
A Globally Asynchronous

Locally Synchronous

Configurable Array Architecture

for Algorithm Embeddings

A thesis submitted for the degree of Doctor of Philosophy

Department of Computer Science

University of Edinburgh

August, 1996

A thesis for the degree of Doctor of Philosophy

Department of Computer Science

University of Edinburgh

I declare that this thesis has been composed by myself and that the work

described within this thesis is entirely my own except where clearly indicated

otherwise in the text.

Bo Gao.

Abstract

Advanced VLSI/ULSI technologies have made it possible to realise parallelism and

pipelimng processing principles at affordable cost. One of the consequences is that

more and more algorithms are now directly implemented in hardware. The config-

urable hardware algorithm approach has the potential to combine the performance

of hardware algorithms and the flexibility of software algorithms at the user level.

On the other hand, system timing design problems become one of the determin-

ing factors on design complexity, correct system function and high performance.

This timing problem plays an even more important role in configurable systems.

There are two typical system timing control design approaches, the synchronous

timing design and the asynchronous timing design. This thesis investigates and

demonstrates the idea and feasibility of applying asynchronous timing control at

the system level and synchronous timing control to system composition modules,

namely a Globally Asynchronous Locally Synchronous (GALS) design approach,

for very large scale configurable hardware algorithms.

A systematic approach has been adopted in this thesis to develop a configurable

GALS array architecture. With the analysis of general algorithmic properties, a

novel multiple threads computation model consisting of an architecture with a pool

of programmable hardware operators having configurable interconnections and a

GALS system timing control structure is first established. The multiple threads

computation model bridges algorithms and the architecture for efficient algorithm

embeddings. The GALS timing control makes this threads model practical. A

novel and fast event-driven GALS data transfer interface is developed upon which

a bit-serial configurable GALS array system for algorithm embeddings is designed.

Some good average performance results are obtained with a polynomial evalua-

tion algorithm embedded as a frame buffer. The work on the GALS system timing

design principle can be easily extended to the design of general GALS systems.

Acknowledgements

The work described in this thesis was inspired by Dr Thomas Kean's work on

cellular Configurable Array Logic (CAL). Many useful suggestions were also ob-

tained from direct discussions with Dr Thomas Kean. Dr David Rees has very

patiently supervised me and given me a lot of encouragement all the way through

my research work. He also carefully proof read the draft of this thesis and has

made many useful comments. Special thanks also go to Professor David Kinni-

ment from University of Newcastle upon Tyne who has helped me to clarify the

synchronisation issue discussed in this thesis.

I would like to thank the department of Computer Science of Edinburgh Univer-

sity where an excellent research environment and computing facilities are provided,

and from where I have obtained substantial knowledge on computer architectures

and skills on programming.

I would also like to acknowledge the support of Sino-British Friendship Schol-

arship Scheme which made my research in Britain a reality.

Table of Contents

Introduction
	 1

	

1.1 	Computing Systems2

	

1.2 	Algorithms 2

1.2.1 	Software Solutions3

1.2.2 	Hardware Solutions 3

1.2.3 	Parallelism and Pipeining6

1.3 Regular and Modular Architectures8

1.3.1 	Granularity of Array Element9

1.3.2 	Array Conflgurabi]ity 9

1.3.3 Array System Timing and Control10

	

1.4 	Overview of the Thesis12

Massively Parallel Computing Systems 	 14

2.1 Cellular Logic Image Processor15

2.2 Distributed Array Processor17

2.3 Massively Parallel Processor19

	

2.4 	Connection Machine22

1

Table of Contents 	 U

2.5 Adaptive Array Processor24

2.6 A Data-Driven VLSI Array26

2.7 Reconfigurable Arithmetic Processor28

2.8 Reconfigurable Parallel Array Processor29

2.9 Field Programmable Gate Arrays31

2.10 Cellular Array Logic32

2.11 Comparisons and Remarks34

2.12 Impacts on Configurable Hardware Algorithms40

2.12.1 Circuit Switching vs. Packet Switching40

2.12.2 PE local memory41

2.12.3 PE Degree 42

2.12.4 PE Functionaiity43

2.12.5 System Timing Control Strategies46

2.13 Summary47

3. Algorithmically Configurable Architectures 	 48

3.1 Towards Algorithmically Structured Systems48

3.2 	Hardware Algorithms51

3.3 Computation Architectures53

3.3.1 Dimensionaiity and Connectivity53

3.3.2 	Configuration Methods 55

3.4 Computation models for Hardware Algorithms57

3.4.1 Combinational Hardware Algorithms58

Table of Contents 	 UI

3.4.2 	Systolic Algorithms 58

3.4.3 Computational Wavefronts60

3.4.4 Non Control-Driven Computations62

3.4.5 Multiple Threads Computations64

3.5 Timing Control Structures70

3.5.1 	Clocks and Clock Skews71

3.5.2 	Computing without Clocks73

3.5.3 Separately Timed Communications and Computations . . . 74

3.5.4 Communicating Synchronous Logic Modules78

3.6 Algorithm Embeddings80

3.7 Summary81

4. A Configurable GALS Array 	 82

4.1 Basic Architecture Constraints82

4.1.1 	Architecture Regularity83

4.1.2 	Architecture Scalability84

4.1.3 Communication Overheads84

4.2 System Level Physical Topology85

4.2.1 Interstitial of a Switch Lattice and PE Array86

4.2.2 Linearisation 87

4.2.3 Overlapped Communications and Computations 88

4.2.4 Aggregated Switched Communication Network 89

4.2.5 A Pseudo Nearest neighbour Configurable Array 91

Table of Contents 	 lv

4.3 The GALS Scheme in PNCA95

4.3.1 Synchronous Regions in PNCA95

4.3.2 Communicating Synchronous PH,s96

4.3.3 A Configurable GALS Array99

	

4.4 	RC and PH,101

4.4.1 DFG Computation Properties101

	

4.4.2 	The Routing Cell104

	

4.4.3 	The Programmable H,107

	

4.5 	PH,, Local Memory109

	

4.6 	Summary111

5. An Implementation of a GALSA
	

112

5.1 Design Tools and Implementation Technology112

5.2 The Configuration Technique114

5.3 Asynchronous Data Transfer Interface 117

5.3.1 Hand-Shaking Cycle 117

5.3.2 Data Status Signal 119

5.3.3 Event-Driven Hand-shaking 124

5.3.4 An Event-Driven Register Transfer Interface 126

5.4 	The Implementation of a PH, 129

5.4.1 The Clock Management Unit 130

5.4.2 An Event-Driven General GALS Logic Module.136

5.4.3 The PH 	and I/O Selector138

Table of Contents 	 V

5.4.4 The Execution Code Register141

	

5.4.5 	Multiplexers 145

5.5 The Routing Network146

5.5.1 Switches146

5.5.2 The Configuration Control Memory148

5.5.3 The Routing Cell149

5.5.4 	Routing Channel Buffers 150

5.6 	A GALSA System 150

5.6.1 	The Pre-loading Circuits 151

5.6.2 	GALS Array I/O Interface 153

	

5.7 	Testability153

	

5.8 	Summary155

6. Example Algorithms and Simulation Results 	 156

6.1 Typical Timing Characteristics156

6.1.1 Simulation and Measurement Conditions157

6.1.2 The tn-state register and the GALS DTI157

6.1.3 The Transmission Gate Adder and Multiplexers159

6.1.4 The Routing Cell and Channel Buffer 160

	

6.1.5 	Array Element Test160

	

6.1.6 	Configuration Test161

6.2 A 4 x 4 Multiplier in a GALSA163

6.2.1 	Integer Multiplication163

Table of Contents 	 vi

6.2.2 	Embedding the 4 x 4 Array Multiplier into a GALSA 	. . 	 . 	 164

6.3 A Seven Segment Display Decoder 	 167

6.4 Evaluation of Polynomial Expressions 170

6.4.1 	Display of Pixels for Different Objects 170

6.4.2 	Polynomials in Single Variable 171

6.4.3 	Polynomials in Two Variables 174

6.4.4 	A Bit-Serial Frame Buffer 175

6.4.5 	Embedding the Frame Buffer into a GALSA 175

6.5 Comparisons 177

6.6 Summary 179

7. Conclusions and Future Prospects 180

7.1 Overview of the Thesis 180

7.2 Achievements and the Author's Contributions 182

7.3 Other Work to Be Done 183

7.4 Automatic Configuration Vector Generation 183

7.4.1 	Automatic Data Flow Mapping 183

7.4.2 	Automatic Algorithm Mapping 184.

7.5 Fault-Tolerance 185

7.6 Future Developments and Prospects 186

7.6.1 	Taking Advantages of New Technologies 186

7.6.2 	Multi-layer Metal and Three dimensional Structures 	. . . 	 187

7.6.3 	Wafer Scale Integrations 187

7.7 Conclusions 189

Table of Consents 	 vu

Bibliography 	 190

A. Hspice Transient Analysis 	 206

A.1 The Synchromser206

A.2 The Event-Driven DTI207

List of Figures

1-1 The spectrum of arrays 9

2-1 CLIP5: (a) Bit-planes, (b) PE, (c) Array interconnections 	16

2-2 AMT DAP: (a) PE, (b) Array organisation18

2-3 MPP: (a) PE, (b) Array edge topologies20

2-4 Connection Machine (a) PE, (b) A subarray of 16 PEs23

2-5 AAP: (a) PE, (b) Array interconnection paths26

2-6 DDVA: (a) PE, (b) array architecture27

2-7 RAP system architecture28

2-8 RPA: (a) PE, (b) The array floor plan30

2-9 Xilinx LCA: (a) Function cell, (b) Interconnect resources32

2-10 CAL: (a) Cell, (b) Cellular array34

3-1 A linear systolic computation model59

3-2 Computational wavefronts and their propagation61

3-3 The data flow graph of equation 3.566

3-4 The computation thread graph for figure 3-369

3-5 Absolute and relative clock .skews72

viii

List of Figures
	 ix

4-1 Typical switched interconnection schemes86

4-2 A Pseudo Nearest neighbour Configurable Array92

4-3 Asynchronous guarded communications97

4-4 The channel width and RC ports105

4-5 (a) A switch unit in an RC, and (b) Switching states of (a) 106

4-6 PH block diagram107

5-1 Level signalling118

5-2 Transition signalling118

5-3 Data status signal from a pre-determined block latency120

5-4 A data transition detector 121

5-5 Hand-shaking signals generated from differential logic 122

5-6 A tn-state register design with WEN, T, DV R 124

5-7 Event sequence in event-driven hand-shaking 125

5-8 Muller C-element and its variations125

5-9 An event-driven DTI127

5-10 State transition graphs: (a) input guard, (b) output guard128

5-11 Event-driven (a) input guard, (b) output guard129

5-12 A Clock Management Unit130

5-13 A synchroniser for DVR and CLK 133

5-14 Voltage transfer curves for different 134
#peff

5-15 A local clock buffer135

5-16 A dynamic shifter for DV control136

List of Figures 	 x

5-17 A general GALS logic module137

5-18 Waveforms for the event-driven GALS data transfer interface . . . 137

5-19 A PH, and its I/O multiplexers138

5-20 A transmission gate full adder141

5-21 A 5-input Muller C-element142

5-22 The Execution Code Register143

5-23 Gate logic block144

5-24 A 6-to-1 NMOS pass transistor tree multiplexer146

5-25 A six transistor static CCM148

5-26 A switch unit with 4 bits CCM and 4 NMOS pass transistors . . . 149

5-27 A bi-directional channel buffer150

5-28 A configuration preloading structure152

5-29 The schematic of a 4 x 4 GALS array154

6-1 A multiplier cell for an array multiplier164

6-2 An array multiplier for a 4 x 4 multiplication165

6-3 Macro-cells for an array multiplier166

6-4 A 4 x 4 array multiplier in a GALSA array 167

6-5 A seven segment display167

6-6 A seven segment display decoder in a GALSA array169

6-7 Pixel display: (a) a line; (b) a circle171

6-8 A linear array for evaluating cubic polynomials173

6-9 A y-array element at y1 175

List of Figures

6-10 A bit-serial frame buffer processing array176

6-11 Macro cells for an X-element and g(y)176

6-12 A Y-element for the y-thread176

A—i A Dv; before a risk zone208

A-2 A Dv; after a risk zone209

A-3 The event-driven DTI210

List of Tables

3-1 PE states, I = INPUT, C = COMPUTE, 0 = OUTPUT 	. 62

4-1 Selected primitive functions for PHP,,p 109

5-1 Possible functions from a full adder140

5-2 Functions defined by op-code142

5-3 Bit settings for I/O port selection in an ECR144

5-4 ECR execution codes and text expressions145

5-5 Delays in switch chains148

6-1 The tn-state register timing157

6-2 The Input Guard and Output Guard158

6-3 Delays in the 5 input Muller, C-element159

6-4 Delays in the transmission gate adder and multiplexers159

6-5 Delays in a Routing Cell and bi-directional channel buffer160

6-6 A 4 x 4 integer multiplication164

6-7 Seven segment decoder truth table168

6-8 Multiplier and decoder comparison178

6-9 Polynomial evaluation performance comparison178

Chapter 1

Introduction

In this thesis we investigate the issue of implementing algorithms directly in con-

figurable hardware architectures (configurable hardware algorithms). We aim to

establish a proper computation, architecture model and system timing control

strategy for configurable hardware algorithms, and to construct a system based

on the models established. A configurable system can be used as an attached sub-

system to a computer where it can be configured to run a computation intensive

task. Therefore it can be regarded as an algorithm memory and data are processed

on-the-fly when they flow through such an algorithm memory so as to achieve high

computation throughput on the task and improve the system performance of the

host computer. It can also be used as a testbed to test high level algorithm designs

at hardware level. This is of particular interest to software-hardware co-designs

where a complex algorithm is partly solved by software and partly by hardware

to meet some special criteria such as real-time response and the cost.

There are several driving factors which inspired this research when we took a

brief look at the evolution history of computing systems and how complex com-

putation problems are solved.

1

Chapter 1. Introduction 	 2

1.1 Computing Systems

From the hardware point of view, a traditional computing system (a von Neu-

mann computer) in general consists of a computation part (a central processing

unit or CPU), a data storage part (memory), a control part, and a communication

structure which connects these parts together. Each of these hardware parts im-

plements some essential functions, such as basic arithmetic and logic operations

in an Arithmetic and Logic Unit (ALU), addressed data read/write in a mem-

ory, or instruction decoding in a control part. A complicated computation task

is decomposed into a sequence of essential functions directly supported by these

parts. Functions which require one hardware part, for example the ALU, have to

be evaluated one after another by sharing the same hardware in the time domain

(sequential model).

The evolution of computing systems is two fold. Firstly, the performance and

reliability of hardware components have been greatly improved over the years.

Secondly, hardware costs are decreasing rapidly. Hence, it is possible to design

and implement more complicated and faster computing systems by exploring novel

system architectures different from the traditional sequential model to solve many

difficult computation problems quickly which were almost impossible or very slow

to do before.

1.2 Algorithms

An algorithm defines a computational method which solves a target problem in

finite steps for all of the possible inputs of the problem. Different algorithms may

be designed to solve a given problem. Performance (speed and hardware resource

requirements) of these algorithms, however, will probably be very diverse. The

design of efficient and high performance algorithms is highly system dependent.

Chapter 1. Introduction 	 3

1.2.1 Software Solutions

If a complex algorithm is to be solved on a computing system with limited hard-

ware resources, for example one ALU which supports only one arithmetic or logic

operation at a time point, a software solution is required to decompose complex

functions, procedures, and data access operations defined in the algorithm into a

proper sequence of basic operations supported by the existing hardware. A control

sequence has to be generated while the algorithm is decomposed. The sequence

of the decomposed operations will be executed in the system in accordance with

the control sequence to obtain the required results.

Software solutions are the basis for the efficient handling of problems on a von

Neumann type computing system. A von Neumann computer is a general purpose

architecture developed with restrictions on hardware costs. No data dependencies

of any algorithms can be reflected in the von Neumann architecture. The control

sequence generated from an algorithm holds all the required data dependencies for

solving a problem on a von Neumann computer. The performance of von Neumann

computers replies heavily on the improvement of the single CPU operation speed.

But as a matter of fact, the pace of improvements on the operation speed of hard-

ware devices is usually behind requirements. The performance of von Neumann

computers is inherently limited by the sequential computing bottle-neck because

many properties of algorithms are simply ignored. New computing architectures

and models are the ultimate choice which can take full advantage of many algo-

rithmic properties and can result in a real leap in the system performance with

existing micro-electronic technologies.

1.2.2 Hardware Solutions

It is possible to implement high level algorithm specifications and schedule their

control tasks directly in hardware (hardware algorithms) by eliminating the sin-

Chapter 1. Introduction 	 4

gle CPU bottle-neck with a properly established computation model, a system

architecture, and a control scheme to achieve a high system performance.

It becomes evident, if we take the design evolution history of microprocessors

as an example, that more and more computing functions are directly implemented

in hardware. The only arithmetic operation implemented in the first microproces-

sor design was addition; any operations more complicated than addition had to be

done by software methods. For example, the instruction set of a Ziog Z80 did not

have multiplication which had to be realised as an algorithm when invoked. Then

there have been lots of efforts made in implementing various multiplication algo-

rithms as hardware multipliers [44,13,140,86,122,133,16,19,18]. In the subsequent

generations of microprocessor designs, multiplication is eventually included in the

instruction set. Hardware accelerators for multiplication had been integrated into

the designs of many microprocessors, for instance, Intel 80486, Motorola MC68040,

and INMOS T800. Coprocessor approaches which can further extend the CPU

instruction set to trigonometric, logarithmic, exponential and other floating-point

arithmetic instructions were developed, examples are Intel 80387 and Motorola

MC68881 math coprocessor. More complicated algorithms, such as sorting and

Fast Fourier Transform (FFT), were also implemented directly in hardware. The

implication of this development is that it is now very practical to implement many

algorithms directly in hardware which previously had to be done with software so-

lutions and this is the route that we follow to develop high performance systems.

The coprocessor approach is one of the ways to implement many functions in

hardware. However, this approach is still limited in that there is only small amount

of hardware resource to be sequentially programmed in a user transparent way.

Another common approach is by parallel processing where data dependencies of

algorithms can be reflected to some degree in the actual hardware. Systolic arrays

are one of the intensively studied hardware solutions to a class of regularly struc-

tured algorithms. Systolic algorithms are designed in such a way that adequate

hardware resources are provided and data movements are properly scheduled at

Chapter 1. Introduction 	 5

the design stage to meet the entire optimized computation requirements instead of

sequencing data through limited hardware blocks many times. Many Application

Specific Integrated Circuits (ASIC) can also be classified as hardware solutions to

specific application problems.

A hardware system can be classified as a hardware algorithm if it has a large

proportion or all of the data dependence structures of a class of algorithms and

can directly output required results after a finite latency upon the presence of

valid inputs. Unlike software solutions, control sequencing and scheduling are all

hard-wired in hardware algorithms.

There are two ways to design hardware algorithms. The ASIC design is a

popular approach to implement a hardware algorithm exactly as the algorithm

specification. Another way is to design a blank hardware system which can be

configured by end users. By blank system we mean a system that does not perform

any specific functions before it is configured. A user has the freedom to design an

application algorithm for the system. The specification of the user's algorithm will

be mapped into such a blank hardware system assisted by an algorithm mapping

tool. The algorithm is said to be embedded into the system after it is configured

according to - the map generated from the mapping tool.

The ASIC approach provides some advantages in design and performance. It is

relatively easy to automate ASIC design procedures by taking advantage of both

special silicon architectures, such as gate-array, and particular data dependencies

of the target applications. Algorithms implemented in ASICs are faster than their

configurable counter parts. However, ASICs also suffer from some drawbacks.

1. Turn-around time: The design time for an ASIC based on the gate-array

structure is faster compared with custom Very Large Scale Integrated Cir-

cuit (VLSI) designs since many Computer Aided Design (CAD) systems are

available. However, they still have to go through a design phase, fabrication

phase, test phase and shipping phase which often take at least 3 to 4 months

Chapter 1. Introduction 	 6

to complete. It may take more than one such a cycle to get a final correct

design.

High cost: The cost of designing an ASIC may be high because of the above

mentioned multi-phase design and manufacturing process and sometimes the

relatively small number of chips produced.

Low user controllability: The algorithmic aspects of an ASIC design are

usually determined at the design phase and cannot be changed easily once

chips are fabricated. This low user controllability means that ASICs can-

not accept any minor revisions without substantial efforts and costs. This

low flexibility renders ASICs not suitable for applications at early stages of

development which will often undergo modifications.

On the other hand, a configurable system provides a fast design turn-around

time and flexibility for easy design modifications. As far as costs are concerned,

it may appear that a single configurable chip may cost more because of the extra

configuration logic. The average cost can be brought down when large numbers

of chips are produced since they can be used for a wide range of applications. For

example, Field Programmable Gate Array (FPGA) products with configurable

architectures are growing rapidly in recent years because of these attractions.

Therefore a configurable architecture for algorithm embeddings has advantages of

high performance by running algorithms directly in hardware and the flexibility

of configurable logic.

1.2.3 Parallelism and Pipelining

A proper computation model is required to transform a user defined algorithm into

a form which can be embedded efficiently into a configurable hardware system to

achieve the best performance on the algorithm.

Chapter 1. Introduction 	 7

Parallel and pipeline processing are effective ways to increase the system per-

formance. Parallel processing is to process non-dependent computing tasks in a

set of processing elements (PE) simultaneously so that the single CPU bottle-neck

in von Neumann computers is eliminated. The concept of pipelining came from

industrial assembly lines through which end products are consecutively assembled

step by step. Each step will always be kept busy with partly assembled parts

continuously fed from the previous step and will feed newly assembled parts to

the next step. It is obvious that each product only goes through an assembly line

once. After the first product is output from the assembly line, there will be the

same number of products being assembled as the number of steps of the line, while

each product is at a different stage of its final completion. Pipelining techniques in

computing systems are exactly the same as assembly lines, simply replacing parts

and products with intermediate and final data values, and steps with processing

blocks as pipeline stages. The outstanding properties of pipeline processing tech-

niques are highly efficient utilization of hardware resources and application level

parallelism.

These concepts are not new to scientific researchers at all. People, including

von Neumann, had already realised the potential of parallel and pipeline process-

ing as early as in 1950's [131]. Many parallel and pipeline processing systems

were developed 25 years ago. However, it may involve some substantial software

programming work for users on some of these parallel computers because it is of-

ten the user's responsibility to determine the parallel properties of an algorithm,

decompose and schedule (similar to the control sequence on von Neumann com-

puters) process controls on these parallel systems. It is often difficult for a user

to figure out some implicit or run-time parallel properties of a problem. Users

are often required to be aware of the parallel architecture of a system in order to

use it efficiently. The application of these techniques is relatively new in config-

urable architectures. A parallel and pipeline processing computation model for

a configurable hardware algorithm system is established in this thesis. This will

Chapter 1. Introduction
	

[]

enable the system to make use of the parallel properties, especially the run-time

properties, of an embedded algorithm automatically.

1.3 Regular and Modular Architectures

Hardware algorithms are mostly based on regular VLSI architectures. Examples

are array multipliers. and matrix multipliers. Advanced VLSI technologies have

made it possible to investigate and develop various novel architectures for a wide

range of applications. One of the most popular regular architectures is the ar-

ray architecture because it is very good for VLSI implementation and algorithm

embedding. Array architectures can be classified according to the granularity

of elements, programmability, array processing timing control strategy and array

operation control strategy.

There are some common characteristics among VLSI arrays.

• Regularity: An array system is formed by the duplication of one or several

very limited types of cells in a very regular way normally in a two dimen-

sional plane. Some three dimensional arrays also exist. The interconnections

between array elements are also distributed in a regular pattern.

• Simplicity: Although an entire VLSI array may consist of a large number of

duplicated elements, the design complexity of a large array system is often

proportional to the complexity of the building elements of the array.

• Scalability: Due to the duplication nature in arrays, it is very easy to shrink

or expand the size of an array so as to fit it to certain particular application

requirements.

Chapter 1. Introduction

massive 	special
computing 	purpose 	1.Lprocessor

memories 	sea-of-gates 	gate arrays 	sea-of-cells 	arrays 	VLSI arrays 	arrays

Granularity

Figure 1-1: The spectrum of arrays

1.3.1 Granularity of Array Element

VLSI array architectures can be found spreading over a wide spectrum as shown

in figure 1-1. VLSI arrays with the most fine-grained elements are memory arrays.

The granularity of array elements is increased following sea-of-gates arrays, gate

arrays, sea-of-cells arrays, massively parallel processing arrays, special purpose

VLSI arrays, and very expensive microprocessor arrays where each processing ele-

ment can be used as a CPU in a von Neumann computer. We choose the massively

parallel processing array as the foundation for our configurable hardware algorithm

architecture. This is a good compromise of system functionality, flexibility, size

and rational cost.

1.3.2 Array Configurability

Array configurability reflects the flexibility with which an array system can be

applied to embed just one or a class of algorithms, that is, the generality of a sys-

tem. There are many different technologies to choose for the implementation of a

configurable system. Some of these technologies have advantages in area and per-

formance, but they require special processing techniques, such as laser structuring

or fuse-blowing, which permanently change the physical structure of a hardware

system and the cost can be high. Configurable systems using conventional low

cost circuit switch devices can offer much higher user flexibility and reusability

with slight degradation in performance and increase in silicon area.

The choice of a configuration method is determined by the design purpose

and the target implementation technology for the design. Our system design

Chapter 1. Introduction 	 10

will be based on a normal CMOS process technology and it requires higher user

configurability and reusability, so MOSFETs will be used as the basic switch

devices in our configurable array architecture for algorithm embeddings.

1.3.3 Array System Timing and Control

There is a classification of arrays based on the type of instruction and data flow.

An array whose elements operate on one instruction at a time to process one data

stream is called a Single Instruction Single Data flow (SISD) array. Similarly,

an SIMD array has Single Instruction and Multiple Data flow. If elements in

an array operate on different instructions to process multiple data streams, the

array is called a Multiple Instruction and Multiple Data flow (MIMD) array. An

MISD array has Multiple Instruction and Single Data flow. A configurable array

architecture for hardware algorithms can be regarded as a two phase MIMD array.

A configuration phase is a Multiple Instruction flow (MI) phase. Once the array

is configured, it runs in Multiple Data flow (MD) phase.

Because an array system can usually be divided into two types of essential

parts: computation modules and a communication network, different timing con-

trol methods may be applied separately to computation modules and the com-

munication network. A best match between these two timing control methods

on computation modules and the communication network will make it possible to

achieve an optimal performance and efficient system resource utilization.

It is a common practice to select either a synchronous or an asynchronous tim-

ing control method as the basis for an entire system timing control. In synchronous

systems where all system operations are lock-stepped with a central global control

clock, it is impossible to consider individual timing control for computation mod-

ules and the communication network. The speed of the central control clock in a

synchronous system is determined by the worst possible case so as to secure the

correct data movement in computation modules and the communication network.

Chapter 1. Introduction 	 11

The worst possible case is jointly determined by the worst clock distribution skew,

the delay of the longest communication path and the slowest sequential logic in

the computation modules.

There are no global system control clocks in asynchronous systems. The control

of data movement and operation in an asynchronous system is completely localised.

The performance of an asynchronous system is data dependent and measured

by an average instead of the worst case for a maximum clock frequency as in a

synchronous system.

We argue in this thesis that an asynchronous timing control can make the

best out of a communication network, particularly a configurable communication

network. It is also an excellent choice in general for timing control at the sys-

tem level. We also argue that the synchronous timing control with clocks is still

a very good choice for computation modules of sufficient complexity. Based on

this argument, we look at the possibility of combining these two timing control

methods together. A system timing design approach for a Globally Asynchronous

communication network and Locally Synchronous computation modules (GALS)

is established in the thesis. A configurable array architecture for algorithm em-

beddings is designed by applying our parallel multiple threads computation model

and the GALS system timing control approach in the rest of the thesis. This

architecture can easily accommodate any new technology, system design and user

design changes. It also offers a solution to timing problems of the immediate fu-

ture in the design of Ultra Large Scale and Wafer Scale Integrated (ULSI/WSI)

systems.

Chapter 1. Introduction 	 12

1.4 Overview of the Thesis

Chapter 1: The essential concepts and ideas of hardware algorithms, configurable

architectures and system timing control methodologies are introduced. The

aim of this project is elaborated: the establishment of a proper computation

model, configurable architecture and system timing control approach for high

performance algorithm embeddings

Chapter 2: Some typical massively parallel computing systems are analysed and

compared in this chapter. The purpose of these comparisons is to look at

the common characteristics and the problems in these existing systems so

that we can establish a proper computation model, interconnection network

structure, and an overall system architecture for configurable hardware al-

gorithms.

Chapter 3: In this chapter, a multiple threads computation model for irregular

algorithms is established for algorithm embeddings. A configurable architec-

ture template with a connected pooi of hardware operators and a globally

asynchronous locally synchronous (GALS) system timing control approach

is proposed for algorithmically configurable architectures. A configurable

GALS array system will be designed based on the ideas elaborated in this

chapter.

Chapter 4: A Pseudo Nearest neighbour Configurable Array (PNCA) architec-

ture with some constraints is proposed in this chapter. By combining the

PNCA and GALS approach, a top level configurable GALS array topology

and the logical structure of the interconnection network and a programmable

hardware operator PHI,, are illustrated. A guarded asynchronous hand-

shaking communication protocol is also described.

Chapter 1. Introduction 	 13

Chapter 5: Various issues concerning the implementation of the GALS array

system are discussed in this chapter. The design of a bit-serial configurable

GALS array (GALSA) is presented. Some key components, such as an event-

driven GALS data transfer interface, a novel tn-state register, the synchro-

nisation issue, the design of a PH, and a routing network, are described in

detail. An example 4 x 4 GALS array is given. The event-driven GALS data

transfer interface can also be used to construct general GALS systems.

Chapter 6: In this chapter, simulation results of the designs described in chapter 5

are presented. Three algorithm to the GALSA system mapping examples are

given. The performance of the GALSA system is analysed and compared

with some other similar systems. Although there are some extra delays

caused by configuration switches in the routing network, the performance of

the GALSA system is still very good because the system can process tasks

based on the multiple threads computation model.

Chapter 7: This chapter summanises all the work presented in this thesis and the

author's contributions. Further development of the current work is outlined.

The prospects for configurable hardware algorithms in the future are also

discussed.

Chapter 2

Massively Parallel Computing

Systems

The work described in this thesis is closely related to a class of architectures

called massively parallel computing arrays. A massively parallel processing array

normally consists of one or a few types of processing elements (PE) which are

duplicated as many times in a two dimensional plane and connected by a network

as an application task requires. Some existing systems already have an array of

16K or 64K PEs. We shall analyse and compare some typical existing systems and

other related work in this chapter. While some common points in these system

designs are found, distinctions are also drawn between the research work carried

out in this project and the existing systems.

Since 1970, the dramatic reduction in costs of integrated circuits and increas-

ing requirements for high performance computing systems have stimulated the re-

search and development of many parallel array architectures. Many of them have

been implemented on Large Scale Integrated (LSI) circuit technologies. Newer

generations of these systems and many other new systems are now mostly imple-

mented in VLSI technologies. This makes it possible to accommodate more PEs

in a silicon chip.

14

Chapter 2. Massively Parallel Computing Systems 	 15

2.1 Cellular Logic Image Processor

The Cellular Logic Image Processor (CLIP) [24] was the first bit-serial array pro-

cessor chip designed and fabricated. The development of the CLIP architecture

can be traced back to 1973. It started at the time with many technology con-

straints which no longer apply. Although the early CLIP chip implementation is

in current terms inefficient, the CLIP architecture is very heuristic. People are

also trying to update the CLIP design with the latest state-of-art technology. The

history of CLIP evolved from the the first prototype to CLIP4 (with 8 PEs on one

chip in 1978) [24,35], CLIP5 (with 16 PEs on one chip in 1981) [34] and CLIP6

(1983) [33]. The CLIP5 PE uses essentially the same logic as the CLIP4 PE,

while the chip configuration has been improved in several aspects, such as the use

of a larger package which enables more pins to be assigned to control functions

and more PEs to be integrated on one chip; local data storage has been removed

to off-chip RAM and the data path design has been improved. There were sub-

stantial changes in the CLIP6 design principles. The major differences in CLIP6

are that all data paths and functional blocks are bit-parallel in operation on 8-bit

of data. A single multi-bit ALIJ instead of a dual Boolean/adder PE is used, a

multi-bit multiplexer for input selection replaces input gating circuitry, and a local

condition code register supports a degree of PE autonomy control.

The data structure in an n x n CLIP array can be visualised as a stack of

bit-planes as shown in figure 2-1(a). Each bit-plane is composed of an array of

n x n data. One data bit in such a structure is represented as D i =

x, y = 1, 	, n}, where 	is a bit located at (x, y) in the jth plane. A

data word can be stored in either binary stack format (vertical format) or binary

column format (horizontal format). In binary stack format, a datum is uniquely

addressed by (x, y) and passing through g bit-planes: P = 	: j = Ic, Ic +

k+g-1}. The binary stack format is very suitable for storage and processing

16 Chapter 2. Massively Parallel Computing Systems

Data RAM
ootput t port

D31

Di

DI
Do
C
B
A

(a)
	

(b) 	 (c)

Figure 2-1: CLIP5: (a) Bit-planes, (b) PE, (c) Array interconnections

of pixels in an image. When numerical calculations are to be performed, it is

sometimes convenient to represent data in binary column format: O, =

y = 1, 2, . , n} in which there will be no one-to-one correspondence between data

and n2 PE addresses. The data structure in most of the two dimensional regular

massively processing arrays can be modelled by this stacked bit-plane structure.

An old CLIP PE consists of a dual Boolean and a full adder processing unit,

input gating circuitry, three registers (A, B, C) corresponding to a bit location in

A, B, C bit-planes, a memory D for locating at (x, y) in D, (j = 1, 2,. . . , n)

bit-plane, and some glue logic. The PE can perform all the 16 Boolean functions

with two variables and bit-serial addition which are all controlled by signals fed

from an external control unit. The input gating however can be individually set to

meet special application communication requirements. The CLIP PE schematic

is shown in figure 2-1(b). Each CLIP PE is physically connected to its eight

neighbours, but the actual CLIP logical connectivity among PEs can be config-

ured as hexagonal, 4 nearest neighbour, or 8 neighbour connection to reflect the

requirements of a specific application data structure (c.f. figure 2-1(c)). The in-

put gating and full neighbourhood connectivity also make it possible to complete

many operations in only one cycle for which other later designs may require as

many as twelve cycles.

Chapter 2. Massively Parallel Computing Systems
	

17

The CLIP system was specially designed for high speed image processing ap-

plications. A system with total of 9216 (96 x 96) PEs has been built with CLIP

array chips. Data captured and A/D converted from a video camera are processed

through the CLIP array and results are again D/A converted and output to a

monitor. Some typical applications of such a system are simple edge detection,

labeling, two-dimensional filtering operations on images, image enhancement, and

skeletalisation.

2.2 Distributed Array Processor

The prototype Distributed Array Processor (DAP) [51] was designed and con-

structed in 1976 by Reddaway and others at International Computers Limited

(ICL) as an enhanced memory module for ICL2900 series mainframes, and even-

tuaJly evolved to an independent parallel processing system. The development of

the DAP system was later separated from ICL to an independent company called

Active Memory Technology Ltd (AMT). The first of the second generation DAP

systems, built on LSI technology, was delivered in 1985. A prototype mini-DAP

was built from a gate array chip which integrated 16 PEs together on one chip,

and the whole system consists of an array of 32 x 32 PEs. A 64-PE custom VLSI

chip is used in a version of the re-engineered 64 x 64 AMT DAP [55]. A DAP

PE, as depicted in figure 2-2(a), is designed with a bit-serial full adder supported

by a set of registers (A, C, Q, 5, D), signal multiplexers, and an external local

memory port which can address up to a maximum of 1M bits of RAM in the

present architecture. The A register is used for PE "activity control" which can

inhibit memory write operations in certain instructions in a PE. The activity con-

trol is also important in cases such as inhibiting PE operations at the predefined

boundaries of a problem, or in conditional data-dependent operations. Q can be

regarded as an accumulator and C as a carry register. The third input to the

adder is selected by a multiplexer from PE memory, Q, A, data broadcast by the

Chapter 2. Massively Parallel Computing Systems
	 18

To ROW and 	To North
COLUMN responses neignoour

TO 	 4
neighbourin IMEMOR'4

:PEs 	L 	
ri

— --

I_

I MULTIPLEXER

I 	I''I'I''I'F•I''Fi• 	I 	I
NESWRC

'00
From 	 WL From South:
neighbouringl 	L.J neighbour:

FromMCU

(a)
	

(b)

Figure 2-2: AMT DAP: (a) PE, (b) Array organisation

MCU (Master Control Unit), or the carry output of a neighbouring PE. S and D

register are transparent to users, but play a very important role in assisting data

movement. D is used as a buffer for data input/output through a fast interface

unit, and S is a buffer for such instructions that need to read from and write to a

memory. When A, C, Q, D and memory are viewed as an abstract data structure,

they can also be represented as bit-planes as illustrated by figure 2-1(a) but with

at least 32K array memory planes. Hence data in a DAP machine can be stored

in either vertical or horizontal format.

Interconnections among PEs are essentially nearest neighbour connection but

enhanced with X- and Y- buses for fast data broadcasting to the PE array or

fast data retrieving from the array. Data in a register of a PE can move in any

Chapter 2. Massively Parallel Computing Systems 	 19

of the four directions (North, South, East, West) to a corresponding register in a

neighbouring PE. It is also possible to extract data from a specified row or column

of PEs, or to AND together data from all of the rows or all of the columns. PEs

at the edge of a DAP array are simply connected to their counterparts at the

opposite edges, thus allowing shifts to "wrap-around" if required.

The DAP system has been efficiently applied to areas where large volumes of

regularly structured data have to be processed, for instance, matrix manipulations,

image processing, and sorting.

2.3 Massively Parallel Processor

The Massively Parallel Processor (MPP) project was initiated in 1971 and the

construction of a real MPP system started from 1979 under a contract awarded to

Goodyear Aerospace by NASA [7]. The first delivered MPP system consists of a

physical array of 16896 PEs which can be logically configured as an array of 16384

(128 x 128) PEs with 512 (128 x 4) redundant PEs for the fault-tolerant purpose.

