabolite based Z-score 
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has significantly changed implies metabolic regulation of the corresponding reaction (Rossell et 

al., 2005). When both Z-scores are significant there is regulation shared at both levels, and when 

none of the Z-scores are significant, it is not possible to infer about at which level there is regula-

tion. 

Of the 121 reactions in the model having corresponding genes associated with them, the number 

of reactions predicted to be regulated hierarchically, metabolically, and at both levels were 56, 7, 

and 14 respectively for the media perturbation with the laboratory strain, and 31, 14, and 5 for 

the same perturbation with the industrial strain (Figure 5.3, Supplementary Table 3). For the 

laboratory strain, 44 reactions were found to be relatively irresponsive to the perturbation. On 

the other hand, the number of potentially unregulated reactions was much higher (71) for the 

industrial strain. One explanation for the observed predominance of transcriptional regulation 

could be the fact that the strains protect themselves against the applied perturbation by mainly 

changing their gene expression to minimize the changes in the metabolome; an observation also 

encountered in plants (Hirai et al., 2004). Figure 5.3 and Supplementary Table 3 suggest that 

metabolic regulation is mainly predominant for secretion reactions and amino acid pathways with 

or without simultaneous hierarchical regulation, the sole exceptions being proline and methion-

ine/cysteine pathways. It is logical to identify the latter as subjected to different regulation since 

they are involved in pathways with sulfur assimilation and there were no direct perturbation on 

sulfur utilization in the experimental study. The type of regulation for a number of reactions dif-

fers between the two strains, which supports the finding that gene expression pattern can vary 

within different S. cerevisiae strains (Ferea et al., 1999;Brem et al., 2002;Townsend et al., 

2003;Jansen et al., 2005). Ferea et al. (Ferea et al., 1999) have reported altered expression levels of 

genes involved in metabolite transport for strains obtained by adaptive evolution in glucose lim-

ited cultures. This observation presents an interesting analogy to our analysis, as the industrial 

strain is also likely to be a result of adaptive evolution. Similarly, different wild type strains were 

found to have widespread variations in expression of genes involved in amino acid metabolism 

(Townsend et al., 2003). In order to further validate that the metabolism is different in the indus-

trial and laboratory strains, we performed principal component analysis of the metabolome data 

for the VHG medium dataset (Supplementary Figure 3). This shows a clear distinction of the 

strains indicating that the strains behave remarkably different at the level of metabolome. Our 

analysis systematically combines the transcriptome and metabolome and deduces the underlying 

regulation causing these differences in metabolism.  Notably, following a change to a high-gravity 

fermentation medium, transcriptional regulation of metabolism is much more pre-dominant in 

the laboratory strain as compared to the industrial strain; whereas the number of reporter reac-
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tions between two strains is around the same with a 70% overlap (Table 5.2). This strongly sug-

gests that although the industrial strain has a better adaptation of its transcriptional program for 

high-gravity media, there is still similar metabolic regulation pattern to the laboratory strain. The 

difference in strains in terms of their response to the same perturbation is, again, very visible in 

the secretion reactions where laboratory strain attempts to regulate them also at transcriptional 

level, whereas industrial strain relies predominantly on metabolic control (Figure 5.3, Supplemen-

tary Table 3). The lesser degree of transcriptional regulation in the industrial strain could benefit 

the cells by reducing the investment of resources in transcriptional regulatory machinery. 
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Figure 5.3. Magnitude of the regulation for the reactions of 

the metabolic network, ENZSUB3, at the hierarchical and 

metabolic levels for the effect of very high-gravity (VHG) 

fermentation media on laboratory (CEN.PK113-7D) and 

industrial (RS) strains. Z-scores calculated based on gene 

expression changes (zGE) and based on changes in the 

surrounding metabolites (zRE) are shown. Red means a 

positive Z-score, and green means a negative Z-score indi-

cating that the regulation is insignificant. Reactions were 

color-coded with respect to their Z-scores using z = 1.28 (p 

= 0.10) as the cut-off value to decide on the corresponding 

regulation type. yellow: hierarchically regulation. black: 

metabolically regulation. violet: mixed regulation. white: 

statistically insignificant score  for both type. 
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5.5 Conclusions 

In the present study, an integrative algorithm based on metabolome data was introduced for the 

identification of reporter reactions, defined as the reactions that are responding to a genetic or 

environmental perturbation through a coordinated variation in the levels of surrounding metabo-

lites. We demonstrate that the algorithm functions, even with a small number of measured me-

tabolites (84), which is a typical situation for several currently used technologies. Moreover, the 

method developed is suitable for mapping the entire alterations associated with a specific pertur-

bation, depending on the advances in analytical detection techniques enabling the measurement 

of a larger number of metabolites. 

Furthermore, when integrated with transcriptome data our approach can be used to infer infor-

mation about whether a reaction is metabolically regulated or whether it is hierarchically regu-

lated. Our analysis can therefore be regarded as a genome-scale approach towards the integration 

of different types of omics data by using metabolic networks as a scaffold in order to understand 

the architecture of metabolic regulatory circuits. Furthermore, our model driven analysis is flexi-

ble and will further allow integration of other types of omics data, such as proteomics, and this 

will further refine the method presented herein to account for the genome-scale alterations in 

response to genetic as well as environmental perturbations, and hence allow genome-scale identi-

fication of regulation in the metabolism. 

5.6 Methods 

5.6.1 Graph Representation 

In the present study, the metabolic network ENZSUB-3 was represented as a bipartite undirected 

graph to identify reporter reactions. Reactions and metabolites were both taken as nodes, and the 

edges denoted the interactions between them (Patil and Nielsen, 2005) (Chapter 3). Hence, the 

graph consisted of 317 nodes.  

Different genetic and environmental perturbations associated with the two datasets (Devantier et 

al., 2005a;Villas-Boas et al., 2005c) were analyzed. The graph representation was used to identify 

‘reporter reactions’ for these perturbations. The algorithm used in the simulations is a modifica-

tion of the algorithm recently developed by Patil & Nielsen (Patil and Nielsen, 2005) (Chapter 3), 

which was based on the analysis of transcriptoma data to identify so-called reporter metabolites, 

the spots in the metabolism with substantial transcriptional regulation.  The modified algorithm 

herein has the capability of identifying reporter reactions, the putative key points in the metabo-

lism in terms of metabolic regulation (Figure 5.1). 
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5.6.2 Significance Test 

The significance of change for the experimental metabolite levels between any two conditions 

were determined by comparing the levels with the aid of a statistical-test, thereby quantifying the 

effect of the associated perturbation. For each of the perturbations, the statistical test was applied 

to the experimental data following the normalization process described by Villas-Bôas et al. 

(Villas-Boas et al., 2005c). Briefly, the normalization process is such that the within-group vari-

ances among replicates are reduced and between-group variances are maximized. The Mann-

Whitney rank-sum u-test is a nonparametric statistical test which has no a priori assumption about 

the distribution type of the data. It was preferred over the standard t-test since the distribution of 

levels of some of the metabolites among the replicates, especially NAD+ and NADPH, was 

found to be skewed rather than normal distributed. The Student t-test assumes normal distribu-

tion of the data and compares the mean values whereas the u-test compares medians rather than 

means. Furthermore, median is a better measure for skewed distributions since it is less sensitive 

to the extreme scores that can be encountered in the replicates. 

5.6.3 Strategy for the Lack of Data 

Since the utilized reporter reaction algorithm depends on the scoring of reactions based on the p-

values of involved metabolites, the lack of p-values for the 94 metabolites that remain unmeas-

ured in the final ENZSUB-3 model must be handled. Random assignment from GC-MS peaks 

was used to overcome the problem of the unavailable data. GC-MS spectra contain a large num-

ber of unknown peaks due to unmeasured metabolites. All the peaks in GC-MS spectra were 

deconvoluted for each replicate. The output was normalized by using a Python code which 

minimizes the sample variability within the classes (Villas-Boas et al., 2005c). Afterwards, the 

peaks in the spectra within a selected time interval (0.15 minutes) were binned to account for the 

fluctuations in the retention times using a MATLAB algorithm. This has resulted in the overall 

detection of 236 unknown peaks for the first dataset (Villas-Boas et al., 2005c), with 116, 178 and 

201 non-zero peak comparisons for genetic perturbations under aerobic and anaerobic condi-

tions and environmental perturbations respectively, and 240 unknown peaks for the second data-

set (Devantier et al., 2005a) with 129 and 174 non-zero peak comparisons for the environmental 

perturbation of laboratory and industrial strains respectively. The significance of change for these 

unknown peaks was quantified for each perturbation by means of p-values using the u-test. 

These p-values were randomly assigned to the unmeasured metabolites. 
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5.6.4 Reporter Reaction Analysis 

Resultant p-values were converted to Z-scores using an inverse normal cumulative distribution 

function for further analysis. Each reaction in the constructed graph was scored by calculating the 

score of the subnetwork formed by its k neighboring metabolites, and z-values of the metabolites 

were used in the scoring. 

∑= kmetabolitereaction Z
k

Z ,
1  

Zreaction score was then corrected for background distribution using the mean (µk) and standard 

deviation (σk) of Z-scores of metabolite groups of the same size, obtained by random sampling 

from the same metabolic network. 

k

kreaction
reactioncorrected

Z
Z

σ
μ−

=−  

In order to minimize the sensitivity of reporter reactions to the randomly selected p-values for 

the non-measured metabolites as mentioned above, the reporter-reaction algorithm was executed 

1000 times by repeating the random assignment in each case. This repetition eliminated the effect 

of the p-values of the assigned peaks on results. For each reaction, the Z-scores in each repetition 

were averaged to get a final Z-score. Those reactions with the highest Z-scores (typically z > 

1.28, corresponding to p< 0.10) can be defined as reporter reactions for a system with complete 

metabolome data. Since available experimental data were not complete, the calculated Z-scores 

were used for deducing the relative significance of the reactions in the analyzed perturbations. 

Namely, we mainly focus on comparative analysis of reactions among the studied perturbations 

as revealed by Figure 5.2, rather than comparing a reaction to another based on its Z-score. The 

underlying reason is to avoid potentially incorrect conclusions due to the unmeasured metabolites 

which have randomly assigned p-values. Additionally, the analyzed reactions have a high percent-

age of measured metabolite content as indicated in Tables 5.1 and 5.2. In the case of low cover-

age of measured metabolite content, this method should be followed with caution as the resultant 

Z-scores of reactions will become insignificant, and such reactions will not be picked up as re-

porters. However, in future when analytical methods have been further improved it is likely  that 

more metabolites can be measured, and one will overcome this shortcoming and our approach 

may then be used to infer  more solidly about the level of regulation at different parts of large 

metabolic networks. Based on the features of our algorithm, we suggest certain guidelines for the 

metabolome measurements in order to effectively exploit our approach: (i)  Measurement of me-
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tabolites that participate in many reactions (hubs in the metabolic network) will increase the per-

formance of the algorithm, (ii) Measurement of metabolites that participate in certain closely re-

lated pathways (metabolites that are closely placed in the network) will increase the confidence in 

the obtained Z-scores for reactions in those pathways (see supplementary note 1 for further dis-

cussion). 

5.6.5 Computational Tools 

METATOOL 4.3 (Pfeiffer et al., 1999) was used for the identification of enzyme subsets in the 

UNCOMP model. The codes written in MATLAB 7.0 (MathWorks Inc.) were utilized for the 

model pre-processing summarized above and to call the algorithm written in C++ for reporter 

reaction identification. Flux Balance Analysis was performed using in-house software BioOpt 

employing LINDO API for linear optimization. Deconvolution of peaks in GC-MS spectra for 

the identification of metabolites based on a metabolite library and for the random peak assign-

ment was achieved using AMDIS software (Stein, 1999), and the peak normalization software 

was kindly provided by J. F. Moxley. 
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5.7 Supplementary material 

Complete supplementary material for this chapter is available online at Molecular Systems Biol-

ogy journal website (http://www.nature.com/msb). Since most of the data presented in supple-

mentary material is not critical for conclusions drawn, they are omitted here for saving the space. 

However, two figures that I think will be useful for the understanding of the results are provided 

below. 
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Figure S-5.1. The preprocessing of the model to reduce the fraction of unmeasured metabolites and to focus on 

reactions involving measured metabolites. Percentages indicate the fraction of measured metabolites in each 

model. 

 

 

Figure S-5.2. a) Major components of flux regulation. Hierarchical regulation is the regulation imposed by gene-

level hierarchy from mRNAs to proteins to enzyme activities. Metabolic regulation is the effect of sub-

strate/product concentrations on the fluxes. b) Classification of (reporter) reactions with respect to regulation 

type. mRNA levels were assumed to reflect enzyme activities. 
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Chapter 6 

Chapter 6: Transcriptional Regulation Evolves Around 
Conserved and Metabolically Related Genes 
 

 
 

 

 

 

"Contrariwise," continues Tweedledee, "if it was so, it might be; and if it were so, it would be; but 

as it isn't, it ain't. That's logic." 
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6.1 Abstract 

Evolution rates of metabolic genes in Saccharomyces cerevisiae have been shown to correlate well 

with their expression levels and functionality (Pal et al., 2006;Pal et al., 2001;Papp et al., 

2004;Vitkup et al., 2006;Wall et al., 2005;Dekel and Alon, 2005). However, it is not only the ex-

pression of individual genes that dictates the overall functionality of the metabolic network, but 

also the co-ordinated expression changes in several functionally related genes in response to ge-

netic/environmental stimuli. Regulatory circuits responsible for such orchestrated expression of 

metabolic genes are not clearly understood in terms of evolutionary and topological principles 

underlying their emergence. We address this question through systemic analysis of gene modules 

emerging from the metabolic network topology with respect to their sequence evolution rates, 

shared promoter sequence motifs and transcriptional co-regulation. We found that the sequence 

conservancy is significantly over-represented in the gene modules associated with metabolites 

that are crucial for survival of yeast. We further show that several of these gene modules share 

sequence motifs in their promoter regions and also show a high degree of transcriptional co-

regulation evaluated across a large gene-expression dataset. Our results imply that the topology of 

metabolic network constraints the evolution of regulatory circuits. In yeast some of these regula-

tory circuits are built around the evolutionary conserved metabolic neighbors. 

