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Abstract 

Advanced VLSI/ULSI technologies have made it possible to realise parallelism and 

pipelimng processing principles at affordable cost. One of the consequences is that 

more and more algorithms are now directly implemented in hardware. The config-

urable hardware algorithm approach has the potential to combine the performance 

of hardware algorithms and the flexibility of software algorithms at the user level. 

On the other hand, system timing design problems become one of the determin-

ing factors on design complexity, correct system function and high performance. 

This timing problem plays an even more important role in configurable systems. 

There are two typical system timing control design approaches, the synchronous 

timing design and the asynchronous timing design. This thesis investigates and 

demonstrates the idea and feasibility of applying asynchronous timing control at 

the system level and synchronous timing control to system composition modules, 

namely a Globally Asynchronous Locally Synchronous (GALS) design approach, 

for very large scale configurable hardware algorithms. 

A systematic approach has been adopted in this thesis to develop a configurable 

GALS array architecture. With the analysis of general algorithmic properties, a 

novel multiple threads computation model consisting of an architecture with a pool 

of programmable hardware operators having configurable interconnections and a 

GALS system timing control structure is first established. The multiple threads 

computation model bridges algorithms and the architecture for efficient algorithm 

embeddings. The GALS timing control makes this threads model practical. A 

novel and fast event-driven GALS data transfer interface is developed upon which 

a bit-serial configurable GALS array system for algorithm embeddings is designed. 

Some good average performance results are obtained with a polynomial evalua-

tion algorithm embedded as a frame buffer. The work on the GALS system timing 

design principle can be easily extended to the design of general GALS systems. 
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Chapter 1 

Introduction 

In this thesis we investigate the issue of implementing algorithms directly in con-

figurable hardware architectures (configurable hardware algorithms). We aim to 

establish a proper computation, architecture model and system timing control 

strategy for configurable hardware algorithms, and to construct a system based 

on the models established. A configurable system can be used as an attached sub-

system to a computer where it can be configured to run a computation intensive 

task. Therefore it can be regarded as an algorithm memory and data are processed 

on-the-fly when they flow through such an algorithm memory so as to achieve high 

computation throughput on the task and improve the system performance of the 

host computer. It can also be used as a testbed to test high level algorithm designs 

at hardware level. This is of particular interest to software-hardware co-designs 

where a complex algorithm is partly solved by software and partly by hardware 

to meet some special criteria such as real-time response and the cost. 

There are several driving factors which inspired this research when we took a 

brief look at the evolution history of computing systems and how complex com-

putation problems are solved. 

1 
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1.1 Computing Systems 

From the hardware point of view, a traditional computing system (a von Neu-

mann computer) in general consists of a computation part (a central processing 

unit or CPU), a data storage part (memory), a control part, and a communication 

structure which connects these parts together. Each of these hardware parts im-

plements some essential functions, such as basic arithmetic and logic operations 

in an Arithmetic and Logic Unit (ALU), addressed data read/write in a mem-

ory, or instruction decoding in a control part. A complicated computation task 

is decomposed into a sequence of essential functions directly supported by these 

parts. Functions which require one hardware part, for example the ALU, have to 

be evaluated one after another by sharing the same hardware in the time domain 

(sequential model). 

The evolution of computing systems is two fold. Firstly, the performance and 

reliability of hardware components have been greatly improved over the years. 

Secondly, hardware costs are decreasing rapidly. Hence, it is possible to design 

and implement more complicated and faster computing systems by exploring novel 

system architectures different from the traditional sequential model to solve many 

difficult computation problems quickly which were almost impossible or very slow 

to do before. 

1.2 Algorithms 

An algorithm defines a computational method which solves a target problem in 

finite steps for all of the possible inputs of the problem. Different algorithms may 

be designed to solve a given problem. Performance (speed and hardware resource 

requirements) of these algorithms, however, will probably be very diverse. The 

design of efficient and high performance algorithms is highly system dependent. 



Chapter 1. Introduction 	 3 

1.2.1 Software Solutions 

If a complex algorithm is to be solved on a computing system with limited hard-

ware resources, for example one ALU which supports only one arithmetic or logic 

operation at a time point, a software solution is required to decompose complex 

functions, procedures, and data access operations defined in the algorithm into a 

proper sequence of basic operations supported by the existing hardware. A control 

sequence has to be generated while the algorithm is decomposed. The sequence 

of the decomposed operations will be executed in the system in accordance with 

the control sequence to obtain the required results. 

Software solutions are the basis for the efficient handling of problems on a von 

Neumann type computing system. A von Neumann computer is a general purpose 

architecture developed with restrictions on hardware costs. No data dependencies 

of any algorithms can be reflected in the von Neumann architecture. The control 

sequence generated from an algorithm holds all the required data dependencies for 

solving a problem on a von Neumann computer. The performance of von Neumann 

computers replies heavily on the improvement of the single CPU operation speed. 

But as a matter of fact, the pace of improvements on the operation speed of hard-

ware devices is usually behind requirements. The performance of von Neumann 

computers is inherently limited by the sequential computing bottle-neck because 

many properties of algorithms are simply ignored. New computing architectures 

and models are the ultimate choice which can take full advantage of many algo-

rithmic properties and can result in a real leap in the system performance with 

existing micro-electronic technologies. 

1.2.2 Hardware Solutions 

It is possible to implement high level algorithm specifications and schedule their 

control tasks directly in hardware (hardware algorithms) by eliminating the sin- 
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gle CPU bottle-neck with a properly established computation model, a system 

architecture, and a control scheme to achieve a high system performance. 

It becomes evident, if we take the design evolution history of microprocessors 

as an example, that more and more computing functions are directly implemented 

in hardware. The only arithmetic operation implemented in the first microproces-

sor design was addition; any operations more complicated than addition had to be 

done by software methods. For example, the instruction set of a Ziog Z80 did not 

have multiplication which had to be realised as an algorithm when invoked. Then 

there have been lots of efforts made in implementing various multiplication algo-

rithms as hardware multipliers [44,13,140,86,122,133,16,19,18]. In the subsequent 

generations of microprocessor designs, multiplication is eventually included in the 

instruction set. Hardware accelerators for multiplication had been integrated into 

the designs of many microprocessors, for instance, Intel 80486, Motorola MC68040, 

and INMOS T800. Coprocessor approaches which can further extend the CPU 

instruction set to trigonometric, logarithmic, exponential and other floating-point 

arithmetic instructions were developed, examples are Intel 80387 and Motorola 

MC68881 math coprocessor. More complicated algorithms, such as sorting and 

Fast Fourier Transform (FFT), were also implemented directly in hardware. The 

implication of this development is that it is now very practical to implement many 

algorithms directly in hardware which previously had to be done with software so-

lutions and this is the route that we follow to develop high performance systems. 

The coprocessor approach is one of the ways to implement many functions in 

hardware. However, this approach is still limited in that there is only small amount 

of hardware resource to be sequentially programmed in a user transparent way. 

Another common approach is by parallel processing where data dependencies of 

algorithms can be reflected to some degree in the actual hardware. Systolic arrays 

are one of the intensively studied hardware solutions to a class of regularly struc-

tured algorithms. Systolic algorithms are designed in such a way that adequate 

hardware resources are provided and data movements are properly scheduled at 
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the design stage to meet the entire optimized computation requirements instead of 

sequencing data through limited hardware blocks many times. Many Application 

Specific Integrated Circuits (ASIC) can also be classified as hardware solutions to 

specific application problems. 

A hardware system can be classified as a hardware algorithm if it has a large 

proportion or all of the data dependence structures of a class of algorithms and 

can directly output required results after a finite latency upon the presence of 

valid inputs. Unlike software solutions, control sequencing and scheduling are all 

hard-wired in hardware algorithms. 

There are two ways to design hardware algorithms. The ASIC design is a 

popular approach to implement a hardware algorithm exactly as the algorithm 

specification. Another way is to design a blank hardware system which can be 

configured by end users. By blank system we mean a system that does not perform 

any specific functions before it is configured. A user has the freedom to design an 

application algorithm for the system. The specification of the user's algorithm will 

be mapped into such a blank hardware system assisted by an algorithm mapping 

tool. The algorithm is said to be embedded into the system after it is configured 

according to - the map generated from the mapping tool. 

The ASIC approach provides some advantages in design and performance. It is 

relatively easy to automate ASIC design procedures by taking advantage of both 

special silicon architectures, such as gate-array, and particular data dependencies 

of the target applications. Algorithms implemented in ASICs are faster than their 

configurable counter parts. However, ASICs also suffer from some drawbacks. 

1. Turn-around time: The design time for an ASIC based on the gate-array 

structure is faster compared with custom Very Large Scale Integrated Cir-

cuit (VLSI) designs since many Computer Aided Design (CAD) systems are 

available. However, they still have to go through a design phase, fabrication 

phase, test phase and shipping phase which often take at least 3 to 4 months 
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to complete. It may take more than one such a cycle to get a final correct 

design. 

High cost: The cost of designing an ASIC may be high because of the above 

mentioned multi-phase design and manufacturing process and sometimes the 

relatively small number of chips produced. 

Low user controllability: The algorithmic aspects of an ASIC design are 

usually determined at the design phase and cannot be changed easily once 

chips are fabricated. This low user controllability means that ASICs can-

not accept any minor revisions without substantial efforts and costs. This 

low flexibility renders ASICs not suitable for applications at early stages of 

development which will often undergo modifications. 

On the other hand, a configurable system provides a fast design turn-around 

time and flexibility for easy design modifications. As far as costs are concerned, 

it may appear that a single configurable chip may cost more because of the extra 

configuration logic. The average cost can be brought down when large numbers 

of chips are produced since they can be used for a wide range of applications. For 

example, Field Programmable Gate Array (FPGA) products with configurable 

architectures are growing rapidly in recent years because of these attractions. 

Therefore a configurable architecture for algorithm embeddings has advantages of 

high performance by running algorithms directly in hardware and the flexibility 

of configurable logic. 

1.2.3 Parallelism and Pipelining 

A proper computation model is required to transform a user defined algorithm into 

a form which can be embedded efficiently into a configurable hardware system to 

achieve the best performance on the algorithm. 
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Parallel and pipeline processing are effective ways to increase the system per-

formance. Parallel processing is to process non-dependent computing tasks in a 

set of processing elements (PE) simultaneously so that the single CPU bottle-neck 

in von Neumann computers is eliminated. The concept of pipelining came from 

industrial assembly lines through which end products are consecutively assembled 

step by step. Each step will always be kept busy with partly assembled parts 

continuously fed from the previous step and will feed newly assembled parts to 

the next step. It is obvious that each product only goes through an assembly line 

once. After the first product is output from the assembly line, there will be the 

same number of products being assembled as the number of steps of the line, while 

each product is at a different stage of its final completion. Pipelining techniques in 

computing systems are exactly the same as assembly lines, simply replacing parts 

and products with intermediate and final data values, and steps with processing 

blocks as pipeline stages. The outstanding properties of pipeline processing tech-

niques are highly efficient utilization of hardware resources and application level 

parallelism. 

These concepts are not new to scientific researchers at all. People, including 

von Neumann, had already realised the potential of parallel and pipeline process-

ing as early as in 1950's [131]. Many parallel and pipeline processing systems 

were developed 25 years ago. However, it may involve some substantial software 

programming work for users on some of these parallel computers because it is of-

ten the user's responsibility to determine the parallel properties of an algorithm, 

decompose and schedule (similar to the control sequence on von Neumann com-

puters) process controls on these parallel systems. It is often difficult for a user 

to figure out some implicit or run-time parallel properties of a problem. Users 

are often required to be aware of the parallel architecture of a system in order to 

use it efficiently. The application of these techniques is relatively new in config-

urable architectures. A parallel and pipeline processing computation model for 

a configurable hardware algorithm system is established in this thesis. This will 
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[] 

enable the system to make use of the parallel properties, especially the run-time 

properties, of an embedded algorithm automatically. 

1.3 Regular and Modular Architectures 

Hardware algorithms are mostly based on regular VLSI architectures. Examples 

are array multipliers. and matrix multipliers. Advanced VLSI technologies have 

made it possible to investigate and develop various novel architectures for a wide 

range of applications. One of the most popular regular architectures is the ar-

ray architecture because it is very good for VLSI implementation and algorithm 

embedding. Array architectures can be classified according to the granularity 

of elements, programmability, array processing timing control strategy and array 

operation control strategy. 

There are some common characteristics among VLSI arrays. 

• Regularity: An array system is formed by the duplication of one or several 

very limited types of cells in a very regular way normally in a two dimen-

sional plane. Some three dimensional arrays also exist. The interconnections 

between array elements are also distributed in a regular pattern. 

• Simplicity: Although an entire VLSI array may consist of a large number of 

duplicated elements, the design complexity of a large array system is often 

proportional to the complexity of the building elements of the array. 

• Scalability: Due to the duplication nature in arrays, it is very easy to shrink 

or expand the size of an array so as to fit it to certain particular application 

requirements. 
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Figure 1-1: The spectrum of arrays 

1.3.1 Granularity of Array Element 

VLSI array architectures can be found spreading over a wide spectrum as shown 

in figure 1-1. VLSI arrays with the most fine-grained elements are memory arrays. 

The granularity of array elements is increased following sea-of-gates arrays, gate 

arrays, sea-of-cells arrays, massively parallel processing arrays, special purpose 

VLSI arrays, and very expensive microprocessor arrays where each processing ele-

ment can be used as a CPU in a von Neumann computer. We choose the massively 

parallel processing array as the foundation for our configurable hardware algorithm 

architecture. This is a good compromise of system functionality, flexibility, size 

and rational cost. 

1.3.2 Array Configurability 

Array configurability reflects the flexibility with which an array system can be 

applied to embed just one or a class of algorithms, that is, the generality of a sys-

tem. There are many different technologies to choose for the implementation of a 

configurable system. Some of these technologies have advantages in area and per-

formance, but they require special processing techniques, such as laser structuring 

or fuse-blowing, which permanently change the physical structure of a hardware 

system and the cost can be high. Configurable systems using conventional low 

cost circuit switch devices can offer much higher user flexibility and reusability 

with slight degradation in performance and increase in silicon area. 

The choice of a configuration method is determined by the design purpose 

and the target implementation technology for the design. Our system design 
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will be based on a normal CMOS process technology and it requires higher user 

configurability and reusability, so MOSFETs will be used as the basic switch 

devices in our configurable array architecture for algorithm embeddings. 

1.3.3 Array System Timing and Control 

There is a classification of arrays based on the type of instruction and data flow. 

An array whose elements operate on one instruction at a time to process one data 

stream is called a Single Instruction Single Data flow (SISD) array. Similarly, 

an SIMD array has Single Instruction and Multiple Data flow. If elements in 

an array operate on different instructions to process multiple data streams, the 

array is called a Multiple Instruction and Multiple Data flow (MIMD) array. An 

MISD array has Multiple Instruction and Single Data flow. A configurable array 

architecture for hardware algorithms can be regarded as a two phase MIMD array. 

A configuration phase is a Multiple Instruction flow (MI) phase. Once the array 

is configured, it runs in Multiple Data flow (MD) phase. 

Because an array system can usually be divided into two types of essential 

parts: computation modules and a communication network, different timing con-

trol methods may be applied separately to computation modules and the com-

munication network. A best match between these two timing control methods 

on computation modules and the communication network will make it possible to 

achieve an optimal performance and efficient system resource utilization. 

It is a common practice to select either a synchronous or an asynchronous tim-

ing control method as the basis for an entire system timing control. In synchronous 

systems where all system operations are lock-stepped with a central global control 

clock, it is impossible to consider individual timing control for computation mod-

ules and the communication network. The speed of the central control clock in a 

synchronous system is determined by the worst possible case so as to secure the 

correct data movement in computation modules and the communication network. 
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The worst possible case is jointly determined by the worst clock distribution skew, 

the delay of the longest communication path and the slowest sequential logic in 

the computation modules. 

There are no global system control clocks in asynchronous systems. The control 

of data movement and operation in an asynchronous system is completely localised. 

The performance of an asynchronous system is data dependent and measured 

by an average instead of the worst case for a maximum clock frequency as in a 

synchronous system. 

We argue in this thesis that an asynchronous timing control can make the 

best out of a communication network, particularly a configurable communication 

network. It is also an excellent choice in general for timing control at the sys-

tem level. We also argue that the synchronous timing control with clocks is still 

a very good choice for computation modules of sufficient complexity. Based on 

this argument, we look at the possibility of combining these two timing control 

methods together. A system timing design approach for a Globally Asynchronous 

communication network and Locally Synchronous computation modules (GALS) 

is established in the thesis. A configurable array architecture for algorithm em-

beddings is designed by applying our parallel multiple threads computation model 

and the GALS system timing control approach in the rest of the thesis. This 

architecture can easily accommodate any new technology, system design and user 

design changes. It also offers a solution to timing problems of the immediate fu-

ture in the design of Ultra Large Scale and Wafer Scale Integrated (ULSI/WSI) 

systems. 
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1.4 Overview of the Thesis 

Chapter 1: The essential concepts and ideas of hardware algorithms, configurable 

architectures and system timing control methodologies are introduced. The 

aim of this project is elaborated: the establishment of a proper computation 

model, configurable architecture and system timing control approach for high 

performance algorithm embeddings 

Chapter 2: Some typical massively parallel computing systems are analysed and 

compared in this chapter. The purpose of these comparisons is to look at 

the common characteristics and the problems in these existing systems so 

that we can establish a proper computation model, interconnection network 

structure, and an overall system architecture for configurable hardware al-

gorithms. 

Chapter 3: In this chapter, a multiple threads computation model for irregular 

algorithms is established for algorithm embeddings. A configurable architec-

ture template with a connected pooi of hardware operators and a globally 

asynchronous locally synchronous (GALS) system timing control approach 

is proposed for algorithmically configurable architectures. A configurable 

GALS array system will be designed based on the ideas elaborated in this 

chapter. 

