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Abstract 

The elucidation of molecular function of proteins encoded by genes is a 

major challenge in biology today. Genes regulate the amount of protein (enzymes) 

needed to catalyse metabolic reactions. There are several works on either the 

modelling of gene expression or metabolic network. However, an integrative model 

of both is not well understood and researched. The integration of both gene 

expression and metabolic network could increase our understanding of cellular 

functions and aid in analysing the effects of genes on metabolism. 

It is now possible to build genome-scale models of cellular processes due to 

the availability of high-throughput genomic, metabolic and fluxomic data along with 

thermodynamic information. Integrating biological information at various layers into 

metabolic models could also improve the robustness of models for in silico analysis. 

In this study, we provide a software tool for the in silico reconstruction of 

genome-scale integrative models of gene expression and metabolic network from 

relevant database(s) and previously existing stoichiometric models with automatic 

generation of kinetic equations of all reactions involved. To reduce computational 

complexity, compartmentalisation of the cell as well as enzyme inhibition is assumed 

to play a negligible role in metabolic function.  

Obtaining kinetic parameters needed to fully define and characterise kinetic 

models still remains a challenge in systems biology. Parameters are either not 

available in literature or unobtainable in the lab. Consequently, there have been 

numerous methods developed to predict biological behaviour that do not require the 

use of detailed kinetic parameters as well as techniques for estimation of parameter 

values based on experimental data. We present an algorithm for estimating kinetic 

parameters which uses fluxes and metabolites to constrain values. Our results show 

that our genetic algorithm is able to find parameters that fit a given data set and 

predict new biological states without having to re-estimate kinetic parameters.   
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Short Abstract 

This thesis is structured into the following: 

Chapter 1: gives a review of works that have already been done relative to 

this research. The advantages and disadvantages, including limitations of methods, 

of these works are given.   

Chapter 2: We introduce the modelling concepts used in this research and 

present our software tool, GRaPe, for modelling integrative gene expression and 

metabolic networks. The results of this chapter appeared in “Streamlining the 

construction of large-scale dynamic models using generic kinetic equations.” Delali 

A. Adiamah, Julia Handl and Jean-Marc Schwartz. Bioinformatics, 26 (10), pp. 1324 

– 1331. Julia Handl provided the genetic algorithm. The rest of the work, including 

development of GRaPe was done by me. 

Chapter 3: In this chapter, we validate our methodology by applying it to the 

yeast glycolysis pathway. The results of this chapter are also published in the above 

paper.  

Chapter 4: In this chapter, we show that our method works even on a very 

large-scale model by applying it to a genome-scale metabolic model of the M. 

tuberculosis bacterium. We show that we are able to replicate different steady states 

using this approach. To be submitted. 

Chapter 5: Here, we present an integrative model of E. coli central 

metabolism – comprising genes, mRNAs, proteins and reactions. We then show that 

we are able to represent several steady states using our methodology. We show the 

predictive prowess of our model by predicting different states in a gene knockout 

experiment. To be submitted. 

Chapters 6, 7 and 8 we discuss our methodology, the overall success and 

limitations of our findings and methodology; and suggest possible future 

improvements.  
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Chapter 1 

General Introduction 

  

“I believe there is no philosophical high-road in science, with epistemological 

signposts. No, we are in a jungle and find our way by trial and error, building our road 

behind us as we proceed.”  

Max Born (1882-1970) 

 

In this section, a review of current approaches of modelling gene expression and metabolic 

is presented. The review also covers the difficulties and challenges of modelling in 

biological systems and a discussion about computational modelling tools which are of 

relevance to this research.  
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1.1 Background Review 

Gene expression and metabolic reaction networks are two principal 

components of living organisms. There are various works on either systems but the 

integration of both systems is not well researched (Yeang and Vingron 2006). Genes 

encode proteins that catalyse a metabolic reaction, a process known as gene 

expression. In gene expression, the gene serves as a template for protein synthesis, 

with mRNA as an intermediate product. Both mRNA and protein concentrations 

degrade over time at a constant rate. 

 

In the post-genomic era, there is the need to build integrative models of gene 

expression and metabolic reaction networks to understand the role of genes and 

enzymes in cellular functions. Enzymes are expressed differently under different 

nutrient conditions or enzyme knock-outs. This suggests two logical interpretations 

1) that metabolic reactions are controlled by the concentration of enzymes besides 

the concentration of substrates, 2) enzymes are indirectly regulated by metabolites 

(Yeang and Vingron 2006). Figure 1 shows the abstract representation of an 

integrative gene expression and metabolic reaction system.  

 

With available genome and metabolic data, it is now possible to reconstruct 

metabolic networks integrated with genomic data. Metabolic network reconstruction 

and simulation allows for an in depth insight into the molecular mechanisms of a 

particular organism. A metabolic reconstruction involves the breakdown of 

metabolic pathways into their respective reactions and metabolites. Kinetic 

modelling provides the best accurate method of analysing the behaviour of systems 

by modelling the dynamical change of metabolites in a system. It requires kinetic 

parameters and reaction rate constants to yield the best results. However, the kinetic 

parameters and rate constants needed to fully define a model are often unavailable. 

As a result, there is the need to develop methods for either estimating kinetic 

parameters or find a way of measuring them in a systematic manner. An integral part 

of this study was to provide an optimisation technique for estimation kinetic 

parameters from time-series of experimental data. 
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Figure 1: An abstract representation of an integrative model of gene expression and 

metabolic reaction. An enzyme, E, converts a substrate, S, into a product, P. The 

amount of E is not fixed but is a function of the gene and mRNA. 
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Current modelling tools allow metabolic networks to be reconstructed 

manually. Reconstruction on a genome-scale metabolic network is very tedious and 

time-consuming. For example, Staphylococcus aureus strain N315 consists of 619 

genes that catalyse 640 metabolic reactions (Becker and Palsson, 2005). For dynamic 

simulation, the user additionally has to express rate equations for every reaction. We 

focus on rectifying this costly and time-consuming process by generating the 

reaction rate equation automatically for every reaction in the metabolic network.  

 

One of the aims of this study was to provide a computational tool capable of 

reconstructing genome-scale integrative models of gene expression and metabolic 

network from relevant database(s) or some pre-existing stoichiometric models. The 

software will then generate the reaction rate equations automatically based on the 

number of substrates and products of each reaction. With SBML files accepted as the 

main format in systems biology, the software must be capable of reading and writing 

SBML files.   
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1.2 Gene Expression 
 

Gene expression is a process that ends with the production of a protein needed 

to catalyse a particular reaction. The processes occurs in order i.e. the gene is first 

transcribed (by a process known as transcription) into messenger RNA (mRNA), 

which then gets translated (in a process known as translation) into the required 

amount of proteins.  

 

1.2.1. Transcription 

 

Transcription is the process by which genetic information from DNA is 

transcribed into messenger RNA (mRNA). mRNA serves as a template for protein 

synthesis. Transcription is divided into 3 stages: initiation, elongation and 

termination. 

Initiation: RNA polymerase (RNAP, an enzyme that synthesizes RNA) binds to the 

DNA and unwinds the DNA. This creates an initiation bubble so that the RNAP has 

access to the single-stranded DNA template, together with other cofactors as shown 

in Figure 2 (Mathews and Ahern, 2000). 

 

 

 

Figure 2: Initiation process of transcription. 
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Elongation: The template strand, which is one strand of the DNA, is used as 

a base template for RNA synthesis. As transcription proceeds, RNAP traverses the 

template strand and uses base pairing complementarily together with the DNA 

template to create a RNA copy as shown in Figures 3 and 4. Although RNAP 

traverses the template strand from 3' → 5', the non-template (the coding) strand is 

often used as the reference point, so transcription is said to go from 5' → 3'. This 

produces an RNA molecule from 5' → 3', which is an exact copy of the coding 

strand (with the exception that thymines, T, are exchanged with uracils, U, and the 

nucleotides are composed of a ribose (5-carbon) sugar where DNA has deoxyribose 

(one less oxygen atom) in its sugar-phosphate backbone) (Mathews and Ahern, 

2000).  

 

 

Figure 3: Elongation process of transcription. 

 

Termination: The transcription process terminates when the newly synthesized 

mRNA forms a hairpin loop, followed by a run of Us  (Figure C) (Mathews and 

Ahern, 2000). 

Figure 4: Termination process of transcription  
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1.2.2. Translation 

 

Translation is the process where the mRNA is translated into amino acid 

sequence of a polypeptide, namely proteins. This is done by the ribosomes in the 

cytosol. The genetic information encoded by the mRNA is turned into amino acid 

sequence to form a polypeptide. 

Gene expression has an impact on the ability of the cell to maintain vitality, 

perform cell division and respond to stimuli in its environment (Garcia-Martinez, 

Gonzalez-Candelas et al. 2007). During transcription, genetic information from 

DNA is transcribed into messenger RNA (mRNA). The mRNA serves as a template 

for protein synthesis. In translation, the mRNA is translated into amino acid 

sequence of a polypeptide, namely proteins. The full gene expression process is 

shown in Figure 5. In this research study, transcription and translation are considered 

as the main processes in gene expression. The individual stages in transcription, 

post-translation modification and regulatory elements in translation are considered to 

be outside the scope of this research study.  

Garcia-Martinez et al., (2007), studied the relationship among six variables 

that characterize gene expression at the genome-level in living organism. These 

variables are transcription rate (TR) and translation rate (TLR), mRNA 

concentration (RA) and protein concentration (PA), and mRNA stability (RS) and 

protein stability (PS). Their studies concluded that the amount of both mRNA and 

proteins depends on their synthesis and degradation rates (Smolen, Baxter et al. 

2003). This suggests that the concentration of mRNA alone is not a good predictor of 

the amount of proteins (Wolfe 1972). 
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Figure 5. The gene expression process. During transcription, the genetic information 

coded on DNA is transcribed into mRNA (messenger RNA). The mRNA is then 

transferred from the cell nucleus into the cytoplasm where it undergoes protein 

synthesis to specify the amino acids that make up the proteins in a process known as 

Translation. (Figure taken from NCBI, source: 

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/ApplExpression.shtml). 
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1.3 Methods for Modeling Gene Expression 

 

Mathematical modelling and computer simulations can help us understand the 

dynamics of biological processes and also provide a platform for a variety of 

computational analyses (Feist and Palsson, 2008).  

There are many computational methods used in modelling gene networks. 

Among them are Boolean networks (Akutsu et al, 1999; Kim, 2007;  Li, 2007), 

ordinary differential equations (Chen, 1999), Dynamic Bayesian Networks (Murphy 

and Mian, 1999; Li, 2007), linear difference equations (D'haeseleer et al. 1999), 

state-space equations (Wu et al., 2004) and neural networks (Gagneur and Klamt 

,2004). Among these methods, neural network is the least frequently considered 

technique due to its high computational time (Gagneur and Klamt, 2004). 

 

1.3.1. Boolean Networks (BN) 

 

A common approach to modelling gene expression is by Boolean Networks 

(BNs) where a gene has either one of only two states (binary on/off switch). The 

state of a gene at any time step is determined by a Boolean function of the state of 

some genes. The state of the network is defined as the n-tuple of 0s and 1s indicating 

if a gene is expressed or not at the particular moment. The total number of states 

depends of the number of genes present in the network. In total there are 2
n 

different 

possible states. For example a network consisting of 3 genes, the possible states will 

be (0,0,0), (0,0,1), (0,1,0), (0,1,1), …, (1,1,1) (Murphy and Mian, 1999; Schlitt and 

Brazma, 2007). An example of a BN is shown in Figure 6. 
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Figure 6: Simple Boolean network.  A BN consists of a set of nodes (genes) G (V, 

F), where V = {v1…vn}, and a set of Boolean functions F = {f1…fn}. The fi (vi1…vik) is 

the Boolean function for the nodes (vi1…vik) and assigns the value to vi. The state of 

the system at any time t +1 can be calculated from the state at time t with prior 

knowledge of the fi (vi1…vik). Yeang, C.-H. and M. Vingron (2006). 

 

 

BN are able to reproduce features of biological systems, such as global complex 

behaviour, self-organization, stability, redundancy and periodicity and can explain 

the dynamic behaviour of living organism (Chen et al., 1999; Kim 2007). Another 

benefit is that BN require no knowledge of kinetic parameters. This technique only 

considers the Boolean relationships between genes. For a large number of genes, 

BNs are very inexpensive in respect to computational complexity (Li et al., 2007). 
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1.3.2. Bayesian Networks (Dynamic Bayesian Network) 

Bayesian networks are a special case of graphical models in which nodes 

represent random variables, and the arcs represent dependence assumptions (Murphy 

and Mian, 1999). 

Given a set of variables U = {X1, X2... Xn} in a gene network, a Bayesian 

network, U is a pair B = (G, Θ) which encodes a joint probability distribution over 

all states of U. It is composed of a directed acyclic graph G whose nodes correspond 

to the variables in U and Θ, which defines a set of local conditional probability 

distributions to qualify the network.  

For example, if an arc connects from node A to another node B, A is called a 

parent of B, and B is a child of A. The set of parent nodes, U, of a node Xi is denoted 

by parents(Xi) Given G and Θ, a Bayesian network defines a unique joint probability 

distribution over U of the node values that can be written as the product of the local 

distributions of each node and its parents as : 

 

    (1) 

 

An advantage of Bayesian networks, like Boolean networks, is that they do not 

require the use of kinetic parameters. Their probabilistic nature makes them 

represent properties due to the random and unpredicted events that can occur 

(Murphy and Mian, 1999; Li, 2007). Dynamic Bayesian Networks (DBNs), an 

extension of Bayesian network analysis, is a general modelling approach that is 

capable of representing complex temporal stochastic processes (Li, 2007). The two 

main disadvantages of both BN and Bayesian networks are that 1) by treating genes 

as either “on” or “off”, some genes with regulatory effects but having an expression 

level outside the required threshold can be ignored or wrongly classified, and 2) for 

large gene-scale models, it is very computationally expensive and time-consuming. 
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1.3.3. Ordinary differential Equations (ODEs) 

Bayesian networks like BN are poor in capturing some important aspects of network 

dynamics (Schlitt and Brazma, 2007). Gene expression, figure 7, can be modelled 

mathematically using differential equations  (Li,et al, 2007). Differential equations 

allow more details of the dynamics of the network by explicitly modelling 

continuous changes in concentration of molecules over time (Chen et al., 1999; 

Schlitt and Brazma, 2007). 

 

 

Figure 7. A gene expression dynamic system. The gene is first transcribed into 

mRNA which is then translated into proteins. The change in mRNA and protein 

concentrations is modeled as a function of time. Both mRNA and proteins degrade 

over time by their respective degradation rates. The enzyme (protein) encoded by the 

gene then catalyses the reaction to convert the substrate into a product. 

 

In the past, degradation of mRNA and proteins have been assumed to occur 

randomly over time (Chen et al., 1999; Schlitt and Brazma, 2007). Chan et al., 

(1999) modelled transcription and translation, where the variables are functions of 

time, as: 

 

Transcription 

Translation Degradation 
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a) Transcription 

 

     (2) 

 

Where [mRNA] is the concentration of mRNA, f(mRNA) is the transcription function, 

V is the degradation rate of mRNA. mRNA degradation was expressed as being 

directly proportional to the amount of mRNA concentration.  

 

b) Translation 

 –       (3) 

where L is the translation constant, p is defined as the concentration of protein and U 

is the protein degradation rate. 

The change in concentration of proteins (dp/dt) equals a translation constant 

multiplied by the concentration of protein minus degradation of proteins over time. 

The degradation was expressed using first order mass action kinetics.  

Klipp et al (2007) modelled transcription and translation, dynamically, using ODEs. 

The transcription function was modelled as the inflow flux minus the outflow flux. 

The flux is directly proportional to the concentration of the reactant(s) by laws of 

mass action i.e ∆mRNA/∆t  = flux in – flux out (Klipp et al., 2007). 

Klipp’s method did not account for degradation as compared to Chen’s 

method although degradation of mRNA and proteins are important reactions for 

regulating gene expression. Chen also assumes translation and degradation rates to 

be constant (Chen et al., 1999). Whereas Klipp’s method considers volume change 

of proteins as they are transported from the nucleus into the cytoplasm, Chen’s 

method takes no notice of volume change and assumes that the change of volume has 

minimal effect on the dynamics of the system. However, both models show a 

significant role of proteins in both transcription and translation.  
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Schilt et al 2007 showed that gene expression can be modelled using difference and 

differential equations (Schlitt and Brazma, 2007). The fundamental difference 

equation model given as: 

g1 (t + ∆t) – g1 (t) = (w11 g1 (t) + … w1n gn (t)) ∆t  (4) 

... 

gn (t + ∆t) – gn (t) = (wn1 g1 (t) + … wnn gn (t)) ∆t  (5) 

 

where g1 (t + ∆t) is the level of gene i  expressed at time t + ∆t and wij specifies the 

weight at which gene j influences gene i (i,j = 1….n). It is a linear model i.e. gene 

expression level at time t + ∆t depends on the expression level at time t. This model 

is useful if we need to know the subset of genes expressed at a particular time and 

how they affect the gene network. Differential equations used by Chen et al (1999) 

and Klipp et al (2007) in modelling gene expression are similar to difference 

equation used by Schlitt and Brazma, but differential equations are continuous in 

nature while difference equations are discrete (Schlitt and Brazma, 2007).  

Modelling using differential equation can provide an understanding of 

different nonlinear behaviours of gene networks and it is preferred over network 

approaches because of its accuracy and ability to capture the dynamical behaviours. 

Gene expression rates are continuous in nature, no on-off switches and no 

discretization of data is required in the methods proposed by Chen and D'haeseleer et 

al. (1999)  Also, these models can be integrated with recent large gene expression 

datasets (Smolen et al., 2003). 

However, dynamic models generally require much more computer time than 

logical network models of comparable size (Smolen et al., 2003). Additionally, 

differential and difference equations generally rely on numerical parameters, which 

are difficult to measure experimentally (Schlitt and Brazma, 2007).  



33 

 

1.4 Metabolic Reaction Network 

 

1.4.1. Cellular Metabolism 

Cellular metabolism is a network of biochemical fluxes, metabolic compounds 

and regulatory interactions. The emergent global behaviour of such a network of 

interactions is impossible to predict, evaluate and understand by intuitive reasoning 

alone. Therefore, mathematical modelling provides a framework for understanding 

the organization and dynamic nature of these networks (Steuer, 2007). A metabolic 

pathway consists of enzyme-catalyzed reactions that convert substrates (reactants) 

into product(s). Each reaction starts with one or more substrates and terminates with 

one or more products. A substrate can participate in any number of reactions or 

pathways. A metabolic network is a linked set of complex interconnected pathways 

(Walton et al., 2006). For a metabolic system, the dynamical properties are essential 

for the system to ensure and maintain its function and stability (Steuer, 2007). The 

velocity of a metabolic reaction depends on the enzyme kinetics of the reaction. 

 

1.4.2. Fluxes 
 

Metabolic fluxes, referred to in this thesis as fluxes, relate to the rate of flow of 

metabolites along a metabolic pathway from reaction to reaction. The flux of a 

reaction can be expressed as a function of three main components; i) the level of 

activity of the enzyme catalyzing that particular reaction, ii)the concentration of the 

metabolites, including reactants and products, that affect the activity of the enzyme 

and iii) the properties of the enzyme itself which can include activators and 

inhibition. (Nielsen, 2003). The methods currently used in measuring metabolic 

fluxes are mainly carbon-13 (
13

C) tracer experiments - namely 
13

C –GD-MS, 
13

C 

NMR and 
13

C-LC-MS (Steward et al., 2010). All three experimental methods require 

the labeling of isotopic patterns of metabolic end point but not directly measuring 

fluxes as the experiments’ name might suggest. Computational methods are then 

used to calculate fluxes based on the isotopic labeling patterns. Fluxes are usually 

measured in units of mmol/gDW.h. (Steward et al., 2010).  
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1.4.3. Enzyme kinetics  

.  

Enzyme kinetics is the study of the rate of chemical reactions. A catalyst is a 

substance that increases the rate of a reaction without modifying the substrate or the 

energy change in the reaction. This means that the stoichiometric expression of a 

complete reaction does not include the catalyst. Enzymes are biological catalysts 

(Moss, 1992). 

Enzymes bind temporarily to the substrate to lower the activation energy 

needed to convert the substrate into a product. Therefore, enzymes are proteins that 

act as a catalyst. 

Kinetic equations are commonly expressed as functions of the amount-of-

concentrations of the chemical species involved. This amount-of-concentration is 

the amount of substance divided by the volume; and usually abbreviated to 

concentration since it is the only kind of concentration used in biochemistry (Moss, 

1992). The rate of a chemical reaction can be influenced by several factors such as 

temperature, pH, the amount of concentration of substrate and the presence of 

inhibiting compounds.  

Collision theory states that molecules can react only if they come into contact 

with each other. Therefore, any factor that increases the rate of collision such as 

increased concentration of the reactant or increased temperature will increase the 

reaction rate. However, not all molecules that collide will react. An important reason 

for this is that not all colliding molecules possess sufficient energy to undergo a 

reaction (Palmer, 1995). 

As the concentration of substrate molecules increases, the quicker the enzyme 

molecules will collide with the substrate molecules. The concentration of substrate 

molecules is designated [S] and measured in unit of molarity (M). 

Increasing temperature increases molecular movements. Hence, probability of 

collision between substrate and enzyme molecules increases. However, since 

enzymes are proteins, they have an upper limit bound beyond which the enzyme 

becomes denatured and inactive. The effects of temperature may be incorporated into 

the kinetic relation.   
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There are two types of inhibition that can be present in an enzyme-catalysed 

reaction, competitive and non-competitive. Competitive inhibitors are molecules that 

bind to the same region as the substrate, thereby preventing the substrate to bind to 

that enzyme, but are not changed into product(s). It will take a higher substrate 

concentration to reach the same velocity as if no inhibitors existed. 

Non-competitive inhibitors are molecules that bind to different site or region of the 

enzyme reducing the catalytic power and efficiency of that enzyme.  A substrate 

bound to an enzyme with a non-competitive inhibitor will take longer to convert the 

substrate into a product (Matthews, 2000). This work does not investigate the effects 

of inhibition on reactions. We assume that inhibition can be neglected in this study to 

reduce modelling complexity. 

1.4.4. Methods for Flux Measurement 

 

Systems biology models rely on experiments carried out in the lab to collect data and 

parameters. As seen in 1.4.2, measuring metabolic fluxes require 
13

C tracing 

experiments which like every experiment carried out in the lab is prone to errors. In 

general, most experiments are targeted and performed under a specific experimental 

condition which makes it difficult to compare results for the same organism. Current 

methods in analysing enrichment patterns in metabolites use nuclear gas 

chromatography-mass spectrometry (GC-MS) or magnetic resonance (NMR) 

(Nielsen, 2003). An advantage of using 
13

C sources in measuring fluxes is that the 

network topology can be inferred based on the direction of fluxes in the network. 

However, one needs to combine experimental data about carbon transition and 

mathematical algorithms before being able to calculate fluxes which can increase 

computational complexity (Wiechert , 2001; Nielsen, 2003).  

DNA microarray and proteomic analyses are methods for measuring quantites of 

cellular molecules. Additionally, they are able to  aid in the investigation of the 

components’ composition of cellular molecules (Ishii et al., 2007). However, DNA 

microarray has been extensively used in determining the quantities of genes and 

proteins in response to perturbations. Other methods used in the quantification of 

molecules in the cell such as metabolic flux analysis and quantitative reverse 

transcription polymerase chain reaction (qRT-PCR) have been found to be targeted. 
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However, both methods are useful in the detection of small changes in molecules in 

response to perturbation (Ishii et al., 2007). A study by Teusink et al (2000) showed 

that when data is experimentally determined data for a biological model, the results 

could still differ.  

Furthermore, advances in the proteomics, such as the use of stable isotope labeling 

techniques, have allowed for the quantification of proteins under different 

experimental conditions. (Bateman et al., 2007; Picotti et al., 2009). Quantitative 

proteomic data could be integrated into our kinetic modeling approach, described in 

Chapter 2, in our attempt to provide a methodology for building integrative kinetic 

models. 
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1.4.5. Mass Action 

 

Mass action kinetics describes the behaviour of all chemical compounds 

(reactants and products) in elementary chemical reaction (E + S  ES  P + E) as 

an equation where the rate of chemical reaction is directly proportional to the 

concentration of the reactant(s). An elementary reaction is a chemical reaction where 

one or more chemical species react directly to form product(s) in a single reaction 

step and with a single transition state. 

In chemistry, there are two aspects of the law of mass action.  

1) Equilibrium aspect which concerns the composition of a reaction mixture at 

equilibrium and 2) kinetic aspect which deals with rate equations for elementary 

reactions. With the kinetic aspect, there are various rules that determine the reaction 

rate for a particular reaction based on the number of substrates and products. 

For a zero-order reaction, the reaction rate is independent of the concentration of any 

reactant. 

If we consider a reaction [S  P] obeying first-order kinetics, the rate is given by: 

    (6) 

where the formation a molecule of P at a given time is directly proportional to the 

concentration of S. 

With a first-order reaction, the reaction rate is deemed proportional to the 

concentration of a single reactant. The conversion of an enzyme-substrate complex 

into product(s) or into another intermediate complex is an example of a first-order 

reaction is also known as a unimolecular reaction. 
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For a second-order reaction [S + T    P + Q], the reaction rate is given by 

  (7) 

 

The reaction rate would be proportional to the concentration of each of the 

reactants S and T. It could also be proportional to the square of the concentration of a 

single reactant. The binding of an enzyme molecule to a substrate molecule is a 

typical example of this type of reaction, commonly known as bimolecular reaction. 

 

1.4.6. Single-substrate Kinetics 

 

The mechanism of a typical enzyme-catalysed reaction involving a single substrate 

and a single product may be expressed as 

 

 

 

where E is the enzyme, S is the substrate, ES the intermediate complex, P the 

product. The terms k1, k-1 and k2 are rate constants for, respectively, the association 

of substrate and enzyme, the dissociation of substrate from the enzyme and the 

dissociation of product from the enzyme. 

The arrows represent the direction of the reaction. Double arrows indicate that the 

reaction occurs in both directions.   

 

  

E + S E + P ES 
k1 

k_1 

k2 
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1.4.7. Michaelis-Menten Equation 

 

Leonor Michaelis and Maud Menten derived a simple mathematical equation of a 

single-substrate reaction based on the following assumptions:  

 The concentration of the enzyme is very small compared to [S], so that the 

formation of ES does not significantly diminish [S].  

 For irreversible reactions only, the concentration of [P] is effectively zero. 

This is the ‘initial-rate’ assumption, and implies not only that P is absent at 

the outset, but also that the amount of P formed in the time required for a rate 

measurement is too small to give rise to a significant reverse reaction. 

 Although the product-releasing step is fast, however, it is much slower than 

the reaction in which S is released from ES. E and ES are considered to be at 

equilibrium.  

The equilibrium assumption assumes that “the rate of formation of ES equals the rate 

of dissociation to E + S” expressed mathematically as:  

 

k1[E][S] = k-1 [ES].     (8) 

 

The transition-state theory states that all chemical reactions proceed via the 

formation of an unstable intermediate between reactants and products (Palmer 1995). 

ES is an example of such an unstable intermediate complex. The state at which 

concentrations of the reactants and products exhibits no change over time is known 

as the chemical equilibrium. Usually, this state occurs when the forward reaction rate 

is the same as the reverse reaction rate with no net change in the concentration of 

either the reactants or products. 

Steady state assumption assumes that “the concentration of E and ES remains 

constant over a period of time”. It requires that the formation of ES should be equal 

to its breakdown rate in any direction, including product formation, which need not 

be slow relative to the back-dissociation to E + S. Mathematically expressed as: 
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k1[E][S] = k-1[ES] + k2[ES].     (9) 

 

The initial velocity or rate of a reaction, v, is the reaction rate at time, t, equals 0, t = 

0. v depends upon the concentration of a substrate S that is present in large excess 

over the concentration of an enzyme E with the appearance of saturation behaviour 

following the Michaelis-Menten equation: 

 

        (10) 

where v is the observed initial rate , Vmax is its limiting value at substrate saturation 

(i.e. [S] > > Km), and Km the substrate concentration when  v = Vmax / 2 i.e. the Km of 

an enzyme is therefore the substrate concentration for which the reaction occurs at 

half of the maximum rate. In physical terms, Km is an indicator of the affinity that an 

enzyme has for a given substrate, and hence the stability of the enzyme-substrate 

complex. Figure 8 shows a graph of the effect of substrate concentration on the 

initial rate of an enzyme-catalysed reaction. 