The interconnection topology in an MPP PE array is a simple conventional 4

nearest neighbour connection. The choice of this simple interconnection pattern is

determined by the target application area of the MPP - two-dimensional image

data processing, and by the huge number of PEs required. However, the edge

topology of the MPP array is made very flexible as shown in figure 2-3(b). Pro-

grammable switch circuits are located on the four array edges. The connectivity

between the right and left edge can be set as one of the following four states: open

(no connection); cylindrical, FE21 is connected to FE 127 , i = 0, 1, 2,.• , 127;

open spiral (PE2 , 1 is connected to PE_1 , for 1 < i < 127); and closed spiral

(similar to open spiral but FE0 , 1 is connected to FE127 , 127). The top and bottom

edges of the array can be either connected or left open. When both left and right,

top and bottom edges are connected, a ring configuration is formed. Since an

Chapter 2. Massively Parallel Computing Systems
	

20

.....
I I• __II___ 	U...... ..u...

.......
••••••

IA Fa3.

111110 1

IMF HO
-

llliiO S
(a)
	

(b)

Figure 2-3: MPP: (a) PE, (b) Array edge topologies

MPP array is composed of a large number of PEs, fault-tolerance and reliability

become important issues in the MPP system. Two measures are adopted. One

is the simple group redundancy scheme by which a group of 128 x 4 redundant

PEs is added. The entire array is divided into 33 groups of 4 x 128 PEs together

with group bypassing gates in the routing network. The array can survive PE

faults in one group by disabling (bypassing) the entire faulty group and activating

the redundant group. The other technique is the parity error detection to find

memory faults. One parity bit is combined with eight data bits of every 2 x 4 PE

subarray. Whenever a fault is discovered, the group redundancy control will be

used to disable the group containing the error.

Because the target workload of an MPP array is image processing in which

the resolution of input pixels may vary from 6 to 12 bits, and intermediate results

can be of length from 6 to more than 30 bits, the MPP PE had to be custom

designed based on the bit-serial processing principle. This is very efficient to

process operands of varying length. The actual PE structure as shown in figure 2-

Chapter 2. Massively Parallel Computmg Systems 	 21

3(a) was optimized for bit-serial arithmetic operations by combining a single bit

full adder, a variable length shift register, and six single bit registers (A, B, C,

P) G, S). Different from many other bit-serial PE design, a local data bus (D) is

also used to provide a convenient way for data movement among PE registers and

local RAM. All types of arithmetic operations are supported in the MPP PE array,

such as integer/floating-point addition/subtraction, multiplication/division. The

MPP PE logic circuit can also perform all 16 Boolean functions with two input

variables from P and D register. A special routing operation which can shift the

state in P to one of its four neighbours is included. The G register holds a mask

bit so that masked operations are only performed in those PEs whose G is set to

1. The S register is used for shifting input and output data to/from the MPP PE

array. A local RAM of 1K bits, from where operands are fetched and results are

stored in a one-bit operation, is attached to each PE.

The implementation of the MPP PE array used a rather outdated technol-

ogy. A subarray of 8 (2 x 4) PEs is integrated on one chip [110] designed with

CMOS/SOS technology and packed in a 52-pin flatpack.

In 1986, a new project called BLITZEN motivated at miniaturising the phys-

ical size of the MPP system was started at the Microelectronics Center of North

Carolina [10,47,21]. Years later, a custom VLSI CMOS chip containing 128 (8 x 16)

PEs on an 11.0mm x 11.7mm die was fabricated and mounted on a 176 pin PGA.

The BLITZEN PE design is basically the same as the MPP PE but enhanced

with more control functions such as local control of masking, local condition test-

ing which may lead to alternative local processing actions and local modification

of global addresses. But the interconnection pattern among PEs is very different

from the MPP in that an "X" interconnection and rows of I/O buses are used. The

"X" configuration enables each PE to communicate directly with its eight nearest

neighbours and allows data to be routed along diagonals in an array which is faster

than Manhattan routes.

Chapter 2. Massively Parallel Computing Systems 	 22

2.4 Connection Machine

The Connection Machine (CM) is the largest massively parallel array processing

system built so far. The architecture was originally conceived by Hillis in his

thesis [49] at MIT, and was constructed by Thinking Machines Corporation. The

major part of the CM has an array of 64K (216) data processors (PE) and a

complex data communication network among these PEs. The communication

network in the CM is completely different from other systems, using a packet-

switched network instead of circuit-switched network. One of the goals of the CM

design is to construct a very flexible architecture so that many different application

types can be processed by the system. Operations based on data-parallelism make

it possible for the CM to exhibit very high performance on processing massive

amounts of data concurrently in each PE. The CM is well developed at the user

interface level with a virtual-machine model which presents users with an abstract

machine architecture to ease programming tasks for users on the machine. A

virt ual- processor model makes it possible to solve problems of sizes larger than

the physical size of a CM.

The unique flexible communication network of the CM is supported by routers

and a NEWS (North, East, West, South) grid. Every subset of 16 PEs shares

one router while a total of 4, 096 (212) routers is hard-wired in the pattern of a

Boolean n-cube (ii = 12). Therefore any router can be reached from any other

router by travelling over no more than 12 wires. Each router handles messages for

its subordinate 16 PEs and also serves as the interface with other routers. The

operations of the router can be divided into five types: injection, delivery, for-

warding, buffering, and referral. Injection is the process of sending new messages

into the network from a subset of 16 PEs. The process by which a router removes

a message from the network and sends it to a destination PE is called delivery. If

an injected message is going to somewhere outside the cluster of 16 PEs, it must

be forwarded. When several messages are delivered at once or several messages

Chapter 2. Massively Parallel Computing Systems
	

23

A addrei Baddreie 	 16 	 C

TabI 	10
C

To
1 g 	

Rooter

tReadWrite
FlagFlag

Memory

II
'I
Ii 0

to

II r

II 7

Rooter

Memory 	I

(a) 	 (b)

Figure 2-4: Connection Machine (a) PE, (b) A subarray of 16 PEs

are to be forwarded over the same wire, they will be buffered by the router. If

a router's buffer is full, the router may refer a message to another router. Each

router is uniquely assigned with a 12-bit binary address for the convenience of

routing algorithms. The NEWS grid provides a two-dimensional Cartesian direct

connection for nearest-neighbour communication which is faster than router com-

munication for simple and regular data structures. Other communication modes

such as broadcast communication and global OR of ALU carry output from all

PEs are also supported in the CM.

A CM PE, which is shown in figure 2-4(a), consists of a bit-serial ALU unit,

• local bit-addressable RAM, eight one-bit flag registers, a router interface, and

• NEWS grid interface. The ALU is a logic element which can compute any two

Boolean functions with three inputs and two outputs. The actual function of the

ALU is determined by 8 bits stored in a function table. The A and B address

specify the external memory locations from where the first and second operands

to the ALU are read. The A-address is also the memory location to where the

memory output of the ALU is written. The read flag selects one of the 16 (8

general purpose, 8 special purpose) flags from which the F input of the ALU is

taken. The write flag selects one of the 16 flags to which the flag output of the

Chapter 2. Massively Parallel Computing Systems 	 24

ALU is written. Flags in each PE are used to set communication modes and for

memory error detection/correction.

The implementation of the CM architecture has evolved from CM-i to CM-2

[130]. Both CM-i and CM-2 use off-the-shelf RAM chips and a custom designed

CMOS VLSI chip which contains a subarray of 16 PEs with one router and a

control unit (c.f figure 2-4(b)). CM-2 has been improved in many aspects while

keeping the same essential architecture as CM-i. The major differences in CM-2

are: 64K bits instead of 4K bits memory for each PE, four flag registers instead of

eight, an optional floating point accelerator for every group of 32 PEs, increased

error detection circuitry, redesigned router with improved reliability, diagnostic

capability and performance, replacement of the two-dimensional NEWS grid with

a more general n-dimensional grid on top of Hypercube, and a high speed I/O

system.

The CM is a very flexible architecture which can be applied both in numeric

and symbolic processing to a very broad range of applications. For instance, grid-

based communication finds primary application in regularly structured problems

such as particle simulations and matrix manipulations, while the general packet

routing supports varying topologies in circuit simulation and computer vision.

2.5 Adaptive Array Processor

The Adaptive Array Processor (AAP) [64] was developed at NTT in Japan. The

AAP architecture was designed to be used as a high performance system with a

certain degree of flexibility for various two-dimensional data processing applica-

tions and small overhead for inter-PE communications over long distances. The

adaptability of the AAP to applications is supported by three special features:

• Duplicated communication paths. Each PE is connected with its eight neigh-

bours, and a duplication of connection between upper and lower PEs makes

it possible to implement hierarchical bypass for flexible and fast data trans-

fer.

Chapter 2. Massively Parallel Computing Systems
	

25

• A complex data transfer unit in each PE. Since the physical interconnections

among AAP PEs are fixed, a complex data transfer unit is used in each PE to

support flexible data routing and hierarchical data bypass. The data transfer

unit is implemented with various multiplexers and some control registers.

Combined with duplicated interconnection paths, data can be routed rather

freely among PEs in the AAP.

• Local modification of global controls. The local adaptability of each PE

is determined by the contents of local control registers which can modify

common control signals fed from a single global control unit outside the PE

array.

The AAP PE comprises a 16-function bit-serial ALU for two inputs and a set of

supporting registers. One unusual feature is the use of one of the data registers to

hold a control signal which determines the storage destination for a result. A 64-

bit register file is used to hold temporary data and makes it possible to implement

various operation modes on an AAP. Data can also be structured in either vertical

or horizontal format in an AAP as shown in the stacked bit-plane of figure 2-1(a).

However, the AAP extends the stacked bit-plane structure with more operation

modes. Bit-serial operations can be carried out in each PE on entire words stored

in vertical format. The PE array can also be structured to either word-unit or

block-unit operation modes. When part or the entirety of a row or column of PEs

are combined to process data in horizontal format, the AAP is in word-unit mode.

If a block of PEs (a subarray) is grouped together, horizontal words can also be

processed in block-unit mode. The AAP PE schematic is shown in figure 2-5.

The first prototype AAP chip integrates 64 (8 x 8) PEs together with 6K bits

(64 x (64 + 32)) of memory on a die of nearly 1cm 2 . The second generation of

the AAP - AAP2 [65] is designed with an external RAM port of up to 1M

bits logical address space in each PE. The AAP2 has one 40-bit microinstruction

modifier which can support wideband modifiable PE operations in the array (called

pseudo MIMD by A-AP designers). The interconnection paths are also enhanced

Chapter 2. Massively Parallel Computing Systems
	

26

ñd8neighbowPEs EXT RAM

:1lA[l0

: 	y 	 •.'
:0-MUX

....... 	modifierl
4..8

40 bits
.4nd 8 neighbour PEa 	 microinstruction

(a) 	 (b)

Figure 2-5: AAP: (a) PE, (b) Array interconnection paths

by a duplicated 4 neighbour connection network (c.f. figure 2-5(b)) instead of the

upper-lower path in the AAP prototype. One external 64K bytes (8 x 64K bits,

static) RAM module and one AAP2 64 PE array chip can be mounted on one

special package.

The AAP system can be applied to many two-dimensional data processing ap-

plications. Examples are grey tone level histogram calculation, distorted image

correction, feature extraction of character images, and logic simulation of elec-

tronic circuits.

2.6 A Data-Driven VLSI Array

I. Koren and B. Mendelson [66] developed a Data Driven VLSI Array (DDVA) for

embedding arbitrary algorithms. The DDVA is different from most of the mas-

sively parallel processing array architectures in that it operates on a data-driven

principle. With the elimination of global control on data-flow, correct operation of

the system will be guaranteed by the availability and presence of matching input

data to each PE in a DDVA. The DDVA is designed with a hexagonal intercon-

nect architecture where each PE is connected to six nearest neighbours. There are

ii

uIuuuuuuuu- --
WA

jI
Communicatio,

Chapter 2. Massively Parallel Computing Systems 	 27

R6 Ri
:Q

ii Communication bus 	
) u

Microprogram Execution t t
control Unit

: __ p
I I I

jf5 Flag array 	1 j45 (
OmJmliJtion bus

Instruction I 1
I memory __

ommnnicatio
control :f t + + + + + + f:

II hIdI I I 	I 	 I 	I 	I

(a) 	 (b)

Figure 2-6: DDVA: (a) PE, (b) array architecture

rows of communication I/O buses of 10-bit wide (figure 2-6(b)). Communications

among PEs are all through some of the six registers in each PE as shown in fig-

ure 2-6(a). A data flow graph for an algorithm can be mapped into a DDVA where

nodes (vertices) of the graph are embedded into the PEs of the DDVA and edges

(arcs) of the graph are mapped either as a connection between two communicating

registers or a series of PEs which are only set as communication path if connection

resources are not enough. Each DDVA PE processes 8-bit operands and is data-

driven, i.e. a PE instruction is initiated only when all of its required operands are

available and its destination registers are empty. Each PE can be loaded with at

most six instructions, the execution order of instructions is completely data-driven

instead of depending on a program counter. The complexity of the prototype PE

is about 9,000 transistors in a NMOS technology. The microprogram control unit

is the largest block in the PE which requires about 4,500 transistors. This unit

translates instructions stored in the PE instruction memory into sequences of con-

trol signals that control the operation of the execution unit. This microprogram

control unit is the fundamental feature of a DDVA that makes it possible for the

DDVA to embed arbitrary algorithms and operate on the data-driven principle.

Chapter 2. Massively Parallel Computing Systems 	 28

InputI
Control

1e 	H 	Memory 	I.: 	I Switch I 	i-H Output

>1 Control I Control

-- -- - - ------------------------4 - - - - - - - - - - - - -

Switch
Register

Template
Buffer

Input
	

Input I 	I 	. 1 	Arithmetic 	I 	Output
Switch

Registers 	Units Array 	 Registers

Network Interface

Network 	 Tol Network

Figure 2-7: RAP system architecture

The DDVA architecture has very low hardware efficiency for arbitrary algo-

rithms because it uses PEs as routing cells with very limited routing resources. It

is too expensive to use such a complicated PE for just a simple routing function.

2.7 Reconfigurable Arithmetic Processor

The Reconfigurable Arithmetic Processor (RAP) [32] is actually developed as an

arithmetic processing node for an MIMD concurrent computer. The aim of the

RAP design is to reduce the amount of off-chip and memory data transfer traffic by

evaluating an entire arithmetic formula directly in an RAP upon the configuration

of the RAP to the structure of the formula to be evaluated. Only final evaluation

results are sent back to a host computer after a set of inputs is presented to the

configured RAP. All of the intermediate data are calculated, referred to and elimi-

nated locally; no global memory references which will otherwise require expensive

high speed I/O channels that are often a performance bottle-neck. All of the exter-

nal communication requirements of an RAP are the input of configuration control

data (which will be done prior to calculations), input of coefficients and values of

Chapter 2. Massively Parallel Computing Systems 	 29

variables, and the output of final results. The schematic of the RAP architecture

is illustrated in figure 2-7. The major building blocks in an RAP are a set of

arithmetic processing units which include adders/subtractors and multipliers, a

switching network, and a switch configuration control unit. Partial bit-parallel

arithmetic units are designed to process 4-bit of operands in one operation or

a serial-of 4-bit if longer operands are presented. The switching network in the

RAP can be configured with the switch configuration control unit to interconnect

arithmetic units in a way which represents the data-dependencies of the formula.

One of the most important features of the RAP architecture is the highly

reduced memory communication flow requirements. Once all of the required data

is retrieved from the memory, the entire evaluation of an arithmetic formula will

be carried out without interaction with the host system until final results are

obtained.

2.8 Reconfigurable Parallel Array Processor

The Reconfigurable Parallel Array Processor (RPAP) was developed by Rushton

and Jesshope [117] [52, Section 3.5.4] at Southampton University with the aim of

implementing a more general-purpose flexible architecture assuming Wafer Scale

Integration techniques. The RPAP architecture is very flexible in that it can

be logically configured to perform from bit-serial, through partial bit-parallel, to

word operations. To minimise the communication problem between a host and

an RPAP array, a shared memory between the two is used so that the address

of the array memory can be directly mapped into the address space on the host.

The RPAP is not a real SIMD system because some fields of the instruction words

distributed across an RPAP array can be locally modified in a PE.

An RPAP is physically a two dimensional four nearest neighbour intercon-

nected (NNI) array of simple bit-serial PEs with wrap-around at both opposite

edges. The whole system is synchronously operated. The RPAP chip VLSI floor-

Chapter 2. Massively Parallel Computing Systems

port

Word
Oriented 	I

WF9L I vc

:cLA H!IffI k (tW ItoraseJLh)Iu
ur&tion

hbou 	register

(a) 	 (b)

Figure 2-8: RPA: (a) PE, (b) The array floor plan

plan is also arranged as a square array of PEs. Because of synchronous timing

control difficulties, the RPAP architecture can support up to 256 x 256 PEs in an

array. A physical PE is a single bit-slice ALU. A wider virtual processing unit

can be formed by combining a group of physical PEs. A virtual R x C, array of

r x c-bit virtual PEs can be logically constructed out of an RPAP of n x n physical

PEs, where R0 , Ce,, r, c must satisfy:

	

Rxr=n 	 (2.1)

	

Cxc=n 	 (2.2)

	

r x c < n x n 	 (2.3)

	

1r, cn 	 (2.4)

For example, from a 32 x 32 RPAP, a virtual single processor of 1024-bit is formed

when r = c = 32,R = C, = 1. Similarly, r = 16,c = 4,R = 2,C = 8 forms

a 2 x 8 array of 64-bit virtual PEs. There are no restrictions on the direction of

data propagation in the system, but each connected successive bit-slice PE should

be physically adjacent to form a virtual PE. The structure of a physical PE, as

shown in figure 2-8, is similar to one bit-slice in a conventional bit-slice processor.

The special feature of the RPAP PE is that it has two-bit lines which allows

simultaneous transfer of two operands to each PE. Both bit-serial and bit-parallel

operations are well supported in an RPAP PE. A bit-stack and an activity stack

30

MW

can preserve the bit ordering required for arithmetic operations, besides which

Chapter 2. Massively Parallel Computing Systems 	 31

they are able to provide parallel-to-serial and serial-to-parallel conversions. The

internal storage has a dual control mechanism capable of stack or random access

to the bytes of a word.

2.9 Field Programmable Gate Arrays

Gate array and standard cell architectures are developed for implementing VLSI

system designs with fast turn-around time. Compared with custom design method-

ology, gate array and standard cell approaches have satisfied this fast turn-around

time to some extent. It is also much easier to automate system design based on

these predefined chip architectures. However, this improvement on turn-around

time is still fundamentally limited by the procedure of chip fabrication. On the

other hand, designers have no control over their designs once their designs start

to be fabricated, not to mention extra costs to modify a design after chips are

fabricated.

Field Programmable Gate Arrays (FPGA) pioneered by Xilinx Inc. [139] repre-

sent a different design methodology which resulted in a very versatile architecture

that gives truly fast turn-around time and complete user freedom to implement a

system design, test and modify the design easily. Following the success of Xilinx,

there are now many companies also producing FPGA chips. The Xilinx XC series

are also called Logic Cell Arrays (LCA), which in general are composed of a two

dimensional array of logic cells surrounded by an interconnect area which is rich

in memory controlled switches and wires. All of the logic cells in an XC array, as

depicted by figure 2-9(a), are the same and can be configured to any logic function

of up to 5 input logic variables (a, b, c, d, e). Functions with more than 5 inputs

can be formed by combining cells together. D is used for a direct data input.

Other inputs to a cell are used for cell operation controls. A special feature of this

LCA cell is that two combinatorial functions of 4 inputs which share a common

input can be configured within one cell. Thus there are two outputs x and y. In-

terconnections among logic cells can be set by configuring various switches around

cornbh1ati:z1&IjI 	 -iI Llr_ Function

Malmo
op

GLOBAL RESET

c-I

"1"(ENABLE)

CLOCK [1
[: T :BIT

Chapter 2. Massively Parallel Computing Systems
	

32

(a)
	

(b)

Figure 2-9: Xilinx LCA: (a) Function cell, (b) Interconnect resources

each logic cell to match the structure of a target system. The LCA provides plenty

of programmable interconnect resources which are classified as general purpose in-

terconnect, direct connection, and long lines, as shown in figure 2-9(b). General

purpose interconnects consist of a grid of 5 horizontal and vertical metal tracks

segmented by switch matrices and scattered programmable interconnect points

(PIP, small spots in figure 2-9(b)). Direct interconnects provide the most efficient

network interconnection between adjacent logic cells or I/O blocks. Long lines

bypass switch matrices and are intended primarily for signals which must travel a

long distance and must have minimum skew among multiple destinations. FPGAs

have been successfully used in many designs. Because FPGAs are intended for

use as general purpose devices, most of these designs are based on random logic

which ignores the architecture regularity inside FPGAs.

2.10 Cellular Array Logic

An early systematic description of the cellular logic design methodology can be

found in [103] in 1971. Because of technology limitations, no real cellular arrays

had been integrated on silicon chips. In 1977, Manning [87] further extended the

concept to programmable cellular logic arrays for arbitrary logic implementations.

Chapter 2. Massively Parallel Computing Systems 	 33

However, at that time it was still unrealistic in practice to implement such kinds of

system with medium scale integration technologies. Xilinx is the first company to

design and market user soft programmable gate arrays [139]. The success of Xilinx

and the emergence of sea-of-gates architectures aroused researchers' interests in

cellular logic. Kean [59,58] has designed his configurable Cellular Array Logic

(CAL) architecture based on previous work on cellular logic architectures. The

CAL became a standard product of formerly Algotronix Ltd which is part of Xilinx

now.

The CAL architecture is very simple. The entire system consists of a 2-D

array of a simple function cell which is bidirectionally interconnected with its

four neighbours, as depicted in figure 2-10(b). Each cell in the array can be

configured to either: one of the 16 two-variable one-bit logic functions, or as a

routing cell which can route input values to another cell. The CAL cell function

can be represented as Y = F(X1, X2), where Xl, X2 and Y are Boolean variables.

Compared with sea-of-gates architectures, CAL can actually be classified as a sea-

of-cells architecture. There are 20 bits of RAM in each cell as shown in figure 2-

10(a) for cell functionality, signal selection, and routing control. The configuration

control bits for all cells in an array are loaded a priori. The current CAL chip

contains 64 x 64 cells on one VLSI chip.

Since CAL cells manipulate only a single bit of data and do not have local

memories for intermediate data, CAL is most suitable for bit-level applications, for

instance, encryption/decryption, or binary image manipulation. It is not efficient

to use CAL for applications with wide word width. Because CAL cells can also

be used for routing purposes, the cell utilization of a CAL will be low if the data

structure of a target system is of low regularity or communication intensive. This

situation is more likely to happen for configurable systems which are supposed

to be able to solve various and perhaps irregular algorithms. Another problem

that the CAL may suffer is synchronous timing control difficulties. The CAL

architecture is designed as a synchronous system; worst case timing requirements

Chapter 2. Massively Parallel Computing Systems
	

34

- Func. Out 	OUTPUT:
I 	NESW

A -. Boolean
I M 	: F\mction 	 I

Block

I I

t 	Xl 	X2 	 I'
r 	______ - 	II

Signal Selector 1
1111 	11 t_.._i

INPUT:NESW G1G2Y I
L ------------------------

(a) 	 (b)

Figure 2-10: CAL: (a) Cell, (b) Cellular array

are different from one configuration to another. As a result, system control clocks

have to be determined after each configuration, or simply imposed with the worst

case clocks. This timing problem will be even severe when more chips have to be

connected to form a larger CAL system.

2.11 Comparisons and Remarks

We are by no means trying to list all parallel processing systems. Systems de-

scribed in previous sections are very representative for massively parallel pro-

cessing systems in several areas: PE structure and memory requirement, inter-

connection network structure and data routing mechanism, abstract system data

structure, system timing control strategy, and application objectives. There is no

systematic performance comparison of these systems because they are designed

for different purposes with substantial difference in costs. Performance, cost and

generality of systems are often the factors that have to be compromised one for an-

other by system designers and end users. We try to make good judgements from

these existing systems and develop a new framework for configurable hardware

algorithms.

Chapter 2. Massively Parallel Computing Systems
	

35

All massively parallel computing systems can be classified as either pro-

grammable or configurable hardware algorithms. This is because the architecture

of these systems explicitly or implicitly reflects the data structure and dependency

of its target applications, there is no time sharing for users on these systems (run-

ning only one application algorithm at any time). The system operation schedule

control is built into hardware. Data dependencies and functions of PEs can be dy-

namically changed in programmable systems such as DAP, MPP, CM, and DDVA.

CLIP, AAP, RAP, RPAP, LCA and CAL are configurable systems which are con-

figured a priori for a particular application in the configuration phase. Data can

only be processed by the configured system in the run phase. A reconfiguration

has to be carried out for a different algorithm.

There are two ways to run these systems. In stand-alone mode, they can be

the centre for digital data processing. Inputs to such a system may be captured

by cameras or sensors and A/D converted. Outputs may be directly used or

D/A converted to control other devices, for example a robot to operate. They

can also be used as attached systems to a host computer. The host computer

acts as a front-end as the user interface and schedules system tasks by setting up

the attached systems, down loading control instructions and data into them, and

collecting results from them. CLIP, AAP, RAP, RPAP, LCA, and CAL can be

used as either stand-alone or attached systems. But programmable DAP, MPP,

CM, and DDVA are more suitable to run as attached systems. This is because

these systems can be dynamically programmed at run-time and can be managed

more efficiently by a host computer.

The Connection Machine is the most general purpose and expensive massively

parallel processing system among those we described. Its strength lies in the com-

bination of a packet switched router network and a circuit switched NEWS grid

network to connect 16K simple PEs together, while other systems only use the

circuit switching technique in their interconnection networks. This system demon-

strates the importance of communication network on performance and adaptability

Chapter 2. Massively Parallel Computing Systems 	 36

of a large parallel system. It is a powerful system for problems with high dynamic

run-time properties, such as analysing particle system state in particle physics, or

solving astronomy problems.

The CLIP is a rather special purpose system for fast image processing appli-

cations. However, it can be seen that the stacked bit-plane data structure in the

CLIP is adopted by many other systems such as DAP, MPP, and AAP by using a

local memory in each PE. The reason is that these systems share common target

applications with very regular two-dimensional data arrays. The processing of

one element in such a data array is often associated only with its 4 or 8 neigh-

bouring elements in the array. Images consisting of pixels and matrices are two

typical examples that can be represented by data arrays. The stacked bit-plane

structure is also a concise abstract representation for an array of bit-serial PEs

common in these systems. There is at least a nearest neighbour interconnection

with neighbour selection logic in each PE to match the nearest neighbour data

dependency, for example in image processing applications. However, variations in

network structure exist, for instance, the choice of 4, 6, or 8 neighbour connection

in a CLIP array, the X and Y bus for fast data broadcasting to and retrieving

from a DAP array, the duplicated communication paths between PEs and the

data transfer unit in a PE to route data beyond nearest neighbours in an AAP to

increase the AAP's adaptability to different applications. In general, three phases

are required to operate these systems: loading data into local memories in each

PE, data processing in vibrating mode where data may be moving forward and

backward only one PE distance, retrieving results from the array. It is noticed that

a large local PE memory is required to reduce the time overhead in the array data

loading phase. This is why newer generations of these systems tend to be designed

with an external RAM port in a PE in order to use high density off-the-shelf RAM

chips.

The CLIP is the best for image processing applications. DAP and MPP are the

best for matrix manipulation tasks while the MPP demonstrates its best support

Chapter 2. Massively Parallel Computing Systems 	 37

for floating-point operations with its variable length shift register in an MPP PE.

The AAP has the best adaptability to a wide range of applications.

The RPAP is designed as an attached system. It avoids the PE local memory

loading overhead by sharing memory modules with its host computer so that

both the RPAP and its host computer can address the same memory space. The

new problem with this shared memory will be the routing overhead from shared

memory modules to each PE in an RPAP array and the memory read/write control

where writing to a memory address can only be performed after all the reading

requirements to the same address are completed. The RPAP does not provide

routing adaptability on its nearest neighbour interconnection network; it depends

on its virtual PE and virtual array principle where a virtual PE capable of N-bit

processing can be configured from N bit-serial physical PEs and a virtual array

is formed by virtual PEs. The RPAP's application is still limited by its nearest

neighbour interconnection network in its physical and virtual arrays.

A completely different system architecture approach is adopted in [123] by

using a binary-tree interconnection structure because many algorithms can be

transformed and fitted into a binary tree. However, this algorithm transformation

is by no means a trivial work. On the other hand, it is often difficult to preserve

existing parallel properties of an algorithm after this transformation.

The DDVA is one of the architectures that aims at implementing arbitrary

hardware algorithms. The idea of applying the data-driven computation principle

to massively parallel processing arrays in the DDVA is very important for array

architectures and in particular for systems to embed arbitrary algorithms. This

avoids the difficulties of system level synchronous timing control in other systems

where the actual physical size of a synchronous array system is limited by the

problem of distributing the system global clocks. For example the largest physical

size of an RPAP array is limited at 256 x 256 = 65K. Algorithms represented

by Data Flow Graphs (DFG) can be mapped into a DDVA array. However, the

DDVA architecture is poorly devised by using expensive PEs for the routing.

Chapter 2. Massively Parallel Computmg Systems
	

M.

The RAP represents another approach to implement arithmetic algorithms in

hardware. An algorithm is firstly decomposed into such a level that all arithmetic

operations are supported by the available basic arithmetic processing units in the

RAP array. The RAP interconnection network is then configured to the corre-

sponding data dependency of the algorithm at this level. The RAP is designed

with synchronous system timing control. This also imposes difficulties on the tim-

ing schedule every time the configuration is changed and always limits the system

performance to the worst case critical path in a configured RAP.

DDVA and RAP have some common properties. They do not need large local

memory allocation to their PEs because data is processed on-the-fly instead of

sitting in PEs. They can significantly reduce memory access traffic which only

happens when they read input data and output final results. Although the bit-

serial processing principle is most commonly adopted, it can be seen that partially

bit-serial and partially bit-parallel (a PE processing 2 bit in parallel) is a way

of further increasing system performance. The RAP uses 4-bit partial parallel

arithmetic units, a DDVA PE and the PE in [123] process 8-bit operands, and an

RPAP virtual PE can process operands of any word length up to the total number

of physical bit-serial PEs in an array.

FPGAs are not particularly developed for parallel processing tasks. The major

target of FPOAs is fast implementation of designs which otherwise have slow

design turn-around time if they are to be implemented in gate arrays or as ASICs.

Xilinx's LCA and Algotronix's CAL are two typical representatives for FPGA

architectures. The LCA is designed with very rich routing resources and relatively

complex functional cells. The CAL consistently uses an array of simple cells which

can be configured to perform either a logic function or data routing. There are no

other routing resources in a CAL array. One of the criteria for FPGA systems is

the equivalent gate count to a conventional gate array by ignoring configuration

logic and the percentage of the gate utilisation because some of the blocks may

not be routable when an algorithm is embedded. In general, both systems are

Chapter 2. Massively Parallel Computing Systems 	 39

similar in these two aspects for a given algorithm. However, it is much simpler to

map an algorithm into a CAL. But a CAL can be slower than an LCA because

there are fast routing resources, such as long lines and direct connections, in the

LCA while a long distance routing in a CAL must go through a series of cells.

The CAL is designed with synchronous system timing control. The worst case

routing delay can restrict the system running at very slow speed. FPGAs are

widely accepted nowadays, as is the technique to set the system configuration

by using static memories. Theoretically speaking, any complex systems can be

constructed. from FPGAs. In practice, a complex system requires many FPGAs

where synchronous system timing difficulties will restrict the size of the system to

be built. The CAL is a suitable candidate for bit-level parallel processing tasks.

Fault-tolerance is a very important issue in massively parallel processing array

systems. This is only considered in the MPP design which uses a very simple

group redundancy scheme and parity error detection for memory faults. The

CM-2 is also designed with error detection and diagnostic logic to improve the

system reliability. In configurable systems, such as FPGAs or DDVA and RAP

where irregular applications are to be embedded, a fault-tolerance technique called

graceful degradation [29] can be used. Graceful degradation does not try to recover

a system's size to its originally intended as redundancy techniques do; it simply

discards faulty PEs and make use of the rest of good PEs in the system. The

system is rendered unusable by the graceful degradation technique if there is no

way to route around a faulty PE. This may happen when there are too many

faulty PEs in one fault cluster or the routing logic around the PE is faulty.

Chapter 2. Massively Parallel Computing Systems 	 40

2.12 Impacts on Configurable Hardware Algorithms

We shall discuss impacts of these typical systems on the development and design

of our configurable architecture for hardware algorithms. The problems in these

existing systems that we try to solve in our approach are also illustrated.

2.12.1 Circuit Switching vs. Packet Switching

Apart from the CM, which uses the packet switching technique for its router

network, all the rest employ various circuit switching networks. One of the ad-

vantages of packet switching is that logical data routings are localised and time

dependent. Since every packet contains a complete message of the destination

address and data to be routed, a packet can be easily relayed from source through

physical paths segmented by packet switches, to the destination. A packet switch

is capable of temporarily storing a packet, determining its immediate next relay

stage, and transmitting the packet to it. Logically, each packet only occupies one

segment of a physical communication path with two packet switches on its ends.

The physical path can be released for the routing of another packet every time

a previous packet is absorbed by a packet switch. Therefore, in a packet switch-

ing network, each packet has a logical routing path, and all of the packet logical

routing paths are overlapped on one physical network either simultaneously or

sequentially in time. Hence there is much less network congestion possibility in a

packet switched network than in circuit switching networks limited by the avail-

ability of physical network routing resources. A packet switching physical network

does not necessarily represent any application data dependencies.

In circuit switching networks, instead of holding routing information which

flows with data in packets, data routing controls are all fixed into the physical

network. Every physical path is uniquely assigned for one source to destination

communication. Thus enough physical communication paths must be provided to

meet application requirements. Once set, a circuit switching network will surely

Chapter 2. Massively Parallel Computing Systems 	 41

represent the data dependency of a particular application. It is a common prac-

tice to sacrifice some PE resources to gain more routing resources if there are

congestions in a physical network.

Packet switching networks are very flexible and have an excellent dynamic

routing capability for the fairly wide range of applications with completely dif-

ferent data dependencies on top of a limited number of physical communication

paths. Although the number of physical communication paths has been kept min-

imal, the complexity of the packet switches is much higher than circuit switches.

Therefore, the packet switching technique is a favorite choice for general purpose

supercomputing systems. On the other hand, the systems illustrated in previous

sections are mostly special-purpose-oriented, it is important to design the archi-

tectures as simple as possible to keep the system costs under control. Therefore,

circuit switching networks are overwhelmingly used in massively parallel systems.

The circuit switching technique will be adopted in the design of our config-

urable architecture for embedding algorithms because of its simplicity.

2.12.2 PE local memory

As we analysed in the last section, a relatively large addressable local memory is

required in a PE in array architectures for applications with regular data struc-

tures which involve minimum data movements when they are processed. However,

DDVA, RAP, LCA, and CAL are targeting at different types of algorithms that

are irregular, computation intensive and have substantial data movement but not

data intensive when they are processed. Hence these systems put more emphasis

on the network routing capabilities and the PE functionalities. Because the target

applications are not data intensive, only some local registers are required in a PE

to hold a small amount of the intermediate data generated during operations.

We target our configurable architecture for irregular and computation intensive

algorithms. Data will also be processed on-the-fly when they flow through the

Chapter 2. Massively Parallel Computmg Systems 	 42

system. Therefore, the PE in our design will only need a small number of registers

instead of a large block of local memory.

2.12.3 PE Degree

A PE degree DPE is defined as the number of neighbours with which a PE is

directly connected. The DPE in a blank architecture is called physical DPE; the

DPE in a system embedded with an algorithm is called logical DPE. The logical

DPE in a system may differ from its physical DPE. The physical DPE of each

PE in a system can also be different, for example, the physical DPE on edges

and corners of an array is often different from that inside the array. DPE is an

important factor in circuit switching networks because it represents the number

of channels which are available for a PE to communicate with others.

The most popular physical network topology is the nearest neighbour in-

terconnection. However, there are still many variations of PE degree, for in-

stance, one PE can be connected to 2, 3, 4, 6, 8 immediate neighbours (physi-

cal DPE = 2, 3,4, 6, 8), in two dimensional arrays. Horizontal rows and vertical

columns of broadcasting buses, as used in DAP and DDVA, are often added for

fast global data transfer or improvement of interconnection flexibility. Hierarchical

interconnections can also offer a great deal of flexibility for an architecture. There

are two forms of interconnect hierarchies: the first consists of a set of different

interconnect networks such as local connections, short and long lines in the LCA,

and Boolean n-cube and NEWS grid in the CM; the other consists of the duplica-

tion paths as used in the AAP. An effective DPE can be found in the case of both

buses and hierarchical interconnects. Generally speaking, the higher the physi-

cal DPE is, the more expensive but also more flexible will an array architecture

be. For systems targeting at image and matrix processing applications, physical

DpE S 8 will usually be sufficient. For configurable systems, the choice of a phys-

Chapter 2. Massively Parallel Computing Systems 	 43

ical DPE is a compromise among implementation cost, system configurability and

the percentage of PE utilisation.

Although the physical DPE of an architecture can be fixed, it is usually possible

to get a logical DPE either smaller or larger than the physical DPE. Examples

can be found in most of the architectures in previous sections.. In figure 2-1(c),

the CLIP's physical DPE = 8 while its logical DPE can be set as (2, 4, 6, 8). The

physical DPE = 3 on the edges of the MPP can be logically set to DPE = 2 or 4

as depicted in figure 2-3(b). The logical DPE of CM, AAP, DDVA, RAP, RPAP,

LCA, and CAL can be very flexible in that non-uniform DPE in an array may

even be possible by merging a group of PEs or cells together. This capability is

required when an irregular algorithm is to be embedded in these systems.

The routing structure used in the AAP has a very good adaptability at a

reasonable cost and still keeps a very good system regularity. We shall use a

similar approach to design a PE with a routing part and a function processing

part. The idea of our approach is to connect an array of the routing parts to form

a two dimensional configurable array network, and a processing part is attached to

each routing part to form a processing array. The physical DPE will be determined

by the design of the routing part which will be discussed in detail later in this

thesis.

2.12.4 PE Functionality

A PE can be viewed as a much simplified version of a complex microprocessor.

The simplification is often done in several ways:

Elimination of the control path

The control path in a normal microprocessor can consume more than half of its

design complexity [2]. The major role of this control path is instruction fetching,

decoding, sequencing, and the control of other system level signals, such as in-

terrupts and bus access. Since most massively parallel systems are based on the

Chapter 2. Massively Parallel Computing Systems 	 44

SIMD principle, there is no necessity to give each individual PE such a strong

autonomous-control capability. A single central control unit, which is normally

external to an array, will be able to meet most of the array control requirements.