6.2 Background 

Metabolism plays a central role in the functioning of cells by providing a thermodynamically fa-

vourable environment and essential building blocks for growth and maintenance. This pivotal 

role of metabolism is evident by two facts: i) metabolic pathways are highly conserved across 

different species ranging from bacteria to humans (Peregrin-Alvarez et al., 2003), and ii) the cellu-

lar response to genetic/environmental perturbation is often reflected or mediated through the 

metabolism (Patil and Nielsen, 2005;Ihmels et al., 2004). Indeed, the evolution of DNA se-

quences at the level of individual metabolic genes (nucleotide substitution rates amongst the 

orthologs from closely related species) has been found to correlate well with their functional im-

portance as reflected in the growth phenotypes of the respective deletion mutants (Wall et al., 

2005). Moreover, it has also been hypothesized and shown that highly expressed genes evolve 

more slowly (Pal et al., 2001). These results provide clues as to which genes perform functions 

that are crucial for the survival and/or adaptation of an organism in light of environ-

mental/genetic challenges faced. Transcriptional regulatory networks aid in adaptation and fine 

tuning of cellular metabolism in response to perturbations and thus play a key role in evolution 

and survival of an organism. However, the evolutionary and operational principles underlying the 
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emergence of these regulatory circuits are still largely unclear.  We have previously demonstrated 

that the operational principles governing metabolic regulation can be uncovered by integrating 

gene expression data with metabolic network topology (Patil and Nielsen, 2005) (Chapter 3).  We 

found that cells respond to perturbations through transcriptional changes in the metabolism that 

are centred on certain perturbation specific hot-spot metabolites, termed reporter metabolites. 

Co-ordinated transcriptional changes around metabolites are indeed necessary for, either to main-

tain homeostasis or to change the enzyme and metabolite levels so as to adjust to the new flux 

demands placed on the metabolic network by perturbation (/s). The transcriptional co-regulation 

of the genes surrounding a metabolite is thus, in part, stoichiometric and thermodynamic neces-

sity. This link between metabolic network topology and transcriptional regulation suggests that 

the regulatory machinery has evolved for and around the metabolites. Here we test this hypothe-

sis from the metabolite-centred systems perspective and investigate the relationship between se-

quence evolution rates and the architecture of regulatory circuits (Figure 6.1). 

6.3 Results and Discussion 

We used the sequence evolution rates for S. cerevisiae (Pal et al., 2006;Kellis et al., 2004) metabolic 

genes in order to identify the metabolites around which the collective evolution rate of corre-

sponding enzyme coding genes (hereafter also referred to as metabolite’s neighbour genes) is 

significantly lower (Conserved-Reporters) and significantly higher (Changed-Reporters) (Meth-

ods). Thus Conserved/Changed Reporter metabolites represent evolutionary hot-spots in the 

metabolic network, with Conserved-Reporter metabolites representing spots in the metabolism 

around which there has been a high degree of sequence conservation (Figure 6.2). Enzymes sur-

rounding the metabolites involved in the upper part of glycolysis and storage carbohydrate me-

tabolism show significant conservancy together with mitochondrial NADH, H+ and Coenzyme-

A; marking their importance in the survival and normal functionality of yeast metabolism. Con-

servancy around metabolites may be either due to their critical role in survival and/or due to se-

quence-optimal nature of operation of the surrounding enzymes. Indeed several of these metabo-

lites are located around branch-points of central carbon metabolism where precursors for bio-

mass synthesis are drawn (Figure 6.2).  On the contrary, Changed-Reporters mainly reside in the 

pathways that are either relatively infrequently used (e.g., utilization of alternative carbon sources) 

or are probably still in a sequence-sub-optimal region of activity, and thus the rapid sequence 

evolution is directed towards optimizing the activity of the corresponding enzymes. These obser-

vations marks the close relationship between the stoichiometry of cellular metabolism, as partially 

reflected in the metabolic network topology, and the evolutionary changes shaping the function-
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ality of this network. Notably, it is possible to uncover these evolutionary hot-spots only through 

holistic analysis of functionally related gene modules (here defined by using metabolic network 

topology) and not by considering evolution at the level of individual genes. 

 

 

Figure 6.1. Schematic representation of the methodology used to uncover the evolutionary principles underlying 

the transcriptional regulation observed in yeast metabolism. For each metabolite from genome-scale metabolic 

model of S. cerevisiae we estimated the motif score (signifying the likelihood of observing a common sequence 

motif in the promoter region of the metabolite’s neighbour genes), evolution score (signifying the collective 

conservancy of the metabolite’s neighbour genes) and co-regulation score (signifying the extent of transcrip-

tional co-regulation among the metabolite’s neighbour genes). These three parameters lead to the identification 

of gene modules that are functionally related via metabolic network topology and show significant transcrip-

tional co-regulation across a large gene expression dataset. Identified motifs in the promoter regions of these 

genes represent known/potential binding sites for transcriptional factors regulating their expression. 

Metabolite’s neighbour genes can be viewed as functionally related gene modules that naturally 

emerge through metabolic network. These modules allowed us to extend the gene expression 

analysis from individual gene level to the transcriptional co-regulation across all of the module 

genes. To this end, we compiled a transcriptome dataset for S. cerevisiae consisting of 1221 public 

domain experiments. This dataset spans transcriptional response of yeast metabolism to a variety 

of genetic (~944) and environmental (~277) perturbations. We calculated a score for each me-

tabolite attesting the significance of correlation amongst the corresponding neighbour genes 

(Methods). This score indicates the extent to which the neighbour enzymes of a metabolite are 
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transcriptionally coregulated as opposed to the correlation amongst the other genes. Over 80 

metabolites were found to have highly significant co-regulation (p-value cut-off corresponding to 

False Discovery Rate of 1) around them (Supplementary Information), supporting our hypothesis 

of metabolite-centred transcriptional regulation. These metabolites span several different meta-

bolic pathways and include highly connected nodes (hubs) such as NADPH, AMP and ATP, 

indicating the connectivity independent nature of transcriptional co-regulation centred on me-

tabolites. 

Next, we tested whether the remarkable degree of global transcriptional co-regulation observed 

around certain metabolites could partially be explained through possible regulatory circuits that 

may be operating via binding in promoter regions of corresponding neighbour genes. We 

searched for the presence of conserved motifs in the upstream regions (800 base-pairs upstream 

of the start codon) of a metabolite’s neighbour genes and assigned a significance score (motif-

score) to each metabolite based on the E-value of the discovered motif (a high motif-score signi-

fies a strongly conserved motif) (Methods). It should be noted that this motif search was per-

formed without using any a priori information about the binding motifs of known transcription 

factors in yeast. This way we could identify putative sequence motifs for promoter binding in the 

upstream regions of around 87 metabolic gene modules. 

Metabolite connectivity and the significance scores of associated gene modules based on se-

quence conservancy, transcriptional co-regulation and shared promoter motifs present a holistic 

picture of how individual nodes of metabolic network have evolved to share their functionality 

and thus bestow operational optimality to the whole network. Indeed, we found that the genes 

around many of the Conserved-Reporter metabolites are not only highly transcriptionally coregu-

lated but also have significant common motifs in their promoter regions (Figure 6.2). On the 

other hand, genes around Changed-Reporter metabolites are, in general, weakly coregulated and 

only few of them show a good motif-score. For certain Conserved-Reporters we could also iden-

tify transcription factors that bind to the corresponding high scoring motifs (Methods). This 

analysis revealed novel regulatory targets for glucose-repression related transcription factors Mig1 

and Rgt1 which we hypothesize to be involved in transcriptionally regulating neighbouring en-

zymes of glucose. This hypothesis was verified by analyzing transcription data from a MIG1 dele-

tion mutant and a reference yeast strain. Most of the genes identified here to be regulated by 

Mig1 have significantly altered expression levels even when compared against known regulatory 

targets of Mig1 (Figure 3). In case of Rgt1, amongst the genes that are known to be regulated by 

Rgt1, only the neighbour genes of glucose have significantly altered expression in the RGT1 dele-
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tion mutant (Table 6.1). Thus, we successfully identified two important elements of the yeast 

glucose repression regulatory cascade and their regulatory targets solely by using the DNA se-

quence data and the topology of mass balance network. Furthermore, our hypothesis driven find-

ings surpasses the current knowledge about the regulation by these proteins in terms of correctly 

predicting the expression changes in their target genes after deletion of the corresponding genes. 

Although in the case of other putative motifs identified in this study, no known transcription 

factors could be directly associated with them, they certainly do represent a starting point for 

unravelling new regulatory circuits in yeast metabolism. 

 

 

Figure 6.2. Overview of sequence conservancy, motif significance and transcriptional co-regulation in yeast 

central carbon metabolism. Metabolites with significant conservancy of neighbouring genes are depicted with 

abbreviated names (Supplementary material). Block arrows indicate the branch-points for biomass precursor 

molecules. Several metabolites around these branch-points display significant sequence conservancy, thus high-

lighting there importance for growth and normal cellular functionality. Important examples include metabolites 

involved in storage carbohydrate metabolism and respiration. Remarkably, metabolites with high conservancy 

score also show significant shared motifs in the promoter region and strong transcriptional co-regulation on 
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global-scale. Consequently, we hypothesize that the transcriptional regulation in metabolism has evolved around 

conserved and functionally related (via network topology) genes. 

 

Table 6.1. Genes known to be transcriptionally regulated by RGT1. List of genes is obtained from Yeast Pro-

teome Database (https://www.proteome.com/proteome/YPD). P–values are calculated by comparing expression 

levels of genes in a reference and RGT1 deleted strain (Kaniak et al., 2004). Confirming to our hypothesis (see 

main text), only genes that are functional neighbours of glucose show significant change in expression level. 

Gene Name p-value Glucose neighbour? 

YHR094C 

YMR011W 

YHR092C 

YGL062W 

YIL162W 

HXT1 

HXT2 

HXT4 

PYC1 

SUC2 

0.0049667 

0.0012873 

0.014453 

0.83389 

0.12378 

Yes 

Yes 

Yes 

No 

No 

 

 

 

Figure 6.3. Comparative histograms of p-values for genes that are neighbours of glucose and genes that are 

known to be transcriptionally regulated by Mig1p (YPD- https://www.proteome.com/control/tools/proteome). P-

values were calculated by comparing expression levels of genes in a reference and MIG1 deleted strain 

(Westergaard et al., 2006). This comparison validates the hypothesis that Mig1p regulates expression of genes 

encoding the neighbouring enzymes of glucose. The hypothesis was generated through integrative analysis of 

sequence conservancy, shared promoter sequence motifs and tight regulation of these genes in a large transcrip-

tome dataset covering more than 1200 experiments. Topology of metabolic network around glucose has thus 

guided the emergence of regulatory circuits for glucose repression. 
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6.4 Conclusions 

Collectively, our results imply that some of the transcriptional regulatory circuits for metabolism 

are built around the evolutionary conserved metabolite neighbours. This observation indeed ra-

tionally explains the emergence of regulatory cascades, as only the conserved and functionally 

related set of genes would have enough evolutionary time and selection advantage to develop 

prevailing regulatory circuits around them. Consequently, it appears that the topology of meta-

bolic network not only constrains the flow of material and energy through the cell, but also places 

functional constraints on the evolution of it’s elements and regulatory circuits coordinating their 

expression levels in response to environmental/genetic stimuli. For S. cerevisiae, storage-

carbohydrate metabolism, glycolysis and mitochondrial energy generation appears to be under 

evolutionary selection process for optimization through development of transcriptional regula-

tory mechanisms for control of their operation. This conjecture is in agreement with a recent 

study where transcriptional co-regulation of storage-carbohydrates and mitochondrial respiration 

were found to be prevalent and temporally synchronized (Tu et al., 2005). 

6.5 Methods 

Conserved/Changed Reporter metabolites 

The genome-scale model of Saccharomyces cerevisiae (Forster et al., 2003a) was first converted to a 

bi-partite graph where each metabolite is connected to genes that encode for enzymes catalyzing 

the reaction involving that metabolite (hereafter also referred to as neighbour genes of a metabo-

lite). Each gene in this graph was then assigned a score as inverse normal cumulative of it’s se-

quence evolution rate (Kellis et al., 2004;Wall et al., 2005), igene
evoZ  , . A score for each metabolite 

was then calculated and corrected for background distribution of evolution rates as: 

k
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kgene
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 Where kμ  and kσ denote the mean and standard deviation of average evolution scores for 

10000 randomly selected groups of k genes. Scores of metabolites were converted to p-values by 

using normal cumulative distribution function. Metabolites with high positive scores (low p-

values) indicate significant concentration of sequence conservancy in their neighbour genes, while 

metabolites with high negative scores indicate significantly high rate of sequence evolution 

around them. 
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Motif-score for metabolites 

Promoter regions (800 basepairs upstream of start codon, downloaded from SCPD- 

http://rulai.cshl.edu/SCPD/) of neighbour genes of a metabolite were searched for a conserved 

motif by using RSA-tools (http://rsat.scmbb.ulb.ac.be/rsat/). Corresponding motifs with lowest 

Expectancy-value (E) were used to assign motif-score to each metabolite as: 

( )EvaluemotifCDFZ metabolite
motif  11j , −= −    (2) 

High motif-score indicates that the found motif is unlikely to be a random event. 

Transcriptional co-regulation score for metabolites 

In order to quantify how tightly neighbour genes of a metabolite are coregulated under different 

conditions we compiled a large gene expression dataset consisting of 1221 different experiments 

available in public domain. For each set of neighbour genes we then calculated all against all 

Pearson correlation coefficients (P) and converted to Z scores by using inverse normal cumula-

tive distribution function. 

( )PCDFZ pear
1−=      (3) 

Significance of scores for each metabolite in contrast to the background distribution was esti-

mated as: 
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μ∑ −
=

1
j ,     (4) 

Where nμ  and nσ denote the mean and standard deviation of average Z scores for 10000 ran-

domly selected groups of k genes and n = (k2-k)/2. Metabolites with high scores imply significant 

transcriptional correlation amongst neighbour genes. 

Transcription analysis of MIG1 deleted strain 

A MIG1 deleted strain and a corresponding reference strain were both grown in triplicate batch 

cultures at glucose repressed conditions as described elsewhere (Westergaard et al., 2004). Ge-

nome-wide transcription measurement was performed as described elsewhere (Westergaard et al., 
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2004). The complete gene expression dataset from this analysis is available in supplementary ma-

terial. 

Scores for all metabolites are available in the supplementary material. 

Acknowledgements: We thank J.M. Otero, L. Albertsen, T.L. Petersen and U. Mortensen for comments on 

manuscript. 