 

Figure 8. Effect of substrate concentration on the initial rate of an enzyme-catalysed 

reaction.  
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1.4.8. The Reaction Mechanism 

 

For reactions involving more than one substrate or product, the kinetics can 

depend on a particular reaction mechanism. A reaction mechanism may either be 

sequential, where both substrates bind to the enzyme to form a ternary complex 

before a product is formed, or non-sequential. 

The random-order ternary-complex mechanism is one in which any substrate 

can bind to the enzyme first and any product can be formed first i.e. a substrate can 

bind to the enzyme in random order. It is a sequential mechanism which means that a 

ternary complex is involved for a two-substrate reaction.  

The compulsory-order (simple ordered) mechanism is also sequential. This 

mechanism requires the specification of the precise order of the binding to and 

leaving from the enzyme. It may be that no binding site is present on the enzyme for 

one of the two substrates until the other has bound. This makes it a compulsory order 

of binding. A two-substrate reaction will involve the formation of a ternary complex. 

The last possible mechanism for a reaction with two substrates, the Ping-pong 

bi-bi mechanism, is non-sequential. It allows for a single substrate to be present on 

an enzyme at any one time. This leads to the assumption that there may only be a 

single binding site. 

 

1.5 Methods for Modelling Metabolic Networks 

The traditional modelling of metabolic processes was done, mathematically, 

based on explicit enzyme-kinetic rate equations. Metabolic reactions can be 

modelled qualitatively (e.g. network analysis, stoichiometric analysis) or 

quantitatively (e.g. structural kinetic models and kinetic models). Alternatively, 

models are said to be grouped into two classes: kinetic models and stoichiometric 

models (Patil et al., 2003).  
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1.5.1. Topological approaches and Network analysis 
 

At the basic level, a metabolic network can be considered as a bipartite graph 

that consists of a set of nodes (metabolic substrates or metabolites) and a set of direct 

or undirected links (metabolic reactions) between them. For example, Figure 9 

shows the metabolic network of the tricarboxylic (TCA) reaction cycle showing the 

level of connectivity that exists among metabolites. 

 

 

Figure 9 :Metabolic network of the Arabidopsis thaliana citric acid cycle. Enzymes 

and metabolites are shown as red squares and the interactions between them as black 

lines. [http://en.wikipedia.org/wiki/Metabolic_network_modelling] 

 

Network-based analysis can facilitate the assessment of the properties that emerge 

from networks such as reaction correlations, redundancy of pathways and 

distribution of reaction connectiveness.  

Metabolic networks can be represented as hypergraphs, i.e. networks with all the 

edges (reactions) connecting to several nodes (metabolites) and as such , more 

advanced method should be used for their analysis rather than simple graph theory 

(Steuer, 2007).  
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1.5.2 Directed Graphs 

Petri nets, an extension of graph models, have been successfully used to 

model metabolic networks (Schlitt and Brazma, 2007). Generally, they are directed 

graphs that consist of two kinds of nodes, place and transition nodes, and arcs that 

connect the place nodes to transition nodes and vice versa. The dynamic aspect is 

represented by tokens. Every place node can contain tokens. The number of tokens 

needed for a transition along an arc is determined by the ‘weight’ of the arc.  

In metabolic networks, the place nodes represent the metabolites; transition nodes 

represent reactions and arcs represent metabolite concentration as shown in figure 

10. 

 

 

 

 

 

Figure 10: Example of a Petri net representing a metabolic reaction. P1, P2, P3 and P4 

represent the place nodes. T1 and T2 represent transition nodes. Black dots represents token. 

 

The main advantage of Petri nets is that there is no need to know the reaction rates 

equation and kinetic parameters (Schlitt and Brazma, 2007).   

P  Place node 

        T  Transition node 

      

      Token 
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1.5.3 Stoichiometric Models and Analysis 

Stoichiometric modelling relies on mass balances over intracellular metabolites 

and the assumption of pseudo-steady-state conditions to determine intracellular 

metabolic fluxes (Patil et al., 2003). The information contained in a stoichiometric 

model itself results in a system of linear equations, which is generally under-

determined thus not sufficient to calculate a unique flux distribution. The models are 

therefore combined with additional experimental data or assumptions to yield a well-

defined flux map (Kesson, Forster et al. 2004). 

Stoichiometric analysis makes use of the structural properties of metabolic 

systems. It uses the stoichiometric matrix whose element indicates the involvement 

of each compound consumed and produced in a reaction. The stoichiometric matrix, 

S, serves as the basis for genome-scale metabolic analysis (Jamshidi and Palsson, 

2008). In Figure 11, a metabolic network
 
is modelled by an m by n stoichiometry 

matrix S, which relates
 
the flows v through the n reactions to changes c in the 

concentrations
 
of the m metabolites by c = S v (Urbanczik and Wagner, 2005). S 

describes all chemical transformations in a network in an accurate matrix format and 

is a requisite for dynamic models (Jamshidi and Palsson 2008). 

 

 

Figure 11: A reaction network consisting of three metabolites (A, B & C) and two 

reactions with reaction rates (v1 and v2). The stoichiometric matrix S describes 

relationship between metabolites and reactions. A has a stoichiometric coefficient of 

2 and is a substrate in reaction with rate v1. This is represented as –2 in S (- indicates 

where a metabolite is substrate and + indicates product). 

2A B 33CC  

v1 v2 

++33  00  
C 

--11  ++11  B 

00  --22  A 

VV22    VV11  

  

S = 
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Knowledge of the stoichiometry puts constraints on the feasibility of flux 

distributions, hence providing information for the prediction and understanding of 

the functional capabilities of metabolic network. 

 

1.5.4 Metabolic Flux Analysis (MFA) 

In metabolic engineering, the quantification of metabolic fluxes is considered 

as being essential to the understanding regulation in the cell, identifying problems 

with product formation and gaining further insight into the biological processes. 

MFA is concerned with the determination of cellular metabolic fluxes and works by 

quantifying carbon and nitrogen flow within a metabolic network (Boghigian et al., 

2010). Several exchanges fluxes are usually measured to produce a determined 

system of equations (Patil et al., 2003). There are optimization-driven studies and 

data-driven studies in quantifying fluxes used within MFA.  

With the optimization-driven approach, the stoichiometric matrix is under-

determined (i.e. there are fewer equations than variables) and the flux distribution is 

determined by the use of optimization method. In the data-driven studies, there is 

reduction of the stoichiometric matrix to an over-determined form (where the 

number of unknown variables is less than the independent equations). Then either 

least squares linear regression (where isotope data is available) or least square 

nonlinear regression (where data for isotope labeling is unavailable) is used for the 

determination of flux distribution for a particular organism (Boghigian et al., 2010).  

One disadvantage of MFA, under the data-driven approach, is the considerable 

amount of experimental measurements needed to obtain a flux distribution and as a 

result, it is more suited towards smaller metabolic models. However, the 

optimization-driven approach requires relatively few measurements (usually, 

biomass composition and the rate of carbon-source uptake) and can solve large 

models with over 1000 reactions quickly by using modern optimisation techniques 

(Boghigian et al., 2010). A very common example of MFA is flux balance analysis 

(see below), where an objective function can be used to determine an optimum flux 

distribution using linear programming. MFA has been used to successfully predict 
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fluxes in the central metabolic network from a genome-scale model of Arabidopsis 

thaliana (Williams et al., 2011). In this example, the direction and magnitude of the 

changes in fluxes were successfully predicted using MFA.  

 

1.5.5 Flux Balance Analysis (FBA) 

 

Flux Balance Analysis (FBA) is a constraint-based modelling approach that 

uses physiochemical constraints such as mass balance, energy balance and flux 

limitation to describe the behaviour of an organism. The model assumes that an 

organism will attain a steady-state under any given environmental condition which 

satisfies the physiochemical constraints. Multiple steady-states are generally possible 

as many constraints on cellular systems are unknown. Therefore, an optimisation 

process needs to be carried out to find the optimal value for a specified objective. 

This is done with respect to the constraints identified in order to identify a 

physiological meaningful steady-state (Kauffman, et al. 2003). The common 

objective functions include the production of biomass, maximization or reduction of 

ATP, and maximization of the rate of synthesis of a specific product (Shlomi, et al. 

2007). 

Although this approach has proven to be very useful - see examples (Almaas, 

et al. 2004; Serge, et al. 2004; Deutscher, et al. 2006) it requires the knowledge of 

many variables like the identification of all metabolites, reactions and metabolic 

enzymes in the pathway. It also requires the definition of an objective function which 

crucially determines the FBA result (e.g. the production of biomass). The objective 

function can either be a static (where the function is optimised for a single condition) 

or dynamic (where the function is optimised for numerous conditions) (Kauffman, 

Prakash et al. 2003). Further research by Kauffman et al (2003), found that static 

optimal approach was computationally simple to implement provided all the 

constraints were linear. Incorporating experimental data was, however, more flexible 

with the dynamic optimal approach but computationally costly. 

Although FBA is a useful method for analysing the behaviour of metabolic 

fluxes, it requires a model to be optimised towards one objective function. The 
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method in a way assumes that a biological cell is only optimised for a single task (for 

example, the production of biomass) at a particular time. This assumption makes this 

approach questionable as in practice; a cell can prefer a suboptimal state that makes 

it less energy consuming to adjust to multiple tasks (Schuster et al., 2007). Schuster 

et al (2000) proposed another concept related to constraint-based analysis known as 

Elementary Modes (EM). This approach decomposes a metabolic network into 

distinct but overlapping pathways. An EM is a minimal set of reactions capable of 

working together in a steady state. Every metabolic network has a unique set of EMs 

and all feasible flux vectors can be expressed as linear combinations of these EMs 

(Schuster, Fell et al. 2000; Poolman et al., 2004; Schwartz and Kanehisa, 2005; 

Steuer 2007).  

Elementary modes (EM) and extreme pathways (ExPas) are stoichiometric 

pathway analysis methods based on convex analysis. However, calculating 

elementary modes and extreme pathways is computationally challenging, and thus 

difficult to use on a genome-scale (Papin, Price et al. 2003; Gagneur and Klamt 

2004; Papin, Stelling et al. 2004). The cause of this computational difficulty is that 

the number of ExPas and EM increases considerably with the size and complexity of 

the network (Yeung et al., 2007). 

Using EMs, the full set of all possible flux distributions can be determined 

(Terzer and Stelling, 2007). However, because of computational difficulties EM 

analysis is generally limited to small and medium scale models (Klamt et al., 2005). 

Consequently, there have been methods presented for computing elementary modes 

for large scale biological networks by means of decomposition of the flux 

distribution (Schwartz and Kanehisa, 2006) and network compression (Klamt et al., 

2005). The ExPas of a network are the minimal set of linearly independent EMs for a 

particular metabolic network and can be useful in identifying network redundancy 

(Yeung et al., 2007). Steuer et al (2007) suggests that stoichiometric analysis be 

considered the most successful computational approach to metabolism, to date, based 

on the required knowledge and predictive power. 

It is not straightforward to incorporate dynamic properties into a metabolic system 

based on the topological approach. The relationship between the topological 

structure and dynamic and functional properties of a system still remains unclear.  
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The incorporation of kinetics information into elementary modes and extreme 

pathways will present a more complete cellular function where there is a dominating 

influence of kinetics (Papin, Price et al. 2003). An attempt of such integration was 

made by Schwartz and Kanehisa (2006) when the authors integrated kinetic 

modelling with EMs to access the range of achievable states in a metabolic network. 

Their results showed that by combining both modelling approaches, the possible 

behaviours of metabolic system can be significantly constrained. 

 

 

 

 

1.5.6 Structural Kinetic Modelling 
 

This is a new modelling approach which aims to integrate dynamic modelling 

with stoichiometric analysis to bridge the gap between topological and dynamic 

metabolic network modelling. The method augments stoichiometric analysis with 

kinetic properties without the use of a detailed set of differential equations  

This approach was proposed by Steuer et al., (2006; 2007) to offer an 

alternative to traditional kinetic modelling. Structural kinetic modelling does not 

require knowledge of the enzyme-kinetic rate equation and parameters. The method 

describes the dynamics of the systems for small variations around metabolic steady 

states, and the stability of steady states. Relevant interactions and parameters 

governing the dynamic properties of the systems can be identified using this method. 

At each point in parameter space, a local linear model is constructed in a way that 

the local model has a clear biochemical interpretation (Steuer et al., 2006). The 

linear models, which accounts for all possible explicit kinetic models, are then 

grouped together. This large ensemble of models then enables the parameter space to 

be statistically analysed. The method is based on decomposition of the Jacobian 
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matrix for a metabolic system and computation of eigenvalues to determine the 

stability of metabolic states.  

The structural kinetic modelling approach assumes that knowledge of the 

Jacobian matrix, computed from the stoichiometric matrix, alone is sufficient to 

determine certain characteristics of metabolic systems (Steuer et al., 2006).  
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1.5.7 Ensemble Modelling of Metabolic Networks 
 

The Ensemble modelling approach uses phenotypic data, such as changes in 

fluxes as a result of changes in enzyme expression levels, to explore the behaviour of 

biological systems (Tan et al., 2008). The method uses the ensemble of models that 

are capable of reaching all given steady-states in relation to concentration of 

metabolites and fluxes distribution. The ensemble models are seen as spanning all 

kinetic space allowable by thermodynamics (Tan et al., 2008). Once the construction 

of the models is completed, all possible phenotypic states of a metabolic system such 

as effects of enzyme over-expression can be examined. Furthermore, this approach 

allows for the integration of flux variability data, data pertaining to the changes in 

fluxes due to enzyme expression, enzyme regulation and thermodynamic data, to 

reduce the size of the ensemble. This method does not require detailed knowledge of 

the kinetics of a metabolic network but can be useful in capturing the phenotypic 

changes of metabolic networks (Tan et al., 2008).  

 

Ensemble modelling represents enzymatic reactions by a collection of elementary 

reactions as shown in the schema below: 

 

where the reaction rate of individual elementary reaction are modelled using mass 

action kinetics such as: 

  v1 = k1[A][E]      (11) 

where [A] is the concentration of metabolites and [E] is the concentration of free 

enzyme. Ensemble modelling requires detailed knowledge of the mechanism of 

enzyme reactions in a model.   

  

k1 

k-1 

P + E A + E EA 

k2 

k-2 

v1 v2 

v-1 v-2 
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1.5.8 Kinetic Modelling 
 

Previous studies have suggested that to improve the effectiveness of target-based 

drug discovery, efforts must be focused on understanding organism at the system-

wide level (Cascante et al., 2002; Davidov et al., 2003; Klipp et al., 2005; Cho et al., 

2006; Hornberg et al., 2006). This requires the detailed modelling and analysis of 

biological behaviour at the system-wide level.  

In contrast to stoichiometric modelling, kinetic modelling aims at characterizing the 

mechanisms of all enzymatic reaction in relation to how changes in the concentration 

of metabolites affect reaction fluxes. The initial stage of kinetic modelling requires 

the definition of the metabolic pathway of interest and its boundaries (Smallbone et 

al., 2007). A kinetic model and its boundary condition can be defined as: 

  x' = N v(x, y, p); x(0) = x0    (12) 

where N is the stoichiometric matrix (based on the topology of the network), x is the 

metabolites concentration vector, y is the boundary metabolites vectors. The 

concentrations of y do not change over time but whose values do affect reaction 

rates. The initial concentration of both x and y must be defined; however, only the 

concentration levels of x varies over time. Reaction rates are denoted v whose value 

is dependent on the kinetic parameters, p, reaction mechanism and concentrations of 

metabolites. When the boundary condition is set as true for a particular metabolite 

(represented as y in equation 12), during integration and parameter estimation, these 

values are treated as independent variables in the system. The use of boundary 

conditions is similar to mechanical systems where the environmental conditions are 

usually treated as external parameters which have some control of the physical 

systems (Nishikawa, 2002).  Likewise, in systems biology, boundary conditions 

exert a degree of influence over the state of the system and can be considered as 

defining the system from the outside (Nishikawa, 2002).  

With kinetic modelling, it is possible to describe the detailed dynamic 

changes of metabolites and enzymes in a mathematical model by integrating the 

kinetics of reactions with the stoichiometry of a metabolic pathway (Gombert and 

Nielsen, 2000). Consequently, kinetic modelling can capture the dynamics of 

biological systems as the details of metabolite concentrations and enzyme levels are 
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all accounted for in the model. This was exemplified in Teusink et al. (2000) where a 

detailed kinetic model was constructed for the glycolysis pathway in Sacchromyces 

cerevisiae.  

Over the last few years, the amount of kinetic models for biological systems 

has increased due to the availability of data required to define these models. The 

challenging aspect of kinetic modelling still lies with the difficulty or unavailability 

of kinetic parameters and detailed knowledge of kinetic properties of enzymes in a 

metabolic network (Tan et al., 2008). This has lead to the development of 

optimisation techniques and the use of statistical approaches in estimating kinetic 

parameters to define kinetic models. 

  Furthermore, the lack of detailed knowledge of enzyme mechanism has led to 

the development of generic rate equations which are capable of predicting biological 

behaviour (Liebermeister and E. Klipp, 2006; Ao et al., 2008). For example, linlog 

kinetics aims at bridging the gap between kinetic and stoichiometric modelling 

(Smallbone et al., 2007; Smallbone et al., 2010). The method relies on the use of 

FBA in estimating fluxes through the system. These fluxes are then varied 

dynamically according to linlog kinetics. The results of linlog kinetics, according to 

the authors were not perfect in its predictions, but it still offers an approximation of a 

metabolic network when a detailed kinetic model and parameters are not available.  

This research study uses kinetic modelling in an attempt to predict the 

dynamical behaviour of biological networks. Where kinetic parameters are not 

available for a particular model, there are numerous parameter estimation tools that 

can be used. Parameter estimation has become an important and integral part of 

kinetic modelling due to the lack of or unavailability of experimental parameter 

values needed to fully define a kinetic model.  
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1.6  Sources of Kinetic Parameters and Enzyme 

Information 

1.6.1 Databases for Biological Models and Information 

 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database holds 

information on proteins and small molecules involved in all metabolic reactions. It is 

the most comprehensive database for metabolic reactions (Gille, Hoffmann et al. 

2007). KEGG holds information about metabolic pathways and networks, and a 

collection of gene catalogues for all complete genomes.  

 

BIOCYC, REACTOME and UM-BBD are databases of biochemical reactions, 

but for substrate specificity of enzymes BRENDA (BRaunschweig ENzyme DAta 

base) is more valuable. BRENDA held information of at least 21,000 different 

enzymes from more than 4330 different organisms in 2001 (Schomburg, Hofmann et 

al. 2001). In 2006, the database held information on 83,000 different enzymes 

(Liebermeister, Klipp et al. 2006). Currently it holds information on structure, 

occurrence, function and application of enzymes of more than 100,000 enzymes 

(Scheer et al., 2011). BRENDA provides information about kinetic parameters, 

enzyme-catalysed reactions and pathways, substrates and products, reaction type and 

cofactors i.e. reaction and specificity and functional parameters. Importantly, the 

majority of data held in BRENDA are manually extracted from scientific literature 

(Scheer et al., 2011). 

 

The BioModels database allows biologists to store, search and retrieve 

published mathematical models of biological interest. The models are annotated and 

linked to relevant data resources such as databases, publication, literature etc; some 

of these are curated models (Novère, Bornstein et al. 2007). BioModels now 

incorporates an online simulation tool which embeds the SOSlib dynamic solver to 

perform basic simulations (Li et al., 2010). The number of curated models as of 

September 2011 was 366 and 398 non-curated models (BioModels Database, 2011). 
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The different models, based on their annotations, are categorised in Figure 12, 

showing that cellular metabolism and signal transduction represent about 65% of 

models stored in the database. 

 

 

 

 

 

Figure 12: Categories of models in the BioModels database by using Gene Ontology 

(GO) terms (Li et al , 2010).  

 

JWS Online Cellular Systems Modelling is an online tool for simulation of 

kinetic models from a curated model database. The database was created to provide a 

central repository for biologists to store kinetic models. The JWS database stores 85 

curated models, which are mirrored in the BioModels database. Models can be 

downloaded in SBML, COPASI and PuSCes formats (Snoep and Olivier, 2003). 

Following the success of the BioModels database, JWS has been integrated into 

BioModels (Li et al, 2010). 
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The SABIO-Reaction Kinetic database is a database with biochemical 

reactions and their kinetic properties. There are two main data sources for SABIO-

RK; 1) data is manually extracted from literature (publications) and verified by 

curators 2) data is extracted from the KEGG database before being manually curated. 

Information about the type of kinetic mechanism and corresponding rate equation of 

a reaction is also included. Information about reactions and their kinetic data can be 

exported to an SBML file (Wittig, Golebiewski et al. 2006). The SABIO-RK 

database focuses primarily on the description of individual reactions (Rojas et al., 

2007). Most of the data and models from the last three databases can be used for 

verification and validation purposes while some of these databases are organism-

specific as shown in Table 1.  

 

Organism Database Website address 

E.Coli-

Specific 

Database 

E. coli Gene 

Expression Database 

EcoCyc 

EchoBase 

http://chase.ou.edu/oubcf/ 

 

http://ecocyc.org 

http://www.ecoli-york.org 

S.Cerevisiae-

Specific 

Database 

Saccharomyces 

Genome Database 

http://www.yeastgenome.org/ 

Enzymes 

(Proteins) 

BRENDA 

KEGG 

http://www.brenda.uni-koeln.de 

http://www.kegg.com 

Pathway 

Databases 

KEGG 

MetaCyc 

EMP 

BioSilico 

http://kegg.com 

http://metacyc.org 

http://www.empproject.com 

http://biosilico.org 

Kinetic 

Parameters 

SABIO-RK http://sabio.villa-bosch.de 

Quantitative 

Models 

BioModels Database http://www.ebi.ac.uk/biomodels-main 

Table 1: Available metabolic pathways and model databases   
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1.7 Current Modelling and Parameter Estimation Tools 

 

1.7.1 Modelling Tools 
 

Over the last few years, the number of modelling tool for systems biology has 

risen considerably. In this section, a review of a few of these modelling tools that are 

relevant to this research is presented. Our attention is focused on modelling tools that 

are platform-independent and include simulation and parameter estimation 

functionalities.  

CADLIVE is a tool that analyzes and designs large-scale biochemical networks 

at the molecular interaction level. It has a GUI network constructor, database, a 

pathway search module, a network layout module, and a dynamic simulator that 

automatically converts biochemical network maps into mathematical models 

(Hiroyuki 2006). A drawback of CADLIVE is that it is hard to configure and use.  

CellDesigner is a diagram editor tool for drawing biochemical and gene 

regulatory networks. The networks are drawn based on process diagram using the 

System Biology Graphical Notation (SBGN) (Hucka, Finney et al.).  It has a 

functional and user-friendly graphical user interface and is easy to use (it comes with 

online tutorials, good documentation and examples). It supports the import and 

export of SBML files. Additionally, CellDesigner is now linked with databases such 

as the MIRIAM database which allows for the referencing of models.  Kinetic 

equation laws can be manually written for each reaction which will make it tedious 

when modelling and simulating large or genome-wide systems. Alternatively, 

SBMLSqueezer (Dräger, Hassis et al. 2008), a plugin for generating rate equations, 

or CellDesigner’s own selection of pre-defined equations can be used in describing 

reactions in a model.  

COPASI is an application for simulation and analysis of biochemical networks. 

It handles large systems better than CellDesigner as it can generate the reaction 

equations automatically from a selection of pre-defined types. It is hard to model 

integrative systems (e.g. gene expression network with metabolic reaction network) 

as this will require specifying how the systems are linked and the reaction or kinetic 
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functions associated with their linkage (Mendes, Hoops et al. 2006). This is the same 

with CellDesigner and other tools.  

The E-CELL software allows users to define functions of proteins, protein–

protein interactions, protein–DNA interactions, regulation of gene expression and 

other features of cellular metabolism, as a set of reaction rules (Tomita, Hashimoto 

et al. 1999). E-CELL simulates cell behaviour by integrating the differential 

equations describing the reaction rules. The user can observe dynamic changes in 

concentrations of proteins, protein complexes and other chemical compounds in the 

cell through graphic interfaces. With E-Cell, the user has to specify the reaction rules 

or extract them from the literature (Tomita, Hashimoto et al. 1999; Takahashi, 

Ishikawa et al. 2002).  

Virtual Cell allows users to build complex models with a web-based Java 

interface, allowing the user to specify all relevant parameters. Virtual Cell simplifies 

the task of modelling biochemical systems by translating reactions to mathematics 

(ordinary and/or partial differential equations) (NRCAM 2008).  

There are over 100 modelling tools for building either kinetic or structural 

model of biological systems that support SBML. A full review can be found at 

(Bergmann et al., 2011). Only a few modelling tool such as ScrumPy (Poolman, 

2006) are designed for the construction and analysis of both kinetic and structural 

modelling with emphasis on large-scale models. Usually, a modelling tool is 

designed either for kinetic or structuring modelling.   
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1.7.2 Parameter Estimation Tools 

 

Due to the lack of kinetic parameters required for kinetic biological models, 

many parameter estimation tools have been developed to estimate kinetic parameters 

that fit a given experimental dataset. 

COPASI, described above, has extensive support for parameter estimation and 

optimization. COPASI provides thirteen different parameter estimation methods 

including a genetic algorithm. However, the estimation of kinetic parameters is not 

straightforward and fluxes are excluded in its estimation procedure.  

JigCell is a computational tool for developing and analysing complex 

biochemical regulatory systems (Vass et al., 2004). Although the modelling tool has 

been discontinued, the parameter estimation process has been developed into a stand-

alone application. The parameter estimation requires the manual initialisation of 

conditions and parameters which makes it impractical for a large model with 

thousands of parameters. 

The Systems Biology Markup Language-based Parameter Estimation Tool 

(SBML-PET) is a tool designed for biologists to estimate parameters in systems 

biology models. SBML-PET supports the importation and exportation of SBML 

models. Another important feature of SBML-PET is that a variety of experimental 

data types can be used in estimating kinetic parameters. It also supports the 

definition of events in SBML models. SBML-PET uses an ordinary differential 

equation (ODE) solver know as ODEPACK to solve ODEs in a system and utilises a 

stochastic ranking evolution strategy (SRES) for parameter estimation (Zi and Klipp, 

2006).  

qPIPSA is a software for estimating missing kinetic parameters. A drawback of 

this software is that it requires the knowledge of reaction mechanism of similar 

enzymes. It is a good tool for investigating the enzymatic structural-functional 

relationship and enzyme mechanisms (Gabdoulline and Matthias 2007), in particular 

to verify the mechanism of an enzyme-catalysed reaction in order to derive the rate 

equation of a metabolic reaction. 
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Other parameter estimation tools such as simBiology (MathWorks, 2011) and 

SBToolbox2 (Schimdt et al., 2006), are MATLAB products that require a licence for 

their use.  

It will be time-consuming and tedious to reconstruct genome-scale kinetic 

metabolic networks using any of these software tools. Table 2 shows the number of 

genes, metabolites and reactions in a genome of H. influenzae, E. coli, M. 

genitalium, S. cerevisiae and H. sapiens. To manually reconstruct metabolic models 

for these organisms at a genome-scale level and adding rate equations for each 

reaction will be a time-consuming and tedious task. As a result, we need tools to 

automatically generate rate equations to define a large biological model. 

 

Organism Number of Genes Number of 

Metabolites 

Number of  

Reactions 

H. influenzae  296 343 488 

E. coli 660 436 627 

M. genitalium 482 274 262 

S. cerevisiae 708 584 1175 

H. sapiens 1496 2766 3311 

 

Table 2. Size of genome-scale metabolic network at different layers. Number of 

genes, metabolites and reactions in a genome-scale metabolic network of H. 

influenzae (Edwards and Palsson, 1999); E. coli, (Reed et al, 2002); M. genitalium, 

(Suthers et al., 2009); S. cerevisiae (Förster et al, 2003) and H. sapiens (Ma et al, 

2007). 
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1.8 Integration of Gene Expression and Metabolic 

Network 

 

1.8.1 Integrating Genomic and Metabolic Data 
 

In April 2003 the human genome sequence was completed. A challenge 

currently facing biologists is the elucidation of the molecular function of the proteins 

encoded by the genes (Wishart 2007). With the availability of annotated genomes 

and detailed bibliomic data, it is now possible to reconstruct genome-scale reaction 

networks that include the identification of all reactions, metabolites and enzymes that 

participate in the network. However, to reconstruct genome-scale kinetic models, we 

need to integrate metabolomic, fluxomic data along and thermodynamic information 

with genomic data. Figure 13 shows this process of integration of various data types 

(Jamshidi and Palsson 2008). 