Instructions broadcast from the central control unit to the array are usually at the

lowest level which can be directly executed by the data path in PEs. A PE can

have some degree of low level autonomy, such as disable/enable or local address

modifications. This is often desirable to increase the adaptability of a system to

slight variations in applications. For example, the disable/enable register in CLIP,

DAP, MPP. However, an AAP PE is capable of more complicated local modifi-

cations to globally broadcast microinstructions, and a DDVA PE uses a complex

microprogram control unit similar to a conventional control path, which converts

instructions in a PE local memory into sequences of control signals. In config-

urable systems, such as RAP, LCA, CAL, instead of concurrent instruction flow

and data flow, "instructions" are loaded into control memories in each PE a priori

which statically set both network communication patterns and computations to

be performed. There will be computation data flow only in the normal operation

mode. A new configuration has to be loaded to run a new algorithm.

Because it is not intended to implement dynamically programmable hardware

algorithms at this stage, the simple "configure then run" two phase approach

used by RAP, LCA and CAL will also be used as the operation principle for

our configurable architecture. The network and PE functionality are set in the

configuration phase. There will be no global instruction broadcasting in the run

phase.

Low level computation capability

The most commonly supported logic functions in a PE are the full set of all 16

Boolean functions with two input variables, or a full adder for arithmetic opera-

tions. A separate logic unit and a full adder can be found in the CLIP and MPP

PE. Only a full adder is used in the DAP PE. AAP, CM, and DDVA use conven-

tional ALU designs. A CAL cell can only perform 16 Boolean functions, while an

Chapter 2. Massively Parallel Computing Systems 	 45

LCA cell is designed for Boolean functions of up to 5 input variables. However, the

RAP, exceptionally, has a pooi of arithmetic computation elements for additions,

subtractions, multiplications, and divisions for calculating arithmetic formulas.

Another special array system, described in [78], is designed without the ALU in a

PE. Instead, a sophisticated table-look-up mechanism is used to implement all of

the computation and routing functions.

The configurable hardware algorithms to be developed are mostly arithmetic

oriented, but also require to perform some simple logic functions such as AND,

OR, XOR occasionally which is different from the RAP. At the same time, the

system regularity is to be kept. Therefore, a configurable hardware operator will

be designed. It can be configured to perform some basic arithmetic and logic

functions.

Bit-serial operations

Most of the existing massively parallel processing systems are designed based on

bit-serial word-parallel (BSWP) principles. This choice is again largely determined

by technology limitations rather than application requirements, since most data

being processed are multi-bit (except binary images). One advantage of bit-serial

processings is flexibility in choosing an appropriate word length and precision at

much lower hardware cost than the bit-parallel processing principle. For example,

it usually takes 3 clock cycles to process 1-bit in a PE (retrieve operands, process

them and store results). In a conventional single CPU sequential computer, data

are processed in the bit-parallel word-serial (BPWS) principle. It usually takes 5

clock cycles (instruction fetch, decode, access operands, operation code execution,

store results) to complete one arithmetic instruction. Assuming that these five

operations can be carried out in a pipeline, the processing time depends on a fixed

pipeline latency and the number of data and instructions fed into the pipeline.

For example, 1K cycles (pipeline latency is not considered) are required to process

a set of 1K 32bit data in a BPWS computer. It takes only 3 x 32 = 96 cycles to

complete on an 32 x 32 BSWP PE array (plus some extra cycles for data access).

Chapter 2. Massively Parallel Computing Systems 	 46

The performance of a bit-serial PE array mainly depends on the width of the data

word (16bit, 32bit or 64bit) and the number of data set. Although fast carry

techniques are used in BPWS processings, clocks can run at a faster speed in the

simple bit-serial PEs than in a complicated 32bit CPU. The bottle-neck between

the CPU and other parts in a sequential system can also set a restriction on the

overall system speed. For example, a Digital Alpha processor [23] may run at a

175MHz clock, but systems built with one Alpha CPU can not achieve substantial

system performance improvements because of other slower devices around the

CPU. This simple comparison also shows that the speed up factor by the BSWP

processing principle also depends on the amount of data that can be processed

concurrently.

With advances in technologies, it becomes practical to implement partial bit-

parallel and word-parallel (BPWP) PE arrays, such as the 4-bit serial arithmetic

elements in the RAP and the 8-bit serial PEs in the DDVA. The BPWP processing

principle can still keep the advantages of the BSWP processing principle, but

improve the performance by a few factors. It now takes only 3 x 8 = 32 cycles to

process the same set of 1K 32bit data on a 4-bit partial BPWP PE array.

A bit-serial programmable PE for a configurable BSWP processing array will

be designed for this project to demonstrate the viability of our ideas. A 4-bit

partial BPWP PE having the same functions as this bit-serial version is intended

to be developed for a partial BPWP array in the future.

2.12.5 System Timing Control Strategies

Since most of the massively parallel processing systems are designed with system

level synchronous timing control, this inevitably sets an upper limit on the physical

sizes of these systems that can be built without timing problems. Even within such

a limit, it can be a difficult task to configure a system with global time constraints.

The performance of a configured system has to be set by the worst case delay in

the system. Asynchronous timing control without clocks at the system level offers

Chapter 2. Massively Parallel Computing Systems 	 47

a prospective way to build a true scalable architecture. As will be illustrated later

in this thesis, once a proper communication protocol and interface are designed,

it becomes an easy task to scale a system up or down. The performance of an

asynchronous system will be data dependent and can be measured on average.

However, we also appreciate the advantages brought by the synchronous control

method. Therefore, a timing control structure with a Globally Asynchronous

communication network and Locally Synchronous computation modules (GALS)

is proposed and implemented in this thesis.

Our approach is different from the DDVA architecture, which is based on the

data-driven operation principle, in that we try to construct a simple and general

GALS interface between a PE and a proper interconnection network. This GALS

interface can be used to construct a GALS scalable system by connecting many

existing synchronous logic modules together. But we also use data flow graphs

(DFG) as an intermediate representation for algorithms because a DFG clearly

describes a data flow procedure when data are processed on-the-fly in our hardware

algorithms.

2.13 Summary

A wide diversity of typical massively parallel computing systems have been exam-

ined in this chapter. Most of the systems discussed have already had VLSI and

system implementations. All these analysed systems demonstrate considerable in-

terests in hardware algorithms. The emphasis of our analysis and comparison was

on the interconnection networks, the PE functionalities, and the timing control of

these systems. Efforts were made to find the common properties of configurable

hardware algorithms. Problems in the design and application of these systems

were also identified. In the rest of this thesis, a configurable architecture based

on a parallel computation threads model and a GALS system timing control ap-

proach for algorithm embeddings will be proposed, and a VLSI implementation of

such an architecture will be presented.

Chapter 3

Algorithmically Configurable

Architectures

We have noted that many massively parallel processing systems are developed

by the application demands. Therefore people tend to design an architecture

more or less based on the empirical knowledge from the target applications. The

result of this approach is often a special-purpose system which suits the object

applications well. In our approach, we shall first look at the abstract theoretical

computation and architecture aspects at the top system level, then we start to

design our configurable array architecture for algorithm embeddings. This top-

down approach will establish a clear guideline that we shall follow in the design

of our target system and identify the problems and objective. As a result of this

approach, a computation model, an architecture template, and a system level

control strategy are established in this chapter.

3.1 Towards Algorithmically Structured Systems

As it has already been analysed, the performance of computers with the von

Neumann model which ignores any algorithmic properties for simplicity and low

system costs is fundamentally limited by the single CPU computation and the

CPU—memory communication bottle-neck. All algorithms have to be designed in

48

Chapter 3. Algorithmically Configurable Architectures 	 49

a sequential way to allow only one operation at each step to go through the single

CPU bottle-neck in these von Neumann computers.

It becomes clear in these massively parallel processing systems, described in

chapter 2, that the development of algorithmically structured architectures is an

effective solution to the inherent bottle-neck in the von Neumann computer model.

Algorithmically structured architectures achieve high performance in three major

ways:

Processing an algorithm with an array of PEs in parallel instead of a single

fast CPU;

Setting up an interconnection network to connect these PEs to match the

data and computation dependency of the algorithm so that any parallel prop-

erties of the algorithm are explicitly exposed. In contrast to the sequential

algorithms for von Neumann computers, it is often required to flatten the

algorithm to expose its parallel properties maximally;

Min.imising the communication traffic between the main system memory and

the algorithmically structured computation array.

The process of flattening an algorithm and setting up an array system to run the

algorithm with the same data and computation dependency is called algorithm

mapping or embedding. The system is said to be algorithmically structured by

this algorithm mapping process.

It is worth noting that these systems are mostly used as attached single-tasking

systems to a host computer of von Neumann type. This is because the physical ar-

chitecture of these systems can only be algorithmically structured to one particular

logical architecture at a time that will uniquely match the data and computation

dependency of one algorithm. Computers based on the von Neumann model are

still very efficient in the multi-tasking and time-sharing applications, particularly

for the user interface.

Chapter 3. Algorithmically Configurable Architectures 	 50

Hence, principles of algorithm designs for algorithmically structured architec-

tures differ very much from those for sequential machines. From the algorithm

point of view, an algorithm for the solution of a problem should be designed in

such a way that the inherent parallel properties of the problem will be exposed as

much as possible so that these properties can be effectively made use of when the

algorithm is mapped to its hardware counterpart. It is still possible that differ-

ent algorithms may be found to solve the same problem, and different hardware

systems can be implemented for one algorithm. From the architecture point of

view, there are two ways to design algorithmically structured hardware. One is

special hardware implementation by which an algorithm is first carefully designed

and verified, then faithfully and exactly implemented through circuit design. It is

important that algorithms designed for the special implementation are flattened

enough so that hardware system designs are straightforward and can be easily

tested. The other is to embed algorithms into an existing system. The architec-

ture of the system is designed with some degree of adaptability to variations in

applications so that the system can be algorithmically structured to run a partic-

ular algorithm.

In between algorithmically speciaiised architectures, which are tailored for one

or a family of closely related algorithms, and general purpose systems, there are

restructurable, reconfigurable, and programmable architectures. The system con-

figuration (both functionalities and interconnections) of restructurable architec-

tures can be set a priori by using special laser/fuse techniques [112,39,25] or

PROM/EPROM writing mechanisms [105,56,36]. The usage of restructurable

architectures is limited in that they are not reusable because of the nonrecov -

erable configurability, and thus they are not suitable for large scale algorithmi-

cally structurable architectures. Restructurable methods are often used in the

RAM/ROM design to improve yield and in PROMs for permanent down-loading

of code. Configurable architectures can be physically and repeatedly configured

to various topologies. Logical configurations are implemented by changing actual

Chapter 3. Algorithmically Configurable Architectures 	 51

physical paths for data propagation through a series of circuit switches set open

or closed either externally or internally, by changing the content of the static

switch controls. There is intensive research carried out on this class of architec-

tures. However, many architectures are proposed from the fault-tolerance point

of view, and some specifically for systolic and wavefront arrays [85,29,79,108,61,

102,119,113,141,77,62,124,12]. It would be nice if the results achieved in fault-

tolerant research could also be applied and further developed in algorithmically

structurable architectures, so that flexibility, reliability and survivability could be

integrated into one system. The flexibility of programmable architectures is often

realised by methods similar to those used in programming, such as addressing,

bussing, register/memory transfer [7], and packet-switching [49], instead of con-

figuration via circuit switching. There are no physical changes in wires, paths, and

switches. Thus, programmable architectures are logically configurable. Because

of the complicated control required, the complexity of programmable architec-

tures is higher than configurable architectures. A configurable architecture is an

ideal compromise for application adaptability and moderate cost although there

will be some performance penalties because of the delays caused by configuration

switches. This delay penalty can be overcome by parallel processing performance

advantages from hardware algorithms. The configurable approach also fits the

objective of this project: the development of a high performance algorithmically

structurable system which can be used as a testbed for high level algorithms or

an attached system to perform computation intensive tasks for a host computer.

3.2 Hardware Algorithms

Generally speaking, a hardware algorithm is a hardware system where there is

a direct dependency correspondence to the data, control and computation de-

pendency of an algorithm described in another way, for example in a Data Flow

Graph. A hardware algorithm system is represented as a pool of connected hard-

Chapter 3. Algorithmically Configurable Architectures 	 52

ware operators H,. Each connection forms a communication path and represents

a dependent relationship between two connected H,s, one of which serves as a

data source and the other as the destination for data output from the source H,.

There may also exist open connections to an H.P . An open connection has one end

connected to an H, and the other end open, which can be connected to other ex-

ternal systems. Hardware operators are the hardware counterparts of a set of arith-

metic and logic operators, such as +, -, x, -, NOT AND OR XOR, comparator

or even more complex functions such as yr-, logarithm, and exponent. Any com-

plex computations can be decomposed into a set of orderly connected lower level

H,s given that a group of sufficient low level H,s is available. An He,,, can also

be regarded as a function stored in circuits called function caches.

A hardware algorithm can be mathematically defined as a mapping function

- HA = {F : {O, 1} - {O, 1}m}, where F may consist of a set of subfunctions

fi = {f : {O, l}" - {O, 1}, i = 0, 1,2,• . . , m}. The domain {0, l} may be logical

o and 1, true and false, or binary numbers. Each mapping subfunction f, no

matter how simple or complex it may be, is completely implemented in hardware

as a hardware operator, i.e. H, = {f, i = 0, 1 1 2,. . . , m}.
O

Since a complex function can always be decomposed into a set of ordered sim-

pie functions, it will be very useful to construct a finite set of primitive functions,

which are chosen from a set of most frequently used essential functions. An es-

sential function is a function from which outputs can be obtained through only a

single logical transformation step from the values of the input variables, without

caring about the internal detailed physical steps. Accordingly, a finite set of hard-

ware operators P = {PI : {0,1}" - {0,1}, i = 0,1,2,. •,p} called primitive

hardware operators (H,,,), corresponding one for one with the selected primitive

functions, can also be defined. A primitive hardware algorithm system can be

built with this set of H,,,,. An H of higher complexity required by an algo-

rithm can be constructed from this finite set of primitive HP
.P

s. Thus, a primitive

hardware algorithm system can be represented by a primitive system construction

Chapter 3. Algorithmically Configurable Architectures 	 53

graph (SCG) in which nodes represent primitive hardware operators HPOP and

edges correspond to the connections among Hs.

The cost, system complexity, and the requirement for regular architectures

suggest that it is not viable to build a system with arbitrary H,,s for algorithm

embeddings. A compromise approach is to select such a set of primitive HPOP s

with reasonable and similar complexity to keep the system cost, complexity and

regularity under control. Any high level SCG can be initially drawn based on

the normal H,s and then refined to a primitive SCG in which only HPOPs in the

primitive H set P are used. In this way, algorithms of any complexity can still

be mapped into a primitive hardware algorithm system provided that there are

enough HPOP resources.

3.3 Computation 'Architectures

Architectures for configurable hardware algorithms can be constructed with a set

of hardware operators H, = {H,, : domainl1 - domain2, i = 1, 2, 3,.- . , n}
O

which are connected by an interconnection network. Either the connection among

H,s or the functionality of H,s or both can be designed configurable in order to

embed the data, control and computation dependency of a particular algorithm.

3.3.1 Dimensionality and Connectivity

The network in which hardware operators in a system are connected can be anal-

ysed from two aspects: dimensionality and connectivity, (V, C). Dimensionality

V is a base vector upon which all of the elements in the system can be log-

ically addressed: V = (00 , x, x 21 - - , Xd). Connectivity C is a transformation

that gives the addresses of some elements with which an element addressed by

Y = (Yo,Y1)Y2, ,y) is directly connected: C = {C(Y) I Y --- NI, N =

Chapter 3. Algorithmically Configurable Architectures 	 54

(

0 	1 	2 	d nd , n, n, • , ne,), I = 1,2,. • , k, j 	0, 1,2 1 • , mj. Thus, the total number

of neighbours of the element Y is 	m1 . The connectivity of elements on bound-

aries may be different from that inside a system. C may also be different due to

different orientation of V and network routing/layout-plan. A transformation can

be found if merely V is rotated. If elements in an array are not connected on a

regular basis, the C of each element may vary one from another.

This concept can even be extended to a conventional single processor sys-

tem which can be viewed as a point in the space domain and as a linear array

in the time domain. The processor is shared by multiple tasks in the time do-

main that is divided into small segments of non-overlapped periods. A traditional

processor will process only one task in one time segment. Pipelines are used ex-

tensively in modern processors where multiple operations can be carried out in a

pipeline: This can still be modelled by a two dimensional array in the time do-

main. A linear array of connected n elements is one dimensional system, IDI = 1.

Each element inside the linear array is connected only with its immediate pre-

vious and next element while there are two boundary elements each of which is

connected with only one element in the array i.e. V 1 = x, C2 = { C1 (x) I C1 =

x + 1, i = 1, 2 z = 2 1 3,... , (ii — 1)}. Boundary conditions sometimes are differ-

ent. In the above example, boundary conditions are C = x + 1, if x = 1, and

C = X — 1, if x = n. There will be many different possible topologies if a set of

hardware operators are to be arranged in a two dimensional space, V 2

For example, C4 {C(x,y) I (x,y)
Cy)

 [(x + l,y), (x,y + 1)], i = 1, 2, 3, 4}
C1 (z,y)

is a mesh. C8 = { C1 (x,y) I (x,y) —* (z ± l,y ± 1), z 	1,2,3, .,8} rep-

resents an array of 8 nearest neighbour connections extended from C4 . C6 =

(zy)
{C 1 (x) y) I C, (x,y)

C
—* [(x — l,y — 1), (x + 1,y + 1)], i = 1,2} is a hexago-

nal array. A four level complete binary tree can be simply laid out as a H-tree:
C'(a,y) 	 C(x,y) 	 .C(z,y)

Cif_ tree = {C1 (z,y) I (x,y) —p (z,y±2), (x,y) — (x+2,y), (x,y) -*

(x, y ± 1), (x, y) I I (x ± 1) y), i = 1, 2}. A cube in the three dimensional

space V 3 = (, y,z) can be expressed as C3 = { C(x,y,z) I (z,y,z) -p [(z,y±

Chapter 3. Algorithmically Configurable Architectures 	 55

1, z), (x + 1) y, z), (x, y, z ± 1)], i = 1,2,• , 6}. Most of the systems built so far

are in the IDI = 2 space. There are also attempts to construct real IDI = 3 systems

by developing novel three dimensional semiconductor processing techniques [45].

For systems in higher logical dimension spaces (IVI > 3), a common approach is to

map the space with IDI > 2 into a planar space IVI = 2 which is often inefficient

in hardware utilisation because of the higher IC I.

In configurable systems, the placements of H,s are fixed with an initial in-

terconnection network. The initial physical dimensionality and connectivity of a

system will certainly affect the adaptability and efficiency of algorithm embed-

dings. The logical dimensionality and connectivity of a configured system for an

algorithm are by no means the same as the initial physical ones. An architecture

with unconfigured initial physical dimensionality and connectivity is called a blank

architecture.

There is still a long way to go before three dimensional processing technologies

can be practically used. Linear arrays are not suitable for embedding higher IDI
structures. Therefore a IDI = 2 configurable array will be designed. The only way

to increase the adaptability of a two dimensional array is to increase IC l for each

element in the array. If there is a total of N elements in an array, ICI (N - 1).

A completely connected system, where ICI = N - 1, is too expensive to implement

for a large N. We shall choose a proper C in conjunction with the establishment

of a computation model.

3.3.2 Configuration Methods

From the configuration viewpoint, two kinds of configurable hardware algorithm

system are identified.

• Statically configurable systems: in which the physical configuration of a

system, e.g. the embedding of an algorithm, can only be done in a sepa-

Chapter 3. Algorithmically Configurable Architectures 	 56

rate configuration phase before the execution of the algorithm, or after the

completion of the execution of an algorithm. Configuration data are loaded

a priori and cannot be changed either partially or completely during the

execution of an algorithm. Statically configurable systems are simple and

not prone to hazards caused by configuration actions. Most of the existing

flexible systems for hardware algorithms are of this type.

• Dynamically configurable systems: in which partial or complete configura-

tion of a system can be done dynamically during the execution of an algo-

rithm. A dynamic configuration approach can be adopted in both logical

(programmable) and physical configurable architectures. Dynamically con-

figurable architectures are very suitable for running multiphase algorithms

whose data and computation dependencies may be different from one phase

to another. However, it is expensive and difficult to design dynamically con-

figurable systems. Extensive fault-tolerance techniques must be used in such

systems because they are prone to malfunctions. Architectures proposed in

[90,81,125,49] are designed for dynamic configurability.

To run an algorithm in a statically configurable system, three distinct phases

are required. The mapping phase is a procedure that takes an algorithm speci-

fication either in a high level programming language form or an algebraic form,

and converts, under a set of constraints, the data and computation dependency

of the algorithm into a configuration data stream which sets the logical network

topology and functions of H,s in the target architecture. The configuration phase

is an algorithm embedding process which loads the generated configuration data

stream into the system and sets a blank system to a specific logical architecture to

run the algorithm. The actual execution of the algorithm will be carried out in an

execution phase which is initiated when the computation is needed and all of the

inputs to the computation are ready. The only interaction between a configured

Chapter 3. Algorithmically Configurable Architectures 	 57

system and its host computer or other external devices is data inputs and results

output.

The execution of algorithms in dynamically configurable architectures is much

more algorithm-dependent. After the initial configuration of an architecture and

the start of the execution of an algorithm, the logical architecture of the system at

any time point may be determined by the results generated before this time point,

or by globally broadcast instructions, or there may be a special configuration cycle

between two consecutive phases during a multiphase execution.

The statically configurable method is chosen for our configurable hardware

algorithms because the emphasis of this research is on the architecture issue instead

of dynamic system scheduling, and we are targeting those applications which are

mostly single phased.

3.4 Computation models for Hardware Algorithms

Designs of hardware algorithms can vary over a very wide range of applications. A

general algorithmic approach is preferred over the empirical architecture approach

for the design of our configurable hardware algorithms. In this algorithmic ap-

proach, a basic computation model is defined as a bridge between an architecture

and applications. This computation model is an abstract representation of the ar-

chitecture. It also sets an abstract algorithmic structure that a specified algorithm

is transformed before it is embedded. This approach is most likely to get the best

from both the architecture and algorithms. There are some computation models

established for the design of hardware algorithms. Some of these models can be

used generally in many different applications. Some of them, however, can only

be used under certain special conditions. Systolisation of algorithms is a typical

example of such an approach.

Chapter 3. Algorithmically Configurable Architectures 	 58

3.4.1 Combinational Hardware Algorithms

This is the simplest type of hardware algorithm which can be implemented simply

in pure combinational logic. In this kind of system, there will be no timing and

clocking controls over signal and data flows. Output data will emerge and become

steady after a finite period of delay (latency) once input data are validated. An

n-bit combinational adder is such an example. H,s implemented in combinational

logic are called combinational Hs.

3.4.2 Systolic Algorithms

Systolic algorithms are also frequently called systolic arrays, referring to the mix-

ture of a computation model and an architecture model. Since this model was

proposed by Kung in late 70's [68,69], there have been enormous efforts made

to systolise many application algorithms, and various systolic systems have been

designed and implemented for these algorithms. The systolic model, as depicted

in figure 3-1, was named after the blood circulation system in a human body. The

memory corresponds to the heart, PEs are similar to organs, and communication

channels like blood vessels. Data are circulated from the central memory to PEs,

processed by consecutive PEs either in linear or two-dimensional forms, and only

final results are returned to the central memory. All of the data movement is

pulsed by a central global clock in a lock-step manner analogous to the blood flow

pumped by heart-beats.

The function of a PE can be expressed as Y = FPE(, X) where 4 is the

synchronisation clock vector, X = (x0 , zi, x21.
)
x) is a set of inputs to the PE,

and Y = (yo) Yi, Y21 , Ym) is a set of outputs from the PE. The central memory

accesses can be expressed as D = MR(, A) and Mw(A) = D() respectively,

where A = (a 0 , a 1 , a2 ,• . , a1) is the memory address and R indicates a memory

read and W a memory write operation, D is the data to be read from or written

Chapter 3. Algorithmically Configurable Architectures 	 59

Figure 3-1: A linear systolic computation model

into the memory at address A. Then, systolic computations performed in a linear

array of (n + 1) PE's can be represented as follows:

Y = F(,•• 	 (3.1)

Mw(A 2) = Y() 	 (3.2)

Note that function 3.1 is not a recursive form since each PE may perform

different operations or perform the same operations on different sets of input data

simultaneously. The essential principle behind this computation model is that

once a datum is retrieved from the memory, it and its relevant intermediate results

will be used and reused as much as possible, while they are flowing through the

systolic array, by all of the operations which need them as operands, without any

further access to the memory until final results are obtained. The systolic model

enables a system to achieve a sustainable high computation bandwidthwhile only

moderate I/O bandwidth is required. Instead of exclusive memory read and write

in the conventional single memory single CPU model, it is necessary to be able

simultaneously to read from and write to the memory module (at different address)

in the systolic model. The systolic model is particularly suitable for computation

intensive algorithms with regular data structures. It has been demonstrated to be

more efficient to process matrices in this on-the-fly mode than processing matrices

sitting in PE local memories as in DAP and MPP.

Chapter 3. Algorithmically Configurable Architectures 	 60

The systolic model is different from simple pipeline processing techniques in

that it can be used in a multi-dimensional system with multiple data-flow direc-

tions. Central memory access is strictly not allowed for any intermediate data.

3.4.3 Computational Wavefronts

Because the systolic model is synchronously timed, it is very important to keep

the correct data flow pace at each PE so that the right data can encounter each

other at the right time and in the right PE with the right control. Great care must

be taken in the design and implementation of practical systolic systems to ensure

this strict lock-step time requirement is satisfied. Clock skews are one of the major

factors that may cause malfunctions [31]. It is a common practice to distribute

clocks with great care and slow down clocks at the expense of reduced performance

[74]. Even worse, these measures sometimes cannot solve the problem caused by

timing mismatch [46,135]. To overcome these synchronous design difficulties, a

computational wavefront model has been proposed [73,75,72,76].

The wavefront model is based on wave propagation phenomena. A wavefront

propagation example is waves in water where vibrations from a source will gener-

ate a wavefront immediately around the source; this wavefront will again activate

another wavéfront next to it and so on. Even if the source stops vibrating, wave-

fronts should continue to propagate further away from the source provided that

there is no energy dissipation. Therefore, wavefront propagation is naturally an

asynchronous model. Figure 3-2 depicts diagonal computational wavefronts in a

two dimensional computing array where the central control, acting as the source

of vibration, is located at the upper-left corner of the array. The central con-

trol initialises wavefronts and issues instructions to the array. One computational

wavefront w can be generated along a diagonal of {PE1, : i + j = w, i,j =

0 7 1, 2, . .. , N, w = 0 1 1, 2,• . , (2N - 1)} if and only if there are no computations

existing in the w + 1 wavefront and computations in the w - 1 wavefront are

Chapter 3. Algorithmically Configurable Architectures 	 61

on-I I MEMORY

0 '

'//

Figure 3-2: Computational wavefronts and their propagation

all completed. Thus the propagation of computational wavefronts is completely

locaiised by asynchronous wavefront generation.

Note that this simple wavefront model strictly confines only one "source" and

one set of regular dependent wavefronts to exist, so that interferences among

different set of wavefronts can be avoided. This is also the fact which restricts the

application of this model to only a very limited range of problems which can be

solved by the propagation of regular computation wavefronts upon regular data

structures.

Because the wavefront computation model does not use global clocks to control

the data movement, data flow will be determined by states in PEs and wavefronts.

A PE state SpE is determined by its input state s, output state s 0 and computation

state s. The input and output state in a PE depend on whether there are valid

data presenting at its inputs and outputs respectively. A PE's computation state

reflects whether the main functional block in the PE is busy or idle. So, SPE has

eight possible states as shown in table 3-1. It must be ensured that all PEs on

the same wavefront w have the same state to propagate a regular wavefront. This

can be expensive to implement. Hence the state of a wavefront w can be defined

as S, = 5PE

Chapter 3. Algorithmically Configurable Architectures 	 62

Si Sc S, 5PE

100 I

010 C

001 0

1 1 0 I+C

1 0 1 1 + 0

0 1 1 C + 0

1 •1 1 I+C+O

0 0 0 idle

Table 3-1: PE states, I = INPUT, C = COMPUTE, 0 = OUTPUT

The function of each PE on a wavefront w can generally be defined as Y =

FPE(W, X, M(A)), where X = (x 0 , x 1 , x 2 ,• , x,.), and Y = (i/o, i/i, 1/2,") ym),

M(A) is the memory access operation at address A = (a o , a1 , a 2 ,•• , ak), W is

determined by the state of (w - 1), w, (w + 1) wavefronts respectively, W =

S(s_ 1) Sw,

One diagonal computational wavefront can be described as a set of functions

conditioned by the computation status of itself, and its previous and next wave-

front:

Fw = {FPEJ : (0,1)'' w —) (01)mi

i + j = w, i, j = 0, 1,2,•• . , N, w = 0, 1,2, 	, (2N - 1)} 	(3.3)

3.4.4 Non Control-Driven Computations

Just like the global clock that keeps the pace of data flow in a synchronous system,

a central control unit in a control-driven system controls the flow of every compu-

tation step i.e. a computation will not be started until a control signal from the

Chapter 3. Algorithmically Configurable Architectures 	 63

central control unit is issued for it. The program counter in conventional sequential

computers is a typical control-driven example, where counter registers are used to

keep the current execution point and relevant information to determine what the

next step is. Control-driven computations are very common in computing systems

because it is simple to design a control schedule at system level.

When the control-driven method is applied in parallel processing architectures,

it still works well for problems with regular data structure. However, if data struc-

tures with a certain degree of irregularity are met, a control-driven parallel process-

ing system will have low execution efficiency and low, hardware efficiency because

of the idle waiting states required to match irregularities in data dependencies

with time. To overcome these difficulties, other computation driven methods have

been proposed, e.g. data-driven, demand-driven, and message-driven [5,1,136,66,

20]. All of these approaches can be described by a general firing rule: an action

(firing) will be activated if and only if a set of conditions is satisfied. In the control-

driven method, the conditions are all held and checked in a control unit and firing

signals (maybe accompanied by instructions) are issued to execution units. In a

data-driven computing system, provided that there is a set of connected function

modules, each module has a set of instructions to be executed, and the order in

which instructions are executed is data-dependent, i.e. the firing (execution) of

an instruction in a module is uniquely determined by the condition that all of

the operands required by the instruction are available and the destination for the

results of that instruction is ready to accept the results generated after the firing.

Thus condition checking and action firing are localised to each module. Concurrent

action firing in several modules can be expected. Pipelining techniques can still

be applied in data-driven systems. With the control-driven method, it is user's

responsibility to uncover inherent parallel properties of an algorithm which is of-

ten not a trivial task. The data-driven computation matches, and can make good

use of, the parallel properties of algorithms. The demand-driven computation is

similar to the data-driven principle but the condition for an instruction firing in a

Chapter 3. Algorithmically Configurable Architectures 	 64

module is a request for output data from the next module. The advantage of the

demand-driven computation is that, except for the required actions to be done,

no other unnecessary actions are activated at all. Demands are first traced from

requests for some results back to the right inputs, after which real computations

start to flow along the activated paths until the requested results are obtained.

3.4.5 Multiple Threads Computations

Besides applications with regular data structures and regular communication struc-

tures, there is still a large class of computation-intensive applications which do not

possess such regularity in their data dependencies, communication structures and

computation distribution. There are no transformations to convert them to be

processed on architectures designed for regular algorithms, neither is it possible to

fit them into computation models such as systolic or wavefront model. However,

these computation-intensive tasks still have high degrees of inherent parallelism

which can be exploited to reduce processing time.

A proper computation model, which can make the best use of parallel proper-

ties of irregular algorithms and result in an efficient embedding of an algorithm

into such a primitive configurable system in the light of irregularities, is required.

A close examination of the characteristics of irregular algorithms is carried out in

the following. As a result, a multiple threads computation model is established

for irregular algorithm embeddings.

There are three different types of irregularity in an algorithm:

Irregular data distributions. Data are distributed irregularly either in the

space or time domain. Therefore they cannot be vectorised to generate

regular data flow patterns;

Non-uniform computation distribution. Computations which can be carried

out concurrently at any step of an algorithm may be substantially differ-

Chapter 3. Algorithmically Configurable Architectures 	 65

ent from each other and distributed randomly in a parallel system. Thus,

regularly shaped computational wavefronts cannot be found at one step or

throughout the entire computation process;

3. Non-regular communication patterns. Occasional feedback, conditional ex-

ecution, and non-neighbour operand requests result in irregular communi-

cation patterns that create the toughest task for efficiently parallelising an

algorithm with the control-driven method.

In order to exploit maximally inherent implicit parallel properties in such ap-

plications, algorithms may be designed or flattened on the basis of the fine-grained

parallel processing principle which processes complex tasks with a group of simple

basic arithmetic and logic functions. This fine-grained parallel processing principle

matches exactly the primitive configurable hardware algorithm system construct

illustrated in section 3.2.

Data Flow Graphs

A data flow graph (DFG) is a very flexible, clear and yet abstract representation

for the visualisation and analysis of various dependencies in an algorithm. Its

flexibility lies in that it is very easy to divide a DFG into a set of disconnected

subgraphs or merge several DFGs into one large DFG, and the level of abstraction

of a DFG can also be easily scaled by simply merging subsets of nodes to supern-

odes of coarser granularity or by expanding a node to a subgraph composed of

nodes with finer granularity. On the other hand, it is not a difficult task to con-

vert an algorithm specified in a high level language or algebraic form to a DFG,

and then optimise or transform the algorithm based on its DFG. Thereafter, it is

relatively simple to map the DFG to a hardware system. Therefore, the data flow

graph is chosen as an intermediate representation for the analysis, optimisation

and embedding of irregular algorithms into configurable architectures.

	

Chapter 3. Algorithmically Configurable Architectures 	 66

I 	 -

Figure 3-3: The data flow graph of equation 3.5

A DFG is a tuple C = (V, E) where V is a set of vertices (often called nodes)

in a graph G, and E is a set of edges connecting a subset of nodes v e V. A

DFG is also a directed graph so that every e e E has an associated direction.

k node in a DFG denotes actions to be done to data on its input edges, and

directed edges represent paths through which data can flow and in which data are

held. Figure 3-3 is a DFG example which shows an algorithm for the solution of

a quadratic equation:

ax 2 +bx+c=0
	

(3.4)

—b+s./b2 -4ac

2a 	
z=1,2 	 (3.5)

Provided that there is a finite complete set of primitive nodes V 1, from which

any nodes of higher complexity can be constructed, then a DFG G = (V, E)

can be flattened to an equivalent primitive graph C1 = (V1 , E1), V1 9 V, by

expanding every node (v e V) A (v 0 V1,) to a subgraph C, = (V,, Es), V, ç VP

Chapter 3. Algorithmically Configurable Architectures 	 67

so that the function of the subgraph G. is equivalent to the function of node

v, F = FG,. A DFG can also be compacted to a more abstracted equivalent

form by merging subsets of nodes V C V and edges E1 C E which comprise

subgraph C1 = (l', E1) into a supergraph G. = (V, E3) so that F"i = FG,

v:Ev, E3 cE, E3 UE=E,i=1,2,3, ... ,IIVII=IIVII.

Computation Threads

From the simple example illustrated by equation 3.5 and the corresponding DFG

shown in figure 3-3, some interesting characteristics can be noted.

• Nonuniform node granularities. A finite set of nodes with different granu-

larities in circuit complexity and time complexity can be found in the DFG

in figure 3-3 since they are directly converted from equation 3.5. Even if an

original DFG is flattened to a primitive DFG upon V,, granularities of nodes

vp e V, may still be different in circuit and time complexity.

Irrelevant computation wavefronts. At any time during the computation, it

is often the case that a twisted computation front is found. A wavefront

may cross another wavefront. Mixed sequential and parallel dependencies

are found, for instance, the calculation of 2
, — b, b , 4ac can be performed

concurrently, but the square root of b2 - 4ac has to be computed after the

evaluation of b2 and 4ac.

• High ratio between the amount of intermediate and I/O data. Only three

inputs, coefficients (a, b, c), and the output of two roots, each consisting of a

real and an imaginary part, are required for I/O. The amount of intermediate

data depends on the number of internal nodes and the level of abstraction

in a DFG. There are 23 intermediate data in figure 3-3. The large amount

of intermediate data will impose a high I/O bandwidth requirement and will

Chapter 3. Algorithmically Configurable Architectures 	 68

be inefficient if they are stored and retrieved to and from a global memory

every time they are generated and needed.

• Optimisations. It is possible to optimise and decompose some of the nodes

in figure 3-3. For example, and node can be simplified to a shifter.

A multiplier node can be decomposed into a subgraph which implements

multiplications by additions.

It is apparent that there are always some sequential data dependencies in an

irregular algorithm. It is possible to extract a sequential data dependency into an

abstract form called thread. If there is only one thread that can be extracted from

an algorithm, it is a pure sequential algorithm. The only technique to improve the

throughput of a system running this algorithm is to process these sequential steps

in a pipeline. However, if multiple threads can be extracted from an algorithm, it

is highly likely to run the steps in different threads concurrently.

A computation thread is defined as a single sequence of connected nodes T =

{ (VT ,ET) j (VT c V) A (ET ç E) : v i = 1,2,.",(mT - 1), vi E

VT, ej E ET, n T = VT II = (I ET II + 1) ~ 1}. Outputs from a thread may

not necessarily come from the last node and if inputs to a thread are not

to the first node v 1 , it must be ensured that they are present at the node before

the computation front propagating in the thread reaches the node. Thus, a tight

dependency is defined as an edge (e E E) A (e e ET), a loose dependency is defined

as an edge (e e E) A (e V ET). A pair of tightly coupled nodes are two nodes in VT

connected by an edge in ET. According to these definitions, the DFG in figure 3-3

can be abstracted to a computation thread graph (CTG) as shown in figure 3-4

where dash lines represent loose dependencies, circles and ovals connected by solid

lines comprise threads. The length of an oval represents the computation time

complexity of a node.

There are some important properties in computation threads. The number of

nodes in a thread may be 1 < 11 VT 11 :S 11 V 11
.

A thread does not necessarily

Chapter 3. Algorithmically Configurable Architectures 	 69

Figure 3-4: The computation thread graph for figure 3-3

run from an input node to an output node in a DFG; it can start from any node

and terminate at any node. One thread may fork to several threads, and several

threads may end up with one thread by joining at one node. Every thread is

directed, i.e. there is an unique data and computation propagation direction in

one thread. Selected sequential steps of an algorithm have corresponding nodes

inside a thread which have to be activated one after another. The activation of

a thread may depend on the arrival of outputs from some other threads. Once a

thread is activated, it runs on its own and multiple threads may run concurrently.

Therefore parallel scheduling can be automatically detected and carried out at run-

time with this multiple threads computation model. Another important indication

is that when a DFG is to be mapped into a hardware system, tightly coupled nodes

on a thread should be put in physically close positions.