6.6 Supplementary material 

Complete supplementary material for this chapter is available online at: 

 http://www2.cmb.dtu.dk/additional_material_for_publications/papers/7/  

Since most of the data presented in supplementary material is not critical for conclusions drawn, 

they are omitted here for saving space. 
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Chapter 7 

Chapter 7: Highly connected metabolites harbor signifi-
cant transcriptional co-regulation 
Manuscript describing the results in this chapter is under preparation. 

 
 
 

 

 

 

"When I use a word," Humpty Dumpty said, in rather a scornful tone, "it means just what I 

choose it to mean--neither more nor less." "The question is," said Alice, "whether you can make 

words mean so many different things." "The question is, "said Humpty Dumpty, "which is to be 

master--that's all." 
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7.1 Introduction 

Complex cellular operations are extensively reprogrammed at the level of gene expression follow-

ing environmental/genetic changes. This fine-tuning is often featured by coordinated expression 

changes in a large number of metabolic genes (Patil and Nielsen, 2005;Ihmels et al., 2004;Daran-

Lapujade et al., 2004;Ferea et al., 1999). Transcriptional regulation largely decides which of the 

large number of possible metabolic states is observed under given conditions, and how this state 

is altered following a perturbation (/s). Such regulatory responses aid in rapid and global adapta-

tion of the metabolism to altered demands on the synthesis of precursor molecules that are vital 

for growth and other cellular functions. Thus the transcriptional changes in metabolic networks 

have been found to be directed towards achieving condition-specific metabolic functionality 

(Ihmels et al., 2004;Ihmels et al., 2002). Specific metabolic pathways (e.g. as defined in biochemis-

try textbooks) have been found to exhibit significantly higher transcriptional co-regulation com-

pared to randomly chosen set of metabolic genes (Kuffner et al., 2000;Ihmels et al., 2004;Nacher 

et al., 2006). This observation highlights the necessity of co-regulation amongst the genes that 

contribute towards a particular metabolic function. Metabolic pathways can therefore be regarded 

as hierarchically organized co-regulated modules (Ihmels et al., 2002;Segal et al., 2003). Modular 

co-regulation of metabolic genes not only explains principles that underlay the complex regula-

tory machinery orchestrating gene expression but also helps in relating these principles across 

species (Tirosh et al., 2006). 

The pathway based gene modules, however, are derived based on human categorization of en-

zymes into different pathways. Although pathway oriented classification represent some meta-

bolic functionalities, they do not cover the whole range of metabolic states that a given network 

can assume (Schuster et al., 2000;Klamt and Stelling, 2002). Moreover, pathway based analysis 

(and many other network-based studies) often overlook the high connectivity in a metabolic net-

work as several highly connected metabolites are absent from the analysis (e.g. (Vitkup et al., 

2006;Kharchenko et al., 2005;Nacher et al., 2006;Ihmels et al., 2004)). Consequently, regulatory 

principles extracted by these methods have a bias towards local network structures or rigidly de-

fined pathways. . In a complementary approach, we have previously shown that the transcrip-

tional changes in metabolic network are significantly concentrated around experiment-specific 

metabolites (termed Reporter metabolites) (Patil and Nielsen, 2005) (Chapter 3). Reporter me-

tabolites were found to mark the spots in the metabolism where (known/unknown) perturbation 

was introduced. Our algorithm does not make any a priori assumptions for metabolite connec-

tivity or pathways definitions. Notably, for some of the perturbations, significant expression 
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changes were centered on highly connected metabolic co-factors (e.g. ATP, NADH). Here we 

further investigated whether the metabolite centered organization of transcriptional regulation 

can lead to general principles of metabolic regulation when a large transcriptome dataset (over 

1200 experiments for yeast Saccharomyces cerevisiae, see Methods) is integrated with network topol-

ogy. 

7.2 Methodology 

Figure 7.1 shows a schematic outline of our approach. First we compiled a transcriptome dataset 

comprising of more than 1200 experiments (Methods). For each of the yeast metabolites we cal-

culated two scores (reporter scores): i) individually for each of the experiments (differential score) 

based on fold changes in expressions relative to the control, and ii) based on correlations across 

the whole dataset (multi-dimensional score) (Methods). Reporter scores signify the transcriptional 

co-regulation observed in neighboring genes of that metabolite as compared to randomly selected 

genes. Furthermore, we also calculated additional scores by only considering the neighbors that 

contribute in either production or consumption of that metabolite. In case of multi-dimensional 

data, further enrichment of biological information was achieved by: i) accounting for the direc-

tion of correlation (positive/negative) and ii) additionally considering the correlation across the 

producing and consuming neighbors (Figure 7.2). Together these scores provide detailed insight 

into whether the transcriptional changes are directed towards increased (/decreased) consump-

tion (/abundance) of a particular metabolite. In case of differential analysis 87 % of all metabo-

lites were identified as reporter in at least one of the experiments. This result implies that the 

reporter metabolites are perturbation-specific and several of these perturbations are covered in 

the compiled dataset. Perturbation specificity of reporter metabolites is further endorsed by the 

fact that the minimum of average ranks of metabolites over all experiments is very high (about 

342) (Figure 7.3). 
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Figure 7.1. Outline of methodology used in this study. Metabolic gene modules emerging from network topol-

ogy were investigated for significance of transcriptional co-regulation. A large gene expression dataset was 

compiled from publicly available transcriptome studies.  In differential analysis, metabolites marking significant 

regulation in each experiment were identified. To understand co-regulation patterns across all experiments, a 

Pearson correlation coefficient based metric was used to identify metabolites for which neighbor genes show 

strong co-regulation compared to background. Together, this analysis identifies hot-spots in metabolism where 

significant transcriptional regulation is observed. 

 

 

Figure 7.2. Schematic representation of possible transcriptional regulation patterns around a metabolite. Correla-

tion may exist between genes coding for metabolite producing enzymes, metabolite consuming enzymes, across 

consuming and producing genes or among all of them. First absolute correlation coefficients were used. Further 

insight into biological meaning of each of these categories was then obtained by considering only posi-

tive/negative correlations. 
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Figure 7.3. Distribution of average rank of metabolites in 1226 experiments analyzed. Each metabolite was 

assigned three different ranks based on the significance of transcriptional co-regulation observed in the consum-

ing, producing or all of the neighbor genes of that metabolite. Higher the significance, lower the rank. 

7.3 Results and discussion 

7.3.1 Metabolic regulation: role of pathways and metabolites 

Extent of co-regulation observed amongst the neighbor genes of metabolites was found to nota-

bly exceed the co-regulation observed in genes involved in common metabolic pathways (as de-

fined in the KEGG database) (Figure 7.4). This contrast is further enhanced when fine-tuned 

reporter scores with directionality information are considered. Transcriptional co-regulation in 

metabolic networks thus clearly extends beyond the pathway definitions and more closely inter-

twined over the network topology. Several metabolites, especially ones with high connectivity, 

usually span many pathways and act as connecting bridges across these pathways. Consequently, 

pathways as a whole are not subjected to strict stoichiometric/thermodynamic constraints on 

their own. Constraints on a pathway can thus only be invoked in the connection with other con-

nected pathways due to overlap of metabolites across pathways. On the contrary, coordinated 

transcriptional changes around metabolites are indeed necessary for one of two reasons. Either to 

maintain homeostasis or to change the enzyme and metabolite levels so as to adjust to the new 

flux demands placed on the metabolic network by perturbation (/s). Thus the transcriptional co-

regulation of the genes surrounding a metabolite is, in part, stoichiometric and thermodynamic 

necessity. 
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Figure 7.4. Comparison of strength of transcriptional co-regulation in metabolic gene modules based on KEGG 

pathways and metabolite neighbors. Metabolite neighbors display significantly higher co-regulation Z-score. 

7.3.2 Metabolic hubs contribute towards regulation 

We further examined whether the degree of correlation around metabolites observed in multi-

dimensional analysis (quantified as reporter scores) shows any bias towards high/low connec-

tivity. Remarkably, the distribution of reporter metabolites (154 in total) as compared to non-

reporter metabolites (294 in total) shows a shift towards high degree (higher number of neighbor 

genes) (Figure 7.4). This finding marks the necessity of accounting for the transcriptional correla-

tion linked to highly connected metabolites, which are currently omitted a priori from the analysis. 

Indeed, highly connected metabolites (e.g. NADH, NADPH, ATP and AMP) glue different parts 

of metabolism together and play a crucial role in determining phenotype by constraining meta-

bolic fluxes based on availability of corresponding metabolite pools. A well known example is 

formation of glycerol and ethanol in yeast when respiration is limited or compromised and excess 

NADH is needed to be re-oxidized (Stephanopoulos et al., 1998). Similar phenomenon also has a 

physiological relevance in humans; such as lactic acid formation in muscles following exer-

cise/oxygen limitation and physiological effects of beta-oxidation of fatty acids leading to rapid 

NADH consumption. Recent study also indicates that NAD(P)H may play a key role in lipid-

induced impairment of glucose-stimulated insulin secretion (Boucher et al., 2004). Predominance 

of transcriptional control harbored at highly connected metabolites (hubs in metabolic network) 

can be attributed to stoichiometric/thermodynamic constraints over the whole network.  As for 

individual metabolites, the metabolic network in total is governed by stoichiomet-

ric/thermodynamic constraints. Since the “hub” metabolites significantly contribute in keeping 

the network together (Albert et al., 2000), regulation of consumption/production of these me-
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tabolites also plays a significant role on global scale. Although how such regulatory control is 

mechanistically linked to metabolites is not clear for all such metabolites, there are several exam-

ples where metabolic co-factors are directly involved in regulating the expression of several 

genes, e.g. NAD+ dependent regulation of genes in yeast (Zhang et al., 2002;Lin et al., 

2000;Anderson et al., 2003), human (Rutter et al., 2001;Agarwal and Auchus, 2005) and gram-

positive bacteria(Brekasis and Paget, 2003). 

 

Figure 7.4. Relative frequency of metabolites with different number of neighbors as reporter metabolites. Re-

porter metabolites are regulatory hot-spots in metabolic networks where transcriptional response is significantly 

concentrated. Distribution shows a bias of reporter metabolites towards higher number of neighbors. 

7.3.3 Distinct response to environmental and genetic stimuli 

As in case of multi-dimensional analysis, several highly connected metabolites were also identified 

as reporters when each of the 1236 experiments were analyzed individually (differential reporter 

metabolites) (Figure 7.5). Differential reporter metabolites reflect significant fold changes in the 

expression of the neighboring genes in an experiment and thus provide a unique metabolic signa-

ture for each experiment. We classified each of 1236 experiments as either genetic or environ-

mental perturbation. This classification allowed us to investigate whether certain reporter me-

tabolites significantly mark genetic/environmental response of yeast. Metabolites involved in 

storage carbohydrate metabolism (Glycogen, Trehalose, UDP Glucose etc.) and H2O2 were 

found to be predominantly marking transcriptional response to environmental perturbations. 

Storage or utilization of glycogen and trehalose is one of the primary responses of yeast cells to 
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environmental stress and this phenomenon is clearly reflected at transcriptional level. Moreover, 

alternate storage and utilization of these carbohydrates has been recently postulated to be a part 

of natural cyclic operation of yeast metabolism that is closely linked to the cell cycle(Tu et al., 

2005). Appearance of H2O2 consumption as another marker for environmental perturbation 

implies that oxidative stress is often an important feature of environmental stress studied at the 

transcriptional level. Genetic perturbations, on the other hand, are characterized by significant 

expression changes in the genes surrounding NADH, NH3, L-Aspartate, Orotidine 5'-phosphate 

and UMP among others. Genetic perturbations thus seem to be exerting strong transcriptional 

regulation on redox, nitrogen and pyrimidine metabolism. Identification of NADH as marker for 

genetic perturbations is particularly interesting and may imply that the cells are attempting to 

cope with unexpected metabolic perturbations resulting form genetic changes by regulating 

NADH related genes. This response may achieve two purposes. First is the regulation of metabo-

lism on the global scale, as NADH connects several parts of the metabolism. Secondly regulation 

of NADH will ensure that the cells are not additionally exposed to deleterious oxidative stress 

that may result due to unexpected metabolic changes resulting from genetic impairments. 

Changes in nitrogen and pyrimidine metabolism may be an indirect effect of NADH, as these 

pathways are closely linked with NAD biosynthesis. The complete list of metabolites marking 

each of the studied perturbations is available as supplementary material. 

7.3.4 Contrasting differential and multi-dimensional analysis 

Differential reporter metabolites imply significantly higher changes in the expression of the 

neighboring genes. On the contrary, reporter metabolites identified from multi-dimensional 

analysis mean significant correlation between the neighbor genes irrespective of their expression 

levels. These two classes of metabolites convey different information in terms of expression lev-

els and regulation. To gain insight into these differences we compared metabolite scores in multi-

dimensional analysis against number of individual experiments in which those metabolites were 

classified as reporter (in differential analysis). Metabolites that scored high in multi-dimensional 

data but were infrequently identified as reporter in differential analysis imply high transcriptional 

correlation amongst the neighbor genes but relatively low fold changes in the expression levels. 

Several of the genes associated with the metabolites in this category (FADH2, Orthophosphate, 

ATP and Fumarate) are mitochondrial and are related to respiration. Their characteristic expres-

sion pattern suggests that the functional changes in the enzymes around these metabolites are 

achieved with low but coordinated changes in expression levels. This may be a result of potential 

flux limitation at the level of substrate availability. 
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Figure 7.5. Distribution of degree of metabolites in metabolic network of yeast. The histogram is overlaid with 

frequency distribution of metabolites as reporter. 

Another class of metabolites was defined as those that scored low in multi-dimensional analysis 

but were relatively frequently identified as reporter in differential analysis. Large fold changes but 

insignificant correlation around these metabolites hints towards redundant functionality and 

“more the better” relation between expression level and function. Indeed, neighbor genes of me-

tabolites in this class are by and large amino acid transporters which concur with these character-

istics. 