Gene expression and metabolic reactions are two different functions of a cell. 

Many works have been directed at either system, but the joint modelling of both 

systems has not been well researched (Yeang and Vingron 2006). Integrative 

metabolic and gene
 
expression network can increase our understanding of cell 

functions. This could help identify genes whose expression levels quantitatively
 

determine a metabolic function, that play a key part in regulating
 
a cellular function 

and understand their role in the
 
metabolic network (Li 2004). Our ability to identify 

these genes will increase our understanding of pathways that are active as a function 

of the environment
 
and in turn help to uncover the interplay between gene and

 

metabolic networks. 

Previous studies have suggested that by accomplishing the integration of 

gene expression and metabolism,
 
it will be possible to perturb cellular functions in 

silico and
 
predict cellular or physiological function

 
across a range of conditions, thus, 

enable the engineering
 

of biological behaviour (Li 2004).
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Figure 13. Integrated process of microbial metabolic model construction as proposed by Jamshidi and Palsson (2008). Such construction 

requires a comprehensive knowledge of the metabolism of an organism. From the annotated genome sequence and the experimentally 

determined biochemical and physiological characteristics of a cell, the metabolic reaction network can be reconstructed. This network is 

then modified in the context of other physiological constraints to produce a mathematical model, which can be used to generate 

quantitatively testable hypotheses in silico. As the model is used to direct an experimental plan, it can be important in further re-

examining the biological properties of the organism.

 

Kinetic rate equations & 

Kinetic parameters 

 In silico 

analysis 
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The number of constraint-based models (CBM) utilising flux balance 

analysis (FBA) or structural modelling approaches to analyse biological systems has 

considerably increased. In contrast, the number of large-scale kinetic models still 

remains relatively low. The reason for the slow growth in detailed kinetic model on a 

large-scale is due to the unavailability of kinetic parameters for these models. 

Likewise, CBMs have increased as they only rely on the stoichiometry of the 

network with no knowledge of kinetic parameters required in the model building 

process. The success prediction rate of CBM models for in silico experiments has 

been observed to be as high as 86% for E. coli gene deletion experiments (Price et 

al., 2003). The current availability and development of high-throughput experiments 

including genome sequencing and DNA microarray (Pease et al., 1994; Schena et 

al., 1995) analysis have made it possible to measure the quantitative levels of gene 

expression on a genome-scale (Sherlock et al., 2001). In addition to modern high-

throughput experiments, the availability of modern ‘omics’ data about individual 

organisms signals that it may be time to start building whole cell-wide models. There 

is now a variety of data for many organisms on different biological layers.  

 

If we are to fully understand the response of an organism to environmental 

changes, it is essential to include detailed quantitative levels of genes, mRNA 

transcripts, proteins and metabolites and their subsequent interactions (Zhang et al., 

2010). It has been previously demonstrated in Ter Kulie and Westerhoff (2001) that 

the control of glycosis was shared between genomic, proteomic and metabolic levels. 

This example highlights the significance of building integrative models.  Many 

integrative models of various organisms have been constructed but most are built 

using constraint-based modelling approach (Fellenberg, 2003; Cavalieri and Filippo, 

2005; Çakir et al., 2006; Joyce and Palsson, 2006; Herrgård et al. 2006; Yizhak et 

al., 2010; Zhang et al., 2010).  

Previous studies have shown that kinetic modelling is more accurate in 

capturing the detailed dynamics of biological systems as biological systems are not 

discrete in nature (Puchalka and Kierzek, 2004; Resat et al., 2009). However, only a 

few detailed integrative kinetic models have been constructed to date. The building 

of detailed integrative kinetic models is obstructed due to the incompleteness of 
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heterogeneous data needed to fully define such models and the unavailability of 

kinetic parameters. As a result, parameter estimation has become a very important 

and central part of computational systems biology (Mendes and Kell, 1998; Moles et 

al., 2003; Goel et al., 2008; Ashyraliyev et al., 2009) and efforts are now being 

focused on predicting the dynamical behaviour of biological systems rather than 

producing accurate models which require the detailed knowledge of reactions 

mechanisms, concentration of metabolites and protein-protein interactions (Ao et al., 

2008; Liebermeister and Klipp, 2006; Adiamah et al., 2010; Liebermeister et al., 

2010).  

Building genome-scale kinetic models has proven difficult as information 

needed to build detailed genome-scale metabolic for individual organisms tends to 

be stored in various databases and mostly under different experimental conditions 

(Radrich et al., 2009). This leads to a situation of unemployed enzymes in some 

models (Fell et al, 2010) as genes and enzymes are left unmapped. Additionally, 

apart from inconsistencies in stoichiometric models (Gevorgyan et al, 2008), there is 

the issue of missing reactions or inactive reactions in published genome-scale 

models (Fell et al., 2010).  

With the current problems in building precise and accurate genome-scale 

models, our attention on this research was mainly focused with producing a 

framework for streamlining the large-scale integration of gene expression and 

metabolic models which are capable of predicting the dynamical behaviour of 

biological systems.  
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Chapter 2 

 Building Integrative Models of Biological 

Networks Using GRaPe  
 

 

“It is unworthy of excellent men to lose hours like slaves in the labor of 

calculation which could be relegated to anyone else if machines were used.” 

Gottfried Wilhelm von Leibnitz (1646 – 1716).  

 

 

This chapter appeared in “Adiamah, DA., Handl, J, Schwartz, J-M. (2010) 

Streamlining the construction of large-scale dynamic models using generic 

kinetic equations. Bioinformatics, 26, 1324 – 1331”. Here, we present 

GRaPe, a platform independent tool for modelling integrative biological 

systems. The novel features and uses of GRaPe are presented in this chapter. . 

 

  



76 

 

2.1 Abstract 

 

Studying biological systems, not just at an individual component level but at a 

system-wide level, gives us great potential to understand fundamental functions and 

essential biological properties. Despite considerable advances in the topological 

analysis of metabolic networks, inadequate knowledge of the enzyme kinetic rate 

laws and their associated parameter values still hampers large-scale kinetic 

modelling. Furthermore, the integration of gene expression and protein levels into 

kinetic models is not straightforward. 

 

The focus of our research is on streamlining the construction of large-scale 

kinetic models. A novel software tool was developed, which enables the generation 

of generic rate equations for all reactions in a model. It encompasses an algorithm 

for estimating the concentration of proteins for a reaction to reach a particular steady 

state when kinetic parameters are unknown, and two robust methods for parameter 

estimation. It also allows for the seamless integration of gene expression or protein 

levels into a reaction and can generate equations for both transcription and 

translation. We applied this methodology to model the yeast glycolysis pathway; our 

results show that the behaviour of the system can be accurately described using 

generic kinetic equations. 

 

Availability and implementation 

 The software tool, together with its source code in Java, is available from our 

project web site athttp://www.bioinf.manchester.ac.uk/schwartz/grape 

 

  

http://www.bioinf.manchester.ac.uk/schwartz/grape
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2.2 Introduction 

 

The current availability of annotated genomes and detailed ‘-omics’ data 

makes it possible to construct stoichiometric genome-scale metabolic networks that 

include all reactions, metabolites and proteins. Systems biology aims to examine the 

properties and dynamics of cellular processes as a whole rather than in isolated parts 

of a cell or an organism (Kitano, 2002). Integrating cellular components is essential 

for our understanding of how interactions between these components influence 

cellular functions. One aspect of this integration is the need to integrate proteins and 

other cellular components into metabolic networks. For example, Förster and 

Palsson (2003) manually reconstructed a genome-scale integrative model of gene 

expression and metabolism of Saccharomyces cerevisiae (1175 metabolic reactions, 

584 metabolites and 708 open reading frames). 

 

Stoichiometric models, which describe the topology of a metabolic network, 

provide limited insights into the functioning of cellular processes. To understand the 

detailed dynamics of cellular functions and their regulation, it is necessary to 

advance toward kinetic models where the behaviour of a system can be perturbed. 

The construction of a genome-scale kinetic model of a biological cell requires the 

integration of genomic, proteomic, metabolomic and fluxomic data along with 

thermodynamic information (Jamshidi and Palsson, 2008). Attempts for building 

such large-scale kinetic models are now starting to emerge. Ao et al. (2008) provided 

a systematic method for constructing large-scale kinetic metabolic models and 

addressed the problem of estimating kinetic parameters. Jamshidi and Palsson (2008) 

described a framework for building and analysing large-scale kinetic models and 

presented the mathematical challenges associated with the construction of such 

models. In a cell-scale model, the number of reactions, metabolites and proteins can 

reach several thousands, making it time-consuming and costly, if not impossible, to 

accurately measure individual concentrations of metabolites, fluxes and kinetic 

parameters. 

 

There is often inadequate knowledge of enzymatic–kinetic laws and their 

associated parameter values, and usually parameters obtained from the literature are 
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dependent on specific in vitro or in vivo experimental conditions. Yet, there is 

growing awareness that exact rate equations and parameters are often not crucial in 

determining the dynamic properties of large systems. This principle has been 

illustrated by the development of methods for ‘bridging the gap’ between structural 

and kinetic modelling. Steuer et al. (2006) proposed a method that aimed to give 

account of the dynamical capabilities of metabolic systems without requiring explicit 

information about the rate equations, and they showed that it was possible to acquire 

a detailed quantitative representation of metabolic systems without explicitly 

referring to a set of differential equations. Smallbone et al. (2007) presented a 

method for building kinetic models solely based on reaction stoichiometries of a 

network using linlog kinetics. Their results showed good agreement between the real 

dynamics and their approximation in a yeast glycolysis model. Ao et al. (2008) also 

acknowledged that the scarcity of experimental data for rate equations and 

parameters is a major difficulty in the construction of large kinetic models, and to 

alleviate this difficulty, they used a generic form of rate equations with a minimum 

set of parameters to construct a metabolic model of Methylobacterium 

extorquensAM1. Their results showed that attaining the correct dynamical behaviour 

of a system is possible without the use of extensive and accurately measured rate 

equations and kinetic parameters. Furthermore, through an analysis of several 

systems biology models, Gutenkunst et al. (2007) suggested that parameter fitting to 

experimental data still leaves parameters poorly constrained and that biological 

systems are often robust to large parameter variations. The success of a model is 

therefore more dependent on an accurate prediction of the main behaviours of a 

system rather than on a thorough determination of large numbers of parameter 

values. 

 

In order to streamline the construction of large-scale dynamic models, the 

difficulties related to the manual assembly of large networks and the generation of 

customized rate equations and parameters need to be addressed. For this reason, we 

developed a software tool named GRaPe (Gene-Reaction-Protein integration). 

GRaPe uses generic reversible Michaelis–Menten rate equations based on the 

number of substrates and products for all reactions in the network. The Michaelis–

Menten relation offers a reliable approximation of the kinetics obeyed by most 

enzyme-catalytic reactions. Furthermore, most reactions of importance in 
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biochemistry are reversible in the practical sense (Cornish-Bowden, 2004). We make 

two distinctive assumptions, namely that compartmentalization of the cell and 

metabolite–enzyme interactions play a negligible role in determining the behaviour 

of a system. GRaPe then creates a kinetic model of the metabolic system using 

ordinary differential equations (ODEs) that are automatically generated based on the 

stoichiometric matrix of the network. 

 

While many tools exist for the modelling and simulation of complex 

biological dynamic systems, e.g. CellDesigner (Funahashi et al., 2003), COPASI 

(Mendes et al., 2006), Biological-Networks (Baitaluk et al., 2006), E-Cell (Tomita et 

al.,1999), CADLIVE (Kurata et al., 2003) and Cellware (Dhar et al., 2004), none of 

these tools allows for the generation of rate equations from the stoichiometry and for 

the seamless integration of gene or protein levels into a metabolic network without 

time-consuming and error-prone manual intervention. Our aim is not to duplicate 

these tools by creating another simulation software, but to introduce an upstream 

solution for the rapid generation of large-scale dynamic models, which can be 

exported for simulation by existing software applications. Being consistent with the 

standards of systems biology, GRaPe supports the exchange of Systems Biology 

Markup Language (SBML; Hucka et al., 2003) level 2 version 1 and 2 documents. 

 

We provide an overview of the main features of GRaPe and present a proof-

of-principle of the applicability of our approach to the construction of large-scale 

kinetic models. In particular, we compare the features of a model of the yeast 

glycolysis pathway based on generic equations automatically generated by GRaPe 

with a model of the same pathway constructed by Teusink et al. (2000) that was 

based on an experimental determination of rate equations and parameters. Our results 

show an excellent agreement between both models, supporting the hypothesis that 

kinetic models using generic equations could successfully reproduce the global 

behaviour of large metabolic systems without requiring detailed knowledge of the in 

vivo kinetics of each individual reaction. 
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2.3 Features of GRaPe 

2.3.1 General Features 

 

GRaPe provides a user-friendly graphical user interface (GUI) for importing, 

creating, editing and exporting biological models in SBML. GRaPe automatically 

integrates every metabolic reaction with either an enzyme species or with a gene 

expression process (Figure 14). When only proteomic data is defined in the SBML 

document, GRaPe adopts the Reaction-Protein (RP) representation. When 

transcriptomic data is given, GRaPe then adopts the Gene Reaction-Protein (GRP) 

representation. Transcription, translation and degradation of both mRNA and 

proteins are then expressed mathematically. 

 

GRaPe also provides functionality to manually construct GRP and/or RP 

network models. In both model-building processes, GRaPe automatically generates a 

Michaelis–Menten reversible rate equation for each reaction based on its 

stoichiometry and enzyme mechanism by iterating through the metabolic network. 

Each reaction in the network can have up to two substrates and products. See the 

methods section in this chapter for the detailed list of rate equations used by GRaPe. 
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Figure 14: (a) A traditional representation of a metabolic reaction where a substrate, 

S, gets converted into a product, P. The protein concentration is expressed as being 

fixed, usually in the Vmax, a constant in the rate equation. (b) An RP representation, 

where reaction (a) is integrated with only its protein concentration, E. In the rate 

equation, E is expressed as an independent variable, which can be varied. (c) A GRP 

representation, where an RP reaction is fully integrated with its gene expression 

module. E is now expressed as a function of transcription, translation and 

degradation of both mRNA and E. 

 

GRaPe implements two robust methods, the Levenberg–Marquardt method 

(LMA) and a genetic algorithm (GA), for estimating kinetic parameters, in addition 

to the Steady-State Enzyme Estimator (SSEE) method. See the ‘Methods’ section of 

this chapter for more details about the estimation methods and their application. The 

two parameter estimation methods attempt to find the values of missing kinetic 

parameters, given the experimental time series data. Both methods work 

interchangeably so that when one method fails to find a suitable solution set (a low 

objective function) the other is employed. The parameter set from the method that 

returns the best objective function is then taken. 

 

The time series data used as an input for all estimation methods must be in a 

tab-delimited plain text file. GRaPe matches the identifiers (ids) in the model to the 
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ids in the data file during parameter estimation and throws an error if any of the ids 

in the model are not found in the input data. The data file for all parameter 

estimation methods is the same; which means GRaPe treats the last row of the data 

file as the steady-state data for the SSEE method. The time series data can 

correspond to experimental or simulated, continuous dynamic or steady-state data. 

The estimation procedure constrains parameters to experimental data and 

therefore assignment of initial concentrations of species must be the same in the 

model as in the experimental data. It is also recommended that the precision of 

experimental values be limited to two decimal places for faster  computing of kinetic 

parameter values. The time taken to estimate parameters for all reactions in a model 

is dependent on the amount of input data. For dynamic time series data, the total 

estimation time tends to take longer compared to steady-state time series data. 

Although there is no limit to the number of data points in the input data, large 

datasets increase estimation time. 

 

 

2.3.2  System Architecture 
 

In order to make GRaPe platform independent and easy to use by the 

biological community, Java was chosen as the programming language. Figure 15 

shows the architecture of GRaPe and the interactions between the main components 

of the system. GRaPe uses the JigCell Parser (Vass et al., 2004) for importing and 

exporting SBML level 2 version 2 documents. Each reaction in the model consists of 

its substrates, products and either the enzyme alone or the full gene expression 

process of that reaction. The reactions are stored in a list that later gets converted by 

the JigCell parser into a SBML file. The inverse of this process can be achieved, i.e. 

by parsing a SBML file that is then decomposed into reactions, species/metabolites 

and enzymes. 
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Figure 15: System architecture of GRaPe. The ‘Gene Expression’ module takes in 

the gene(s), mRNA and enzyme species of a reaction. Transcription, translation and 

degradation of mRNA and enzyme are expressed in this module. The ‘Reaction’ 

module constructs a reaction based on the number of substrates, products and 

reaction mechanism. An ‘Integrative Model Unit’ module is then created from either 

‘Gene Expression’ or just the enzyme species only and ‘Reaction’ modules. These 

units are stored in a list (‘Integrative Model List’) before being converted into a 

SBML file by the Model2SBMLConvertor. The ‘Parameter Estimation’ module 

provides methods for estimating kinetic parameters in a model. SBML files imported 

by GRaPe are disintegrated into separated units by the SBML2ModelConvertor. The 

GUI serves as a platform for creating and editing the model. 
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Figure 16 depicts a flow chart for the model building process using GRaPe. 

Diamonds represents critical decision points. Rectangles represent tasks or activities. 

The success of GRaPe relies on the careful handling of both decisions and tasks.  
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2.3.2.1  Gene expression module (GEM) 

 

The GEM is a template for creating gene expression process in the system. It 

takes in a gene, mRNA and an enzyme species. Each species has a unique identifier 

which is generated by the system, name (which could be a list of names when 

different genes encode the same enzyme) and an initial concentration which is a real 

value or the default value, 0.0.  GEM generates the reaction rates of transcription, 

translation, degradation of both mRNA and proteins (enzyme) using the mass action 

kinetics equation which is then passed to the Integrative Model Unit.  

The study initially makes an assumption that genes have one-to-one 

relationship with their corresponding enzyme and enzymes also have a one-to-one 

relationship with their reactions. However, this assumption that gene-protein-

reaction (GPR) association is one-to-one is not necessarily true. Many genes encode 

a single protein which catalyses a single reaction. However, there are genes that also 

encode proteins/enzymes that can catalyse more than one reaction; these enzymes 

are known as promiscuous enzymes. For example, Succinate Dehydrogenase, SDH, 

is encoded by four genes and catalyses two reactions. We are still thinking of way(s) 

of reverting the one-to-one relationship of GPR to many-to-one or one-to-many 

relationship. The gene is a template for transcription and does not degrade over time. 

See future works for more details on how the study aims to model the expression of 

a gene at time, t.  

 

2.3.2.2 Reaction module 

The reaction module is responsible for creating individual metabolic 

reactions. Each reaction has a unique id, a name, a list of reactants and products. The 

type of reaction can either be reversible or irreversible. The reaction type can be set 

to 1 for reversible reactions and 0 for irreversible reactions. The reaction can take a 

maximum of two substrates and products, which are compounds. Each compound 

has a unique id, name, initial concentration, stiochiometric coefficient and a 

boundary condition, which can either be set to true or false.  
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For example, a reaction with A+B+C  P+Q, will be decomposed into two 

reactions, A+BP, P+CQ. This decomposition process, without a doubt, is a 

major challenge in this study as we will need to know the enzyme mechanism for 

that reaction. 

Depending on the number of substrates and products and the reversibility of 

that reaction, a Michaelis-Menten kinetic rate equation is generated by the system for 

that reaction. This is one of the main goals of this study. With automatic generation 

of reaction rate equations, large metabolic networks can be translated into 

mathematical equations which can then be integrated and analysed.  

 

 

2.3.2.3 SBML2ModelConvertor and Model2SBMLConvertor 

 

The SBML2ModelConvertor reads in a SBML file and converts it into java 

objects. The hierarchical structure of SBML file means it is easy to decompose the 

elements into objects which represent species, which can be metabolites, genes, 

mRNA or proteins, and reactions. The parser is able to read in SBML level 2 files in 

either version 1 or 2. With version 1 files, the kinetic equation is converted into 

MathML format. The gene expression module unit is assigned ‘null’ if the SBML 

file which is imported contains only reactions. Model2SBMLConvertor class 

converts a java model into a SBML level 2, version 2 file. The model is a list of 

individual IMUs which consists of a reaction with its gene expression module. IMU 

automatically generates the reaction rate for the reaction, together with the 

transcription, translation and degradation rates of both mRNA and protein.  

 

2.3.3 SBML  

 

Systems Biology Mark-up Language (SBML) is an extension of XML 

language, for representing models of biochemical reaction networks and it is 

considered the standard format in systems biology (Hucka, Finney et al, 2003). 

SBML can represent metabolic networks, cell-signaling pathways, regulatory 
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networks, and other kinds of systems studied in systems biology (Hucka, Finney et 

al., 2003). This format provides interoperability between different modeling tools so 

that a description of a model by one program can be read and processed by other 

programs. Our system produces SBML level 2, version 2 documents, as it was the 

current version at the start of this study. SBML level 3 contains new elements and 

components that does not compromise our use of SBML level 2, version 2 

documents. An example of the SBML structure is shown in Figure 17. 

 

Figure 17: XML representation of the structure of SBML.  

A reaction, X0  S1 and the SBML representation of this reaction in SBML level 2 

version 1 format. 
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2.4 Methods 

2.4.1 Modelling gene expression 

 

Many methods have been used to model gene expression, which include 

Boolean networks (Kim et al., 2007; Li, 2007), differential equations (Chen et 

al., 1999), dynamic Bayesian networks (Kim et al., 2003; Li, 2007) and neural 

networks (Gagneur and Klamt, 2004). Boolean networks are inexpensive with 

respect to computational complexity (D'haeseleer, 1999). An advantage of Bayesian 

networks, like Boolean networks, is that they do not require the explicit 

determination of kinetic parameters. However, both methods are poor in capturing 

some important aspects of network dynamics (Schlitt and Brazma, 2007). 

 

We model gene expression using ordinary differential equations; this enables 

details of the dynamics of the network to be captured by explicitly modelling 

changes in concentrations of mRNA and proteins over time (Chen et al., 1999). 

Also, gene expression levels tend to be continuous rather than discrete; discretization 

can lead to loss of information (D'haeseleer, 1999). Smolen et al.(2003) and Garcia-

Martinez et al. (2007) studied the relationship among variables that characterize gene 

expression at the genome-level in living organisms. Their studies concluded that the 

amount of both mRNA and proteins primarily depends on their transcription rate 

(KTr), translation rate (KTl), mRNA concentration ([mRNA]) and protein concentration 

([Protein]). 

 

We model the change in mRNA concentration over time as: 

 

][)(
][

mRNAktGenev
dt

mRNAd
mRNADegTR    (13) 

 

where [mRNA] is the mRNA concentration, vTR is the transcription or mRNA 

synthesis rate, and kmRNADeg is the mRNA degradation rate. Gene(t) is an expression 

function which may take any real value, enabling external regulators of gene 

expression to be incorporated into models. However, in the examples presented here, 
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no such regulation was included and these values were taken to be Boolean, where a 

value of 1 indicated that the gene was expressed and 0 otherwise. 

The change in protein concentration over time is modelled as: 

      

 ][][
])([

Pr PkmRNAk
dt

Pd
oteinDegTl    (14) 

where [P] is the protein concentration, kTl, the protein synthesis or translation 

rate, kProteinDeg is the protein degradation rate and [mRNA], the concentration of 

mRNA. Both the equations (13) and (14) are based on first order mass action 

kinetics. 

 

Methods have been developed to determine or estimate the synthesis and 

degradation rates from microarray data (D'haeseleer, 1999; Wu et al., 2004). When 

these parameters are unknown, we present an alternative modelling approach where 

only the protein level is integrated into the reaction instead of the full gene 

expression process (Figure 14b). The concentration of enzyme can be set as fixed 

over time or varied during simulation. This can be achieved by the use of SBML 

‘Events’ that represent time-dependent changes within the system. An event can be 

triggered if a certain condition is reached; for example, set the concentration of 

enzyme ‘A’ to 0.8 mM if time is >10 min. Furthermore, the modelling framework 

enables the incorporation of isoenzymes that can be modelled as individual enzyme 

species with their own gene expression processes. 

 

  

2.4.2 Enzyme kinetics and rate equations 

 

GRaPe automatically generates a rate equation for a reaction in a network 

based on the assumed enzyme mechanism governing that reaction, and its number of 

products and substrates. The enzyme mechanism of a reaction can either be of 

random order or compulsory order. If the binding order of substrates and releasing 

order of products are unknown then the random-order mechanism is recommended. 

The compulsory-order mechanism requires the knowledge of the correct order of 

binding of substrates to the proteins and releasing of products to be known. This 
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mechanism proceeds in an ordered series of steps, i.e. the substrate must bind in 

particular order and the product is released in a specified order. 

The automatic generation of generic rate equations is a key advantage of 

GRaPe. This is time-efficient and less error-prone for a relatively large model 

compared to the manual definition of each rate equation by the user. COPASI 

provides predefined rate equations for reactions in a system, but these equations 

must be manually assigned to reactions by the user and protein levels cannot be 

explicitly assigned in rate equations. SBMLSqueezer is a plug-in for CellDesigner, 

which generates rate equations for a biochemical reaction (Dräger, 2008); but the 

user has to manually select the type of rate equation for each reaction in the network, 

and protein levels are not integrated in rate equations. On a large scale, these 

solutions are impractical and leave the model with unknown parameters. 

GRaPe uses the King & Altman method (King and Altman, 1956) to derive rate 

equations based on a reaction's stoichiometry and the enzyme mechanism under the 

steady-state assumptions. The description of generic Michaelis–Menten rate 

equations used by GRaPe for the different reaction types is given below.  

 

It generates kinetic rate equations for reactions of up to two substrates or 

products, i.e. reactions can be of type uni–uni, uni–bi, bi–uni or bi–bi. A reaction of 

more than three substrates or products needs to be decomposed into these reaction 

types based on its biochemistry. 
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2.4.2.1 Reversible Michaelis-Menten rate equations 

 

For a Uni-Uni reversible reaction (both random and compulsory order)   

A  P: 
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    (15) 

 

where a is the concentration of substrate A, p is the concentration of product P. V
m

+  

is the rate of consumption of A (velocity of the forward reaction) and V
m

_  is the rate 

of formation of P (velocity of the backward reaction); KmA and KmP are the Michaelis 

constant for A and P respectively; e0 is the total concentration of the enzyme and v is 

the rate (or velocity) of reaction. V
m

+ /KmA = KA and V
m

_ / KmP = Kp in a traditional 

reversible Michaelis-Menten rate equation. 

 

 

For a Bi-Uni reversible reaction, A + BP 

Compulsory order:   
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Random order:   
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In both equations (16) and (17), V
m

+ is the rate of consumption of A and B, and V
m

_ 

is the rate of formation of P. a is the concentration of substrate A, b is the 

concentration of substrate B and p is the concentration of product P. e0 is the total 

concentration of the enzyme and v is the rate (or velocity) of the reaction., KiA and 

KiB are the substrate dissociation constants of A and B. KmB and KmP are the 

Michaelis constants for B and P respectively, KiA, KiB, KmB, KmP are dissociation 

constants. Since the binding of A and B are interchangeable, KiAKmB = KiBKmA. 

 

For a Uni-Bi reversible reaction, AP + Q 

 

Compulsory order:   
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Random order:   
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In (18) and (19), V
m

+ is the rate of consumption of A, and V
m

_ is the rate of formation 

of P and Q. a is the concentration of substrate A, p is the concentration of substrate P 

and q is the concentration of product Q. e0 is the total concentration of the enzyme 

and v is the rate (or velocity) of the reaction, KiP and KiQ are the product dissociation 

constants of P and Q. KmA, KmP and KmQ are the Michaelis constants for A, P and Q 

respectively, KmA, KiP, KmQ, KiQ are dissociation constants. Since the release of P and 

Q are interchangeable, KiPKmQ = KiQKmP. 