Chapter 4: A Pseudo Nearest neighbour Configurable Array (PNCA) architec-

ture with some constraints is proposed in this chapter. By combining the 

PNCA and GALS approach, a top level configurable GALS array topology 

and the logical structure of the interconnection network and a programmable 

hardware operator PHI,, are illustrated. A guarded asynchronous hand-

shaking communication protocol is also described. 
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Chapter 5: Various issues concerning the implementation of the GALS array 

system are discussed in this chapter. The design of a bit-serial configurable 

GALS array (GALSA) is presented. Some key components, such as an event-

driven GALS data transfer interface, a novel tn-state register, the synchro-

nisation issue, the design of a PH, and a routing network, are described in 

detail. An example 4 x 4 GALS array is given. The event-driven GALS data 

transfer interface can also be used to construct general GALS systems. 

Chapter 6: In this chapter, simulation results of the designs described in chapter 5 

are presented. Three algorithm to the GALSA system mapping examples are 

given. The performance of the GALSA system is analysed and compared 

with some other similar systems. Although there are some extra delays 

caused by configuration switches in the routing network, the performance of 

the GALSA system is still very good because the system can process tasks 

based on the multiple threads computation model. 

Chapter 7: This chapter summanises all the work presented in this thesis and the 

author's contributions. Further development of the current work is outlined. 

The prospects for configurable hardware algorithms in the future are also 

discussed. 



Chapter 2 

Massively Parallel Computing 

Systems 

The work described in this thesis is closely related to a class of architectures 

called massively parallel computing arrays. A massively parallel processing array 

normally consists of one or a few types of processing elements (PE) which are 

duplicated as many times in a two dimensional plane and connected by a network 

as an application task requires. Some existing systems already have an array of 

16K or 64K PEs. We shall analyse and compare some typical existing systems and 

other related work in this chapter. While some common points in these system 

designs are found, distinctions are also drawn between the research work carried 

out in this project and the existing systems. 

Since 1970, the dramatic reduction in costs of integrated circuits and increas-

ing requirements for high performance computing systems have stimulated the re-

search and development of many parallel array architectures. Many of them have 

been implemented on Large Scale Integrated (LSI) circuit technologies. Newer 

generations of these systems and many other new systems are now mostly imple-

mented in VLSI technologies. This makes it possible to accommodate more PEs 

in a silicon chip. 

14 
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2.1 Cellular Logic Image Processor 

The Cellular Logic Image Processor (CLIP) [24] was the first bit-serial array pro-

cessor chip designed and fabricated. The development of the CLIP architecture 

can be traced back to 1973. It started at the time with many technology con-

straints which no longer apply. Although the early CLIP chip implementation is 

in current terms inefficient, the CLIP architecture is very heuristic. People are 

also trying to update the CLIP design with the latest state-of-art technology. The 

history of CLIP evolved from the the first prototype to CLIP4 (with 8 PEs on one 

chip in 1978) [24,35], CLIP5 (with 16 PEs on one chip in 1981) [34] and CLIP6 

(1983) [33]. The CLIP5 PE uses essentially the same logic as the CLIP4 PE, 

while the chip configuration has been improved in several aspects, such as the use 

of a larger package which enables more pins to be assigned to control functions 

and more PEs to be integrated on one chip; local data storage has been removed 

to off-chip RAM and the data path design has been improved. There were sub-

stantial changes in the CLIP6 design principles. The major differences in CLIP6 

are that all data paths and functional blocks are bit-parallel in operation on 8-bit 

of data. A single multi-bit ALIJ instead of a dual Boolean/adder PE is used, a 

multi-bit multiplexer for input selection replaces input gating circuitry, and a local 

condition code register supports a degree of PE autonomy control. 

The data structure in an n x n CLIP array can be visualised as a stack of 

bit-planes as shown in figure 2-1(a). Each bit-plane is composed of an array of 

n x n data. One data bit in such a structure is represented as D i = 

x, y = 1, 	, n}, where 	is a bit located at (x, y) in the jth plane. A 

data word can be stored in either binary stack format (vertical format) or binary 

column format (horizontal format). In binary stack format, a datum is uniquely 

addressed by (x, y) and passing through g bit-planes: P = 	: j = Ic, Ic + 

k+g-1}. The binary stack format is very suitable for storage and processing 
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Figure 2-1: CLIP5: (a) Bit-planes, (b) PE, (c) Array interconnections 

of pixels in an image. When numerical calculations are to be performed, it is 

sometimes convenient to represent data in binary column format: O, = 

y = 1, 2, . , n} in which there will be no one-to-one correspondence between data 

and n2  PE addresses. The data structure in most of the two dimensional regular 

massively processing arrays can be modelled by this stacked bit-plane structure. 

An old CLIP PE consists of a dual Boolean and a full adder processing unit, 

input gating circuitry, three registers (A, B, C) corresponding to a bit location in 

A, B, C bit-planes, a memory D for locating at (x, y) in D, (j = 1, 2,. . . , n) 

bit-plane, and some glue logic. The PE can perform all the 16 Boolean functions 

with two variables and bit-serial addition which are all controlled by signals fed 

from an external control unit. The input gating however can be individually set to 

meet special application communication requirements. The CLIP PE schematic 

is shown in figure 2-1(b). Each CLIP PE is physically connected to its eight 

neighbours, but the actual CLIP logical connectivity among PEs can be config-

ured as hexagonal, 4 nearest neighbour, or 8 neighbour connection to reflect the 

requirements of a specific application data structure (c.f. figure 2-1(c)). The in-

put gating and full neighbourhood connectivity also make it possible to complete 

many operations in only one cycle for which other later designs may require as 

many as twelve cycles. 
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The CLIP system was specially designed for high speed image processing ap-

plications. A system with total of 9216 (96 x 96) PEs has been built with CLIP 

array chips. Data captured and A/D converted from a video camera are processed 

through the CLIP array and results are again D/A converted and output to a 

monitor. Some typical applications of such a system are simple edge detection, 

labeling, two-dimensional filtering operations on images, image enhancement, and 

skeletalisation. 

2.2 Distributed Array Processor 

The prototype Distributed Array Processor (DAP) [51] was designed and con-

structed in 1976 by Reddaway and others at International Computers Limited 

(ICL) as an enhanced memory module for ICL2900 series mainframes, and even-

tuaJly evolved to an independent parallel processing system. The development of 

the DAP system was later separated from ICL to an independent company called 

Active Memory Technology Ltd (AMT). The first of the second generation DAP 

systems, built on LSI technology, was delivered in 1985. A prototype mini-DAP 

was built from a gate array chip which integrated 16 PEs together on one chip, 

and the whole system consists of an array of 32 x 32 PEs. A 64-PE custom VLSI 

chip is used in a version of the re-engineered 64 x 64 AMT DAP [55]. A DAP 

PE, as depicted in figure 2-2(a), is designed with a bit-serial full adder supported 

by a set of registers (A, C, Q, 5, D), signal multiplexers, and an external local 

memory port which can address up to a maximum of 1M bits of RAM in the 

present architecture. The A register is used for PE "activity control" which can 

inhibit memory write operations in certain instructions in a PE. The activity con-

trol is also important in cases such as inhibiting PE operations at the predefined 

boundaries of a problem, or in conditional data-dependent operations. Q can be 

regarded as an accumulator and C as a carry register. The third input to the 

adder is selected by a multiplexer from PE memory, Q, A, data broadcast by the 
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Figure 2-2: AMT DAP: (a) PE, (b) Array organisation 

MCU (Master Control Unit), or the carry output of a neighbouring PE. S and D 

register are transparent to users, but play a very important role in assisting data 

movement. D is used as a buffer for data input/output through a fast interface 

unit, and S is a buffer for such instructions that need to read from and write to a 

memory. When A, C, Q, D and memory are viewed as an abstract data structure, 

they can also be represented as bit-planes as illustrated by figure 2-1(a) but with 

at least 32K array memory planes. Hence data in a DAP machine can be stored 

in either vertical or horizontal format. 

Interconnections among PEs are essentially nearest neighbour connection but 

enhanced with X- and Y- buses for fast data broadcasting to the PE array or 

fast data retrieving from the array. Data in a register of a PE can move in any 
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of the four directions (North, South, East, West) to a corresponding register in a 

neighbouring PE. It is also possible to extract data from a specified row or column 

of PEs, or to AND together data from all of the rows or all of the columns. PEs 

at the edge of a DAP array are simply connected to their counterparts at the 

opposite edges, thus allowing shifts to "wrap-around" if required. 

The DAP system has been efficiently applied to areas where large volumes of 

regularly structured data have to be processed, for instance, matrix manipulations, 

image processing, and sorting. 

2.3 Massively Parallel Processor 

The Massively Parallel Processor (MPP) project was initiated in 1971 and the 

construction of a real MPP system started from 1979 under a contract awarded to 

Goodyear Aerospace by NASA [7]. The first delivered MPP system consists of a 

physical array of 16896 PEs which can be logically configured as an array of 16384 

(128 x 128) PEs with 512 (128 x 4) redundant PEs for the fault-tolerant purpose. 

The interconnection topology in an MPP PE array is a simple conventional 4 

nearest neighbour connection. The choice of this simple interconnection pattern is 

determined by the target application area of the MPP - two-dimensional image 

data processing, and by the huge number of PEs required. However, the edge 

topology of the MPP array is made very flexible as shown in figure 2-3(b). Pro-

grammable switch circuits are located on the four array edges. The connectivity 

between the right and left edge can be set as one of the following four states: open 

(no connection); cylindrical, FE21  is connected to FE 127 , i = 0, 1, 2,.• , 127; 

open spiral (PE2 , 1  is connected to PE_1 , for 1 < i < 127); and closed spiral 

(similar to open spiral but FE0 , 1  is connected to FE127 , 127). The top and bottom 

edges of the array can be either connected or left open. When both left and right, 

top and bottom edges are connected, a ring configuration is formed. Since an 
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Figure 2-3: MPP: (a) PE, (b) Array edge topologies 

MPP array is composed of a large number of PEs, fault-tolerance and reliability 

become important issues in the MPP system. Two measures are adopted. One 

is the simple group redundancy scheme by which a group of 128 x 4 redundant 

PEs is added. The entire array is divided into 33 groups of 4 x 128 PEs together 

with group bypassing gates in the routing network. The array can survive PE 

faults in one group by disabling (bypassing) the entire faulty group and activating 

the redundant group. The other technique is the parity error detection to find 

memory faults. One parity bit is combined with eight data bits of every 2 x 4 PE 

subarray. Whenever a fault is discovered, the group redundancy control will be 

used to disable the group containing the error. 

Because the target workload of an MPP array is image processing in which 

the resolution of input pixels may vary from 6 to 12 bits, and intermediate results 

can be of length from 6 to more than 30 bits, the MPP PE had to be custom 

designed based on the bit-serial processing principle. This is very efficient to 

process operands of varying length. The actual PE structure as shown in figure 2- 
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3(a) was optimized for bit-serial arithmetic operations by combining a single bit 

full adder, a variable length shift register, and six single bit registers (A, B, C, 

P)  G, S). Different from many other bit-serial PE design, a local data bus (D) is 

also used to provide a convenient way for data movement among PE registers and 

local RAM. All types of arithmetic operations are supported in the MPP PE array, 

such as integer/floating-point addition/subtraction, multiplication/division. The 

MPP PE logic circuit can also perform all 16 Boolean functions with two input 

variables from P and D register. A special routing operation which can shift the 

state in P to one of its four neighbours is included. The G register holds a mask 

bit so that masked operations are only performed in those PEs whose G is set to 

1. The S register is used for shifting input and output data to/from the MPP PE 

array. A local RAM of 1K bits, from where operands are fetched and results are 

stored in a one-bit operation, is attached to each PE. 

The implementation of the MPP PE array used a rather outdated technol-

ogy. A subarray of 8 (2 x 4) PEs is integrated on one chip [110] designed with 

CMOS/SOS technology and packed in a 52-pin flatpack. 

In 1986, a new project called BLITZEN motivated at miniaturising the phys-

ical size of the MPP system was started at the Microelectronics Center of North 

Carolina [10,47,21]. Years later, a custom VLSI CMOS chip containing 128 (8 x 16) 

PEs on an 11.0mm x 11.7mm die was fabricated and mounted on a 176 pin PGA. 

The BLITZEN PE design is basically the same as the MPP PE but enhanced 

with more control functions such as local control of masking, local condition test-

ing which may lead to alternative local processing actions and local modification 

of global addresses. But the interconnection pattern among PEs is very different 

from the MPP in that an "X" interconnection and rows of I/O buses are used. The 

"X" configuration enables each PE to communicate directly with its eight nearest 

neighbours and allows data to be routed along diagonals in an array which is faster 

than Manhattan routes. 
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2.4 Connection Machine 

The Connection Machine (CM) is the largest massively parallel array processing 

system built so far. The architecture was originally conceived by Hillis in his 

thesis [49] at MIT, and was constructed by Thinking Machines Corporation. The 

major part of the CM has an array of 64K (216)  data processors (PE) and a 

complex data communication network among these PEs. The communication 

network in the CM is completely different from other systems, using a packet-

switched network instead of circuit-switched network. One of the goals of the CM 

design is to construct a very flexible architecture so that many different application 

types can be processed by the system. Operations based on data-parallelism make 

it possible for the CM to exhibit very high performance on processing massive 

amounts of data concurrently in each PE. The CM is well developed at the user 

interface level with a virtual-machine model which presents users with an abstract 

machine architecture to ease programming tasks for users on the machine. A 

virt ual- processor model makes it possible to solve problems of sizes larger than 

the physical size of a CM. 

The unique flexible communication network of the CM is supported by routers 

and a NEWS (North, East, West, South) grid. Every subset of 16 PEs shares 

one router while a total of 4, 096 (212)  routers is hard-wired in the pattern of a 

Boolean n-cube (ii = 12). Therefore any router can be reached from any other 

router by travelling over no more than 12 wires. Each router handles messages for 

its subordinate 16 PEs and also serves as the interface with other routers. The 

operations of the router can be divided into five types: injection, delivery, for-

warding, buffering, and referral. Injection is the process of sending new messages 

into the network from a subset of 16 PEs. The process by which a router removes 

a message from the network and sends it to a destination PE is called delivery. If 

an injected message is going to somewhere outside the cluster of 16 PEs, it must 

be forwarded. When several messages are delivered at once or several messages 
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Figure 2-4: Connection Machine (a) PE, (b) A subarray of 16 PEs 

are to be forwarded over the same wire, they will be buffered by the router. If 

a router's buffer is full, the router may refer a message to another router. Each 

router is uniquely assigned with a 12-bit binary address for the convenience of 

routing algorithms. The NEWS grid provides a two-dimensional Cartesian direct 

connection for nearest-neighbour communication which is faster than router com-

munication for simple and regular data structures. Other communication modes 

such as broadcast communication and global OR of ALU carry output from all 

PEs are also supported in the CM. 

A CM PE, which is shown in figure 2-4(a), consists of a bit-serial ALU unit, 

• local bit-addressable RAM, eight one-bit flag registers, a router interface, and 

• NEWS grid interface. The ALU is a logic element which can compute any two 

Boolean functions with three inputs and two outputs. The actual function of the 

ALU is determined by 8 bits stored in a function table. The A and B address 

specify the external memory locations from where the first and second operands 

to the ALU are read. The A-address is also the memory location to where the 

memory output of the ALU is written. The read flag selects one of the 16 (8 

general purpose, 8 special purpose) flags from which the F input of the ALU is 

taken. The write flag selects one of the 16 flags to which the flag output of the 
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ALU is written. Flags in each PE are used to set communication modes and for 

memory error detection/correction. 

The implementation of the CM architecture has evolved from CM-i to CM-2 

[130]. Both CM-i and CM-2 use off-the-shelf RAM chips and a custom designed 

CMOS VLSI chip which contains a subarray of 16 PEs with one router and a 

control unit (c.f figure 2-4(b)). CM-2 has been improved in many aspects while 

keeping the same essential architecture as CM-i. The major differences in CM-2 

are: 64K bits instead of 4K bits memory for each PE, four flag registers instead of 

eight, an optional floating point accelerator for every group of 32 PEs, increased 

error detection circuitry, redesigned router with improved reliability, diagnostic 

capability and performance, replacement of the two-dimensional NEWS grid with 

a more general n-dimensional grid on top of Hypercube, and a high speed I/O 

system. 

The CM is a very flexible architecture which can be applied both in numeric 

and symbolic processing to a very broad range of applications. For instance, grid-

based communication finds primary application in regularly structured problems 

such as particle simulations and matrix manipulations, while the general packet 

routing supports varying topologies in circuit simulation and computer vision. 

2.5 Adaptive Array Processor 

The Adaptive Array Processor (AAP) [64] was developed at NTT in Japan. The 

AAP architecture was designed to be used as a high performance system with a 

certain degree of flexibility for various two-dimensional data processing applica-

tions and small overhead for inter-PE communications over long distances. The 

adaptability of the AAP to applications is supported by three special features: 

• Duplicated communication paths. Each PE is connected with its eight neigh-

bours, and a duplication of connection between upper and lower PEs makes 

it possible to implement hierarchical bypass for flexible and fast data trans-

fer. 
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• A complex data transfer unit in each PE. Since the physical interconnections 

among AAP PEs are fixed, a complex data transfer unit is used in each PE to 

support flexible data routing and hierarchical data bypass. The data transfer 

unit is implemented with various multiplexers and some control registers. 

Combined with duplicated interconnection paths, data can be routed rather 

freely among PEs in the AAP. 

• Local modification of global controls. The local adaptability of each PE 

is determined by the contents of local control registers which can modify 

common control signals fed from a single global control unit outside the PE 

array. 

The AAP PE comprises a 16-function bit-serial ALU for two inputs and a set of 

supporting registers. One unusual feature is the use of one of the data registers to 

hold a control signal which determines the storage destination for a result. A 64-

bit register file is used to hold temporary data and makes it possible to implement 

various operation modes on an AAP. Data can also be structured in either vertical 

or horizontal format in an AAP as shown in the stacked bit-plane of figure 2-1(a). 

However, the AAP extends the stacked bit-plane structure with more operation 

modes. Bit-serial operations can be carried out in each PE on entire words stored 

in vertical format. The PE array can also be structured to either word-unit or 

block-unit operation modes. When part or the entirety of a row or column of PEs 

are combined to process data in horizontal format, the AAP is in word-unit mode. 

If a block of PEs (a subarray) is grouped together, horizontal words can also be 

processed in block-unit mode. The AAP PE schematic is shown in figure 2-5. 