7.3.5 Isozymes and highly connected metabolites 

Over 20% of the metabolic reactions in yeast are catalyzed by more than one enzyme. Signifi-

cance of these iso-enzymes is generally attributed to vital essentiality of corresponding enzymes 

for growth during evolution (Papp et al., 2004). We investigated whether this functional comple-

mentation through iso-enzymes is reflected in their expression. To this end we calculated the 

significance of correlation among the iso-enzymes across all experiments under study.  Around 

one-third of 108 iso-enzymes showed significant correlation. Several iso-enzymes thus appear to 

share similar regulatory mechanisms for their expression. Notably most of the iso-enzyme corre-

lations are positive. Positive correlation among iso-enzymes implies that, either flux through the 
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corresponding reaction is limited by enzyme availability at transcription level, or that iso-enzymes 

act as buffer against genetic disturbances such as mutations or deletions. This conjecture is in 

agreement with the hypothesis proposed by Ihmels et al. (2005) (Ihmels et al., 2004) based on 

detailed analysis of transcriptional regulation in KEGG metabolic pathways. In case of iso-

enzymes that are not significantly correlated, Ihmels et al. (2005) (Ihmels et al., 2004) found that 

many of these cases can be explained in terms of differential co-regulation of each iso-enzyme 

with distinct pathways. Such regulatory structure may help in achieving pathway specific control 

of fluxes. Our analysis, however, suggests that such conclusions based on concept of pathways 

should be treated with caution. Indeed, 66% of all reaction in yeast metabolism involves at least 

one of the highly connected metabolites (which are not completely accounted for in pathways 

representations). Furthermore, reactions that are catalyzed by iso-enzymes show significantly 

higher requirement for co-factors (p-value 0.02). Thus the regulation of iso-enzymes can not be 

simply attributed to pathway structures deduced by neglecting effects of co-factors and other hub 

metabolites, as several of these metabolites significantly contribute towards organization of tran-

scriptional regulation in metabolism. 

7.3.6 Metabolic regulation and dataset used 

Analysis presented here is likely to change if more perturbations that are not currently part of this 

dataset are included in the analysis. Extents of these changes are dependent on how well spread 

the studied perturbations are over different parts of genome and different environmental condi-

tions. E.g., although NADH was identified as a reporter predominantly in genetic perturbations, 

it is a top reporter metabolite when environmental perturbation of change from anaerobic to 

aerobic metabolism is analyzed(Tai et al., 2004) (data not used in this study). However, since 

structure of metabolic network is independent of the perturbation introduced, metabolite-

centered approach will always serve as guideline for understanding regulation in metabolic net-

works. This is indeed evident from the perturbation/experiment specificity of reporter metabo-

lites observed in this and previous analysis. 

7.4 Conclusions 

Although metabolic pathways partially exploit the topological connectivity in metabolic networks, 

they were found to play less significant role in terms of organization of transcriptional regulation 

than metabolites. Metabolite centered regulation of metabolism is not only limited at transcrip-

tion level but also extends to metabolome level (Cakir T. et al., Mol Sys Biology, in press, Chapter 

5). We argue that regulation of genes surrounding a metabolite is, in part, a thermodynamic and 

stoichiometric necessity. Thus metabolites provide a robust way to modularize regulation in 
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metabolic networks. Notably, these metabolic modules are not derived from data, but arise natu-

rally from the network topology. Hence metabolite-based modules are insensitive to underlying 

data and provide a sound biological explanation to observed regulatory responses. Indeed, 

mechanistic principles behind such metabolite-centered regulation are being unraveled (Patil K.R. 

et al., unpublished results, Chapter 6). Same analysis also shows that metabolites provide a basis 

for rational analysis of emergence of regulatory circuits in metabolic networks. Since, metabolic 

networks are widely conserved (Peregrin-Alvarez et al., 2003), metabolite-based modules also 

represent a platform for comparing regulatory architecture across different species. 

We further show that it is possible to unravel specific information about regulation at each meta-

bolic node by analyzing whether regulatory response is aimed towards changes in in-

creased/decreased consumption/production of a certain metabolite. Furthermore, through com-

parison of differential and multi-dimensional response we could deduce whether certain meta-

bolic functions are limited at transcription level or at substrate availability. 

An important outcome of this study is the observation that highly connected metabolites con-

tribute significantly towards regulation in metabolism. Thus principles of regulation in metabo-

lism can be completely understood only in an unbiased study where no metabolites are omitted a 

priori. Since these metabolites glue the whole network together, they help cells in rapid adaptation 

or in tight control of several pathways with minimal changes. 

7.5 Supplementary material 

Complete results and metabolite scores for differential and multi-dimensional analysis are avail-

able at: 

http://www2.cmb.dtu.dk/additional_material_for_publications/ 
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Chapter 8 

Chapter 8: Evolutionary programming as a platform for 
in silico metabolic engineering 
This chapter is based on the publication: 
Patil, K. R., Rocha, I., Forster, J. & Nielsen, J. Evolutionary programming as a platform for in silico metabolic engi-
neering. BMC. Bioinformatics 6, 308 (2005). 
 
 
 
 

 

 

 

"Well, in our country," said Alice, still panting a little, "You'd generally get to somewhere else--if 

you ran very fast for a long time as we've been doing."  "A slow sort of country!" said the Queen. 

"Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to 

get somewhere else, you must run at least twice as fast as that." 
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8.1 Abstract 

Through genetic engineering it is possible to introduce targeted genetic changes and hereby engi-

neer the metabolism of microbial cells with the objective to obtain desirable phenotypes. How-

ever, owing to the complexity of metabolic networks, both in terms of structure and regulation, it 

is often difficult to predict the effects of genetic modifications on the resulting phenotype. Re-

cently genome-scale metabolic models have been compiled for several different microorganisms 

where structural and stoichiometric complexity is inherently accounted for. New algorithms are 

being developed by using genome-scale metabolic models that enable identification of gene 

knockout strategies for obtaining improved phenotypes. However, the problem of finding opti-

mal gene deletion strategy is combinatorial and consequently the computational time increases 

exponentially with the size of the problem, and it is therefore interesting to develop new faster 

algorithms. In this study we report an evolutionary programming based method to rapidly iden-

tify gene deletion strategies for optimization of a desired phenotypic objective function. We illus-

trate the proposed method for two important design parameters in industrial fermentations, one 

linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. 

Potential metabolic engineering targets for improved production of succinic acid, glycerol and 

vanillin are identified and underlying flux changes for the predicted mutants are discussed. We 

show that evolutionary programming enables solving large gene knockout problems in relatively 

short computational time. The proposed algorithm also allows the optimization of non-linear 

objective functions or incorporation of non-linear constraints and additionally provides a family 

of close to optimal solutions. The identified metabolic engineering strategies suggest that non-

intuitive genetic modifications span several different pathways and may be necessary for solving 

challenging metabolic engineering problems. 

8.2 Background 

Microorganisms are widely used for producing antibiotics, therapeutic proteins, food and feed 

ingredients, fuels, vitamins and other chemicals. Currently there is an increasing trend to replace 

chemical synthesis processes with biotechnological routes based on microbial fermentations. In 

order to economically produce desired compounds from microbial cell factories it is, however, 

generally necessary to retrofit the metabolism, since microorganisms are typically evolved for 

maximizing growth in their natural habitat. Retrofitting of microbial metabolism has traditionally 

been done through classical strain improvement that involved random mutagenesis and screen-

ing, whereas in later years rational design strategies based on genetic engineering have been ap-

plied with an increasing success – often referred to as metabolic engineering. In metabolic engi-
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neering many experimental and mathematical tools have been developed for introducing directed 

genetic modifications that will lead to desirable metabolic phenotypes resulting in improved pro-

duction of desirable compounds or in reduced production of by-products (Nielsen, 

2001;Stephanopoulos et al., 1998). Until now most of the successes in metabolic engineering 

have been based on qualitative or intuitive design principles. However, even though there are 

several success stories in metabolic engineering there are also many attempts that have failed due 

to the lack of rational strategies based on predictive analysis tools. 

Microbial metabolism is often subjected to tight regulation and is constrained by mass and energy 

conservation laws on a large number of intracellular metabolites, and this makes it difficult to 

predict the effects of introducing genetic modifications in a given cell. Moreover, as metabolic 

pathways and related regulatory processes form complex molecular and functional interaction 

networks (Patil and Nielsen, 2005;Ideker et al., 2001), it is only through analysis of the metabo-

lism as a whole in an integrative systems approach (Stephanopoulos et al., 2004) that one may 

evaluate the effect of specific genetic modifications. Genome-scale models of microbial organ-

isms (Price et al., 2003), comprising different levels of information, primarily on the stoichiome-

try of the many different reactions but possibly also comprising some information about regula-

tion, could offer a suitable platform for developing systems level tools for analyzing and engi-

neering metabolism (Patil et al., 2004) (Chapter 2). Although there have been some attempts to 

simulate dynamic behavior of whole cell systems (Tomita, 2001;Covert et al., 2004), currently 

these approaches enjoy limited applicability due to lack of kinetic and regulatory information on 

the whole genome-scale. Nevertheless, in absence of kinetic and regulatory information it is pos-

sible to at least partly predict the behavior of cellular metabolism by using steady state analysis 

based on genome-scale stoichiometric models. 

Genome-scale stoichiometric models represent the integrated metabolic potential of a microor-

ganism by defining flux-balance constraints that characterizes all feasible metabolic phenotypes 

under steady state conditions. Because of the large number of reactions occurring in cellular me-

tabolism, the dimensions of the solution space (or the number of feasible metabolic phenotypes) 

defined by genome-scale models (Schilling et al., 2000;Schuster et al., 2000) is very large. Conse-

quently, combinatorial complexity prevents calculation of all feasible metabolic phenotypes that a 

microbial genotype can assume under a given environmental conditions (Klamt and Stelling, 

2002). One of the approaches to determine the metabolic phenotype (i.e. the fluxes through all 

metabolic reactions) is to use flux balance analysis (FBA) (Kauffman et al., 2003;Fell and Small, 

1986). In FBA a particular flux or a linear combination of various fluxes (objective function) in 
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the model is optimized through linear programming, thus leading to a solution to the fluxes 

through all metabolic reactions. Since several microbial metabolic networks have evolved towards 

operation of optimal growth rate (Ibarra et al., 2002;Edwards et al., 2001;Burgard and Maranas, 

2003;Famili et al., 2003), the use optimization of growth rate is an often applied objective func-

tion in FBA. There are, however, some other approaches to determine flux distributions, espe-

cially for deletion mutants that might not be capable of realizing the same objective function as 

the wild-type strain (Segre et al., 2002;Shlomi et al., 2005;Beard et al., 2002). Nevertheless, all 

these methods provide a basis for using genome-scale metabolic models to predict possible 

metabolic phenotypes, and hence for in silico metabolic engineering. However, despite of their 

potential, genome-scale stoichiometric models have been scarcely used for metabolic engineering 

purposes. 

The algorithm developed by Maranas et al. (Burgard et al., 2003;Pharkya et al., 2004) (named 

OptKnock) represents one of the first rational modeling frameworks for suggesting gene knock-

outs leading to the overproduction of a desired metabolite. OptKnock searches for a set of gene 

(reaction) deletions that maximizes the flux towards a desired product, while the internal flux 

distribution is still operated such that growth (or another biological objective) is optimized. Thus 

the identified gene deletions will force the microorganism to produce the desired product in or-

der to achieve maximal growth. Indeed, the design philosophy underlying OptKnock approach 

takes advantage of inherent properties of microbial metabolism to drive the optimization of the 

desired metabolic phenotype. The relation of OptKnock with the biological objectives of micro-

organisms makes it an attractive and promising modeling framework for in silico metabolic engi-

neering. 

OptKnock is implemented by formulating a bi-level linear optimization problem using mixed 

integer linear programming (MILP) (Burgard et al., 2003) that guarantees to find the global opti-

mal solution. In this report, we extend the applicability of OptKnock approach by formulating 

the in silico design problem by using a Genetic Algorithm (GA), hereafter referred to as OptGene. 

Genetic algorithms use the principle of Darwinian evolution to search (evolve through mutations 

and reproduction) for the global optimal solution (individual with a maximum fitness score). Di-

rect relation of GA with biological evolution makes it a natural method of choice to identify suit-

able genetic modifications for improved metabolic phenotype. There are two major advantages of 

the OptGene formulation. Firstly, OptGene demands relatively less computational time and thus 

it enables to solve problems of larger size. This is of particular importance as the relation be-

tween the size of the problem (as defined by the number of enzymes and number of deletions 
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desired) and the corresponding search space (combinations of enzymes to be deleted) is combi-

natorial (Supplementary Figure S-8.1). Thus, the number of possible combinations of 5 reaction-

deletions in a model with 250 reactions is more than 7.8×109, whereas existing genome-scale 

stoichiometric models comprise a significantly higher number of reactions. Secondly, the 

OptGene formulation allows the optimization of non-linear objective functions, which is of con-

siderable interest in several problems of commercial interest. One example of an important non-

linear engineering objective function is the productivity (amount of product formed per unit 

time). 

8.3 Results and Discussion 

8.3.1 OptGene algorithm 

Two different versions of the OptGene algorithm were used in this work, differing mainly on the 

representation of the metabolic genotype: binary (binOptGene) and integer (intOptGene) repre-

sentations. The binary form of the OptGene algorithm is schematically illustrated in Figure 8.1, 

and the important steps of both representations are explained in the following. 

8.3.2 Model pre-processing 

Since GA do not exhaustively search the complete solution space, it is necessary to avoid local 

optimal solutions by proper formulation of the problem. We therefore pre-processed the model 

to remove duplicate and dead-end reactions. Also a linear pathway (or enzyme subset (Pfeiffer et 

al., 1999)) was represented as a single reaction in GA. Moreover, lethal reactions (including genes 

that are found to be lethal in vivo, but not in silico) were not included as the possible targets in GA. 

This pre-processing step reduced the problem size considerably and thus reduced the number of 

local optimal solutions (data not shown). 

8.3.3 Chromosome representation of metabolic genotype 

Each reaction in the metabolic model can be associated with one or more genes in the genome. 

In the binOptGene algorithm each of those genes is represented by a binary variable indicating 

its absence/presence (0/1), and thus a set of these variables forms an “individual” (sometimes 

also referred to as “chromosome” in evolutionary algorithms nomenclature) representing a par-

ticular mutant that lacks some metabolic reactions when compared with the wild type (Figure 

8.2). For the intOptGene implementation, the individuals are composed of integer numbers rep-

resenting only the genes to be deleted, according to their relative order in the metabolic model. 

This way, the number of genes to be deleted can be directly imposed by changing the size of the 

individuals. The phenotypes of every individual can be obtained by using FBA or other algo-
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rithms. The problem then is to find the set of genes to be deleted from an individual so as to 

obtain a desired phenotype (e.g. with maximum product yield and minimum undesired by-

product yield).  

8.3.4 Initialization of population 

The GA begins with a predefined number of individuals, forming a population. In the bi-

nOptGene, individuals in the population can be initialized in different ways, e.g. by assigning 

present/absent status to each gene randomly, or assigning present status to all genes, while in the 

intOptGene representation, the population is usually initialized randomly. 