 

For a Bi-Bi reversible reaction, A + BP + Q 

 

Compulsory order:   
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Random order:   
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where in both (20) and (21), V
m

+ is the rate of consumption of A and B, and V
m

_ is 

the rate of formation of P and Q. a is the concentration of substrate A, b is the 

concentration of substrate B, p is the concentration of substrate P and q is the 

concentration of product Q. e0 is the total concentration of the enzyme and v is the 

rate (or velocity) of reaction.  
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In (20) KiA, KiP and KiQ are the product dissociation constants of A, P and Q. KmA, 

KmB, KmP and KmQ are the Michaelis constants for A, B, P and Q respectively. In (21), 

KiA, KiB, KiP, KiQ and KmB are dissociation constants. Since the release of P and Q are 

interchangeable, KiPKmQ = KiQKmP, and the binding of A and B are interchangeable, 

KiAKmB = KiBKmA. 

 

 

2.5 Parameter Estimation 

 

Kinetic models are shown to produce accurate and testable results. However, 

the number of large-scale kinetic models has been very low due to the enormous 

number of kinetic parameters needed to define the system. Furthermore, as observed 

in Teusink et al. (2000), in vitro measurements of kinetic constants may not 

necessarily be representative of their numerical values in vivo (Jamshidi and 

Palsson, 2008). Various software tools can now perform parameter estimation: 

COPASI has a list of methods for estimation including a GA; SBML-PET (Zhike 

and Klipp, 2006) uses a stochastic ranking evolution strategy method for parameter 

estimation; however, it excludes constraints on the flux of a reaction implying that a 

zero flux may be obtained even in non-equilibrium conditions. COPASI requires that 

columns specified in the experimental data file must be associated with model 

elements. Having a flux for a reaction in the experimental data file throws an error 

with COPASI, as fluxes are not explicitly expressed in a model. 

 

While the exact values of kinetic parameters are not necessarily crucial to 

determine the behaviour of a biochemical system, it is nevertheless necessary to 

estimate the values of missing parameters in order to run simulations. In GRaPe, we 

have introduced a simple but effective algorithm, the SSEE that estimates the 

concentration of enzyme needed for a reaction to reach a steady state, v. The SSEE 

algorithm focuses on solving for e0, the concentration of the enzyme, by assigning all 

kinetic parameters in the models to a constant value of 1. For a uni–uni reaction, e0 is 

calculated as follows: 
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where KmA, KmP, KA and KP are the kinetic parameter associated to substrate A 

and product P, respectively, assigned a value of 1; a is the concentration of substrate 

and p is the concentration of the product. SSEE allows for the rapid simulation of 

steady-state behaviour in a system without prior knowledge of kinetic parameters. 

 

In addition, GRaPe implements two methods for parameter estimation from 

time series of experimental data: the LMA (Levengberg-Marquardt algorithm) and 

GA. The LMA is an upgrade from Nocedal and Wright (1999), which was 

constrained to work with our integrative models. GA is the predominant algorithm 

for estimating kinetic parameters in GRaPe. However, when GA does not return a 

good solution based on an objective function, then the LMA is used. GRaPe returns 

the solution of the algorithm with the better objective function. 
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2.5.1 Genetic Algorithm 

Parameter optimization was performed using a genetic algorithm (GA). Genetic 

algorithms are heuristic optimization techniques that take their inspiration from 

concepts of natural evolution. Specifically a basic genetic algorithm works by 

"evolving" a population of solutions to a problem. Evolution (i.e. improvement) of 

solutions is achieved through subsequent rounds of (i) reproduction, (ii) variation 

and (iii) selection of solutions.  

For the parameter optimization problem, a solution to the problem was required to 

provide estimates for all of the parameters within a given reaction. Each parameter 

was encoded as a bit string of size twelve (eight bits encoding for the number and 

four bits encoding for the base) and gray coding was used to map the individual bit 

strings to real numbers within the interval [1.0e-10, 1.5e10]  

Here, gray coding was used instead of binary encoding in order to reduce the number 

of local optima in the fitness landscape. To avoid convergence to local optima, the 

GA also used a large population size of 1000 individuals in combination with 

tournament selection of size three, resulting in relatively low selection pressure. The 

variation operators used were one-point crossover and bit-flip mutation, which were 

applied with standard probabilities of 0.7 and 1/L, respectively (where L is the length 

of a complete solution, i.e. the number of parameters times twenty). The GA was run 

until the summed least squared error (equation 23 below) dropped below 1e-7 or 

until the maximum number of generations (2000000) had been achieved. 

 

 

 

 

 

 

Fig 18. Shows an example of an eight-bit string. The first 5 bits encodes for the 

number and the last 3 encodes for the base. The above example translates as  54 =  

625 (0*16+0*8+1*4+0*2+1*1). 
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The summed least squared error is expressed as follows: 

 

       (23) 

 

where s is the sum of the squares of the error or distance between the actual 

outcome, xi,, and the predicted outcome, yi. n is the number of data points in the 

dataset. 

 

2.5.2 Example of how GA works 

 

The input file for the optimization program is a tab-delimited data file (I_data) with a 

full listing of metabolites' concentrations, fluxes and enzyme concentrations for a 

metabolic network (See sample dataset below of first two reactions of glycolysis in 

yeast with proteins HK and PGI).. 

 

GRaPe extracts the reaction data (R-data) for a reaction based on the reaction id (or 

flux id), substrate(s) id, product(s) id and enzyme id (and not their ordering in the 

file).  

 

v1_HK   s1 s4 s2 s3  s6 s5 v2_PGI  s7 

47.9937  0.573074 1.5    2.1     4.2     1.0 0.49    47.9938 1 

47.9937  0.573074 1.5    2.1     4.2     1.0 0.49    47.9938 1 

47.9937  0.573074 1.5    2.1     4.2     1.0 0.49    47.9938 1 

47.9937  0.573074 1.5    2.1     4.2     1.0 0.49    47.9938 1 

 

Table 3: A sample input data for GA. The first row represents IDs for fluxes, 

metabolites and enzymes. The flux data values for reaction, HK, are in the first 

column. s1 and s4 are the substrates and s2 and s6 are the products of reaction HK; 

s6 is the enzyme¸HK. GRaPe matches IDs in the SBML model to IDs in the 

parameter estimation input file. 
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 ¸ 

GRaPe starts by fetching the first reaction from a list (V1_HK) of reactions. For each 

reaction, the appropriate rate equation is chosen based on the stoichiometry of the 

reaction. GRaPe then uses the GA to estimate kinetic parameters for the reaction rate 

equation by minimising the sum of the squared errors (equation 23) between the 

actual and predicated reaction rate values.  

 

The Levenberg-Marquardt algorithm, LMA or genetic algorithm, GA may be used. 

If one method produces a solution not "good" enough the other method is employed 

to find a better solution.  
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2.6 Discussion 

We have introduced GRaPe, a platform independent software tool aimed at 

streamlining the construction of large-scale dynamic models. GRaPe enables the 

automated construction of reaction-protein or gene-reaction-protein networks. A 

novel feature of GRaPe is its ability to generate generic rate equation for models of 

relatively large sizes. Another important feature is its capability to explicitly 

integrate gene expression processes or enzyme species into reactions, making it a 

convenient tool for the construction of integrative protein-reaction networks. 

 

A few manually constructed integrative metabolic models have now been 

created (Förster and Palsson 2003, Jamshidi and Palsson 2008, Ao et al. 2008), 

however, no computational tool for integrating protein levels into metabolic models 

exists. The integration of proteomics data into metabolic models could increase our 

understanding of the role of enzymes on metabolism. Another important feature of 

GRaPe is its ability to convert existing metabolic models in SBML format into either 

gene-reaction or gene-protein-reaction networks. This will enable, for example, the 

import of high-throughput quantitative proteomics data into metabolic models. 

 

Parameter estimation (optimisation) has become an area of significant 

importance in kinetic modelling due to the fact that it is often prohibitively 

expensive and time-consuming to measure vast numbers of kinetic parameters 

experimentally. Some repositories such as Sabio-RK (Rojas et al, 2007) and 

BRENDA (Schomburg et al. 2002) store kinetic parameters and enzymatic 

information for various pathways in different organisms. 

 

However, it is difficult to compare parameters of the same pathway in 

different models due to different assumptions and experimental conditions. 

Gutenkunst et al. (2007) suggested that modellers should focus on predicting the 

behaviour of the system rather than parameters due to parameter “sloppiness”, 

meaning that parameters are often poorly constrained. GRaPe introduces a simple 

but effective method for estimating the amount of enzyme concentration required to 

give a particular steady state. This method enables analysis of the steady state 

behaviour without detailed knowledge of kinetic parameters. GRaPe also has two 
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methods for parameter estimation: the Levengberg-Marquardt algorithm (LMA) and 

a genetic algorithm (GA). Both methods are robust and work interchangeably in 

estimating kinetic parameters. 

 

The capability of GRaPe to convert reactions into ODEs based on their 

stoichiometric matrix for small or large-scale networks, its main innovation, makes it 

complementary to other existing software tools. GRaPe is not designed to compete 

with well-developed simulation software but to complement existing applications by 

providing an upstream solution for the efficient design of large-scale dynamic 

models. Models created using GRaPe can be run using existing simulation tools such 

as CellDesigner, COPASI and any other tools that support SBML. In the future, we 

aim to interface GRaPe with existing databases of metabolic reactions and kinetic 

parameters in order to make it capable of rapidly constructing large or genome-scale 

integrative kinetic models. 
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Chapter 3 

A Generic Model of Yeast Glycolysis  
  

“It is a capital mistake to theorise before one has data. Insensibly one begins to twist 

facts to suit theories instead of theories to suit facts.”  Sherlock Holmes, the fictional 

creation of Arthur Conan Doyle (1859-1930)  

 

The work in this chapter appeared in “Streamlining the construction of large-

scale dynamic models using generic kinetic equations.” Adiamah, DA., 

Handl, J, Schwartz, J-M. (2010)   Bioinformatics, 26, 1324 – 1331”.  

 

The aim of this study was to test our modelling approach and software tool 

together with its features including parameter estimation technique to 

determine the success rate of our approach. The yeast glycolysis pathway was 

reconstructed using GRaPe. We show that using generic rate equations, the 

dynamical behaviour of system can achieved.  
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3.1 Abstract 

There has been a rapid development in the construction of stoichiometric 

models of metabolic systems at the scale of entire organisms, for many species from 

microorganisms to humans. However, these models provide limited insights into the 

functioning of cellular processes since their use is restricted to steady-state 

simulations. Efforts are now being directed toward the development of dynamic 

modelling techniques that are able to cope with the large scale required for cell-wide 

simulation. 

The construction of large scale metabolic models is challenging as it requires 

the assembly and solving of systems of several hundred of non-linear differential 

equations. Inadequate knowledge of the enzyme kinetic rate laws and their 

associated parameter values still hampers large-scale kinetic modelling. 

Nevertheless, due to the robustness and resilience of biological systems to 

perturbation, exact rate equations and accurate parameters values are often not 

crucial in determining the fundamental dynamic properties. Therefore, a degree of 

generalization and simplification may be applied to reduce model complexity and to 

streamline model construction.  

Using the yeast glycolysis pathway as an example, we showed that a model 

based on generic kinetic equations and estimated parameters is able to simulate a 

metabolic system with a comparable accuracy to a detailed model based on 

experimental determinations. We have implemented this methodology in the GRaPe 

software. These principles may be used to automate the construction of large models 

of intracellular metabolism and achieve the scales needed for cell-wide dynamic 

modeling. Our model also accurately describes dynamic experiments with a changed 

glucose influx, even though such data were not used for parameter estimation, 

showing that the generic model has predictive value. 
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3.2 Introduction 

The development and analysis of constraint-based modeling techniques have 

seen a significant rise. This has subsequently led to the increase in the construction 

of stoichiometric models of metabolic systems on both small and large scale 

(Dobson et al, 2010). However, constraint-based modeling is limited in capturing the 

dynamics of cellular behavior (Schlitt and Brazma, 2007). As a result, many studies 

have geared towards developing generic techniques to building kinetic models which 

are capable of capturing the dynamical properties of a network. One of the early 

attempts was by Hynne et al (2001) where a general method of fitting experimental 

data to the mechanism of a model was provided. Here, simple algebra was used in 

calculating rate constants and maximum velocities for all reactions in the full-scale 

model of glycolysis in S. cerevisiae.  

There is now an increasing number of in silico metabolic models which can 

serve as platform for ‘dry lab’ prototyping of experiments with the aim of 

developing hypothesis which can then be performed in the lab (Jamshidi and 

Palsson, 2009). Constructing these in silico metabolic models on a large scale is 

challenging as it requires the assembly and solving of systems of several hundred of 

non-linear differential equations. The main problem of building kinetic models is the 

lack of or inadequate knowledge of the enzyme kinetic rate laws and their associated 

parameter values (Jamshidi and Palsson, 2008). Other challenges in building in silico 

model were highlighted by Palsson (2000) to include the difficulty in integrating 

biological processes and issues with simplifying systems properties.  

It is now known that due to the robustness and resilience of biological 

systems to perturbation, the exact rate equations and accurate knowledge of kinetic 

parameters values are often not crucial in determining the fundamental dynamic 

properties (Gutenkunst et al, 2007). As a result, there is now the need of 

generalization and simplification of the model building process in order to reduce 

model complexity and to also streamline model construction.  

Molecular and cell biology of yeast, in particular, have been widely studied 

in recent times – leading to a large amount of both qualitative and quantitative data 

(Klipp, 2007). This makes it the ideal model to test our generic approach to 
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modelling metabolic networks. Intuitively, one assumes that once the generic 

approach works on a smaller test case – the yeast glycolysis pathway with a small 

number of reactions – then if the same approach is implemented on a large-scale, the 

results should be coherent. However, what has been acknowledged in the past is that, 

the behavior of a complex system is often too difficult to understand by intuition 

alone as feedback loops, cycles or interplay of processes makes a considerable 

difference (Klipp, 2007).   

A comprehensive study by Teusink et al (2000) measured in vitro kinetic 

parameters of most of the glycolytic enzymes of S. cerevisiae in an attempt to 

understand whether in vivo behavior can be understood in relation to in vitro kinetic 

properties. Interestingly, the results from the Teusink yeast model, built with 

accurately measured data, showed discrepancies with experimental results. However, 

to date, the Teusink yeast glycolysis model still remains as one of most accurate 

models as kinetic parameters and enzyme concentrations were experimentally 

measured. This process was, undoubtedly, tedious and time-consuming – again 

prompting the need for powerful but generic approaches to building models with 

good predictive prowess.  Additionally, on a large-scale, experimentally measuring 

all kinetic parameters and enzymatic properties can be an impossible task.  

In our attempt to validate our approach to building models using generic 

kinetic rate equations, we build a model of yeast glycolysis pathway based on data 

presented in a previous study. 

 

 

3.3 S. cerevisiae Glycolytic Pathway 

We modelled the glycolysis pathway in S.cerevisiae using generic rate 

equations and kinetic parameters estimated by GRaPe and compared it to a detailed 

model by Teusink et al. (2000). Since the main objective of this work is to show that 

a generic kinetic model can provide results of similar quality to a detailed model, we 

compare our results with simulations of the Teusink model rather than experimental 

values. 



108 

 

The yeast glycolysis pathway has been extensively studied (Bakker et al., 1997; 

Hynne et al., 2001; Lambeth and Kushmerick, 2002; Pritchard and Kell, 2002; 

Teusink et al., 2000) and a vast amount of genomic and enzymatic data is therefore 

available. In Teusink et al. (2000), the authors examined whether in vivo kinetics 

behaviour can be understood in terms of in vitro kinetics of enzymes in yeast 

glycolysis. They produced two models, one where branched reactions were ignored 

and a second comprehensive model that included all branched reactions. Their 

results suggested that half of the enzymes matched their in vivo fluxes within a factor 

of 2, and the calculated deviation between in vivo and in vitro kinetic characteristics 

of the other enzymes could explain discrepancy between in vivo and in vitro kinetics. 

Fluxes and metabolites concentrations were experimentally determined. Fluxes of 

trehalose and glycogen were expressed in units of glucose, and kinetic parameters 

were also determined under the same experimental condition. The unbranched model 

used experimentally determined metabolite concentrations and calculated conserved 

moieties but no steady state was reached. The branched model, however, reached a 

steady state with the original parameter set that had been determined in vitro. Both 

models used a set of ordinary differential equations to describe the time dependence 

of metabolite concentration. 

 

 

3.4 Methods 

 

We modelled the glycolysis pathway of S.cerevisiae using GRaPe based on 

the branched topology used by Teusink et al. (2000). The initial concentration of 

metabolites was the same as in the Teusink model. The model includes all enzymes 

involved in the pathway from glucose uptake to the production of pyruvate and 

ethanol. All reactions were assumed to be of a random-order mechanism. GRaPe 

then generated generic reversible rate equations for the reactions in our glycolysis 

model, which were combined with the stoichiometry of the network to produce 

ordinary differential equations. We made three distinctive changes in our model. 

First, in the Teusink model, a metabolic pool represented by an independent 

variable, P, was defined to represent the sum of high-energy phosphate in adenine 
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nucleotides. In our model, an equation is used for the conservation of adenine 

nucleotides moiety as: 

 

 
dt

ATPd

dt

ADPd ][][
 (24) 

 

where [ADP] and [ATP] are the concentration of adenosine diphosphate (ADP) and 

adenosine triphosphate (ATP), respectively and t is the time. 

 

Secondly, since adenosine monophosphate (AMP) does not partake in any 

reaction, we excluded the adenylate kinase reaction. Thirdly, in the Teusink model 

the triosephosphate isomerase (TPI) reaction was modelled using an equilibrium 

equation such that the ratio of glyceraldehyde 3-phosphate (GAP) to glycerone 

phosphate (DHAP) was at equilibrium. An independent variable, Trio2-P, was 

introduced, which was the sum of the concentration of GAP and DHAP. In our 

model, we included the TPI reaction and modelled the change in DHAP and GAP 

concentrations using uni–uni reversible rate equation. These changes make it 

possible to study the effects of varying the concentration of ATP, ADP, DHAP and 

GAP on the system. The initial concentration of all metabolites was then assigned 

using data given in the Teusink model. The concentrations of ATP and ADP were 

calculated based on conserved moiety equations given in Teusink et al. (2000). As 

cofactors play an important part in the global regulation of glycolysis, their 

concentrations were treated as free metabolic variables. The kinetic equation for each 

reaction was generated automatically by GRaPe based on the number of substrates 

and products and the enzyme mechanism of the reaction. Our glycolysis model 

in Figure 18 contains 23 metabolites (22; here, the bracketed data corresponds to 

respective entity in the Teusink model), 15 enzyme species (0), 116 kinetic 

parameters (88) and 18 fluxes (17). Below is a list ordinary differential equations 

used to describe the time-dependence of metabolites in the network:  
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Figure 19: Topology of our yeast glycolysis model. 
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–      (25) 

– –   (26) 

–       (27) 

–       (28) 

– –     (29) 

–     (30) 

–       (31) 

–       (32) 

–       (33) 

–       (34) 

      (35) 

– –    (36) 

       (37) 

 

Boundary Conditions are set to “True” for the following metabolites Glucose_out, 

Trehalose, Glycogen, Glycerol, Succinate, CO2 and Ethanol as we assume that the 

level of these metabolities are not affected by internal and external reactions or 

conditions.  
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3.5 Data acquisition and parameter estimation 

Using JWS online (Olivier and Snoep, 2004), a web tool for simulating 

kinetic models, we collected steady-state data for metabolites and fluxesfrom the 

Teusink model with glucose uptake concentrations of 10 and 50 mM. These values 

were then merged to create our input dataset for parameter estimation. The dataset 

contains values of all metabolite concentrations and reaction fluxes in the glycolysis 

pathway at every 10 min; the glucose concentration was at 50 mM from time 0 to 30 

min and at 10 mM from 30 to 100 min; the precision of values was limited to two 

decimals points for faster estimation.  

Next, GRaPe was used to estimate the kinetic parameters for each reaction in 

our model so that the distance between the input dataset (Teusink experimental data) 

and our predicted values calculated by the model was minimized. Due to the absence 

of gene expression and enzyme amount data in this example, the concentration of 

enzymes was set to a default value of 1 in both the model and dataset for parameter 

estimation. GA was used to estimate the kinetic parameters for each reaction after 

just one run of estimation. The calculated error over our input data ranged from 4.5e-

13 to 2.13e-10 for all reaction's kinetic parameter sets. 

 

3.6  Results 

3.6.1 Experiment 1: Model validation on training data 

 

After parameter estimation was completed, the model was simulated in 

CellDesigner using the SBML ODE Solver (SOSlib). The results obtained from our 

simulations were then compared with results from the Teusink model. The first 

experiments were to verify whether the model correctly reproduced the behaviour of 

the system at steady state, without any perturbation, when glucose uptake is at 10 

and 50 mM. Our results show a near-perfect agreement between our model and the 

Teusink model (Tables 4 and 5). These results confirmed that the training and 

parameter estimation algorithms successfully identified a solution, where the model 
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reproduces the correct concentration and flux values used in the training data. The 

dataset used for parameter estimation is provided on our lab group page (pg. 148). 

 

Using ‘events’ in SBML, we moreover replicated the effect of a dynamically 

reduced uptake of glucose: after 30 min, the concentration of glucose was reduced 

from the original 50 to 10 mM. Results from this experiment (figures. 20a–b) again 

show an excellent agreement between our model and the Teusink model when the 

same reduction in glucose uptake is applied. These results confirm that the integrity 

of our estimated parameters is conserved in a dynamic experiment. Our model of 

glycolysis, with events for changing the level of glucose uptake, has been provided 

on our lab group page (pg.148).  

3.6.2 Experiment 2: Model validation outside the training range 

 

The second experiment was carried out to verify how well the model would predict a 

new state of the glycolysis pathway outside the range of training experimental data 

and without re-estimating the kinetic parameters. We carried out simulations by 

changing the level of glucose to 1, 100 and 200 mM. The results, also shown in 

Tables 4 and 5, show an excellent agreement between our model and the Teusink 

model with glucose increased to 100 and 200 mM. 

 

Our model still produced results with very low concentrations of glucose (1 mM), 

while the Teusink model reported an error during simulation when the glucose input 

was <2 mM. The generic model thus appears to be more robust than the detailed 

model. We repeated a dynamic experiment, changing the glucose concentration from 

50 to 100 mM after 30 min (figures 20c–d), which was again successful. The results 

obtained from these experiments demonstrate the ability of our generic model to 

predict new steady-state behaviours that were not used for training. Overall, our 

results demonstrate that it is possible to predict system behaviour using generic 

reversible rate equations, without addressing detailed mechanisms at the level of 

each component. 
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Figure 20: Dynamic experiments using the generic glycolysis model with the level of 

glucose uptake being changed after 30 min. (a-b). A decreased glucose uptake from 

50 mM to 10 mM. (c-d). An increased glucose uptake from 50 mM to 100 mM. 
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Table 4: Metabolite concentrations (in mM) and fluxes (in mmol·min−
1
·L-cytosol−

1
) at steady state for the model generated by GRaPe with 

glucose uptake levels at 1, 10, 50, 100 and 200 mM. The kinetic parameters were trained on experimental data with glucose levels at 10 and 50 

mM. After estimation, the model was simulated in CellDesigner using the SBML ODE Solver. 

 

 

Concentration of glucose (mM) 

 

Metabolite 
concentratio
ns (mM) 

 

1 

 

10 

 

50 

 

100 

 

200 

Glucose (In) 0.002 0.01 0.1 0.16 0.37 
ADP 2.35 1.34 1.29 1.2 1.2 
ATP 1.45 2.46 2.51 2.6 2.6 
G6P 0.19 0.73 1.03 1.07 1.1 
F6P 0.014 0.07 0.11 0.11 0.12 
NAD 1.45 1.54 1.55 1.55 1.55 
NADH 0.14 0.05 0.04 0.04 0.04 
F16bP 0.1 0.44 0.59 0.63 0.64 
DHAP 0.032 0.72 0.74 0.78 0.79 
GAP 0.026 0.03 0.03 0.03 0.03 
BPG 8.01e-

06 
1.91e-

04 
3.30e-

04 
3.88e-

04 
4.03e-

04 
3PGA 0.068 0.27 0.36 0.37 0.38 
2PGA 0.008 0.03 0.04 0.04 0.04 
PEP 0.01 0.05 0.07 0.08 0.08 
PYR 1.88 6.73 8.52 8.8 8.92 
AcAld 0.067 0.16 0.17 0.18 0.18 

 

Concentration of glucose (mM) 

Fluxes 

(mmol·min−
1
·

L-cytosol−
1
) 

 

1 

 

10 

 

50 

 

100 

 

200 

Glucose 
Transport 

88.92 88.85 88.15 87.7 89.81 

HK 38.75 80.13 88.15 89.48 89.97 
Glycogen 4.95 5.96 6.0 6.06 6.06 
Trehalose 1.98 2.39 2.4 2.42 2.43 
PGI 29.84 69.39 77.35 78.58 79.06 
PFK 29.84 69.39 77.35 78.58 79.06 
ALD 29.84 69.39 77.35 78.58 79.06 
G3PDH 7.6 17.2 18.2 18.67 18.73 
TPI 22.24 52.19 59.15 59.91 60.33 
GAPDH 52.08 121.59 136.5 138.49 139.39 
PGK 52.08 121.59 136.5 138.49 139.39 
PGM 52.08 121.59 136.5 138.49 139.39 
ENO 52.08 121.59 136.5 138.49 139.39 
PYK 52.08 121.59 136.5 138.49 139.39 
ATPase 28.64 85.30 99.1 100.44 101.26 
PDC 52.08 121.59 136.5 138.49 139.39 
ADH 49.04 114.71 129.22 131.03 139.90 
Succinate 1.52 3.44 3.64 3.73 3.75 

 



116 

 

lluy 

 

 

 

 

 

 

 

 

 

Table 5: Metabolite concentrations (in mM) and fluxes (in mmol·min
−1

·L-cytosol
−1

) at steady state for the Teusink model of glycolysis with 

glucose uptake levels at 10, 50, 100, and 200 mM. The experimental data for result comparison was obtained using the JWS Online web 

simulation tool. No simulation with glucose level at 1 mM was obtainable using the Teusink model. 

 

Concentration of glucose (mM) 

 

Metabolite 
concentratio
ns (mM) 

 

 

 

10 

 

50 

 

100 

 

200 

Glucose (In)  0.01 0.1 0.1 0.1 
ADP  n/a 1.29 n/a n/a 
ATP  n/a 2.51 n/a n/a 
G6P  0.72 1.03 1.09 1.13 
F6P  0.07 0.11 0.12 0.13 
NAD  1.55 1.55 1.55 1.55 
NADH  0.05 0.04 0.04 0.04 
F16bP  0.44 0.59 0.63 0.64 
DHAP  n/a n/a n/a n/a 
GAP  n/a n/a n/a n/a 
BPG  2.00e-

04 
3.30e-

04 
3.56e-

04 
3.71e-

04 
3PGA  0.27 0.36 0.37 0.38 
2PGA  0.03 0.04 0.05 0.05 
PEP  0.05 0.07 0.08 0.08 
PYR  6.72 8.52 8.85 9.03 
AcAld  0.16 0.17 0.17 0.17 

 

Concentration of glucose (mM) 

Fluxes 

(mmol·min−
1
·

L-cytosol−
1
) 

 

 

 

10 

 

50 

 

100 

 

200 

Glucose 
Transport 

 80.16 88.15 88.12 88.1 

HK  80.16 88.15 89.25 89.81 
Glycogen  6.0 6.0 6.0 6.0 
Trehalose  
.4 2.4 2.4 2.4 
PGI  69.36 77.35 78.45 79.01 
PFK  69.36 77.35 78.45 79.01 
ALD  69.36 77.35 78.45 79.01 
G3PDH  17.24 18.2 18.34 18.41 
TPI      
GAPDH  121.48 136.5 138.57 139.62 
PGK  121.48 136.5 138.57 139.62 
PGM  121.48 136.5 138.57 139.62 
ENO  121.48 136.5 138.57 139.62 
PYK  121.48 136.5 138.57 139.62 
ATPase  85.04 99.1 101.03 102.01 
PDC  121.48 136.5 138.57 139.62 
ADH  114.59 129.21 131.23 132.25 
Succinate  3.45 3.64 3.67 3.68 
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3.7 Discussion and Conclusion 

The current availability of high-throughput fluxomic, metabolomic, 

proteomic and genomic data makes it possible to envisage building integrative 

genome-scale metabolic models, but convenient tools for assembling such 

heterogeneous data on a large scale are still lacking. An aim of systems biology is to 

understand cellular processes as a whole rather than in isolation. Integrating cellular 

components is essential for our understanding of how interactions between these 

components influence cellular functions. 