Two parameters are defined for a CTG. The length of a thread T, length(T),

is defined as the time taken from the activation of T to when outputs are available

from T. length(T) is a measure of the computation time of T. length(T) is

determined by the number and time complexity of nodes, and the data propagation

delay between nodes in the thread. The critical path Cpath of a CTG is defined

as an input to output path comprised of a set of dependent threads T having

Chapter 3. Algorithmically Configurable Architectures 	 70

maximum length(Tj. Thus, Cpath measures the computation time of an entire

DFG. There can be more than one CTGs extracted from a DFG. Two constraints,

cost or time, can be used when a CTG is extracted. With the cost constraint,

the amount of hardware resource is set. Some of the threads have to be merged

to share the available hardware resource. With the time constraint, a reasonable

time length is set. The Cpath of an extracted CTG must be within the time

constraint. In practice, a DFG should be flattened to a primitive DFG first before

a constrainted CTG extraction is carried out.

As an abstract representation, the multiple threads computation model clearly

splits the sequential and parallel properties mixed in a DFG and simplifies nonuni-

form node granularities to the time complexity of nodes. Sequential dependen-

cies are explicitly expressed by threads and parallel processing is automatically

scheduled at run-time. This model is a bridge between a DFG and an algorithm

mapping process. It provides a framework to optimise easily an algorithm with

constraints. It also contains the architecture information implying placements of

nodes with delay constraints. It describes the principle of processing data on-the-

fly for algorithms concisely in both space and time domain. Because the multiple

threads computation model is much more relaxed compared with the many re-

strictions in other computation models for regular algorithms, such as the systolic

and wavefront model, it can be applied to model arbitrary algorithms. This model

is therefore the basis for the analysis and optimisation of algorithms to be mapped

into our algorithmically configurable architecture.

3.5 Timing Control Structures

The choice and design of a proper timing control structure for a system is a vital

and yet a very practical issue. Some general considerations on synchronous and

asynchronous timing methods can be found in [120,95,135,46]. Before designing

Chapter 3. Algorithmically Configurable Architectures 	 71

an architecture based on the multiple threads computation model, it is necessary

to examine further the specific timing requirements from the model and the ar-

chitecture. Discussion will thus be focussed on the best timing strategy for the

multiple threads computation model and large scale modular VLSI architectures.

3.5.1 Clocks and Clock Skews

An ideal clock q is a periodic function of time q(t) which can be defined as fol-

lowing:

J i to+nT<t<to+nT+tH 	
(3.6) (t) 	

to +nT+tH :5t <t0 +(n+1)T

where n = 0, 1, 2,..., T = tH + tL is one clock period in which tH is the time

interval for one clock pulse at logical value 1, and tL is the time interval between

two consecutive pulses. For non-ideal clocks, there is a continuous transition

function between logical 1 and 0 instead of an abrupt change of levels.

In synchronous systems, all of the operations and data movements are syn-

chronised with a system wide global reference, usually a system wide global clock.

A global clock must satisfy that clock signals at any two physical points in a syn-

chronous system are logically equivalent at any time. Global clock events in a

synchronous system serve two purposes as sequence references and also time refer-

ences. As a sequence reference, a transition (event) between two levels of a clock

defines the instance at which the system may change state so that random state

changes and interferences can be eliminated. As a time reference, the interval

between clock level transitions defines a time region during which data can either

move between successive processing stages or are processed in stages isolated from

others. In other words, a clock signal can be viewed as a guard which controls

when and what is to be done or not to be done in a synchronous system. Two-

phase nonoverlapping clocks 0 and 02 , which always satisfy 01 (t) . 4 2 (t) = 0 at

any time t, are one of the most commonly used clock control schemes.

Chapter 3. Algorithmically Configurable Architectures 	 72

aca(p
0

i)

C8(p2)

rcs(p,, m)

Figure 3-5: Absolute and relative clock skews

An optimised clock distribution scheme must be used to generate logically

equivalent clock signals across an entire system to ensure the correct system op-

erations with a clock speed as fast as possible. However, no matter what kind of

clock distribution scheme is used in integrated circuits, clock skews are physically

unavoidable. Clock skews can be caused by many factors such as signal propa-

gatioxi delays on wires, capacitive loading variations at different points on clock

distribution paths, and variations in device and process parameters e.g. the MOS

transistor threshold voltage VT. A general clock distribution principle is that the

clock from a root or source clock generator is equally buffered and extended with

equal wire length to each synchronous area with roughly the same capacitive load.

A clock distribution tree is such an example. From a clock distribution, an ab-

solute clock skew (ACS) can be defined as the maximum time difference of the

high/low state at a point p on a clock distribution path from the low/high state

at the clock source s (this includes the propagation delay). A relative clock skew

(RCS) can be defined as the maximum time difference of the high or low state at

two different points (pa, P2) on clock distribution paths as shown in figure 35.

Thus, 	 ACS(p) = max(t - t, t, - t) 	 (3.7)

RCS(p1,p2) = I max(t - t, t - t,) I 	 (3.8)

RCS(p1,p2) = I ACS(p2) - ACS(p i) I 	 (3.9)

where th and tt are the time points when the clock goes high and low; subscript .s

source

is the clock source; p, Pi and P2 are physical points on clock distribution paths.

Chapter 3. Aigorithmically Configurable Architectures 	 73

The worst case ACS reflects the time interval required to charge or discharge a

complete clock distribution network from one clock source, while the data commu-

nication rate between two connected modules in a synchronous system is heavily

influenced by the RCS in the two modules. To determine the maximum frequency

of a synchronous clock, both worst case ACS and RCS should be considered. In

[74], an O(n
3) clock skew is derived from an n x n 2-D processing element array.

But this clock skew is in fact an ACS. When the size of integrated systems in-

creases, the ACS increases much faster than the RCS. However, RCS plays the

major role in determining the timing performance of a synchronous system. An

optimised clock distribution must guarantee that the RCS between two clock sig-

nals at any two physical locations in a system is negligible compared with the

clock period T.

3.5.2 Computing without Clocks

People recognise that there are many advantages in self-timed logic systems with

asynchronous timing control to replace global control clocks in synchronous sys-

tems [95,128]. However, most designers tend to choose to design synchronous

systems. This is mainly because it is more expensive to design an asynchronous

system than a synchronous one with medium system complexity. It is also simpler

to schedule system operations with a periodic global reference. Because it is be-

coming more and more difficult to distribute a proper global clock network over a

large area of silicon and it is increasingly expensive to design an efficient schedule

for a synchronous system with millions of transistors [23], interest has revived in

asynchronous design methods [98,57,92,91,50,3,27,6,26,138,82]. The latest effort

is the AMULET project [38,106] to design an asynchronous version of the ARM

(Advanced Risc Machine) processor. Methodologies are also developed for the

automatic synthesis of asynchronous systems [99,11,43].

A fundamental difference in asynchronous design methods from synchronous

Chapter 3. Algorithmically Configurable Architectures 	 74

designs is that they permit "asynchronous thinking" in design processes. This

allows a designer to focus on the functionality of a module and not its timing

details. If correctness and reasonable execution time were the only criteria for the

acceptance of a design, the asynchronous design approach would be a very good

choice over synchronous designs [42]. A self-timed system is built by decomposing

the system into a set of combinational logic blocks and inserting an asynchronous

hand-shaking control between each pair of connected blocks. The decomposition

of such a system often descends to a level that each of its building blocks performs

relatively simple functions with few inputs and outputs because the complexity of

hand-shaking circuits increases drastically with the number of inputs and outputs

[116]. There are two consequences of this design principle. First of all, since there

is no global clock control in an entire system, the system performance is data

dependent at run-time. The performance of self-timed systems is measured by an

average instead of maximum clock frequency for worst case delays in synchronous

systems. Secondly, there are extra delays caused by hand-shaking logic at each

logic block in a self-timed system. The circuit complexity ratio between the hand-

shaking control logic and the actual computation block is also high which implies

a relatively low area efficiency for computation logic.

3.5.3 Separately Timed Communications and Computations

A system can usually be decomposed into two essential parts: a set of compu-

tation modules and a communication network connecting these modules. It is a

heuristic that the highest performance of a system can be achieved if both com-

putation modules and the communication network are running at their highest

possible bandwidths and these two bandwidths are well matched with each other.

If computational modules and the communication network of the system are timed

separately, there is a better chance to achieve this goal. The feasibility of meeting

Chapter 3. Algorithmically Configurable Architectures 	 75

such a requirement depends not only on the timing scheme established but also

on the architecture of a system.

There are many alternative timing strategies and their variants which can

possibly be used in an architecture to control the data flow between modules and

the computations inside modules at the correct time scale. However, most of them

are not able to support the requirement for separately timed communications and

computations. Four possible types of timing control schemes are examined in

order to select an adequate scheme.

• Synchronously timed architectures. All of the data movement and data

processing operations are synchronous in lock-step manner to global clock

events. The clock frequency is pre-determined close to the highest possible

margin so that high system performance can be achieved while correct system

actions are still ensured,

• Clock period programmable synchronous architectures. This scheme is used

in the polymorphic-torus architecture described in [90,89,80]. While still

remaining as a synchronous architecture, the period of the central clock can

be programmed so as to adapt to various configurations of the architecture,

• Self-timed control architectures. There will be neither global nor local clocks

existing in such architectures consisting of combinational logic blocks com-

municating with each other through an asynchronous hand-shaking protocol.

Therefore, the state of a self-timed system and actions to be done at a time

point are completely determined by previous system states and signals gen-

erated from the hand-shaking control logic,

• Globally Asynchronous Locally Synchronous (GALS) architectures. "Syn-

chronous" and "asynchronous" design approaches represent two extremes.

It is possible to combine these two methods together. One interest-

ing combination is to use clocks local to individual logic modules for syn-

Chapter 3. Algorithmically Configurable Architectures 	 76

chronous computation in each module, and an asynchronous hand-shaking

protocol between logic modules for asynchronous communications in an in-

terconnection network. Thus the controls on communications between a pair

of connected modules are hand-shaking signals strictly local to the two com-

municating modules. System level global signals (if there are any) do not

have any effects on this localised communication. The synchronous clock is

also localised to the internal logic inside a module only, that is, the RCS

between two locally synchronous logic modules does not affect the correct

data transfer communications. However, a special mechanism is required

to synchronise the events in an asynchronous hand-shaking protocol at the

input of a synchronous module with the local clock in the module.

The synchronous timing scheme is often the first choice in the system design

because of the low hardware complexity and logic design simplicity. This is true

in the sense of conventional technology and architecture design principles which

can be described as always designing systems of fixed physical topologies intercon-

nected with, wherever and whenever possible, materials of highest conductivity.

Therefore it is normally possible to design carefully a particular clock distribution

network for a particular system so that the clock skews (particularly the RCS)

across the entire system are minimised. The speed of the global control clock

must be determined from the combinations of all the worst possible cases in the

ACS, RCS, the longest communication path delay, and the slowest delay among

all logic blocks. With the rapid increase in the complexity of integrated systems,

the advantage of synchronous design simplicity is transferred to the overhead dif-

ficulties of designing the clock distribution network which is more closely related

with the low level physical properties of integrated circuits. Because of some ran-

dom characteristics from process technologies, these low level physical properties

are much more difficult to manage and control than complex logic designs. To

take the developing trend of VLSI as an example, while minimum feature sizes are

decreasing (scaling down), the complexity (number of devices in a system) and

Chapter 3. Algorithmically Configurable Architectures 	 77

physical size (chip size) are increasing, and many previously negligible second-

order physical effects cannot be ignored. This makes the clock distribution in a

system even more difficult. The clock period programmable scheme merely makes

it convenient to fit the global clock into a particular system configuration while it

does not have any performance improvements on the worst case situation. Even

worse, it has been shown that the measure of slowing clocks down sometimes still

cannot compensate for clock skews [135]. The system fails in this case.

With the emergence of configurable architectures, the synchronous timing

method suffers more problems. Expandability and flexibility are two of the char-

acteristics of configurable systems. The expandability means that the size of a

system can be varied to suit different application requirements, and the flexibil-

ity means the logical topology and the actual functionality of the system can be

repeatedly configured for different applications. Therefore, the delay character-

istic (computation delays and communication delays) in the system may be very

different with different configurations and cannot be estimated in advance. The

final system logical structure may be substantially different from the initial blank

architecture in that previously dependent blocks may become independent or vice

versa after the configuration, and the distribution of clock skews (RCS) will vary

as well. It will be very difficult, if not impossible, to layout a fixed clock distri-

bution network valid for all of the possible configurations of a system. It will also

not be easy to determine an appropriate clock speed even if such a distribution

exists.

In a system with a large number of logic modules, these synchronous timing

difficulties are mostly at the system level which can affect the communication cor-

rectness and performance between connected modules. Once a clock is distributed

into a logic module, its skews are unlikely to affect the correct functioning of the

module. This discussion suggests that it is a good choice to apply the GALS

timing scheme at the system level. As far as the data transfer is concerned, an

asynchronous hand-shaking protocol is indifferent to varying delays in the corn-

Chapter 3. Algorithmically Configurable Architectures 	 78

munication path between two modules [4,101,116,53]. Therefore, changing the

configuration of a system with the GALS control will not have effects on the com-

munication function of the network. Only the speed of communications will vary

which is automatically adjusted by the protocol. The correctness of communica-

tions is assured by the protocol. As we shall see in the next section, the GALS

timing scheme matches well to the architecture proposed, the requirement to time

the communication network and logic modules separately, the DFG representation

and the multiple threads computation model.

3.5.4 Communicating Synchronous Logic Modules

We proposed a general design framework in [40] for the construction of large scale

modular systems by communicating synchronous logic modules. This framework

is based on the GALS scheme and a GALS hand-shaking interface. A complex

system is decomposed into a group of connected logic modules. These modules can

be combinational or controlled by clocks local to each module. A GALS interface

is attached to each module. These GALS interfaces are then connected to keep

the dependencies in this group of modules.

A very important constraint in decomposing a system to impose a GALS mod

ular structure is the level of complexity in each decomposed module. The equipo-

tential region defined in [95, section 7.6] is a good constraint for the decomposition.

An equipotential region is the size of an area in which all the signals are treated

as identical at all the points on a wire in the region, that is, the delay associated

with equalising the potential across one wire in the region is small and negligible in

comparison with the device switching delays or signal transition times. The size of

an equipotential region can always be estimated given a choice of processing tech-

nology [95]. There will be no difficulties in distributing a clock and implementing

synchronous logic controlled by the clock local to the logic inside an equipotential

Chapter 3. Algorithmically Configurable Architectures 	 79

region. Hence the complexity of a decomposed module should be such that it can

be fitted into an equipotential region.

The GALS design approach offers a solution to the problems in the design and

operation of massively parallel processing systems and large scale configurable

systems in the following areas.

• Easier modular design through the GALS interface. The design of a com-

plex integrated system is made much easier by interfacing system modules

through the GALS interface. The difficulties of distributing global clocks

and system level synchronous timing design are eliminated by the GALS

interface. Each individual module can be designed, reused and modified

independently from the rest of the system at any time.

• Scalability. The size of a GALS system can be easily scaled up or down by

adding or removing modules without concern over the global system timing.

The system is also operationally scalable, i.e. if one module becomes slower

or the delay in a communication path is increased, the system slows down

but will not fail, and the system will run faster if some modules or commu-

nications become faster. This is a very important property for configurable

systems.

• Easy Design Automation. A library of logic modules and the GALS inter-

face blocks can be set up. The advantage of this library is that previously

proven modules from both synchronous and asynchronous design can all

be adopted. The task of the design automation system is to decompose,

with certain constraints, a complete system into modules by referring to the

module library, optimising the placement and routing connections of these

modules, and connecting them through the GALS interface properly.

• Performance. The overall performance of a GALS system is also data de

pendent instead of depending on the worst case delay in synchronous sys-

Chapter 3. Algorithmically Configurable Architectures 	 80

tems. The GALS approach also provides an independent time control on

• the module functions and communications between modules. It is possible

to optimise a system decomposition by matching the synchronous module

operation bandwidth with the asynchronous communication bandwidth.

• Reduced Power. Since there are no signal transitions in an inactive module

guarded by a GALS interface, the overall system power consumption can be

reduced.

When the GALS scheme is used in our configurable architecture, it forms a

GALS system template. It is a straightforward task to map a CTG and a DFG

representation into such a template. The firing rule for a thread and a node

in data-driven computations is checked and activated by the GALS interface.

Parallel processing in different threads and nodes can be automatically scheduled

and activated by the GALS scheme at run-time.

3.6 Algorithm Embeddings

Automatic algorithm mapping tools are required and are relatively simple to de-

velop for configurable architectures [139,109,58,118,96,67,97,126,60] because the

mapping only needs to convert an algorithm specification to a set of configuration

data instead of detailed circuit level or layout level implementations. It is prob-

ably hard (very time consuming) to find an optimal mapping, but near optimal

mappings can usually be found rather quickly. The mapping algorithms will also

be architecture dependent; different configurable architectuEes would require their

own mapping algorithms and mapping systems. The mapping process to embed

an algorithm into our GALS configurable system involves generating a DFG from

an algorithm specification, flattening the DFG, extracting a CTG, placements

Chapter 3. Algorithmically Configurable Architectures 	 81

of nodes and routing according to the CTG and the flattened DFG, and finally

generating configuration bit-streams.

• Since the main purpose of this thesis is to investigate the feasibilities of config-

urable architectures for algorithm embeddings and the design of such an architec-

ture, the development of algorithm mapping theories and an automatic mapping

system will be the task of a future project.

3.7 Summary

In this chapter, some fundamental issues for algorithmically structurable archi-

tectures have been discussed. A multiple threads computation model has been

established for algorithms of irregular type. This computation model enables

parallel processing of irregular algorithms to be scheduled automatically and car-

ried out at run-time. It also facilitates node placement in an algorithm mapping

process. An algorithmically structurable architecture template of connected hard-

ware operators was illustrated. After detailed analysis of various timing control

schemes for large scale configurable or modular systems, a GALS timing con-

trol scheme has been proposed. This GALS scheme effectively links the multiple

threads computation, the principle of processing data on-the-fly, and algorithmi-

cally configurable architectures for convenient and efficient algorithm embeddings.

The GALS scheme also exhibits its prospects to the design of future ULSI and

WSI modular systems.

Chapter 4

A Configurable GALS Array

An algorithmically configurable architecture can generally be regarded as an en-

sembled architecture [121] in which a set of hardware operators are aggregated

together and arranged with an initial physical topological relationship in a two

dimensional plane. These hardware operators are logically connected to embed an

algorithm.

Because an algorithm can be transformed into a primitive DFG representation,

we propose a modular architecture with a pooi of connected hardware operators

H,s for the embedding of irregular algorithms. These H,s can be programmed

to form the nodes in a primitive DFG of an algorithm. The architecture also has a

configurable interconnection network to facilitate the mapping of tight and loose

interconnections in a multiple threads computation graph. The GALS scheme will

also be combined into this architecture. A top-down hierarchical overview of the

architecture is presented in this chapter.

4.1 Basic Architecture Constraints

An He,,, is a logic module with a few input and output ports on its boundaries

for interconnection with other H,,,s. A pool of such H,s can be physically placed

and connected in many different ways. A few basic architecture constraints are

82

Chapter 4. A Configurable GALS Array 	 83

considered to make it easy and efficient for VLSI implementation and suitable for

irregular algorithm embeddings.

4.1.1 Architecture Regularity

A highly regular system structure is very suitable for the VLSI implementation.

There are two possible approaches in the design of hardware operators for algo-

rithmically configurable architectures. One approach, as used in [32,50,14], is to

design a set of totally different hardware operators, each of which has fixed func-

tionality, and connect these operators by a switched network. Two problems may

be found in this approach; the limited availability of a particular type of hardware

operator and the irregularity of modules due to the difference in the complexity

of hardware operators. Another approach, which is much more common, is the

design of a programmable hardware operator PH, or processing element (PE).

The PH, can be programmed to perform a set of different functions as different

H,s. A system is then composed of a pooi of the same PHI,,,. Architectures

developed by this approach can support higher flexibility requirements. More im-

portantly, a very regular structure can be obtained because only one logic module

is used throughout the system. A PH, will be designed and used repeatedly in

our configurable system.

The design complexity of such a system can be reduced to the design of a

communication network, a programmable and some system I/O modules.

The complexity of a PH,1, will be much lower, and the design of a PHc,, can

still follow the conventional hierarchical approach by further decomposition. The

design of the communication network will heavily affect the performance of the

final system. This clear distinction between communications and computations

makes it possible to investigate the two issues separately.

Chapter 4. A Configurable GALS Array 	 84

4.1.2 Architecture Scalability

Because the size of an actual sub-system, i.e. the number of PHs, that could be

integrated on a single silicon chip is very limited, while a practical algorithm may

require more PH.Ps, it is important that an algorithm can be decomposed into

several sub-algorithms of a smaller scale so that each can be embedded into one

on-chip sub-system. To put this in another way, the boundary of a sub-system

should be designed in a way making it easy to expand to a larger system of the

same type for algorithms of larger scales.

The system scalability can thus be defined as the capability of a system whose

size can be expanded to a larger scaled system of the same type by directly con-

necting a set of duplicated sub-systems or vice versa. The interfaces between the

communication network and computation blocks are always on the boundaries of

such scalable systems.

Regularity and scalability are two closely related issues. The placement of logic

modules and the interconnection network determine the scalability of a system. A

better scalability can be obtained with a regular structure. 2-D arrays and binary

trees are two examples of a regular structure with a very good scalability.

4.1.3 Communication Overheads

No matter what kind of approach is adopted, there are always communication

difficulties in a configurable network because hardware operators and the commu-

nication network are physically pre-defined. That is, the total communication or

routing resources have an upper bound RR. If the overall communication re-

quirement to embed an algorithm AR is lower than or equal to the upper bound

RR, the communication network is said to be under utilised or fully utilised

respectively. If AR > RR, the communication network is said to be congested

Chapter 4. A Configurable GALS Array 	 85

in which case the most common measure is to sacrifice some hardware operators

to increase the RR.

The AR includes algorithm communication and embedding overheads. Al-

gorithm communication requirements, which are represented by the edges in a

primitive DFG are application dependent. Embedding overheads are caused by

either the mapping of an algorithm with a higher dimensionaiity to a 2-D plane

with lower routing capability or the irregularity in a DFG. The choice of the RR

for a configurable system is a compromise between silicon area occupied by the

communication network, communication network utilisation, and hardware oper-

ator utilisation. Since many systems developed so far are for algorithms of regular

data structures, the RR of these systems is normally fixed and low with connec-

tivity between C2 to C8 . For irregular algorithms, architectures supporting flexible

C and with a medium RR are needed because the embedding overheads may

be heavy due to the irregularity, albeit the communication requirement of these

algorithms may not be very high.

4.2 System Level Physical Topology

The choice and design of a system level physical topology for a configurable system

with a pool of PH07,s forms the essential framework in which application algo-

rithms can be embedded. A selected physical topology will eventually determine

the efficiency and performance of the embedded algorithm. The most important

aspect of a physical topology is the design of a switched interconnection network

and a placement scheme for the pooi of PH,s. Several typical system top-level

topologies, which are depicted in figure 4-1, are considered and a Pseudo Nearest

neighbour Configurable Array architecture (PNCA) is designed for the mapping

of DFGs and computation threads.

Chapter 4. A Configurable GALS Array

WWWWWq
r..ir..ir.i:r..i 	 II

rMMOMMMOMMMON 11 	0

dpOrMOOMMMal II U a

UJOWWWOUMU Ndjfl_ii ob ii

(a) CHiP 	 (b) Linearisations

Me

(c) Sea-of-cells 	 (d) River-bank

Figure 4-1: Typical switched interconnection schemes

4.2.1 Interstitial of a Switch Lattice and PE Array

The essential feature of this scheme, well illustrated by the CHiP architecture [125]

as shown in figure 4-1(a), is an interconnected switch lattice and a 2-D array of

PEs which are nested and intermingled with each other so that there is at least one

switch isolating the connection between any two neighbouring PEs. Every PE is

surrounded and isolated from each other by a set of switches. The configurability

in this kind of architectures largely depends on the switch lattice, particularly the

corridor width W. which is the number of parallel routing paths available in one

horizontal or vertical channel. Theoretical research points out that W. x log N

are necessary and sufficient to embed all planar interconnection patterns of N

nodes with a reasonable PE utilisation [1321. A wider W is required to embed

a complex pattern efficiently such as a shuffle-exchange graph. The W. must be

at least proportional to N/log N on an average [129]. This architecture is very

regular because both PEs and switches are the same across the array. However, the

Chapter 4. A Configurable GALS Array 	 87

scalability of this architecture is spoiled by the surrounding switches and routing

channels on the boundaries of the array.

As far as the communication overheads are concerned, it is difficult to select

an appropriate W, especially as it is dependent on N for many algorithms, if

this is not associated with a particular computation model. When different data

structures are embedded into a system with a selected W, routing paths may be

under utilised, near optimally utilised, or congested. The number of I/O points

on the array boundaries can be calculated as

P110 = 	X (m+ 1)+ W 0, x (n+1)+m+n] x 	(4.1)

where Wp is the number of bits in one path, m and n are the number of array

element rows and columns, mx n = N, 	and T4Tcoi are row and column corridor

width respectively. If W,. = W = W, m = n, equation 4.1 can be simplified

to
P110 = [2W(n + 1) + 2n] x wp 	 (4.2)

which is proportional to ii. Therefore, when a W. is selected, trade-offs must be

made among routing channel area overheads, corridor utilisations, PE utilisations,

and boundary I/O counts. It is noted that the practical implementation of the

architecture based on this scheme had some modifications [48,88] because it will

be very area inefficient if switches are scattered as sparsely as in CHiP.

4.2.2 Linearisation

Another distinct approach, known as the Diogenes scheme [114,115], is to linearise

higher dimensional topologies to a physical linear array. All of the PEs in this

scheme are placed as a linear array or a snake shaped linear array; a routing

track consisting of segmented parallel paths is stacked above or below the linear

array. A switch set is located at each PE location so that the I/O of the PE can

be connected to a set of paths in the routing track. A specific PE dependency

structure can be embedded into such a system by connecting PEs via paths and

Chapter 4. A Configurable GALS Array 	 88

switches in the track. Figure 4-1(b) shows a linearised example of a 7-node binary

tree.

This is a very flexible scheme as long as there are sufficient paths in the routing

track, almost any kind of topology can be embedded in such a scheme. The number

of I/O points on the boundaries of this scheme tends to be much lower than those

in 2-D physical arrays.

The problem of this scheme is that the average connection length increases

with the increased array size if the dimensionality of the embedded logical topol-

ogy is higher than linear. Folding of a long linear array and adding some vertical

connections [115] can only alleviate the problem in a very limited way. The min-

imum number of paths in a track also depends on algorithm data dependencies

and the size of the linearised array.

4.2.3 Overlapped Communications and Computations

This can be well illustrated by sea-of-cells approaches [87,59,58] as shown in fig-

ure 4-1(c). In this scheme, the communication network and computation lattice

are logically overlapped with each other. The basic idea of this approach is that

large number of identical fine-grained cells are connected in a 2-D plane with

C, n = 4, 6, 8. The functionality of a cell can be set to perform only one of: log-

ical/arithmetic computations, or routing operations at a time. Thus, if all of the

cells in such a system are set to routing operations, by which each cell only passes

incoming data to its prescribed neighbours, the entire system becomes a routing

network. It may also be sufficient for some applications requiring only -C < 8 con-

nections for communications so that all of the cells can be set to various logical or

arithmetic computations.

If 	is the hardware complexity required for routing operations in a cell

and C 11 is the hardware complexity of the cell, in order to achieve reasonable

cell utilisations and hardware efficiency, the granularity of cells, i.e. Cceij, must be

Chapter 4. A Configurable GALS Array 	 89

sufficiently small, and the ratio of C,./C 11 should be designed as a reasonable

value so that there is no heavy routing hardware overhead when a cell is set as a

routing node. Suppose <0.5, cell utilisation U 1 can be defined as

,.,,q,
U 1 = 1 - 	

C _____ • 	 (4.3)
N 	Cceii

N+N,=N 	 (4.4)

where Nwmp is the total number of cells used as computation nodes, 	is the

total number of cells used as routing nodes. U 1, can range from 0% to 100%.

When this scheme is used in [66] where the PE complexity is very high,

is very low, and 	 is high. Hence, Uceji of the array can be very low for

irregular algorithms (high

Because PEs are arranged as a 2-D array and the interconnections between

PEs are direct wires without inserted switches, theoretically, the connectivity of

PEs under this interconnection scheme can be anything between a linear connec-

tion, C2 , througI C4 , C6 , C8 , to a complete connection CN_1 in a system of N

PEs. The dimensionality I D I can be from 1 to N respectively. It is possible

to increase routing resources with complex PEs by increasing en . Practically, the

interconnection cost in a planar space with very limited number of interconnec-

tion layers increases drastically with C when Cn > 8. Therefore in planar silicon

implementation, nearest neighbour interconnection schemes, C E [2,4], are very

common choices because only one interconnection layer is needed for these near-

est neighbour schemes. It is anticipated that this overlapped communication and

computation scheme is not suitable for PHr,,s with the GALS interface because it

is relatively expensive to use such a module as a simple routing cell only.

4.2.4 Aggregated Switched Communication Network

In the above interconnection schemes, routing functions are distributed, together

with PEs, over a complete system. They are suitable for array architectures corn-

posed of uniform PE. Another equally important and yet very flexible switched

Chapter 4. A Configurable GALS Array 	 ME

interconnection scheme is to design a central communication network and connect

functional modules around the boundaries of the network. This scheme is more

preferred in the PCB (Printed Circuit Board) level implementation. Advantages

are obvious: complete separation of the communication network and functional

modules leading to the possibility of optimising both the switched network and

functional modules, no restrictions on the module type and physical size, modules

can be easily added/removed, no pre-defined physical topologies among attached

modules. Considerable general research work has been done in the field of inter-

connection networks independent of any specific functional modules.

There are also attempts to implement this kind of interconnection scheme on

chip or wafer level [50,14]. Advantages are higher flexibility and reduced number

of I/O points. Figure 4-1(d) depicts the river bank architecture used in [14] which

is similar to the floorplan generated from the FIRST [8] silicon complier. The

grid block represents a cross-point switch network, blocks on the top and bottom

of the network are functional modules connected to the terminals of the network.

Communications between other systems and the external world are through the

right and left edges of the network.

Some problems arise in the silicon implementation of this scheme. Although the

central switching network can be designed totally independently of the functional

modules, from a configurability viewpoint, it is expected that a set of hardware op-

erators (H's) of different functionalities can be readily integrated and connected

to the network, via which the logical connection topology of these hardware op-

erators can be set to the specific data dependency of an algorithm. The centrally

designed network, which is very uniform, prefers the attached H,s having the

same width, while a VLSI floorplan prefers H,,,s of the same height as in the

standard cell approach. The consequence may be either low silicon efficiency or

mismatch between H,s' I/O ports and the network terminals, i.e the mismatch

between the regular switch network and the irregular H,,,s. The average con-

nection length is longer too since data communication between two H,s on the

Chapter 4. A Configurable GALS Array 	 91

upper and lower bank of the network have always to travel through a number of

switches at least as same as the number of rows in the network. The scalability

is also limited in that a system can only be extended in one dimension. One of

the consequences is that worst case long connections may cross from one end to

the other of the extended network. The routability of the network depends on the

number of Hs and the number of rows. If the network is only expanded in one

dimension without increasing the number of rows, the routability of the expanded

network will decrease drastically. Thus this scheme is not suitable for the silicon

implementation of large configurable systems.

4.2.5 A Pseudo Nearest neighbour Configurable Array

As illustrated in previous sections, none of the four common system level phys-

ical topologies is a good choice for the DFG and computation threads mapping.

Therefore, a Pseudo Nearest neighbour Configurable Array architecture (PNCA)

is devised to make an efficient use of the precious two dimensional space with lim-

ited interconnection layers available under current integration technologies and to

facilitate the mapping of the DFG and computation threads of an algorithm. The

system top-level physical topology of a PNCA with 4 x 4 Routing Cells (RCs)

and programmable H,s is depicted in figure 4-2. The architecture is composed

of a two dimensional regular array with identical PH,s connected by a circuit

switched configurable interconnection network.

The Physical Topology

It can be seen from figure 4-2 that a pool of PH,s are arranged in a 2-D plane as

a rectangular array. A PIi,,, can be programmed to perform a primitive logic or

arithmetic function. PH,s are not directly connected with each other. Instead,

each of them is attached to one node in a configurable interconnection network.

Each network node, which is located at the crossing point between a horizontal

Chapter 4. A Configurable GALS Array

:ç: :ç: :: :ç:
• - ;_• - —•

ISSIL

IIMIMIL• • - ;.0 • -•

Figure 4-2: A Pseudo Nearest neighbour Configurable Array

and a vertical routing channel (H and V channel), is called a Routing Cell (RC).

An RC is shown as an L shaped polygon in the figure. Every RC is physically

connected to its four nearest neighbour RCs on its North, East, West and South

(NEWS). An H and V channel can have multiple routing paths in parallel. Hence,

an RC may have multiple ports on its NEWS boundary. The function of an RC

is to select a path from either an H or V channel as an input or output port for

the PH, attached to it, and/or bypass a signal from one port to another. Several

independent paths may exist at the same time in one RC so that multiple data

can be routed through one RC simultaneously without interfering with each other.

The routing capability of the network is mainly supported by the RCs.

An RC and its attached PH, are regarded as one Multi-ported PE (MPE)

which is shown as a dash box in figure 4-2. Each MPE is physically connected to

its four nearest NEWS neighbours. But a PH can be logically connected to an-

other PH beyond its NEWS neighbours through the RC settings. Therefore this

architecture is called Pseudo Nearest neighbour Configurable Array (PNCA) for

its physical nearest neighbour MPE connection and its configurability to support

logical connections beyond NEWS neighbours.

Chapter 4. A Configurable GALS Array 	 93

The Network Configurability

The configurable network in the proposed PNCA architecture can be analysed

independently from the PHI,,, array as a 2-D grid of a connected RC array. There

are two factors that determine the configurability of this RC network: the number

of independent routing paths, also called corridor width W, in an H and V channel

Wh, We,, and the number of switching states in an RC. The selection of Wh and

W, is a trade-off between routing capability and area efficiency. Note that the

area of an RC will be increased in proportion to Wh x W. An RC has a number

of finite switching states either dependent or independent of Wh, Wi,, which will

be determined by the design of switch structure. As a constraint to keep the

regularity of the array, Wh and WV are not changed in any segments of the H and

V channels and only one type of an RC is used. Provided that there are PRC

independent ports in an RC,

PRC= 2 x(W,, -i- Wv)+WH=4x(Wh+W V) 	 (4.5)

where WH,,, is the number of ports between one EtC and its attached H,, and

here, WH,,, = 2 x (Wh + WV). The upper bound on the number of switching states

SSRC of the RC is determined by the number of ports PRC in the RC:

n 	 1n-2n-i

SSRC 	(>C—n)+>C'C'.
i=O 	 i2 j=2

(4.6)

where n = ?Rc. According to equation 4.6, the upper bound of SSRC will increase

drastically with PRC. It is worth noting that the complexity of an EtC will also

increase quickly if SSRC is increasing towards the upper bound. An RC with the

upper bound SSRC has a complete port connection where each port is connected

through switches to the rest of ports in the RC.

Because there are a finite number of RCs in a network, NRC = Nff ,,, = NMPE,

in a PNCA, there will also be an upper bound on the number of interconnection

Chapter 4. A Configurable GALS Array 	 94

states SINT realisable in a PNCA. SINT is determined by the SSRC and NRC,

6Y,NRC
'INT - RC (4.7)

From equation 4.7, it is clear that 5INT will increase exponentially with NRC on

the basis of SS RC . Since the area efficiency of a high SSRC RC will be very low,

SSRC should be selected much less than the upper bound while SINT can still be

maintained sufficiently high by increasing NRC.

The highest possible requirements for Wh and W, are that they are able to

support a complete connection where every PH,,, can be connected to all of the

rest of the PH,,,s in a PNCA. To connect a row with n elements completely,
n(n 1)

segments of wires are needed. Several wire segments may be embedded

in one segmented path in the H-channel of the row. Thus, the corresponding

channel width Wh may be smaller than
n(n 1)

by the sharing of some wire

n(n-1)
segments in one path. For instance, n = 51 	2 	

= 10, Wh = 6 is sufficient.

This can also be applied to the connection of a column of elements. However,

because only orthogonal H and V channels are available, wider Wh and WV are

required to embed diagonal connections by jogging through the H and V channels

if a 2-D array of elements is to be completely connected. Even if interconnect wires

can share paths in channels, the complete connection is very expensive and seldom

useful in practice. The Wh and W also depend on the number of elements in an

array to accommodate a complete connection. It is not necessary to waste much

area to support such expensive high connectivity in algorithmically configurable

architectures. The selection of a compromise Wh and W will be discussed with

DFG characteristics.

Chapter 4. A Configurable GALS Array 	 95

4.3 The GALS Scheme in PNCA

After the PNCA top-level physical topology is set up, a system level timing control

scheme must be combined into the architecture to regulate data flows. As illus-

trated in section 3.5, the GALS system timing scheme is chosen for the PNCA

architecture.

4.3.1 Synchronous Regions in PNCA

It is important to select an adequate logic complexity so that logic modules within

this complexity can be fitted into an equipotential region with the local syn-

chronous timing control. Although the equipotential region is technology depen-

dent, it will make the system design and algorithm mapping much easier if a

proper synchronous region for a configurable architecture is selected in advance.

There are two possible choices of local synchronous regions in a PNCA. One is

to include all the nodes on one thread as one synchronous region. The other is

to confine a synchronous region to one PH,, only. The choice of a thread syn-

chronous region is algorithm dependent. It can be reckoned that this choice will

impose many difficulties in the algorithm embedding process because nodes, which

are not in a synchronous region in one algorithm, may be in the same synchronous

region in another algorithm. This uncertainty of synchronous regions will also

impose more hardware requirements because of the switching over between the

synchronous and asynchronous timing mechanism. Therefore, an algorithm inde-

pendent GALS structure is desired in the PNCA architecture. The choice of one

PHI,,, as a synchronous region will be algorithm independent. This synchronous

PH selection also matches very well to the array hierarchical structure of the

PNCA. Communications between the synchronous PHs are through an asyn-

chronous hand-shaking protocol.

Chapter 4. A Configurable GALS Array 	 96

4.3.2 Communicating Synchronous PH,s

Most of the asynchronous hand-shaking designs are developed for systems con-

sisting of irregular blocks connected by fixed interconnections. A widely used

three element structure is to insert an asynchronous hand shaking element, such

as a Muller C-element [100] or its modified form, in-between every pair of com

municating modules. For architectures with configurable interconnections and

requirements for scalability, this approach appears less attractive. This is because

in a configurable system, the dependency between a pair of modules may vary

with the embedded algorithm, i.e. two dependent modules for an algorithm may

become independent for another algorithm. Therefore, it is difficult with this three

element structure to distribute and connect the hand-shaking blocks among logic

modules in a configurable system for different algorithms. If this three element

structure is used in an array, it will also destroy the scalability of the array on the

array boundaries.