The first prototype AAP chip integrates 64 (8 x 8) PEs together with 6K bits 

(64 x (64 + 32)) of memory on a die of nearly 1cm 2 . The second generation of 

the AAP - AAP2 [65] is designed with an external RAM port of up to 1M 

bits logical address space in each PE. The AAP2 has one 40-bit microinstruction 

modifier which can support wideband modifiable PE operations in the array (called 

pseudo MIMD by A-AP designers). The interconnection paths are also enhanced 
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Figure 2-5: AAP: (a) PE, (b) Array interconnection paths 

by a duplicated 4 neighbour connection network (c.f. figure 2-5(b)) instead of the 

upper-lower path in the AAP prototype. One external 64K bytes (8 x 64K bits, 

static) RAM module and one AAP2 64 PE array chip can be mounted on one 

special package. 

The AAP system can be applied to many two-dimensional data processing ap-

plications. Examples are grey tone level histogram calculation, distorted image 

correction, feature extraction of character images, and logic simulation of elec-

tronic circuits. 

2.6 A Data-Driven VLSI Array 

I. Koren and B. Mendelson [66] developed a Data Driven VLSI Array (DDVA) for 

embedding arbitrary algorithms. The DDVA is different from most of the mas-

sively parallel processing array architectures in that it operates on a data-driven 

principle. With the elimination of global control on data-flow, correct operation of 

the system will be guaranteed by the availability and presence of matching input 

data to each PE in a DDVA. The DDVA is designed with a hexagonal intercon-

nect architecture where each PE is connected to six nearest neighbours. There are 
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Figure 2-6: DDVA: (a) PE, (b) array architecture 

rows of communication I/O buses of 10-bit wide (figure 2-6(b)). Communications 

among PEs are all through some of the six registers in each PE as shown in fig-

ure 2-6(a). A data flow graph for an algorithm can be mapped into a DDVA where 

nodes (vertices) of the graph are embedded into the PEs of the DDVA and edges 

(arcs) of the graph are mapped either as a connection between two communicating 

registers or a series of PEs which are only set as communication path if connection 

resources are not enough. Each DDVA PE processes 8-bit operands and is data-

driven, i.e. a PE instruction is initiated only when all of its required operands are 

available and its destination registers are empty. Each PE can be loaded with at 

most six instructions, the execution order of instructions is completely data-driven 

instead of depending on a program counter. The complexity of the prototype PE 

is about 9,000 transistors in a NMOS technology. The microprogram control unit 

is the largest block in the PE which requires about 4,500 transistors. This unit 

translates instructions stored in the PE instruction memory into sequences of con-

trol signals that control the operation of the execution unit. This microprogram 

control unit is the fundamental feature of a DDVA that makes it possible for the 

DDVA to embed arbitrary algorithms and operate on the data-driven principle. 
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Figure 2-7: RAP system architecture 

The DDVA architecture has very low hardware efficiency for arbitrary algo-

rithms because it uses PEs as routing cells with very limited routing resources. It 

is too expensive to use such a complicated PE for just a simple routing function. 

2.7 Reconfigurable Arithmetic Processor 

The Reconfigurable Arithmetic Processor (RAP) [32] is actually developed as an 

arithmetic processing node for an MIMD concurrent computer. The aim of the 

RAP design is to reduce the amount of off-chip and memory data transfer traffic by 

evaluating an entire arithmetic formula directly in an RAP upon the configuration 

of the RAP to the structure of the formula to be evaluated. Only final evaluation 

results are sent back to a host computer after a set of inputs is presented to the 

configured RAP. All of the intermediate data are calculated, referred to and elimi-

nated locally; no global memory references which will otherwise require expensive 

high speed I/O channels that are often a performance bottle-neck. All of the exter-

nal communication requirements of an RAP are the input of configuration control 

data (which will be done prior to calculations), input of coefficients and values of 
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variables, and the output of final results. The schematic of the RAP architecture 

is illustrated in figure 2-7. The major building blocks in an RAP are a set of 

arithmetic processing units which include adders/subtractors and multipliers, a 

switching network, and a switch configuration control unit. Partial bit-parallel 

arithmetic units are designed to process 4-bit of operands in one operation or 

a serial-of 4-bit if longer operands are presented. The switching network in the 

RAP can be configured with the switch configuration control unit to interconnect 

arithmetic units in a way which represents the data-dependencies of the formula. 

One of the most important features of the RAP architecture is the highly 

reduced memory communication flow requirements. Once all of the required data 

is retrieved from the memory, the entire evaluation of an arithmetic formula will 

be carried out without interaction with the host system until final results are 

obtained. 

2.8 Reconfigurable Parallel Array Processor 

The Reconfigurable Parallel Array Processor (RPAP) was developed by Rushton 

and Jesshope [117] [52, Section 3.5.4] at Southampton University with the aim of 

implementing a more general-purpose flexible architecture assuming Wafer Scale 

Integration techniques. The RPAP architecture is very flexible in that it can 

be logically configured to perform from bit-serial, through partial bit-parallel, to 

word operations. To minimise the communication problem between a host and 

an RPAP array, a shared memory between the two is used so that the address 

of the array memory can be directly mapped into the address space on the host. 

The RPAP is not a real SIMD system because some fields of the instruction words 

distributed across an RPAP array can be locally modified in a PE. 

An RPAP is physically a two dimensional four nearest neighbour intercon-

nected (NNI) array of simple bit-serial PEs with wrap-around at both opposite 

edges. The whole system is synchronously operated. The RPAP chip VLSI floor- 
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Figure 2-8: RPA: (a) PE, (b) The array floor plan 

plan is also arranged as a square array of PEs. Because of synchronous timing 

control difficulties, the RPAP architecture can support up to 256 x 256 PEs in an 

array. A physical PE is a single bit-slice ALU. A wider virtual processing unit 

can be formed by combining a group of physical PEs. A virtual R x C, array of 

r x c-bit virtual PEs can be logically constructed out of an RPAP of n x n physical 

PEs, where R0 , Ce,, r, c must satisfy: 

	

Rxr=n 	 ( 2.1) 

	

Cxc=n 	 (2.2) 

	

r x c < n x n 	 (2.3) 

	

1r, cn 	 (2.4) 

For example, from a 32 x 32 RPAP, a virtual single processor of 1024-bit is formed 

when r = c = 32,R = C, = 1. Similarly, r = 16,c = 4,R = 2,C = 8 forms 

a 2 x 8 array of 64-bit virtual PEs. There are no restrictions on the direction of 

data propagation in the system, but each connected successive bit-slice PE should 

be physically adjacent to form a virtual PE. The structure of a physical PE, as 

shown in figure 2-8, is similar to one bit-slice in a conventional bit-slice processor. 

The special feature of the RPAP PE is that it has two-bit lines which allows 

simultaneous transfer of two operands to each PE. Both bit-serial and bit-parallel 

operations are well supported in an RPAP PE. A bit-stack and an activity stack 

30 

MW 

can preserve the bit ordering required for arithmetic operations, besides which 
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they are able to provide parallel-to-serial and serial-to-parallel conversions. The 

internal storage has a dual control mechanism capable of stack or random access 

to the bytes of a word. 

2.9 Field Programmable Gate Arrays 

Gate array and standard cell architectures are developed for implementing VLSI 

system designs with fast turn-around time. Compared with custom design method-

ology, gate array and standard cell approaches have satisfied this fast turn-around 

time to some extent. It is also much easier to automate system design based on 

these predefined chip architectures. However, this improvement on turn-around 

time is still fundamentally limited by the procedure of chip fabrication. On the 

other hand, designers have no control over their designs once their designs start 

to be fabricated, not to mention extra costs to modify a design after chips are 

fabricated. 

Field Programmable Gate Arrays (FPGA) pioneered by Xilinx Inc. [139] repre-

sent a different design methodology which resulted in a very versatile architecture 

that gives truly fast turn-around time and complete user freedom to implement a 

system design, test and modify the design easily. Following the success of Xilinx, 

there are now many companies also producing FPGA chips. The Xilinx XC series 

are also called Logic Cell Arrays (LCA), which in general are composed of a two 

dimensional array of logic cells surrounded by an interconnect area which is rich 

in memory controlled switches and wires. All of the logic cells in an XC array, as 

depicted by figure 2-9(a), are the same and can be configured to any logic function 

of up to 5 input logic variables (a, b, c, d, e). Functions with more than 5 inputs 

can be formed by combining cells together. D is used for a direct data input. 

Other inputs to a cell are used for cell operation controls. A special feature of this 

LCA cell is that two combinatorial functions of 4 inputs which share a common 

input can be configured within one cell. Thus there are two outputs x and y. In-

terconnections among logic cells can be set by configuring various switches around 
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(a) 
	

(b) 

Figure 2-9: Xilinx LCA: (a) Function cell, (b) Interconnect resources 

each logic cell to match the structure of a target system. The LCA provides plenty 

of programmable interconnect resources which are classified as general purpose in-

terconnect, direct connection, and long lines, as shown in figure 2-9(b). General 

purpose interconnects consist of a grid of 5 horizontal and vertical metal tracks 

segmented by switch matrices and scattered programmable interconnect points 

(PIP, small spots in figure 2-9(b)). Direct interconnects provide the most efficient 

network interconnection between adjacent logic cells or I/O blocks. Long lines 

bypass switch matrices and are intended primarily for signals which must travel a 

long distance and must have minimum skew among multiple destinations. FPGAs 

have been successfully used in many designs. Because FPGAs are intended for 

use as general purpose devices, most of these designs are based on random logic 

which ignores the architecture regularity inside FPGAs. 

2.10 Cellular Array Logic 

An early systematic description of the cellular logic design methodology can be 

found in [103] in 1971. Because of technology limitations, no real cellular arrays 

had been integrated on silicon chips. In 1977, Manning [87] further extended the 

concept to programmable cellular logic arrays for arbitrary logic implementations. 



Chapter 2. Massively Parallel Computing Systems 	 33 

However, at that time it was still unrealistic in practice to implement such kinds of 

system with medium scale integration technologies. Xilinx is the first company to 

design and market user soft programmable gate arrays [139]. The success of Xilinx 

and the emergence of sea-of-gates architectures aroused researchers' interests in 

cellular logic. Kean [59,58] has designed his configurable Cellular Array Logic 

(CAL) architecture based on previous work on cellular logic architectures. The 

CAL became a standard product of formerly Algotronix Ltd which is part of Xilinx 

now. 

The CAL architecture is very simple. The entire system consists of a 2-D 

array of a simple function cell which is bidirectionally interconnected with its 

four neighbours, as depicted in figure 2-10(b). Each cell in the array can be 

configured to either: one of the 16 two-variable one-bit logic functions, or as a 

routing cell which can route input values to another cell. The CAL cell function 

can be represented as Y = F(X1, X2), where Xl, X2 and Y are Boolean variables. 

Compared with sea-of-gates architectures, CAL can actually be classified as a sea-

of-cells architecture. There are 20 bits of RAM in each cell as shown in figure 2-

10(a) for cell functionality, signal selection, and routing control. The configuration 

control bits for all cells in an array are loaded a priori. The current CAL chip 

contains 64 x 64 cells on one VLSI chip. 

Since CAL cells manipulate only a single bit of data and do not have local 

memories for intermediate data, CAL is most suitable for bit-level applications, for 

instance, encryption/decryption, or binary image manipulation. It is not efficient 

to use CAL for applications with wide word width. Because CAL cells can also 

be used for routing purposes, the cell utilization of a CAL will be low if the data 

structure of a target system is of low regularity or communication intensive. This 

situation is more likely to happen for configurable systems which are supposed 

to be able to solve various and perhaps irregular algorithms. Another problem 

that the CAL may suffer is synchronous timing control difficulties. The CAL 

architecture is designed as a synchronous system; worst case timing requirements 
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Figure 2-10: CAL: (a) Cell, (b) Cellular array 

are different from one configuration to another. As a result, system control clocks 

have to be determined after each configuration, or simply imposed with the worst 

case clocks. This timing problem will be even severe when more chips have to be 

connected to form a larger CAL system. 

2.11 Comparisons and Remarks 

We are by no means trying to list all parallel processing systems. Systems de-

scribed in previous sections are very representative for massively parallel pro-

cessing systems in several areas: PE structure and memory requirement, inter-

connection network structure and data routing mechanism, abstract system data 

structure, system timing control strategy, and application objectives. There is no 

systematic performance comparison of these systems because they are designed 

for different purposes with substantial difference in costs. Performance, cost and 

generality of systems are often the factors that have to be compromised one for an-

other by system designers and end users. We try to make good judgements from 

these existing systems and develop a new framework for configurable hardware 

algorithms. 
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All massively parallel computing systems can be classified as either pro-

grammable or configurable hardware algorithms. This is because the architecture 

of these systems explicitly or implicitly reflects the data structure and dependency 

of its target applications, there is no time sharing for users on these systems (run-

ning only one application algorithm at any time). The system operation schedule 

control is built into hardware. Data dependencies and functions of PEs can be dy-

namically changed in programmable systems such as DAP, MPP, CM, and DDVA. 

CLIP, AAP, RAP, RPAP, LCA and CAL are configurable systems which are con-

figured a priori for a particular application in the configuration phase. Data can 

only be processed by the configured system in the run phase. A reconfiguration 

has to be carried out for a different algorithm. 

There are two ways to run these systems. In stand-alone mode, they can be 

the centre for digital data processing. Inputs to such a system may be captured 

by cameras or sensors and A/D converted. Outputs may be directly used or 

D/A converted to control other devices, for example a robot to operate. They 

can also be used as attached systems to a host computer. The host computer 

acts as a front-end as the user interface and schedules system tasks by setting up 

the attached systems, down loading control instructions and data into them, and 

collecting results from them. CLIP, AAP, RAP, RPAP, LCA, and CAL can be 

used as either stand-alone or attached systems. But programmable DAP, MPP, 

CM, and DDVA are more suitable to run as attached systems. This is because 

these systems can be dynamically programmed at run-time and can be managed 

more efficiently by a host computer. 

The Connection Machine is the most general purpose and expensive massively 

parallel processing system among those we described. Its strength lies in the com-

bination of a packet switched router network and a circuit switched NEWS grid 

network to connect 16K simple PEs together, while other systems only use the 

circuit switching technique in their interconnection networks. This system demon-

strates the importance of communication network on performance and adaptability 
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of a large parallel system. It is a powerful system for problems with high dynamic 

run-time properties, such as analysing particle system state in particle physics, or 

solving astronomy problems. 

The CLIP is a rather special purpose system for fast image processing appli-

cations. However, it can be seen that the stacked bit-plane data structure in the 

CLIP is adopted by many other systems such as DAP, MPP, and AAP by using a 

local memory in each PE. The reason is that these systems share common target 

applications with very regular two-dimensional data arrays. The processing of 

one element in such a data array is often associated only with its 4 or 8 neigh-

bouring elements in the array. Images consisting of pixels and matrices are two 

typical examples that can be represented by data arrays. The stacked bit-plane 

structure is also a concise abstract representation for an array of bit-serial PEs 

common in these systems. There is at least a nearest neighbour interconnection 

with neighbour selection logic in each PE to match the nearest neighbour data 

dependency, for example in image processing applications. However, variations in 

network structure exist, for instance, the choice of 4, 6, or 8 neighbour connection 

in a CLIP array, the X and Y bus for fast data broadcasting to and retrieving 

from a DAP array, the duplicated communication paths between PEs and the 

data transfer unit in a PE to route data beyond nearest neighbours in an AAP to 

increase the AAP's adaptability to different applications. In general, three phases 

are required to operate these systems: loading data into local memories in each 

PE, data processing in vibrating mode where data may be moving forward and 

backward only one PE distance, retrieving results from the array. It is noticed that 

a large local PE memory is required to reduce the time overhead in the array data 

loading phase. This is why newer generations of these systems tend to be designed 

with an external RAM port in a PE in order to use high density off-the-shelf RAM 

chips. 

The CLIP is the best for image processing applications. DAP and MPP are the 

best for matrix manipulation tasks while the MPP demonstrates its best support 
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for floating-point operations with its variable length shift register in an MPP PE. 

The AAP has the best adaptability to a wide range of applications. 

The RPAP is designed as an attached system. It avoids the PE local memory 

loading overhead by sharing memory modules with its host computer so that 

both the RPAP and its host computer can address the same memory space. The 

new problem with this shared memory will be the routing overhead from shared 

memory modules to each PE in an RPAP array and the memory read/write control 

where writing to a memory address can only be performed after all the reading 

requirements to the same address are completed. The RPAP does not provide 

routing adaptability on its nearest neighbour interconnection network; it depends 

on its virtual PE and virtual array principle where a virtual PE capable of N-bit 

processing can be configured from N bit-serial physical PEs and a virtual array 

is formed by virtual PEs. The RPAP's application is still limited by its nearest 

neighbour interconnection network in its physical and virtual arrays. 

A completely different system architecture approach is adopted in [123] by 

using a binary-tree interconnection structure because many algorithms can be 

transformed and fitted into a binary tree. However, this algorithm transformation 

is by no means a trivial work. On the other hand, it is often difficult to preserve 

existing parallel properties of an algorithm after this transformation. 

The DDVA is one of the architectures that aims at implementing arbitrary 

hardware algorithms. The idea of applying the data-driven computation principle 

to massively parallel processing arrays in the DDVA is very important for array 

architectures and in particular for systems to embed arbitrary algorithms. This 

avoids the difficulties of system level synchronous timing control in other systems 

where the actual physical size of a synchronous array system is limited by the 

problem of distributing the system global clocks. For example the largest physical 

size of an RPAP array is limited at 256 x 256 = 65K. Algorithms represented 

by Data Flow Graphs (DFG) can be mapped into a DDVA array. However, the 

DDVA architecture is poorly devised by using expensive PEs for the routing. 
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The RAP represents another approach to implement arithmetic algorithms in 

hardware. An algorithm is firstly decomposed into such a level that all arithmetic 

operations are supported by the available basic arithmetic processing units in the 

RAP array. The RAP interconnection network is then configured to the corre-

sponding data dependency of the algorithm at this level. The RAP is designed 

with synchronous system timing control. This also imposes difficulties on the tim-

ing schedule every time the configuration is changed and always limits the system 

performance to the worst case critical path in a configured RAP. 

