797 research outputs found

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Pass-transistor very large scale integration

    Get PDF
    Logic elements are provided that permit reductions in layout size and avoidance of hazards. Such logic elements may be included in libraries of logic cells. A logical function to be implemented by the logic element is decomposed about logical variables to identify factors corresponding to combinations of the logical variables and their complements. A pass transistor network is provided for implementing the pass network function in accordance with this decomposition. The pass transistor network includes ordered arrangements of pass transistors that correspond to the combinations of variables and complements resulting from the logical decomposition. The logic elements may act as selection circuits and be integrated with memory and buffer elements

    Criteria for the Design of "fast," "safe" Asynchronous Sequential Fluidic Circuits

    Get PDF
    Engineerin

    Fast Heuristic and Exact Algorithms for Two-Level Hazard-Free Logic Minimization

    Get PDF
    None of the available minimizers for 2-level hazard-free logic minimization can synthesize very large circuits. This limitation has forced researchers to resort to manual and automated circuit partitioning techniques. This paper introduces two new 2-level logic minimizers:ESPRESSO-HF, a heuristic method which is loosely based on ESPRESSO-II, and IMPYMIN, an exact method based on implicit data structures. Both minimizers can solve all currently available examples, which range up to 32 inputs and 33 outputs.These include examples that have never been solved before.For examples that can be solved by other minimizers our methods are several orders of magnitude faster. As by-products of these algorithms, we also present two additional results. First, we introduce a fast new algorithm to check if a hazard-free covering problem can feasibly be solved. Second, we introduce a novel formulation of the 2-level hazard-free logic minimization problem by capturing hazard-freedom constraints within a synchronous function by adding new variables

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    Instruction scheduling in micronet-based asynchronous ILP processors

    Get PDF

    Asynchronous design of a multi-dimensional logarithmic number system processor for digital hearing instruments.

    Get PDF
    This thesis presents an asynchronous Multi-Dimensional Logarithmic Number System (MDLNS) processor that exhibits very low power dissipation. The target application is for a hearing instrument DSP. The MDLNS is a newly developed number system that has the advantage of reducing hardware complexity compared to the classical Logarithmic Number System (LNS). A synchronous implementation of a 2-digit 2DLNS filterbank, using the MDLNS to construct a FIR filterbank, has successfully proved that this novel number representation can benefit this digital hearing instrument application in the requirement of small size and low power. In this thesis we demonstrate that the combination of using the MDLNS, along with an asynchronous design methodology, produces impressive power savings compared to the previous synchronous design. A 4-phase bundled-data full-handshaking protocol is applied to the asynchronous control design. We adopt the Differential Cascade Voltage Switch Logic (DCVSL) circuit family for the design of the computation cells in this asynchronous MDLNS processor. Besides the asynchronous design methodology, we also use finite ring calculations to reduce adder bit-width to provide improvements compared to the previous MDLNS filterbank architecture. Spectre power simulation results from simulations of this asynchronous MDLNS processor demonstrate that over 70 percent power savings have been achieved compared to the synchronous design. This full-custom asynchronous MDLNS processor has been submitted for fabrication in the TSMC 0.18mum CMOS technology. A further contribution in this thesis is the development of a novel synchronizing method of design for testability (DfT), which is offered as a possible solution for asynchronous DfT methods.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .W85. Source: Masters Abstracts International, Volume: 43-01, page: 0288. Advisers: G. A. Jullien; W. C. Miller. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    A Delphi Study of Aviation Maintenance Experts\u27 Recommendations for a Model School Curriculum

    Get PDF
    The program described in this paper is the essential first step in reviving and reinitiating the delivery of aviation maintenance technology instruction. The demand for aviation maintenance technicians (AMTs) is rapidly increasing and there is a need to provide as many as 679,000 AMTs over the next 20 years (Boeing, 2016). Given the high cost of certification, new aviation maintenance schools are unlikely to be certificated in the near future, and ramping up the existing schools to meet the anticipated demand is unlikely without incorporating attractive cost-effective measures such as competency-based and distance education. The purpose of this study is to develop a model curriculum for aviation maintenance technician schools (AMTSs) based upon three federal documents: {Notice of Proposed Rulemaking (NPRM) on Aviation Maintenance Technician Schools, dated 10/02/2015, Advisory and Rulemaking Committees Review Part 147 (Aviation Maintenance Technician Schools Curriculum and Operating Requirements) dated 12/08/2008, and FAA AMT testing standards (draft dated 02/17/2017)}. The model encapsulates college credits and respective clock hour times associated with common subject area groupings within the guidelines of one college credit minimum for each course, approximately 1900 hours of instruction, and recommended objectives for each course. The Delphi methodology was used to collect data from a group of aviation maintenance technology education and regulatory experts
    corecore