Asynchronous Guarded Communications

To preserve the array uniformity and scalability, a two element asynchronous com-

municating structure is desirable in configurable systems. Instead of inserting a

separate hand-shaking element, the asynchronous hand-shaking is split into an in-

put and an output guard logic, which are added before inputs and after outputs in

a module, so that the communication between any pair of modules are controlled

by the input and output guard in the two modules. A two element structure is

obtained with this guarded communication scheme; Figure 4-3 depicts this two

element communication structure with guards represented by black strips.

This guarded communication protocol can be clearly illustrated by the bun-

died data interface [128], as shown in figure 4-3, with two communicating modules.

A bundled data interface has an arbitrary number of data bits on a D line ac-

companied by two communication control signalling lines called Request (R) and

Chapter 4. A Configurable GALS Array 	 97

Dr DIt
AA

~t
Af. AaP t AB t sn r

Figure 4-3: Asynchronous guarded communications

Acknowledge (A). The functionality of an Input Guard (IG) is to detect the R in
line to see if there is a new datum presented on the input D line, to decide whether

to accept the new datum according to the state of the guarded module (B), and

to acknowledge, through the A B line, the sender module (A) after the new da-

tum is stable in the B module. The functionality of an Output Guard (OG) is to

send a request (R) to a receiver module (B) when a new datum is generated at out

the output, and to reset the output to null, i.e. free the guarded module (A) to

the next operation when an acknowledgement (A) is detected from the receiver in

module (B). Thus, the input and output guard logic, G in and Gout , are:

I B
(4.8)

(R
B

G'= 	
_*=0)

in 	
(RA=0)-G

I(ASA=1)=D' ,(RA =1)
out 	out

IDA =NULL I 	out

G t =1(AAS A =1)(RA =o)IsA =o (4.9)
out

A B =0 \ out

(AAS A =0)GA out

where R1 , Rout , 	A out , D1 , and Dout are data sending request (new valid

input data), data receiving acknowledgement, and data at the input and output

of a module respectively; S is the state of a module. S = 1 means an engaged

module where inputs are prohibited.

There is a basic constraint with this bundled data interface. Data (DA) can out

only change when the A module is acknowledged (A t), and D must becomein

Chapter 4. A Configurable GALS Array

stable before the B module detects a new request (RB). That is, an R
A
out

signal

must be sent out after DA is stable and the delay on the D line must not exceed out

that on the R line. Under this constraint, the communication between the two

modules is insensitive to delays on the interconnect paths by which is meant that

the change of delays on the interconnect paths will not affect the correctness of

the data transfer, only the speed of transfer will vary.

Special Considerations

There are several special issues worth noting when this guarded GALS control

scheme is applied and special care must be taken when designing the guard logic.

Different communication modes. Three general communication modes are

identified. One-to-one communication is exactly shown in figure 4-3. The

generation of communication guarding signals in this case is straightforward.

One-to-many broadcast is the mode in which one common source module is

feeding data to more than one destination module. The acknowledge signal

back to the source module is the logical AND of all the acknowledges from

the destination modules. Many-to-one assembly is a communication pattern

when several modules are supplying operands to one module simultaneously.

In this mode, the Input Guard of the destination module must ensure that all

of the input operands are taken before prohibiting its inputs and generating

an acknowledge back to all the source modules.

Deadlock avoidance. A typical problem in asynchronous hand-shaking is

deadlock. Deadlock is a phenomenon when operation processes are halted

in an endless waiting state. This is a case often arising in certain loop

configurations where some inputs are waiting for results from some outputs

while the generation of these outputs depends on these inputs. To take the

two communicating modules in figure 4-3 as an example, a deadlock loop

is formed if R B is connected to R A A 	s connected to A B and D 	s . 	

i

	

out 	 n' A i out 	 n' 	
B
 i out

connected to 	Special measures must be taken to avoid, deadlock [71].in

Chapter 4. A Configurable GALS Array 	 99

For example, one or several conditional fork structures can be added to break

possible deadlocks in a ioop configuration.

3. Synchronisation. A modular system timed with the GALS scheme requires a

synchronisation mechanism to coordinate the asynchronous input data with

the local clock in a synchronous logic module. One of the most common

ways is to use a synchroniser to synchronise the asynchronous input data

to the event of the local clock in a module. An ideal synchroniser should

be completely reliable. However, because synchronisers are usually imple-

mented with bistable structures, there is a probability of synchronisation

failure in which the output of a synchroniser stays in a metastable state for

an indefinite length of time instead of settling to one of the two stable states

[63]. If this metastable state persists for too long, incorrect state may be

resolved from the synchroniser. This is called a synchronisation failure. The

synchronisation failure is caused by the physical nature of the continuous

transition between bistable states; it is inevitable. But, various techniques

can be used in synchroniser design so as to reduce the probability of syn-

chronisation failure to an acceptable low level. This problem is discussed in

more detail with the design of a synchroniser in the next chapter.

4.3.3 A Configurable GALS Array

A configurable GALS Array (GALSA) system is constructed by placing an input

and output guard with a synchroniser between an RC and its attached synchronous

in each MPE in the PNCA. This structure enables the system level asyn-

chronous communication between locally synchronous PH,s. But this will not

change the physical boundary of an MPE nor the RC interconnection network.

Therefore the top-level system physical topology of the PNCA architecture is well

preserved in the GALSA system.

Chapter 4. A Configurable GALS Array 	 100

The GALSA system has all the properties discussed so far for a configurable

system to embed irregular algorithms:

Regularity and scalability. The GALSA system is highly regular with a 2-

D array of MPEs. If the ports are properly placed on the boundaries of

an MPE layout, a GALSA can be easily obtained by abutting the MPE in

the horizontal and vertical direction. The system can be easily enlarged by

directly connecting small sub-systems together. There are no system tim-

ing difficulties with different network configurations and it is operationally

scalable because of the GALS timing scheme.

Computation threads. The PNCA architecture is designed with the multiple

threads computation model in mind. Therefore, threads can be easily formed

in a GALSA. A thread is formed with a row or a column, or part of a row

or column of RCs. The PH,s in a thread are physically placed one by one

and connected in shortest paths corresponding to the tightly coupled nodes

in a thread of a CTG. The communication between threads may be routed

through unused paths in the H and V channels as loose connections.

Primitive DFG mappings. Because a PH can be programmed to one of the

logical/arithmetic functions defined in a primitive DFG, the programming

of the PH,,,s in a GALSA system is straightforward to embed the nodes in

a primitive DFG.

Data Flow Computations. A GALSA system is a data flow computing engine

by its GALS timing nature. A PH, is ready to "fire" when its outputs are

cleared and matching data are presented at all of its inputs. This also applies

to the firing of a computation thread, which enables the automatic detection

and scheduling for parallel processing among threads and PH,,p nodes.

Minimum memory accesses to a host system. Once a GALSA system is

configured, the memory accesses of the GALSA system to its host computer

are minirnised to getting the initial input data from the memory and saving

the final results to the memory.

Chapter 4. A Configurable GALS Array 	 101

The design of the GALSA system is decomposed to the design of an RC, a

with a GALS interface, the configuration data stream loading circuitry, and an

array I/O interface. Because the system is timed with the GALS scheme, the

design of these components is independent from each other from the time point of

view. The complexity of each decomposed component is relatively low and thus

well manageable in the full-custom design method.

4.4 RC and PH0

The design of an RC and PH,, for a GALSA system is closely related to some

DFG properties from the computation viewpoint. It is necessary to analyse these

DFG properties in order to establish proper logical structures for the 1W and

4.4.1 DFG Computation Properties

A general classification on types of nodes in DFGs can give a clear indication on

the RC and PH,,p design. Three general types of nodes are classified in a DFG by

examining the DFG example in figure 3-3.

1. Arithmetic nodes (A-nodes).

Arithmetic functions can be evaluated in arithmetic nodes, for example, the

addition/subtraction, multiplication, and the square rooting nodes used in

figure 3-3. The hardware complexity corresponding to these kinds of nodes

is the highest, and computation delays through them are inevitably long

because of the multi-step operations required in many complex arithmetic

functions. It is always possible to decompose a complex arithmetic function

to a set of simple arithmetic or even logical functions. Hence, a set of prim-

itive arithmetic nodes can be defined so that arithmetic functions of higher

complexity can be decomposed to this set of primitive arithmetic nodes, and

evaluated through this set of primitive nodes connected in a specific way.

Chapter 4. A Configurable GALS Array 	 102

Primitive arithmetic nodes are hardware counterparts of some unary and

binary arithmetic operations; the number of required input operands < 3,

and the number of outputs < 2. Thus, the number of I/O ports of these

primitive arithmetic nodes PA will be 1 < "A 5.

Boolean nodes (B-nodes).

These are similar to arithmetic nodes, but the operations to be carried out

in Boolean nodes are all Boolean type functions such as AND, OR, XOR,

bitwise operations, comparisons. The
[~ 0 ? node in figure 3-3 is a Boolean

node. A set of primitive Boolean nodes can also be defined so that com-

plex Boolean functions can be decomposed and evaluated through this set

of primitive Boolean nodes. Primitive Boolean nodes implement a set of

Boolean functions of single opcode with one or two input operands. The

output of a Boolean node is a logic value true or false. The number of I/O

ports of primitive Boolean nodes PB will be 1 < PB :5 3.

Data flow control nodes (C-nodes).

This is a set of nodes in which input data are diverted or selected in a way

determined by the value of Boolean control input variables. At least one

Boolean control input is presented to this type of node. Typical data flow

control nodes are merger, gate, router, and self-iterator.

• Merger. The function of a merger node is to select, according to the

pattern of control inputs, one data item to output from a set of data

inputs. In general, a merge node can have 2" data inputs, one output,

and ii bits of Boolean input, PM = 21 + ii + 1. A primitive merger

is defined as n = 1, PM = 4, that is, one of the two inputs to a

primitive merger is selected by the value of a Boolean input to the

output. In figure 3-3, the last four nodes, which generate rootl and

root2, are primitive mergers. A merger having arbitrary input m can

be constructed from (m - 1) primitive mergers with a Boolean input of

Chapter 4. A Configurable GALS Array 	 103

c bits and a c - (m - 1) bits Boolean decoder node to decode the c

control bits, where

I 1092 (m - 1) 	if 109 2 (m - 1) = 1092 (m - 1)1
(4.10)

(1092 (m - 1) + 11 otherwise

• Gate. A gate node has one data input, one data output and one pattern

input, PG = 3. There is a special pattern attached to a gate node, for

instance the nodes with a single Boolean true (T) or false (F) pattern in

figure 3-3. Data presented at the input of a gate node will be passed to

its output if and only if the input pattern matches the pattern attached

to the node.

• Router. A Routing node is the inverse of a merger node. An input data

to a router is passed to only one of a set of its outputs, as determined

by the pattern of the Boolean control input. A general router has one

data input, 2' outputs, and n bits of Boolean input, PR = 2 + m + 1.

A primitive router is defined as m = 1, PR =4, so that one Boolean

variable input can select one of the two outputs, to which the single

input datum is to be routed. Similarly, a router with arbitrary m

outputs can be built from (rn — i) primitive routers and a c -p (m - 1)

bits Boolean decoder node to decode the c control bits. c here also

follows equation 4.10.

• Iterator. The output of an iterator, which is controlled by certain con-

ditions, can be either fed back to its own input or directed to some

other node. The input to an iterator must be selected either from the

output from another node or the feedback from its own output. There-

fore, an iterator can actually be composed from a primitive merger at

its input, a primitive router at its output, and an operational node in

between. One of the outputs from the router is connected to one of the

inputs of the merger. Conversion nodes may also be needed to convert

other iterating conditions to Boolean control conditions.

Chapter 4. A Configurable GALS Array 	 104

Edges in DFGs are all directed, to represent data flow direction. Frequently en-

countered edge types are one-to-one and one-to-many edges. One-to-one edges do

not impose any implementation or embedding difficulties. Many-to-one edges are

prohibited in direct implementations because of the uncertainty caused by wired-

or connections. Besides the special care required in handling the asynchronous

hand-shaking of the one-to-many type, as described in section 4.3.2, there are also

many physical and technical factors to be considered, such as excessive capacitive

loads, non-ideal switching behavior, signal propagation degradations/delays when

an edge of a DFG is mapped into a GALSA system. If one data source is to be

shared by too many destinations, exceeding the fan-out capability of the driving

node, buffer stages must be added.

4.4.2 The Routing Cell

The configurability of a GALSA system will be mainly determined by the design

of the Routing Cell. More importantly, the performance of the RC will heavily

influence the performance of an overall system. It is a compromise between routing

capability and area efficiency to select a number of ports PRc and a number

of states SSRC for an RC. PRC is determined by Wh and W, by equation 4.5.

Therefore the selection of a PRC is the problem of determining a Wh and W.

According to equation 4.6, the upper bound of SSRC increases quickly with

RC• So if a higher routing capability is required, PRC must be increased. However,

a large PRC will be very area inefficient. The final system configurability depends

not only on RC routing states but also on the size of an application problem. It is

unrealistic and not necessary to select a very large Wh and W,, to achieve a very

high configurability at the expense of area. On the other hand, interconnection re-

sources can be significantly saved when- the computation threads model is applied

because only the shortest local connections are needed in each thread. A mod-

est Wh and W, that can support configurability higher than nearest neighbour

Chapter 4. A Configurable GALS Array 	 105

rm _

Figure 4-4: The channel width and RC ports

interconnection, much lower than a complete interconnection, will be sufficient in

most cases. A system composed of an array of primitive type PH,s is a good

compromise for PH,,p granularity and area efficiency. As analysed in section 4.4.1,

the number of I/O ports of all primitive DFG nodes is in the range [1, 5]. This

indicates Wh + Wv = 5 as a reasonable choice without imposing too much area

requirement for the H and V channels, and a primitive PH, can communicate its

5 I/O data with 5 paths in the H and V channels. We set W, = 3 and Wh = 2

to give the V channel more routing capability, so that threads extracted from an

algorithm will be mainly mapped into the vertical direction in a GALS A array.

Wh = 2 allocates a spare routing path in the H channel because one path may

often be used for neighbour connections. Because data can enter and leave a

in four NEWS directions, there are 2 x (W + Wh) = 10 channel I/O ports in an

RC to interface its neighbouring 4 RCs. The inputs and outputs in a PH,,, are

tapped from these 10 channel I/O ports. This assignment of channel width, RC

ports and an Re/PH,,, interface is illustrated in figure 4-4. The black boxes in

the figure are switch units which can divide a channel path into two segments and

tap both path segments for the PH,,,.

So we have Wp ff = 10 and PRc = 20 for this RC design from equation 4.5.

If a higher configurability is required, some PH(,,,s may be left unused to get more

RCs, and H and V channel segments. Hence, routing congestions unsolvable with

the 100% PH,,, utilization constraint may still be solved at the cost of a decreased

PHI,,, utilization.

Chapter 4. A Configurable GALS Array 	 106

V-channel

/front

V-channel

(a) (b)

Figure 4-5: (a) A switch unit in an RC, and (b) Switching states of (a)

The upper bound of routing states for the RC design can be obtained from
 20

equation 4.6: SSRC ~ C - 20 + > C 0 (220 ' + i - 21). To implement all

the routing states in this upper bond, the RC switching mechanism will be very

complicated and expensive because of the high PRC. Therefore, a simple switch

unit, as shown in figure 4-5(a), has been designed.

The switch unit is a four terminal device consisting of three switch elements and

a switch control. One switch element divides a channel path into two segments

and the other two switch elements tap both segments of the path for a PH,.

The orientation of the switch unit in the figure is for the V-channels. Switch

units used in the H-channels are obtained by rotating the unit anti-clockwise by

90° . Compared with the switch structures proposed in [15,88], this switch unit

is much simpler while the routing capability is still sufficiently flexible because

the segmentation of channel paths can improve routing capability efficiently. The

tapping of the segmented paths makes it much easier to form computation threads

and communication paths between threads. The interaction between a V channel

and an H channel may only happen at their cross points. The two dots in figure 4-4

are two switches linking two paths in the H channel to two paths in the V channel

respectively. It is not necessary to have cross-point links (6 switches) because the

5 switch units in an RC can tap any of the path segments for the PHc ,.

Since there are three switch elements in one switch unit, all of the possible

routing patterns in one switch unit can be found by various combinations of ON

Chapter 4. A Configurable GALS Array 	 107

Figure 4-6: PHI,, block diagram

and OFF state of the three switch elements. Thus, the complete number of routing

states of a switch unit can be calculated as: SS. = C + C3' + C + C = 8. These

eight possible routing states are depicted in figure 4-5(b). From a performance

viewpoint, it is best to make use of the states involving only one or at most two

conducting switch elements. The last state in which three switch elements are all

closed is not allowed because a wired-or condition may occur.

There are four states for the H and V cross section links, so the actual RC

routing states can be obtained as:

SSRC = 4 x SSNIIL 	 (4.11)
8tL

where N u is the number of switch units in an RC. For SS 8 = 8 and N u = 5, we

get SSRC = 131072 for the RC in figure 4-4. This RC should be sufficiently rich

in its routing capability for most arithmetic applications.

4.4.3 The Programmable H,,

The top-level block diagram of a PH,, is shown in figure 4-6. In the figure,

the I/O selector selects input and output ports from an RC; the Data Transfer

Interface (DTI) and the Clock Management Unit (CMU) form a GALS interface;

the Execution Code Register (ECR) stores binary codes to control the I/O selector,

CMU, and the function of a primitive PH,, (PH,).

Chapter 4. A Configurable GALS Array 	 108

Conventional microprocessors usually have a very complicated control part for

instruction decoding, scheduling, sequencing and various event handling, and a

data path for processing data. The structure of PEs in MIMD parallel processing

systems is similar to conventional microprocessors, in particular, a complex control

part in each PE is required because every PE may behave independently on differ-

ent or even the same instructions decoded differently. The PEs in SIMD systems

are usually much simpler in that there is no complex control part because all of the

PEs are sharing a common central control part which sequences and broadcasts

instiuctions executable in the data paths of all PEs. However, a simple control

mechanism local to each PE can often be found very useful in SIMD architectures,

to facilitate some local low level modifications to globally broadcasted instructions.

Examples are the disable/enable mechanism and data memory address offsets. Dy-

namic programmability is another interesting approach in which interconnections

and PE operations may be dynamically changed according to some conditions and

data status generated during processing. Dynamic programmability will certainly

require higher system complexity to implement. The dynamic control principle

is very useful for applications with highly dynamic data dependencies, such as

the region growing and the labelling problems in image processing, or dynamic

particle movement in a particle system. Because the GALSA system is expected

to be applied to arithmetic and logic evaluation applications, static programma-

bility should be sufficient. As opposed to broadcasting instructions during data

processing as in SIMD systems, different executable instructions for statically pro-

grammable PEs are all loaded into each PE prior to the execution phase. In our

case, it is not necessary to design a complex instruction handling control part for

a PHc,p ; the PHc,, is programmed by loading codes into its local ECR at the same

time as the array interconnection network is configured.

A set of proper primitive functions for the design of the PHP.P need to be

selected, so that the circuit complexity of a designed PHp,,p is not too high for the

range of selected functions. Any other complex functions can be implemented by

Chapter 4. A Configurable GALS Array 	 109

node type function symbol H, operands outputs

Arithmetic add/sub +/- full adder A, B, Cm 5, C

Boolean NoT/AND/OR

XOR/XNOR

-' A V

0

Boolean functions A, B C

Merger/Gate selection v 1 	2-1 multiplexer L, R, C 	1. 0

Table 4-1: Selected primitive functions for

connecting a group of PH,s in an appropriate way. According to the DFG node

properties analysed in section 4.4.1, a PHP.P should be able to perform at least

some simple A-node, B-node, merger and gate functions. All the other types of

nodes or the same type of node with higher complexity can be built from these

primitive nodes. For example, a 1-to-2 router can be formed with 2 gate nodes

having the same input; an iterator node can be constructed with a merger and 2

gate nodes. The simplest arithmetic function is addition and subtraction, which

will be supported by the PH,7,. NOT/AND/OR/XOR/XNOR are chosen as the

available Boolean functions because these functions can be derived directly from

an addition function which will be illustrated in section 5.4.3. Other Boolean

functions can be obtained from these 5 primitive functions. The merger and gate

can be implemented with a 24o-1 multiplexer. These selected primitive functions

are listed in table 4-1.

4.5 PH Local Memory

Since most of the massively parallel processing systems are designed for image

processing or matrix related applications, a common approach is to load a complete

set of data, such as an array of image pixels, into a processing array, and to

save the intermediate and final results in the array. If there are enough PEs

Chapter 4. A Configurable GALS Array 	 110

in the array, each PE will hold only one data item, otherwise each PE needs

to hold a subset of data items. Thus the minimum local memory requirement

for a PE will be at least the word length of one data item. In actual system

implementations, it is normally desirable to allocate as much local memory as

possible so as to reduce local memory reading and writing traffic to a host computer

during data processing. However, the choice of the local memory size is limited

by the available chip size and technologies. One of the common solutions to

this is to design an external RAM port in each PE so that the local memory

can be easily expanded with the off-the-shelf RAM chips to meet application

requirements. Besides local memories, a set of registers are often required to

facilitate data manipulation operations. Because we adopt the data flow processing

principle, data are processed on-the-fly. That is, every time a finite set of input

data flows through a set of connected programmed PH,'s, they are modified

through a sequence of intermediate data, and a final set of required results can be

obtained with a finite number of processing steps. One important characteristic

of this, processing data on-the-fly approach is that once all of the subsequent

modified data from the previous step are generated, there is no need to preserve

their ancestor data. In [70,30], memory requirements for systolic arrays which

are based on the 'processing on-the-fly computation principle are analysed. In

general, the use of input/output and some temporary registers will be suitable

for systems based on the processing on-the-fly computation principle. Thus, there

is no requirement for high local memory for PH07,s in a GALSA system as in a

conventional massively parallel computing system. As can be seen from table 4-

1, there should be at least three input registers to hold input variables and two

temporary registers for output results in a

Chapter 4. A Configurable GALS Array 	 111

4.6 Summary

In this chapter, some basic architecture constraints are discussed and several typ-

ical configurable interconnection topologies are analysed and compared. Based

on this analysis and the data-flow computation principle, an algorithmically con-

figurable array architecture called Pseudo Nearest neighbour Configurable Array

(PNCA) is proposed for the multiple threads computation model. A top-level

GALSA system is illustrated by imposing a guarded GALS timing scheme on top

of this PNCA architecture. The dependency between two connected PH,,,s is

controlled through a guarded asynchronous hand-shaking protocol and each

runs synchronously with a local clock. A VLSI implementation of this GALSA

system will be described in the following two chapters.

Chapter 5

An Implementation of a GALSA

From the top-level GALSA system structure described in chapter 4, we are ready

to implement the building blocks while moving down the system hierarchy. There

are four major parts to be designed: a an RC, a configuration data stream

loading control and an I/O interface for the array boundaries. Because the commu-

nication between P1107,s are asynchronous, the design of each part is independent

from the timing point of view, i.e. we focus on the design of functions for each

part. There is no need for special timing considerations between any two parts.

5.1 Design Tools and Implementation Technology

During the progress of this project, there were several choices in the use of CAD

systems. Available systems include the MAGIC interactive layout system with

DRC check and netlist extraction capability, to interface with various simulators

[17,104,22], and the ES2 Solo gate array compiler [28]. Later on, the Cadence

Edge and latest Opus design system became available.

The ES2 Solo software is basically a gate array and macro cell silicon compi-

lation system. A design is taken from either a schematic or netlist entry, through

112

Chapter 5. An Implementation of a CALSA 	 113

simulation, automatic place and route for gate array style layout, post-layout simu-

lation, package choice and design validation to obtain a chip design for fabrication.

Since the architecture of the GALSA system is highly regular, it can be im-

plemented by the duplication of the RCs and PH01,s in horizontal and vertical

directions as a two dimensional rectangular array. The area efficiency of an entire

GALSA system will be largely determined by the design of the RC and PHI,,,.

Hence, the ES2 Solo was not used. The logic of the RC and PH, needed to be

fully custom-designed and their layouts needed to be implemented with an inter-

active layout system. The Berkeley MAGIC CAD system has a set of assisting

programs which can extract layout data and convert them into several netlist for-

mats which can be used as inputs to some simulators. This makes the post-layout

simulation possible. The Cadence Opus is a much more powerful system, which

can perform many more functions, including most of the tasks that the ES2 Solo

and MAGIC can do. Therefore, we migrated to use the Cadence Opus system

to design our GALSA system. All logic functions are custom-built with MOS

transistors so that the transistor sizes can be properly adjusted.

There are several simulators available, such as Crystal and ESIM from the

UCB CAD package [17], RNL [104], and Spice [17,104]. Crystal is an interactive

VLSI circuit timing analyser which can estimate the speed of a circuit and print

out information about the critical paths. ESIM is an interactive event-driven

switch level simulator. Both Crystal and ESIM take . sim format files extracted

from layouts by MAGIC. Both use very simple models and are not appropriate

for complex circuits. RNL is another switch level timing and logic simulator with

a LISP based interface. Although the circuit model used in RNL is simple, it

can be fine tuned at the user level so as to suit the different requirements of

different types of circuit. RNL can take the circuit netlist extracted from the

layouts designed with MAGIC and can be run either interactively or in batch

mode. Spice is a circuit level simulator which has much more elaborate models for

various devices and thus can get more accurate simulation results at the expense

Chapter 5. An Implementation of a GALSA 	 114

of more CPU time than other higher level simulators. Spice is often used in

simulating composition blocks or key components of a large VLSI system. At the

outset, Spice 2G6 was used, but this is an old version which is slow and has very

poor convergence behaviour. During the course of this project, Spice 3C1 was

obtained and installed; this version has much better performance with improved

numerical algorithms and an improved graphics interface for waveform outputs.

Spice 3C1 can still take input data extracted by the MAGIC system. When

we migrated to the Cadence Opus system, the Hspice circuit simulator, which is

based on Spice, became available. The Hspice simulator has even better numerical

convergence performance and a very impressive graphics user interface. Thus, the

current design of the GALSA system is simulated with the Hspice simulator.

The fabrication technology and libraries, which are also integrated into the

Opus system, are from Mietec 21m N-well double poly-silicon, double metal CMOS

process. Electrical parameters (NMOS and PMOS models) for Hspice simulation

are provided by Mietec.

5.2 The Confi'ri1ratii_Technique -------------- -

There are many different configuration techniques to interconnect PH37,s in accor-

dance with the data dependency of an algorithm. Each of these techniques has

different system reusability, implementation requirement, switching performance,

and silicon area requirement. The interconnection network in a GALSA system

can be implemented with either non-volatile hard restructuring or soft configuring

technique.

Non-volatile hard restructuring techniques are usually based on the physical

blowing of a wire or connection between two points by special techniques such as

laser, electron-beam or applying a programming voltage. Therefore a restructuring

is non-volatile and permanent. A hard restructuring is often performed after wafer

Chapter 5. An Implementation of a GALSA 	 115

fabrication to improve yields, for instance for RAMs, by disconnecting faulty cells

and bringing in redundant fault free cells [111,94]. Some of these techniques are

also used in Field Programmable Gate Arrays (FPGA) for final customisation. In

[39,25], "anti-fuses", which can be irreversibly changed from high to low resistance

when "blown" by applying a programming voltage across them, are used in an

electrically configurable gate array design. The ON or OFF characteristics of a

connection resulted from hard restructuring methods are the best, and they also

take up the smallest area of the various configuration methods. However, hard

restructurability can only be used once, i.e. it is impossible to "undo" a change.

The implementation of a hard restructurable system normally requires a special

and expensive processing technique.

As opposed to irreversible physical changes in hard restructurings, various

electronic switches can be designed for soft configuration purposes. A soft con-

figuration is defined as a configuration which can be done repeatedly without

permanent physical changes to a configurable system, i.e. configuration changes

are reversible. There are two common ways to control the ON/OFF status of a

soft switch. One is the non-volatile switch control, in which switch settings can

be retained even when the system power is switched off such as the EPROM or

EEPROM techniques used in [56,105,54]. The other is to use static bistable ele-

ments, for instance using static RAM (SRAM), to control the ON/OFF settings

of switches. The SRAM control is volatile because once the system power is off, all

switch settings will disappear. There are many configurable systems implemented

with the SRAM switch control technique [139,109,59,58,9,14,81,90,134].

Soft configurable systems provide much higher configuration flexibility at the

user level, i.e. configurations are achieved by changing electronic control signals

to switches, and can be done repeatedly at any time. An extra benefit of using

SRAM cntrolled switches is that conventional common VLSI fabrication tech-

nologies can be used for silicon implementation, and it is fairly simple to configure

such a system which is just the same as writing a normal RAM array. Therefore, a

Chapter 5. An Implementation of a CALSA 	 116

soft configurable system with SRAM controlled switches has the best user config-

urability and reusability. It can be implemented with less expensive technologies

while EPROM or EEPROM processing technologies are more complicated than

a SRAM process. The flexibility of soft configuration techniques is obtained at

the expense of more area consumed by switching logic than hard restructuring

methods, and some extra delays introduced into communication paths by switch-

ing logic. The cost of larger area requirement is compensated by less expensive

processing technologies. A high system throughput (bandwidth) can still be ob-

tained because communications can be pipelined [88] to overcome latencies caused

by the soft switching devices. The performance of switching devices is also being

improved continuously.

Our GALSA system was to be designed with high user configurability, and to be

implemented with a conventional CMOS processing technology and design tools. It

is not suitable to use hard restructuring techniques because of the non-reusability

after a restructuring; the restructuring process is slow and the implementation

requires special and expensive processing technologies. We do not choose the

EPROM or EEPROM approach because some special implementation techniques

and programming process are also required. Therefore, the soft configuration

approach with SRAM controlled switching logic was chosen in the design of the

GALSA system.

As illustrated in chapter 4, the design of the GALSA system can be divided to

the task of designing a PHc,,,, an RC, a configuration data stream loading circuit

and an array boundary I/O interface. Although an asynchronous data transfer

interface is included in the PH, depicted in figure 4-6, we shall first describe

the design of such an interface for its special and important role in our GALS

approach to the design of.configurable hardware algorithms.

Chapter 5. An Implementation of a GALSA 	 117

5.3 Asynchronous Data Transfer Interface

The asynchronous data transfer interface (DTI) controls the data movement be-

tween two connected PH,s. In our GALS approach, the DTI will be asynchronous

following the guarded communication protocol illustrated in figure 4-3. This DTI

consists of a hand-shaking Input Guard (IC), an Output Guard (OG) and a data

status signal generator for the input and output of a PH,.

5.3.1 Hand-Shaking Cycle

There are two basic control signals involved in the guarded communication be-

tween a pair of connected modules: a request to output data when available and

an acknowledge to complete a hand-shaking cycle when input data are correctly

accepted. A logic module can be in either input or output mode. When new

data are valid and stable on output lines of a module, the module is said to be

in an output mode and an signal is sent to the module which will accept

the output data. When the destination module is ready to accept the data, the

module is said to be in an input mode, and the data presented on the input lines

of the module are transferred to the module. Upon the completion of this data

transfer, an A.t signal is sent back from the destination module to the source

module. This A.t signal frees the source module from the output mode, and

resets the data output request signal. A complete hand-shaking procedure can be

regarded as a cycle: a data output request signal starts a hand-shaking cycle, and

an acknowledge signal terminates a hand-shaking cycle. During one hand-shaking

cycle, the module which outputs data is in control until an acknowledge signal

is generated, at which time the control moves to the module receiving the data.

The state of the DTI between two communicating modules is determined by the

way in which, the request and acknowledge signal are represented. The interface is

Chapter 5. An Implementation of a GALSA
	

118

Req

Data

Ack

Req

Data

Ack

Figure 5-1: Level signalling

Figure 5-2: Transition signalling

said to be in a quiescent state if there are no active hand-shaking signals between

them.

There are two common ways of representing the state of an asynchronous

bundled data interface: level signalling and transition signalling. In the level

signalling representation, which is shown in figure 5-1, both the request and the

acknowledge signal are low in the quiescent state. A request event is signalled

when the output module raises its signal. The corresponding input module

acts according to its own state and raises its A t signal when input data are

accepted. Upon receiving this acknowledge signal, the output module resets the

signal to indicate the completion of the current hand-shaking cycle, and finally

the input module resets the signal to return the interface to the quiescent

state. This requires two round-loop trips between two communicating modules

to complete one hand-shaking cycle. In the transition signalling representation in

figure 5-2, level transitions in request and acknowledge signal are used to control

hand-shaking and data communications. A data output request is signalled when

the R.Ut signal is toggled. This is acknowledged by a following toggle in the

Aout signal to complete one hand-shaking cycle. A transition in a signal is an

Chapter 5. An Implementation of a GALSA 	 119

event, therefore a transition signalling interface is event-driven. If both the request

and the acknowledge signal are initialised to low, a transition signalling interface

is in the quiescent state when the request and the acknowledge signal have the

same logic state. Hand-shaking Control signals require only one round-loop trip

in the transition signalling interface. Thus, the time required to return to the

low-low quiescent state in the level signalling interface is eliminated. The delays

caused by configurable switches in interconnection paths can be very different

with algorithm mappings and some of these delays may be comparable with gate

delays. So this saving of time in one extra round-loop trip is very important

in configurable systems which can improve the communication performance over

the level signalling interface. The event-driven hand-shaking is also a concise

protocol which fits well to the asynchronous guarded communication defined in

section 4.3.2. Therefore the transition signalling representation is adopted for the

design of our asynchronous DTI.

5.3.2 Data Status Signal

One of the key issues in designing asynchronous hand-shaking logic is to generate

a data status signal which can represent the existence of valid data, for example,

stable results after a data evaluation or a register write, at the output or input of a

logic module. The asynchronous DTI will be activated and will generate a correct

sequence of control signals upon the value of this data status signal. There are

three basic structures which can be used to generate a data status signal for the

output of an evaluation logic module: a pre-determined simple worst case delay

unit, a data transition detector, or differential logic with complementary output

data values.

Pre-determined logic module latency

It is possible to estimate a maximum latency for a logic module. Therefore, a

delay unit designed with the same maximum possible latency can be inserted into

	

Chapter 5. An Implementation of a GALSA
	

120

D8 	
Logic

module 	 out

DV 	0
(

Delay unit r 	 0 DV

Figure 5-3: Data status signal from a pre-determined block latency

a hand-shaking path which is in parallel with a data flow path in logic modules

as shown in figure 5-3. A data status signal is passed through the delay unit

in parallel whilst the input data at Din is processed through the logic module.

The Data-Valid (DV) signal is passed from DV1 to DVout with the same delay

just as the output data becomes stable at Dout . This DV signal will activate an

asynchronous DTI which in turn controls the data-flow rhythm in the data path.

Because the delay unit reflects the worst possible latency in a logic module, the

performance of this structure will also be the slowest. In our GALS approach

to configurable hardware algorithms, the number of clock cycles required in each

PH, may be different depending on algorithms. This fixed delay unit structure

is not a suitable choice for our design.

Data state transitions

The basic idea in this structure is to make use of data logic state transitions to

generate a DV signal. There are many different ways to detect the logic state

transition of a datum. In figure 5-4, the logic state of output data from a logic

module is kept by a delay unit and then compared with the new output data logic

value via an XOR tree, any logic transitions at the output of the previous stage

will set the DV to high. In actual implementation, a lock mechanism is required

to lock the DV at high until the current set of output data are no longer needed

Chapter 5. An Implementation of a GALSA
	

121

Outpt
r
C
V

1
0
U
S

ug-

el Outpt

Outpv

Direct
control

Figure 5-4: A data transition detector

by the next stage. There is one extreme situation which cannot be easily handled

by this logic structure, i.e. all of the outputs (output 1 , output 2 , ..., output) remain

unchanged but represent a new set of data. On the other hand, at least two stages

of delay are introduced before a DV signal is generated. In the following sections,

we will find that this structure can be used in our transition signailing DTI design

where only request and acknowledge control signals are involved.

Exploitation of differential logic

Differential logic can be easily modified to generate a data status signal DV. Fig-

ure 5-5 shows such an example which is very similar to domino logic. A precharge

mechanism is used in this differential logic structure with an NMOS evaluation

tree and two PMOS pull-ups. Two distinct operation phases can be defined in the

block: precharge/neutral and evaluation. When I = 0, the logic block is said to

be in precharge/neutral phase since out and i are both precharged to 1 through

the two PMOS pull-ups regardless the logic states of inputs to the NMOS tree.

When I = 1, the NMOS tree is enabled and either out or Th will be discharged

to 0 which is determined by the input logic states to the NMOS tree. The logic

block is thus said to be in evaluation state. The NAND gate in figure 5-5 acts as

Chapter 5. An Implementation of a GALSA
	

122

out
	 out

in—
\/

I
Differential

/ 	NMOS
tree

i 	 DV/PV

Figure 5-5: Hand-shaking signals generated from differential logic

an AND element for values at out and &. Therefore, when (out, iI) - 1, we

have P•V 0 which signals the establishment of a neutral state and the logic

block is ready to evaluate a new set of input data. When one of the out and Th is

discharged to 0, we have DV -i 1 which signals the completion of an evaluation

and the availability of a stable result at (out, i). A variation of this structure

can be found in [41] for a dynamic self-timed adder design. The static NAND

gate is replaced by a dynamic NAND tree and a dual-rail carry path is used to

propagate a DV signal through the NAND tree for the adder.

The size of the NMOS tree depends on the number of inputs and the complexity

of the logic function being implemented. The NMOS tree does not necessarily grow

linearly with the complexity of the logic function because it can be optimized to

share some transistors from out and 5Rt side of the tree.

In a GALSA system, each PH, has a local clock to control its function.

Different functions may require different numbers of clock cycles to complete.

This differential logic structure cannot make use of this particular local clock

property and can complicate the clocked logic design, so it is not used in our

Chapter 5. An Implementation of a GALSA 	 123

GALS approach. A special Clock Management Unit (CMU) will be described

later which makes use of this property to generate a DV signal at the output of

the PH, module.

A Tn-state Register

The data transfer between two connected PH01,s is through input registers. With

input registers, it is possible to overlap some part of a hand-shaking cycle with the

internal operations in PH,s to improve the overall system performance further.

For example, if a PH, is activated after new data are stable in its input registers,

the time required for the PH,,, to send out an to complete the current hand-

shaking cycle is overlapped with the PH,,,'s normal computation.