DDVA and RAP have some common properties. They do not need large local 

memory allocation to their PEs because data is processed on-the-fly instead of 

sitting in PEs. They can significantly reduce memory access traffic which only 

happens when they read input data and output final results. Although the bit-

serial processing principle is most commonly adopted, it can be seen that partially 

bit-serial and partially bit-parallel (a PE processing 2 bit in parallel) is a way 

of further increasing system performance. The RAP uses 4-bit partial parallel 

arithmetic units, a DDVA PE and the PE in [123] process 8-bit operands, and an 

RPAP virtual PE can process operands of any word length up to the total number 

of physical bit-serial PEs in an array. 

FPGAs are not particularly developed for parallel processing tasks. The major 

target of FPOAs is fast implementation of designs which otherwise have slow 

design turn-around time if they are to be implemented in gate arrays or as ASICs. 

Xilinx's LCA and Algotronix's CAL are two typical representatives for FPGA 

architectures. The LCA is designed with very rich routing resources and relatively 

complex functional cells. The CAL consistently uses an array of simple cells which 

can be configured to perform either a logic function or data routing. There are no 

other routing resources in a CAL array. One of the criteria for FPGA systems is 

the equivalent gate count to a conventional gate array by ignoring configuration 

logic and the percentage of the gate utilisation because some of the blocks may 

not be routable when an algorithm is embedded. In general, both systems are 
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similar in these two aspects for a given algorithm. However, it is much simpler to 

map an algorithm into a CAL. But a CAL can be slower than an LCA because 

there are fast routing resources, such as long lines and direct connections, in the 

LCA while a long distance routing in a CAL must go through a series of cells. 

The CAL is designed with synchronous system timing control. The worst case 

routing delay can restrict the system running at very slow speed. FPGAs are 

widely accepted nowadays, as is the technique to set the system configuration 

by using static memories. Theoretically speaking, any complex systems can be 

constructed. from FPGAs. In practice, a complex system requires many FPGAs 

where synchronous system timing difficulties will restrict the size of the system to 

be built. The CAL is a suitable candidate for bit-level parallel processing tasks. 

Fault-tolerance is a very important issue in massively parallel processing array 

systems. This is only considered in the MPP design which uses a very simple 

group redundancy scheme and parity error detection for memory faults. The 

CM-2 is also designed with error detection and diagnostic logic to improve the 

system reliability. In configurable systems, such as FPGAs or DDVA and RAP 

where irregular applications are to be embedded, a fault-tolerance technique called 

graceful degradation [29] can be used. Graceful degradation does not try to recover 

a system's size to its originally intended as redundancy techniques do; it simply 

discards faulty PEs and make use of the rest of good PEs in the system. The 

system is rendered unusable by the graceful degradation technique if there is no 

way to route around a faulty PE. This may happen when there are too many 

faulty PEs in one fault cluster or the routing logic around the PE is faulty. 
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2.12 Impacts on Configurable Hardware Algorithms 

We shall discuss impacts of these typical systems on the development and design 

of our configurable architecture for hardware algorithms. The problems in these 

existing systems that we try to solve in our approach are also illustrated. 

2.12.1 Circuit Switching vs. Packet Switching 

Apart from the CM, which uses the packet switching technique for its router 

network, all the rest employ various circuit switching networks. One of the ad-

vantages of packet switching is that logical data routings are localised and time 

dependent. Since every packet contains a complete message of the destination 

address and data to be routed, a packet can be easily relayed from source through 

physical paths segmented by packet switches, to the destination. A packet switch 

is capable of temporarily storing a packet, determining its immediate next relay 

stage, and transmitting the packet to it. Logically, each packet only occupies one 

segment of a physical communication path with two packet switches on its ends. 

The physical path can be released for the routing of another packet every time 

a previous packet is absorbed by a packet switch. Therefore, in a packet switch-

ing network, each packet has a logical routing path, and all of the packet logical 

routing paths are overlapped on one physical network either simultaneously or 

sequentially in time. Hence there is much less network congestion possibility in a 

packet switched network than in circuit switching networks limited by the avail-

ability of physical network routing resources. A packet switching physical network 

does not necessarily represent any application data dependencies. 

In circuit switching networks, instead of holding routing information which 

flows with data in packets, data routing controls are all fixed into the physical 

network. Every physical path is uniquely assigned for one source to destination 

communication. Thus enough physical communication paths must be provided to 

meet application requirements. Once set, a circuit switching network will surely 
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represent the data dependency of a particular application. It is a common prac-

tice to sacrifice some PE resources to gain more routing resources if there are 

congestions in a physical network. 

Packet switching networks are very flexible and have an excellent dynamic 

routing capability for the fairly wide range of applications with completely dif-

ferent data dependencies on top of a limited number of physical communication 

paths. Although the number of physical communication paths has been kept min-

imal, the complexity of the packet switches is much higher than circuit switches. 

Therefore, the packet switching technique is a favorite choice for general purpose 

supercomputing systems. On the other hand, the systems illustrated in previous 

sections are mostly special-purpose-oriented, it is important to design the archi-

tectures as simple as possible to keep the system costs under control. Therefore, 

circuit switching networks are overwhelmingly used in massively parallel systems. 

The circuit switching technique will be adopted in the design of our config-

urable architecture for embedding algorithms because of its simplicity. 

2.12.2 PE local memory 

As we analysed in the last section, a relatively large addressable local memory is 

required in a PE in array architectures for applications with regular data struc-

tures which involve minimum data movements when they are processed. However, 

DDVA, RAP, LCA, and CAL are targeting at different types of algorithms that 

are irregular, computation intensive and have substantial data movement but not 

data intensive when they are processed. Hence these systems put more emphasis 

on the network routing capabilities and the PE functionalities. Because the target 

applications are not data intensive, only some local registers are required in a PE 

to hold a small amount of the intermediate data generated during operations. 

We target our configurable architecture for irregular and computation intensive 

algorithms. Data will also be processed on-the-fly when they flow through the 
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system. Therefore, the PE in our design will only need a small number of registers 

instead of a large block of local memory. 

2.12.3 PE Degree 

A PE degree DPE is defined as the number of neighbours with which a PE is 

directly connected. The DPE in a blank architecture is called physical DPE; the 

DPE in a system embedded with an algorithm is called logical DPE. The logical 

DPE in a system may differ from its physical DPE.  The physical DPE of each 

PE in a system can also be different, for example, the physical DPE on edges 

and corners of an array is often different from that inside the array. DPE is an 

important factor in circuit switching networks because it represents the number 

of channels which are available for a PE to communicate with others. 

The most popular physical network topology is the nearest neighbour in-

terconnection. However, there are still many variations of PE degree, for in-

stance, one PE can be connected to 2, 3, 4, 6, 8 immediate neighbours (physi-

cal DPE = 2, 3,4, 6, 8), in two dimensional arrays. Horizontal rows and vertical 

columns of broadcasting buses, as used in DAP and DDVA, are often added for 

fast global data transfer or improvement of interconnection flexibility. Hierarchical 

interconnections can also offer a great deal of flexibility for an architecture. There 

are two forms of interconnect hierarchies: the first consists of a set of different 

interconnect networks such as local connections, short and long lines in the LCA, 

and Boolean n-cube and NEWS grid in the CM; the other consists of the duplica-

tion paths as used in the AAP. An effective DPE can be found in the case of both 

buses and hierarchical interconnects. Generally speaking, the higher the physi-

cal DPE is, the more expensive but also more flexible will an array architecture 

be. For systems targeting at image and matrix processing applications, physical 

DpE S 8 will usually be sufficient. For configurable systems, the choice of a phys- 
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ical DPE is a compromise among implementation cost, system configurability and 

the percentage of PE utilisation. 

Although the physical DPE of an architecture can be fixed, it is usually possible 

to get a logical DPE either smaller or larger than the physical DPE.  Examples 

can be found in most of the architectures in previous sections.. In figure 2-1(c), 

the CLIP's physical DPE = 8 while its logical DPE can be set as (2, 4, 6, 8). The 

physical DPE = 3 on the edges of the MPP can be logically set to DPE = 2 or 4 

as depicted in figure 2-3(b). The logical DPE of CM, AAP, DDVA, RAP, RPAP, 

LCA, and CAL can be very flexible in that non-uniform DPE in an array may 

even be possible by merging a group of PEs or cells together. This capability is 

required when an irregular algorithm is to be embedded in these systems. 

The routing structure used in the AAP has a very good adaptability at a 

reasonable cost and still keeps a very good system regularity. We shall use a 

similar approach to design a PE with a routing part and a function processing 

part. The idea of our approach is to connect an array of the routing parts to form 

a two dimensional configurable array network, and a processing part is attached to 

each routing part to form a processing array. The physical DPE will be determined 

by the design of the routing part which will be discussed in detail later in this 

thesis. 

2.12.4 PE Functionality 

A PE can be viewed as a much simplified version of a complex microprocessor. 

The simplification is often done in several ways: 

Elimination of the control path 

The control path in a normal microprocessor can consume more than half of its 

design complexity [2]. The major role of this control path is instruction fetching, 

decoding, sequencing, and the control of other system level signals, such as in-

terrupts and bus access. Since most massively parallel systems are based on the 
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SIMD principle, there is no necessity to give each individual PE such a strong 

autonomous-control capability. A single central control unit, which is normally 

external to an array, will be able to meet most of the array control requirements. 

Instructions broadcast from the central control unit to the array are usually at the 

lowest level which can be directly executed by the data path in PEs. A PE can 

have some degree of low level autonomy, such as disable/enable or local address 

modifications. This is often desirable to increase the adaptability of a system to 

slight variations in applications. For example, the disable/enable register in CLIP, 

DAP, MPP. However, an AAP PE is capable of more complicated local modifi-

cations to globally broadcast microinstructions, and a DDVA PE uses a complex 

microprogram control unit similar to a conventional control path, which converts 

instructions in a PE local memory into sequences of control signals. In config-

urable systems, such as RAP, LCA, CAL, instead of concurrent instruction flow 

and data flow, "instructions" are loaded into control memories in each PE a priori 

which statically set both network communication patterns and computations to 

be performed. There will be computation data flow only in the normal operation 

mode. A new configuration has to be loaded to run a new algorithm. 

Because it is not intended to implement dynamically programmable hardware 

algorithms at this stage, the simple "configure then run" two phase approach 

used by RAP, LCA and CAL will also be used as the operation principle for 

our configurable architecture. The network and PE functionality are set in the 

configuration phase. There will be no global instruction broadcasting in the run 

phase. 

Low level computation capability 

The most commonly supported logic functions in a PE are the full set of all 16 

Boolean functions with two input variables, or a full adder for arithmetic opera-

tions. A separate logic unit and a full adder can be found in the CLIP and MPP 

PE. Only a full adder is used in the DAP PE. AAP, CM, and DDVA use conven-

tional ALU designs. A CAL cell can only perform 16 Boolean functions, while an 
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LCA cell is designed for Boolean functions of up to 5 input variables. However, the 

RAP, exceptionally, has a pooi of arithmetic computation elements for additions, 

subtractions, multiplications, and divisions for calculating arithmetic formulas. 

Another special array system, described in [78], is designed without the ALU in a 

PE. Instead, a sophisticated table-look-up mechanism is used to implement all of 

the computation and routing functions. 

The configurable hardware algorithms to be developed are mostly arithmetic 

oriented, but also require to perform some simple logic functions such as AND, 

OR, XOR occasionally which is different from the RAP. At the same time, the 

system regularity is to be kept. Therefore, a configurable hardware operator will 

be designed. It can be configured to perform some basic arithmetic and logic 

functions. 

Bit-serial operations 

Most of the existing massively parallel processing systems are designed based on 

bit-serial word-parallel (BSWP) principles. This choice is again largely determined 

by technology limitations rather than application requirements, since most data 

being processed are multi-bit (except binary images). One advantage of bit-serial 

processings is flexibility in choosing an appropriate word length and precision at 

much lower hardware cost than the bit-parallel processing principle. For example, 

it usually takes 3 clock cycles to process 1-bit in a PE (retrieve operands, process 

them and store results). In a conventional single CPU sequential computer, data 

are processed in the bit-parallel word-serial (BPWS) principle. It usually takes 5 

clock cycles (instruction fetch, decode, access operands, operation code execution, 

store results) to complete one arithmetic instruction. Assuming that these five 

operations can be carried out in a pipeline, the processing time depends on a fixed 

pipeline latency and the number of data and instructions fed into the pipeline. 

For example, 1K cycles (pipeline latency is not considered) are required to process 

a set of 1K 32bit data in a BPWS computer. It takes only 3 x 32 = 96 cycles to 

complete on an 32 x 32 BSWP PE array (plus some extra cycles for data access). 
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The performance of a bit-serial PE array mainly depends on the width of the data 

word (16bit, 32bit or 64bit) and the number of data set. Although fast carry 

techniques are used in BPWS processings, clocks can run at a faster speed in the 

simple bit-serial PEs than in a complicated 32bit CPU. The bottle-neck between 

the CPU and other parts in a sequential system can also set a restriction on the 

overall system speed. For example, a Digital Alpha processor [23] may run at a 

175MHz clock, but systems built with one Alpha CPU can not achieve substantial 

system performance improvements because of other slower devices around the 

CPU. This simple comparison also shows that the speed up factor by the BSWP 

processing principle also depends on the amount of data that can be processed 

concurrently. 

With advances in technologies, it becomes practical to implement partial bit-

parallel and word-parallel (BPWP) PE arrays, such as the 4-bit serial arithmetic 

elements in the RAP and the 8-bit serial PEs in the DDVA. The BPWP processing 

principle can still keep the advantages of the BSWP processing principle, but 

improve the performance by a few factors. It now takes only 3 x 8 = 32 cycles to 

process the same set of 1K 32bit data on a 4-bit partial BPWP PE array. 

A bit-serial programmable PE for a configurable BSWP processing array will 

be designed for this project to demonstrate the viability of our ideas. A 4-bit 

partial BPWP PE having the same functions as this bit-serial version is intended 

to be developed for a partial BPWP array in the future. 

2.12.5 System Timing Control Strategies 

Since most of the massively parallel processing systems are designed with system 

level synchronous timing control, this inevitably sets an upper limit on the physical 

sizes of these systems that can be built without timing problems. Even within such 

a limit, it can be a difficult task to configure a system with global time constraints. 

The performance of a configured system has to be set by the worst case delay in 

the system. Asynchronous timing control without clocks at the system level offers 
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a prospective way to build a true scalable architecture. As will be illustrated later 

in this thesis, once a proper communication protocol and interface are designed, 

it becomes an easy task to scale a system up or down. The performance of an 

asynchronous system will be data dependent and can be measured on average. 

However, we also appreciate the advantages brought by the synchronous control 

method. Therefore, a timing control structure with a Globally Asynchronous 

communication network and Locally Synchronous computation modules (GALS) 

is proposed and implemented in this thesis. 

Our approach is different from the DDVA architecture, which is based on the 

data-driven operation principle, in that we try to construct a simple and general 

GALS interface between a PE and a proper interconnection network. This GALS 

interface can be used to construct a GALS scalable system by connecting many 

existing synchronous logic modules together. But we also use data flow graphs 

(DFG) as an intermediate representation for algorithms because a DFG clearly 

describes a data flow procedure when data are processed on-the-fly in our hardware 

algorithms. 

2.13 Summary 

A wide diversity of typical massively parallel computing systems have been exam-

ined in this chapter. Most of the systems discussed have already had VLSI and 

system implementations. All these analysed systems demonstrate considerable in-

terests in hardware algorithms. The emphasis of our analysis and comparison was 

on the interconnection networks, the PE functionalities, and the timing control of 

these systems. Efforts were made to find the common properties of configurable 

hardware algorithms. Problems in the design and application of these systems 

were also identified. In the rest of this thesis, a configurable architecture based 

on a parallel computation threads model and a GALS system timing control ap-

proach for algorithm embeddings will be proposed, and a VLSI implementation of 

such an architecture will be presented. 



Chapter 3 

Algorithmically Configurable 

Architectures 

We have noted that many massively parallel processing systems are developed 

by the application demands. Therefore people tend to design an architecture 

more or less based on the empirical knowledge from the target applications. The 

result of this approach is often a special-purpose system which suits the object 

applications well. In our approach, we shall first look at the abstract theoretical 

computation and architecture aspects at the top system level, then we start to 

design our configurable array architecture for algorithm embeddings. This top-

down approach will establish a clear guideline that we shall follow in the design 

of our target system and identify the problems and objective. As a result of this 

approach, a computation model, an architecture template, and a system level 

control strategy are established in this chapter. 

3.1 Towards Algorithmically Structured Systems 

As it has already been analysed, the performance of computers with the von 

Neumann model which ignores any algorithmic properties for simplicity and low 

system costs is fundamentally limited by the single CPU computation and the 

CPU—memory communication bottle-neck. All algorithms have to be designed in 

48 



Chapter 3. Algorithmically Configurable Architectures 	 49 

a sequential way to allow only one operation at each step to go through the single 

CPU bottle-neck in these von Neumann computers. 

It becomes clear in these massively parallel processing systems, described in 

chapter 2, that the development of algorithmically structured architectures is an 

effective solution to the inherent bottle-neck in the von Neumann computer model. 

Algorithmically structured architectures achieve high performance in three major 

ways: 

Processing an algorithm with an array of PEs in parallel instead of a single 

fast CPU; 

Setting up an interconnection network to connect these PEs to match the 

data and computation dependency of the algorithm so that any parallel prop-

erties of the algorithm are explicitly exposed. In contrast to the sequential 

algorithms for von Neumann computers, it is often required to flatten the 

algorithm to expose its parallel properties maximally; 

Min.imising the communication traffic between the main system memory and 

the algorithmically structured computation array. 

The process of flattening an algorithm and setting up an array system to run the 

algorithm with the same data and computation dependency is called algorithm 

mapping or embedding. The system is said to be algorithmically structured by 

this algorithm mapping process. 