8.3.5 Scoring fitness of individuals 

Each individual is assigned a fitness score that determines whether it will reproduce and/or 

propagate to the next generation. The fitness score of an individual is calculated using the desired 

objective function value. The objective function value can be calculated using FBA, minimization 

of metabolic adjustment (MOMA) (Segre et al., 2002), regulatory on-off minimization (ROOM) 

(Shlomi et al., 2005) or any other algorithm. The GA by itself is independent of scoring algo-

rithm. 

8.3.6 Crossover of chromosomes 

After the fitness score is calculated for all individuals in the population, the best individuals are 

selected for crossover. A selection scheme that is most commonly used is the Roulette wheel, 

where individuals are selected based on the magnitude of the fitness score relative to the rest of 

the population. The higher the score, more likely an individual will be selected. Selected individu-

als are then crossed to produce a new offspring. The crossover methods used in this study were 

one-point, two-points, and uniform crossover (Goldberg, 1989). 

8.3.7 Mutation 

Individuals propagating to the new population are mutated (in our formulation, a gene is deleted) 

with a given probability.  

8.3.8 New population and termination 

Mutation and crossover give rise to a new population, which can then again be subjected to a 

new round of evaluation, crossover and mutations. This cycle is repeated until an individual with 

a satisfactory phenotype is found. 
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We illustrate the principles and utility of OptGene algorithm by using three interesting metabolic 

engineering problems with the yeast Saccharomyces cerevisiae, which is one of the most widely used 

cell-factories. We applied OptGene for S. cerevisiae to identify gene-deletion strategies for improv-

ing yield and substrate-specific productivity of three metabolites, namely vanillin, glycerol and 

succinate. The yield of a product (metabolite) of interest is defined as the grams of product pro-

duced per unit gram of the substrate consumed, whereas substrate-specific productivity is defined 

as the grams of product produced per unit time per unit substrate consumed. It is important to 

note that models based only on stoichiometry can not predict rates without an assumption of a 

fixed substrate uptake rate. Since the substrate uptake rates for deletion mutants might change 

substantially and the fact that it is very difficult to predict such changes a priori, in general the 

productivity can not be optimized by using stoichiometric models. One of the ways to circum-

vent this problem is to optimize the function [Product Yield × Growth]. Although, this quantity 

will be equal to the substrate-specific productivity under the assumption of a fixed substrate up-

take rate, we will refer to this term as Biomass-Product Coupled Yield (BPCY) rather than the 

productivity as this may cause confusion (also see Note 1 for comments about the growth rates 

for mutants). BPCY represents an interesting example of a non-linear objective function that can 

be optimized by using OptGene. 
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Figure 8.1. Schematic overview of the OptGene algorithm. A population of individuals is initiated by specifying 

a present/absent status for each gene in each of the individuals. Individuals are then scored for their fitness by 

using FBA/MOMA/other method of choice and the objective function (/s). Individuals are selected for mating 

based on their fitness score, and subsequently crossed to produce new offspring. Mutations are introduced in 

individuals randomly at specified mutation rate and thus a new population is obtained. This cycle of evolution is 

repeated until a mutant (or mutants) with a desired phenotypic characteristics is obtained. Please refer to the text 

for detailed description of each step in the algorithm. Grey shaded or red walled boxes are used to represent 

different individuals in the cross-over process. 

Ind.- Individual. FBA- Flux balance analysis (Fell and Small, 1986;Kauffman et al., 2003). MOMA- Minimiza-

tion of the metabolic adjustment (Segre et al., 2002). ROOM- Regulatory on/off minimization (Shlomi et al., 

2005). 
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Figure 8.2. Representation of the metabolic genotype. Each gene of the microorganism is assigned a binary 

value, representing its absence/presence in the mutant (A). The individual genes are associated with one or more 

reactions in the metabolic network (B). When a given reaction is in the absent status, the upper and lower bonds 

for the corresponding metabolic flux are set to zero, resulting in a modified metabolic model (C). 

8.4 Vanillin case study 

Vanillin is a natural flavor compound extracted from plants and is widely used as a food ingredi-

ent. There is some commercial interest in producing vanillin by using recombinant microorgan-

isms and in particular Saccharomyces cerevisiae which is a food grade organism. Since vanillin is not 

produced naturally by S. cerevisiae, the corresponding reactions were inserted into the model as 

suggested by Pharkya et al.(Pharkya et al., 2004). Then we used OptGene to find gene deletion 

strategies to improve the BPCY as well as the yield of vanillin. We found that it was possible to 

improve the vanillin yield in silico up to 90 % of the theoretical limit by deleting only 2 reactions 

(pyruvate decarboxylase and glutamate dehydrogenase), while keeping the growth rate at 60% of 

the parental strain. A similar strategy was predicted for a mutant with the maximum BPCY. The 

suggested strategy diverts the pyruvate flux going to ethanol towards vanillin where NADH is 

oxidised back to NAD+. Furthermore, deletion of glutamate dehydrogenase results in an in-

creased availability of NADPH needed for vanillin biosynthesis. Increasing the allowable number 

of deletions did not result in substantial improvement in the yield or BPCY.  
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8.5 Glycerol case study 

Currently glycerol is mainly recovered as a by-product from soap manufacturing or produced 

from propylene and is widely used to synthesize several products ranging from cosmetics to lu-

bricants (Wang et al., 2001). Alternatively, glycerol can also be produced through microbial fer-

mentation using sustainable carbohydrate resources. Saccharomyces cerevisiae naturally produces glyc-

erol in small quantities during anaerobic fermentation or under osmotic stress. Moreover, glycerol 

plays an important role in maintaining the cytosolic redox balance under anaerobic conditions 

and it is therefore interesting to study the effects of gene-deletions on yield and productivity of 

glycerol. We applied the OptGene algorithm to identify gene deletions leading to improved yield 

and BPCY of glycerol under aerobic conditions, where the maximum theoretical yield of glycerol 

is much higher as opposed to anaerobic fermentation. 

Results suggested that no single gene deletion will result in glycerol production, whereas a strat-

egy for double reaction deletion is identified, namely FBP1 (Fructose-1,6-bisphosphatase) and 

genes encoding Glyceraldehyde-3-phosphate dehydrogenase (TDH1, TDH2 and TDH3). This 

strategy makes intuitive sense as reactions that branch the flux away from dihydroxyacetone 

phosphate (the precursor for glycerol) are deleted (see figure 8.3 for a schematic representation of 

yeast central carbon metabolism). With this strategy it is possible to obtain a yield of 0.49 g/g-

glucose with a corresponding growth rate that is 80% lower than the reference strain. Increasing 

the number of deletions up to six did not result in a further substantial increase in the yield. 

However, interestingly, the BPCY of glycerol improved with the number of deletions allowed. 

With six deletions, the BPCY reached up to 41 mg/g glucose-hr (yield of 0.31 g/g-glucose) with 

a growth rate equal to 50% of that of the reference strain. Moreover, the identified deletions for 

yield and BPCY improvement are different (Supplementary Table S-8.2). Notably, the suggested 

deletions span not only the central carbon metabolism but also extend to amino acid and vitamin 

metabolism, illustrating the tight links between different metabolic pathways arising from the 

mass balance constraints. This also illustrates the need for the here reported algorithm which can 

search this vast solution space efficiently. 
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Figure 8.3. Schematic overview of the Saccharomyces cerevisiae central carbon metabolism. The figure shows 

important pathways in the central carbon metabolism including certain branch points towards the amino acid 

metabolism. The thick arrows indicate the drain of metabolites towards biomass production. Arrows with the          

style indicates a lumped pathway. Multiple names for a reaction indicate the presence of iso-enzymes. The no-

menclature of the metabolites can be found in the Supplementary table S-8.1. The figure is partially adapted 

from Forster et al. (2002) (Forster et al., 2002). 
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8.6 Succinic acid case study 

Succinic acid is one of the intermediates of the TCA cycle and is an interesting chemical to be 

used as a feedstock for synthesis of a wide range of chemicals. As a metabolite from the central 

carbon metabolism, it is a good case study for devising metabolic engineering strategies. Multiple 

gene deletion strategies obtained using OptGene algorithm for improving succinic acid yield and 

BPCY are summarized in table 8.1. 

Firstly, we note that the maximum theoretical yield of succinic acid is 0.506 g/g glucose (Note 2) 

when no biomass is being produced, and that no succinic acid can be produced at optimal bio-

mass growth rate. Moreover, no single gene deletion strategy resulted in succinic acid production. 

For a double gene deletion strategy, deletion of the SDH-complex (succinate dehydrogenase) and 

THR1 (homoserine kinase) is predicted to result in a succinic acid yield of 0.018 g/g glucose, 

with a 10% reduction in the growth rate. Flux re-distribution leading to this improvement in the 

double-deletion mutant is quite interesting and non-intuitive. Deletion or inactivation of the 

SDH-complex prevents the conversion of mitochondrial succinate to fumarate, while simultaneous 

deletion of THR1 forces threonine synthesis via glycine, which may be formed from glyoxylate. 

Consequently there is increased flux through ICL1 (cytosolic isocitrate lyase, catalyzing the reac-

tion from isocitrate to glyoxylate and succinate), thus creating surplus succinate that is secreted by 

the cell. Moreover, this flux re-distribution is also associated with an increased flux through the 

pentose phosphate (PP) pathway for increased NADPH availability. We note that in the mutant 

with only the SDH-complex deleted, threonine is synthesized via aspartate, which is optimal route 

for maximizing biomass production. The same double deletion mutant was also predicted to 

show maximum BPCY (4.5 mg/g glucose-hr). 

The search for a triple deletion mutant with maximum succinate yield suggested deletion of the 

SDH-complex, ZWF1 (Glucose-6-phosphate dehydrogenase) and PFK2 (Phosphofructokinase). 

Although this resulted in increased prediction of succinate yield (0.21 g/g glucose), the corre-

sponding growth rate is very low (96% reduction in growth rate), making this solution unattrac-

tive. However, a triple deletion mutant with maximum BPCY (16 mg/g glucose-hr) was found to 

have 76 % of the wild-type growth rate and a succinate yield of 0.07 g/g glucose. The corre-

sponding solution suggested deletion of SER3 in addition to the double deletion strategy dis-

cussed above. Deletion of SER3 blocks the synthesis of L-Serine via 3-Phospho-D-glycerate, 

which increases the demand on glycine production via glyoxylate. Overall, it leads to a further 

increase in the flux through ICL1 ensuring a higher flux towards succinate while maintaining a 
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high growth rate. This increase is also associated with a further increase in the flux through the 

PP pathway. 

In spite of a slow growing triple deletion mutant for improved yield, the algorithm found a quad-

ruple deletion mutant with not only improved yield (0.36 g/ g glucose), but also with much 

higher growth rate, as compared to the triple deletion mutant (table 8.1), and therefore higher 

BPCY. The suggested genes for deletion are the SDH-complex, ZWF1, PDC6 (pyruvate decar-

boxylase) and AGP3 (glutamate permease). Deletion of ZWF1 increases the flux through glycoly-

sis and deletion of PDC6 increases conversion of pyruvate to oxaloacetic acid via PYC1. This flux 

could be directed towards glutamate production and into the TCA cycle. But since the SDH-

complex is deleted the flux through TCA cycle is limited, while deletion of secretion reaction for 

surplus glutamate forces malate formation from oxaloacetic acid. The flux through malate is then 

directed to succinate via fumarate.  We also searched for a quadruple deletion strategy for maxi-

mum BPCY and the algorithm suggested the same deletion strategy as for the maximum yield, 

with a corresponding BPCY of 29 mg/g glucose-hr. This BPCY shows a substantial increase over 

the BPCY obtained with the triple deletion strategy.  

Results of a further search allowing more gene deletions, for improvement in yield and BPCY, 

are summarized in table 8.1. Here we note that it might be difficult to realize some of the sug-

gested optimal strategies in vivo due to a variety of reasons, e.g. regulatory constraints, orphan 

reactions etc. However OptGene provides not only the optimal solution found, but also gener-

ates a family of “good” solutions and thus provides many strategies that can be further analyzed 

manually before experimental verification. Some of such alternative solutions are also reported in 

table 8.1. 
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Table 8.1. Different deletion strategies suggested by OptGene algorithm for improving succinate yield and Bio-

mass Product Coupled Yield. 

Objective function Number of 

deletions 

Suggested deletions1 Objective func-

tion value2 

%Maximum 

Growth  

Unique 

solution?3 

SDH-complex, ZWF1, 

PDC6, U133, U221 

0.39 14% Yes 5 

SDH-complex, ZWF1, 

PDC6, U133, U41 

0.37 1% Yes 

4 SDH-complex, ZWF1, 

PDC6, AGP3 

0.356 30% Yes 

SDH-complex, ZWF1, 

PFK2 

0.211 4% Yes 

Succinate yield 

3 

SDH-complex, SER3, 

THR1 

0.074 76% Yes 

SDH-complex, ZWF1, 

PDC6, AGP3 

29 30% Yes 4 

SDH-complex, SER3, 

THR1, U221 

22 75% Yes 

SDH-complex, SER3, 

THR1 

16 76% Yes 

Succinate Biomass Prod-

uct Coupled Yield 

3 

SDH-complex, ZWF1, 

GLT1 

9.78 42% Yes 

1 Only few of the suggested strategies, with high objective function values are shown. OptGene found many 
strategies with different, but high objective function values. This tendency can be controlled by varying GA 
parameters. 
2 Units are:  Yield in gram (gram glucose)-1,  
Biomass Product Coupled Yield in milli-gram (gram-glucose.hour)-1 
3 Uniqueness of the solution was verified by first optimizing for the biomass, and then minimizing and maximiz-
ing the succinate flux at fixed, optimal biomass value. 

8.7 MOMA approach 

The examples discussed above use FBA as scoring function to evaluate fitness of an individual in 

the GA. However, as noted before, the flux distribution of mutants of Echerichia coli have been 

shown to be better approximated by assuming that the fluxes tend to have a minimum distance 

from wild-type flux distribution, which may not correspond to the flux distribution for maximum 
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growth (Segre et al., 2002). Nevertheless, although this approach, referred to as Minimization of 

Metabolic Adjustments (MOMA), might explain the flux distribution of mutants better than 

FBA, such mutants might approach towards FBA-predicted optimal solution when evolved un-

der growth pressure (Fong et al., 2003;Ibarra et al., 2002).  