A data status signal for input registers is also required to enable the overlapping

of a hand-shaking cycle and a computation. Because a normal register has two

stable states 0 or 1, this makes it relatively simple to design a tn-state register

with a third state similar to the DV signal of differential logic in the last section.

This tn-state register can hold input data as a normal input register. It can also

interact with the hand-shaking guard and the CMU to form a complete general

GALS DTI.

When a normal register is in one of the two stable states, two circuit nodes can

always be found whose logic levels are complementary to each other. A tn-state

register can be formed by creating another stable state where these two nodes

are set to the same logic level. Figure 5-6 shows the design of such a register.

When it is stable, if a Data-Valid flag: DVR = Q . = 1, the register is in an

occupied state where data must be kept and the register must be write-protected.

If DVR = Q . = 0, the register is in an empty state and it is ready to accept a

new datum.

Signal R comes from the hand-shaking guard which clears the register and

keeps it in the empty state when an acknowledge event is received. The register

Chapter 5. An Implementation of a GALSA
	

124

R

Figure 5-6: A tn-state register design with WEN, i, DV,

is write-enabled (WEN) when it is in the empty state. However, a datum can

only be written into the register when an input request event is detected by the

hand-shaking guard. Note that WEN and J should be mutually exclusive, i.e.

they should not be active at the same time.

Although this tn-state register design requires 7 more transistors than a normal

static register, it improves data transfer performance and reliability over the pre-

defined worst case delay structure. On the other hand, because a delay unit needs

at least 6 transistors, the cost of our tn-state register design is comparable in

total. There are also two choices for multiple inputs in a logic module: to use tn-

state registers for all inputs to gain maximum performance or to use one tn-state

register and normal registers for the rest of inputs to minimise cost. In the latter

case, the tn-state register acts as a register and a delay unit as well.

5.3.3 Event-Driven Hand-shaking

At the output side of an output module, three events can be identified in a transi-

tion signalling hand-shaking cycle: request, acknowledge, and clear. At the input

side of an input module, three events can also be identified: request, input-setup,

Chapter 5. An Implementation of a GALSA
	

125

Figure 5-7: Event sequence in event-driven hand-shaking

Figure 5-8: Muller C-element and its variations

and acknowledge. The request and acknowledge event are the same for a pair of

communicating modules. Therefore there is a total of four events involved. The

transition signalling hand-shaking logic derived from these events is event-driven

hand-shaking. As illustrated in figure 5-7, events at an output always happen in

the order of request - acknowledge -i clear - request and events at an input

are in the order of request -i input-setup -p acknowledge -p request.

Six event processing elements are illustrated in [128]. Two most basic event

elements are exclusive OR (XOR) and Muller C-element [100]. An XOR element

implements the OR logic for events, that is, when either input of an XOR changes

state, its output also changes state. The Muller C-element carries out the AND

operation on events. When both inputs of a C-element are in the same logical

Chapter 5. An Implementation of a GALSA 	 126

state, the C-element and its output copy that state. When the two inputs differ,

the C-element uses its internal storage to keep its output on previous state. Thus

only after an event takes place on both of its inputs will a C-element produce

an event at its output. Both XOR and C-element can be easily generalised to

multiple inputs. The XOR element can be represented by the conventional XOR

symbol. The Muller C-element and its variations are shown in figure 5-8. Since

the Muller C-element uses the concept of state, i.e. the logical levels of signals,

the level signalling hand-shaking scheme can be easily implemented with the C-

element [128,99,98]. In our transition signalling guarded communication approach,

an event-driven Input Guard and Output Guard are to be designed whilst the C-

element can be used to merge the multiple independent input request or input

acknowledge events to save the cost of multiple input/output guards.

5.3.4 An Event-Driven Register Transfer Interface

We developed a transition signalling DTI for register data transfer based on the

XOR data transition detection structure illustrated in section 5.3.2. One basic

assumption, to ensure each new input state is captured for the structure, is that the

logic state generated after an event on a signal always differs from its immediately

previous logic state. This condition is guaranteed on the request and acknowledge

control signal in the transition signalling hand-shaking representation described

in section 5.3.1.

The schematic of the top level event-driven register transfer DTI is shown in

figure 5-9. In the figure, there is an input guard (IC), an output guard (OG),

a tn-state register (R3S) and some glue logic. The DVF is a flag signal for the

output data status in a function module Ti,, and are input and output

transition event signals. EVT1 and EVT0 are the flags for the input and output

events respectively. The mit signal initialises the whole interface after power on.

Chapter 5. An Implementation of a GALSA
	

127

REQt
ACK

Figure 5-9: An event-driven DTI

After a further analysis on the event sequence illustrated in figure 5-7, detailed

control signal state transition graphs for the IG and OG are generated as shown in

figure 5-10. Throughout the rest of this thesis, superscripts +, —, T, T+, T— to

any signal name represent logic high, logic low, a transition event (any direction),

a transition to high and a transition to low respectively. All input signals are

initially set to low by an external mit signal except ACK and ACK 1 which

are initially set high.

Figure 5-10(a) shows the signal state transitions for an input guard. An in-

put communication cycle starts with a transition event REQ on Tin which sets
in

EVT. If DV by which is meant the tn-state input register R3S is in occupied

state, EVT will wait until D' to proceed. When DV, R3S starts to take in

a new datum and resolves to a stable register occupied state with Once
+ 	 T

DVR , an event ACKL is generated on 	and EVT is cleared. Another input

cycle starts again when REQ. A similar signal state transition graph for an out-

put guard is shown in figure 5-10(b). DVM (Module Data-Valid) is another state

flag similar to DVR in a tn-state register which represents the state of an entire

logic module PH. DVM is derived from DVR and DVF. If there is no valid data
T+ at the output of a module, DVM = 0. A DVR will activate a new computation

Chapter 5. An Implementation of a CALSA
	

128

N 	- 	Y I 	 N 	 '., Y I
ç DVR? ?—'t DV J 	 .ç ACK?).—* RVT+

;) 1ACK 	
I

JjVT_ I Dv;

B V T.—

RBQT

snit RQ ACK+ t 	 mit: ACK+

BVT. Dv; 	 BVT DV

(a) 	 (b)

Figure 5-10: State transition graphs: (a) input guard, (b) output guard

in the PH,, and a DVFT_ occurs after a pre-defined number of clocks. An output

cycle starts with DVFT_ which enables the OG to send a REQUt event to its next

module. The OG then waits for an ACKT event from the next module. Once an
in

ACK is received, the OG sends the clear signal W to clear the DVR and DVF

flag in the current module. A new computation and output cycle starts again

following a new D1 7' from the next input cycle.

The IG and OG are designed according to the signal state transition graphs in

figure 5-10. The schematics of the designed IG and OG are shown in figure 5-11.

The heart of this guard logic is a master-slave flip-flop which keeps T rn 's previous

state. When W = 1, the slave Dlatch is open for writing; when W = 0, the master

Diatch takes 7's new state and the slave Dlatch is locked to keep T rn 's old state.

The XOR element is used to set the input event flag E VT/E VT 0 when T makes

a transition.

A data transfer cycle in the event-dnven DTI in figure 5-9 starts with REQ T
.

Then the IG follows the state transition graph in figure 5-10(a). When DV,

the function module is activated by the CMU and DVF after a number of clock

cycles following the activation of the function module. The OG is activated when

Chapter 5. An Implementation of a GALSA
	

129

EVT
-

T,

L
DVR

EVTO

0n 	Q 	Din 	Q
W Diatch 	 W Diatch

w Q 	W R Q
I 	 DVM

DVM

(a) 	 (b)

Figure 5-11: Event-driven (a) input guard, (b) output guard

DVT_ and follows the transition graph shown in figure 5-10(b). 	= 0 when

EVT and DVJ (no REQ event, keeping R3S empty), or
T-

 if an ACK,

event is received and EVT" by the OG (clear R3S and DVF). = 1 will keep

the value in the R3S.

The advantage of this event-driven guarded DTI design is that it is now an

easy task to design a total scalable modular system because a logic module with

this DTI is completely self-contained and portable. A system constructed from

such modules can be easily scaled up or down. A module can be easily adapted

in any other GALS based system without worrying about the system level timing

design and scheduling problem.

5.4 The Implementation of a PH0

The abstract structure of a PH,, has been illustrated in section 4.4.3. The essential

function of a PH, is to transform, in its primitive programmable operator

• set of input data selected from a set of input ports, and output modified data to

• set of output ports. The data transformation function and I/O ports selections

are directly programmed by bits stored in an execution code register (ECR). The

data transfer interface (DTI) and the clock management unit (CMU) form a GALS

Chapter 5. An Implementation of a GALSA
	

130

CLK
DVR

F

ECR

Figure 5-12: A Clock Management Unit

interface that connects and controls the data transfer between PHc,i,S: In this

section, we describe the design and implementation of the PH in detail.

5.4.1 The Clock Management Unit

In a seff-timed system, a combinational function module is activated immediately

after a DV in the tn-state input register, and the completion flag DVF for a

computation can be generated by adopting differential cascade voltage logic [99] or

a dual-rail complementary carry chain [41]. Because a PH,,p runs with a local clock

and has asynchronous data input from the event-driven DTI, a clock management

unit (CMU) is required to synchronise the asynchronous input data with the local

clock and computation in the PHc,,,. The CMU also controls the DVF flag for the

PH,. Figure 5-12 shows the block diagram of the CMU. syn is a synchroniser,

clkbuf is a local clock buffer and DVF shifter is a shifter that controls the DVF

flag.

Synchronisation

A common approach to interfacing asynchronous input data with a clocked logic

module is to use a synchroniser. A synchroniser can be a type of flip-flop controlled

by a local clock to synchronise an asynchronous input data to an event of the local

clock (usually a rising clock edg). A particular problem in synchronisation is the

possibility of entering a metastable state in a flip-flop. A metastable state may

Chapter 5. An Implementation of a GALSA 	 131

happen when a data input changes just before the flip-flop write-enable goes low.

If a metastable state appears the flip-flop may not be able to resolve to one of its

two stable states for the input data for a long period of time. If this happens,

this is called a synchronisation failure. Although various solutions, such as a stop-

pable clock, a pausable clock and extensible clock schemes, have been investigated

[84,107,127,83], the possibility of synchronisation failures remains a fundamental

problem in these approaches. Given a synchroniser design, a probability of syn-

chronisation failure can be estimated [63]. Then, various design techniques can be

used to reduce the synchronisation failure probability to an acceptable low level.

We propose a different approach to synchronisation in our implementation.

Firstly, the tn-state input register, as described in section 5.3.2, is controlled by

the event-driven DTI instead of the local clock. Thus, the asynchronous input

data can be safely locked into the input register without the interference from the

local clock. Secondly, the synchronisation between the asynchronous data in the

input register and the local clock for a PH is controlled through the DVR flag of

the tn-state input register and the local clock. In this approach, the probability

of generating wrong results caused by a synchronisation failure can be reduced

further because data in the input register are always set up correctly before a

possible synchronisation failure between the DVR and the local clock, and the

PH, can still process the correct input data to produce correct results.

Because a locally synchronous computation module is activated by the DVR

flag from the tn-state input register, a safer and faster design without using syn-

chroniser is to assign an independent local clock generator in each module. The

local clock generator and hence the computation function are activated by the

DVR and stopped by the DVF + . In this way, each clock cycle can be efficiently

used in the computation module and there will be no risk of synchronisation fail-

ure. However, this structure is very expensive in hardware when the complexity

of a module is relatively low and the number of modules in a system is high. So

it is not adopted in our configurable GALSA design.

Chapter 5. An Implementation of a GALSA 	 132

Another choice is to distribute a global clock to each independent PH.P for

local use. Different from the strict restriction on minimum clock skews imposed

on distributing a global clock for a synchronous system, the only requirement

to distribute a global clock in our GALSA system is that it has enough driving

power to each PH. Clock skews caused by the distribution are no longer a

fatal problem because the distributed clock is only local to a PH,, i.e. clocks to

different PH,,,s can be regarded as independent whilst sharing a common clock

source. Given the restriction that the physical size of a PH, is either within the

size of an equipotential region of a chosen technology or a scale that a local clock

can be easily distributed inside it with the minimum clock skew restriction, the

effort and cost required to distribute such a global clock for local use in a GALSA

system is much less than in a synchronous system.

The synchronisation problem now is: D+ can happen at any time relative

to the rising edge of a running local clock in a PHc,,. Therefore, the activation of

the PH,, has to be at the start of the first clock cycle after the DVJ '. Figure 5—

13 shows the design of such a synchroniser for the asynchronous DVR and a local

clock CLK. ENA (enable signal) is a control signal which activates the PHc,,

timed by CLK when it goes high. CLK is a buffered local clock driven by a

free-running system clock. When DVR is low, ENA is held low which sets the

PHI,,, idle. An ENAT+ follows the first CLKT+ after a D1 1'. The major part

of a CLK time interval can be safely used to sample the DVR signal from the

tri-state register. A sampling time interval is called a DVR detection window in

the CLK. The sampling rate is the same as the CLK frequency. Once a D 7' 1 ft

is detected in a DVR detection window, the A signal in figure 5-13 will be locked

to low, and ENA will be raised to high at the immediate next. CLKT+ edge after

AT .

There is also a probability of synchronisation failure with this synchroniser

because the gate G1/G2 may enter the metastable state where signal A is balanced

between making a decision to resolve to a logic high or low state. This is depicted

Chapter 5. An Implementation of a GALSA
	

133

CLK

DVR

Figure 5-13: A synchroniser for DVR and CLK

by VC and VA' on the G1/G2 input and output voltage transfer curves in figure 5-

14, when both DVR and CLK input are very close to the effective threshold voltage

of G1/G2 at the same time. A metastable state may appear if a DV happens

at a very short time just before the end of a DVR detection window or at the

same time as a CLKT+. This short period of time is called a synchronisation risk

zone in a DVR detection window. In practice, noise (switching and thermal) or

a slight initial imbalance on signals can eventually push the signal A one way or

the other. The time taken to reach an output decision is called the decision time

td [63]. The synchroniser design shown in figure 5-13 allows a whole clock cycle

TC for the output A from G1/G2 to resolve. If id> T, a synchronisation failure

may be caused. Using the formula given in [63], a Mean Time Between Failure

(MTBF) can be estimated as:

MTBF =
1

2r x fc x IDVR

td/T
X e 	 (5.1)

where fc and fDVR are clock and DVR input frequency respectively, td is assumed

as Tc, r is a circuit parameter which is typically 0.2ns in the chosen 2jtm CMOS

technology. Given fc = 100MHz, IDVR = 25MHz, we got MTBF = 5.18 x iø'

seconds. This is iø times longer than the expected 15 years normal silicon chip's

life span.

Circuit and layout design techniques can also be used to reduce the synchroni-

sation failure probability to an even lower level if the NMOS and PMOS effective

gains of Gi, G2, G3, and G4 are designed to meet the following conditions:

Chapter 5. An Implementation of a GALSA
	

134

Vout

VA

Vena

VA 	vc 	Vm

Figure 5-14: Voltage transfer curves for different
f3pef/

	

> 1 for Gi and G3 	 (5.2)
i3pci f

	

/3nejj
<1 for G2 and G4 	 (5.3)

I3peff

so that the four gates effective threshold voltages will be set apart as shown in

figure 5-14. If a metastable state appears in G1/G2, VA may be vibrating in a small

range around the VA point for G2 in figure 5-14, VA' < VA < 2VC - VA'. For

G3, the ENA signal will have much better chance to stay outside the metastable

state by either keeping 0 or flipping to 1 state for, the synchroniser. Therefore,

the worst case delay after a is one clock cycle before a PH is activated.

With this analysis on MTBF and this circuit design technique, this synchroniser

should be safe enough to be used in our GALSA system.

To verify our analysis, an intensive simulation on the synchroniser design with

the Hspice circuit simulator has been carried out. The simulation strategy is to

move a D1 R1'+ edge across a region from a CLKT_ edge to a point just after a

CLKT+ edge. Although it is impossible to simulate a consecutive move of the

DVR edge in Hspice, we identified a synchronisation risk zone which is about a

lops overlap when a DVR
T+ edge and CLK edge are between 1.7v and 3.3v.

If both DV and CLKT+ fail in this voltage and time risk zone, it can take a

longer time (about 1.7ns) than usual (0.4ns) for the synchroniser to resolve VA to a

Chapter 5. An Implementation of a GALSA
	

135

Figure 5-15: A local clock buffer

stable state. When this happens, VENA is still kept as 0 or changes to 1 after 1.5ns

delay. Nevertheless, no synchronisation failure is seen in all simulation results and

a worst case of one clock cycle delay does appear at a point in the synchronisation

risk zone. Several typical simulation waveforms obtained by moving the DV

edge are given in the appendix.

Local clock buffer

The local clock to each PH, is driven by a shared clock source in a GALSA

system, and a PH,, is activated by the ENA signal from the CMU in the PH,.

A local clock buffer, as shown in figure 5-15, is used to generate a two phase

local clock from a globally distributed clock GCLK. The two phase local clock is

activated and stopped by the ENA signal. This buffer plays two important roles:

it compensates the time lost in the synchroniser for the LCLK phase, and it holds

LCLK and LCLK to minimise the power consumption in a PH,, when the PH,

is not active.

DVF control

As illustrated in section 5.3.2, a data status flag DVF for a locally synchronous

PHrj , can be generated by taking advantage of the number of clock cycles required

to run a programmed function.

Chapter 5. An Implementation of a GALSA
	

136

LCLK VdA -

R

dd

Figure 5-16: A dynamic shifter for DVt control

A DV is generated through a simple dynamic linear shifter controlled by

the local clock LCLK. A 4-stage dynamic shifter is shown in figure 5-16. The

total length of the shifter L 9 equals the possible maximum number of clock cycles

required by a PHc4,. A multiplexer is used to select an output from stage n, 1 <

n < L, in the shifter. n is specified in a clock cycle field in the ECR. The shifter

is activated by the ENA signal from the synchroniser. The DVF flag is cleared

by the R signal from the event-driven DTI.

5.4.2 An Event-Driven General GALS Logic Module

A complete event-driven GALS data transfer interface can now be constructed by

combining the event-driven DTI described in section 5.3.4 and the CMU depicted

in the last section. With this GALS data transfer interface, a general GALS logic

module, which can be used to build a GALS system, is shown in figure 5-17. In

the figure, the GALS interface is enclosed in the dash box and the logic module

can perform arbitrary logic functions with the local clock control. This general

GALS building module exhibits an excellent portability and timing independency

which meets the requirement of developing configurable hardware algorithms we

aim to achieve in this project. The issue of using this general GALS logic module

to construct a general GALS system or a GALS pipeline is discussed in [40].

The GALS logic module works in three phases in a GALSA system: the pre-

loading of ECR and other configuration bit streams, the initialisation (mit = 1)

of the GALS interface, and the normal system operation phase (mit = 0) where

Chapter 5. An Implementation of a GALSA
	

137

-I • U

I • • IG 	LCLKI-4.
CMU1,1

K 	LCLKhIf. Synchronous
Logic

U
U I 	+ •

II
Module

U. iii • I DV 	A DVp I 'I

UI 	 Ii
,ø1Rj, DTI RF-.
'I 	 I'
H A, 	 F4
:1 	mit

4 -----

Figure 5-17: A general GALS logic module

r
I 	 I I

Aj. - 	-
r - - - -

I 	 I I
R.t - 	 -' 	 I - 	-

I 	 I 	I 	 I I 	I

--.-'

LJL_
I I

mit

Figure 5-18: Waveforms for the event-driven GALS data transfer interface

sequences of asynchronous data transfer and computation events take place. At

the boundaries of a GALSA system, Rin and Ai,, must be initialised from external

sources.

Figure 5-18 depicts a group of typical waveforms for the GALS interface signals

in figure 5-17. It is noted that all the rising and falling edges of the signals

illustrated in figure 5-18 represent effective events. A complete hand-shaking cycle

consists of a sequence of such events. Also the design in figure 5-17 is a delay-

insensitive GALS system. That is, results from the synchronous logic module will

Chapter 5. An Implementation of a GALSA
	

138

00-

iMU
coIIt

from DTI 	 ECR

Figure 5-19: A PH and its I/O multiplexers

not be affected no matter what the length of delay is involved in the communication

path between two communicating modules and the logic module works correctly

with a properly chosen clock speed. If the delay in a communication path changes,

only the time to generate correct results will vary accordingly.

5.4.3 The PH, and I/O Selector
PO

In a primitive hardware operator PHPP, there are three input registers for A, B

and Cm respectively. These input registers are controlled by the event-driven DTI.

There is one carry register (CR) for C,.t and one temporary register (TR) for S

output. For the I/O selector in a PH,, there are three 6-to-1 input multiplexers

to select inputs for A, B and C,, and five 3-to-1 multiplexers to select S, Co., or

T to 5 output ports. Figure 5-19 depicts the block diagram of the PH and its

associated I/O selectors. All I/O multiplexers are controlled by the ECR.

In the heart of the PH there is an Execution Unit (EU) which can carry

out the primitive functions described in table 4-1. There are many different ways

to implement such an EU. A variety of design structures was considered for the

EU. One interesting ALU structure which is very flexible is given in Mead and

Conway's book [95, chapter 51. However, it requires 12 bits of control to form an

Chapter 5. An Implementation of a GALSA 	 139

ALU with three general functional blocks consisting of pass transistors. Because

our target GALSA system is arithmetic computation intensive algorithms oriented,

we decided to design an EU based on a full adder similar to the PEs in most of

the massively parallel processing systems.

The EU basically consists of a full adder and a 2-to-1 multiplexer. This is

sufficient to run the primitive functions listed in table 4-1. We first analyse the

functions that can be performed by a i-bit full adder and determine how a full

adder can be programmed to implement these functions. In the following sections,

i-bit full adder is assumed if not specified otherwise.

A full adder takes in three inputs A, B and a carry Jm from a lower bit, and

outputs a sum S and a carry C,,.t to a higher bit. S and C are calculated

by equation 5.4 and 5.5. From these two equations, it can be seen that a set of

functions as depicted in table 5-1 can be realised by setting C i,, and/or B input

and choosing either S or C.,,t as output respectively.

S =

(5.4)

C=A•B+B.C1 +A.C2 	 (5.5)

There are many different ways to design a full adder [137, section 8.2]. An

adder design based on transmission gates, as depicted in figure 5-20, is adopted in

our implementation because this adder can be implemented efficiently in CMOS

from the area point of view and it has an equivalent sum and carry delay with

buffered and non-inverted sum/carry output. The part inclosed in the dash box

in figure 5-20 is capable of generating the A ED B and A e B function. This adder

has been intensively simulated with the Hspice simulator with the chosen Mietec

CMOS technology, and proved correct. A sub control input to the adder selects

either B or W for an addtion or a 2's complement subtract function. If the adder

is programmed for a 2's complement subtract function, B is selected as an input

Chapter 5. An Implementation of a GALSA
	

140

Function inputs outputs

addition Gin A B S C

subtract Ci,, A B S C

inverse 0 A 1 A x

OR 1 AB x. AvB

AND 0 A B x AAB

XOR 0 AB AeB x

XNOR 1 1 1 A B AeB x

x: Don't care

Table 5-1: Possible functions from a full adder

to the adder and Cm is initialised to 1. The AS block in figure 5-19 sets the sub

flag and initiaiises the carry register CR if a subtract op-code is set in the ECR.

If a result S is to be saved into the TR, two clock cycles are required, one for

add/sub function and one for TR write. This TR is included in our PH,,,7, design

because it is anticipated that sometimes an S value may be required at the next

cycle of computation.

There are up to five possible input request and five input acknowledge signals

to each PH,. Two 5-input Muller C-elements are used to AND together input

request and acknowledge events to get one REQ i,, event and one ACK event to

the event-driven DTI. Figure 5-21 shows the design for a simple 5-input Muller

C-element. The DFF, which is similar to the Diatch used in the Input Guard and

Output Guard but without the write control W, is initialised to 0. The other part

of the PHI,,, ensures that at least one of the R, i = 0, 1,. . . , 4 is initially zero. The

ACK'signal is looped back as a request signal from unused input ports, and the

REQ.. t signal is looped back as an acknowledge signal from unused output ports.

Chapter 5. An Implementation of a GALSA
	

141

Figure 5-20: A transmission gate full adder

The ACK.,, t and REQ L signal are also sent to the selected input and output

ports respectively.

5.4.4 The Execution Code Register

The Execution Code Register sets the function of a PH,, and the number of

clock cycles required to run the function. It also sets input constants and selects

I/O ports for the PH,. There are four fields in an ECR: op-code, Ndk, input

constants, and I/O port select, as shown in figure 5-22. The content of the

Execution Code Register is preloaded at the same time as the routing network

is configured.

The first three bits b0 , b 1 , b 2 in the op-code field define, in conjunction with

the Co in and B ° constant field b6 , b7 , the function to be performed in a PH.

Functions and their corresponding op-codes are listed in table 5-2. b3 is a pattern

bit for the gate function. The next Ndk field has two bits b4 and b5 . Ndk defines

the number of clock cycles required by an Eli function. In this case, at most 4

clock cycles can be accommodated. This Ndk field makes it possible to design

Chapter 5. An Implementation of a GALSA

Figure 5-21: A 5-input Muller C-element

op-code (b2 b1 b0) function(s)

000 - VAe

001 +
010 -
100 merge

111 gate

Table 5-2: Functions defined by op-code

142

Chapter 5. An Implementation of a GALSA
	

143

op—code NdkC?, ° 	Input ports 	 Out put ports
lo

Figure 5-22: The Execution Code Register

more complicated synchronous EU functions for a PH, in the future, and more

bits may be used in this field to allow more clock cycles for a function. The Ndk

field is fed into the CMU in a PH,.

Therefore for the AS block in figure 5-19, the sub flag is generated by equa-

tion 5.6 according to table 5-2:

sub = F0 . 	 (5.6)

Functions in table 4-1 that have to be implemented separately are the 2-to-1

merger and the gate. A 2-to-1 multiplexer is used for a 2-to-1 merge function

with (A, B) as inputs and Ci,, as the merger control. The logic design for the

gate block in figure 5-19 is shown in figure 5-23. The match flag M = 0 and the

gate is open if Gin matches the pattern b3 in the ECR; otherwise M = 1 will keep

the gate closed and set the reset signal T = 0 to clear the current node (DVR

and DVF), and wait for the next cycle of input data and Boolean control input.

For other functions, W from the DTI is passed directly to R9 . The T output is

selected from either the merger multiplexer output or the temporary register TR.

If b2 = 1, T selects the output from the merge or gate function.

There is one input and one output port in each routing channel, so we have a

total of five input and five output ports in the three vertical and two horizontal

channels: vch< 0 : 2> and hch< 0: 1>. b8 to b16 are for A, B and C1 operands.

Each operand needs 3 bits to control a 6-to-1 multiplexer which chooses an input

from the five possible input ports or a constant. b17 to b 26 are for the three output

results, S, C,,.t and a T. Every 2 bits are used to control a 3-to-1 multiplexer which

Chapter 5. An Implementation of a GALSA
	

144

Figure 5-23: Gate logic block

A, B, C m vch0 vchl vch2 hch0 hchl constant/register

bi+2bi+lbi 001 010 011 100 101 000

(a) Input port selection for A, i = 8; B, i = 11; Gin , i = 14

L Tch<0:2>,hch<0:1> S C,,t T NIL

b, 1 b3 01 10 11 00

(b) Selection of S, 	or T to output ports, j = 17, 19, 21, 23, 25

Table 5-3: Bit settings for I/O port selection in an ECR

selects one of the three outputs to one of the five output ports vch< 0 : 2 > and

hch< 0 : 1 >. T is an output which is from either the 2-to-1 merger multiplexer

or a PH,,, internal temporary register (TR) as shown in figure 5-19. With this

output structure, it is possible to broadcast one output to up to five different

PH,s and process returned acknowledge signals properly. The I/O channel port

selection table 5-3 elaborates b8 to b26 settings for the I/O ports.

From table 5-2 and 5-3, the content of the ECR can also be expressed in

text format, like an assembly language, for clarity and easy understanding. Two

execution code examples are given in table 5-4. The first example is an execution

code for an ADD, with A input from vch0, B input from vchl and Gin input from

an internal feedback carry register (CR); S output is duplicated to vch0 and hch0,

T is output to vch2, and C. t to hchl. This function requires 2 clock cycles to

Chapter 5. An Implementation of a GALSA
	

145

Function ECR code Text expression

A + B 001610001000100001000111001 ADD 0 2 0 0 vch0 vchl CR S NIL T S

A B 000000000011011111000001000
1
 XOR 0 1 0 0 hchO hchl CST S NIL S NIL NIL

Table 5-4: ECR execution codes and text expressions

complete. The second example sets an XOR function with A input from hchO, B

input from hchl, Cm = 0 as a constant (CST); the result S is duplicated to vchO

and vch2. The other output ports are not used.

5.4.5 Multiplexers

Multiplexers are heavily used in many array architectures and configurable ar-

chitectures. The in a GALSA system is no exception as this can be seen

from figure 5-19. A detailed analysis on various multiplexer designs based on the

conventional CMOS technology can be found in [58].

Two particular multiplexer designs are preferable: one RAM control per switch

or NMOS pass transistor trees. The multiplexer constructed from one RAM per

switch scheme has the best performance because there is only one transistor switch

to connect a path. The area of this type of multiplexers grows rapidly when the

number of inputs increases. On the other hand, an NMOS pass transistor tree

has the area advantage while its performance is slightly slower than that of the

one RAM per switch scheme if the number of inputs is not too high. For example

in an NMOS 6-to-1 multiplexer tree as depicted in figure 5-24, only two more

pass transistor delays are added in each input to output path but saves 3 RAM

bits compared with the direct RAM control design. We adopted a compromise

approach for area and performance: directly RAM controlled transistor switches

for the Routing Cells and NMOS pass transistor trees for the multiplexers in a

PH,,, design. The 6-to-1 multiplexer in figure 5-24 is used as the input selector

in figure 5-19. A 2-to-1 or 3-to-1 multiplexer is just a small sub-tree (z 01 x1) or

Chapter 5. An Implementation of a GALSA
	

146

Figure 5-24: A 6-to-1 NMOS pass transistor tree multiplexer

(20) x 1 , 22) of the 6-to-1 multiplexer. Controls of these multiplexers come from

the corresponding fields of the ECR as illustrated in the last section.

5.5 The Routing Network

The implementation of the routing network in a GALSA system is based on the

discussion on network principles in section 4.2.5 and the decision on the Routing

Cell capability made in section 4.4.2.

5.5.1 Switches

A basic switch device, that can be used to connect or disconnect two points, must

be chosen before we design the switch unit for the Routing Cell. With conventional

CMOS technologies, there are three possible choices for a basic switch device: a

transmission gate, an NMOS pass transistor, or a tn-state non-inverting buffer.

A transmission gate or tn-state buffer switch requires Q and Q from a Boolean

control, but a pass transistor switch needs only one Q from a Boolean control. Both

transmission gate and pass transistor switches have native bi-clirectional switching

capability whilst it is very expensive to have bi-direction flow capability with tn-

state buffer switches. Among these three types of switches, a tn-state buffer

switch has its own driving power at the expense of larger area. A pass transistor

Chapter 5. An Implementation of a GALSA 	 147

switch is the smallest amongst the three switch types, so are parasitic capacitances

in an NMOS switch. The NMOS threshold voltage (VT) loss, (V dd - VT) when

a Vdd passes through the NMOS pass transistor, is the major drawback. The

"bootstrap" technique was considered and simulated for restoring the lost high

voltage. However, this technique is not recommended in conventional CMOS

processes because bootstrapping is very likely to the lead to devastating latch-up

effect.

Further analysis and simulations show that if a set of NMOS pass transistors

are connected in series, the high voltage degradation after the first pass transis-

tor's VT loss will be just the voltage drop through the effective "on" resistance

of the conducting transistor. Because this resistance voltage drop is very small,

the VT voltage loss is no longer a concerning factor after the first pass transistor

switch. The only problem left is that the more the pass transistors are in series,

the slower will be the following waveform rising edges. Although there is almost

no high voltage loss with transmission gate switches, the delays of both rising and

falling edges are not greatly improved for a transmission gate switch because of

the larger parasitic capacitances with one NMOS and one PMOS in parallel. Two

serial switch chains with 8 NMOS pass transistors and 8 transmission gates (TG)

are simulated with Hspice. The NMOS switch chain is also simulated with two

power supplies: 5V for data signals and 7V for switch control. Table 5-5 shows

the delays with one driver before and one driver after each switch chain. From

this table, it is clear that the TG chain has poor low signal propagation speed

and marginally better high signal propagation speed than the NMOS chain. The

NMOS chain with a separate V + VT switch control voltage supply shows the

best signal propagation speed for both low and high signals. The transmission

gate switch will have even worse performance with the large parasitic capaci-

tances in our routing network because a switch chain can be branched. On the

other hand, NMOS pass transistor switches, which will be scattered around asyn-

chronously communicating PH,s, meet the requirement of the delay-insensitive

Chapter 5. An Implementation of a GALSA

Delays (ns) TG chain NMOS chain NMOS chain (5V + 7V)

Low Signal 7.5 4.7 4.1

High Signal 9.1 10.7 4.9

Table 5-5: Delays in switch chains

TI

148

UI
I1

v a

Figure 5-25: A six transistor static CCM

DTI described in section 5.4.2. Therefore, the NMOS pass transistor is chosen as

the switch device in the switch unit design. We also designed the routing network

and the configuration control memory with two separate power supply networks,

this will enable us to test the system with either one power supply or two separate

supplies for the routing network performance.

5.5.2 The Configuration Control Memory

Memories used in the GALSA system for storing configuration control data are

called configuration control memory (CCM). NM is the number of CCM bits

required to configure a Routing Cell.

A full detailed analysis and comparison of dynamic and static RAM designs

can be found in [58]. With conventional CMOS technologies and our particular

configuration requirements, a six transistor static RAM, as shown in figure 5-25,

has been selected as a CCM in our GALSA implementation.

Chapter 5. An Implementation of a GALSA
	

149

Channel I/O

From PH0p

Channel I/O

Figure 5-26: A switch unit with 4 bits CCM and 4 NMOS pass transistors

5.5.3 The Routing Cell

The basic element repeatedly used in an RC is a switch unit. As shown in figure 4-

5, a switch unit is a four terminal device which can internally route data from one

terminal to another terminal. The data routing is controlled by a CCM.

There are different ways available to implement the switch control. For ex-

ample, central storage can be used for each RC and logic can be used to decode

the actual controlling signal to each switch element. This method can reduce the

number of CCM bits, at the expense of decoding logic. Another way is to store a

control bit for each switch directly in a CCM. Thus a total of 4 bits of memory

is needed in one switch unit. This direct switch control can retain the regularity

of the RC and simplify the RC design, thus this control structure is used in the

routing network. Figure 5-26 shows the design of the switch unit. The total num-

ber of direct control'CCM bits required in an RC N CM can be calculated from

equation 5.7.

RC
NccM =4xNth+2 	 (5.7)

where N hd is the total number of routing channels to the RC and the extra 2

bits are used to control the two cross points between the two vertical and horizontal

channels. Because 3 vertical and 2 horizontal routing channels are selected for each

Chapter 5. An Implementation of a GALSA 	 150

iq

Figure 5-27: A bi-directional channel buffer

row and column of PH,,,s, as illustrated in section 4.4.2, the total number of CCM

bits in an RC is 22. For each channel, there are three switch units: one for data,

two for request and acknowledge, which share one 4-bit CCM. Thus there are 15

switch units in an RC.

5.5.4 Routing Channel Buffers

Because of the delay and waveform distortions caused by the RCs, buffers are

used in the routing channels to recover signal waveforms and add driving power to

signals. Since signals may flow in both directions in a channel path depending on

the mapping of an algorithm, bi-directional buffers are used in each routing path

with every RC. The schematic of a bi-directional buffer is shown in figure 5-27.

There are two tn-state buffers in the figure. The DM is 1 bit CCM which always

sets one buffer ON and one OFF.

5.6 A GALSA System

The core of a GALSA array chip is formed by duplicating an array element which

consists of a Routing Cell with channel buffers, a PH, and a block of CCM, in the

X and Y dimension. All ports of this array element will be properly positioned on

the boundaries of a square area so that an N x N array core layout can be simply

constructed by abutting this element layout in rows and columns. Other major

considerations for the chip level implementation are peripheral control circuits

around the core of the array. These peripheral circuits have three majpr functions:

Chapter 5. An Implementation of a GALSA 	 151

distributing a global clock for each PH,1, local use, preloading configuration bit

streams into CCMs and ECRs, and providing I/O interface on the boundaries of

a chip.

The clock distribution network is a tree structure with an external clock GLCK

at the root. This GCLK drives a clock buffer at each row in the core array through

one or two levels of buffers depending on the number of columns in the array. This

row clock buffer then drives N clock buffers to N PH07,s in a row.

5.6.1 The Pre-loading Circuits

The operation of a GALSA system runs in three phases. A configuration phase

must be performed to download network configuration and ECR bit streams for

a particular algorithm once the system is powered on. The configuration phase

is also called algorithm embedding phase for this reason. After this configuration

phase, the system is initialised and then runs in the normal operation mode for

the embedded algorithm.

In the configuration phase, the GALSA system is simply treated as a mem-

ory array. The way to write this "memory" array is similar to writing a word

to a memory. For each write step, a row of CCMs is selected and written si-

multaneously. CCMs and ECRs are arranged in 2 columns in each array element,

therefore, there are 2N bits ma "memory" row for an array with N columns. This

requires 2N pins for downloading a sequence of configuration bit stream words. A

column shifter which has the same number of stages as the total number of bits

in a "memory" column is used to generate a sequence of row write control signals

for "memory" writing. This shifter is controlled by a clock which also controls

the flow of input configuration bit stream words so that the write of a "memory"

row is lock-stepped with the configuration word flow. Therefore, downloading of

configuration words is in synchronous mode in the configuration phase. This does

not impose any difficulties in design because there are no complex data depen-

Chapter 5. An Implementation of a GALSA
	

152

LtI-f.- flit

Cf9

I :[J - GCLK
1ui

I I 	'Iii
• I 	'I

I
I • I 	•ItI

Figure 5-28: A configuration preloading structure

dencies with rows of write lines and two vertical clock lines which can be easily

distributed to the column shifter. The clock does not need to run at a very fast

speed. This will ensure that each write signal is enabled at the right time for an

input configuration word. The clock input is shared with the clock input used

in the GALS operation phase. Figure 5-28 shows this configuration preloading

"memory" structure.

To save on the number of configuration word pins, an extra synchronous serial-

in parallel-out row shift register of length equal to that of a "memory" word can

be used. This shifter is placed on the top edge of the array. Only one configuration

pin, which is the input to the row shifter, is required in this scheme. A sequence of

configuration bits of a word length is first shifted into the row shifter, then a write

line is enabled and the whole content of the row shifter is copied into a row of the

"memory". This downloading procedure is repeated for all the rows to complete

the configuration phase. An N-bit counter is required to generate a modulo-N

control to the column shifter for the row writing signals.