It is worth noting that these systems are mostly used as attached single-tasking 

systems to a host computer of von Neumann type. This is because the physical ar-

chitecture of these systems can only be algorithmically structured to one particular 

logical architecture at a time that will uniquely match the data and computation 

dependency of one algorithm. Computers based on the von Neumann model are 

still very efficient in the multi-tasking and time-sharing applications, particularly 

for the user interface. 
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Hence, principles of algorithm designs for algorithmically structured architec-

tures differ very much from those for sequential machines. From the algorithm 

point of view, an algorithm for the solution of a problem should be designed in 

such a way that the inherent parallel properties of the problem will be exposed as 

much as possible so that these properties can be effectively made use of when the 

algorithm is mapped to its hardware counterpart. It is still possible that differ-

ent algorithms may be found to solve the same problem, and different hardware 

systems can be implemented for one algorithm. From the architecture point of 

view, there are two ways to design algorithmically structured hardware. One is 

special hardware implementation by which an algorithm is first carefully designed 

and verified, then faithfully and exactly implemented through circuit design. It is 

important that algorithms designed for the special implementation are flattened 

enough so that hardware system designs are straightforward and can be easily 

tested. The other is to embed algorithms into an existing system. The architec-

ture of the system is designed with some degree of adaptability to variations in 

applications so that the system can be algorithmically structured to run a partic-

ular algorithm. 

In between algorithmically speciaiised architectures, which are tailored for one 

or a family of closely related algorithms, and general purpose systems, there are 

restructurable, reconfigurable, and programmable architectures. The system con-

figuration (both functionalities and interconnections) of restructurable architec-

tures can be set a priori by using special laser/fuse techniques [112,39,25] or 

PROM/EPROM writing mechanisms [105,56,36]. The usage of restructurable 

architectures is limited in that they are not reusable because of the nonrecov -

erable configurability, and thus they are not suitable for large scale algorithmi-

cally structurable architectures. Restructurable methods are often used in the 

RAM/ROM design to improve yield and in PROMs for permanent down-loading 

of code. Configurable architectures can be physically and repeatedly configured 

to various topologies. Logical configurations are implemented by changing actual 
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physical paths for data propagation through a series of circuit switches set open 

or closed either externally or internally, by changing the content of the static 

switch controls. There is intensive research carried out on this class of architec-

tures. However, many architectures are proposed from the fault-tolerance point 

of view, and some specifically for systolic and wavefront arrays [85,29,79,108,61, 

102,119,113,141,77,62,124,12]. It would be nice if the results achieved in fault-

tolerant research could also be applied and further developed in algorithmically 

structurable architectures, so that flexibility, reliability and survivability could be 

integrated into one system. The flexibility of programmable architectures is often 

realised by methods similar to those used in programming, such as addressing, 

bussing, register/memory transfer [7], and packet-switching [49], instead of con-

figuration via circuit switching. There are no physical changes in wires, paths, and 

switches. Thus, programmable architectures are logically configurable. Because 

of the complicated control required, the complexity of programmable architec-

tures is higher than configurable architectures. A configurable architecture is an 

ideal compromise for application adaptability and moderate cost although there 

will be some performance penalties because of the delays caused by configuration 

switches. This delay penalty can be overcome by parallel processing performance 

advantages from hardware algorithms. The configurable approach also fits the 

objective of this project: the development of a high performance algorithmically 

structurable system which can be used as a testbed for high level algorithms or 

an attached system to perform computation intensive tasks for a host computer. 

3.2 Hardware Algorithms 

Generally speaking, a hardware algorithm is a hardware system where there is 

a direct dependency correspondence to the data, control and computation de-

pendency of an algorithm described in another way, for example in a Data Flow 

Graph. A hardware algorithm system is represented as a pool of connected hard- 
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ware operators H,. Each connection forms a communication path and represents 

a dependent relationship between two connected H,s, one of which serves as a 

data source and the other as the destination for data output from the source H,. 

There may also exist open connections to an H.P . An open connection has one end 

connected to an H, and the other end open, which can be connected to other ex-

ternal systems. Hardware operators are the hardware counterparts of a set of arith-

metic and logic operators, such as +, -, x, -, NOT AND OR XOR, comparator 

or even more complex functions such as yr-,  logarithm, and exponent. Any com-

plex computations can be decomposed into a set of orderly connected lower level 

H,s given that a group of sufficient low level H,s is available. An He,,, can also 

be regarded as a function stored in circuits called function caches. 

A hardware algorithm can be mathematically defined as a mapping function 

- HA = {F : {O, 1} - {O, 1}m},  where F may consist of a set of subfunctions 

fi = {f : {O, l}" - {O, 1}, i = 0, 1,2,• . . , m}. The domain {0, l} may be logical 

o and 1, true and false, or binary numbers. Each mapping subfunction f, no 

matter how simple or complex it may be, is completely implemented in hardware 

as a hardware operator, i.e. H, = {f, i = 0, 1 1 2,. . . , m}. 
O 

Since a complex function can always be decomposed into a set of ordered sim-

pie functions, it will be very useful to construct a finite set of primitive functions, 

which are chosen from a set of most frequently used essential functions. An es-

sential function is a function from which outputs can be obtained through only a 

single logical transformation step from the values of the input variables, without 

caring about the internal detailed physical steps. Accordingly, a finite set of hard-

ware operators P = {PI : {0,1}" - {0,1}, i = 0,1,2,. •,p} called primitive 

hardware operators (H,,,), corresponding one for one with the selected primitive 

functions, can also be defined. A primitive hardware algorithm system can be 

built with this set of H,,,,. An H of higher complexity required by an algo-

rithm can be constructed from this finite set of primitive HP
.P

s. Thus, a primitive 

hardware algorithm system can be represented by a primitive system construction 
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graph (SCG) in which nodes represent primitive hardware operators HPOP  and 

edges correspond to the connections among Hs. 

The cost, system complexity, and the requirement for regular architectures 

suggest that it is not viable to build a system with arbitrary H,,s for algorithm 

embeddings. A compromise approach is to select such a set of primitive HPOP s 

with reasonable and similar complexity to keep the system cost, complexity and 

regularity under control. Any high level SCG can be initially drawn based on 

the normal H,s and then refined to a primitive SCG in which only HPOPs  in the 

primitive H set P are used. In this way, algorithms of any complexity can still 

be mapped into a primitive hardware algorithm system provided that there are 

enough HPOP  resources. 

3.3 Computation 'Architectures 

Architectures for configurable hardware algorithms can be constructed with a set 

of hardware operators H, = {H,, : domainl1 - domain2, i = 1, 2, 3,.- . , n} 
O 

which are connected by an interconnection network. Either the connection among 

H,s or the functionality of H,s or both can be designed configurable in order to 

embed the data, control and computation dependency of a particular algorithm. 

3.3.1 Dimensionality and Connectivity 

The network in which hardware operators in a system are connected can be anal-

ysed from two aspects: dimensionality and connectivity, (V, C). Dimensionality 

V is a base vector upon which all of the elements in the system can be log-

ically addressed: V = (00 , x, x 21 - - , Xd). Connectivity C is a transformation 

that gives the addresses of some elements with which an element addressed by 

Y = (Yo,Y1)Y2, ,y) is directly connected: C = {C(Y) I Y --- NI, N = 
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(

0 	1 	2 	d nd , n, n, • , ne,), I = 1,2,. • , k, j 	0, 1,2 1 • , mj. Thus, the total number 

of neighbours of the element Y is 	m1 . The connectivity of elements on bound- 

aries may be different from that inside a system. C may also be different due to 

different orientation of V and network routing/layout-plan. A transformation can 

be found if merely V is rotated. If elements in an array are not connected on a 

regular basis, the C of each element may vary one from another. 

This concept can even be extended to a conventional single processor sys-

tem which can be viewed as a point in the space domain and as a linear array 

in the time domain. The processor is shared by multiple tasks in the time do-

main that is divided into small segments of non-overlapped periods. A traditional 

processor will process only one task in one time segment. Pipelines are used ex-

tensively in modern processors where multiple operations can be carried out in a 

pipeline: This can still be modelled by a two dimensional array in the time do-

main. A linear array of connected n elements is one dimensional system, IDI = 1. 

Each element inside the linear array is connected only with its immediate pre-

vious and next element while there are two boundary elements each of which is 

connected with only one element in the array i.e. V 1  = x, C2  = { C1 (x) I C1  = 

x + 1, i = 1, 2 z = 2 1  3,... , ( ii — 1)}. Boundary conditions sometimes are differ-

ent. In the above example, boundary conditions are C = x + 1, if x = 1, and 

C = X — 1, if x = n. There will be many different possible topologies if a set of 

hardware operators are to be arranged in a two dimensional space, V 2  

For example, C4  {C(x,y) I (x,y) 
Cy) 

 [(x + l,y), (x,y + 1)], i = 1, 2, 3, 4} 
C1 (z,y) 

is a mesh. C8  = { C1 (x,y) I (x,y) —* (z ± l,y ± 1), z 	1,2,3, .,8} rep- 

resents an array of 8 nearest neighbour connections extended from C4 . C6  = 

(zy) 
{C 1 (x )  y) I C, (x,y) 

C 
—* [(x — l,y — 1), (x + 1,y + 1)], i = 1,2} is a hexago- 

nal array. A four level complete binary tree can be simply laid out as a H-tree: 
C'(a,y) 	 C(x,y) 	 .C(z,y) 

Cif_ tree  = {C1 (z,y) I (x,y) —p (z,y±2), (x,y) — (x+2,y), (x,y) -* 

(x, y ± 1), (x, y) I  I (x ± 1 )  y), i = 1, 2}. A cube in the three dimensional 

space V 3  = (, y,z) can be expressed as C3  = { C(x,y,z) I (z,y,z) -p [(z,y± 
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1, z), (x + 1 )  y, z), (x, y, z ± 1)], i = 1,2,• , 6}. Most of the systems built so far 

are in the IDI = 2 space. There are also attempts to construct real IDI = 3 systems 

by developing novel three dimensional semiconductor processing techniques [45]. 

For systems in higher logical dimension spaces (IVI > 3), a common approach is to 

map the space with IDI > 2 into a planar space IVI = 2 which is often inefficient 

in hardware utilisation because of the higher IC I. 

In configurable systems, the placements of H,s are fixed with an initial in-

terconnection network. The initial physical dimensionality and connectivity of a 

system will certainly affect the adaptability and efficiency of algorithm embed-

dings. The logical dimensionality and connectivity of a configured system for an 

algorithm are by no means the same as the initial physical ones. An architecture 

with unconfigured initial physical dimensionality and connectivity is called a blank 

architecture. 

There is still a long way to go before three dimensional processing technologies 

can be practically used. Linear arrays are not suitable for embedding higher IDI 
structures. Therefore a IDI = 2 configurable array will be designed. The only way 

to increase the adaptability of a two dimensional array is to increase IC l for each 

element in the array. If there is a total of N elements in an array, ICI (N - 1). 

A completely connected system, where ICI = N - 1, is too expensive to implement 

for a large N. We shall choose a proper C in conjunction with the establishment 

of a computation model. 

3.3.2 Configuration Methods 

From the configuration viewpoint, two kinds of configurable hardware algorithm 

system are identified. 

• Statically configurable systems: in which the physical configuration of a 

system, e.g. the embedding of an algorithm, can only be done in a sepa- 
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rate configuration phase before the execution of the algorithm, or after the 

completion of the execution of an algorithm. Configuration data are loaded 

a priori and cannot be changed either partially or completely during the 

execution of an algorithm. Statically configurable systems are simple and 

not prone to hazards caused by configuration actions. Most of the existing 

flexible systems for hardware algorithms are of this type. 

• Dynamically configurable systems: in which partial or complete configura-

tion of a system can be done dynamically during the execution of an algo-

rithm. A dynamic configuration approach can be adopted in both logical 

(programmable) and physical configurable architectures. Dynamically con-

figurable architectures are very suitable for running multiphase algorithms 

whose data and computation dependencies may be different from one phase 

to another. However, it is expensive and difficult to design dynamically con-

figurable systems. Extensive fault-tolerance techniques must be used in such 

systems because they are prone to malfunctions. Architectures proposed in 

[90,81,125,49] are designed for dynamic configurability. 

To run an algorithm in a statically configurable system, three distinct phases 

are required. The mapping phase is a procedure that takes an algorithm speci-

fication either in a high level programming language form or an algebraic form, 

and converts, under a set of constraints, the data and computation dependency 

of the algorithm into a configuration data stream which sets the logical network 

topology and functions of H,s in the target architecture. The configuration phase 

is an algorithm embedding process which loads the generated configuration data 

stream into the system and sets a blank system to a specific logical architecture to 

run the algorithm. The actual execution of the algorithm will be carried out in an 

execution phase which is initiated when the computation is needed and all of the 

inputs to the computation are ready. The only interaction between a configured 



Chapter 3. Algorithmically Configurable Architectures 	 57 

system and its host computer or other external devices is data inputs and results 

output. 

The execution of algorithms in dynamically configurable architectures is much 

more algorithm-dependent. After the initial configuration of an architecture and 

the start of the execution of an algorithm, the logical architecture of the system at 

any time point may be determined by the results generated before this time point, 

or by globally broadcast instructions, or there may be a special configuration cycle 

between two consecutive phases during a multiphase execution. 

The statically configurable method is chosen for our configurable hardware 

algorithms because the emphasis of this research is on the architecture issue instead 

of dynamic system scheduling, and we are targeting those applications which are 

mostly single phased. 

3.4 Computation models for Hardware Algorithms 

Designs of hardware algorithms can vary over a very wide range of applications. A 

general algorithmic approach is preferred over the empirical architecture approach 

for the design of our configurable hardware algorithms. In this algorithmic ap-

proach, a basic computation model is defined as a bridge between an architecture 

and applications. This computation model is an abstract representation of the ar-

chitecture. It also sets an abstract algorithmic structure that a specified algorithm 

is transformed before it is embedded. This approach is most likely to get the best 

from both the architecture and algorithms. There are some computation models 

established for the design of hardware algorithms. Some of these models can be 

used generally in many different applications. Some of them, however, can only 

be used under certain special conditions. Systolisation of algorithms is a typical 

example of such an approach. 
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3.4.1 Combinational Hardware Algorithms 

This is the simplest type of hardware algorithm which can be implemented simply 

in pure combinational logic. In this kind of system, there will be no timing and 

clocking controls over signal and data flows. Output data will emerge and become 

steady after a finite period of delay (latency) once input data are validated. An 

n-bit combinational adder is such an example. H,s implemented in combinational 

logic are called combinational Hs. 

3.4.2 Systolic Algorithms 

Systolic algorithms are also frequently called systolic arrays, referring to the mix-

ture of a computation model and an architecture model. Since this model was 

proposed by Kung in late 70's [68,69], there have been enormous efforts made 

to systolise many application algorithms, and various systolic systems have been 

designed and implemented for these algorithms. The systolic model, as depicted 

in figure 3-1, was named after the blood circulation system in a human body. The 

memory corresponds to the heart, PEs are similar to organs, and communication 

channels like blood vessels. Data are circulated from the central memory to PEs, 

processed by consecutive PEs either in linear or two-dimensional forms, and only 

final results are returned to the central memory. All of the data movement is 

pulsed by a central global clock in a lock-step manner analogous to the blood flow 

pumped by heart-beats. 

The function of a PE can be expressed as Y = FPE(, X) where 4 is the 

synchronisation clock vector, X = (x0 , zi, x21. 
) 
x) is a set of inputs to the PE, 

and Y = (yo) Yi, Y21 , Ym) is a set of outputs from the PE. The central memory 

accesses can be expressed as D = MR(, A) and Mw(A) = D() respectively, 

where A = (a 0 , a 1 , a2 ,• . , a1 ) is the memory address and R indicates a memory 

read and W a memory write operation, D is the data to be read from or written 
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Figure 3-1: A linear systolic computation model 

into the memory at address A. Then, systolic computations performed in a linear 

array of (n + 1) PE's can be represented as follows: 

Y = F(,•• 	 (3.1) 

Mw(A 2 ) = Y() 	 (3.2) 

Note that function 3.1 is not a recursive form since each PE may perform 

different operations or perform the same operations on different sets of input data 

simultaneously. The essential principle behind this computation model is that 

once a datum is retrieved from the memory, it and its relevant intermediate results 

will be used and reused as much as possible, while they are flowing through the 

systolic array, by all of the operations which need them as operands, without any 

further access to the memory until final results are obtained. The systolic model 

enables a system to achieve a sustainable high computation bandwidthwhile only 

moderate I/O bandwidth is required. Instead of exclusive memory read and write 

in the conventional single memory single CPU model, it is necessary to be able 

simultaneously to read from and write to the memory module (at different address) 

in the systolic model. The systolic model is particularly suitable for computation 

intensive algorithms with regular data structures. It has been demonstrated to be 

more efficient to process matrices in this on-the-fly mode than processing matrices 

sitting in PE local memories as in DAP and MPP. 
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The systolic model is different from simple pipeline processing techniques in 

that it can be used in a multi-dimensional system with multiple data-flow direc-

tions. Central memory access is strictly not allowed for any intermediate data. 

3.4.3 Computational Wavefronts 

Because the systolic model is synchronously timed, it is very important to keep 

the correct data flow pace at each PE so that the right data can encounter each 

other at the right time and in the right PE with the right control. Great care must 

be taken in the design and implementation of practical systolic systems to ensure 

this strict lock-step time requirement is satisfied. Clock skews are one of the major 

factors that may cause malfunctions [31]. It is a common practice to distribute 

clocks with great care and slow down clocks at the expense of reduced performance 

[74]. Even worse, these measures sometimes cannot solve the problem caused by 

timing mismatch [46,135]. To overcome these synchronous design difficulties, a 

computational wavefront model has been proposed [73,75,72,76]. 

The wavefront model is based on wave propagation phenomena. A wavefront 

propagation example is waves in water where vibrations from a source will gener-

ate a wavefront immediately around the source; this wavefront will again activate 

another wavéfront next to it and so on. Even if the source stops vibrating, wave-

fronts should continue to propagate further away from the source provided that 

there is no energy dissipation. Therefore, wavefront propagation is naturally an 

asynchronous model. Figure 3-2 depicts diagonal computational wavefronts in a 

two dimensional computing array where the central control, acting as the source 

of vibration, is located at the upper-left corner of the array. The central con-

trol initialises wavefronts and issues instructions to the array. One computational 

wavefront w can be generated along a diagonal of {PE1, : i + j = w, i,j = 

0 7  1, 2, . .. , N, w = 0 1  1, 2,• . , (2N - 1)} if and only if there are no computations 

existing in the w + 1 wavefront and computations in the w - 1 wavefront are 
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Figure 3-2: Computational wavefronts and their propagation 

all completed. Thus the propagation of computational wavefronts is completely 

locaiised by asynchronous wavefront generation. 