To check whether the two approaches for evaluating flux distributions (namely FBA and 

MOMA) result in different predictions for multiple deletion mutants, we used OptGene to search 

for double and triple deletion mutants with improved succinic acid yield and BPCY. The double 

deletion strategy for obtaining maximum yield with MOMA includes deletion of FUM1 (fu-

marase) and PDA1 (pyruvate dehydrogenase). This strategy is different from that suggested by 

using FBA, and it also predicts a better yield (0.11 g/g glucose) for a double deletion mutant. In 

case of BPCY the MOMA approach yielded the same productivity, although with different genes 

(RPE1 and an orphan reaction in mitochondria). However, an effective comparison of FBA and 

MOMA for multiple deletion mutants can only be done after experimental evaluation.  

8.8 Significance and effects of different GA parameters 

Parameterization of stochastic optimization methods like evolutionary algorithms is recognized as 

a difficult task and for this particular problem only an empirical study of the effect of different 

parameters was conducted. The main purpose of this parameterization was to be able to obtain a 

global optimum within a reasonable computation time.  

Different sizes of the population were tested, and it was found that an increase beyond 125 indi-

viduals did not improve the results significantly.  Furthermore, a mutation rate of 1/(genome 

size) was found to be optimal for both representations (Supplementary Figure S-8.2) . 

Regarding crossover methods, for the binOptGene representation, one-point, two-points and 

uniform crossover methods were tested, and the different crossover techniques gave almost the 

same results, indicating that all approaches are equally good, probably due to their similar opera-

tion mode. For intOptGene, only one type of crossover method was tested, namely uniform 

crossover where a child obtains a gene from each parent with equal probability. 

After parameterization, for both representations, and for a typical optimization run, the evolu-

tionary algorithms were able to achieve a solution within 1000 generation, although the algorithm 

was allowed to run until 5000 generations. A typical convergence curve can be found in Figure 

8.4.  
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Figure 8.4. Typical shape of the convergence curve of OptGene. 

8.9 Resemblance to Natural Evolution 

The theoretical foundations of genetic algorithms rely on a notion of short, highly fit schemata, 

also known as building blocks (see e. g. (Michalewicz, 1996;Goldberg, 1989)), that are propagated 

generation to generation and constitute the basis for the convergence to optimal solutions. For 

the strain design problem, building blocks can be regarded as subsets of genes in a close position 

on the individuals of the evolutionary algorithms that, when deleted together, improve process 

yield or productivity.  

The differences on the representation of individuals in both approaches used in this work origi-

nate different requisites in terms of the formation of building blocks: as in the binary representa-

tion the order of the genes in the individuals follows closely that of the stoichiometric model 

(where genes are grouped according to the main pathways they integrate), only related genes can 

be a part of the building blocks. On the other hand, for the integer representation any subset of 

unrelated genes can form a building block. A natural conclusion of this observation is that the 

more the genes in the metabolic model follow a biological meaningful order, the more similar the 

binOptGene optimization approach is to a biological evolution of microorganisms under a given 

selective pressure. 

Additionally, we observed that if the limitation on the number of genes to be deleted in bi-

nOptGene is imposed by using penalty functions after evaluation of individuals, the number of 

invalid individuals in the population at a given generation is very large and consequently nega-

tively affects the convergence. 
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Nevertheless, in spite of the described differences, and although it is known that usually Genetic 

Algorithms do not perform very good for problems of the size found for the binary implementa-

tion, similar results were obtained for both approaches, after parameterization. In fact, for the 

majority of the runs, and with both representations, there was a clear convergence to an optimum 

(Figure 8.4), and the solutions found were very similar among all the repetitions (typical values of 

the relative standard deviation of 20 runs are 6%). Additionally, most of the times the final solu-

tion was found very early, indicating that 500-1000 generations are probably enough for converg-

ing to a satisfactory solution. However, by looking at the shape of the convergence curve in fig-

ure 8.4, it is clear that there are several sudden increases in the performance of the best individ-

ual, as opposed to the most often observed smooth convergence curves obtained with evolution-

ary algorithms. These step changes in the objective function value are usually an indication that 

the optimization is being stopped very prematurely but, as more iterations do not improve the 

final solution, it is more likely that the problem itself is discrete. In fact, and although additional 

characterization of the search space is needed, this observation can be explained by the evidence 

that, when a good candidate for deletion is found, the performance of the best individual in a 

population increases significantly.  

8.10 Global optimal solution and computational cost 

In case of succinate yield optimization, the optimality of the solution found by OptGene was 

verified using exhaustive search with up to 4 deletions. In case of BPCY, although the optimal 

solution for 3 deletions represented a global optimum, for a 4 deletion case OptGene found a 

sub-optimal solution. However, this solution was quite close to the global optimal solution (85% 

of the global optimal value). With 5 deletions the optimal solution found reached quite close to 

the maximum possible BPCY value. We hereby note that in cases where global optimality can not 

be directly verified, a good estimate for closeness to the global optimal solution can be found by 

using a curve similar to that presented in Supplementary Figure S-8.3. The plot in the Supple-

mentary Figure S-8.3 is generated by fixing the biomass yield at different values and then optimiz-

ing for the succinate production. 

The computational cost of OptGene (estimated as the number of objective function evaluations 

necessary to find an optimal solution) was found to be 0.03 % of that found by using exhaustive 

search for 4 gene deletion case (succinate yield) and 0.33 % for succinate BPCY case. However, 

we did not observe any direct correlation between the number of deletions and the computa-

tional cost. Supplementary table S-8.4 summarizes the computational cost associated with the 

succinic acid optimization case. 
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8.11 Multiple optima 

Since the flux distribution obtained using FBA is not necessarily unique, the objective function 

value obtained in the fitness evaluation routine may not be unique as well. This is usually due to 

the possibility of other by-products being formed instead of the desired product (Supplementary 

Table S-8.3 lists the metabolites that were allowed to be secreted by the cells in this study). Con-

sequently it has an important implication while designing the deletion strategies. Such check for 

uniqueness of objective function can easily be incorporated in the fitness evaluation routine by 

using flux variability analysis. Thus, e.g., an upper and lower bound can be calculated for the 

product flux at the optimal growth rate. The choice between “pessimistic” and “optimistic” fit-

ness value can be left for the user. However, we note that for the results presented in this study, 

the solutions obtained were unique as indicated in the last column of Table 8.1. 

8.12 Conclusions 

We report a GA based framework termed OptGene for designing microbial strains in silico. 

OptGene presents two major advantages, higher speed and ability to optimize for non-linear ob-

jective functions. The optimal solution for a four deletion problem (succinate yield case) was 

found using OptGene by searching only 0.03% of the total solution space. For a higher number 

of deletions, the OptGene search space represents considerably lower fraction of the total solu-

tion space that increases exponentially. As a consequence of an exponential increase in the search 

space, a detailed study of the correlation between the OptGene search space and the total solu-

tion space was not feasible. Nevertheless, as discussed in the results section, it is possible to esti-

mate the closeness to the global optimal solution by comparing the results with the plots as re-

ported in Supplementary Figure S-8.3 . Consequently, high computational speed of OptGene 

enables addressing the problems involving large number of genes, and searching for higher num-

ber of deletions. This is of particular interest as genome-scale models of simple eukaryotic organ-

isms like S. cerevisiae include more than 1000 reactions. In case of simple minimal media that we 

used in our simulations, this set of 1000 reactions can be reduced to 240 reactions as described in 

the algorithm. This number can still be large for solving quadruple deletion problem using ex-

haustive search algorithms.  

The metabolic engineering strategies reported in this work suggest that non-intuitive genetic 

modifications spanning several different pathways may be necessary for solving challenging 

metabolic engineering problems. Consequently a priori selection of candidate targets might lead to 

sub-optimal solution, and it is desirable to consider the whole model. Moreover, with the recent 

advances on the experimental front, it is feasible to construct mutants with many knockouts in 
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real time. It should also be noted that we might often need to recalculate the results in case of 

changes/errors in the model, e.g. after including regulatory information or addition of a new re-

actions. Speed of calculations can be a key factor in such cases. OptGene can serve to provide a 

quick hint to whether a particular function of interest can be improved at all or up to what extent. 

The ability of OptGene to optimize for non-linear objective functions opens new opportunities 

for designing microbial strains with tailor-made metabolic phenotype, e.g. a strain with high 

BPCY of x and low yield of y.  

The GA formulation can provide us with multiple solutions, and thus an opportunity to choose 

from many good solutions. This is of interest as many of the predicted solutions might be diffi-

cult to realize due to complex biological regulation, which is difficult to account for in scoring 

function models. Moreover, the GA framework is very flexible and thus can easily be changed to 

use different scoring functions depending on the problem and system under investigation. In 

conclusion, OptGene represents a computationally efficient, flexible and natural tool for in silico 

designing of microbial strains by using genome-scale models. 

8.13 Methods 

8.13.1 Metabolic model 

Genome-scale reconstruction of S. cerevisiae reported by Förster et al. (Forster et al., 2003a) was 

used as stoichiometric model of yeast metabolism. All simulations were performed for aerobic 

glucose-limited conditions. The glucose uptake rate was fixed to 3 mmoles/gDW/hour while the 

maximum oxygen uptake rate was set to 9 mmoles/gDW/hour (Overkamp et al., 2000). 

8.13.2 FBA and MOMA 

FBA simulations were performed using the GNU linear programming kit 

(http://www.gnu.org/software/glpk/glpk.html), while MOMA calculations were performed by 

using an Object oriented quadratic programming package (Gertz and Wright, 2003). 

8.13.3 Genetic algorithm 

The genetic algorithm was implemented as a C++ program using the GAlib package 

(http://lancet.mit.edu/ga/). 

Note 1: Reported growth rates for mutants 

As discussed in the main text, FBA (and other steady state models) can not simulate “rate” with-

out specification of the specific substrate uptake rates (substrate uptake per unit biomass per unit 
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time). Consequently the reported growth rates for the mutants should be more correctly inter-

preted as biomass yields. 

Note 2: Maximum theoretical yield of succinate 

The maximum theoretical yield of succinic acid reported in this study is calculated using FBA, 

whereas external H+ was balanced. In case where H+ is regarded as unbalanced (or external) me-

tabolite, maximum yield is 0.98 g/g glucose. This difference is very high and hence can result in 

big differences in the predictions reported. However, the choice is not trivial since the exact 

mechanism by which succinic acid is transported out of cell is unknown. Moreover, in case where 

H+ is not balanced, certain contradictions with the experimental observations were found under 

anaerobic conditions. For this reason we chose to use a conservative estimate for the maximum 

theoretical yield. We also note that the theoretical yields were calculated with the constraints for 

maintenance cost, and no CO2 uptake. Thus the reported yields are slightly lower than the 

stoichiometric yields (1.124 g/g glucose in case of succinate). 

Note 3: Data availability 

The flux distributions, model reactions and other data related to this article can be obtained for 

non-profit research purposes by contacting the corresponding author (JN). 
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8.14 Supplementary material 

 

Figure S-8.1. Increase in size of search space (number of possible combinations for given number of deletions) 

for a reaction-deletion problem with 240 reactions. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5

Mutation Probability

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

ac
hi

ev
ed

Mean
Standard deviation

 

Figure S-8.2. Effect of mutation probability on performance of OptGene. Mean and standard deviation for Suc-

cinic acid yield for best individual after fixed number of generations are plotted (arbitrary units). 
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Figure S-8.3. Maximum yield and Biomass Product Coupled Yield of succinate at fixed biomass yield and glu-

cose uptake rate (arbitrary units). 
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Table S-8.1. Metabolite abbreviations used in the Figure 3 of main text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation Metabolite
ACCOAcyt cytosolic Acetyl Coenzyme-A
ACCOAmit mitochondrial Acetyl Coenzyme-A

ACA Acetaldehyde
ACE Acetate
ACEX Acetate (extracellular)
AKG 2-Oxoglutarate
CIT Citrate

CO2 CO2
DHAP Dihydroxyacetone phosphate
ETH Ethanol
E4P D-Erythrose 4-phosphate
F6P D-Fructose 6-phosphate
F16P D-Fructose 1,6-bisphosphate
FUM Fumarate
GA3P D-Glyceraldehyde 3-phosphate
G6P D-Glucose 6-phosphate
G15L D-Glucono-1,5-lactone 6-phosphate
GLOX Glyoxylate
GLC Glucose
GP sn-Glycerol 3-phosphate
ICI Isocitrate

MAL Malate
OAA Oxaloacetate
P13G  3-Phospho-D-glyceroyl phosphate
P2G 2-Phospho-D-glycerate
P6G 6-Phospho-D-gluconate
P3G 3-Phospho-D-glycerate
PEP Phosphoenolpyruvate
PYR Pyruvate
R5P D-Ribose 5-phosphate

RU5P D-Ribulose 5-phosphate
SUC Succinate

SUCCOA Succinyl-CoA
S7P Sedoheptulose 7-phosphate
X5P  D-Xylose-5-phosphate
ADP ADP
ATP ATP

NADPcyt cytosolic NADP+
NADHcyt cytosolic NADH
NADcyt cytosolic NAD+

NADPHcyt cytosolic NADPH
NADmit mitochondrial NAD+

NADHmit mitochondrial NADH
NADPmit mitochondrial NAD+

NADPHmit mitochondrial NADPH
FAD FAD++

FADH2 FADH2
SER Serine
THR Threonine
ASP Aspartate

GLUT Glutamate
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Table S-8.2. Different deletion strategies suggested by OptGene algorithm for improving glycerol yield and 

Biomass Product Coupled Yield. 

Objective function Number of 

deletions 

Suggested deletions1 Objective func-

tion value2 

%Maximum Growth  

6 FBA1, TDH1, GDH3, 

YDR111C, PRO2, MTD1 

0.51 1.2 Glycerol yield 

3 FBA1, TDH1, RIP1 0.49 13 

6 FBA1, PDA1, OSM1, 

PDC6, GCV1, GAP1 

41.12 46.24 Glycerol Biomass 

Product Coupled 

Yield 
3 FBA1, TDH1, PDA1 27.48 20.26 

1 Only few of the suggested strategies, with high objective function values are shown. OptGene found many 
strategies with different, but high objective function values. This tendency can be controlled by varying GA 
parameters. 
2 Units are:  Yield in gram (gram glucose)-1,  
Biomass Product Coupled Yield in milli-gram (gram-glucose.hour)-1 

Table S-8.3. List of metabolites that were allowed to be secreted out during OptGene simulations. 