 

Our research ties in with previous investigations indicating that the dynamic 

behaviour of metabolic systems can be predicted without accurately measuring all 

rate equations and detailed kinetic parameters. Ao et al. (2008) have already used 

generic rate equations to construct a metabolic model of Methylobacterium 

extorquens AM1. Their results showed that it is possible to attain the dynamical 

behaviour of a system without the use of extensive and accurately measured rate 

equations and kinetic parameters. GRaPe follows this principle to enable the building 

of large models. It generates generic rate equations for all reactions in a metabolic 

network and thus assumes that the global behaviour of a system should be relatively 

independent of precise kinetic properties and parameter values. It is worth noting 

that metabolic systems have long been known to be robust to perturbations and 

maintain relatively stable intracellular metabolite and flux levels in response to 

changing external conditions. This property was reflected by the Teusink model, as 

we have shown in a previous study (Schwartz & Kanehisa, 2006), and it is conserved 

in our generic model.  

 

What we have demonstrated here re-affirms the hypothesis that generic rate 

equations can be used to successfully predict the behaviour of biological systems. 

Due to the unavailability of kinetic parameters – which are time-consuming to 

accurately measure – it might be worth developing techniques to understand the 

behaviour of a system in an attempt to understand the interplay of biological systems 

and also build successful models with very good predictive capabilities.   
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Chapter 4 

 

 Using Generic Equations to Replicate Steady 

States and Predict New States in a Genome-scale 

Model  

 
 

The following work appears in “Construction of a genome-scale kinetic model of 

Mycobacterium tuberculosis using generic rate equations to replicate growth 

conditions.” Adiamah, DA and Schwartz, J-M. (2011)  To be submitted.  

The aim of this study is to show that our modelling approach is capable of 

replicating biological behaviour on a large-scale. As flux data was unavailable for 

the Mycobacterium tuberculosis model, we use FBA in computing a flux distribution 

for parameter estimation. Additionally, we also analysed redundancy in our 

estimated kinetic parameters and established the computational cost of performing 

parameter estimation on such a large-scale model.  
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4.1 Abstract 

Genome sequencing and annotation has made it possible to construct 

genome-scale metabolic networks. These genome-scale models allow for the 

integration of different data types that can be analysed mathematically. As a result, 

studying biological systems at the genome-scale level has the potential to increase 

our knowledge and understanding of fundamental functions and essential biological 

properties. These models are mostly analysed using constraint-based methods as 

detailed rate equations and kinetic parameters are unavailable for most genome-scale 

models. However, constraint-based analysis is limited in capturing the dynamics of 

cellular processes. This has made it important to build kinetic models to understand 

the detailed dynamics of cellular functions and their regulation. 

In this paper, we present, to our knowledge, the first attempt to build a 

genome-scale kinetic model of Mycobacterium tuberculosis metabolism using 

generic rate equations and convenience kinetics. M. tuberculosis causes tuberculosis 

which remains one of the largest killer infectious diseases. As such, there is a need to 

investigate new methods and techniques to identify drug targets and further 

understand the biology of M. tuberculosis. Using a genetic algorithm, we estimated 

kinetic parameters for a genome-scale model of M. tuberculosis based on flux 

distributions. Our results show a near perfect agreement with flux values obtained 

under different growth conditions. We also show results of our Parameter Variability 

Analysis which indicates a degree of redundancy in parameters of our model. 
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4.2 Introduction 

Despite numerous efforts which have led to the production and availability of 

effective Bacille-Calmette-Guerin (BCG) vaccine and chemotherapy, tuberculosis 

(TB) still remains one of the largest killer infectious diseases (Chopra et al., 2003; 

Raman et al., 2008). Although significant advances were achieved in understanding 

the biology of Mycobacterium tuberculosis, including functional genomics tools 

such as proteomics and microarray analyses combined with modern approaches, 

surprisingly no new drug to treat tuberculosis has been developed in the last 30 years 

(Chopra, 2003). As a result, there is a need to investigate new methods and 

techniques to identify drug targets and further understand the biology of M. 

tuberculosis. 

Genome-scale metabolic models are essential in bridging the gap between the 

metabolic phenotypes and genome-derived biochemical information by providing a 

platform for the interpretation of experimental data related to metabolic states and 

enabling in silico experimentation of cell metabolism (Durot et al., 2009). The 

annotation and sequencing of genomes has made it possible to reconstruct genome-

scale metabolic networks (Price et al., 2003). Using constraint-based models and in 

silico simulation, we can define the phenotypic functions of these genome-scale 

metabolic networks. Furthermore, current advances in high-throughput experimental 

technologies and computational systems biology have enabled metabolic models to 

be reconstructed for an increasing number of species. Using these computational 

methods to explore bacteria metabolic models has increased our understanding of 

bacterial evolution and metabolism (Durot, 2009). Additionally, genome-scale 

models allow for the assembly of various data types which can be analysed 

mathematically. The integration of regulation with metabolic networks has been used 

successfully in analysing phenotypes from gene-deletion studies and phenotypic 

arrays (Borodina and Nielsen, 2005). Other types of data, such as metabolomics and 

proteomics, have also been integrated with constraint-based methods (Yizhak et al., 

2010). 

The availability of genome-scale models has accelerated the development of 

methods to analyse system-wide metabolic behaviours. Systems biology aims at 

predicting cellular behaviours in silico by examining the dynamics and properties of 
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cellular processes (Kitano, 2002). As a result, it is necessary to go beyond static 

constraint-based models and build kinetic models where perturbation of a system is 

possible, in order to understand the detailed dynamics of cellular functions and their 

regulation (Adiamah et al., 2010). However, it is time-consuming and costly to 

experimentally measure all metabolite concentrations, reaction fluxes and kinetic 

parameters at the genome scale. This has led to recent efforts in providing methods 

to build kinetic models using other approaches, such as linlog kinetics (Smallbone et 

al., 2007), generic equations (Ao et al., 2008; Adiamah et al., 2010), parameter 

balancing (Lubtitz et al., 2010) and convenience kinetics (Liebermeister and Klipp, 

2006).  

Stoichiometric models only provide limited insight into the functioning of 

cellular processes as they only describe the topological and steady-state properties of 

a metabolic network. These models are mostly analysed using constraint-based 

analysis (Covert et al., 2003). Constraint-based modelling uses energy balance, flux 

limitations, mass balance and thermodynamics in an attempt to describe the 

behaviour of an organism (Smallbone et al., 2010). However, constraint-based 

modelling fails in capturing the dynamics of cellular behaviour and is unable to 

provide insight into the changes in the concentrations of metabolites and enzymes. 

The lack of complete biological knowledge of M. tuberculosis makes it 

difficult to build a detailed kinetic model capable of in silico perturbation and 

analysis. In a previous paper, we presented a method for streamlining the 

construction of large-scale dynamic models using generic kinetic equations based on 

the stoichiometry of the reactions (Adiamah et al., 2010). We modelled the yeast 

glycolysis pathway to test our methodology; our results showed that using generic 

kinetic equations, the behaviour of the system could accurately be described. 

However, our approach was limited to reactions with up to two substrates and two 

products; when the number of substrates and products were more than two for a 

particular reaction, we required that reaction to be broken down. For a small network 

such as the yeast glycolysis pathway, reactions of more than two substrates and 

products are few and breaking down these reactions is possible. However, on the 

genome-scale where the number of reactions can exceed 1500, manually verifying 

and breaking down of reactions into their chemical or biological constituents can be 

time-consuming and tedious. As a result, convenience kinetics (Liebermeister and 
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Klipp, 2006), which have proved successful in capturing the dynamical behaviour of 

metabolic reactions without placing a limit on the number of substrates and products, 

was introduced in our model-building process to streamline the construction of large-

scale kinetic models. 

Systems biology often uses reverse engineering in an attempt to reconstruct 

biological interactions from experimental or measured data for a particular organism 

when parameters are unknown (Banga, 2008). Here, experimentally-measured data 

are used to constrain kinetic parameter values and other constants required in 

characterising a metabolic model. It is usually unlikely to have a comprehensive 

dataset comprising metabolic, genomic and proteomic data needed to constrain 

kinetic parameter values and as such, simulated or calculated data may be used as a 

substitute. Flux Balance Analysis (FBA), which enables the calculation of an optimal 

flux distribution using linear programming, has proved successful in representing 

different metabolic phenotypes under various experimental conditions with 

successful prediction rate found to be approximately 60 and 86% for H. pylori and E. 

coli respectively in gene deletion studies (Price et al., 2003). As kinetic parameters 

are not required in FBA, calculating fluxes for a model is relatively easy and 

straightforward when the structure of the metabolic network and flux constraints are 

known. Our parameter estimation approach uses flux data, together with metabolic 

concentration data, to constrain kinetic parameter values needed to define our 

models. When input flux data is omitted from the parameter estimation process a 

zero flux for a reaction may be obtained even in non-equilibrium conditions. To 

avoid this caveat, when there is no flux data available for parameter estimation under 

a particular experiment, flux data calculated using FBA can be used as an input in 

constraining kinetic parameters for that metabolic model. 

Optimisation techniques can be used to estimate kinetic parameters based on 

simulated or experimental data (Mendes and Kell, 1998; Kell, 2006; Adiamah et al., 

2010). However, these estimated parameter values are usually not unique given a set 

of an input data due to mathematical redundancy (Chou and Voit, 2009). This 

redundancy means that multiple sets of parameter values can fit to an experimental 

data series equally well. There have been attempts in the past to reduce redundancy 

in parameter estimation. One noticeable approach is the use of Dynamic Flux 

Estimation (DFE) proposed by Goel et al, (2008) where there is a verification of 
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mass conservation within metabolic time-series data and fluxes are expressed as 

functions of the relative variables affecting them. Although results from DFE show 

that redundancy can be reduced, the approach is computationally very expensive and 

time-consuming due to the internal verification process.  

Another method proposed to constrain parameter estimation and reduce 

redundancy in systems biology was presented by Lubitz et al (2010). Here, the 

authors used a technique known as ‘parameter balancing’, which is based on 

Bayesian parameter estimation, to explore the thermodynamic dependencies that 

exist between biological quantities in order to estimate kinetic parameters. Although 

their results, which were validated on the phosphofructokinase reaction, are 

encouraging, on a large-scale network it might be an impossible task to obtain 

various experimental data for all reactions. Furthermore, flux data is again omitted 

from the input data set which means that reaction fluxes may be estimated to zero in 

a non-equilibrium setting. The model building approach presented in Adiamah et al. 

(2010) showed that estimating kinetic parameters using metabolic and flux data can 

successfully reproduce experimental conditions under both steady- and dynamical 

states. However, the level of redundancy in our model remained to be determined. 

Reducing redundancy in models can result in producing more robust models which 

are able to reproduce experimental conditions in silico. As a result, there is also a 

need to introduce methods to test the reliability of these estimated values. 

Taking on board the current issues in building large-scale integrative models, 

obtaining kinetic parameters and measuring redundancy,  we here present, to our 

knowledge, a first attempt to build a genome-scale kinetic model of M. tuberculosis 

metabolism based on a stoichiometric model by Beste et al. (2007) using generic rate 

equations and convenience kinetics. We show that kinetic model simulations are in 

good agreement with flux values predicted by FBA under different growth 

conditions on a large-scale. We also determine the degree of redundancy in our 

parameter set estimated by our genetic algorithm. The results from our analysis 

suggest a high degree of redundancy in parameter values when fluxes are the only 

constraining input for estimation.   
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4.3 Methods 

 

4.3.1 Enzyme kinetics and rate equations 

 

We used GRaPe (Adiamah et al., 2010) to build our genome-scale kinetic 

model of M. tuberculosis. Rate equations for all reactions in a model are 

automatically generated by GRaPe based on the stoichiometry of the reaction. 

Reactions in the model assume a random-order mechanism as the sequential order of 

binding and releasing of substrates is unknown. A key advantage of GRaPe over 

other software tools is its ability to automatically generate rate equations for 

reactions. This makes it less error-prone and more time-efficient in building large-

scale models. The King& Altman method (King and Altman, 1956) is used by 

GRaPe to derive rate equations based on the stoichiometry of a reaction and the 

enzyme mechanism. Adiamah et al. (2010) provides details of the generic 

Michaelis–Menten rate equations used by GRaPe for the different reaction types. 

 

Generic rate equations were used for all reactions of up to two substrates or 

products; these reactions can be of type uni–uni, uni–bi, bi–uni or bi–bi. For 

reactions of more than two substrates of products, the convenience kinetics was used. 

Convenience kinetics can be used in translating a metabolic network into a 

dynamical model capable of predicting biological properties (Liebermeister and 

Klipp, 2006). The equation, a generalised form of Michaelis-Menten kinetics, 

follows a random-order mechanism and implements enzyme saturation and 

regulation. Convenience kinetics is able to cover all possible reaction 

stoichiometries. 

  

http://bioinformatics.oxfordjournals.org/content/26/10/1324.full#ref-19
http://bioinformatics.oxfordjournals.org/cgi/content/full/btq136/DC1
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For a reaction of type A1 + A2+ ...  B1 + B2 + ..., the concentrations of substrates 

are represented by a vector a = (a1, a2,...) and the concentrations of products are 

represented by a vector b = (b1, b2, ...). The flux, v (a, b), is defined using 

convenience kinetics as: 

 

    (38) 

 

where i is the number of substrates, j is the number of products, KAi represents the 

kinetic parameter (substrate constants) of the i
th

 substrate, KBj is the j
th

 product of the 

reaction (both KAs and KBs are measured in mM), e0 is the concentration of enzyme, 

V
+
 is the substrate turnover rate, V

-
 is the product turnover rate and v is the flux of 

the reaction. 

 

4.3.2 Parameter Estimation 

 

Kinetic models have been shown to produce accurate and testable results 

(Jamshidi and Palsson, 2008). However, due to the enormous number of kinetic 

parameters needed to define the system, the number of large-scale kinetic models 

still remains relatively low. Furthermore, it was observed by Teusink et al. (2000) 

that in vitro measurements of kinetic constants may not necessarily be representative 

of their numerical values in vivo .Currently, there are various software tools capable 

of performing parameter estimation: COPASI (Hoops et al., 2006) provides a list of 

methods for estimation including a genetic algorithm; SBML-PET (Zi and Klipp, 

2006) uses a stochastic ranking evolution strategy method to estimate parameters. 

However, flux constraints are excluded which can allow for a zero flux solution to be 

obtained even in non-equilibrium conditions. Fluxes are not explicitly expressed as 

model elements, as a result constraining parameters using those software is still not 

straightforward. DFE shows that by verifying mass conservation in metabolic time-

series data and integrating fluxes in the estimation of kinetic parameters values, the 

redundancy in models can be reduced (Goel et al., 2008). GRaPe uses a genetic 

algorithm to estimate all kinetic parameters using flux values to constrain kinetic 
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parameters in our genome-scale model of M. tuberculosis. Figure 1 illustrates the 

process undertaken to reconstruct our kinetic model of Mycobacterium tuberculosis. 

Thermodynamics can be used to constrain the parameter estimation method in a 

process known as thermodynamic-kinetic modelling (Ederer and Gilles, 2007). Other 

data sets can also be introduced into the parameter estimation process for 

constraining purposes. However, the availability of heterogeneous data for parameter 

estimation on a large-scale is lacking.  

 

4.3.3 Parameter Variability Analysis (PVA) 

One of the issues relating to parameter estimation is that of mathematical 

redundancy. The redundancy results in multiple sets of parameter values that can fit 

equally to an experimental data set. A simple example of redundancy is when two 

parameters, say a and b, are part of an equation in the form of say, a+b or a*b, but if 

only their sum or product is known it is impossible to identify the value of a and b 

individually; if both the sum and product are known, then the value of a and b can be 

calculated. This example illustrates that the level of redundancy is dependent on the 

amount of experimental data used to constrain the estimation. When there is 

redundancy, the parameter values found in several runs of the estimation algorithm 

are likely to be different. In this article, we analyse redundancy or ‘sloppiness’ in 

parameter estimation using Parameter Variability Analysis (PVA). PVA allows us to 

measure the degree of change in a set of parameter values when estimation is 

repeated several times.  
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Figure 21: Model construction process and validation. Bracketed text in grey represents 

data that can be used to constrain kinetic parameters but were not used in this study.  

 

 

Once a model has been constructed or uploaded in GRaPe, PVA can be 

performed using the same time-series data required to estimate parameter values for 

the model. The PVA algorithm works by estimating kinetic parameters for the model 

using a genetic algorithm (GA) for a number of iterations. GA works by populating a 

set of random initial parameter values; this is why results may differ after each run of 

the algorithm when there is redundancy. These values are then optimised in an 

iterative manner until the maximum number of iterations is reached or a suitable 

solution is found. In GRaPe, GA uses flux and metabolic data to constrain 

parameters as illustrated in Figure 21. After each run of estimation, the objective 

function, which is a measure of the fit of the estimation to the original time-series 

data, and kinetic parameter values are stored in a data file in a tabbed-delimited 

format. The results of PVA can then be exported to spreadsheet software and 

statistically analysed. The PVA function is now fully integrated into our GRaPe 

software tool.  
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4.4 Results 

4.4.1 The genome-scale kinetic model of Mycobacterium 

tuberculosis 

In this section, we present a genome-scale kinetic model of M. tuberculosis 

and provide a comparative analysis of our results with those from Beste et al. (2007). 

The model by Beste was experimentally developed with the accurate measurement 

of steady-state growth parameters in a continuous culture. The substrate 

consumption rates were calculated by Beste using Flux Balance Analysis (FBA). 

Their simulated results showed a close similarity with values determined 

experimentally. We aim at demonstrating that using generic kinetic equations, we 

can reproduce different steady states and achieve results of the same quality to those 

produced by FBA. 

 

We built a genome-scale kinetic model of M. tuberculosis using generic rate 

equations to demonstrate that different experimental conditions could be replicated 

in silico without accurately measuring enzyme concentrations and rate parameters. 

M. tuberculosis is a pathogenic bacterium which causes TB (Bordbar et al., 2010). 

With TB being one of the major causes of death in the third world, there is still much 

to be learned about the metabolic and regulatory networks of this bacterium 

(Chandrasekaran and Price, 2010).  

 

There are now numerous genome-scale reconstruction of M. tuberculosis 

(Beste et al., 2007; Jamshidi and Palsson, 2007; Bordbar et al, 2010), which can 

serve as a basis to construct an integrative genome-scale kinetic model. In Beste et al 

(2007), the authors constructed a genome-scale metabolic network of M. tuberculosis 

using a reconstruction of Streptomyces coelicolor as a starting point. Genes were 

mapped between the two species using gene orthology clusters from the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa et al., 2010). The 

corresponding metabolic reactions were then transferred to the TB network. Overall, 

57% (487) of the unique reactions in the final model were derived using the KEGG 

orthology gene mapping. Using the KEGG and BioCyc databases, the authors further 
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supplemented the initial model. However, the model could not be constructed using 

automatic (or semi-automatic) methods alone; the analysis of relevant research 

articles had to be carried out to identify genes, metabolites and reactions to complete 

the genome-scale reconstruction. The final metabolic network of M. tuberculosis 

includes reactions needed for the synthesis of the cell membrane, complex lipids and 

carbohydrates, which are important for both growth and pathogenesis. Additionally, 

the model includes fatty acid metabolism in M. tuberculosis which is thought to be a 

crucial factor in the pathogenesis of TB. Other metabolic pathways such as 

respiratory pathways and synthesis of biomolecules, which are specific to 

mycobacteria, were also modelled manually. Iron metabolism and other transport 

reactions, including reactions which are responsible for the importing of carbon, 

nitrogen, minerals and compounds of high molecular weight were also manually 

added to the model. The final stoichiometric model consisted of 739 metabolites and 

849 reactions and included 726 genes. The calibration of their model was done by 

growing Mycobacterium bovis bacilli Calmette Guérin in a continuous culture and 

parameters for steady-state growth were also measured. FBA was used to calculate 

substrate consumption rates. Their results showed a close agreement with 

experimentally determined values. The model was made available as a web-based 

interactive tool. 

Using GRaPe (Adiamah et al, 2010), we created a genome-scale kinetic 

model of M. tuberculosis based on the stoichiometric model developed by Beste et al 

(2007). GRaPe assigns an enzyme species to each reaction, which is then mapped to 

the corresponding gene(s) provided in the model. A major difficulty in building 

genome-scale kinetic models is the lack of quantitative data available to fully define 

the model (Jamshidi and Palsson, 2008). The Beste model was a stoichiometric 

model which did not include any kinetic data. As a result, we set the initial 

concentration of metabolites and enzyme species to 1 by default. The reactions in our 

model were assumed to follow a random-order mechanism. We then used GRaPe to 

generate generic rate equations for all the reactions in the M. tuberculosis genome-

scale model. The type of rate equation generated for each reaction is based on the 

stoichiometry of the reaction. The resulting genome-scale model of M. tuberculosis 

contains 739 metabolites, 856 metabolic reactions and 856 enzymes. The model is 

available in SBML format as Supplementary Online Data. 
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4.4.2 Parameter Estimation 

We obtained flux values for three steady-states with glycerol being the only 

carbon source using the interactive web-based tool by Beste et al (2007). The tool 

uses FBA in calculating flux distributions for the three steady-states with glycerol 

consumption at 0, 0.5 and 1 mmol/g dry weight (DW) respectively. Flux distribution 

data obtained under each experimental condition was then used as an input data 

source to estimate the parameters of our kinetic model. Since there were no available 

proteomics and gene expression data for the amount of concentration for both 

metabolites and enzymes in this study, a default value of 1 was assigned to each 

metabolite and enzyme species in the model. We also limited the precision of values 

in each dataset to two decimal places for faster parameter estimation process. 

 

We performed three separate parameter estimations using our genome-scale 

model of M. tuberculosis under the different glycerol consumption rates. The kinetic 

parameters for each reaction in the model were estimated using GRaPe’s genetic 

algorithm. Model 1, with glycerol consumption rate at 0 mmol/gDW, had 2297 

kinetic parameters after parameter estimation. Model 2, with glycerol consumption 

rate at 0.5 mmol/gDW, had 2537 parameters and Model 3 had 2931 parameters after 

parameter estimation with glycerol consumption rate at 1 mmol/gDW. The 

difference in the number of parameters after estimation was due to different numbers 

of reactions having a zero flux in each case. Furthermore, reactions with negative 

fluxes had their substrates and products swapped around to prevent having negative 

kinetic parameter values. 
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Figure 22: Response of Mycobacterium tuberculosis to glycerol uptake rate at 0, 0.5 and 1.0 

mmol/gDW and glucose consumption level at 0.003 mmol/gDW. The network shows a selected set of 

reactions in the central metabolic pathways of M. tuberculosis. Reactions in the pathway are 

represented using arrows and the direction of the flux is indicated by the direction of the arrow 

(direction of an arrow does not represent reaction reversibility). The flux values are the numbers next 

to the arrows with blue, red and black colours indicating a glycerol uptake rate of 0, 0.5 and 1.0 

mmol/gDW respectively. Flux values were obtained by performing steady-state analysis using 

COPASI after obtaining kinetic parameters for the M. tuberculosis model using GRaPe . CO2, Carbon 

Selected set of reactions in central 

metabolic pathways of M. 

tuberculosis.  

Blue: Glycerol uptake at 0 

mmol/Gdw 

Red: Glycerol update at 0.5 

mmol.gDW 

Black: Glycerol update at 1.0 

mmol/gDW 
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dioxide; CoA, coenzyme A; NADH, nicotinamide adenine dinucleotide; NADPH, nicotinamide 

adenine dinucleotide phosphate.. 

 

 

4.4.3 Model Validation 

We performed steady-state analysis for Model 1, 2 and 3 using COPASI. The 

results were then compared with the FBA flux distribution obtained from the Beste 

model under the same experimental conditions. Our verification analysis showed a 

near-perfect agreement between the results from our models and the respective Beste 

model. Figure 22 shows a part of the central metabolic pathways of Model 2 with 

glucose uptake level at 0.5 mmol/gDW. The complete flux distribution for Model 1, 

2 and 3 are supplied in Supplementary Data 1. Our model demonstrates the ability to 

accurately reproduce steady-state flux distributions at the genome-scale. 
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Figure 23: Percentage changes in fluxes with respect to changes in glycerol consumption rate. We 

compared the response of selected reactions when glycerol uptake rate is at 0 and 0.5 mmol/gDW in 

Experiment A, 0 and 1 mmol/gDW in Experiment B, and 0.5 and 1 mmol/gDW in Experiment C. 

Green indicates that the flux of that reaction decreased by 100% or more. Blue indicates that no 

change was observed. Red indicates an increase in flux of 100% or more. Heat maps were created 

using matrix2png (Pavlidis and Noble, 2003). Reactions identifiers are the same as in the Beste 

model.  
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We also performed an analysis to identify the reactions which showed the 

greatest change in flux with respect to change in glycerol consumption rate. We 

determined the relative change in fluxes between glycerol consumption rates at 0 and 

0.5 mmol/gDW in Experiment A, 0 and 1 mmol/gDW in Experiment B, and 0.5 and 

1 mmol/gDW in Experiment C. Reactions with significant changes in fluxes are 

represented as a heat map in Figure 23. The most significant changes were observed 

in the enolase (R49) and pyruvate kinase (R50) reactions where a 100% increase in 

flux is observed when glycerol consumption is increased from 0 to 0.5 mmol/gDW 

and from 0.5 to 1 mmol/gDW.  

 

 

4.4.4 Parameter Variability Analysis (PVA) 

To determine the degree of redundancy in the values of our estimated kinetic 

parameters in the genome-scale metabolic model of Mycobacterium tuberculosis, we 

performed PVA by running our estimation algorithm 100 times. It is well known that 

different sets of parameters values can fit to an experimental time-series data 

resulting in mathematical redundancy (Chou and Voit, 2009). This means that 

running parameter estimation 100 times can produce 100 different sets of parameter 

values which are able to fit equally well the input data set.  

In order to make it easier to interpret the result of PVA, the result of the PVA  

was split into five different categories based on the stoichiometry of the reaction 

(uni-uni, uni-bi, bi-uni, bi-bi andConvenience kinetics). The results from our PVA 

show that many of the parameters are poorly constrained as illustrated in Figure 24. 

The detailed average value and standard deviation graphs for each parameter under 

the different reaction types are shown in on our lab group page. 
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Figure 24: Results of Parameter Variability Analysis (PVA). PVA was performed by 

running our genetic algorithm 100 times. The results obtained were then subdivided 

into five reaction types (uni-uni (in black), uni-bi (in red), bi-uni (in blue), bi-bi (in 

purple) and CK (convenience kinetics – in green). The graph shows the average 

parameter value for all 28 parameters under the five different reaction types plotted 

against their standard deviation (labelled Std Dev above) over the 100 runs. Both 

axes of the graph are in logarithmic scale. 
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Our results show that overall vf, the velocity of the forward reaction, is the most 

constrained parameter having the smallest standard deviation (Table 6). 

 

 

 
        

Most Constrained Parameters     

Parameter  Reaction Type Average 
Std 

Dev 
vf CK   -0.78 2.35 

vf Uni-Bi   -1.39 1.41 

vf Bi-Uni   -1.71 1.31 

vf Bi-Bi   -1.31 1.75 

 

Table 6: Average parameter value and standard deviation (Std Dev) in logarithmic 

scale over 100 iterations for the most constrained parameters as observed by PVA. 

Reactions are of type: uni-uni, uni-bi, bi-uni, bi-bi and convenience kinetics (CK) for 

reactions of more than two substrates or products.  

 

 

The high degree of redundancy and poor constraining in the parameter values 

as indicated by the PVA comes in support of our underlying assumption that 

accurate rate equations and kinetic parameters are not necessarily crucial in 

constraining the behaviour of biological system. Nevertheless, the integration of 

genomic and proteomic data, together with metabolic and flux data, is expected to 

reduce mathematical redundancy as shown in previous studies (Price et al., 2003; 

Chou and Voit, 2008).  