Note that this simple wavefront model strictly confines only one "source" and 

one set of regular dependent wavefronts to exist, so that interferences among 

different set of wavefronts can be avoided. This is also the fact which restricts the 

application of this model to only a very limited range of problems which can be 

solved by the propagation of regular computation wavefronts upon regular data 

structures. 

Because the wavefront computation model does not use global clocks to control 

the data movement, data flow will be determined by states in PEs and wavefronts. 

A PE state SpE is determined by its input state s, output state s 0  and computation 

state s. The input and output state in a PE depend on whether there are valid 

data presenting at its inputs and outputs respectively. A PE's computation state 

reflects whether the main functional block in the PE is busy or idle. So, SPE has 

eight possible states as shown in table 3-1. It must be ensured that all PEs on 

the same wavefront w have the same state to propagate a regular wavefront. This 

can be expensive to implement. Hence the state of a wavefront w can be defined 

as S, = 5PE 
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Si Sc  S, 5PE 

100 I 

010 C 

001 0 

1 1 0 I+C 

1 0 1 1 + 0 

0 1 1 C + 0 

1 •1 1 I+C+O 

0 0 0 idle 

Table 3-1: PE states, I = INPUT, C = COMPUTE, 0 = OUTPUT 

The function of each PE on a wavefront w can generally be defined as Y = 

FPE(W, X, M(A)), where X = (x 0 , x 1 , x 2 ,• , x,.), and Y = (i/o, i/i, 1/2," ) ym), 

M(A) is the memory access operation at address A = (a o , a1 , a 2 ,•• , ak), W is 

determined by the state of (w - 1), w, (w + 1) wavefronts respectively, W = 

S(s_ 1)  Sw, 

One diagonal computational wavefront can be described as a set of functions 

conditioned by the computation status of itself, and its previous and next wave-

front: 

Fw  = {FPEJ  : (0,1)'' w —) (01)mi 

i + j = w, i, j = 0, 1,2,•• . , N, w = 0, 1,2, 	, (2N - 1)} 	(3.3) 

3.4.4 Non Control-Driven Computations 

Just like the global clock that keeps the pace of data flow in a synchronous system, 

a central control unit in a control-driven system controls the flow of every compu- 

tation step i.e. a computation will not be started until a control signal from the 
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central control unit is issued for it. The program counter in conventional sequential 

computers is a typical control-driven example, where counter registers are used to 

keep the current execution point and relevant information to determine what the 

next step is. Control-driven computations are very common in computing systems 

because it is simple to design a control schedule at system level. 

When the control-driven method is applied in parallel processing architectures, 

it still works well for problems with regular data structure. However, if data struc-

tures with a certain degree of irregularity are met, a control-driven parallel process-

ing system will have low execution efficiency and low, hardware efficiency because 

of the idle waiting states required to match irregularities in data dependencies 

with time. To overcome these difficulties, other computation driven methods have 

been proposed, e.g. data-driven, demand-driven, and message-driven [5,1,136,66, 

20]. All of these approaches can be described by a general firing rule: an action 

(firing) will be activated if and only if a set of conditions is satisfied. In the control-

driven method, the conditions are all held and checked in a control unit and firing 

signals (maybe accompanied by instructions) are issued to execution units. In a 

data-driven computing system, provided that there is a set of connected function 

modules, each module has a set of instructions to be executed, and the order in 

which instructions are executed is data-dependent, i.e. the firing (execution) of 

an instruction in a module is uniquely determined by the condition that all of 

the operands required by the instruction are available and the destination for the 

results of that instruction is ready to accept the results generated after the firing. 

Thus condition checking and action firing are localised to each module. Concurrent 

action firing in several modules can be expected. Pipelining techniques can still 

be applied in data-driven systems. With the control-driven method, it is user's 

responsibility to uncover inherent parallel properties of an algorithm which is of-

ten not a trivial task. The data-driven computation matches, and can make good 

use of, the parallel properties of algorithms. The demand-driven computation is 

similar to the data-driven principle but the condition for an instruction firing in a 
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module is a request for output data from the next module. The advantage of the 

demand-driven computation is that, except for the required actions to be done, 

no other unnecessary actions are activated at all. Demands are first traced from 

requests for some results back to the right inputs, after which real computations 

start to flow along the activated paths until the requested results are obtained. 

3.4.5 Multiple Threads Computations 

Besides applications with regular data structures and regular communication struc-

tures, there is still a large class of computation-intensive applications which do not 

possess such regularity in their data dependencies, communication structures and 

computation distribution. There are no transformations to convert them to be 

processed on architectures designed for regular algorithms, neither is it possible to 

fit them into computation models such as systolic or wavefront model. However, 

these computation-intensive tasks still have high degrees of inherent parallelism 

which can be exploited to reduce processing time. 

A proper computation model, which can make the best use of parallel proper-

ties of irregular algorithms and result in an efficient embedding of an algorithm 

into such a primitive configurable system in the light of irregularities, is required. 

A close examination of the characteristics of irregular algorithms is carried out in 

the following. As a result, a multiple threads computation model is established 

for irregular algorithm embeddings. 

There are three different types of irregularity in an algorithm: 

Irregular data distributions. Data are distributed irregularly either in the 

space or time domain. Therefore they cannot be vectorised to generate 

regular data flow patterns; 

Non-uniform computation distribution. Computations which can be carried 

out concurrently at any step of an algorithm may be substantially differ- 
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ent from each other and distributed randomly in a parallel system. Thus, 

regularly shaped computational wavefronts cannot be found at one step or 

throughout the entire computation process; 

3. Non-regular communication patterns. Occasional feedback, conditional ex-

ecution, and non-neighbour operand requests result in irregular communi-

cation patterns that create the toughest task for efficiently parallelising an 

algorithm with the control-driven method. 

In order to exploit maximally inherent implicit parallel properties in such ap-

plications, algorithms may be designed or flattened on the basis of the fine-grained 

parallel processing principle which processes complex tasks with a group of simple 

basic arithmetic and logic functions. This fine-grained parallel processing principle 

matches exactly the primitive configurable hardware algorithm system construct 

illustrated in section 3.2. 

Data Flow Graphs 

A data flow graph (DFG) is a very flexible, clear and yet abstract representation 

for the visualisation and analysis of various dependencies in an algorithm. Its 

flexibility lies in that it is very easy to divide a DFG into a set of disconnected 

subgraphs or merge several DFGs into one large DFG, and the level of abstraction 

of a DFG can also be easily scaled by simply merging subsets of nodes to supern-

odes of coarser granularity or by expanding a node to a subgraph composed of 

nodes with finer granularity. On the other hand, it is not a difficult task to con-

vert an algorithm specified in a high level language or algebraic form to a DFG, 

and then optimise or transform the algorithm based on its DFG. Thereafter, it is 

relatively simple to map the DFG to a hardware system. Therefore, the data flow 

graph is chosen as an intermediate representation for the analysis, optimisation 

and embedding of irregular algorithms into configurable architectures. 
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Figure 3-3: The data flow graph of equation 3.5 

A DFG is a tuple C = (V, E) where V is a set of vertices (often called nodes) 

in a graph G, and E is a set of edges connecting a subset of nodes v e V. A 

DFG is also a directed graph so that every e e E has an associated direction. 

k node in a DFG denotes actions to be done to data on its input edges, and 

directed edges represent paths through which data can flow and in which data are 

held. Figure 3-3 is a DFG example which shows an algorithm for the solution of 

a quadratic equation: 

ax 2 +bx+c=0 
	

(3.4) 

—b+s./b2 -4ac 

2a 	
z=1,2 	 (3.5) 

Provided that there is a finite complete set of primitive nodes V 1, from which 

any nodes of higher complexity can be constructed, then a DFG G = (V, E) 

can be flattened to an equivalent primitive graph C1  = (V1 , E1 ), V1  9 V, by 

expanding every node (v e V) A (v 0 V1,) to a subgraph C, = (V,, Es ), V, ç VP  
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so that the function of the subgraph G. is equivalent to the function of node 

v, F = FG,. A DFG can also be compacted to a more abstracted equivalent 

form by merging subsets of nodes V C V and edges E1  C E which comprise 

subgraph C1  = ( l', E1 ) into a supergraph G. = (V, E3 ) so that F"i = FG, 

v:Ev, E3 cE, E3 UE=E,i=1,2,3, ... ,IIVII=IIVII. 

Computation Threads 

From the simple example illustrated by equation 3.5 and the corresponding DFG 

shown in figure 3-3, some interesting characteristics can be noted. 

• Nonuniform node granularities. A finite set of nodes with different granu-

larities in circuit complexity and time complexity can be found in the DFG 

in figure 3-3 since they are directly converted from equation 3.5. Even if an 

original DFG is flattened to a primitive DFG upon V,, granularities of nodes 

vp  e V, may still be different in circuit and time complexity. 

Irrelevant computation wavefronts. At any time during the computation, it 

is often the case that a twisted computation front is found. A wavefront 

may cross another wavefront. Mixed sequential and parallel dependencies 

are found, for instance, the calculation of 2 
, — b, b , 4ac can be performed 

concurrently, but the square root of b2  - 4ac has to be computed after the 

evaluation of b2  and 4ac. 

• High ratio between the amount of intermediate and I/O data. Only three 

inputs, coefficients (a, b, c), and the output of two roots, each consisting of a 

real and an imaginary part, are required for I/O. The amount of intermediate 

data depends on the number of internal nodes and the level of abstraction 

in a DFG. There are 23 intermediate data in figure 3-3. The large amount 

of intermediate data will impose a high I/O bandwidth requirement and will 
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be inefficient if they are stored and retrieved to and from a global memory 

every time they are generated and needed. 

• Optimisations. It is possible to optimise and decompose some of the nodes 

in figure 3-3. For example, and node can be simplified to a shifter. 

A multiplier node can be decomposed into a subgraph which implements 

multiplications by additions. 

It is apparent that there are always some sequential data dependencies in an 

irregular algorithm. It is possible to extract a sequential data dependency into an 

abstract form called thread. If there is only one thread that can be extracted from 

an algorithm, it is a pure sequential algorithm. The only technique to improve the 

throughput of a system running this algorithm is to process these sequential steps 

in a pipeline. However, if multiple threads can be extracted from an algorithm, it 

is highly likely to run the steps in different threads concurrently. 

A computation thread is defined as a single sequence of connected nodes T = 

{ (VT ,ET ) j (VT  c V) A (ET  ç E) : v i = 1,2,.",(mT  - 1), vi E 

VT, ej  E ET, n T = VT II = (I ET  II + 1) ~ 1}. Outputs from a thread may 

not necessarily come from the last node and if inputs to a thread are not 

to the first node v 1 , it must be ensured that they are present at the node before 

the computation front propagating in the thread reaches the node. Thus, a tight 

dependency is defined as an edge (e E E) A (e e ET), a loose dependency is defined 

as an edge (e e E) A (e V ET). A pair of tightly coupled nodes are two nodes in VT 

connected by an edge in ET. According to these definitions, the DFG in figure 3-3 

can be abstracted to a computation thread graph (CTG) as shown in figure 3-4 

where dash lines represent loose dependencies, circles and ovals connected by solid 

lines comprise threads. The length of an oval represents the computation time 

complexity of a node. 

There are some important properties in computation threads. The number of 

nodes in a thread may be 1 < 11 VT  11 :S  11 V 11
. 

A thread does not necessarily 
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Figure 3-4: The computation thread graph for figure 3-3 

run from an input node to an output node in a DFG; it can start from any node 

and terminate at any node. One thread may fork to several threads, and several 

threads may end up with one thread by joining at one node. Every thread is 

directed, i.e. there is an unique data and computation propagation direction in 

one thread. Selected sequential steps of an algorithm have corresponding nodes 

inside a thread which have to be activated one after another. The activation of 

a thread may depend on the arrival of outputs from some other threads. Once a 

thread is activated, it runs on its own and multiple threads may run concurrently. 

Therefore parallel scheduling can be automatically detected and carried out at run-

time with this multiple threads computation model. Another important indication 

is that when a DFG is to be mapped into a hardware system, tightly coupled nodes 

on a thread should be put in physically close positions. 

Two parameters are defined for a CTG. The length of a thread T, length(T), 

is defined as the time taken from the activation of T to when outputs are available 

from T. length(T) is a measure of the computation time of T. length(T) is 

determined by the number and time complexity of nodes, and the data propagation 

delay between nodes in the thread. The critical path Cpath of a CTG is defined 

as an input to output path comprised of a set of dependent threads T having 
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maximum length(Tj. Thus, Cpath measures the computation time of an entire 

DFG. There can be more than one CTGs extracted from a DFG. Two constraints, 

cost or time, can be used when a CTG is extracted. With the cost constraint, 

the amount of hardware resource is set. Some of the threads have to be merged 

to share the available hardware resource. With the time constraint, a reasonable 

time length is set. The Cpath of an extracted CTG must be within the time 

constraint. In practice, a DFG should be flattened to a primitive DFG first before 

a constrainted CTG extraction is carried out. 

As an abstract representation, the multiple threads computation model clearly 

splits the sequential and parallel properties mixed in a DFG and simplifies nonuni-

form node granularities to the time complexity of nodes. Sequential dependen-

cies are explicitly expressed by threads and parallel processing is automatically 

scheduled at run-time. This model is a bridge between a DFG and an algorithm 

mapping process. It provides a framework to optimise easily an algorithm with 

constraints. It also contains the architecture information implying placements of 

nodes with delay constraints. It describes the principle of processing data on-the-

fly for algorithms concisely in both space and time domain. Because the multiple 

threads computation model is much more relaxed compared with the many re-

strictions in other computation models for regular algorithms, such as the systolic 

and wavefront model, it can be applied to model arbitrary algorithms. This model 

is therefore the basis for the analysis and optimisation of algorithms to be mapped 

into our algorithmically configurable architecture. 

3.5 Timing Control Structures 

The choice and design of a proper timing control structure for a system is a vital 

and yet a very practical issue. Some general considerations on synchronous and 

asynchronous timing methods can be found in [120,95,135,46]. Before designing 
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an architecture based on the multiple threads computation model, it is necessary 

to examine further the specific timing requirements from the model and the ar-

chitecture. Discussion will thus be focussed on the best timing strategy for the 

multiple threads computation model and large scale modular VLSI architectures. 

3.5.1 Clocks and Clock Skews 

An ideal clock q is a periodic function of time q(t) which can be defined as fol-

lowing: 

J i to+nT<t<to+nT+tH 	
(3.6) (t) 	

to +nT+tH :5t  <t0 +(n+1)T 

where n = 0, 1, 2,..., T = tH + tL is one clock period in which tH is the time 

interval for one clock pulse at logical value 1, and tL is the time interval between 

two consecutive pulses. For non-ideal clocks, there is a continuous transition 

function between logical 1 and 0 instead of an abrupt change of levels. 

In synchronous systems, all of the operations and data movements are syn-

chronised with a system wide global reference, usually a system wide global clock. 

A global clock must satisfy that clock signals at any two physical points in a syn-

chronous system are logically equivalent at any time. Global clock events in a 

synchronous system serve two purposes as sequence references and also time refer-

ences. As a sequence reference, a transition (event) between two levels of a clock 

defines the instance at which the system may change state so that random state 

changes and interferences can be eliminated. As a time reference, the interval 

between clock level transitions defines a time region during which data can either 

move between successive processing stages or are processed in stages isolated from 

others. In other words, a clock signal can be viewed as a guard which controls 

when and what is to be done or not to be done in a synchronous system. Two-

phase nonoverlapping clocks 0 and 02 , which always satisfy 01 (t) . 4 2 (t) = 0 at 

any time t, are one of the most commonly used clock control schemes. 
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Figure 3-5: Absolute and relative clock skews 

An optimised clock distribution scheme must be used to generate logically 

equivalent clock signals across an entire system to ensure the correct system op-

erations with a clock speed as fast as possible. However, no matter what kind of 

clock distribution scheme is used in integrated circuits, clock skews are physically 

unavoidable. Clock skews can be caused by many factors such as signal propa-

gatioxi delays on wires, capacitive loading variations at different points on clock 

distribution paths, and variations in device and process parameters e.g. the MOS 

transistor threshold voltage VT. A general clock distribution principle is that the 

clock from a root or source clock generator is equally buffered and extended with 

equal wire length to each synchronous area with roughly the same capacitive load. 

A clock distribution tree is such an example. From a clock distribution, an ab-

solute clock skew (ACS) can be defined as the maximum time difference of the 

high/low state at a point p on a clock distribution path from the low/high state 

at the clock source s (this includes the propagation delay). A relative clock skew 

(RCS) can be defined as the maximum time difference of the high or low state at 

two different points (pa, P2)  on clock distribution paths as shown in figure 35. 

Thus, 	 ACS(p) = max(t - t, t, - t) 	 (3.7) 

RCS(p1,p2) = I max(t - t, t - t,) I 	 (3.8) 

RCS(p1,p2) = I ACS(p2) - ACS(p i ) I 	 (3.9) 

where th  and tt  are the time points when the clock goes high and low; subscript .s 

source 

is the clock source; p, Pi  and P2 are physical points on clock distribution paths. 
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The worst case ACS reflects the time interval required to charge or discharge a 

complete clock distribution network from one clock source, while the data commu-

nication rate between two connected modules in a synchronous system is heavily 

influenced by the RCS in the two modules. To determine the maximum frequency 

of a synchronous clock, both worst case ACS and RCS should be considered. In 

[74], an O(n 
3 ) clock skew is derived from an n x n 2-D processing element array. 

But this clock skew is in fact an ACS. When the size of integrated systems in-

creases, the ACS increases much faster than the RCS. However, RCS plays the 

major role in determining the timing performance of a synchronous system. An 

optimised clock distribution must guarantee that the RCS between two clock sig-

nals at any two physical locations in a system is negligible compared with the 

clock period T. 

3.5.2 Computing without Clocks 

People recognise that there are many advantages in self-timed logic systems with 

asynchronous timing control to replace global control clocks in synchronous sys-

tems [95,128]. However, most designers tend to choose to design synchronous 

systems. This is mainly because it is more expensive to design an asynchronous 

system than a synchronous one with medium system complexity. It is also simpler 

to schedule system operations with a periodic global reference. Because it is be-

coming more and more difficult to distribute a proper global clock network over a 

large area of silicon and it is increasingly expensive to design an efficient schedule 

for a synchronous system with millions of transistors [23], interest has revived in 

asynchronous design methods [98,57,92,91,50,3,27,6,26,138,82]. The latest effort 

is the AMULET project [38,106] to design an asynchronous version of the ARM 

(Advanced Risc Machine) processor. Methodologies are also developed for the 

automatic synthesis of asynchronous systems [99,11,43]. 