L-Glutamate, Glucose, 2-Oxoglutarate, Glycerol, L-Alanine, L-Arginine, L-Asparagine, L-Aspartate, L-Cysteine, Glycine, L-

Glutamine, L-Histidine, L-Isoleucine, L-Leucine, L-Lysine, L-Methionine, L-Ornithine, L-Phenylalanine, L-Proline, L-Serine, L-

Threonine, L-Tryptophan, L-Tyrosine, L-Valine, Guanine, HYXN, Xanthine, Acetate, Formate, Ethanol, Succinate, Urea, Ortho-

phosphate, Citrate, Fumarate, (R)-Pantothenate, CO2, Acetaldehyde, Adenosine 3',5'-bisphosphate, dTTP, Thymine, D-

Glucosamine 6-phosphate, 8-Amino-7-oxononanoate, Malate 

 

Table S-8.4. Computational performance of OptGene as compared with the exhaustive search. Since CPU time 

will be dependent on the machine type and linear programming solver used, we have reported “search space” (or 

number of objective function evaluations) for Succinic acid case study. However, we note that the CPU time will 

be proportional to the number of objective function evaluations, independent of the machine type and solver. The 

fraction of  independent runs converging to the best solution was taken into account while estimating the number 

of objective function evaluations for OptGene.  

Number of deletions Total search space OptGene search space (Yield) OptGene search space 

(BPCY) 

3 2275280 115485 184677 

4 1.35E+08 42712 452000 

5 6.36E+09 103875 51750 
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Chapter 9 

Chapter 9: In silico metabolic engineering: experimental 
verification of predictions 
The work presented in this chapter was done in collaboration with Donatella Cimini and Gaëlle Lettier. 
 
 
 
 

 

 

 

"The rule is, jam tomorrow and jam yesterday - but never jam today" 
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The succinic acid case study discussed in the previous chapter was investigated experimentally for 

validation of the approach. Several single, double and triple deletion mutants were constructed 

and some of them were characterized for succinic acid production in batch and chemostat culti-

vations. Strain construction was started with the deletion of SDH3 which was the common ele-

ment between all of the deletion strategies generated by OptGene. We also performed detailed 

strain characterization including transcription analysis for this mutant (data not shown). Data 

obtained from chemostat cultures of the sdh3Δ mutant was used in OptGene in the form of addi-

tional constraints. Thus, the new multiple gene deletion predictions were generated with 

OptGene, by using both MOMA and FBA. The most promising strategy (additional deletions of 

SER3-SER33 and THR1) was taken further. Construction of quadruple deletion mutant 

(sdh3Δser3Δser33Δthr1Δ) could not be achieved, possibly due to in-viability of the mutant. The 

sdh3Δ mutant and the double-reaction deletion mutants (sdh3Δser3Δser33Δ and sdh3Δthr1Δ) 

showed close to the predicted amount of succinate yields (data not shown). However, growth 

rates of the mutants were lower than predicted (data not shown). Moreover, ser3Δ and ser33Δ 

mutants were auxotrophic for serine. It was later possible to eliminate this auxotrophy through 

adaptive evolution experiments in shake flask cultivations (Otero JM, unpublished results). Based 

on the results obtained during this work, an integrative metabolic engineering strategy is pro-

posed (Figure 9.1). The strategy involves repeated applications of experimental and computa-

tional techniques. With the aid of transcriptome and Metabolome data, such a strategy will help 

in achieving metabolic engineering targets in a rational and rapid way. 
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Figure 9.1. Proposed integrative metabolic engineering cycle for improved production of microbial metabolites. 

OptGene predictions, strain construction, characterization and adaptive evolution should be used in sequence. 

Several rounds of this cycle may be necessary for achieving high yield/productivity. Data generated during char-

acterization (fermentation profiles, yields, transcriptome etc.) should be used together with OptGene in order to 

improve the prediction-confidence in the next round. 
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Chapter 10 

Chapter 10: Additional miscellaneous research 
 
 
 

 

 

 

"Everything's got a moral, if only you can find it." 
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10.1 Reporter EFMs 

Elementary flux modes (EFM) are stoichiometrically balanced sets of reactions that can operate 

at steady state without net production or consumption of intra-cellular metabolites (Schuster et 

al., 2000). EFM can also be seen as the stoichiometric definition of a pathway. Cellular metabo-

lism can thus be decomposed into several EFMs. Weighted linear combinations of EFMs can be 

used to represent any steady network state. The usefulness of EFM-based network decomposi-

tion has not only stoichiometric but also regulatory implications (Stelling et al., 2002;Cakir et al., 

2004). Moreover, EFMs also provide a conceptually easy way to understand the complex struc-

ture of metabolic network in the flux space. 

Together with Intawat Nokaew (King Mongkut’s University of Technology Thonburi, Thailand), 

I have tried to investigate whether transcriptional changes in metabolism can be explained by 

using EFM decomposition. The rational behind this strategy was that if fluxes through certain 

EFMs are more affected by a perturbation, those changes might be reflected at the transcriptional 

level. Since any EFM is stoichiometrically balanced, it is possible that some constraints are also 

placed on the expression of the corresponding genes. Thus, reporter EFMs are EFMs that show 

significant collective transcriptional response of all corresponding genes. The scoring procedure 

is the same as that for reporter metabolites. Indeed, we identified physiologically relevant EFMs 

following the deletion of SDH3 and the shift from aerobic to anaerobic conditions. Figure 10.1 

shows the distribution of reporter EFM scores for these two cases. EFMs were calculated for a 

small yeast metabolic model mainly comprising of the central carbon metabolism (around 80 

reactions). It appears that the gene deletion lead to stronger expression changes as compared to 

the environmental change. It should be noted that deletion of SDH3 also led to respiration defi-

cient growth and hence the two perturbations are alike in some respect. However, detailed study 

of the calculated reporter EFMs is necessary before drawing any major conclusions. Also, it is 

necessary to consider that the two transcription studies were made at different growth conditions, 

viz., one in chemostat and other in batch. 

The concept of reporter EFM may be a very useful tool for integrating transcriptional data into 

flux estimations and analysis. However, since one reaction is typically participating in a large 

number of EFMs, reporter metabolites (Patil and Nielsen, 2005) (Chapter 3) and control effective 

fluxes (Stelling et al., 2002) may be more easy-to-interpret and use in general. Reporter EFM is an 

extension of the concept of reporter metabolites to pathway-scale. However, it is more difficult 

to imagine and hypothesize the evolutionary origin of such regulatory architecture. Hence al-
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though the concept of Reporter EFM will be useful for data integration, it is unlikely that it will 

help us to discover new regulatory circuits. 

 

Figure 10.1 Distribution of transcriptional response score for EFMs following two different perturbations. 

10.2 Reporter conditions and k-Cross algorithm 

Regulatory response of cells is often characterized by time dependent changes in the expression 

of regulatory genes and consequently in their target genes. The systematic organization of tran-

scriptional response around certain metabolites (Chapters 3, 6 and 7) may partially be attributed 

to transcription factors (TFs) binding to promoter regions of neighboring genes of a metabolite 

(Chapter 6). For some of the metabolites we have previously identified conserved promoter mo-

tifs for their neighboring genes and the TFs that are likely to bind at these motifs. However, for 

the rest of the metabolites there still may be some TFs/regulators that are directly/indirectly re-

sponsible for governing expression of metabolite-related genes. In this study such metabolite-

related regulators have been identified through a correlation analysis of a time-series transcrip-

tome data. The basic idea is to calculate the average correlation between expressions of all 

known/potential TFs/regulators and all neighbors of a metabolite. This correlation is then nor-

malized by using correlations between TFs/regulators and randomly selected metabolic genes. 

This procedure would identify Tfs/regulators that are significantly correlated with the expression 

of the metabolite’s neighbors. Thus, new regulatory proteins responsible for the coordinated 

transcriptional changes around a metabolite can be identified by the algorithm. Although the al-
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gorithm is simple, there are some difficulties. Transcriptional changes in a regulatory cascade are, 

in general, highly non-linear. Therefore it is difficult to identify significant regulatory relationships 

by testing only for linear correlations. This difficulty can be partially overcome by: i) focusing 

only on reporter metabolites for a particular dataset (reporter metabolites imply good linear cor-

relation around them, and hence it can be expected that the corresponding regulators, if any, are 

also linearly correlated with these genes); ii) Selecting the subset of experiments (/conditions) that 

maximizes the correlation score among the neighbor genes. The second heuristic is a challenging 

computational problem. Since correlation score (reporter score) is not only the function of ex-

pression of genes in question, but also the background distribution of scores, the problem of 

maximization of the score by selecting a subset of conditions is combinatorial complex. Genetic 

algorithm was used to address this problem (Figure 10.2). Although genetic algorithms do not 

guarantee to find the optimal solution, it usually results in a close to optimal solution which in 

this case may be sufficient. The conditions thus identified are defined as reporter conditions. 

Each reporter metabolite will be thus associated with reporter conditions. Since the background 

score calculation has to be repeated for each round of the genetic algorithm, the computational 

time required for the reporter condition algorithm was high (data not shown). 

Once the reporter conditions are identified, the next step for finding the most relevant regula-

tors/TFs is relatively easy. This algorithm is termed k-Cross algorithm (figure 10.3). 

All potential TFs/regulators (including genes with unknown functions) are tested for correlation 

with the neighbors of the reporter metabolites over the corresponding reporter conditions. The 

top k regulators for each metabolite are then selected as putative regulators for the corresponding 

genes. The parameter k can either be decided arbitrarily (e.g. 10, 20 etc.) or based on a statistical 

significance cut-off (e.g. p-value of 0.05). An example of an outcome of the k-Cross algorithm is 

shown in figure 10.4, where the metabolite nodes (red) are connected to the identified putative 

regulatory proteins (blue nodes). The data used for this example is from the metabolic cycle ex-

periment (Tu et al., 2005). Yeast cells were grown in a chemostat and synchronized oscillations 

were introduced with a pulse of glucose. Transcription of all genes was then measured over three 

cycles. The reasons for choosing this particular dataset are: i) metabolic cycle is closely related 

with the cell cycle; ii) oscillations during the metabolic cycle are natural in the sense that they are 

not introduced or synchronized through the addition of external agents; iii) dataset includes large 

number of time-point measurements (36). Interestingly, the top scoring reporter metabolite from 

this dataset is NADH, which is a well known key player in yeast metabolism which is also related 

to metabolic oscillations.  
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Figure 10.2. Genetic algorithm used for identifying reporter conditions for reporter metabolites. 
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Figure 10.3. Schematic overview of the k-Cross algorithm. 
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The high connectivity in the network depicted in figure 10.4 implies that the regulatory mecha-

nisms underlying changes in the metabolism are closely interrelated. Only two reporter metabo-

lites appear to be outliers in this network. However, when k was increased to 20, the network 

became connected (data not shown). Indeed, regulators that can exert simultaneous control at 

several points will be an ideal control system for regulating highly connected networks such as 

metabolic network. Several of the identified potential regulators are genes with unknown func-

tions or orphan ORFs. Thus the k-Cross algorithm can help in functional genomics by assigning 

functions to these genes. Experimental verification can be done for the high confidence interac-

tions that emerge through the k-Cross algorithm applied to many different datasets. 

In summary, the k-cross algorithm will help in reconstructing metabolic regulatory circuits and 

their links to other cellular processes through a hypothesis-driven modeling approach. Moreover, 

the k-cross algorithm will help in expanding the genome-scale metabolic models and their appli-

cability over larger number of genes and hence to a larger number of environmental and genetic 

conditions. 

 

Figure 10.4. Example of an output of the reporter conditions and the k-Cross algorithm with k=10. The red 

nodes represent metabolites while blue nodes represent TFs/Regulators. The thickness of an edge is proportional 

to the correlation strength. The color of an edge is dependent on the number of positive correlations between the 

regulator and the neighbor genes of the metabolite. Edge with the red color indicates that all corresponding cor-
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relations are positive, while an edge with the blue color implies all negative correlations. For the edges represent-

ing mixed positive and negative correlations, the color of an edge is a mixture of red and blue. 

10.3 Essentiality of genes around metabolites 

Several of the yeast genes are essential for growth, meaning that the deletion of any of these 

genes is lethal. Evolutionary and functional explanations for the question, why certain genes are 

essential while other are dispensable, has been a recent focus of research (Papp et al., 2004;Samal 

et al., 2006). The usefulness of a metabolite-centered analysis for studying stoichiometric and 

regulatory aspects of the yeast metabolic network has been demonstrated in the previous chap-

ters. On the same lines, I queried whether the essential genes are preferentially clustered around 

certain metabolites. The results of this analysis are shown in table 10.1. As hypothesized by 

(Samal et al., 2006) many low degree metabolites were found to harbor essential genes. Notably, 

several highly connected metabolites were also found to be significant. E.g., the vital role of ATP 

in a variety of cellular functions is reflected by the significant concentration of essential genes 

around it. On the other hand H+
Ext (extra-cellular proton, involved in several transport reactions) 

and glucose were found to have significantly lower fraction of essential genes around them. This 

is the consequence of the fact that several transport functionalities are backed up by isozymes 

and thus deletion of a single gene does not lead to an inviable phenotype. These results increase 

the dimensions of biological information that can be unraveled through the reporter approach 

and further support the hypothesis of the metabolite-centered evolution of metabolic networks. 

10.4 Genome positioning of metabolite’s neighbor genes 

Potential regulatory and evolutionary mechanisms behind the observed transcriptional coregula-

tion between metabolically related genes have been discussed in chapter 6. In this study, another 

dimension is added to these efforts by identifying the metabolites whose neighbor genes are sig-

nificantly closely positioned in the genome. The hypothesis behind this investigation is: if the 

neighbor genes of a certain metabolite are closely positioned in a genome, it may partially explain 

the coregulation between, and/or the evolutionary origin for, these genes. For example, the 

neighbor genes of the metabolite under question might have been acquired from other species 

via a horizontal DNA transfer; or some of these genes have their origin in a gene duplication 

event, or the coregulation among these genes might be linked to their close positioning in the 

genome. Table 10.2 lists such metabolites whose neighboring genes are significantly closely lo-

cated in the genome. Interestingly, ATP and redox co-factors make their way in this list. This fact 

further highlights the functional importance of redox and energy co-factors for metabolic net-

works as discussed in chapter 7. 
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Table 10.1. Reporter metabolites for gene essentiality. Yellow shaded metabolites indicate that 

the number of essential reactions around them is less than expected. 