Computation of 100 sets of parameters for each reaction in Model 2 (with 

739 metabolites, 856 metabolic reactions, 856 enzymes and 2537 kinetic parameters) 

for PVA took over 5 hours and 40 minutes. The relatively fast computing time was a 

result of reducing the objective function to 1.0E-04 and limiting the data points to 

three decimal places in the input dataset for parameter estimation. The objective 

function is the summed squared mean distance measured between the simulated data 

and input data. Reducing the objective function increased computing time but 
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improves the quality of parameter fit to input data. We performed an experiment to 

determine the relationship between changes in objective function and time taken to 

compute PVA for one reaction with 2 substrates, 2 products, 1 enzyme and 6 kinetic 

parameters (Figure 25). 

 

Figure 25: Computing times of PVA against changes in fitness function. PVA is 

performed for a reaction with 2 substrates, 2 products, 1 enzyme concentration and 6 

kinetic parameters. For each PVA run, the expected error distance measured between 

the input data and simulated data, known as the objective function, is set and the 

time taken to compute PVA results (running genetic algorithm 100 times) is 

recorded. The results indicate a linear relation between the objective function and the 

computing time until the limits of computational precision are reached. Both axes of 

the graph are in logarithmic scale. 

 

The results of this experiment indicate that the computing time for parameter 

estimation increases significantly when the objective function is reduced to 1.0e-10 

and beyond. The relationship that is observed to exist between the objective function 

and computing time seems to be linear in nature (PVA was computed on a desktop 

computer with a quad CPU having 3.00GHz, 2.99GHz processor speed and 4GB of 
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RAM). The objective function for the PVA for the genome-scale M. tuberculosis 

model was reduced to 1.0E4 for faster computing time.  

 

Another variable that can increase computing time in parameter estimation is the 

number of data points in the experimental dataset. To examine how the number of 

data points can influence computing time, an experiment was performed to 

determine if a relationship did exist. Using PVA, we performed parameter estimation 

for a single reaction with two substrates, two products and an exzyme and 6 kinetic 

parameters.  

The result of this experiment indicates that the number of data points in the input 

dataset for parameter estimation increases the computing time in a non-linear manner 

as shown in figure 26. This explains why a relatively fast time of 5 hours and 40 

minutes was recorded when PVA was performed for such a large model with 2537 

kinetic parameters as the number of data points was restricted to only three.  

 

 

Figure 26. Scatter graph showing the relationship between data points and 

computing time. PVA was performed for a single reaction of two substrates and two 

products. There were 6 kinetic parameters needed to define this reaction. PVA was 

repeated 6 times and for each iteration, the number of data points in the input dataset 
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for parameter estimation was increased from 3 to 30. The results show a rising curve 

in a non-linear shape.  

 

4.4.5 Validation on Model Integrity 

 

The key to building predictive models for organisms relies on the 

construction of sound dynamic biochemical networks (van Riel, 2006). These 

models can be useful in providing scientific explanation of biological systems in 

both disease and health and can aide in the discovery of new drug targets. We tested 

the integrity of our M. tuberculosis model and kinetic parameters by trying to predict 

new states without estimating kinetic parameters again. We took the fluxes at steady-

state for three experiments of M. tuberculosis with glycerol at 0, 0.5 and 1 

mmol/gDW. The  flux distribution vector under each experiment was replicated ten 

times to create a data file with ten data points. , We then merged the three individual 

files, each with ten data points, into one to create a data set with 30 data points which 

was then used as an input file for parameter estimation. Performing parameter 

estimation with this dataset took 125,022 seconds to complete when the objective 

function was at 1.0E-4. The range of objective function observed for each reaction 

during parameter estimation was between 1.0e-8 and 20. After parameter estimation, 

three steady-state analyses of the model were performed with glycerol uptake at 0, 

0.5 and 1 mmol/gDW using COPASI.  
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Glycerol uptake 0 

mmol/gDW 

 

Glycerol uptake 0.5 

mmol/gDW 

 

Glycerol uptake 1.0 

mmol/gDW 

ID Exp Data Predicted Data 

 

Exp Data Predicted Data 

 

Exp Data Predicted Data 

R1 0.003924 0.503662 

 

0.50366 0.503662 

 

1.003403 0.503662 

R7 0.001 1.00E-03 

 

0.001 1.00E-03 

 

0.001 1.00E-03 

R8 0.001 0.001 

 

0.001 0.001 

 

0.001 0.001 

R9 0.001 0.00100049 

 

0.001 0.00100049 

 

0.001 0.00100049 

R13 4.79E-04 0.001962 

 

0.002137 0.001962 

 

0.003749 0.001962 

R14 2.97E-04 0.001219 

 

0.001328 0.001219 

 

0.002329 0.001219 

R28 0.002901 0.002762 

 

0.002557 0.002762 

 

0.002828 0.002762 

R29 0.002901 0.00276215 

 

0.002557 0.00276215 

 

0.002828 0.00276215 

R32 0.001267 0.0021828 

 

0.002191 0.0021828 

 

0.00309 0.0021828 

R33 0.003 0.003 

 

0.003 0.003 

 

0.003 0.003 

R45 -0.007133 0.00713351 

 

0.393944 0.00713351 

 

0.796665 0.00713351 

R48 -0.032447 0.032447 

 

0.221728 0.032447 

 

0.479959 0.032447 

R49 -0.077595 0.0775879 

 

-0.015883 0.0775879 

 

0.055124 0.0775879 

R50 -0.077595 0.0775909 

 

-0.015883 0.0775909 

 

0.055124 0.0775909 
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R207 0 6.03E-04 

 

0 6.03E-04 

 

0.001809 6.03E-04 

R208 0 0.001926 

 

0.001276 0.001926 

 

0.004502 0.001926 

R209 0 0.00184166 

 

0.001732 0.00184166 

 

0.003793 0.00184166 

R210 0 0.00184168 

 

0.001732 0.00184168 

 

0.003793 0.00184168 

R211 0.05515 0.0782287 

 

0.077935 0.0782287 

 

0.101601 0.0782287 

R554 0.002845 0.00231102 

 

0.002306 0.00231102 

 

0.001782 0.00231102 

R809 0.001 0.00100021 

 

0.001 0.00100021 

 

0.001 0.00100021 

R811 0 6.67E-04 

 

0.001 6.67E-04 

 

0.001 6.67E-04 

R812 0 0   0.5 0.5   1 1 

R814 0 3.33E-04 

 

5.71E-04 3.33E-04 

 

0.001 3.33E-04 

R815 0.001 0.00100002 

 

0.001 0.00100002 

 

0.001 0.00100002 

R816 1.71E-04 3.33E-04 

 

7.62E-04 3.33E-04 

 

0.001 3.33E-04 

R817 0.001 0.00100051 

 

0.001 0.00100051 

 

0.001 0.00100051 

 Table 7. Selection of reactions from our M. tuberculosis metabolic model with kinetic parameters trained on three steady-state fluxes 

with glycerol uptake (R812). After performing parameter estimation, the model was simulated in COPASI with glycerol uptake at 0, 0.5 

and 1 mmol/gDW. Our model is only able to replicate the middle experiment when glycerol uptake is at 0.5 mmol/gDW.  
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Interestingly, our model was only able to predict the steady-state when 

glycerol update was at 0.5 mmol/gDW as shown in Table 7. Changing the glycerol 

level seemed to have no effect on the overall state of the model. A possible 

explanation for this observation is that the model, which was purposely built for 

FBA, is unsuitable for dynamic analysis as the input and exchanges fluxes are 

defined differently in models for FBA and kinetic modelling. Another factor is that 

training the model with a time series that combines three steady states is not the 

same experiment as having three separate steady states. A suitable training data set 

should include intermediate data points covering the dynamics of transition between 

steady states, which cannot be obtained by FBA but requires extensive experimental 

measurements.  

 

 

4.5 Discussion 

In this paper, we present the first genome-scale kinetic model of 

Mycobacterium tuberculosis based on generic kinetic equations. In recent years, 

there has been considerable progress in genome-scale data collection technologies, 

leading to ever increasing amounts of data in many organisms. However, the 

exploitation of such large datasets is proving challenging. For example, Ishii et al. 

(2007) measured mRNA, protein and metabolite levels in multiple genetic and 

environmental perturbations in E. coli. Castrillo et al. (2007) carried out 

comprehensive measurements at different growth rates in S. cerevisiae. Recently, 

Yus et al. (2009) presented a global and multifaceted analysis of Mycoplasma 

pneumoniae. While each of these studies provided considerable new knowledge 

about the biology and cellular functions of their respective organism, a 

comprehensive model that is able to explain, and thus predict, such a large breadth of 

behaviours is still lacking for each of them. The main reason is that the construction 

of large kinetic models is arduous and challenging, and there are no established tools 

and techniques enabling the estimation of numerous kinetic parameters from large 

sets of heterogeneous data. Our aim is to show that, as an initial step, the 

construction of such genome-scale models, given a comprehensive set of flux data, 

can be achieved. The GRaPe tool assigns rate equations to all the reactions in the 

model based on the stoichiometry of the reaction. We successfully applied our 
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methodology to the M. tuberculosis genome-scale metabolic network, resulting in a 

kinetic model with 739 metabolites, 856 metabolic reactions and 856 enzymes.  

Genome-scale metabolic models are essential in bridging the gap between the 

metabolic phenotypes and genome-derived biochemical information by providing a 

platform for the interpretation of experimental data related to metabolic states and by 

facilitating simple in silico experimentation of cell metabolism (Durot et al., 2009). 

Genome annotation and sequencing has made reconstruction of genome-scale 

metabolic networks possible (Price et al., 2003). By using constraint-based models 

and in silico simulation, phenotypic functions of genome-scale metabolic networks 

were investigated (Price et al., 2003). Current advances in high-throughput 

experimental technologies and computational systems biology have enabled genome-

scale stoichiometric metabolic models to be reconstructed for an increasing number 

of organisms (Milne et al., 2009). 

Predicting cellular behaviours in silico by examining the dynamics and 

properties of cellular processes has the potential to increase our understanding of 

biological systems. This makes it necessary to advance towards kinetic modelling in 

our drive to understand the detailed dynamics of cellular functions and their 

regulation. However, it is time-consuming and costly to experimentally measure all 

metabolite concentrations, reaction fluxes and kinetic parameters at the genome 

scale. Additionally, many kinetic equations are unknown and thus, standard rate laws 

have been used to describe metabolism (Liebermeister et al., 2010). Adiamah et al. 

(2010) and Ao et al. (2008) have all shown that using generic rate equations, the 

dynamical behaviour of systems can be predicted without experimentally measuring 

all kinetic parameters. Constraint-based modelling fails in capturing the dynamics of 

cellular behaviour and is unable to provide insights into the changes in the 

concentration of metabolites and enzymes. 

Beste et al. (2007) produced a constraint-based simulation of a genome-scale 

metabolic model of M. tuberculosis which was capable of predicting different 

growth conditions using FBA. The phenotype growth of 78% of mutant strains was 

correctly predicted by the Beste model. We built a genome-scale kinetic model of 

Mycobacterium tuberculosis based on the stoichiometric model by Beste et al. 

(2007) and showed that our model accurately reproduced genome-scale flux 
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distributions under different growth conditions. The kinetic parameters used in our 

model were estimated using only flux values, therefore there remains a degree of 

redundancy in parameter values as illustrated by our PVA (figure 24). The results 

from our PVA indicate that vf, the velocity of the forward reaction, appears to be the 

most constrained parameter. The rest of the parameters in our model exhibit a high 

degree of redundancy. Banga (2008) suggests that global optimisation methods are 

needed in an attempt to avoid finding local solutions which can often be misleading. 

Additionally, there are suggestions indicating that due to the stochastic nature of 

biological systems, parameter estimation must account for this degree of 

stochasticity (Reinker, 2006). Reducing the value of the objective function in 

parameter estimation improves the quality of the kinetic parameters. However, we 

observed a significant increase in computing time when the objective function was 

reduced beyond 1.0E-8.  The compromise between computing time and more precise 

parameter values must always be considered when performing parameter estimation.  

Furthermore, our results also show that computing time increases non-linearly with 

the number of data points in the parameter estimation training data. When parameter 

estimation is being carried out for a system in steady-state, the number of data points 

can be reduced to lower the computing time.  

An attempt was also made to constrain our kinetic parameters by training 

them with data based on three distinct experimental conditions. However, our model 

was able to predict only one state revealing the limits of using FBA steady state flux 

distributions to constrain a dynamic model. In the future, this methodology will be 

expanded to include metabolite concentrations, proteomics and gene expression data, 

in order to reduce such redundancy and further advance towards the goal of creating 

an efficient method to build a fully integrative genome-scale model.  
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4.6 Conclusion 

There has been a recent rise in the number of genome-scale metabolic 

reconstruction of various organisms (Förster et al, 2003; Puchałka et al., 2008; 

Thiele et al., 2009; Smallbone et al., 2010; Park et al., 2011). However, many of 

these models are analysed using constraint-based approaches and techniques due to 

the difficulty and lack of data to fully characterise kinetic models. Furthermore, rate 

laws and enzyme mechanisms governing reactions are unknown. This has led to the 

use of alternative solutions such as linlog (Smallbone et al., 2007), generic equations 

(Ao et al., 2008; Adiamah et al., 2010) and convenience kinetics (Liebermeister, 

2010) when the enzyme mechanism is unknown.  

Kinetic models require detailed knowledge of reactions and kinetic 

parameters. To date, there are still no established software tools and techniques that 

allow for the estimation of numerous kinetic parameters from large sets of 

heterogeneous data. Usually, manual sourcing of data from literature and articles is 

used. This can be extremely challenging and time-consuming when building a large-

scale kinetic model. As a result, using generic equations and parameter estimation 

techniques to build large-scale kinetic models can be a viable option in an attempt to 

understand the dynamical nature of biological systems.  

In this article, we have shown that generic equation and convenience kinetics 

are capable of reproducing experiments under different growth rates. We developed 

the first genome-scale kinetic model of Mycobacterium tuberculosis based on 

generic kinetic equations. The model has 739 metabolites, 856 metabolic reactions 

and 856 enzymes. All kinetic parameters for each reaction were estimated using a 

genetic algorithm based on stoichiometric and the flux distribution matrices of the 

network. Our results show a near-perfect agreement with flux distributions under 

different growth conditions. Nevertheless, the kinetic parameters used in our model 

were estimated using only flux values, therefore there inevitably remains a degree of 

redundancy in parameter values. This is evident in our PVA which indicates most of 

the parameters in our model are not constrained – the most constrained parameter 

was vf, the forward reaction velocity.  

http://www.ncbi.nlm.nih.gov/pubmed?term=%22F%C3%B6rster%20J%22%5BAuthor%5D


148 

 

Producing quantitative models capable of predicting biological outcomes 

when perturbed in silico is a fundamental aim of systems biology as such models can 

be used to score biochemical hypotheses. To further improve the predictive power of 

genome-scale dynamic models, the integration of more experimental data types 

including gene expression and metabolomics, as well as the use of dynamic training 

data sets will be needed. Nevertheless, our method for constructing a genome-scale 

kinetic model of Mycobacterium tuberculosis represents a platform for further model 

development and analysis. 
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Chapter 5 

 

Integrating Proteins into Metabolic Networks 

Models to Predict States  
 

 

 

The following works appears in “An integrative kinetic model of Escherichia coli 

central metabolism.” Adiamah, DA and Schwartz, J-M. (2011). To be submitted.  

The aim of the study is to validate our modelling approach by integrating gene 

expression data with metabolic and proteomic data. We were able to show that 

integrating biological data at different layers increases robustness of the system and 

that our model is still able to predict the dynamical behaviour of a biological system. 

Furthermore, we also analyse the level of redundancy in our estimated kinetic 

parameters to determine whether adding different data to our estimation technique is 

able to reduce redundancy.    
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5.1 Abstract 

With the current increase in ‘omics’ data, it is now possible to build detailed 

integrative biological models in an attempt to increase our biological understanding 

of outcomes when models are perturbed in silico. Mathematical models have been 

shown to describe the complex relationship that exists amongst biological 

components with models being able to predict new hypotheses and replicate 

biological states. However, these mathematical models still suffer from the lack or 

unavailability of parameters needed to describe model behaviour. This has lead to 

the emergence of different optimisation techniques for estimating parameters models 

when experimental parameters are unavailable or unobtainable in the lab. However, 

previous works have shown that estimated parameters do exhibit a degree of 

redundancy which leads to multiple sets of parameters being able to fit to the same 

experimental data. Consequently, there is now the need to reduce redundancy in 

estimated parameter sets by constraining parameters with data at different biological 

layers. 

In this study, we present a model building process integrating genomic and 

proteomic data with metabolic and flux data. Gene expression is modelled using 

ordinary differential equations. We apply our approach to building an integrative 

model of E. coli central metabolic network based on experimentally determined 

datasets. By integrating both genomic and proteomic data into a single model and 

comparing it with a model integrating only proteomic data, we show that both 

models are able to replicate biological conditions under steady-state. To further 

validate our modelling approach, we performed 14 protein knockdown experiments 

to determine the robustness and predictability of our E. coli models. Results from our 

protein knockdown experiments suggest that integrating genomic and proteomic data 

in metabolic network increases robustness and stability in biological systems.  

We further carried out an experiment to determine the level of constraint in our 

estimated parameters. Results from our parameter variability analysis indicate that 

the forward reaction rate is the most-constrained parameter in each reaction while 

most other parameters are more poorly constrained  



155 

 

5.2 Introduction 

Mathematical models are known to be very important in the field of systems 

biology (Kell and Knowles, 2006) as they describe the complex relationship that 

exists between components in a biological network (Li et al., 2010). Previous works 

have shown that mathematical models are able to replicate and predict biological 

states (Feala et al., 2008; Li et al., 2010; Adiamah et al., 2010; Ruppin et al., 2010) 

and possibly give insights into the emergent properties of biological functions (Feala 

et al., 2008). In the last few years, while the number of constraint-based models 

utilising flux balance analysis (FBA) in analysing biological systems has grown, 

detailed kinetic models still remain comparatively low in numbers. Using constraint-

based modelling (CBM), which does not require kinetic parameters, the phenotypic 

functions of an organism can be defined and studied. The successful prediction rate 

of CBM models in silico is observed to be approximately 86% for E. coli in gene 

deletion experiment (Price et al., 2003).  

Modern high-throughput experiment including genome sequencing and DNA 

microarray (Pease et al., 1994; Schena et al., 1995) analysis have made it possible to 

measure the quantitative levels of gene expression on a genome-scale (Sherlock et 

al., 2001). Furthermore, the availability of modern ‘omics’ data about individual 

organisms means it is now possible to collect quantitative data in all layers of 

cellular organisation (Figure 27). Nevertheless, to transform these datasets into a 

large-scale quantitative model remaing a highly challenging task.   

 

Figure 27. A schematic view of the various ‘omics’ technologies relating to different 

biological layers.  
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The availability of information at different biological layers has spurred the 

growth of integrative systems biology – where attempts are being made to construct 

detailed models that include biological data on different layers (Baldazzi et al., 2010; 

Ruppin et al., 2010). To fully understand the response of an organism to 

environmental changes, it is essential to include detailed quantitative levels of genes, 

mRNA transcripts, proteins and metabolites and their subsequent interactions (Zhang 

et al., 2010). It was shown in Ter Kulie and Westerhoff (2001) that the control of 

glycosis was shared between genomic, proteomic and metabolic levels. This example 

highlights the significance of building integrative models.  Integrative models of 

various organisms have been constructed but most are built using constraint-based 

modelling approach (Fellenberg, 2003; Cavalieri and Filippo, 2005; Çakir et al., 

2006; Joyce and Palsson, 2006; Herrgård et al. 2006; Yizhak et al., 2010; Zhang et 

al., 2010). Kinetic modelling has been shown to capture the detailed dynamics of 

biological systems as biological systems are not discrete in nature (Puchalka and 

Kierzek, 2004; Resat et al., 2009). However, only a few detailed integrative kinetic 

models have been constructed to date. Detailed integrative kinetic models are still 

hindered by the availability of kinetic parameters and the incompleteness of 

heterogeneous data needed to fully define such models. As a result, parameter 

estimation has become a very important and central part of computational systems 

biology (Mendes and Kell, 1998; Moles et al., 2003; Goel et al., 2008; Ashyraliyev 

et al., 2009) and efforts have been made on predicting the correct dynamical 

behaviour of biological systems rather than measuring highly accurate parameter 

values (Ao et al., 2008; Liebermeister and Klipp, 2006; Adiamah et al., 2010; 

Liebermeister et al., 2010). Additionally, building integrative models has proven 

difficult as data pertaining to an organism is stored in various databases and mostly 

under different experimental conditions (Radrich et al., 2009).  

 

One of the major problems of parameter estimation is that large amounts of 

experimental data are usually required to determine the values of all unknown 

parameters in a network (Heinzle et al., 2007).  Gutenkunst et al. (2007) and Little et 

al. (2009) have both shown in previous studies that parameterisation of biological 

model can exhibit a degree of “sloppiness” or redundancy, respectively. These 

inconsistencies mean that our efforts must be directed towards constraining 
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parameter values in parameter estimation and predicting accurate biological 

behaviours. If systems biology is to serve as the foundation for genome-scale 

synthetic biology (Barrett et al., 2003), then there is the need to build and integrate 

cellular systems capable of accurate predictions. As a result, parameter variability 

analysis (PVA) is performed to measure the degree of constraint in parameters 

estimated using time series experimental data.  

Chen et al. (1999) provided two methods for modelling gene expression 

using kinetic equations with feedback loops. However, both methods were limited as 

the regulation of enzymes on metabolites was not included. In this study, we model 

gene expression using ordinary differential equations but importantly, we integrate 

the gene expression process including transcription, translation and degradation with 

the metabolic network. We show that modelling gene expression using ordinary 

differential equations is capable of capturing the dynamics of transcription and 

translation.  

 

By integrating gene expression into metabolic networks, our understanding 

of how genes and mRNAs affect metabolism under different experimental conditions 

can be further explored. Additionally, by allowing the inclusion of gene expression 

data into the parameter estimation process, parameters are better constrained which 

makes the model more robust. This integration could also serve as a platform for 

further integration of higher-level data such as signalling or metabolic regulation to 

extend the coverage of the model. 
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5.3 Methods 

A stoichiometric matrix, N, can be used to present a metabolic network 

consisting of n metabolites and m reactions where N is an n*m matrix. Under a 

steady-state condition,  

 

Nv = 0      (39) 

 

where v is the flux distribution matrix corresponding to all reaction fluxes in the 

model. We modelled reaction rate in our model based on the generic rate equations 

(Adiamah et al., 2010).  In our previous study, generic Michaelis-Menten rate 

equations were used to describe reactions of up to two substrates or products and all 

reactions were assumed to follow a random-order mechanism as the sequential 

binding of substrate and release of products were unknown. GRaPe uses the King 

and Altman (1956) method in deriving rate equations for all reactions in a model 

based on the stoichiometry and enzyme mechanism of that particular reaction. 

However, reactions of more than two substrates or products had to be decomposed 

into reactions of no more than two substrates and products which could be time-

consuming and error-prone. Consequently, in our effort to streamline the 

construction of large-scale dynamical models, we have introduced convenience 

kinetics to express reactions of more than two substrates or products (Liebermeister 

and Klipp, 2006). It has been shown in previous studies that convenience kinetics, 

which describes reactions containing any number of reactants and products, is able to 

model the behaviour of biological systems with good precision when exact rate 

equations are unknown (Liebermeister and Klipp, 2006; Liebermeister and Klipp, 

2010).  

 

In our model, reactions of type A1 + A2+ ... + Ak  B1 + B2 + ... + Bk, for k > 2, 

the flux v (a, b) is defined using convenience kinetics as: 

 

   (40) 
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where a1, a2, ... represent the concentrations of substrates and b1, b2, ... the 

concentrations of products, i is the number of substrates, j is the number of products, 

KAi represents the kinetic parameter (substrate constants) of the i
th

 substrate, KBj is 

the j
th

 product of the reaction (both KAs and KBs are measured in mM), the 

concentration of enzyme is represented as e0, v
+
 is the substrate turnover rate or the 

forward reaction rate, v
-
 is the product turnover rate or reverse reaction rate. 

 

By incorporating the concentration of enzyme, e0, as a variable into the 

equation, rather than a fixed constant, we are able to integrate quantitative levels of 

proteins and metabolites with metabolic fluxes using equation (40). GRaPe now uses 

convenience kinetics in the definition of reactions of more than two substrates and 

products.  

 

When there is no availability of genomic and quantitative proteomic data, a 

Boolean function can be used to represent the expression of an enzyme in a model as 

demonstrated in Adiamah et al. (2010). In this case, enzymes are represented by 1 

when expressed and 0 when not expressed. However, as biological processes are not 

discrete in nature, using a Boolean style representation to understand gene 

expression can result in the loss of information. The correlation between the 

concentration of mRNA and protein levels is nevertheless not straightforward. While 

some studies have suggested a non-linear relationship between them (Vogel et al., 

2010), other studies have suggested that there is no clear correlation (Smolen et al., 

2003; Garcia-Martinez et al. 2007). In this study, we expand on our previous study 

by introducing genomic, transcriptome and proteomic data into a model of central 

metabolism of E. coli. The quantitative changes of mRNA and protein 

concentrations are modelled using ordinary differential equation. The change in 

concentration of mRNA relative to time is modelled as: 

 –   (41) 
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where Gene(t) indicates whether or not the gene is expressed at time, t. [mRNA] is 

the concentration of mRNA. kTr is the transcription rate and kdeg is the mRNA 

degradation rate.   

In a steady-state analysis, equation (41) is defined as  

 

       (42) 

 

where the concentration of mRNA remains unchanged over time. In a gene knockout 

analysis, the gene and mRNA concentration are set to zero.  

Likewise, the concentration of proteins is expressed as a function of the 

concentration of mRNA. We model translation – which results in the production of 

proteins - in our study as  

 

 –     (43) 

 

where kTls is the translation rate, mRNA is the concentration of mRNA, kdeg is the 

protein degradation rate and Prot is the concentration of proteins. By expressing the 

level of proteins as a function of mRNA, we can analyse the dynamical changes in 

proteins relative to the concentration of mRNA and whether the gene(s) pertaining to 

that enzyme is expressed or not. The level of mRNA can also be changed to simulate 

a gene knockdown analysis which usually results in a change in protein level. In 

simulating a gene knockdown experiment, the amount of mRNA in equation (43) 

can be altered appropriately.  

Isoenzymes are enzymes with different amino acid sequence but catalysing the same 

reaction. In this study, we model isoenzymes by summing up the total concentration 

of individual enzymes as expressed by their respective gene or genes. In this 

situation, an isoenzyme is expressed mathematically as: 
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   E =      (44) 

where E is the total concentration of the enzyme, GEi equates to the gene expression 

of the ith gene and n is the number of genes.  The transcription and translation 

processes for GEi are expressed as (41) and (43) respectively.  

All these equations are automatically generated by the GRaPe software given the 

stoichiometric and genetic structure of a reaction network (Adiamah et al., 2010).  

 

The complex relationship that exists between components at different 

biological layers is seen as producing cellular functions and as such to fully 

understand biological systems, our efforts must be directed at building integrative 

models which combine global biological information at different levels (Ideker, T. et 

al. 2001; Ma and Zeng, 2003; Reed et al., 2006; Joyce and Palsson, 2006; Herrgård 

et al. 2006).   In Ishii et al (2010), the authors collected data for wild-type E. coli k-

12 and 24 single–gene knockouts using multiple high-throughput analyses with all 

cells grown at a fixed dilution rate of 0.2 hours
-1 

in glucose-limited chemostat 

cultures. The numerous studies of E. Coli metabolism at different biological layers 

means that information about individual pathways and components can be obtained 

(Reed et al., 2003; Fujisaki et al., 2005; Imielinski  et al., 2006; Baba et al., 2006; 

Feist et al., 2007, Ishii et al., 2010). We used GRaPe to reconstruct the E. coli central 

metabolic model based on the experimental model by Ishii et al. (2007).   
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5.3.1 Parameter estimation and Parameter Variability Analysis 

The relatively low amount of detailed and accurate kinetic models being 

produced to date can be attributed to the lack of kinetic parameters needed to fully 

define the metabolic model. As a result, there are numerous optimisation techniques 

for estimating kinetic parameters and their relative challenges (Goss and Peccoud, 

1998; Moles et al., 2003; Bruggeman and Westerhoff, 2007). As there were no 

kinetic parameters available to fully define our model, a genetic algorithm (GA) was 

used to estimate kinetic parameters for our E. coli central metabolic network.  The 

GA was specifically designed to incorporate flux data in constraining parameter 

values. The GA, described in Adiamah et al. (2010), is also implemented in GRaPe. 