A fundamental difference in asynchronous design methods from synchronous 
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designs is that they permit "asynchronous thinking" in design processes. This 

allows a designer to focus on the functionality of a module and not its timing 

details. If correctness and reasonable execution time were the only criteria for the 

acceptance of a design, the asynchronous design approach would be a very good 

choice over synchronous designs [42]. A self-timed system is built by decomposing 

the system into a set of combinational logic blocks and inserting an asynchronous 

hand-shaking control between each pair of connected blocks. The decomposition 

of such a system often descends to a level that each of its building blocks performs 

relatively simple functions with few inputs and outputs because the complexity of 

hand-shaking circuits increases drastically with the number of inputs and outputs 

[116]. There are two consequences of this design principle. First of all, since there 

is no global clock control in an entire system, the system performance is data 

dependent at run-time. The performance of self-timed systems is measured by an 

average instead of maximum clock frequency for worst case delays in synchronous 

systems. Secondly, there are extra delays caused by hand-shaking logic at each 

logic block in a self-timed system. The circuit complexity ratio between the hand-

shaking control logic and the actual computation block is also high which implies 

a relatively low area efficiency for computation logic. 

3.5.3 Separately Timed Communications and Computations 

A system can usually be decomposed into two essential parts: a set of compu-

tation modules and a communication network connecting these modules. It is a 

heuristic that the highest performance of a system can be achieved if both com-

putation modules and the communication network are running at their highest 

possible bandwidths and these two bandwidths are well matched with each other. 

If computational modules and the communication network of the system are timed 

separately, there is a better chance to achieve this goal. The feasibility of meeting 
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such a requirement depends not only on the timing scheme established but also 

on the architecture of a system. 

There are many alternative timing strategies and their variants which can 

possibly be used in an architecture to control the data flow between modules and 

the computations inside modules at the correct time scale. However, most of them 

are not able to support the requirement for separately timed communications and 

computations. Four possible types of timing control schemes are examined in 

order to select an adequate scheme. 

• Synchronously timed architectures. All of the data movement and data 

processing operations are synchronous in lock-step manner to global clock 

events. The clock frequency is pre-determined close to the highest possible 

margin so that high system performance can be achieved while correct system 

actions are still ensured, 

• Clock period programmable synchronous architectures. This scheme is used 

in the polymorphic-torus architecture described in [90,89,80]. While still 

remaining as a synchronous architecture, the period of the central clock can 

be programmed so as to adapt to various configurations of the architecture, 

• Self-timed control architectures. There will be neither global nor local clocks 

existing in such architectures consisting of combinational logic blocks com-

municating with each other through an asynchronous hand-shaking protocol. 

Therefore, the state of a self-timed system and actions to be done at a time 

point are completely determined by previous system states and signals gen-

erated from the hand-shaking control logic, 

• Globally Asynchronous Locally Synchronous (GALS) architectures. "Syn-

chronous" and "asynchronous" design approaches represent two extremes. 

It is possible to combine these two methods together. One interest- 

ing combination is to use clocks local to individual logic modules for syn- 
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chronous computation in each module, and an asynchronous hand-shaking 

protocol between logic modules for asynchronous communications in an in-

terconnection network. Thus the controls on communications between a pair 

of connected modules are hand-shaking signals strictly local to the two com-

municating modules. System level global signals (if there are any) do not 

have any effects on this localised communication. The synchronous clock is 

also localised to the internal logic inside a module only, that is, the RCS 

between two locally synchronous logic modules does not affect the correct 

data transfer communications. However, a special mechanism is required 

to synchronise the events in an asynchronous hand-shaking protocol at the 

input of a synchronous module with the local clock in the module. 

The synchronous timing scheme is often the first choice in the system design 

because of the low hardware complexity and logic design simplicity. This is true 

in the sense of conventional technology and architecture design principles which 

can be described as always designing systems of fixed physical topologies intercon-

nected with, wherever and whenever possible, materials of highest conductivity. 

Therefore it is normally possible to design carefully a particular clock distribution 

network for a particular system so that the clock skews (particularly the RCS) 

across the entire system are minimised. The speed of the global control clock 

must be determined from the combinations of all the worst possible cases in the 

ACS, RCS, the longest communication path delay, and the slowest delay among 

all logic blocks. With the rapid increase in the complexity of integrated systems, 

the advantage of synchronous design simplicity is transferred to the overhead dif-

ficulties of designing the clock distribution network which is more closely related 

with the low level physical properties of integrated circuits. Because of some ran-

dom characteristics from process technologies, these low level physical properties 

are much more difficult to manage and control than complex logic designs. To 

take the developing trend of VLSI as an example, while minimum feature sizes are 

decreasing (scaling down), the complexity (number of devices in a system) and 
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physical size (chip size) are increasing, and many previously negligible second-

order physical effects cannot be ignored. This makes the clock distribution in a 

system even more difficult. The clock period programmable scheme merely makes 

it convenient to fit the global clock into a particular system configuration while it 

does not have any performance improvements on the worst case situation. Even 

worse, it has been shown that the measure of slowing clocks down sometimes still 

cannot compensate for clock skews [135]. The system fails in this case. 

With the emergence of configurable architectures, the synchronous timing 

method suffers more problems. Expandability and flexibility are two of the char-

acteristics of configurable systems. The expandability means that the size of a 

system can be varied to suit different application requirements, and the flexibil-

ity means the logical topology and the actual functionality of the system can be 

repeatedly configured for different applications. Therefore, the delay character-

istic (computation delays and communication delays) in the system may be very 

different with different configurations and cannot be estimated in advance. The 

final system logical structure may be substantially different from the initial blank 

architecture in that previously dependent blocks may become independent or vice 

versa after the configuration, and the distribution of clock skews (RCS) will vary 

as well. It will be very difficult, if not impossible, to layout a fixed clock distri-

bution network valid for all of the possible configurations of a system. It will also 

not be easy to determine an appropriate clock speed even if such a distribution 

exists. 

In a system with a large number of logic modules, these synchronous timing 

difficulties are mostly at the system level which can affect the communication cor-

rectness and performance between connected modules. Once a clock is distributed 

into a logic module, its skews are unlikely to affect the correct functioning of the 

module. This discussion suggests that it is a good choice to apply the GALS 

timing scheme at the system level. As far as the data transfer is concerned, an 

asynchronous hand-shaking protocol is indifferent to varying delays in the corn- 
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munication path between two modules [4,101,116,53]. Therefore, changing the 

configuration of a system with the GALS control will not have effects on the com-

munication function of the network. Only the speed of communications will vary 

which is automatically adjusted by the protocol. The correctness of communica-

tions is assured by the protocol. As we shall see in the next section, the GALS 

timing scheme matches well to the architecture proposed, the requirement to time 

the communication network and logic modules separately, the DFG representation 

and the multiple threads computation model. 

3.5.4 Communicating Synchronous Logic Modules 

We proposed a general design framework in [40] for the construction of large scale 

modular systems by communicating synchronous logic modules. This framework 

is based on the GALS scheme and a GALS hand-shaking interface. A complex 

system is decomposed into a group of connected logic modules. These modules can 

be combinational or controlled by clocks local to each module. A GALS interface 

is attached to each module. These GALS interfaces are then connected to keep 

the dependencies in this group of modules. 

A very important constraint in decomposing a system to impose a GALS mod 

ular structure is the level of complexity in each decomposed module. The equipo-

tential region defined in [95, section 7.6] is a good constraint for the decomposition. 

An equipotential region is the size of an area in which all the signals are treated 

as identical at all the points on a wire in the region, that is, the delay associated 

with equalising the potential across one wire in the region is small and negligible in 

comparison with the device switching delays or signal transition times. The size of 

an equipotential region can always be estimated given a choice of processing tech-

nology [95]. There will be no difficulties in distributing a clock and implementing 

synchronous logic controlled by the clock local to the logic inside an equipotential 
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region. Hence the complexity of a decomposed module should be such that it can 

be fitted into an equipotential region. 

The GALS design approach offers a solution to the problems in the design and 

operation of massively parallel processing systems and large scale configurable 

systems in the following areas. 

• Easier modular design through the GALS interface. The design of a com-

plex integrated system is made much easier by interfacing system modules 

through the GALS interface. The difficulties of distributing global clocks 

and system level synchronous timing design are eliminated by the GALS 

interface. Each individual module can be designed, reused and modified 

independently from the rest of the system at any time. 

• Scalability. The size of a GALS system can be easily scaled up or down by 

adding or removing modules without concern over the global system timing. 

The system is also operationally scalable, i.e. if one module becomes slower 

or the delay in a communication path is increased, the system slows down 

but will not fail, and the system will run faster if some modules or commu-

nications become faster. This is a very important property for configurable 

systems. 

• Easy Design Automation. A library of logic modules and the GALS inter-

face blocks can be set up. The advantage of this library is that previously 

proven modules from both synchronous and asynchronous design can all 

be adopted. The task of the design automation system is to decompose, 

with certain constraints, a complete system into modules by referring to the 

module library, optimising the placement and routing connections of these 

modules, and connecting them through the GALS interface properly. 

• Performance. The overall performance of a GALS system is also data de 

pendent instead of depending on the worst case delay in synchronous sys- 
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tems. The GALS approach also provides an independent time control on 

• the module functions and communications between modules. It is possible 

to optimise a system decomposition by matching the synchronous module 

operation bandwidth with the asynchronous communication bandwidth. 

• Reduced Power. Since there are no signal transitions in an inactive module 

guarded by a GALS interface, the overall system power consumption can be 

reduced. 

When the GALS scheme is used in our configurable architecture, it forms a 

GALS system template. It is a straightforward task to map a CTG and a DFG 

representation into such a template. The firing rule for a thread and a node 

in data-driven computations is checked and activated by the GALS interface. 

Parallel processing in different threads and nodes can be automatically scheduled 

and activated by the GALS scheme at run-time. 

3.6 Algorithm Embeddings 

Automatic algorithm mapping tools are required and are relatively simple to de-

velop for configurable architectures [139,109,58,118,96,67,97,126,60] because the 

mapping only needs to convert an algorithm specification to a set of configuration 

data instead of detailed circuit level or layout level implementations. It is prob-

ably hard (very time consuming) to find an optimal mapping, but near optimal 

mappings can usually be found rather quickly. The mapping algorithms will also 

be architecture dependent; different configurable architectuEes would require their 

own mapping algorithms and mapping systems. The mapping process to embed 

an algorithm into our GALS configurable system involves generating a DFG from 

an algorithm specification, flattening the DFG, extracting a CTG, placements 
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of nodes and routing according to the CTG and the flattened DFG, and finally 

generating configuration bit-streams. 

• Since the main purpose of this thesis is to investigate the feasibilities of config-

urable architectures for algorithm embeddings and the design of such an architec-

ture, the development of algorithm mapping theories and an automatic mapping 

system will be the task of a future project. 

3.7 Summary 

In this chapter, some fundamental issues for algorithmically structurable archi-

tectures have been discussed. A multiple threads computation model has been 

established for algorithms of irregular type. This computation model enables 

parallel processing of irregular algorithms to be scheduled automatically and car-

ried out at run-time. It also facilitates node placement in an algorithm mapping 

process. An algorithmically structurable architecture template of connected hard-

ware operators was illustrated. After detailed analysis of various timing control 

schemes for large scale configurable or modular systems, a GALS timing con-

trol scheme has been proposed. This GALS scheme effectively links the multiple 

threads computation, the principle of processing data on-the-fly, and algorithmi-

cally configurable architectures for convenient and efficient algorithm embeddings. 

The GALS scheme also exhibits its prospects to the design of future ULSI and 

WSI modular systems. 



Chapter 4 

A Configurable GALS Array 

An algorithmically configurable architecture can generally be regarded as an en-

sembled architecture [121] in which a set of hardware operators are aggregated 

together and arranged with an initial physical topological relationship in a two 

dimensional plane. These hardware operators are logically connected to embed an 

algorithm. 

Because an algorithm can be transformed into a primitive DFG representation, 

we propose a modular architecture with a pooi of connected hardware operators 

H,s for the embedding of irregular algorithms. These H,s can be programmed 

to form the nodes in a primitive DFG of an algorithm. The architecture also has a 

configurable interconnection network to facilitate the mapping of tight and loose 

interconnections in a multiple threads computation graph. The GALS scheme will 

also be combined into this architecture. A top-down hierarchical overview of the 

architecture is presented in this chapter. 

4.1 Basic Architecture Constraints 

An He,,, is a logic module with a few input and output ports on its boundaries 

for interconnection with other H,,,s. A pool of such H,s can be physically placed 

and connected in many different ways. A few basic architecture constraints are 

82 
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considered to make it easy and efficient for VLSI implementation and suitable for 

irregular algorithm embeddings. 

4.1.1 Architecture Regularity 

A highly regular system structure is very suitable for the VLSI implementation. 

There are two possible approaches in the design of hardware operators for algo-

rithmically configurable architectures. One approach, as used in [32,50,14], is to 

design a set of totally different hardware operators, each of which has fixed func-

tionality, and connect these operators by a switched network. Two problems may 

be found in this approach; the limited availability of a particular type of hardware 

operator and the irregularity of modules due to the difference in the complexity 

of hardware operators. Another approach, which is much more common, is the 

design of a programmable hardware operator PH, or processing element (PE). 

The PH, can be programmed to perform a set of different functions as different 

H,s. A system is then composed of a pooi of the same PHI,,,. Architectures 

developed by this approach can support higher flexibility requirements. More im-

portantly, a very regular structure can be obtained because only one logic module 

is used throughout the system. A PH, will be designed and used repeatedly in 

our configurable system. 

The design complexity of such a system can be reduced to the design of a 

communication network, a programmable and some system I/O modules. 

The complexity of a PH,1, will be much lower, and the design of a PHc,, can 

still follow the conventional hierarchical approach by further decomposition. The 

design of the communication network will heavily affect the performance of the 

final system. This clear distinction between communications and computations 

makes it possible to investigate the two issues separately. 
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4.1.2 Architecture Scalability 

Because the size of an actual sub-system, i.e. the number of PHs, that could be 

integrated on a single silicon chip is very limited, while a practical algorithm may 

require more PH.Ps, it is important that an algorithm can be decomposed into 

several sub-algorithms of a smaller scale so that each can be embedded into one 

on-chip sub-system. To put this in another way, the boundary of a sub-system 

should be designed in a way making it easy to expand to a larger system of the 

same type for algorithms of larger scales. 

The system scalability can thus be defined as the capability of a system whose 

size can be expanded to a larger scaled system of the same type by directly con-

necting a set of duplicated sub-systems or vice versa. The interfaces between the 

communication network and computation blocks are always on the boundaries of 

such scalable systems. 

Regularity and scalability are two closely related issues. The placement of logic 

modules and the interconnection network determine the scalability of a system. A 

better scalability can be obtained with a regular structure. 2-D arrays and binary 

trees are two examples of a regular structure with a very good scalability. 

4.1.3 Communication Overheads 

No matter what kind of approach is adopted, there are always communication 

difficulties in a configurable network because hardware operators and the commu-

nication network are physically pre-defined. That is, the total communication or 

routing resources have an upper bound RR. If the overall communication re-

quirement to embed an algorithm AR is lower than or equal to the upper bound 

RR, the communication network is said to be under utilised or fully utilised 

respectively. If AR > RR, the communication network is said to be congested 
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in which case the most common measure is to sacrifice some hardware operators 

to increase the RR. 

The AR includes algorithm communication and embedding overheads. Al-

gorithm communication requirements, which are represented by the edges in a 

primitive DFG are application dependent. Embedding overheads are caused by 

either the mapping of an algorithm with a higher dimensionaiity to a 2-D plane 

with lower routing capability or the irregularity in a DFG. The choice of the RR 

for a configurable system is a compromise between silicon area occupied by the 

communication network, communication network utilisation, and hardware oper-

ator utilisation. Since many systems developed so far are for algorithms of regular 

data structures, the RR of these systems is normally fixed and low with connec-

tivity between C2  to C8 . For irregular algorithms, architectures supporting flexible 

C and with a medium RR are needed because the embedding overheads may 

be heavy due to the irregularity, albeit the communication requirement of these 

algorithms may not be very high. 

4.2 System Level Physical Topology 

The choice and design of a system level physical topology for a configurable system 

with a pool of PH07,s forms the essential framework in which application algo-

rithms can be embedded. A selected physical topology will eventually determine 

the efficiency and performance of the embedded algorithm. The most important 

aspect of a physical topology is the design of a switched interconnection network 

and a placement scheme for the pooi of PH,s. Several typical system top-level 

topologies, which are depicted in figure 4-1, are considered and a Pseudo Nearest 

neighbour Configurable Array architecture (PNCA) is designed for the mapping 

of DFGs and computation threads. 
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Figure 4-1: Typical switched interconnection schemes 

4.2.1 Interstitial of a Switch Lattice and PE Array 

The essential feature of this scheme, well illustrated by the CHiP architecture [125] 

as shown in figure 4-1(a), is an interconnected switch lattice and a 2-D array of 

PEs which are nested and intermingled with each other so that there is at least one 

switch isolating the connection between any two neighbouring PEs. Every PE is 

surrounded and isolated from each other by a set of switches. The configurability 

in this kind of architectures largely depends on the switch lattice, particularly the 

corridor width W. which is the number of parallel routing paths available in one 

horizontal or vertical channel. Theoretical research points out that W. x log N 

are necessary and sufficient to embed all planar interconnection patterns of N 

nodes with a reasonable PE utilisation [1321. A wider W is required to embed 

a complex pattern efficiently such as a shuffle-exchange graph. The W.  must be 

at least proportional to N/log N on an average [129]. This architecture is very 

regular because both PEs and switches are the same across the array. However, the 
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scalability of this architecture is spoiled by the surrounding switches and routing 

channels on the boundaries of the array. 