There are two ways to to retain a system configuration. The easiest way is

to keep the system power on once it is configured. The other way is to duplicate

configuration vectors in an EEPROM which is connected to a system. Every time

the system is powered on, the configuration vectors are automatically downloaded

into the system from the EEPROM.

Chapter 5. An Implementation of a GALSA
	

153

5.6.2 GALS Array I/O Interface

The GALSA system is a pad-limited architecture, namely the number of pads

may determine the final size of a chip. Therefore slim pads are used for the pad

ring. Multiplexers are also used at the ends of horizontal and vertical channels

to multiplex the three vertical channels to one I/O pad group (3 pins), and also

the two horizontal channels into one I/O pad group (3 pin). This may reduce the

routability on the boundaries of a chip. However, efforts can be made to map

sub-DFGs of an algorithm with less I/O requirements into a chip to avoid the

I/O congestion on the boundaries of the chip. Figure 5-29 depicts the top level

schematic of a 4 x 4 GALSA system with 8 configuration bit stream downloading

pins.

5.7 Testability

It can be seen from the definition of the GALSA architecture that a GALS array

can be tested in two phases. The test of the routing network is quite straightfor-

ward. First the conduction and switch ON function of each channel and switch are

tested, then the independence of each channel and switch OFF function of each

switch are tested. This will also test the function of CCM blocks. Once the routing

network is tested, each PH, can be tested in turn. The data transfer interface

can be tested by setting all PH,s to the merge function. The next step is to

test all the primitive functions of each PH. This GALS array system has some

degree of graceful degradation fault-tolerance on the array size. Malfunctioning

PHc,,,s can be marked in a file and are avoided in the algorithm mapping proce-

dure. As far as the routing network is concerned, some open connection faults

can also be marked in the same file and avoided in algorithm mapping. However,

if there are too many faults in the routing network, in particular a fault cluster

Chapter 5. An Implementation of a GALSA 	 154

Figure 5-29: The schematic of a 4 x 4 GALS array

Chapter 5. An Implementation of a GALSA 	 155

which cuts a whole section of an array, or some short circuit faults in a chip, the

chip is rendered unusable.

5.8 Summary

The design of a configurable GALSA system is described in this chapter. One

of the most important design blocks implemented is an event-driven GALS data

transfer interface. A novel tn-state register and new synchronisation scheme for

the GALS interface are presented. These designs are carefully analysed and proved

working with simulated results by Hspice. The GALS approach presented here can

also be extended to the design of general GALS systems. The design details of a

programmable hardware operator (PH,1,) and the routing network for the GALSA

system architecture established in the preceding chapters are also elaborated in

this chapter. In the next chapter, some simulation results on the performance

of these designs will be presented and some algorithm mapping examples will be

described. A performance comparison with some existing systems will also be

made.

Chapter 6

Example Algorithms and

Simulation Results

Intensive simulations with the lispice circuit simulator on each individual design

block described in chapter 5 were carried out to ensure that they function correctly,

and to obtain typical timing characteristics of these elements. It is not easy to

simulate an entire blank GALSA system, so we thoroughly tested the configuration

vector pre-loading logic design, the routing network and a complete array element

module. Several example application algorithms are studied and mapped into

the GALSA system. Complete system level simulations were carried out for the

configured GALSA systems with these embedded algorithms.

6.1 Typical Timing Characteristics

This section contains the typical timing characteristics of the key components

designed for the GALSA system. Each component is. analysed with the Hspice

simulator under typical operating conditions which are described next. The com-

ponents characterised are: the tn-state register, the input and output guard,

the event-driven data transfer interface, the synchroniser, the transmission gate

156

Chapter 6. Example Algorithms and Simulation Results 	 157

Q load DVR load -f- - 	 DVR1' -f 	—, D1'
QT+ 2ns 2ns 0.95ns 1.04ns
QT_ 2ns 2ns 0.70ns 0.79ns

Table 6-1: The tn-state register timing

adder/subtractor, multiplexers, the Routing Cell, and the configuration bit-stream

preloading circuit.

6.1.1 Simulation and Measurement Conditions

All Spice device models are taken from Mietec 21im, double poiy, double metal,

N-well CMOS process. All circuits are simulated with 5V Vdd and OV Vss at

27° C.

All time measurements given in the following tables are in nanoseconds and

the load at an output is the number of standard inverters unless otherwise stated.

Input stimuli ramp 0 — 100% in ins. The propagation delay is measured from

the 50% point of the input to the 50% point on the output. The rise/fall time is

measured between the 10% and 90% value of the output.

6.1.2 The tn-state register and the GALS DTI

There are five signals in a tn-state register: Din, WEN, DV R , R, and Q. Table 6—

1 lists the timing characteristics for 	—i D1 	when WEN, and

DVJ ' when WEN with valid data at D1 .

There are 4 signals: R1 , 	EVT, and DVR , in an input guard, and

EVT 0 , and DVM , in an output guard. The timing characteristics for

RT /A?' —f EVT"/EVT T and DVT+/DVT+ , AT /RT are given in ta- sn in 	 o 	 R 	1W 	 out 	out

ble 6-2. A complete shortest input cycle for an input guard, RT 	 T-I- . —* EVT. —p

Chapter 6. Example Algorithms and Simulation Results 	 158

IG A out load R —, EVTT DVJ 	 —

R' 2ns 0.52ns 0.98ns in

T- R. 2ns 0.61ns 0.67ns

OG Rout load DVM —, ou A - EV7

2ns 0.98ns 0.47ns
in

A. 2ns 0.93ns 0.56ns
In

Table 6-2: The Input Guard and Output Guard

— DV —* A, as illustrated in figure 5-10, is determined by the slowestOU

EVTT+ — DV J when DVJ is before EVTT+. This is measured as 1.71ns,

therefore, T, IG = 0.61 + 1.71 + 0.98 = 3.4ns. A shortest output reset cycle for in

an output guard is A - EVT 02' 	— (DV = DVJ . DVA) —+

EVT. It takes one NMOS transistor delay, 0.2lns, for EVT '
- TT_, and

two AND gates delay, 0.62ns, for (DV 	D1') — DV. Thus, we have

= 0.56+0.21+0.95+0.62 = 2.34ns. A shortest RT —+ DVT+ , RT path can
ni_sn 	 in 	 R 	out

be from a tn-state register to an output directly, 	= 0.61+1.71+0.98 = 3.30ns, in

i.e. a data can pass through such a stage in only 3.30ns. Because DVR
T+ —* A

T
out

is overlapped with 	- R in time an upper bound on a maximum sus-

tainable data transfer rate can be estimated for the event-driven data transfer

interface as: 1/(3.30 + 0.98 + 2.34) = 1/6.62ns = 151MBit/s for the bit-serial

data transfer. When this event-driven data transfer interface is used in a GALSA

system, there are extra delay factors caused by the Routing Cell switches and

multiplexers in and this will be configuration dependent.

The timing characteristics for the 5 input event-AND Muller C-element shown

in figure 5-21 are in table 6-3. These parameters are the worst case figures after

simulating different combinations of input event sequences.

Chapter 6. Example Algorithms and Simulation Results 	 159

Output load mit output

TT+ 2ns 0.23ns 1.54ns out

TT 2ns 0.21ns 1.43ns

Table 6-3: Delays in the 5 input Muller C-element

TGadder S load Gout load S Gout

add 2ns 2ns 1.25ns 1.25ns

sub 2ns 2ns 1.32ns 1.32ns

MUXs Output load 2-to-1 3-to-1 6-to-1

rising 2ns 0.29ns 0.61ns 0.88ns

failing 2ns 0.17ns 0.29ns 0.52ns

Table 6-4: Delays in the transmission gate adder and multiplexers

6.1.3 The Transmission Gate Adder and Multiplexers

There are three data inputs A, B, Cm and two outputs 5, Gout in the transmis-

sion gate adder. The add/sub control is static before any inputs are applied to

the adder. There are eight possible input combination situations which are all

simulated for both add and sub function. Table 6-4 gives the worst case S and

Gout output delays obtained from the simulation. This result conforms with the

analysis of equal S and Gout delay with the transmission gate adder.

There are three types of multiplexers used in the PH, design: 2-to-1, 3-to-1

and 6-to-1. The delays associated with these multiplexers are given in table 6-4.

From table 6-4, an estimation can be made on an upper bound for the local

clock speed. This is 2 times the worst case multiplexers' delay plus the worst case

adder delay. Allowing 30% process variations, we get an upper bound for the local

clock as 210MHz.

Chapter 6. Example Algorithms and Simulation Results 	 160

5V Output load NS/WE NW/SE NE SW BDCbuffer

rising 1.5ns 0.94ns 1.10ns 2.18ns 0.43ns 0.71ns

falling 1.5ns 0.67ns 0.85ns 1.92ns 0.23ns 0.68ns

5V/7V

rising 1.5ns 0.72ns 0.89ns 1.96ns 0.31ns 0.64ns

falling 1.5ns 0.61ns 0.78ns 1.89ns 0.20ns 0.62ns

Table 6-5: Delays in a Routing Cell and bi-directional channel buffer

6.1.4 The Routing Cell and Channel Buffer

Because there is no direct interaction between V channels or H channels, we only

give the delay factors associated with one V-channel (vh0) and one H-channel

(hch0). The other channels have the same delay factors. There are four typical

channel delays in the vch0 and hchO routing: North-South (NS) or West-East

(WE) involving only one switch unit of figure 5-26, NW/SE involving one switch

unit and one pass transistor, NE involving two switch units and one pass transis-

tor, SW involving only one pass transistor. The delays for these channel routing

patterns are given in table 6-5. The table lists both delays when one 5V power

supply is used and a separate 7V supply is used for the CCM. Each input is driven

by a bi-directional channel buffer of figure 5-27, and each output drives another

bi-directional channel buffer.

6.1.5 Array Element Test

It is important to test a GALSA array element as an integrated module. An array

element is formed by connecting one PH P.P
,

as shown in figure 5-19, to one event-

driven GALS DTI, one Routing Cell and a CCM module. The CCM module sets

the Routing Cell, the I/O ports and function of the PH
POP

Chapter 6. Example Algorithms and Simulation Results 	 161

The testing strategy is to simulate one such array element with each function

op-code defined in table 5-2 one by one. In each op-code simulation, all possible

input vectors to the function are tested and each input vector comes from a dif-

ferent set of input ports in the Routing cell, and the corresponding outputs to a

different set of output ports. For instance, there are eight possible input vectors to

a full adder function. One of the first five possible A values is selected from vchO,

vchl, vhc2, hchO, hchl in turn to test the A input multiplexer function thoroughly.

Similar I/O selections are also applied to B/CIa inputs and SIC,,. t outputs. When

there are less than five possible input vectors, for example a two input Boolean

function has only four possible input vectors, some randomly chosen input vectors

are used to make up the five input test vectors. Therefore, there are five different

CCM settings to simulate for one op-code function. The last CCM setting is also

used for other input vectors after the first five. The is looped back to

and 	is looped back to A i,, in the GALS DTI in simulations.

No function errors were found with this intensive test on the schematic design

of this array element, so we believe that the element functions correctly. The

synchronisation mechanism in the GALS DTI also undergoes a test each time an

input vector is applied. No metastable state is observed from these simulations.

6.1.6 Configuration Test

As illustrated in section 5.6.1, a sequence of configuration words is loaded into

each row of CCMs in the core array of a GALSA similar to writing a memory

array. The write signal to each CCM row is generated from a column shifter

which is controlled by a configuration clock. Because the configuration phase runs

in synchronous mode, we must test that the column shifter can generate a correct

sequence of write signals, and all CCM rows can be correctly written using a

proper configuration clock speed.

Chapter 6. Example Algorithms and Simulation Results 	 162

A long column shifter is simulated first to obtain a correct sequence of CCM

row write signals. Then we simulated the configuration phase in a 4 x 4 GALSA

by downloading two sequences of test configuration words. Each CCM bit is

complemented in these two sets of configuration data to test all CCM bits. After

the first sequence of configuration data is loaded, a reverse procedure is performed

to read back the sequence of configuration data which is compared with the original

one. This is repeated for the second sequence of complementary configuration

data. Because both read-back data did not produce any differences from their

original ones, this test indicates that the CCM array and the configuration pre-

loading structure work correctly. The maximum configuration clock frequency

that can ensure correct data loading to the CCM array depends on the size of the

GALSA. Because all switches are statically driven by CCMs and a configuration

phase is always carried out well in advance, the speed of a configuration process

is not a particularly important factor as long as it is reasonably quick. Therefore,

all transistors used in a CCM bit are the smallest allowed. For the 4 x 4 GALSA

array, the simulation shows that configuration data can be loaded safely with a

20MHz configuration clock. It only takes approximately 6s to configure a 4 x 4

array with the 20MHz configuration clock. We estimate that a 100 x 100 array

can be safely configured, with a 1MHz configuration clock, within just 4ms.

To test the connectivity of the channels and Routing Cells, we simulated the

system with a configuration where the I/Os of all the PH01,s to Routing Cells are

disabled and all the V and H channels are set as N -* S and W - E conducting.

A 0101 test vector is input into each channel after this configuration. This step

is repeated for S - N and E - W channel settings so that the bi-directional

channel buffers and Routing Cells are fully tested. The same 0101 output vector

is observed at all channel outputs in all cases. This means the connections and

the bi-directional channel buffers in each channel work properly.

Chapter 6. Example Algorithms and Simulation Results 	 163

6.2 A 4 x 4 Multiplier in a GALSA

This section describes an example of embedding a 4 x 4 bits integer multiplication

function into a GALSA array.

6.2.1 Integer Multiplication

Suppose there are two integers X, Y,

	

x = 	Xi•2' 	 (6.1)
:

	

= 	•2' 	 (6.2)

The product of the X and Y will be

P = X.Y

= (6.4)

rn-i n-i

= (6.5)
i=O j=0

rn+n-i

= (6.6)

where Ph = 	 forall(i, j)pa.irs that meeti+j = k. Fora4x4mul-
ij

tiplication, m = ii = 4. Table 6-6 lists all the partial products generated. From

this table it can be found that such a multiplication can be directly implemented

as an array multiplier. A straightforward carry-save array multiplier is depicted

in figure 6-2. Figure 6-1 shows the multiplier cell which is used in the array. mul-

tiplier. One particular characteristic of this multiplier is that carries on each row

are not added to the partial products of that row, instead carries are added to

the partial products of the next row. This structure automatically eliminates the

carry propagation delays in partial products generation apart from the last row.

Chapter 6. Example Algorithms and Simulation Results 	 164

x3 x2 x1 x0

Y3 Y2 Y1 Y0

x3 Y0 x2 Y0 x1 Yo xoYo

x3Y1 x2 Y1 x1 Y1 xoYi

x3 Y2 x2 Y2 x1 Y2 x0 Y2

x3Y3 x2 Y3 x1 Y3 x0 Y3

P7 	P. 	P5 	p4 p3 P2 P1 P0

Table 6-6: A 4 x 4 integer multiplication

6.2.2 Embedding the 4 x 4 Array Multiplier into a GALSA

2 Generally speaking, an n x ii array multiplier requires ii AND functions, n(n - 2)

full adders, and n hail adders. The carry to each partial product is added to it

with a delay of one step, but carries have to be added. at the same time when

the final product is calculated. A carry-look-ahead technique can be used in

this final product calculation. However, further analysis shows that for an n x n

multiplication, only - 1) full adders are needed in the last stage which means

that the worst case carry propagation delay is only n bits for the final 2 x n

X. 	C,. Pk

1?

D#. i

Figure 6-1: A multiplier cell for an array multiplier

Chapter 6. Example Algorithms and Simulation Results 	 165

x3 x2 x1 x0

Y3

Figure 6-2: An array multiplier for a 4 x 4 multiplication

product terms if ripple-through carry adders are used. Therefore, three simple

ripple-through adders are used in the final stage of the 4 x 4 multiplier.

The calculation of each product term is identified as a computation thread in

an array multiplication function. Carries will not stall the generation of a current

partial product in such a thread because they are generated one step earlier. The

final row of ripple-through additions is another thread because the final higher n

product terms are generated while carries are propagated through.

Four different macro-cells are composed for the array multiplier to match the

elements used in figure 6-2 and the routing around these elements. Figure 6-3

depicts these four macro-cells. The BD macros are located on the top and left

boundaries of the array to generate the first row and the most significant bits for

partial products in table 6-6. The second row of partial products in table 6-6 is

generated from the RHA macros. The third and forth row of partial products are

generated from RFA macros. The RTCA macros calculate the final four higher

bits for the final product.

Since routings are included in macro-cells, the 4 x 4 array multiplier is embed-

ded into a GALSA by stacking and abutting these macros to form a rectangular

Chapter 6. Example Algorithms and Simulation Results
	

166

1 1701 on
11 17-7 L UWiK_ - roil -

BD macro
	

RHA macro

"ElliI1 LI
RFA macro

Figure 6-3: Macro-cells for an array multiplier

array as shown in figure 6-4. Macros on a diagonal (X e , l'), where j+j = k E [0, 6],

form a computation thread for a partial product term PA,. There are seven such

diagonal computation threads. The last row of RTCA macros is another thread

to compute the final P4 to P7 product terms.

There are 16 possible inputs for 4-bit integers X and Y. An average multipli-

cation speed can be obtained if all 256 multiplications are simulated. This is too

time consuming. Instead, five X values: 0011, 0110, 1001, 1100, 1111, and five Y

values: 0010, 0101 7 1011, 1101, 1111, are randomly chosen as inputs to simulate

the embedded multiplication function. Because P7 is the slowest product term

from the multiplier, we measured the time taken to generate P7 for each multipli-

cation. Then an average 23.76ns multiplication time from these 25 multiplications

is obtained.

FAI

Boo m
 .T.,

Yo—

Y1—

Y2—

Y3—

—P0

—P1

—P2

—P3

Chapter 6. Example Algorithms and Simulation Results 	 167

x3 x2 x1 x0
I 	I 	I 	I

I 	I 	I 	I
P7 P6 P5 P4

Figure 6-4: A 4 x 4 array multiplier in a GALSA array.

a

f 	b
g

e 	c

d

Figure 6-5: A seven segment display

6.3 A Seven Segment Display Decoder

In this algorithm mapping example, a seven segment display decoder function is

mapped into a GALSA array.

A seven segment display as shown in figure 6-5 has seven independent segments

with a unique label assigned to each segment. Each segment is controlled by- a

control signal. Different state combinations of the seven control signals will light

the display as one of the digits of (0, 1, 2, ..., 9).

Chapter 6. Example Algorithms and Simulation Results 	 168

X 3X 2X 1 X 0 a b c d e f g

0000 1 1 1 1 1 1 0

0001 0 1 1 0 0 0 0

0010 1 1 0 1 1 0 1

0011 1 1 1 1 0 0 1

0100 0 1 1 0 0 1 1

0101 1 0 1 1 0 1 1

0110 1 0 1 1 1 1 1

0111 1 1 1 0 0 0 0

1000 1 1 1 1 1 1 1

1001 1 1 1 1 0 1 1

1010 x x x x x x x

1011 x x x x x x x

1100 x x x x x x x

1101 x x x x x x x

1110 x x x x x x x

1111 x x x x x x x

Table 6-7: Seven segment decoder truth table

There are 4 bits of input to a seven segment display decoder and 7 segment

control signals as output from the decoder. The truth table for this decoder

function is given in table 6-7.

Because of the large number of "don't care" states in table 6-7, the decoding

function for each segment control signal can be substantially simplified. The opti-

mised decoding functions for each segment control signal is listed in equation 6.7.

Each function can be embedded into an independent computation thread. How-

ever, it can be seen from these functions that there are some terms which are

shared by several control signals. Although these functions are independent from

Chapter 6. Example Algorithms and Simulation Results 	 169

Figure 6-6: A seven segment display decoder in a GALSA array

each other, we tried to take advantage of these shared terms when mapping these

equations into a GALSA array. While some array elements are saved as result

of sharing some terms, more routings are needed. Figure 6-6 depicts the final

mapping of the seven segment decoder into a GALSA array.

a = X 3 +X1 +X0 ®X 2

b = X 3 +X0 OX 1 +X•X

= x3 +x2 +X+x0

d = 	 (6.7)

= X 1 X0 X 2 X 1 X 0

I =

9 = x3 +x1 .X+.x1 +x2 .x1 .x0

Ten possible inputs are all simulated with the embedded decoding functions.

The average time to obtain all seven decoded control signals is 15.29ns.

Chapter 6. Example Algorithms and Simulation Results 	 170

6.4 Evaluation of Polynomial Expressions

High speed evaluation of a large number of polynomial expressions has considerable

application in the modelling and real-time display of objects in computer graphics.

VLSI techniques have already been used for the design and implementation of

frame buffers for computer graphics. A traditional frame buffer is usually a two

dimensional memory array storing an array of picture elements (pixels) that are

to be displayed on a bitmap screen. A frame buffer is one of the most important

devices used in modern raster graphics displays. In this section, an algorithm for

evaluation of polynomial expressions described in [93] is mapped into a GALSA

system as a high performance frame buffer.

6.4.1 Display of Pixels for Different Objects

To display an object on a screen, the value of each pixel in the screen has to be

calculated according to a certain function which is often a polynomial expression

of various orders. Suppose a screen is represented as a fixed square grid of (m +

1) x (m + 1) pixels, a white line can be drawn by illuminating the pixels close to

(X, Y) points in the screen coordinates which satisfy:

Az-I-By+C=0 	 (6.8)

For a pixel at (x,y), 0 < x,y 	m, on the screen, the value Ax + By + C is

the perpendicular distance of the pixel to the line. An entire line can be drawn

by highlighting all the pixels for which JAx + By + C1 < W, where W > 1 is

a line width threshold. A half plane is turned on by illuminating all pixels for

which Ax + By + C < 0. Generating arcs and circles involves evaluating quadratic

polynomial expressions. A circle of radius r centered at point (a, b) can be drawn

by illuminating all pixels at (x,y) for which 1r2 - [(z - a) 2 + (y - b) 2] W,

Chapter 6. Example Algorithms and Simulation Results 	 171

(a) 	 (b)

Figure 6-7: Pixel display: (a) a line; (b) a circle

where W is also a circle line width threshold value. Figure 6-7 shows a line and

a circle drawn on a screen. If pixels satisfying [r2 - [(x - a) 2 + (y - b) 2] > 0

are illuminated, a light dot of r radius centered at point (a, b) is turned on. For

applications involving display of molecules, atoms are modelled as spheres, and

the bonds between them as cylinders. The orthogonal projection of the atoms and

their bonds reduces to evaluating quadratic expressions.

Thus, a large amount of calculation is required, for example to display a picture

in a window area of 400 x 400 pixels. If these calculations were carried out in a

CPU, which is also responsible for other computation tasks, the whole system

speed and the graphics display would be very slow. Efforts have been made to

design fast frame buffers with an array of identical simple processing elements [37,

93] to drive graphics displays directly.

6.4.2 Polynomials in Single Variable

A forward difference method is described in [93] to evaluate polynomials in single

variable, and is extended to polynomials in two variables. The main property

used by this method is that the nth difference for a polynomial of degree n is a

constant.

Consider a polynomial of degree n given by

P(x) = Eaixt 	 (6.9)

Chapter 6. Example Algorithms and Simulation Results 	 172

The forward difference P(x + 1)— P(x) is a polynomial P_1 (z) in degree (n—i).

Applying the same reasoning repeatedly, we get

P(x + 1) - P(x) 	= P_1 (x)

P_1 (z + 1) - P_1 (z) = P. 2 (z)

P_2 (x + 1) - P_2 (z) = P_3 (x)
	

(6.10)

P1 (x + 1) - P1 (x)
	

= Po (x) = constant

Thus, if all F(0), 0 (i < n, are known, the polynomial in equation 6.9

can be incrementally evaluated by equation 6.10 at all grid points 0 < x < M.

[P0 (0), P1(0),.. , P,(0)]" is defined as an initial vector. This initial vector can

be obtained by using a linear transform from the coefficients of equation 6.9 as

equation 6.11.

P0 (0) 	 a

P1 (0)
	

w1 ,n- 1 	a1 	
(6.11)

P(0)
	

wn,1 •.. wn,n_ l w 	an

The elements w, n < i+j <2n, in the lower right triangular transform matrix

are integers which depend only on n so an initial vector can be precomputed once

the coefficients of a polynomial in degree n are provided. A linear transform

to obtain an initial vector for a general cubic polynomial n = 3 is shown in

equation 6.12. The transform matrices for linear and quadratic polynomials are

the lower left 2 x 2 and 3 x 3 sub-matrix in equation 6.12 respectively.

P0 (0) 	0 0 0 6 	a0 	6a3

P1 (0) = 0 0 2 6 	a1 = 	2a2 + 6a3 	
(6.12)

P2 (0) 	0 1 1 1 	a2 	a 1 + a2 + a3

P3 (0) 	1 0 0 0 	a3 . 	a0

A sequential algorithm to compute a polynomial in n degree at grid points

0 <a, <m is given below.

Chapter 6. Example Algorithms and Simulation Results 	 173

z=1 	= =2 	z = 3 	0 =m-1 z=m

P3(1) 	P3(2) 	P3(3)
	

P3(m-1) P3(m)

Figure 6-8: A linear array for evaluating cubic polynomials

Algorithm polynomiaLin.x

begin

step 1: 	Compute the initial vector P1 (0),O<i<n;

step 2: 	for z:=O to rn — i do

step 3: 	{* compute the polynomial at x *}

begin

P0(x + i) := Po(z);

step 4: 	for i := 1 to n do

step 5: 	 P(x + 1) := P 1 (x) + P(x);

end;

end;

From this sequential algorithm, the for ioop can be easily unwound into an

array organisation. This process also creates a pipeline structure without feed-

back so that the initial vectors of a large number of polynomials with different

coefficients can be completely pipelined for evaluation. As a result, a linear array

which evaluates cubic polynomials is shown in figure 6-8. The initial vector is

calculated by a host computer and fed into the array. Because for an n degree

polynomial, there are only (ii + 1) elements in an initial vector, the calculation of

these (n + 1) elements does not impose much load on the host computer. In the

figure, D element is a delay unit.

Chapter 6. Example Algorithms and Simulation Results 	 174

6.4.3 Polynomials in Two Variables

A polynomial of degree n with two variables is given as

i Q(z,y)= L axi y
0<j+j<n

This Q,(x, y) can be treated as a single variable P(z) of degree n

P(z) =

= (a0 ,o + a0, 1y + a02y 2 + a0,3y 3)

+(aj , o + a1 , 1 y + a1 , 2y 2)x

+(a2 , 0 + a2 , 1 y)z 2 + a3 ,0x 3

= f3 (y) + f2 (y)x + f()2 + fo (y)x 3

(6.13)

(6.14)

Each coefficient in equation 6.14 is a polynomial with single variable y of degree

n - i. For a particular y, a set of coefficients can be obtained from f,t(y) for a

P(z) at y. The initial vector for P(x) can still be calculated from equation 6.12

by replacing a 1 with f, 1 (y)

P0(0) = g0(y) = 6a3 , 0
P1 (0) = g1 (y) = (2a20 + 6a3 , o) + 2a2,1y 	

(6.15) 2 P2(0) = g2 (y) = (a1 ,o + a2 , 0 + a3 , 0) + (a1 , 1 + a2 , 1)y + a1 , 2y

P3(0) = g(y) = a0 ,0 +a0, 1y+a0, 2y 2 +a0,3y 3

A separate y-array similar to the one shown in figure 6-8 to evaluate these g 1 (y)

polynomials for y e [0, mJ is required. Figure 6-9 shows one element of the y-

array. The four outputs at each y point from this y-array, which are the initial

vector for the x-array same as the one shown in figure 6-8 at y, are fed into

the z-array for the evaluation of a P(x) polynomial at that y. There are m

x-arrays in total for the frame buffer. From equation 6.15 and 6.12, four initial

vectors to the y-array are [(6a 0 , 3) (2a0 , 2 + 6a0 , 3) (a0 , 1 + a0 , 2 + ao,3) (ao,o)]T for g(y),

[(2a1 , 2) (a1 , 1 + a2 , 1 + a1 ,2) (a1 ,0 + a2 ,0 + a3,0)JT for 92 (y), [(2a 2 , 1) (2a2 ,0 + 6a3,0)]T for

91(Y), and [6a 3,0 1 for .go(y).

Chapter 6. Example Algorithms and Simulation Results 	 175

90 (Vi)

gi(Vi)

92 (vi)
93 (vi)

Figure 6-9: A y-array element at y

6.4.4 A Bit-Serial Frame Buffer

To reduce the cost, a bit-serial y-array and m bit-serial z-arrays are adopted in

our design which matches nicely the structure of a GALSA system.

Referring back to figure 6-8, we can input each initial vector element F(0) in

bit-serial format from the lowest significant bit (LSB) to the most significant bit

(MSB), use bit-serial adders with the carry output fed back to the carry input

at each adder, and replace the delay element with a register. As a result, a

bit-serial array for evaluating single variable cubic polynomials is obtained. One

particular advantage of this bit-serial array organisation is that it can be used for

any polynomials with different coefficients and variable word length. A complete

bit-serial frame buffer organisation is shown in figure 6-10 with one y-array and

three x-arrays as an example. The initial vectors are input into the y-array in

bit-serial format.

6.4.5 Embedding the Frame Buffer into a GALSA

As is clearly shown in figure 6-10 for the bit-serial frame buffer, the y-array can

be extracted as one vertical y-thread and each horizontal x-array can be extracted

as a horizontal x-thread. The activation of the y-thread is by the input of initial

vectors to the y-array. An x-thread is activated once the initial vector generated

by the corresponding stage in the y-thread is available to the z-thread.

176 Chapter 6. Example Algorithms and Simulation Results

Bit-serial inputs of
'&).g(y) initial vectors 	-rrv

j

iA.. ,L r' , •HF , j..- L '
a-array

d
—' ,— — ,-

Ii:::_ :

—' ,_ —' ,—

a-array

F"- —',— —._ -',------__-

uk

—',-

Figure 6-10: A bit-serial frame buffer processing array

I-I
it

Figure 6-11: Macro cells for an X-element and g(y)

uuIIuIIuI..IIIIuDIIIItii
uuiiiiiuuiuitruu
IIIlUIiIIiI!!!I!I!!I!I

Figure 6-12: A Y-element for the y-thread

Chapter 6. Example Algorithms and Simulation Results 	 177

It is a fairly straightforward procedure to map an x-thread and a y-thread into

a GALSA. Firstly, a macro cell called X-element for one stage in an x-thread can be

generated as shown in figure 6-11, then this X-element is concatenated horizontally

to form an z-thread. Secondly, four macro cells for each g 1 (y), i = 0, 1, 2, 3 are

generated for one stage in the y-thread. Figure 6-11 also depicts the four macro

cells for g(y). A Y-element as shown in figure 6-12 is obtained by concatenating

these four cells horizontally with some additional routings. A y-thread is formed

by concatenating this Y-element vertically. An entire frame buffer is embedded

into a GALSA system by attaching an x-thread to the right of each Y-element in

the y-thread.

It is too time consuming to simulate a real size, such as 400 x 400, embedded

polynomial evaluation frame buffer. A much smaller 10 x 10 frame buffer was

simulated instead. The upper left corner is the origin of the array coordinate

(x) y) = (0, 0). The first bit of the first pixel at (0,0) is generated just 14.70ns after

initial vectors enter the y-thread. An average of 6.65ns is required to generate a

bit for the pixel at (x + 1, 0) from the pixel at (x, 0). It takes 117.2ns and 176.65ns

to get an 8-bit pixel at (0, 0) and (9, 0) respectively. An average of 18.87ns was

measured to obtain the first bit of the pixel at (0, y + 1) after the first bit of the

pixel at (0, y) was generated. It takes 371.78ns to get the last bit of the pixel at

(9,9).

6.5 Comparisons

We compared the performance of the 4 x 4 multiplier and seven segment display

decoder embedded into the GALSA with Xilinx FPGA and CAL implementations.

Table 6-8 compares the average performance on the same set of inputs. Functions

in Xilinx FPGAs are simulated. The figures for a CAL system is estimated from

its cell delay characteristics. It is apparent that the CAL has the best performance

Chapter 6. Example Algorithms and Simulation Results 	 178

GALSA Xilinx CAL

multiplier 23. 76ns 21. 52ns 24.40ns

decoder 15.29ns 11.41ns 10.10ns

Table 6-8: Multiplier and decoder comparison

600 x 600 GALSA MPP AAP RAP

Pipeline Latency 781ts 240 jis 120Ls 180 jis

Max Refresh Rate 0.13ts 1.6/Ls 0.81LB 0.31is

Table 6-9: Polynomial evaluation performance comparison

for the decoder function. This is because it is very good at bit-level combinational

logic functions. Although the Xilinx FPGA has slightly better performance than

our GALSA in this particular 4 x 4 multiplication case, we anticipate that our

GALSA will perform better than the Xilinx FPGA on average when real long

word multiplications, for example 512 bits, are carried out. The GALSA system

is therefore not suitable for embedding combinational logic functions because of

low performance and the high hardware cost compared with the CAL system.

We extended the simulation results for the polynomial evaluation in the 10 x 10

frame buffer to a 600 x 600 8-plane frame buffer. It is estimated that it would take

approximately 78jis to fill up the last row of the x-thread to get a complete 8-bit

pixel at (599,599). From this point, each pixel can be refreshed with a new pixel

value as fast as 0.13/LB. We can compare the performance of this frame buffer with

the estimated performance of the same algorithm on MPP, AAP and RAP. The

estimation results were calculated according to the system clock speed and the

number of clock cycles required to run the algorithm. MPP runs with a 10MHz

clock. Both AAP and RAP run with a 20MHz clock. The results are given in

table 6-9.

Chapter 6. Example Algorithms and Simulation Results 	 179

The frame buffer embedded into a GALSA system has an apparent advantage

in performance when a large number of pixels are to be evaluated. This is mainly

because of the asynchronous communication approach adopted at the system level.

With such a large number of pixels in a large physical array, it is very difficult to

run a faster clock for MPP, AAP or RAP system to improve their performance.

The Connection Machine and DDVA are too expensive to be used for this

algorithm. On the other hand, they do not seem to be able to offer a substantial

increase in performance for this algorithm.

6.6 Summary

In this chapter, we discussed the timing characteristics obtained from Hspice sim-

ulations on our designs. Three example algorithms were studied and embedded

into our GALSA system to test the functionality of our design at system level.

This also enables us to compare the performance with some existing systems for

hardware algorithms. Our GALSA system has much better performance when the

physical size of an array is very large where synchronous systems cannot operate

with a fast global clock.

Chapter 7

Conclusions and Future Prospects

7.1 Overview of the Thesis

Chapter 1 introduced some fundamental concepts upon which our algorithmically

configurable architecture principle is established. This chapter also introduced

the basics on computation models, hardware algorithm models and system tim-.

ing schemes from which a globally asynchronous locally synchronous configurable

array system for algorithm embeddings was developed in the rest of this thesis.

In chapter 2, we took a detailed look at some typical array architectures devel-

oped by others for massively parallel processing. The analysis and comparison of

these systems focused on the common characteristics and problems these systems

have, and what are the problems and basic principles we need to solve in our

approach to configurable hardware algorithms. Some practical implementation

issues, such as interconnection structures, switching mechanisms, and processing

element internal structures, were also discussed.

Chapter 3 presented and analysed in detail various computation, architecture

and timing models. A multiple threads computation model for irregular algo-

rithms, a configurable architecture of connected programmable hardware oper-

ators, and a globally asynchronous locally synchronous (GALS) system timing

control strategy were proposed as the foundations for the development of a con-

figurable GALS array system and for the efficient embedding of algorithms.

180

Chapter 7. Conclusions and Future Prospects
	

181

in chapter 4, some basic architecture constraints were discussed, and four typ-

ical circuit-switched interconnection topologies were classified and compared first.

Then we proposed an array architecture composed of programmable hardware op-

erators PH,3, connected by a configurable interconnection network which is timed

with the GALS system timing control method for the multiple threads computa-

tion model. The top-level system topology, the routing network structure, and the

primitive functions of a PH,, for the proposed system were also presented.

The hierarchical design of a complete configurable GALS Array (GALSA) sys-

tem was described in chapter 5. An important event-driven GALS data transfer

interface was elaborated in great detail. A novel synchronisation scheme was pro-

posed. Careful analysis and intensive simulations on this synchronisation scheme

have been carried out to ensure an acceptable very low synchronisation failure

rate. The design of the PH, based on a transmission gate adder and multiplex-

ers was presented. The system level routing network and the configuration data

preloading structure were also illustrated.

All the system composition components were intensively simulated with the

Hspice circuit simulator to ensure their correct functionality. In chapter 6, im-

portant timing characteristics obtained from Hspice simulations were given, and

three algorithm examples: a 4 x 4 integer multiplication function, a seven seg-

ment display decoder, and a polynomial evaluation algorithm for a pixel frame

buffer were studied and embedded into our GALSA system. The performance of

these embedded algorithms based on the simulation results was compared with

some existing systems. This comparison confirms our initial aim of this project:

a high performance configurable system with GALS timing control was developed

for hardware algorithms. The system can offer a much better performance than

synchronous systems for data and computation intensive algorithms.

This concluding chapter clarifies the author's contributions and concludes the

research presented in this thesis. Some related work to be done is illustrated.

Chapter 7. Conclusions and Future Prospects 	 182

Possible developments for configurable hardware algorithms in the future are also

discussed.

In the appendix, more simulation results from the Hspice transient analysis on

the synchromser and the event-driven DTI design are given.

7.2 Achievements and the Author's Contributions

System timing problems attract more and more attention when the complexity of

VLSI/ULSI systems is increasing so rapidly and the deep submicron technology

is becoming mature. It is already a practical issue in deep sub-micron systems

that the interconnection delays are one of the major factors that affects system

performance or even the correct functioning. It will inevitably be an extremely

difficult task to design such systems using a synchronous approach.

The author tried to look at the system timing problem by combining the ad-

vantages from both the synchronous and asynchronous design approach. At the

same time, in the light of prospects in achieving high performance by parallel

processing in hardware algorithms, the author adopted a systematic approach to

develop a configurable GALS array system for algorithm embeddings following

the proposal and establishment of an appropriate computation, architecture and

system timing control model. The author's work on the event-driven GALS data

transfer interface was also extended to a general GALS system design approach.

The development of this configurable GALS array system enables us to perform

some initial tests on the GALS design approach idea and do some comparisons of

performance with other systems. The initial comparison is very encouraging with

the embedded polynomial evaluation algorithm as a pixel frame buffer.

Chapter 7. Conclusions and Future Prospects 	 183

7.3 Other Work to Be Done

At the time this thesis is completed, a bit-serial GALSA system has been designed.