Our genetic algorithm uses proteins, metabolites and flux data to constrain kinetic 

parameters.   

Previous studies have shown that the effects of imprecise parameter values 

and missing data points on the predictability of the model can be highly 

heterogeneous (Bruggeman and Westerhoff, 2007; Gutenkunst et al., 2007). We 

therefore performed parameter variability analysis (PVA) to establish the degree of 

redundancy in our estimated kinetic parameters. In PVA, kinetic parameters and rate 

constants for each reaction are estimated n times. The distribution of estimated 

parameter values over the n runs is then statistically analysed. With the aim of 

producing models capable of producing effective experiments in silico, it is 

important to verify the level of redundancy in the parameterisation of biological 

models.  

 

 

5.4 Results 

As proof of concept, we demonstrate that by using ordinary differential 

equations, we can replicate the dynamical changes in the level of protein as 

determined by the expression of its genes and mRNA transcripts. Firstly, in an 

attempt to validate our model, we show that our model of the central metabolic 

network of E. coli is capable of reproducing an experimental condition based on 

trained data without the integration of gene expression. Following that, we show that 
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our model is able to reproduce experimental condition with the integration of 

differential equations modelling transcription and translation (gene expression). To 

show that generic ordinary differential equations have the possibility of predicting 

experimental conditions in silico, we perform gene knockdown simulations to 

validate our methodology. Finally, we show the results of our parameter variability 

analysis from which we can deduce the level of redundancy in our estimated 

parameters and estimate the robustness of biological systems. 

 

 

5.4.1 Proof of Concept 

 

Our first approach was to show that using ordinary differential equations, the 

quantitative changes in protein level can be modelled. As a proof of concept, we 

model the gene expression process of the PFK protein in the glycolysis pathway in 

E. coli. The PFK protein is expressed by two genes, pfkA and pfkB, as shown in 

Figure 28. The genes are transcribed into mRNA transcripts before being translated 

into the PFK protein. Using GRaPe, we modelled the PFK reaction in the E. coli 

glycolysis pathway using generic kinetic equations. The gene expression process of 

PFK protein is modelled using ordinary differential equations. The total 

concentration of PFK is determined by equation (44). We initialised our model with 

experimental data from Ishii et al., (2007) and estimated kinetic parameters for the 

model using the genetic algorithm implemented in GRaPe.  
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Figure 28: Gene expression processes of the PFK protein. Genes are transcribed into 

mRNA which then gets translated into proteins. In the PFK protein, the pfkA and 

pfkB genes are responsible for the expression of the PFK protein. Transcription of 

both pfkA and pfkB is represented by reactions re5 and re6 respectively; which is 

then followed by the translation of both pfkA and pfkB mRNA transcripts into PFK 

protein by reaction re7. The degradation of both mRNA and PFK over time is 

represented by re3 and re11 respectively. Transcription, translation and degradation 

are modelled using ordinary differential equations. In glycolysis, F6P (fructose 6-

phosphate) is transformed into F16P (fructose 6-phosphate) by the PFK protein, re1. 

We model this reaction using a generic kinetic rate equation. (Figure drawn using 

Systems Biology Graphical Notation (SBGN) (Le Novère et al., 2009)).  

 

 

After parameter estimation, we used SBML ‘events’ to replicate the effects of 

a gene knockout experiment. The effects were then simulated in CellDesigner using 

the SBML ODE Solver (SOSlib) (Funahashi et al., 2003). Our first experiment was 

to replicate the wild-type effect when both pfkA and pfkB genes are expressed. We 
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then performed three knockout experiments by firstly, knocking-out only pfkA gene 

followed by the knockout of only pfkB gene and finally, a knockout both pfkA and 

pfkB genes using equation (41) with the gene and mRNA concentrations set to zero. 

Lastly, both mRNA transcripts were reduced by 50%.  

 

Our results from this proof of concept show that using ordinary differential 

equations, the dynamical behaviour of gene expression can be modelled as shown in 

Table 8. When there is a knockout of one gene, we observed a 50% reduction in PFK 

protein level and a knockout of both genes results in the protein level reducing to 0. 

When mRNA transcripts were reduced by 50% the total concentration of the PFK 

protein is only reduced by 50% as expected.  

 

 

pfkA pfkB mRNA 

pfkA 

mRNA 

pfkB 

PFK(AB) Flux  

1 1 8.91E+07 6.27E+07 0.06 84.98 

0 1 0 6.27E+07 0.03 42.16 

1 0 8.91E+07 0 0.03 42.14 

1 1 4.46E+07 3.14E+07 0.28 42.19 

0 0 0 0 0 0 

 

Table 8: Quantitative changes in protein level of PFK in E. coli glycolysis pathway. 

Genes pfkA and pfkB are represented as Boolean values where 1 indicates that the 

gene is expressed and 0 when not expressed. mRNA transcript of pfkA and pfkB were 

measured in mg-protein/g-dry cell weight; PFK(AB), representing the total 

concentration the PFK protein, is measured in protein in mg-protein/g-dry cell 

weight; flux expressed as a % of substrate uptake.  
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5.4.2 Model Building 

We reconstructed a kinetic model of the central metabolic network of E. coli 

based on the dataset provided by Ishii et al. (2007). Our aim is to show that using 

generic rate equations to model metabolic reactions coupled with ordinary 

differential equations to model gene expression, we can predict the behaviour of 

biological metabolic systems at a steady-state and possibly predict states under 

different experimental conditions.  

 

In Ishii et al. (2007), the global response of E. coli K-12 cells to both genetic 

and environmental perturbations at the gene expression and protein levels were 

measured and compared to specific metabolic pathways. The central carbon 

metabolism of E. coli K-12 consisted of the glycolysis, pentose phosphate pathway, 

and the tricarboxylic acid cycle (TCA) as these three pathways play a vital role in the 

generation of energy and the production of important macromolecular precursors. 

The quantities of gene and protein products, and the concentrations of metabolites 

were experimentally determined. The aim of the study by Ishii et al. (2007) was to 

highlight the complex relationship that exists between the different biological layers. 

The availability of protein, metabolic and flux data pertaining to E. coli makes this 

study a suitable reference sample for our integrative modelling approach.  

 

Using GRaPe (Adiamah et al., 2010), we manually constructed two models 

of the carbon central metabolic of E. coli K-12. The first model, EC Model 1, had 

only quantitative protein levels integrated with metabolites while the second model, 

EC Model 2, had the complete gene expression process integrated into the metabolic 

network. EC Model 1 allows for an easy analysis of the effects of varying the level 

of proteins in a model when the knowledge of transcription, translation and 

degradation rates is missing or limited. The initial concentrations of metabolites and 

expression levels of genes and proteins were the same as those of the E. coli wild-

type in the Ishii dataset except for 16 metabolites which were initialised to 0.01 and 

3 proteins initialised to 1 as no data was present for them (see Table 9 for a list of 

metabolites with missing data). The number of genes, proteins and mRNA 
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transcripts differed between our models and that observed in the Ishii dataset due to 

the availability of experimental data present in the experiments conducted by Ishii.  

In both EC Model 1 and 2, the number of proteins was 62 compared with 67 

in the Ishii dataset. Proteins shown in Table 9 were removed from our models as 

they were undetected in the wild-type and gene-knockout experiments in the Ishii 

dataset.  However,  three proteins without protein data, Edd, SfcA and PoxB, were 

included in our models and their concentrations initialised to 1 as the reactions they 

catalyse had  fluxes and gene expression data in the experimental data. The mRNA 

transcripts and genes for the omitted proteins were also excluded in our EC Model 2. 

As a result, the number of mRNA transcripts and genes in our model was 69 

compared with the 85 seen in the experimental dataset provided by Ishii. 

Additionally, 12 reactions which are included in cell synthesis and evolution were 

modelled as exchange reactions with an arbitrary “transport” protein.  
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Internal 

Metabolites 

External 

Metabolites 

Proteins 

DHAP 

G3P 

2PG 

AcCoA 

CO2 

Gluconolactone-

6P 

6PG 

2-KDPG 

X5P 

E4P  

0AA 

CIT 

ICT 

Suc-CoA, 

Glyoxylate  

Ac-P 

Lactate 

Formate 

Acetadehyde 

Ethanol 

Cell 

Synthesis 
 

Plk 

PfkA  

GpmG  

RpiB 

PflC 

 

Table 9: A list of metabolites and proteins without an experimental initial 

concentration for the wild-type. As result, the initial concentration for these internal 

metabolites was set to 0.1 mM and concentration of external metabolites was fixed at 

1mM (boundary condition is set to “True” for all external metabolites).. These 

proteins were removed from our model as they were not detected in the wild-type.  
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We assume that all metabolic reactions are of a random-order mechanism. 

All rate equations, including gene expression equations, were then automatically 

assigned by GRaPe once the models were reconstructed. The generic rate equation 

for each metabolic reaction in the network is determined based on the number of 

products and substrates of that reaction. Since cofactors were not included in the 

Ishii experimental data, likewise they were ignored in our models. There were 9 

more reactions in our models (shown in Table 10) than in the Ishii dataset as coupled 

reactions were broken down into individual reactions as their proteins and mRNA 

levels were given in the experiment data.   

 

Coupled Reactions Individual Reactions 

G3P  3PG G3P  PGP  

PGP 3PG 

3PG  PEP 3PG 2PG 

2PG  PEP 

G6P  6PG G6P  Gluconolactone-6P 

Gluconolactone-6P  6PG 

6PG  G3P + PYR 6PG  2-KDPG 

2-KDPG  G3P + PYR 

2-KG  SUC + CO2 2-KG  SUC-CoA 

SUC-CoA  SUC + CO2 

AcCoA  Acetate AcCoA  Ac-P 

Ac-P  Acetate 

Not given PYY  Acetate (External) 

AcCoA  Ethanol AcCoA  Acetadehyde 

Acetadehyde  Ethanol 

Table 10. A list of coupled reaction in the Ishii dataset (left) and their corresponding 

separated reactions in our E. coli central metabolic models (right). 
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Only metabolites included in the central metabolic network were included in our 

model. This meant that most of the cations and anions in the Ishii dataset were 

ignored. Overall, there were 32 metabolites and 53 metabolic reactions in both our 

models compared with 130 metabolites and 43 reactions in the Ishii dataset. EC 

Model 2 had 257 reactions in all – including transcription, translation and 

degradation rate reactions. A list of genes, mRNA transcripts, proteins and reactions 

used in our models is given in Table 11. 
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Genes mRNA  Proteins Reactions Reaction ID 

galM galM GalM Glu_ex  <--> Glucose R1 

glk glk Glk Glucose + PEP <-> G6P + PYR R2 

pgi pgi Pgi G6P <-> F6P R3 

pfkA, pfkB pfkA, pfkB PfkA, PfkB F6P <-> F16P R4 

fbaA fbaA FbaA F16P <-> DHAP + G3P R5 

tpiA tpiA TpiA DHAP <-> G3P R6 

gapA gapA GapA G3P <-> PGP  R7 

pgk pgk Pgk PGP <-> 3PG R8 

gpmA, gpmB gpmA, gpmB GpmA, GpmB 3PG <-> 2PG R9 

eno eno Eno 2PG <-> PEP R10 

pykA, pykF pykA, pykF PykA, PykF PEP <-> PYR R11 

aceE, aceF aceE, aceF aceE, aceF PYR <-> AcCoA + CO2 R12 

zwf zwf Zwf G6P <-> Gluconolactone-6P R13 

pgl pgl Pgl  Gluconolactone-6P <-> 6PG R14 

gnd gnd Gnd 6PG <-> Ru5P + CO2 R15 

edd edd Edd 6PG <-> 2-KDPG R16 

rpe rpe Rpe Ru5P <-> X5P R17 

rpiA, rpiB rpiA, rpiB RpiA, RpiB Ru5P <-> R5P R18 

tktA, tktB tktA, tktB tktA, tktB X5P + R5P <-> S7P + G3P R19 

talA, talB talA, talB talA, talB S7P + G3P <-> E4P + F6P R20 

tktA, tktB tktA, tktB tktA, tktB X5P + E4P <-> F6P + G3P R21 

eda eda Eda 2-KDPG <-> G3P + PYR R22 

gltA, prpC gltA, prpC gltA, prpC AcCoA + OAA <-> CIT R23 

acnA, acnB acnA, acnB AcnB CIT <-> ICT R24 

icdA icdA IcdA ICT <-> 2-KG + CO2 R25 

sucA, sucB, 

lpdA 

sucA, sucB, 

lpdA 

sucA, sucB, lpdA 2-KG <-> Suc-COA R26 

sucC, sucD sucC, sucD sucC, sucD Suc-COA <-> SUC + CO2 R27 

sdhA, sdhB, 

frdA 

sdhA, sdhB, 

frdA 

sdhA, sdhB, FrdA SUC <-> FUM R28 

fumA, fumB, 

fumC 

fumA, fumB, 

fumC 

fumA, fumB, 

fumC 
FUM <-> MAL R29 

mdh mdh Mdh MAL <-> OAA R30 

pckA, ppc pckA, ppc pckA, ppc PEP + CO2 <-> OAA R31 

sfcA sfcA SfcA MAL <-> PYR + CO2 R32 

aceA aceA AceA ICT <-> Glyoxylate + SUC R33 

aceB, glcB aceB, glcB aceB, glcB  Glyoxylate + AcCoA <-> MAL R34 

pta pta Pta AcCoA <-> Ac-P R35 

ackA ackA AckA Ac-P <-> Acetate_ex R36 

ldhA ldhA LdhA PYR <-> Lactate_ex R37 

poxB poxB PoxB PYR <-> Acetate_ex R38 

pflB pflB pflB PYR <-> AcCoA + Formate_ex R39 

adhE adhE AdhE AcCoA <-> Acetadehyde R40 

adhE adhE AdhE Acetadehyde <-> Ethanol_ex R41 

Table 11. List of genes, mRNAs, proteins and reactions used in our model and their 

respective reaction IDs.
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5.4.2.1 Consistency of flux distributions 

 

We carried out a verification process to ensure that fluxes taken from 

experimental datasets were consistent throughout the network and that mass 

conservation was preserved in our model. Using the Simple Steady-State Estimator 

(SSSE) described in Adiamah et al. (2010), we calculated only the amount of 

proteins needed by each reaction in the E. coli model to achieve the required 

experimental flux. SSSE works by assigning all kinetic parameter values to 1 and 

determining the enzyme level e0 needed to achieve a given flux, v. The rationale 

behind this is that at any given steady-state, if fluxes are conserved and no changes 

in fluxes are observed then the concentration of metabolites should remain 

unchanged in a dynamic simulation. An increase or decrease in metabolite levels 

indicates an inconsistency in the flux distribution. The model provided by the SSSE 

was then simulated in CellDesigner using the SOSLib solver. We observed several 

inconsistencies in the flux distribution through the network as shown in Table 12. 

Fluxes in the experimental data (second from the right in Table 12) were inconsistent 

throughout the system. The results showed  almost all metabolites either increased or 

decreased in concentration as the Pgi reaction, R2, consumed more glucose and PEP 

than required and resulted in both metabolites decreasing to zero over time. No 

steady-state was found with the raw experimental data. As a result, the fluxes were 

then adjusted manually by tracing all fluxes through the network to ensure flux 

consistency and mass conservation.  
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 Reactions Experimental 

Data 

Fluxes Adjusted for 

flux consistency 

R1 Glu_ex  <-> Glucose  100 

R2 Glucose + PEP <-> G6P + PYR 100  100 

R3 G6P <-> F6P 80  78 

R4 F6P <-> F16P 86  85 

R5 F16P <-> DHAP + G3P 86  85 

R6 DHAP <-> G3P 86  85 

R7 G3P <-> PGP  173  172 

R8 PGP <-> 3PG  172 

R9 3PG <-> 2PG 162  162 

R10 2PG <-> PEP  162 

R11 PEP <-> PYR 46  47 

R12 PYR <-> AcCoA + CO2 125  129 

R13 G6P <-> Gluconolactone-6P 18  20 

R14  Gluconolactone-6P <-> 6PG  20 

R15 6PG <-> Ru5P + CO2 18  20 

R16 6PG <-> 2-KDPG  0 

R17 Ru5P <-> X5P 7  8 

R18 Ru5P <-> R5P 12  12 

R19 X5P + R5P <-> S7P + G3P 5  6 

R20 S7P + G3P <-> E4P + F6P 5  6 

R21 X5P + E4P <-> F6P + G3P 2  2 

R22 2-KDPG <-> G3P + PYR  0 

R23 AcCoA + OAA <-> CIT 86  86 

R24 CIT <-> ICT  86 

R25 ICT <-> 2-KG + CO2 86  71 

R26 2-KG <-> Suc-COA 76  62 

R27 Suc-COA <-> SUC + CO2 68  62 

R28 SUC <-> FUM 78  77 

R29 FUM <-> MAL 78  77 

R30 MAL <-> OAA 87  89 

R31 PEP + CO2 <-> OAA 13  11 

R32 MAL <-> PYR + CO2 0  3 
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R33 ICT <-> Glyoxylate + SUC 10  15 

R34  Glyoxylate + AcCoA <->MAL 10  15 

R35 AcCoA <-> Ac-P 0  0 

R36 Ac-P <-> Acetate_ex 0  0 

R37 PYR <-> Lactate_ex  0 

R38 PYR <-> Acetate_ex 0  0 

R39 PYR <-> AcCoA + Formate_ex  0 

R40 AcCoA <-> Acetadehyde 0  0 

R41 Acetadehyde <-> Ethanol_ex  0 

R42 G6P -> Cell Synthesis 2  2 

R43 F6P -> (Cell synthesis) 1  1 

R44 R5P -> (Cell synthesis) 7  6 

R45 E4P -> (Cell synthesis) 3  4 

R46 G3P -> (Cell synthesis) 1  0 

R47 3PG -> (Cell synthesis) 10  10 

R48 PEP -> (Cell synthesis) 4  4 

R49 PYR -> (Cell synthesis) 21  21 

R50 AcCoA -> (Cell synthesis) 29  28 

R51 OAA -> (Cell synthesis) 14  14 

R52 2KG -> (Cell synthesis) 8  9 

R53 CO2 -> (Evolution) 275  274 

Table 12. Experimental values of fluxes before adjustments and corrected flux 

values.  
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5.4.3 Parameter Estimation 

To have a consistent dataset for parameter estimation, data for mRNA, 

proteins, metabolites and fluxes under the same growth rate were taken from the Ishii 

experimental data.  For each reaction, the flux, protein level and concentration of 

metabolites for E. coli wild-type at 0.2 hours
-1 

in glucose-limited chemostat cultures 

were merged to create a dataset for parameter estimation of the EC Model 1. The 

same dataset, but adding the level of mRNA transcripts at the same growth rate, was 

then used to estimate parameter values for EC Model 2. Using GRaPe, we estimated 

the kinetic parameters for all reactions in both models such that the summed mean 

error distance between the experimental input dataset and the values simulated by 

GRaPe is minimized. The summed error between the input dataset and simulated 

values was found to be lower than 1.5E-13 after just one run of estimation.  

 

 

5.4.4 Experiment 1: Model Validation  

 

  Once parameter estimation had been completed for EC Model 1, 

CellDesigner was used to perform a simulation using the SOSlib solver. The results 

from our simulation were then compared with experimental results from Ishii et al. 

(2010).  Previously, we showed that using Boolean values instead of quantitative 

protein levels, the dynamic behaviour of a system can be reproduced (Adiamah et al, 

2010). Similarly, an excellent agreement is observed between EC Model 1, without 

gene expression, and the experimental dataset presented by Ishii for wild-type 

experiments as shown in Table 13 and 13. Here, we observe that our method is still 

able to achieve near-perfect results when the levels of proteins are integrated in a 

model. These results also further validate our methodology and the parameter 

estimation algorithm in finding a suitable solution given a set of experimental data.  
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  Concentration (mM)      Concentration (mM)   

Species ID Experimental  
Data 

Simulated 
Data 

  Species ID Experimental  
Data 

Simulated 
Data 

Glucose s1 0.01 0.01   2-KDPG s17 0.10 0.10 

PEP s2 0.01 0.01   X5P s18 0.01 0.01 

G6P s3 0.17 0.17   R5P s19 0.01 0.01 

PYR s4 0.19 0.19   S7P s20 0.01 0.01 

F6P s5 0.01 0.01   E4P s21 0.18 0.18 

F16P s6 0.05 0.05   OAA s22 0.01 0.01 

DHAP s7 0.03 0.03   CIT s23 0.01 0.01 

G3P s8 0.01 0.01   ICT s24 0.01 0.01 

PGP s9 0.01 0.01   2-KG s25 0.01 0.01 

3PG s10 0.01 0.01   Suc-COA s26 0.03 0.03 

2PG s11 0.75 0.75   SUC s27 0.01 0.01 

AcCoA s12 0.01 0.01   FUM s28 0.07 0.07 

CO2 s13 0.01 0.01   MAL s29 0.07 0.07 

Gluconolactone-6P s14 0.01 0.01   Glyoxylate s30 0.08 0.08 

6PG s15 0.01 0.01   Ac-P s31 0.01 0.01 

Ru5P s16 0.01 0.01   Acetadehyde s32 0.01 0.01 

 

Table 13: The concentration of metabolites, measured in mM, at simulated steady-state from EC Model 1 (GRaPe model) compared 

with experimental data from Ishii et al. (2007). Results show an excellent agreement between simulated and experimental data without 

perturbations.  
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    Fluxes (% of substrate Uptake)     Fluxes (% of substrate Uptake) 

Reaction ID Experimental  
Data 

Predicted Data  Reaction ID Experimental  
Data 

Predicted 
Data 

Glu_ex  <--> Glucose R1 100 99.53  Suc-COA <-> SUC + CO2 R27 62 62.01 
Glucose + PEP <-> G6P + PYR R2 100 99.98  SUC <-> FUM R28 77 77.00 
G6P <-> F6P R3 78 78.00  FUM <-> MAL R29 77 77.00 
F6P <-> F16P R4 85 85.00  MAL <-> OAA R30 89 89.00 
F16P <-> DHAP + G3P R5 85 85.00  PEP + CO2 <-> OAA R31 11 11.00 
DHAP <-> G3P R6 85 84.99  MAL <-> PYR + CO2 R32 3 3.00 
G3P <-> PGP  R7 172 171.99  ICT <-> Glyoxylate + SUC R33 15 15.00 
PGP <-> 3PG R8 172 172.00   Glyoxylate + AcCoA <->MAL R34 15 15.00 
3PG <-> 2PG R9 162 162.00  AcCoA <-> Ac-P R35 0 0.00 
2PG <-> PEP R10 162 162.01  Ac-P <-> Acetate_ex R36 0 0.00 
PEP <-> PYR R11 47 47.00  PYR <-> Lactate_ex R37 0 0.00 
PYR <-> AcCoA + CO2 R12 129 129.00  PYR <-> Acetate_ex R38 0 0.00 
G6P <-> Gluconolactone-6P R13 20 20.00  PYR <-> AcCoA + Formate_ex R39 0 0.00 
 Gluconolactone-6P <-> 6PG R14 20 20.00  AcCoA <-> Acetadehyde R40 0 0.00 
6PG <-> Ru5P + CO2 R15 20 19.91  Acetadehyde <-> Ethanol_ex R41 0 0.00 
6PG <-> 2-KDPG R16 0 0.00  G6P -> Cell Synthesis R42 2 2.00 
Ru5P <-> X5P R17 8 7.98  F6P -> (Cell synthesis) R43 1 1.00 
Ru5P <-> R5P R18 12 11.96  R5P -> (Cell synthesis) R44 6 6.00 
X5P + R5P <-> S7P + G3P R19 6 6.00  E4P -> (Cell synthesis) R45 4 4.00 
S7P + G3P <-> E4P + F6P R20 6 6.01  G3P -> (Cell synthesis) R46 0 0.00 
X5P + E4P <-> F6P + G3P R21 2 2.00  3PG -> (Cell synthesis) R47 10 10.00 
2-KDPG <-> G3P + PYR R22 0 0.00  PEP -> (Cell synthesis) R48 4 4.00 
AcCoA + OAA <-> CIT R23 86 86.00  PYR -> (Cell synthesis) R49 21 21.00 
CIT <-> ICT R24 86 86.00  AcCoA -> (Cell synthesis) R50 28 28.00 
ICT <-> 2-KG + CO2 R25 71 71.00  OAA -> (Cell synthesis) R51 14 14.00 
2-KG <-> Suc-COA R26 62 62.00  2KG -> (Cell synthesis) R52 9 9.00 
     CO2 -> (Evolution) R53 274 274.00 

Table 14. Fluxes, measured as % of glucose uptake, at simulated steady-state from EC Model 1 compared with experimental fluxes 

from Ishii et al. (2007). Results show a near-perfect agreement between simulated and experimental data at steady-state.



178 

 

5.4.5 EC Model 2 
 

In EC Model 1, the gene expression process was excluded from the model. 

Transcription and translation rates, together with degradation rates of mRNA and 

proteins, have showed to exhibit a degree of control over the concentration of protein 

(Garcia-Martinez et al., 2007). To increase our understanding of the regulation of 

genes and mRNA on metabolism, the integration of both genes and mRNA data 

needs to be carried out.  