Metabolite Number of neighborsEssential neighbors p-value
H+EXT 188 2 7.83367E-08

Pyrophosphate 68 20 1.61167E-06
ATP 164 34 1.74369E-06

(R)-5-Phosphomevalonate 5 5 8.83289E-06
Isopentenyl diphosphate 4 4 9.24372E-05

1-Phosphatidyl-D-myo-inositol 8 5 0.000367057
3-Dehydrosphinganine 3 3 0.00095731

2-Amino-4-hydroxy-6-hydroxymethyl-
7,8-dihydropteridine 3 3 0.00095731

(R)-Mevalonate 7 4 0.002392806
AMP 46 11 0.002614205
ADP 129 22 0.002677518

1-Phosphatidyl-1D-myo-inositol 4-
phosphate 4 3 0.00345949

alpha-D-Mannose 1-phosphate 2 2 0.009812425
Palmitoyl-CoA 2 2 0.009812425

(R)-5-Diphosphomevalonate 2 2 0.009812425
Dimethylallyl diphosphate 2 2 0.009812425

Geranyl diphosphate 2 2 0.009812425
trans,trans-Farnesyl diphosphate 2 2 0.009812425

Squalene 2 2 0.009812425
(S)-2,3-Epoxysqualene 2 2 0.009812425

Intermediate_Methylzymosterol_I 2 2 0.009812425
Intermediate_Zymosterol_I 2 2 0.009812425
N-Acetyl-D-glucosamine 1-

phosphate 2 2 0.009812425
(R)-3-Hydroxy-3-methyl-2-

oxobutanoateM 2 2 0.009812425
(R)-2,3-dihydroxy-3-
methylbutanoateM 2 2 0.009812425

L-1-Pyrroline-3-hydroxy-5-
carboxylate 2 2 0.009812425

trans-4-Hydroxy-L-proline 2 2 0.009812425
2-Amino-7,8-dihydro-4-hydroxy-6-

(diphosphooxymethyl)pteridine 2 2 0.009812425
Porphobilinogen 2 2 0.009812425

Hydroxymethylbilane 2 2 0.009812425
Coproporphyrinogen 2 2 0.009812425

dUMP 6 3 0.014113231
alpha-D-Glucose 38 0 0.017016055

NADH 52 1 0.022184111
beta-D-Glucose 6-phosphate 3 2 0.026565345

CDPdiacylglycerol 3 2 0.026565345
Lanosterol 3 2 0.026565345

Thiamin diphosphate 3 2 0.026565345
4-Aminobenzoate 3 2 0.026565345
Dihydropteroate 3 2 0.026565345

Uroporphyrinogen III 3 2 0.026565345
NAD+ 58 2 0.0426232

2-Oxoglutarate 29 0 0.045411636
CDPdiacylglycerolM 4 2 0.047941455

dTMP 4 2 0.047941455
Dihydrofolate 4 2 0.047941455

FMN 4 2 0.047941455  
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Table 10.2. Reporter metabolites for genome position of neighboring genes. 

Metabolite Position P-value
ATP 7.65304E-05
L-Glutamate 0.000659393
D-Fructose 0.001454756
NAD+M 0.001630868
alpha-D-Glucose 0.004812615
trans,trans-Farnesyl 
diphosphate 0.005645037
NAD+ 0.006066368
FADM 0.006902072

3-Methyl-2-oxobutanoateM 0.007672133
1L-myo-Inositol 1-
phosphate 0.007850773
FADH2M 0.008488164
D-Glyceraldehyde 3-
phosphate 0.009626906
Orthophosphate 0.010951956
NADHM 0.012071059
2-Oxoglutarate 0.013339589
Oxygen 0.01398382
D-Ribulose 5-phosphate 0.013997373
3-Oxoacyl-CoA 0.014152249
D-Fructose 2,6-
bisphosphate 0.01456584
dCTP 0.014742149
Phosphatidyl-N-
methylethanolamine 0.017849471
Allantoate 0.019567243
beta-D-Fructose 6-
phosphate 0.024453588
Malonyl-[acyl-carrier 
protein] 0.026619947
Acyl-[acyl-carrier protein] 0.026619947
CO2M 0.02728967
L-Cysteine 0.030544551
L-Cystathionine 0.031036076
AMP 0.034060165
H2O2 0.038737366
Hydrogen sulfide 0.039111586
L-Lysine 0.040969911
L-Homoserine 0.041440415
Choline phosphate 0.043078276
dUTP 0.044844549
NADH 0.048648642
Fumarate 0.04981706  

 

10.5 Nonlinear correlation test for the analysis of the transcriptomics data 

In this study, it is hypothesized that the expression profiles of the genes with regulatory relation-

ship can be modeled using the Hill equation. This hypothesis is used to analyze dynamics of gene 

expression during beer fermentation. Since it is likely that many transcriptional regulatory circuits 

involve non-linear correlations, the here-reported method can be used to extract such interac-

tions from the genome-scale transcriptome data. 
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Genome-wide gene expression datasets provide an opportunity to uncover complex transcrip-

tional regulatory networks. One of the challenges in computational biology is to effectively ex-

tract regulatory information from these datasets. Presently, the most commonly used methods 

involve statistical significance tests and clustering algorithms. Most of the clustering algorithms 

use Pearson correlation coefficient (or some other measure of linear dependency tests) as a 

measure of the distance between gene expression profiles. In other words, these methods hy-

pothesize a linear correlation between expressions of two genes. Although this hypothesis may be 

true for some genes, large number of genes might also have a non-linear correlation between 

their expression patterns. This information might be very valuable for correctly deducing regula-

tory network structures from the transcriptome data. 

Here a method is reported to test the sigmoidal correlation between the gene expression profiles. 

The reason for choosing the sigmoidal relationship is that many enzyme regulatory systems have 

been shown to exhibit a sigmoidal response which characterizes a robust regulatory system 

(Mutalik et al., 2003;Koshland, Jr., 1998). The sigmoidal response was modeled by using the Hill 

equation, 

n

n

IK
If
+

=  

Where n is termed as Hill coefficient. For n = 1, the system shows Michaelis-Menten behavior, 

for n>1 system shows ultrasensitive response and for n<1 the response is subsensitive (Fig. 

10.5). The nonlinear regression between two gene expression profiles was performed using 

MATLAB. 

As a case study, gene expression data from Saccharomyces carlsbergensis, obtained during production-

scale lager beer fermentation was analyzed. The data included 12 samples taken in the time 

course of batch fermentation at the intervals of 1 day (with the exception of the second sample, 

which was taken 1 hour after the start of the fermentation). Due to computation limitations it 

was not possible to compare the expression profile between all genes. Therefore only the expres-

sions of the genes that are known to be involved in glucose repression were selected for the 

analysis. 
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Figure 10.5. Normal, subsensitive and ultrasensitive responses. 

Thus, non-linear regression coefficients were calculated for the genes known to be involved in 

glucose repression pathway, against rest of the genes. The top scoring hundred correlations were 

chosen for further analysis. 

Some of the interesting correlations include: 

1) Biosynthetic genes involved in the fermentative metabolism (alcohol dehydrogenase 

ADH4, DL-glycerol phosphate phosphatase HOR2, 3-isopropylmalate dehydrogenase 

LEU2). 

2) Genes involved in the energy metabolism (ATPase in the plasma membrane PAM1, mi-

tochondrial ATP-synthase subunit ATP2, vacuolar ATPase VMA5). 

3) Genes involved in the cell cycle (SIM1). 

4) Other genes involved in the glucose repression (SNF4). 

 A few examples of the identified correlations are shown in Figure 10.6. 

The described results could not be obtained by using classical methods that are based on linear 

correlation coefficient. The expression profiles of several genes, which were found to show good 

sigmoidal correlation with RGT2 are displayed in Figure 10.7. A simple visual inspection would 

tell that the genes do not have a linear correlation and hence cannot be grouped by using classical 

clustering methods. 

In conclusion, here-described approach can be used to systematically identify non-linearly corre-

lated bio-molecular interactions from omics data. This will expand the scope of many existing 

algorithms, including the reporter algorithm, for identifying and taking advantage of previously 

unknown interactions. 
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Figure 10.6. Expression profiles for some of the identified gene-pairs with sigmoidal correlation. 

 

 

 

Figure 10.7. Expression profiles of the genes that were found to have sigmoidal correlation with the expression 

of RGT2. 

 



Future perspectives             PhD Thesis, Kiran R. Patil 

151 

Chapter 11 

Chapter 11: Conclusions and future perspectives 
 
 
 
 

 

 

"Would you tell me please, which way I ought to go from here?" "That depends a good deal on 

where you want to get to," said the Cat. "I don't care much where--" said Alice. "Then it doesn't 

matter which way you go," said the Cat. 
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Evolutionary insight into emergence and organization of metabolic regulation is one of the most 

promising leads from this work. It appears that the regulation in a metabolic network is guided by 

the topology of the network itself. Neighboring genes of a metabolite (meaning the genes coding 

for the enzymes that catalyze reactions involving that metabolite) were thus found to be tran-

scriptionally coregulated following perturbations in that part of the metabolism. The metabolites 

that harbor significant transcriptional coregulation in a particular experiment were termed as re-

porter metabolites. Reporter metabolites unravel a simple principle underlying complex regula-

tory response in a metabolic network. This principle enables us to understand the logic of the 

cellular response to genetic/environmental perturbations without knowing the architecture of 

regulatory machinery implementing these changes. It is argued that the transcriptional coregula-

tion of genes surrounding a metabolite is partly a thermodynamic necessity for the cells, in order 

to either maintain the homeostasis or to adjust the metabolic fluxes and pools to new demands. 

Notably, reporter metabolites were found to be perturbation-specific and unbiased towards the 

connectivity. Accordingly, the importance of the highly connected metabolic co-factors in terms 

of integrating the operation of distinct metabolic functions was also found to be reflected in the 

coregulation of their neighbor genes. Furthermore, from a regulatory point of view, metabolite-

based grouping of genes was found to be more significant as compared with the traditional path-

way-based grouping.  

The concept of reporter metabolites was further enriched by identifying specific mechanisms 

responsible for the organization of transcriptional coregulation around them. Several metaboli-

cally related gene groups were found to be evolutionary conserved and also transcriptionally co-

regulated. Notably, these gene groups also display common sequence motifs in their promoter 

regions. These results imply that the regulatory circuits have evolved around conserved and me-

tabolically related genes. Transcriptional evidences were found for some of the new potential 

regulatory circuits identified by the reporter analysis. Owing to the foundation of the reporter 

approach based on the network topology, which is conserved in many species, principles of regu-

lation can now be easily and systematically generalized, categorized and extrapolated across spe-

cies. Indeed, the reporter metabolite algorithm has already been successfully used to decipher 

regulatory information in several systems including humans (Figure 11.1). Together with the fact 

that the metabolic networks are widely conserved from bacteria to humans, reporter algorithm 

presents an opportunity to explore the regulatory principles of human metabolism. Thus, knowl-

edge gained from microbial metabolism can be systematically transferred and enriched for under-

standing the basis of metabolic diseases in humans. An overview of an example (proposed) strat-

egy that can be applied for metabolic disease research is shown in figure 11.2. 
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Figure 11.1. Schematic overview of different species for which Reporter Metabolite and Metabolic Sub-network 

Algorithm has been successfully applied for uncovering the principles of transcriptional regulation. The list 

includes several industrially important cell-factories such as Streptomyces coelicolor, Aspergillus niger, Sac-

charomyces cerevisiae and Escherichia coli. Remarkably, transcriptome analysis for higher eukaryotes including 

plants, mouse and human has also shown good promise. Consequently, further development of the algorithm will 

help in understanding the metabolic basis of human diseases such as diabetes and cancer; and in medical bio-

technology for understanding pathogenesis. The wide applicability of this novel algorithm across several do-

mains of life, ranging from bacteria to humans, illustrates the power of system level analysis and helps to con-

nect the research and researchers in different fields of biology. 
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Figure 11.2. Schematic representation of the proposed research strategy for metabolic disease research. Omics 

data from human, mouse and yeast together with the state of the art computational tools can be used to generate 

concrete testable hypotheses for uncovering the basis of metabolic disorders. Selected hypotheses then can be 

used to design new strains and experiments. Results from those may then be used to iteratively improve the 

model and consequently new hypotheses and conclusions will be generated. 

Problem of the evolution of metabolic networks and associated regulatory networks needs fur-

ther detailed investigation. Although a simple explanation of metabolite centered emergence of 

regulation can explain several observations, far more complicated examples of regulatory circuits 

exist even in bacteria. How simple regulatory rules are combined together to create complex cir-

cuits and what the rational behind them is will be a pressing question in the near future. 

Extrapolation of the principles learned from metabolic networks to other bio-molecular interac-

tion networks (such as protein-protein and protein-DNA interaction networks) will also be a 

natural follow up to this work. Indeed, generalization of the reporter metabolite concept to “re-

porter features” has been found very useful (AP Oliveira et al., manuscript submitted). We have 

hypothesized that the topology of biological interactions (either physical or functional) itself 

guides (and constrains) the regulatory response of the network following a perturbation of the 
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system. The simplest form of a regulatory principle stemming from this hypothesis is that the 

regulatory response starts at the first neighbors of a node where the perturbation is introduced, 

or which is most affected by the perturbation (figure 11.3).  This response can then subsequently 

spread to the next neighbors and so on. This hypothesis can be used to understand the logic be-

hind the action of the cellular regulatory mechanisms by identifying key regulatory nodes around 

which the response is significantly concentrated. 

 

 

Figure 11.3.  Hypothesis about how regulatory response is organized in biological interaction networks. Re-

sponse first initiates in the neighboring nodes of the perturbed node. This response then may propagate to the 

second neighbors and so on. 

Once the regulatory rules and architecture surrounding metabolism and other cellular processes 

are identified, the next step would be to integrate this knowledge with stoichiometric approaches 

in order to improve the predictive power of cellular modeling. Such an integrative approach will 

be useful not only for designing microbial cells in silico and then testing in vivo (synthetic biology), 

but also for finding cures for human diseases and predicting effects of drugs on cellular metabo-

lism. This will also require a comprehensive modeling platform that combines together both 

stoichiometric and regulatory aspects of metabolic networks. OptGene algorithm (Chapter 8) will 

be a suitable starting point where regulatory modules are gradually and systematically added. 

Thus, transcriptome, metabolome and fluxome will find there way into algorithms for the identi-

fication of metabolic engineering targets and metabolic disease remedies. 

I envision that the simple rules of regulation and operation of cellular processes can be enlisted in 

a biological “objects” database, much like objects used in the computer programming. Such ob-

jects can then be custom-modified and fitted together to create a phenotype of choice or incor-

porated into existing systems to repair defects. I see this thesis as a step towards this goal. 
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