However, there are still many ways in which the design itself can be improved. For

instance, although the routing network can be easily tested, development of the

testability for the overall system is still required.

One of the future tasks is to design the system with the partial Bit Parallel

partial Word Parallel (BPWP) processing principle. For example, a PH,,, should

be capable of processing 4-bits of input operands at a time. Further engineering

work is also required to get an actual working system on silicon. On the other

hand, more testing algorithms need to be studied and embedded into the system

to check the function and performance of the system further. Other work, such as

automatic algorithm mapping and fault-tolerance, is equally important.

7.4 Automatic Configuration Vector Generation

Automatic design tools must be developed so as to get the full potential of a

configurable system. It is by no means a simple task to transform an algorithm

into a set of configuration vectors efficiently for a configurable system. Therefore

an automatic algorithm mapping tool for configuration vector generation should

be developed to ease the task. Two possible ways can be followed.

7.4.1 Automatic Data Flow Mapping

This method starts from the data flow description of an algorithm. An algorithm

has to be either manually transformed into a data flow description or automatically

transformed by other means.

Chapter 7. Conclusions and Future Prospects 	 184

Like other VLSI CAD systems, an automatic mapping system can take several

forms of input, for example a front end data flow graph editor similar to the

schematic capture front end in a CAD system or a data flow description similar

to hardware descriptions to a VLSI CAD system.

A library of macro hardware operators can be developed from a set of primitive

functions. A user can also set up his own macro operator library.

The automatic mapping system first decomposes the input data flow graph

into a primitive data flow graph which only consists of connected primitive hard-

ware operators and macro operators available from libraries. The dependencies

and timing information can be extracted into a threads graph. Then the ma-

jor task of the system is to map the edges and nodes in the primitive data flow

graph and computation threads graph into the configurable array according to

extracted threads, i.e. the allocation of operators and the routing of interconnec-

tions amongst these operators. Finally, a set of configuration vectors for Routing

Cells and programming vectors for PH,,Ps can be generated from the mapping.

7.4.2 Automatic Algorithm Mapping

The ultimate solution is to describe an algorithm in a high level language such as C

or C, or better still, a true data flow language. The automatic mapping system

takes this high level algorithm description and transforms it into a primitive data

flow description. From this point, the mapping method described in section 7.4.1

can be used to generate configuration and programming vectors.

Chapter 7. Conclusions and Future Prospects 	 185

7.5 Fault-Tolerance

Fault-tolerance is another important issue in massively parallel array architectures.

There has been much research on fault-tolerance methodologies and schemes al-

ready carried out and published. Fault-tolerance for the GALSA architecture

should be investigated in the future. The framework for this problem is outlined

in this section.

Each fault-tolerance scheme usually assumes a fault model with some addi-

tional conditions before the scheme can be effectively applied. If a fault pattern

is beyond the capability of the scheme, the fault pattern is said to be unrecov-

erable. It is a common practice to assume random faults instead of clustered

faults. Another common assumption in most of the fault-tolerance schemes for

array architectures is that faults most likely happen in processing elements. In

the GALSA architecture, we need to consider the possibility of failure in both

the hardware operators and the routing network. This is because more than two

thirds of transistors in a Routing Cell are in the CCM which may have a higher

failure possibility.

Generally speaking, there are three classes of methodology for fault-tolerance,

i.e. redundancy, graceful degradation, and time sharing. Schemes based on the

redundancy methodology use extra spare rows or columns of processing elements in

an array, and try to replace the faulty processing elements in the array with spare

processing elements so that the original physical size of the array can be restored.

Rather than using physical redundancies, the time sharing methodology tries to

restore an array logically equivalent to a physical array which has faulty processing

elements, by time sharing a healthy processing element next to each faulty element.

This methodology needs a complex swapping mechanism to make one element

perform the role of two elements. The graceful degradation methodology adopts

a completely different approach. Instead of trying to restore an array with faulty

Chapter 7. Conclusions and Future Prospects 	 186

elements to its original size, this method tries to establish a new largest possible

rectangular sub-array out of the healthy elements from the physical array. The

resultant sub-array will be smaller than its parent array but it is still usable.

The combination of redundancy and the graceful degradation methodology ap-

pears to be a very attractive fault-tolerance approach for the GALSA architecture

under the multiple threads computation model. Still further, we do not even need

to re-establish a sub-array of rectangular shape. This is because if a slightly larger

physical GALSA array is used than the requirement of an application, as long as

there are enough healthy routable PH,s for the application in the array where

faulty elements occur, it is not necessary to restore the array to its original physi-

cal size and shape. Routing resources can also be saved without re-establishing a

rectangular sub-array.

7.6 Future Developments and Prospects

7.6.1 Taking Advantages of New Technologies

There are two trends in the development of microelectronic technologies. The

evolution of conventional technologies is the way most of the commercial products

take, that is, the continuous improvement of technologies which make it possible

to integrate more and more devices of smaller and smaller feature sizes into silicon

dies which are becoming increasingly larger. The Digital Alpha processor and the

Intel Pentium processor are two such examples. The GALSA architecture can

benefit from this evolution in two aspects, first, more PH,s can be integrated;

and second, the complexity of the routing network and PH,, can also be in-

creased to be more powerful. However, the conventional approach eventually will

approach the physical limits of silicon and conventional CMOS properties. Thus,

the emerging revolutionary breakthroughs of new devices and materials are be-

Chapter 7. Conclusions and Future Prospects 	 187

coming more appealing in the longer term. Silicon MOSFETs, which change state

in the nanosecond scale, are generally slow as switching devices. The GaAs metal

semiconductor (GaAs MES) FET is capable of switching in less than 30ps and op-

erating at frequencies in excess of 5GHz. This is because electrons in GaAs have

a significantly higher mobility than electrons in silicon. Once the GaAs material

manufacturing technology is mature, GaAs integrated circuits will certainly play

an important role. All current VLSI architectures will benefit from high speed

GaAs technology. For the GALSA architecture, improvement in the switching

speed in the routing network is very important. On the other hand, the GALSA

architecture is readily designed to incorporate any new faster and better switching

devices because of its GALS system timing scheme.

7.6.2 Multi-layer Metal and Three dimensional Structures

The GALSA architecture is very wire demanding. The two metal layer processing

technology used in the design in this thesis cannot meet the GALSA requirement

because a large amount of silicon area is wasted for routing connections. Therefore,

a multi-layer metal processing technology is desirable so that the network routing

layers can overlap active areas.

Many data flow graphs actually have three dimensional properties. Thus con-

gestion in the routing network is unavoidable if these three dimensional graphs

are to be mapped into a two dimensional array. Hence, the GALSA architecture

should particularly benefit from three dimensional integration structures.

7.6.3 Wafer Scale Integrations

The most common way to manufacture VLSI chips is to put together a group of

designs or the replication of a design in the form of a two dimensional array of

dies on a silicon wafer. A test is performed on each die area after the wafer is

Chapter 7. Conclusions and Future Prospects 	 188

processed and faulty dies are marked. This array of dies is then cut into chips,

and working chips are mounted and packed into packages.

The number of elements for an array on a die manufactured in such a way,

which can range from a few to a couple of thousand depending on the size of

the element, is very limited. In order to embed an application into such an ar-

ray, it is often necessary to connect a set of such chips to form a larger array.

Therefore, this die cutting and packaging procedure appears unnecessary for ar-

ray architectures. One possible solution is to use Multi- Chip- Modules (MCM) by

which multiple chips are mounted on a larger substrate and packed into one pack-

age. This technique can reduce the cost of packing individual chips and improve

the communication speed among chips. However, the die cutting process is still

required for MCMs. Wafer scale integration (WSI) technology is particularly at-

tractive for array architectures. The idea of WSI is to make a complete system on

an entire wafer; the wafer is packed in one package and used as one system. Thus,

if an entire wafer were to be used to accommodate a complete array, the cost of

putting a pad ring on each die, the wafer cutting, the multiple packaging of smaller

chips and the extra connection delays between packages would be eliminated.

There are still many technical problems associated with WSI to be solved. For

example, the power dissipation of an entire wafer tends to be very high, so the

cooling of a whole wafer is very important and difficult. It is not an easy task

to package a large wafer. A practical fault-tolerance technique must be applied

to WSI because faults certainly will happen on some areas of a wafer. Current

research has already made significant progress in WSI, but the three dimensional

integration technology is still at an early stage of research.

The theories and design methodologies developed in this thesis can be easily

adapted to WSI architecture. The major changes required will be in the peripheral

and configuration vector preloading parts. The inclusion of fault-detection and

fault-tolerance mechanisms is also needed.

Chapter 7. Conclusions and Future Prospects 	 189

7.7 Conclusions

A few years ago, the configurable logic methodology was still questioned by many

people, now this methodology has been widely accepted and many commercial

products on FPGAs and configurable logic arrays are already available. However,

the asynchronous integrated circuit design methodology still needs more attention

than it has so far received. System timing issues must be properly considered

in VLSI/ULSI/WSI design, especially in large configuration systems. We believe

that very large scale configurable logic is the area where asynchronous design

methodology can be used as an effective system level timing control approach.

The initial testing on the developed configurable GALSA system achieves a better

average performance on large scale problems, such as polynomial evaluations as a

frame buffer, than some other synchronous massively parallel processing systems.

But the configurable logic is by no means the only area where asynchronous

design methodology can be applied. Two effects of the rapid advance of technology

are that integrated systems are becoming ever more complex and more computing

tasks are directly implemented in hardware. With this trend of continuous increase

of system complexity and decrease of hardware costs, the asynchronous design

methodology will play at least as important a role as the synchronous design

framework, for example the GALS timing scheme proposed in this thesis.

Bibliography

William B. Ackerman. Data flow languages. Computer, 15(2):15-25, Febru-

ary 1982.

Francois Anceau. The Architecture of Microprocessors. Addison-Wesley,

1986.

Y. Ansade, R. Cornu-emieux, B. Faure, and G. Mazare. WSI asynchronous

cells network. In G. Saucier and J. Trilhe, editors, Wafer Scale Integration,

pages 77-87, March 1986.

D. B. Armstrong and A. D. Friedman. Design of asynchronous circuits

assuming unbounded gate delays. IEEE Trans. on Computers, c-18(12):—,

December 1969.

Arvind and Kim P. Gostelow. The U-interpreter. Computer, 15(2):42-49,

February 1982.

Katsuhiko Asada, Hiroadi Terada, Satoshi Matsumoto, Souichi Miyata,

Hajime Asano, Hiroki Miura, Masahisa Shimizu, Shinji Komori, Takeshi

Fukuhara, and Kenji Shima. Hardware structure of a one-chip data-driven

processor: Q-p. In IEEE Proc. 1987 Int'l Conf. on Parallel Processing, pages

327-329, August 1987.

K. E. Batcher. Design of a massively parallel processor. IEEE Trans. on

Computers, c-29(9):836-840, September 1980.

190

Bibliography
	

191

N. W. Bergmann. A case study of the FIRST silicon complier. In R. Bryant,

editor, 3rd Caltech Conference on VLSI, pages 413-430, 1983.

Patrice Bertin, Didier Roncin, and Jean Vuillenmin. Introduction to Pro-

grammable Active Memory. Technical report, Digital Paris Research Labo-

ratory, June 1989.

Donald W. Blevins, Edward W. Davis, Robert A. Heaton, and John H.

Reif. BLITZEN: A highly integrated massively parallel machine. Journal of

Parallel and Distributed Computing, 8(2):150-160, February 1990.

J. A. Brzozowski and J. C. Ebergen. Recent developments in the design

of asynchronous circuits. Technical Report CS-89-18, Computer Science

Department, University of Waterloo, 1989.

Mengly Chean and Jose A. B. Fortes. A taxonomy of reconfiguration tech-

niques for fault-tolerant processor arrays. Computer, 23(1):55-69, January

1990.

Marina C. Chen. The generation of a class of multipliers: Synthesizing

highly parallel algorithms in VLSI. IEEE Trans. on Computers, 37(3):329-

338, March 1988.

W. Chen. A Reconfigurable Architecture for Very Large Scale Microelec-

tronics Systems. PhD thesis, Dept. of Electrical Engineering, University of

Edinburgh, 1986.

G. Chevalier and G. Saucier. A programmable switch matrix for the wafer

scale integraton of a processor array. In Chris Jesshope and Will Moore,

editors, Wafer Scale Integration, pages 92-100, July 1985.

Bibliography 	 192

L. Ciminiera and A. Valenzano. Low cost serial multiplier for high-speed

specialised processors. lEE Proc.-E Computers and Digital Techniques,

135(5):259-265, September 1988.

Computer Science Division, EECS dept., University of California at Berke-

icy. Berkeley 1986 VLSI Tools user's Manual, 1986.

Luigi Dadda. On serial-input multipliers for two's complement numbers.

IEEE Trans. on Computers, 38(9):1341-1345, September 1989.

William J. Daily. A high-performance VLSI quaternary serial multiplier. In

IEEE mt 'i Conf. on Computer Design: VLSI in Computers and Processors,

pages 649-653, Oct. 1987.

William J. Daily, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar

Horwat, Jon Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture

of a message-driven processor. In The 14th Annual Int'l Symp. on Computer

Architecture, pages 189-196, June 1987.

Edward W. Davis and John H. Reif. Architecture and operation of

BLITZEN processing element. In Proc. Thrid Int'l Conference on Super-

computing, pages 128-137, May 1988.

Dept. of Electrical Engineering and Computer Sciences, University of Cali-

fornia at Berkeley. SPICE User's Guide.

Digital Equipment Corporation, Maynard, MA, U.S.A. Alpha Architecture

Handbook, 1992.

M. J. B. Duff. Review of the CLIP image processing system. In Proc. AFIPS

National Computer Conf., pages 1055-1060, June 1978.

Bibliography
	 193

Khaled A. El-ayat, Abbas Gamal, Richard Guo, John Chang, Ricky K. H.

Mak, Frederick Chiu, Esmat Z. Hamdy, John McCollum, and Amr Mohsen.

A CMOS electrically configurable gate array. IEEE J. of Solid-State Cir-

cuits, 24(3):752-761 1 June 1989.

Shinji Komori et al. An elastic pipeline mechanism by self-timed circuits.

IEEE J. of Solid-State Circuits, 23(1):111-117, Feb. 1988.

Shinji Komori et al. The Data-Driven microprocessor. IEEE MICRO,

9(3):45-58, June 1989.

European Silicon Structure. S0101400 User Guide.

Richard A. Evans. A self-organizing, fault-tolerant, 2-dimensional array. In

E. Hörbst, editor, Proceedings of the IFIP, VLSI '85, VLSI design of digital

systems, pages 239-248. North-Holland, 1985.

Allan L. Fisher. Memory and modularity in systolic array implementations.

In IEEE Proceedings of 1985 Int'l Conf. on Parallel processing, pages 99-

101, May 1985.

Allan L. Fisher and H. T. Kung. Synchronizing large VLSI processor arrays.

In IEEE 10th Int'l Symposium on Computer Architecture, pages 54-58, June

1983.

Stuart Fiske and William J. Daily. The reconfigurable arithmetic processor.

In IEEE The 15th Annual Int'l Symp. on Computer Architecture, pages 30-

36, May 1988.

T. J. Fountain. Towards CLIP6 - an extra dimension. In IEEE Computer

Society Workshop on Computer Architecture for Pattern Analysis and Image

Database Management, pages 25-30, 1981.

Bibliography 	 194

T. J. Fountain. A survey of bit-serial array processor circuits. In M. J. B.

Duff, editor, Computing Structures for Image Processing, pages 1-14, 1983.

T. J. Fountain and V. Goetcherian. CLIP4 parallel processing system.

lEE Proc.-E Computers and Digital Techniques, 127(5):219-224, Septem-

ber 1980.

Jeff Fried, Elizabeth Daly, Ted Lyszczarz, and Michael Cooperman. A

memory-controlled crosspoint switch using E-beam restructuring technol-

ogy. IEEE J. of Solid-State Circuits, 24(1):183-187, February 1989.

Henry Fuchs, John Poulton, Alan Paeth, and Alan Bell. Developing pixel-

planes, a smart memory based raster graphics systems. In 1982 Conference

on Advanced Research in VLSI, M.I. T., pages 137-146, January 1982.

Steve Furber. Computing without clocks: Micropipelining the ARM proces-

sor. In AMULET1 Modelling Workshop, July 1994.

Abbas El Gamal, Jonathan Greene, Justin Reyneri, Eric Rogoyski,

Khaled A. El-ayat, and Amr Mohsen. An architecture for electrically con-

figurable gate array. IEEE J. of Solid-State Circuits, 24(2):394-398, April

1989.

Bo Gao and D. J. Rees. Communicating synchronous logic modules. In 21st

Euromicro conference on Design of Hardware and Software Systems, pages

708-715, September 1995.

J.D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In

Proceedings of the IFIP Conference on Asynchronous Design Methodologies,

1993.

Bibliography
	

195

Ganesh Gopalahrishnan and Venkatesh Akella. VLSI asynchronous systems:

specification and synthesis. Microprocessors and Microsystems, 16(10): 517-

527, October 1992.

Ganesh Gopalakrishnan and Prabhat Jam. Some recent asynchronous sys-

tern design rnethodologies. Technical Report UU-CS-TR-90-016, Dept. of

Computer Science, University of Utah, Oct. 1990.

John B. Gosling. Design of Arithmetic Units for Digital Computers. The

MacMillan Press Ltd, 1980.

Jan Grinberg, Graham R. Nudd, and R. David Etchells. A cellular VLSI

architecture. Computer, 17(1) :69-81, January 1984.

M. Hatamian and G. L. Cash. Parallel bit-level pipelined VLSI designs

for high-speed signal processing. Proceedings of the IEEE, 75(9):1192-1202,

September 1987.

Robert A. (Fred) Heaton and Donald W. Blevins. BLITZEN: A VLSI ar-

ray processing chip: In IEEE Proc. Custom Integrated Circuits Conference,

pages 12.1.1-12.1.5, May 1989.

Kye S. Hedlund. The design of a prototype WASP machine. In Chris

Jesshope and Will Moore, editors, Wafer Scale Integration, pages 89-97,

July 1985.

W. D. Hhhis. The Connection Machine. MIT Press, 1985.

Masaharu Hirayama. VLSI oriented asynchronous architecture. In The 13th

Int'l Symp. on Computer Architecture, pages 290-296, June 1986.

R. W. Hockney and C. R. Jesshope. Parallel Computers - Architecture,

Programming and Algorithms. Adam Huger Ltd., 1984.

Bibliography
	

196

R. W. Hockney and C. R. Jesshope. Parallel Computers 2 - Architecture,

Programming and Algorithms. Adam Hilger Ltd., 1988.

Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE

Trans. on Computers, c-31(12):1135-1141, Dec. 1982.

Y. Hsia, G. Chang, and F.D. Erwin. Adaptive wafer scale integration. In

1979 Int'l Digest of Tech. Papers of the 11th Conf. on Solid State Devices,

pages 81-82, 1979.

D. J. Hunt. AMT DAP - a processor array in a workstation environment.

Active Memory Technology, Reading, Berks, UK, April 1989.

Yasuo Ikawa, Kiyoshi Urui, Masashi Wada, Tomoji Takada, Masahiko Kawa-

mura, Misao Miyata, Noboru Amano, and Tadashi Shibata. A one-day

chip: An innovative IC construction approach using electrically recoufig-

urable logic VLSI with on-chip programmable interconnections. IEEE J. of

Solid-State Circuits, sc-21(2) :223-227, April 1986.

G. Jacobs and R. W. Brodersen. Self-timed integrated circuits for digital

signal processing applications. In VLSI Signal Processing III, pages 197-208.

New York: IEEE Press, Nov. 1988.

Thomas Andrew Kean. Configurable Logic: A Dynamically Programmable

Cellular Architecture and its VLSI Implementation. PhD thesis, Dept. of

Computer Science, University of Edinburgh, December 1989.

Tom Kean and Genbao Feng. Configurable logic: An approach to the rapid

implementation of ASIC's. Technical Report CSR-234-87, Dept. of Corn-

puter Science, Edinburgh University, June 1987.

Bibliography 	 197

Anwar Khurshid and P. David Fisher. Algorithm implementation on re-

configurable mixed systolic arrays. In Proceedings on 1985 Int'l Conf. on

Parallel Processing, pages 79-88, 1985.

J. H. Kim and S. M. Reddy. On easily testable and reconfigurable two-

dimensional systolic arrays. In IEEE Proc. 1987 Int'l Conf. on Parallel

Processing, pages 101-109, 1987.

Jun Hwan Kim and Sudhakar M. Reddy. On the design of fault-tolerant

two-dimensional systolic arrays for yield enhancement. IEEE Trans. on

Computers, 38(4):515-525, April 1989.

D. J. Kinniment and J. V. Woods. Synchronisation and arbitration cir-

cuits in digital systems. lEE Proc. -E Computers and Digital Techniques,

123(10):961-966, October 1976.

Toshio Kondo, Takayoshi Nakashima, Makoto Aoki, and Tsuneta Sudo. An

LSI adaptive array processor. IEEE J. of Solid-State Circuits, SC-18(2):147-

156, April 1983.

Toshio Kondo, Toshio Tsuchiya, Yoshihiro Kitamura, Yoshi Sugiyama,

Takashi Kimura, and Takayoshi Nakashima. Pseudo MIMD array processor-

AAP2. In The 13th Annual Int'l Symp. on Computer Architecture, June

1986.

Israel Koren and Bilha Mendelson. A Data-Driven VLSI array for arbitrary

algorithms. Computer, 21(8) :30-43, October 1988.

Israel Koren and Gabriel M. Silberman. A direct mapping of algorithms

onto VLSI processor arrays based on the data-flow approach. In IEEE Pro-

ceedings on 1983 Int'l Conf. on Parallel Processing, pages 335-337, 1983.

Bibliography
	

198

H. T. Kung. Let's design algorithms for VLSI systems. In Proceedings of

the Caltech Conf. on Very Large Scale Integration, pages 65-90, Jan. 1979.

H. T. Kung. Why systolic architectures. Computer, 15(1):37-46, January

1982.

H. T. Kung. Memory requirements for balanced computer architectures. In

The 18th Annual Int'l Symposium on Computer Architecture, pages 49-54,

June 1986.

H. T. Kung. Deadlock avoidance for systolic communication. In The 15th

Annual Int'l Symp. on Computer Architecture, pages 252-260, May 1988.

S. Y. Kung. On supercomputing with systolic/wavefront array processors.

In Proceedings IEEE, pages 867-884, July 1984.

S. Y. Kung, K.S. Arun, Ron J. Cal-ezer, and D.V. Bhaskar Rao. Wavefront

array processor: Language, architecture, and applications. IEEE Trans. on

Computers, c-31(11):1054-1066, Nov. 1982.

S. Y. Kung and R. J. Gal-Ezer. Synchronous versus asynchronous compu-

tation in very large scale integration array processors. In SPIE, Real Time

Signal Processing V, pages 53-65, 1982.

S. Y. Kung and R.J. Gal-Ezer. Wavefront array processor: Architecture,

language and application. In Conference on Advanced Research in VLSI,

M.I.T., pages 4-19, January 1982.

S. Y. Kung and S.C. Lo. Wavefront array processors - concept to imple-

mentation. Computer, 20(7):18-33, July 1987.

Sun-Yuan Kung, Shiann-Ning Jean, and Chih-Wei Chang. Fault-tolerant

array processors using single-track switches. IEEE Trans. on Computers,

38(4):501-514, April 1989.

Bibliography
	

199

Bradley C. Kuszmaul and Jeff Fried. NAP No ALTJ Processor: The great

communicator. Journal of Parallel, and Distributed Computing, 8(2):169-

179, February 1990.

Myoung Sung Lee and Gideon Frieder. Massively fault-tolerant cellular ar-

ray. In IEEE Proceedings of 1986 Int'l Conf. on Parallel Processing, pages

343-350, August 1986.

Hungwen Li and Massimo Maresca. Polymorphic-Torus architecture for

computer vision. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 1 1(3):233-243, March 1989.

Hungwen Li and Massimo Maresca. Polymorphic-torus network. IEEE

Trans. on Computers, 38(9):1345-1351, September 1989.

Shih lien Lu. Implementation of iterative networks with CMOS differential

logic. IEEE J. of Solid-State Circuits, 23(4):1013-1017, August 1988.

W. Lim. Design methodology for stoppable clock systems. lEE Proc.-E

Computers and Digital Techniques, 133(1):65-69, January 1986.

Willie Y-P. Lim and Jr. Jerome R. Cox. Clocks and the performance of

synchronisers. lEE Proc.-E Computers and Digital Techniques, 130(2):57-

64, March 1983.

Fabrizio Lombardi. Reconfiguration of hexagonal arrays by diagonal dele-

tion. Integration, the VLSI journal, 7(6):263-290, 1988.

Erl-Huei Lu, Lein Ham, Jau-Yien Lee, and Wen-Yih Hwang. A pro-

grammable VLSI architecture for computing multiplication and polyno-

mial evaluation modulo a positive integer. IEEE J. of Solid-State Circuits,

23(1):204-207, February 1988.

Bibliography
	

200

F. Manning. An approach to highly integrated computer maintained cellular

arrays. IEEE Trans. on Computers, c-26(6):536-552, June 1977.

G.H. Manolis and Miriam G. Blatt. Switch design for soft-configurable WSI

system. In G. Saucier and J. Trilhe, editors, Wafer Scale Integration, pages

255-270, March 1986.

Massimo Maresca, Mark A. Lavin, and Hungwen Li. Parallel architectures

for vision. Proceedings of the IEEE, 76(8):970-981, August 1988.

Massimo Maresca and Hungwen Li. Connection autonomy in simd comput-

ers: A VLSI implementation. Journal of Parallel and Distributed Comput-

ing, 7(2):302-320, October 1989.

Alan J. Martin. The design of a self-timed circuit for distributed mutual ex-

clusion. Technical Report 5178:TR:85, Computer Science Dept., California

Institute of Technology, March 1985.

Alan J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J.

Hazewindus. The design of an asynchronous microproccessor. In C. L. Seitz,

editor, Proc. Decennial CalTech Conf. on VLSI, pages 351-373, 1989.

P. C. Mathias and L. M. Patnaik. Systolic evaluation of polynomial expres-

sions. IEEE Trans. on Computers, c-39(5):653-665, May 1990.

J. McDonald, E. Rogers, K. Rose, and A. Steckl. The trials of wafer-scale

integration. IEEE Spectrum Magazine, pages 32-39, October 1984.

Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-

Wesley, 1980.

Bilha Mendelson and Gabriel M. Silberman. An improved mapping of data

flow programs on a VLSI array of processors. In IEEE Proc. 1987 Int'l Conf.

on Parallel Processing, pages 871-873, 1987.

Bibliography
	

201

Billia Mendelson and Gabriel M. Silberman. Mapping data flow programs

on a VLSI array of processors. In The 1th Annual Symp. on Computer

Architecture, pages 72-80, June 1987.

T. H.-Y. Meng, G. W. Jacobs, R. W. Brodersen, and D. G. Messerschmitt.

Asynchronous processor design for digital signal processing. In Proc. IEEE

ICASSP, pages 107-118, April 1988.

Teresa H.-Y. Meng, R. W. Brodersen, and D. G. Messerschmitt. Auto-

matic synthesis of asynchronous circuits from high-level specifications. IEEE

Trans. on Computer-Aided Design, 8(11):1185-1205, Nov. 1989.

R. E. Miller. Sequential Circuits, volume 2. Wiley, NY, 1965. Chapter 10,

In Switching Theory.

David Misunas. Petri nets and speed independent design. Communications

of the ACM, 16(8):474-481, August 1973.

Will R. Moore. A review of fault-tolerant techniques for the enhancement of

integrated circuit yield. Proceedings of the IEEE, 74(5):684-698, May 1986.

Amar Mukhopadhyay, editor. Recent Developments in Switching Theory,

chapter 7, 9. Academic Press, 1971.

The Northwest Laboratory for Integrated Systems (LIS), Dept. of Computer

Science, University of Washington. VLSI Design Tools Reference Manual,

Feb. 1987.

Jagdish Pathak, Hal Kurkowski, Robert Pugh, Ritu Shrivastava, and Fred-

erick B. Jenne. A 19-ns 250-mW CMOS erasable programmable logic device.

IEEE J. of Solid-State Circuits, sc-21(5):775-784, Oct. 1986.

Bibliography 	 202

Nigel Charles Paver. The Design and Imp lementation of an Asynchronous

Microprocessor. PhD thesis, University of Manchester, 1994.

M. Pechoucek. Anomalous response times of input synchronisers. IEEE

Trans. on Computers, c-25(2):133-139, 1976.

Vincenzo Piuri. Fault-tolerant hexagonal arithmetic array processors. In

Proc. Euromicro 88, Supercomputers: Technology and applications, pages

629-636, August 1988.

Plessey Semiconductors, Cheney Manor, Swindon, UK. Electrically Recon-

figurable Array - ERA, 1990.

J. L. Potter. Image processing on the massively parallel processor. Corn-

puter, 16(1):62-67, January 1983.

J. Raffel, A. Anderson, G. Chapman, K. Konkle, B. Mathur, A. Soares,

and P. Wyatt. A wafer-scale digital integrator. In Proceedings, IEEE Int'l

Conf. on Computer Design: VLSI in Computers (ICCD '84), pages 121-126,

October 1984.

J.I. Raffel. On the use of nonvolatile programmable links for restructurable

VLSI. In Proceedings of the Caltech Conf. on Very Large Scale Integration,

pages 95-104, Jan. 1979.

A. L. Rosenberg. Graph-theoretic approaches to fault-tolerant WSI proces-

sor arrays. In Chris Jesshope and Will Moore, editors, Wafer Scale Integra-

tion, pages 10-23, July 1985.

Arnold L. Rosenberg. The diogenes approach to testable fault-tolerant ar-

rays of processors. IEEE Trans. on Computers, c-32(10):902-910, October

1983.

Bibliography
	

203

Arnold L. Rosenberg. Diogenes, circa 1986. In VLSI Algorithms and Archi-

lectures, Aegean Workshop on Computing, Proceedings, pages 96-106, July

1986.

Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-

Pien Fang. Q-Modules: Internally clocked delay-insensitive modules. IEEE

Trans. on Computers, 37(9):1005-1018, September 1988.

A.J. Rushton and C.R. Jesshope. The reconfigurable processor array - an

architecture in need of WSI. In Chris Jesshope and Will Moore, editors,

Wafer Scale Integration, pages 149-158, July 1985.

P. Sadayappan, Fikret Ercal, and Steven Martin. Mapping finite element

graphs onto processor meshes. In IEEE Proc. 1987 Int'l Conf. on Parallel

Processing, pages 192-195, 1987.

Mariagiovanna Sami and Renato Stefanelli. Reconfigurable architectures for

VLSI processing arrays. Proceedings of the IEEE, 74(5):712-721, May 1986.

C. L. Seitz. Self-timed VLSI systems. In Proceedings of the Caltech Conf.

on Very Large Scale Integration, pages 345-355, January 1979.

Charles L. Seitz. An ensemble architecture for VLSI - a survey and tax-

onomy. In 1982 Conference on Advanced Research in VLSI, M.I. T, pages

130-135, January 1982.

Naresh R. Shanbhag and Pushkal Juneja. Parallel implementation of a 4x4-

bit multiplier using modified booth's algorithm. IEEE J. of Solid-State

Circuits, 23(4): 1010-1013, August 1988.

David Elliot Shaw and Theodore M. Sabety. The multiple-processor PPS

chip of the NON-VON 3 supercomputer. Integration, the VLSI journal,

4(3):161-174, December 1985.

Bibliography 	 204

Adit D. Singh. Interstitial redundancy: An area efficient fault tolerance

scheme for large area VLSI processor arrays. IEEE Trans. on Computers,

37(11):1398-1410, Nov. 1988.

Lawrence Snyder. Introduction to the configurable highly parallel computer.

Computer, 15(1):47-56, January 1982.

Lawrence Snyder. Parallel programming and the poker programming envi-

ronment. Computer, 17(7):27-36, July 1984.

M. J. Stucki and J. R. Cox. Synchronisation strategies. In Proceedings of

the Caltech Conference on VLSI, pages 375-393, January 1979.

Ivan Sutherland. Micropipelines. Communications of the ACM, 32(6), 1989.

C. D. Thompson. A Complexity Theory for VLSI. PhD thesis, Carnegie-

Mellon University, Pittsburg, Pa., 1980.

Lewis W. Tucker and Grorge G. Robertson. Architecture and applications

of the connection machine. Computer, 21(8):26-38, August 1988.

S. H. Unger. A computer oriented toward spatial problems. Proc. IRE,

46:1744-1750, 1958.

L. G. Valiant. Universal considerations in VLSI circuits. IEEE Trans. on

Computers, c-30(2), February 1981.

P.J. Varman. A fault-tolerant VLSI matrix multiplier. In IEEE Proceedings

of 1986 Int'l Conf. on Parallel processing, pages 351-357, August 1986.

Jouko Viitanen, Tapio Korpiharju, Jarmo Takala, and Hannu Kiminkinen.

Mapping algorithms onto the TEJT cellular array processor. In Sun-Yuan

Kung, Earl E. Swartzlander, Jr, and Jose A. B. Fortes, editors, Proc. of the

Bibliography
	 205

Int'l Conf. on Application Specific Array Processors, pages 235-246, Septem-

ber 1990.

D. F. Wann and M. A. Franklin. Asynchronous and clocked control struc-

tures for VLSI based interconnection network. IEEE Trans. on Computers,

c-32(3):284-293, March 1983.

Ian Watson and John Gurd. A practical data flow computer. Computer,

15(2):51-57, February 1982.

Neil H.E. Weste and Kamran Eshraghian. Principles of CMOS VLSI De-

sign: A System Perspective. Addison-Wesley, 1985.

T. E. Williams, M Horowitz, R. L. Alerson, and T. S. Yang. A self-timed

chip for division. In Paul Losleken, editor, Advanced Research in VLSI,

Proc. 1987 Stanford Conf., pages 75-96, March 1987.

Xilinx, Inc, San Jose, CA. The Programmable Gate Array Data Book, 1989.

Hiroto Yasuura and Shuzo Yajima. Hardware algorithms for VLSI systems.

In VLSI Engineering - Lecture Notes in Computer Science, pages 105-129,

1982.

Hee Yong Youn and Adit D. Singh. On area efficient and fault tolerant tree

embedding in VLSI. In IEEE Proc. 1987 Int'l Conf. on Parallel Processing,

pages 170-177, 1987.

Appendix A

Hspice Transient Analysis

In this appendix, several typical input and output waveforms for the synchro-

niser and event-driven data transfer interface designs described in this thesis are

given. These results were obtained by performing Hspice transient analysis on

these circuits.

A.1 The Synchroniser

Four typical simulation results are given for the synchroniser design. Waveforms

for a DV happening after a CLKT_ and before a CLKT+ , a DVJ ' happening

at the start of a synchronisation risk zone are shown in figure A—i. In the figure,

node 2 is a CLK input, and node 3 is a DVR input. Node 5 is the A point in

figure 5-13, and node 8 is the ENA output from the synchroniser as shown in

figure 5-13. si.irO.55 is the simulation result for a DVJ ' before a CLKT+, and

si.trO.4 is the simulation result where a synchronisation risk zone appears around

30ns. It can be seen from the figure that it takes longer time for the A point to

resolve to the 0 state in this synchronisation risk zone.

Waveforms for a D11'+ happening at the end of a synchronisation risk zone,

and a DVJ ' happening after a CLKT+ are shown in figure A-2. si.trOO is the

206

Appendix A. Hspice Transient Analysis
	

207

simulation result for a DVR
T+ at the end of the synchronisation nsk zone around

30ns, and si.trO.1 is the simulation result for a D1R1 after a CLKT+. It is clearly

shown in the si.trOO result that the A point is pull down to a middle value first

in the synchronisation risk zone before it eventually resolves itself back to the 1

state.

The most important result obtained from these simulations is that the ENA

can stay on low when the A resolves to one of the two stable states. The ENA

either keeps low or flips to high after the A settles towards a stable state.

A.2 The Event-Driven DTI

Four simulated event-driven hand-shaking cycles are shown in figure A-3 for the

event-driven DTI. This simulated event-driven DTI has an Input Guard, an Out-

put Guard and a tn-state register. The Din is the data input to the tn-state

register, and Q/nQ are the output from the register. The DVIR is the status flag

for the register. The D VHop is the status flag for the function module. The node

net13 is the reset signal k.

The waveforms in the figure clearly show that this DTI works properly with

the tri-state input register and is event-driven.

Appendix A. Hspice Transient Analysis

D

U) CZ) C3 . 	 . 	CL)CD

cn

ru

= --- - -
co

J J
cn

cm
ru rII II IJIT I

MCM

T111.T17:11
I

XZ

iI1 111
Figure A—i: A D1 1' before a risk zone

Appendix A. Hspice Transient Analysis
	

209

z - r 	- I- 0 - 	- 1 0 . - i -1 r o . z -. r— 	-4 1 C

01 (71

rn
ru 	- 	(71 ru 	- ru - 	u. ru 	-

_ 	• 	a1 C3 .
• 	 c&J. = • O) •

In

rU

:Ei M

CD

1ff__i
E rn

- -T -

CD

1 -- ____

IU 	.) , 	I- -t L r_—' ,-

liii 	IJ.I Cil I 	I 	I 	I 	I 	I 	i 	u tJI 	I 	I 	Ii iii 	IfI I 	I 	I 	i 	i 	I 	i
ED

ru
CD

CD

Figure A-2: A DV after a risk zone

Appendix A. Hspice Transient Analysis
	

210

—IrD. —4r —it< —rc< —r -irc<

— — z —. z — — i— —.

I_1 	. Ft.) 	- R 	- ru 	- P.) 	-
... • 	- 	C3 • CD 	_ • • • . 	 *

IllullIllIll IlIllIllIlt IIIIIIIII 1 111 1 111 1 11 11111111111 I_IIIIIIIII

C,)

CD

z4 	- -
I-
13

0

I 0 z z - 1 ---- --_-

--El
MCD

—
- I<

Iz —I

- - C,

4 --- = - I

C,, I
: -

H CD

0
0 -C

CD

I 	- ?--
= Ii

-'3
ca - — -

LIuuuluuul uuuluuuluuu uuuluuuluu Luuuluuuli uuuluuuliui
Z C EJ9

l. 	-.I-i IDI —1 Ir'i-i ICI.0 1.-JO-I I-.-i
I IEn U) 1 I .-. I Iacn I I 	ci,

IoI= I I-cr I-ui I I-cr
I H

C,)
1

lw(s) 'I n
I

I
I

U)

I
I 	Cfl

1 4 Il-I I_4
I ' I;D I I I i Il II
I I c I iI iI iI

 CD

Figure A-3: The event-driven DTI