In EC Model 2, after parameter estimation was completed, CellDesigner was 

used to perform a simulation using the SOSlib solver.  Again, the concentration of 

metabolites, protein expression levels and fluxes show a near-perfect agreement 

between our model data and the experimental data from Ishii et al. (2007) at steady-

state as shown in tables 15, 16 and 17 respectively. These results validate our model 

on training data and as such these results were expected.  
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  Concentration (in mM)   

Species  Experimental  Data Predicted Data 

Glucose  6.33E-03 0.01 

PEP  0.01 0.00 

G6P  0.17 0.17 

PYR  0.1852 0.18 

F6P  0.01 0.01 

F16P  0.045 0.04 

DHAP  0.0312 0.02 

G3P  0.01 0.01 

PGP  0.01 0.01 

3PG  0.0083 0.08 

2PG  0.7463 0.64 

AcCoA  0.01 0.01 

CO2  0.01 0.01 

Gluconolactone-6P  0.01 0.01 

6PG  0.01 0.01 

Ru5P  0.01 0.01 

2-KDPG  0.0983 0.10 

X5P  0.01 0.01 

R5P  0.01 0.02 

S7P  0.0127 0.01 

E4P  0.178 1.96 

OAA  0.01 0.01 

CIT  0.01 0.01 

ICT  0.01 0.01 

2-KG  0.01 0.00 

Suc-COA  0.0301 0.03 

SUC  0.01 0.01 

FUM  0.0686 0.07 

MAL  0.0702 0.07 

Glyoxylate  0.0835 0.08 

Ac-P  0.01 0.01 

Acetadehyde  0.01 0.01 

 Table 15. Concentration of metabolites (in Mm) for EC Model compared with 

experimental data from Ishii et al. (2007)
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  Protein level  

Proteins  Experimental  
Data 

predicted Data 

GalM  0.04 0.04 

Glk  1 1.00 

Pgi  0.22 0.22 

Pfk(AB)  0.0582 0.06 

FbaA  1.39 1.39 

TpiA  0.4 0.40 

GapA  2.97 2.97 

Pgk  0.53 0.53 

Gpm(AB)  0.97 0.97 

Eno  1.24 1.24 

Pyk(AF)  0.5125 0.51 

Ace(EF)  2.1767 2.18 

Zwf  0.04 0.04 

Pgl  0.09 0.09 

Gnd  0.06 0.06 

Edd  1 1.00 

Rpe  0.05 0.05 

RpiA  0.03 0.03 

Tkt(AB)  0.6604 0.66 

Tal(AB)  0.2976 0.30 

Eda  0.13 0.13 

GltA PrpC  2.1189 2.11 

AcnB  0.92 0.92 

IcdA  3.31 3.33 

Suc(AB) LpdA  3.1785 3.18 

Suc(CD)  0.61 0.61 

Sdh(AB) FrdA  1.1632 1.16 

Fum(ABC)  0.5763 0.58 

Mdh  0.4 0.40 

PckA Ppc  1.6369 1.64 

SfcA  1 1.00 

AceA  23.22 23.16 

AceB GlcB  6.6989 6.68 

Pta  0.06 0.06 

AckA  0.88 0.88 

LdhA  0.24 0.24 

PoxB  1 1.00 

PflB  0.87 0.87 

AdhE  0.18 0.18 

Table 16. The expression level of proteins in EC Model 2 compared with 

experimental data at steady-state. Protein level is measured in mg-protein/g-dry cell 

weight. 
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Reactions Experimental  
Data 

predicted 
Data 

  Reactions Experimental  
Data 

predicted 
Data 

Glu_ex  <--> Glucose 100 99.53    SUC <-> FUM 77 77.00 
Glucose + PEP <-> G6P + PYR 100 99.98    FUM <-> MAL 77 77.00 
G6P <-> F6P 78 78.00    MAL <-> OAA 89 89.00 
F6P <-> F16P 85 85.00    PEP + CO2 <-> OAA 11 11.00 
F16P <-> DHAP + G3P 85 85.00    MAL <-> PYR + CO2 3 3.00 
DHAP <-> G3P 85 84.99    ICT <-> Glyoxylate + SUC 15 15.00 
G3P <-> PGP  172 171.99     Glyoxylate + AcCoA <->MAL 15 15.00 
PGP <-> 3PG 172 172.00    AcCoA <-> Ac-P 0 0.00 
3PG <-> 2PG 162 162.00    Ac-P <-> Acetate_ex 0 0.00 
2PG <-> PEP 162 162.01    PYR <-> Lactate_ex 0 0.00 
PEP <-> PYR 47 47.00    PYR <-> Acetate_ex 0 0.00 
PYR <-> AcCoA + CO2 129 129.00    PYR <-> AcCoA + Formate_ex 0 0.00 
G6P <-> Gluconolactone-6P 20 20.00    AcCoA <-> Acetadehyde 0 0.00 
 Gluconolactone-6P <-> 6PG 20 20.00    Acetadehyde <-> Ethanol_ex 0 0.00 
6PG <-> Ru5P + CO2 20 19.91    G6P -> Cell Synthesis 2 2.00 
6PG <-> 2-KDPG 0 0.00    F6P -> (Cell synthesis) 1 1.00 
Ru5P <-> X5P 8 7.98    R5P -> (Cell synthesis) 6 6.00 
Ru5P <-> R5P 12 11.96    E4P -> (Cell synthesis) 4 4.00 
X5P + R5P <-> S7P + G3P 6 6.00    G3P -> (Cell synthesis) 0 0.00 
S7P + G3P <-> E4P + F6P 6 6.01    3PG -> (Cell synthesis) 10 10.00 
X5P + E4P <-> F6P + G3P 2 2.00    PEP -> (Cell synthesis) 4 4.00 
2-KDPG <-> G3P + PYR 0 0.00    PYR -> (Cell synthesis) 21 21.00 
AcCoA + OAA <-> CIT 86 86.00    AcCoA -> (Cell synthesis) 28 28.00 
CIT <-> ICT 86 86.00    OAA -> (Cell synthesis) 14 14.00 
ICT <-> 2-KG + CO2 71 71.00    2KG -> (Cell synthesis) 9 9.00 
2-KG <-> Suc-COA 62 62.00    CO2 -> (Evolution) 274 274.00 
Suc-COA <-> SUC + CO2 62 62.01       

 

Table 17. Fluxes from EC Model 2 compared with experimental data from Ishii et al. (2007). Fluxes are measured as % of glucose 

uptake. 
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5.4.6 Genetic Perturbations – Validation on untrained Data 

 

In Ishii et al.(2007), the authors also carried out 24 single-gene disruptions in 

an attempt to analyse the effects of genetic perturbation. The genes selected cover 

most of the glycolysis and pentose phosphate pathways. The disrupted cells were 

grown at the same fixed dilution rates as the wild-type at 0.2 hours 
-1

 in glucose-

limited chemostat cultures. This allowed for comparisons between the wild-type and 

the disrupted cells. To further validate our models of E. coli central metabolism, 14 

single-gene disruptionsor protein knock-downs were simulated and the results were 

compared with their respective experiment in the Ishii dataset. For EC Model 1, the 

concentration of proteins was changed to that observed in the experimental data as 

no gene expression process is available for this model. However, in EC Model 2, the 

amount of protein under a gene disruption experiment is calculated using equation 

(6) where the expression level of mRNA is obtained from the same experimental 

data under the same condition. Here, it is worth mentioning that kinetic parameters 

in the both models were not re-trained using any disrupted experimental dataset.  

 

Figure 28 shows the changes in metabolites concentration under the different 

protein knock-down experiments from both EC Model 1 and 2. When compared with 

the same experiment from the Ishii dataset a few discrepancies are observed. In EC 

Model 1, there are more metabolites (G6P, F6P, E4P, Mal, Glyoxylate) which end 

up being over-produced in many of the protein knockdown experiments. This 

number is considerably reduced in EC Model 2 which might suggest that the model 

as a whole is more robust to perturbation than EC Model 1 due to the integration 

mRNA and gene regulation. In Ishii et al., it was found that metabolites 

concentrations did not change significantly which could be a result of the regulation 

of enzyme concentration. The over-production of E4P and DHAP could be due to 

some reactions which allow for re-routing of metabolites in a biological system 

being omitted. In our model, proteins are not linked with each other which means 

that a decrease in the amount of one reaction has no effect on the concentration level 

of other proteins. For example, if an in-flux of a reaction is 100 mmol/gDW and out-

flux is 100 mmol/gDW, then the systems is seen as being in a steady state. However, 



183 

 

if the same in-flux was to be reduced to 60 mmol/gDW as a result of protein 

knockdown while the out-flux remains the same, then an imbalance is created in the 

system. In Figure 30 it can be observed that changes in protein levels in our models 

do not have any significant impact on the protein levels of other proteins. Further, 

effects of the lack of protein-protein association can explain the abnormal effect of 

R7 and R9 in fluxes in Figure 31. In the experimental data (Figure 30), it is evident 

that a single-gene disruption can cause the concentration of other proteins to change 

appropriately to maintain stability. It is known that the presence of alternative routes 

and isoenzymes enable enzyme capacity to be expressed through the cell (Ishii et al., 

2007). This indicates a form of indirect regulation amongst proteins in a cell.
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Figure 29: Heat map showing the concentration of metabolites (in rows) under each protein knock-down experiement (in columns). The 

heap map on the far left is the experimental data from Ishii et al. (2010), heat map in the middle and right show changes in the 

concentration of metabolites in EC Model 1 and EC Model 2 respectively. Concentration of metabolites is measured in mM. Heat maps 

were created using matrix2png (Pavlidis and Noble, 2003). 



185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Heat map showing the expression levels of proteins (in rows) under protein knock-down experiement (in columns). The heap 

map on the far left is the experimental data from Ishii et al. (2010), heat map in the middle and right show changes in the amount of 

proteins in EC Model 1 and EC Model 2 respectively. Protein level is measured in mg-protein/g-dry. Heat maps were created using 

matrix2png (Pavlidis and Noble, 2003). 
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Figure 31: Fluxes measured in mmol/gDW in rows through the E. coli central metabolic system under protein knock-down experiement 

(in columns). The heap map on the left shows the fluxes observed under gene distruptant experiements in Ishii et al. (2010), heat map in 

the middle and right show changes in the fluxes in EC Model 1 and EC Model 2 respectively. EC Model 2 is observed as being more 

robust as flux for R47, an exchange reaction, remains positive while a negive flux is observed in EC Model 1 under different protein 

knockdown experiements. Heat maps were created using matrix2png (Pavlidis and Noble, 2003). 
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In our analysis of fluxes under each knockdown experiment, again it is more evident 

that EC Model 2 which includes the integration of gene expression performs better 

than our model without gene expression.  In EC Model 2, the fluxes for all exchange 

reactions that exported metabolites outside the system boundary were positive 

compared with negative fluxes observed  for reactions R47 and R48 (G3P and PEP 

respective export reactions) in EC Model 1 (Figure 31)  

With the exception of the Pgi knockdown in EC Model 2, which reduced fluxes 

through the glycolysis pathway and subsequently caused most metabolites and fluxes 

in the system to go down to zero, there was a positive agreement between fluxes 

from our models and the Ishii datasets. This shows that our modelling framework 

can be used in a predictive manner to estimate the effects of perturbations in an 

integrated system of genes, proteins and metabolic reactions 

 

5.4.7 Parameter Variability Analysis (PVA) 

 

We performed parameter variability analysis (PVA) to establish the degree of 

redundancy in our estimated kinetic parameters. The results of the PVA indicate that 

the forward reaction rate parameters (KA or V
+
) are the most constrained in our 

models (Figure 32). The backward reaction rate parameters (KP or V
-
) are observed 

as being the least constrained. Michaelis constants and dissociation constants tend to 

be scattered but overall, a high degree of variability was observed among those 

parameters. The observed summed squared mean error between the experimental 

data and simulated data was in the range of 1.0E-12 to 3.4E-5 for all repeats of the 

PVA. 
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Figure 32. Scatter graph showing the distribution of parameter values obtained from 

parameter variability analysis (PVA). For PVA, parameter estimation was repeated 

100 times for each reaction of the E. coli central carbon metabolism. The value of 

each parameter value was converted to log10. The average for each parameter value 

in log10 over the 100 runs was then plotted against its standard deviation (STD dev). 

The most constrained parameters are substrate turnover rate or the forward reaction 

rate (KA or V
+
) and the least constrained parameters are product turnover rate or the 

backward reaction rate (KP or V
-
). (For details of each parameter value, see on our 

lab group page (pg. 148). (Figure A shows PVA for uni-uni; B shows PVA for uni-

bi; C shows PVA for bi-bi and D shows PVA for bi-uni reactions). 

The high remaining degree of redundancy observed by PVA confirms that 

even a rich dataset containing proteomic, metabolomic and flux data is not sufficient 

to eliminate  redundancy in the parameterisation of a model. This property was 

already observed by Gutenkunst et al. (2007) and Little et al. (2009). A possible 

solution to reduce redundancy in parameterisation will be to incorporate 

transcriptomic data in the parameter estimation process.   
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5.5 Discussion and Conclusion 

 

The use of mathematical models to predict biological states is a major 

component of systems biology (Kitano, 2002). These models enable  in silico 

replication and perturbation of biological systems as demonstrated by numerous 

examples (Förster and Palsson 2003, Jamshidi and Palsson 2008, Ao et al. 2008; 

Feala et al., 2008; Li et al., 2010; Adiamah et al., 2010; Ruppin et al., 2010). In the 

last few years, the constraint-based modelling (CBM) approach has been 

considerably used for the prediction and analysis of biological systems (Edwards and 

Palsson, 2000; Covert et al., 2001) as it does not require the knowledge of detailed 

rate equations and kinetic parameters in defining a biological model. Using CBM, 

the phenotypic properties of an organism can be analysed and successful prediction 

rates between 70-90% can be achieved in some experiments (Price et al., 2003). 

However, CBM models cannot capture the dynamic properties of biological systems. 

Kinetic modelling was long hampered by insufficient knowledge of kinetic 

parameter values and detailed knowledge of enzymatic-kinetic rate laws. As a result, 

efforts are being made to predict the behaviour of biological systems using estimated 

parameter values rather than detailed kinetic models (Ao et al., 2008; Liebermeister 

and Klipp, 2006; Adiamah et al., 2010; Liebermeister et al., 2010). This approach 

requires the utilisation of parameter estimation techniques to determine kinetic 

parameters based on time series of experimental data, as it is usually too expensive 

and time-consuming to measure every parameter individually in in-vitro 

experiments. Furthermore, there is no guarantee that parameter values measured in 

vitro will still be relevant to physiological in vivo conditions. 

With the availability of modern ‘omics’ data for many organisms, it is time to 

start building integrative large-scale biological models which are able to integrate 

fluxomic, metabolomic, proteomic and genomic data. In a previous study, we 

presented GRaPe (Adiamah et al., 2010), a computational tool as a platform for 

building such integrative models, reducing the time and effort needed to build such 

models manually (Förster and Palsson 2003, Jamshidi and Palsson 2008, Ao et al. 

2008). Additionally, a method for modelling an integrative gene expression and 

metabolism process using ordinary differential and generic rate equations was 
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presented. We applied our methodology to the yeast glycolysis pathway and showed 

that the dynamical behaviour of biological systems was reproducible without 

detailed knowledge of enzymatic-kinetic rate laws and accurately measured 

parameters. However, as no genomic and proteomic data was available for the yeast 

glycolysis example, genes were excluded from our model and Boolean values of 1 or 

0 were used to represent the expression level of an enzyme.  

 In this study, we present an integrative model of E. coli K-12 central 

metabolism by integrating genomic, proteomic, metabolomic and fluxomic data 

based on a dataset by Ishii et al. (2007). Two models were constructed, one with the 

integration of proteomic,  metabolomic and fluxomic data and the other with 

genomic, proteomic, metabolomic and fluxomic. The two models were built in an 

attempt to determine whether the E. coli metabolic network became more robust to 

perturbations with the integration of genomic data and also ascertain the degree of 

control exerted by genes and proteins in metabolism. Our results showed that the 

behaviour of a system can be achieved using generic rate and ordinary differential 

equations with or without genomic data. The models were perturbed in silico to 

determine the predictive value of our model building approach. Our results showed 

that in most cases our models are able to predict the major features of gene knockout 

experiments. Overall, the model incorporating gene expression showed better 

predictive value and was able to avoid major discrepancies such as negative fluxes in 

the system. Nevertheless changes in protein levels were observed to have no effect 

on other proteins in the system, which points to the need of further integrating 

feedback loops or protein-protein interaction networks to model the effects of protein 

regulation on other proteins. 

Parameter estimation has become increasingly important in systems biology 

as parameters needed to define complex biological models are still lacking, and it is 

generally impossible to measure all these parameters in vivo or in vitro. One of the 

major issues of parameter estimation is that more experimental data is usually 

required to constrain the values of unknown parameters in a network (Heinzle et al., 

2007). It has also been shown in previous studies that even fully parameterised 

models of biological systems exhibit a degree of “sloppiness” or redundancy 

(Gutenkunst et al., 2007; Little et al., 2009). It is therefore important to estimate the 

degree of redundancy in parameter estimation, which helps to define the parameters 
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that are most important to constrain the system. Our results from parameter 

variability analysis showed that for each reaction in our model, the forward reaction 

rate parameter was the most constrained parameter. Interestingly, the backward 

reaction rate parameter was seen as being the least constrained parameter in our 

models.  

We have presented an approach for building integrative biological dynamic 

models. As more high-throughput data becomes available, efforts are needed towards 

integrating these datasets into comprehensive models of growing precision that are 

capable of predicting biological outcomes when perturbed in silico. In an iterative 

systems biology approach, the results of each modelling step should be compared to 

experimental data and are expected to be in accordance with part of the data. But at 

the same time, it is the discrepancies that generally point us towards the next step 

needed to improve the precision of the model. In this study, this process has revealed 

the importance of integrating protein-protein interactions into an integrative 

modelling building framework to further improve the precision and predictive power 

of such models in the future.  
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General Discussion 
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It is now possible to construct genome-scale metabolic models due to the availability 

of high-throughput data. Integrating different biological data types could increase 

our understanding of complex biological systems. Consequently, efforts must be 

made in building such integrative models as we move towards whole cell models. 

However, one of the main challenges of building such integrative models is that 

there are no software tools that are purposefully built for the construction of such 

models. Usually, software tools require the manual construction of biological 

components and the description of reaction rate equations for each reaction in the 

network. This makes it time-consuming and tedious when building large-scale 

biological models and usually, detailed knowledge of reactions mechanisms is 

unknown. 

We provide a solution to this shortfall in software tools for building integrative 

genome-scale models. We presented a software tool, GRaPe for constructing an 

integrative model of gene expression and metabolic reaction. The software generates 

the reaction rates for each reaction based on its number of substrates and products, 

thus, reducing the time and effort in writing out these equations manually. Since 

there is no limit to the amount of reactions that can be instantiated, we can use this 

software to reconstruct genome-scale metabolic networks.  As the detailed 

knowledge of enzyme kinetics is unknown for many pathways, we use reversible 

generic rate equations based on random-order mechanism in describing the reaction 

rates in our models.  Although, kinetic models are known to be able to capture the 

dynamical properties of biological systems, building these models is still hampered 

by the lack or unavailability of kinetic parameters needed to fully define them. As a 

result of this, we developed a genetic algorithm which uses metabolites and fluxes 

data in estimating kinetic parameters for our models. Our first experiment was to 

validate our modelling approach of using generic rate equations and Boolean values 

in predicting the dynamical state in yeast glycolysis pathway.  

In the results section, we presented models of the yeast glycolysis pathway built 

using the GRaPe. The SBML file produced by the software was then simulated using 

CellDesigner and analysed. We showed that these models have the capability of 

successfully predicting distributions of fluxes and concentrations in several 

experiments when glucose is either increased or decreased. . 
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Secondly, we moved towards predicting steady-states for a large-scale model. In this 

experiment, a kinetic model of the genome-scale model of Mycobacterium 

tuberculosis was reconstructed. Again, we were successfully able to predict steady-

states using our modelling approach on trained experimental data. However, we 

failed in finding a set of parameters capable of predicting various states without re-

estimating kinetic parameters as done in our previous experiment. Admittedly 

systems biology is an iterative process where each round of models is expecting to 

reveal some shortcomings, enabling us to direct the next research steps towards new 

objectives. Flux predictions were sometimes inaccurate because of the incomplete 

specification of the boundary conditions of metabolites, fluxes and gene expression .  

A possible reason for the deviation in trends of metabolites and fluxes when 

predicting new states in the Mycobacterium tuberculosis model is that,the model 

which was built for FBA was inaccurate for kinetic modelling as exchange fluxes are 

defined differently. Another possible reason for this deviation is the lack of reliable 

kinetic parameters found by our genetic algorithm because of a insufficient training 

set; dynamic time series of experimental values may be needed to properly constrain 

the parameters, instead of independent steady states. 

 

Consequently, we performed parameter variability analysis (PVA) to determine the 

level of redundancy in our model and also to determine the relationship between 

computing times when the number of points in the dataset is increased  The result of 

our PVA suggest a high degree of redundancy in our estimated parameters. It is 

known that there is a degree of redundancy in biological systems that fundamentally 

limit the role of exact parameter values. Our results also indicate that as we increase 

the number of data points in the dataset for parameter estimation, the time taken to 

compute estimated parameters rises exponentially. This suggests that trying to 

improve the quality of the estimated parameters by increasing the number of data 

points in the dataset is costly and as such a different method of constraining 

parameter values is required. 

 

Finally, we integrated gene expression and protein levels into our reconstruction of 

the E. coli central metabolic network. Our aim from the start was to develop an 

approach to building integrative gene expression and metabolic models. This model 

was to be our main validation of our modelling approach. Using GRaPe, we 
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reconstructed the central metabolic network of E. coli  using generic rate equations 

in describing the behaviour of reactions and ordinary differential equation in 

modelling gene expression. Our results showed an excellent agreement with 

experimental data after performing parameter estimation and in silico simulations. 

Our methodology was capable of predicting several distributions of metabolic 

concentrations and fluxes in gene deletion experiments. The results of PVA in this 

experiment corresponded with what was observed in the PVA from the 

Mycobacterium tuberculosis experiment. We observed that the forward reaction rate 

parameters are the most constrained while the backward reaction rate parameters 

tend to be the least constrained in our models. We have showed in three experiments 

of various metabolic sizes that our methodology is capable of predicting states on 

trained data but importantly also on unseen data. Nevertheless, there is still more 

work to be done to improve the predictive power of methodology. Furthermore, we 

hope to expand the software to be able to reconstruct metabolic pathways from 

databases and include other data for constraining our parameters.  
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Chapter 7 

Conclusion 
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We have developed a new tool and presented a series of methods to meet the 

challenge of building large-scale integrative kinetic models. GRaPe, the new 

software tool, is a platform independent tool that allows for the streamlined 

construction of large-scale dynamic models. GRaPe also provides a platform for the 

construction of reaction-protein or gene-reaction-protein networks as we move 

towards building integrative biological models. A novel feature of GRaPe is its 

ability to generate generic rate equation for all reactions in a model automatically, 

irrespectively of its size. Another important feature is its capability to explicitly 

integrate gene expression processes or enzyme species into reactions, making it a 

convenient tool for the construction of integrative protein-reaction networks. 

 

Our fundamental hypothesis was that exact rate equations and parameters are 

not always crucial to determine the main properties of cellular systems. We showed 

that by using generic rate equations and estimated parameters, the behaviour of a 

system can be predicted as shown in our case study of the yeast glycolysis pathway 

and E. coli central metabolic network. Furthermore, we demonstrated that by using 

Boolean values to indicate the expression level of proteins, it not only possible to 

reproduce the dynamical behaviour of a system on training data but also predict new 

biological outcomes when the system is perturbed in silico without re-estimating 

kinetic parameters.  

 Based on these assumptions, we created this new methodology which is able 

to address several limitations of previous tools, by: 

1. Assigning generic rate equations to all reactions in a network based on 

the stoichiometry of the reactions without placing much emphasis on the 

accurate enzyme mechanism of reactions. 

2. Using ordinary differential equations in the definition of gene expression 

processes, which means that the concentration of the enzyme can be 

explicitly included in rate equations, thereby making it easy to analyse the 

effects of changes in enzyme expression level on a metabolic reaction. 

3. Integrating proteins, mRNA and gene expression levels into metabolic 

models without extensive knowledge of their enzyme kinetics.  

4. Using a genetic algorithm which uses metabolites and flux data to 

estimate kinetic parameters for our models.  
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5. Using computationally estimated flux data to constrain kinetic parameter 

values when experimental data is unavailable 

We showed that this approach not only successfully integrates different sets 

of high-throughput datasets into kinetic models, but can also make 

predictions (gene deletion and protein knockdown experiments). Finally, we 

showed that a biological model becomes more robust with the integration of 

different layers of biological data.  

In conclusion, this method of modelling an integrative gene-protein-reactions 

using ordinary differential and generic rate equations allows for the 

prediction and analysis of biological outcomes in silico and represents a 

positive step  towards the goal of building cell-wide integrative biological 

models. 
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Chapter 8 

Future Work 
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In this study, we have demonstrated that dynamical cellular behaviours can be 

modelled by using generic rate and ordinary differential equations without detailed 

knowledge of rate equations and kinetic parameters in defining a biological model. 

There is often inadequate knowledge of enzyme-kinetic laws and their associated 

parameter values, and usually parameters obtained from literature are dependent on 

specific in vitro or in vivo experimental conditions.  As such, one distinct advantage 

of using generic rate equations over constraint-based and detailed kinetic modelling 

approaches is that extensive knowledge of enzyme kinetic rate laws governing 

individual reactions in a pathway is not required in predicting or replicating the 

dynamical behaviour of a metabolic system. Another, advantage is that, constraint-

based modelling usually requires an optimisation against an objective function which 

is not a requirement when using generic rate equations or kinetic modelling.  

Nevertheless our method is not perfect and we identified a few limitations that will 

require further work.  

 

8.1 Inclusion of Haldane Relationships in Parameter 

Estimation. 

 

We showed that estimated kinetic parameters tend to have a high degree of 

redundancy in our parameter variability analyses. As only flux and metabolites data 

is used in constraining our parameters, this high degree of redundancy was to be 

expected. This means that methods and other techniques are required to reduce this 

level of redundancy in parameter estimation. One possible way of achieving this will 

be to relate enzyme kinetic parameters to the equilibrium constant of the reaction, 

thus creating an additional constraint between parameter values. 

In a reversible reaction, both forward and backward reactions are expressed 

mathematically as (at steady-state): 
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       (45)  

 

Where Vf is the forward reaction rate, Vr is the backward reaction rate, S is the 

concentration of substrate, P is the product concentration, KS and KP are kinetic 

constants. (Vf = V
+
e0 and  Vr =V 

-
e0; where e0 is the concentration of the enzyme). At 

equilibrium, when the reaction is zero equates to: 

 

       (46) 

where Seq and Peq are the equilibrium constants for the both the substrate and 

product. By rearranging equation (46) gives:  

  

       (47) 

where Keq is the equilibrium constant of the reaction. This relationship is known as 

the Haldane relationship and describes the dependency between kinetic parameters at 

equilibrium state (Bisswanger, 2008). The inclusion of the Haldane relationship into 

equation (45), we get: 

       (48) 

 

By incorporating the Haldane relationship into parameter estimation methods, we 

could reduce the redundancy in kinetic parameters. Equation (48) can be substituted 

with equation (45) used in our approach to account for the Haldane relationship. 

However, this method requires the knowledge of Keq constants or relationships that 

exist amongst enzymatic parameters from literature or the lab. On a genome-scale, 

such data will be difficult to obtain. 
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8.2 Thermodynamics Inclusion in Parameter Estimation 

Process 

 

Another possible way of constraining kinetic parameters will be to use the laws of 

thermodynamics as biochemical reactions are bound by these laws. In our model 

building methodology, thermodynamic laws are ignored in an attempt to demonstrate 

that detailed knowledge of enzymatic parameters and mechanisms are not always 

necessary in predicting the behaviour of a biological system.  

Here, the equilibrium constant, Keq, can be calculated using the following equation.  

      (48) 

where ΔG is the standard Gibbs free energy of the metabolic reaction, R is the gas 

constant and T is the absolute temperature. The relationship between Keq and ΔG can 

be defined as follows: 

When a reaction is at equilibrium, the rate of converting a substrate, A, into product, 

P, is zero implying that the ratio of A to P is fixed. Keq = B/A = constant and ΔG = 0 

at equilibrium.  

Past and recent attempts have shown that kinetic parameters can be constrained using 

the laws of thermodynamics (Henry et al., 2006; Liebermeister and Klipp, 2006; Tan 

et al., 2010; Jenkinson and Goutsias, 2011). In Jenkinson and Goutsias, the authors 

introduced a novel method for estimating thermodynamically feasible kinetic 

parameters for biochemical systems and suggested that their approach of estimating 

kinetic parameters based on thermodynamic laws reduces computational complexity, 

dimensionality and data overfitting. In the examples given above, the authors have 

had to rely extensively on literature and databases in obtaining Gibbs free energies 

for enzymes for their approach to work.  
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8.3 Connecting GRaPe to Online Databases 

Currently, GRaPe is not connected to any online database or repository to download 

biological models. As a consequence, users have to obtain the models before 

uploading it into GRaPe.  

CellDesigner allows for the downloading of models from the BioModel database and 

means that models can be analysed in a short space of time. COPASI now allows for 

MIRIAM compliant annotation when building biological models making it easy in 

maintain consistency of naming biological components such as compartment, 

reactions, and species across models   

To reduce time taken in building models and maintain consistency of models, GRaPe 

will have to be able to connect to various databases to download models. As GRaPe 

is mainly concerned with building kinetic models, databases such as KEGG, 

BioModels and SABIO-RK should be the main focus as they store relevant models, 

and kinetic parameters can be obtained from the SABIO-RK database.  
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8.4 Protein-Protein Interactions (PPIs) 

We showed that our approach is capable of predicting biological outcomes 

when the system is perturbed in silico. However, one of the main limitations of our 

approach was that protein levels remained fixed in our gene deletion and protein 

knockdown experiments. This was not observed in the experimental dataset used in 

estimating our kinetic parameters.  

In the future, a possible way around this limitation would be to include protein-

protein interactions into our kinetic modelling approach as shown in Figure 32.  

Figure 33: Protein-protein interactions in the B-cell receptor pathway shows that Pak 

binds to Nck and Rac. 

 

Our results demonstrate a lack of dependency between proteins in our models which 

makes it impossible for any protein to affect another. To overcome this issue, 

another possible solution will be to include feedback loops into our models. This will 
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allow us to analyse the effects of changes in protein levels affecting other proteins 

and importantly, performing gene knockout and protein knockdown experiments 

could yield better predictive results and extent our progress towards building 

genome-scale models that integrate biological data at different layers.   
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