As far as the communication overheads are concerned, it is difficult to select 

an appropriate W, especially as it is dependent on N for many algorithms, if 

this is not associated with a particular computation model. When different data 

structures are embedded into a system with a selected W, routing paths may be 

under utilised, near optimally utilised, or congested. The number of I/O points 

on the array boundaries can be calculated as 

P110  = 	X (m+ 1)+ W 0, x (n+1)+m+n] x 	(4.1) 

where Wp is the number of bits in one path, m and n are the number of array 

element rows and columns, mx n = N, 	and T4Tcoi  are row and column corridor 

width respectively. If W,. = W = W, m = n, equation 4.1 can be simplified 

to 
P110  = [2W(n + 1) + 2n] x wp 	 (4.2) 

which is proportional to ii. Therefore, when a W. is selected, trade-offs must be 

made among routing channel area overheads, corridor utilisations, PE utilisations, 

and boundary I/O counts. It is noted that the practical implementation of the 

architecture based on this scheme had some modifications [48,88] because it will 

be very area inefficient if switches are scattered as sparsely as in CHiP. 

4.2.2 Linearisation 

Another distinct approach, known as the Diogenes scheme [114,115], is to linearise 

higher dimensional topologies to a physical linear array. All of the PEs in this 

scheme are placed as a linear array or a snake shaped linear array; a routing 

track consisting of segmented parallel paths is stacked above or below the linear 

array. A switch set is located at each PE location so that the I/O of the PE can 

be connected to a set of paths in the routing track. A specific PE dependency 

structure can be embedded into such a system by connecting PEs via paths and 
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switches in the track. Figure 4-1(b) shows a linearised example of a 7-node binary 

tree. 

This is a very flexible scheme as long as there are sufficient paths in the routing 

track, almost any kind of topology can be embedded in such a scheme. The number 

of I/O points on the boundaries of this scheme tends to be much lower than those 

in 2-D physical arrays. 

The problem of this scheme is that the average connection length increases 

with the increased array size if the dimensionality of the embedded logical topol-

ogy is higher than linear. Folding of a long linear array and adding some vertical 

connections [115] can only alleviate the problem in a very limited way. The min-

imum number of paths in a track also depends on algorithm data dependencies 

and the size of the linearised array. 

4.2.3 Overlapped Communications and Computations 

This can be well illustrated by sea-of-cells approaches [87,59,58] as shown in fig-

ure 4-1(c). In this scheme, the communication network and computation lattice 

are logically overlapped with each other. The basic idea of this approach is that 

large number of identical fine-grained cells are connected in a 2-D plane with 

C, n = 4, 6, 8. The functionality of a cell can be set to perform only one of: log-

ical/arithmetic computations, or routing operations at a time. Thus, if all of the 

cells in such a system are set to routing operations, by which each cell only passes 

incoming data to its prescribed neighbours, the entire system becomes a routing 

network. It may also be sufficient for some applications requiring only -C < 8 con-

nections for communications so that all of the cells can be set to various logical or 

arithmetic computations. 

If 	is the hardware complexity required for routing operations in a cell 

and C 11  is the hardware complexity of the cell, in order to achieve reasonable 

cell utilisations and hardware efficiency, the granularity of cells, i.e. Cceij,  must be 
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sufficiently small, and the ratio of C,./C 11  should be designed as a reasonable 

value so that there is no heavy routing hardware overhead when a cell is set as a 

routing node. Suppose <0.5, cell utilisation U 1  can be defined as 

,.,,q, 
U 1  = 1 - 	

C _____ • 	 (4.3) 
N 	Cceii 

N+N,=N 	 (4.4) 

where Nwmp  is the total number of cells used as computation nodes, 	is the 

total number of cells used as routing nodes. U 1, can range from 0% to 100%. 

When this scheme is used in [66] where the PE complexity is very high, 

is very low, and 	 is high. Hence, Uceji  of the array can be very low for 

irregular algorithms (high 

Because PEs are arranged as a 2-D array and the interconnections between 

PEs are direct wires without inserted switches, theoretically, the connectivity of 

PEs under this interconnection scheme can be anything between a linear connec-

tion, C2 , througI C4 , C6 , C8 , to a complete connection CN_1 in a system of N 

PEs. The dimensionality I D I can be from 1 to N respectively. It is possible 

to increase routing resources with complex PEs by increasing en . Practically, the 

interconnection cost in a planar space with very limited number of interconnec-

tion layers increases drastically with C when Cn  > 8. Therefore in planar silicon 

implementation, nearest neighbour interconnection schemes, C E [2,4], are very 

common choices because only one interconnection layer is needed for these near-

est neighbour schemes. It is anticipated that this overlapped communication and 

computation scheme is not suitable for PHr,,s with the GALS interface because it 

is relatively expensive to use such a module as a simple routing cell only. 

4.2.4 Aggregated Switched Communication Network 

In the above interconnection schemes, routing functions are distributed, together 

with PEs, over a complete system. They are suitable for array architectures corn- 

posed of uniform PE. Another equally important and yet very flexible switched 
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interconnection scheme is to design a central communication network and connect 

functional modules around the boundaries of the network. This scheme is more 

preferred in the PCB (Printed Circuit Board) level implementation. Advantages 

are obvious: complete separation of the communication network and functional 

modules leading to the possibility of optimising both the switched network and 

functional modules, no restrictions on the module type and physical size, modules 

can be easily added/removed, no pre-defined physical topologies among attached 

modules. Considerable general research work has been done in the field of inter-

connection networks independent of any specific functional modules. 

There are also attempts to implement this kind of interconnection scheme on 

chip or wafer level [50,14]. Advantages are higher flexibility and reduced number 

of I/O points. Figure 4-1(d) depicts the river bank architecture used in [14] which 

is similar to the floorplan generated from the FIRST [8] silicon complier. The 

grid block represents a cross-point switch network, blocks on the top and bottom 

of the network are functional modules connected to the terminals of the network. 

Communications between other systems and the external world are through the 

right and left edges of the network. 

Some problems arise in the silicon implementation of this scheme. Although the 

central switching network can be designed totally independently of the functional 

modules, from a configurability viewpoint, it is expected that a set of hardware op-

erators (H's) of different functionalities can be readily integrated and connected 

to the network, via which the logical connection topology of these hardware op-

erators can be set to the specific data dependency of an algorithm. The centrally 

designed network, which is very uniform, prefers the attached H,s having the 

same width, while a VLSI floorplan prefers H,,,s of the same height as in the 

standard cell approach. The consequence may be either low silicon efficiency or 

mismatch between H,s' I/O ports and the network terminals, i.e the mismatch 

between the regular switch network and the irregular H,,,s. The average con- 

nection length is longer too since data communication between two H,s on the 
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upper and lower bank of the network have always to travel through a number of 

switches at least as same as the number of rows in the network. The scalability 

is also limited in that a system can only be extended in one dimension. One of 

the consequences is that worst case long connections may cross from one end to 

the other of the extended network. The routability of the network depends on the 

number of Hs and the number of rows. If the network is only expanded in one 

dimension without increasing the number of rows, the routability of the expanded 

network will decrease drastically. Thus this scheme is not suitable for the silicon 

implementation of large configurable systems. 

4.2.5 A Pseudo Nearest neighbour Configurable Array 

As illustrated in previous sections, none of the four common system level phys-

ical topologies is a good choice for the DFG and computation threads mapping. 

Therefore, a Pseudo Nearest neighbour Configurable Array architecture (PNCA) 

is devised to make an efficient use of the precious two dimensional space with lim-

ited interconnection layers available under current integration technologies and to 

facilitate the mapping of the DFG and computation threads of an algorithm. The 

system top-level physical topology of a PNCA with 4 x 4 Routing Cells (RCs) 

and programmable H,s is depicted in figure 4-2. The architecture is composed 

of a two dimensional regular array with identical PH,s connected by a circuit 

switched configurable interconnection network. 

The Physical Topology 

It can be seen from figure 4-2 that a pool of PH,s are arranged in a 2-D plane as 

a rectangular array. A PIi,,, can be programmed to perform a primitive logic or 

arithmetic function. PH,s are not directly connected with each other. Instead, 

each of them is attached to one node in a configurable interconnection network. 

Each network node, which is located at the crossing point between a horizontal 
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Figure 4-2: A Pseudo Nearest neighbour Configurable Array 

and a vertical routing channel (H and V channel), is called a Routing Cell (RC). 

An RC is shown as an L shaped polygon in the figure. Every RC is physically 

connected to its four nearest neighbour RCs on its North, East, West and South 

(NEWS). An H and V channel can have multiple routing paths in parallel. Hence, 

an RC may have multiple ports on its NEWS boundary. The function of an RC 

is to select a path from either an H or V channel as an input or output port for 

the PH, attached to it, and/or bypass a signal from one port to another. Several 

independent paths may exist at the same time in one RC so that multiple data 

can be routed through one RC simultaneously without interfering with each other. 

The routing capability of the network is mainly supported by the RCs. 

An RC and its attached PH, are regarded as one Multi-ported PE (MPE) 

which is shown as a dash box in figure 4-2. Each MPE is physically connected to 

its four nearest NEWS neighbours. But a PH can be logically connected to an-

other PH beyond its NEWS neighbours through the RC settings. Therefore this 

architecture is called Pseudo Nearest neighbour Configurable Array (PNCA) for 

its physical nearest neighbour MPE connection and its configurability to support 

logical connections beyond NEWS neighbours. 
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The Network Configurability 

The configurable network in the proposed PNCA architecture can be analysed 

independently from the PHI,,, array as a 2-D grid of a connected RC array. There 

are two factors that determine the configurability of this RC network: the number 

of independent routing paths, also called corridor width W, in an H and V channel 

Wh, We,, and the number of switching states in an RC. The selection of Wh and 

W, is a trade-off between routing capability and area efficiency. Note that the 

area of an RC will be increased in proportion to Wh  x  W. An RC has a number 

of finite switching states either dependent or independent of Wh, Wi,, which will 

be determined by the design of switch structure. As a constraint to keep the 

regularity of the array, Wh and WV  are not changed in any segments of the H and 

V channels and only one type of an RC is used. Provided that there are PRC 

independent ports in an RC, 

PRC= 2 x(W,, -i- Wv)+WH=4x(Wh+W V ) 	 (4.5) 

where WH,,, is the number of ports between one EtC and its attached H,, and 

here, WH,,, = 2 x (Wh  + WV ). The upper bound on the number of switching states 

SSRC  of the RC is determined by the number of ports PRC  in the RC: 

n 	 1n-2n-i 

SSRC 	(>C—n)+>C'C'. 
i=O 	 i2 j=2 

(4.6) 

where n = ?Rc. According to equation 4.6, the upper bound of SSRC  will increase 

drastically with PRC. It is worth noting that the complexity of an EtC will also 

increase quickly if SSRC is increasing towards the upper bound. An RC with the 

upper bound SSRC  has a complete port connection where each port is connected 

through switches to the rest of ports in the RC. 

Because there are a finite number of RCs in a network, NRC = Nff ,,, = NMPE, 

in a PNCA, there will also be an upper bound on the number of interconnection 
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states SINT  realisable in a PNCA. SINT  is determined by the SSRC  and NRC, 

6Y,NRC 
'INT - RC (4.7) 

From equation 4.7, it is clear that 5INT  will increase exponentially with NRC  on 

the basis of SS RC . Since the area efficiency of a high SSRC  RC will be very low, 

SSRC should be selected much less than the upper bound while SINT can still be 

maintained sufficiently high by increasing NRC. 

The highest possible requirements for Wh and W, are that they are able to 

support a complete connection where every PH,,, can be connected to all of the 

rest of the PH,,,s in a PNCA. To connect a row with n elements completely, 
n(n 1) 

segments of wires are needed. Several wire segments may be embedded 

in one segmented path in the H-channel of the row. Thus, the corresponding 

channel width Wh may be smaller than 
n(n 1) 

by the sharing of some wire 

n(n-1) 
segments in one path. For instance, n = 51 	2 	

= 10, Wh = 6 is sufficient. 

This can also be applied to the connection of a column of elements. However, 

because only orthogonal H and V channels are available, wider Wh and WV  are 

required to embed diagonal connections by jogging through the H and V channels 

if a 2-D array of elements is to be completely connected. Even if interconnect wires 

can share paths in channels, the complete connection is very expensive and seldom 

useful in practice. The Wh  and  W also depend on the number of elements in an 

array to accommodate a complete connection. It is not necessary to waste much 

area to support such expensive high connectivity in algorithmically configurable 

architectures. The selection of a compromise Wh and W will be discussed with 

DFG characteristics. 
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4.3 The GALS Scheme in PNCA 

After the PNCA top-level physical topology is set up, a system level timing control 

scheme must be combined into the architecture to regulate data flows. As illus-

trated in section 3.5, the GALS system timing scheme is chosen for the PNCA 

architecture. 

4.3.1 Synchronous Regions in PNCA 

It is important to select an adequate logic complexity so that logic modules within 

this complexity can be fitted into an equipotential region with the local syn-

chronous timing control. Although the equipotential region is technology depen-

dent, it will make the system design and algorithm mapping much easier if a 

proper synchronous region for a configurable architecture is selected in advance. 

There are two possible choices of local synchronous regions in a PNCA. One is 

to include all the nodes on one thread as one synchronous region. The other is 

to confine a synchronous region to one PH,, only. The choice of a thread syn-

chronous region is algorithm dependent. It can be reckoned that this choice will 

impose many difficulties in the algorithm embedding process because nodes, which 

are not in a synchronous region in one algorithm, may be in the same synchronous 

region in another algorithm. This uncertainty of synchronous regions will also 

impose more hardware requirements because of the switching over between the 

synchronous and asynchronous timing mechanism. Therefore, an algorithm inde-

pendent GALS structure is desired in the PNCA architecture. The choice of one 

PHI,,, as a synchronous region will be algorithm independent. This synchronous 

PH selection also matches very well to the array hierarchical structure of the 

PNCA. Communications between the synchronous PHs are through an asyn-

chronous hand-shaking protocol. 
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4.3.2 Communicating Synchronous PH,s 

Most of the asynchronous hand-shaking designs are developed for systems con-

sisting of irregular blocks connected by fixed interconnections. A widely used 

three element structure is to insert an asynchronous hand shaking element, such 

as a Muller C-element [100] or its modified form, in-between every pair of com 

municating modules. For architectures with configurable interconnections and 

requirements for scalability, this approach appears less attractive. This is because 

in a configurable system, the dependency between a pair of modules may vary 

with the embedded algorithm, i.e. two dependent modules for an algorithm may 

become independent for another algorithm. Therefore, it is difficult with this three 

element structure to distribute and connect the hand-shaking blocks among logic 

modules in a configurable system for different algorithms. If this three element 

structure is used in an array, it will also destroy the scalability of the array on the 

array boundaries. 

Asynchronous Guarded Communications 

To preserve the array uniformity and scalability, a two element asynchronous com-

municating structure is desirable in configurable systems. Instead of inserting a 

separate hand-shaking element, the asynchronous hand-shaking is split into an in-

put and an output guard logic, which are added before inputs and after outputs in 

a module, so that the communication between any pair of modules are controlled 

by the input and output guard in the two modules. A two element structure is 

obtained with this guarded communication scheme; Figure 4-3 depicts this two 

element communication structure with guards represented by black strips. 

This guarded communication protocol can be clearly illustrated by the bun-

died data interface [128], as shown in figure 4-3, with two communicating modules. 

A bundled data interface has an arbitrary number of data bits on a D line ac- 

companied by two communication control signalling lines called Request (R) and 
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Figure 4-3: Asynchronous guarded communications 

Acknowledge (A). The functionality of an Input Guard (IG) is to detect the R in 
line to see if there is a new datum presented on the input D line, to decide whether 

to accept the new datum according to the state of the guarded module (B), and 

to acknowledge, through the A B  line, the sender module (A) after the new da-

tum is stable in the B module. The functionality of an Output Guard (OG) is to 

send a request (R)  to a receiver module (B) when a new datum is generated at out 

the output, and to reset the output to null, i.e. free the guarded module (A) to 

the next operation when an acknowledgement (A) is detected from the receiver in 

module (B). Thus, the input and output guard logic, G in  and Gout , are: 

I B
(4.8) 

(R
B 

G'= 	
_*=0)

in 	
(RA=0)-G 

I(ASA=1)=D' ,(RA  =1) 
out 	out 

IDA =NULL I 	out 

G t =1(AAS A =1)(RA =o)IsA =o (4.9) 
out 

A B =0 \ out 

(AAS A =0)GA  out 

where R1 , Rout , 	A out , D1 , and Dout  are data sending request (new valid 

input data), data receiving acknowledgement, and data at the input and output 

of a module respectively; S is the state of a module. S = 1 means an engaged 

module where inputs are prohibited. 

There is a basic constraint with this bundled data interface. Data (DA ) can out 

only change when the A module is acknowledged (A t ), and D must becomein 
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stable before the B module detects a new request (RB ). That is, an R 
A 
out 

signal 

must be sent out after DA  is stable and the delay on the D line must not exceed out 

that on the R line. Under this constraint, the communication between the two 

modules is insensitive to delays on the interconnect paths by which is meant that 

the change of delays on the interconnect paths will not affect the correctness of 

the data transfer, only the speed of transfer will vary. 

Special Considerations 

There are several special issues worth noting when this guarded GALS control 

scheme is applied and special care must be taken when designing the guard logic. 

Different communication modes. Three general communication modes are 

identified. One-to-one communication is exactly shown in figure 4-3. The 

generation of communication guarding signals in this case is straightforward. 

One-to-many broadcast is the mode in which one common source module is 

feeding data to more than one destination module. The acknowledge signal 

back to the source module is the logical AND of all the acknowledges from 

the destination modules. Many-to-one assembly is a communication pattern 

when several modules are supplying operands to one module simultaneously. 

In this mode, the Input Guard of the destination module must ensure that all 

of the input operands are taken before prohibiting its inputs and generating 

an acknowledge back to all the source modules. 

Deadlock avoidance. A typical problem in asynchronous hand-shaking is 

deadlock. Deadlock is a phenomenon when operation processes are halted 

in an endless waiting state. This is a case often arising in certain loop 

configurations where some inputs are waiting for results from some outputs 

while the generation of these outputs depends on these inputs. To take the 

two communicating modules in figure 4-3 as an example, a deadlock loop 

is formed if R B  is connected to R A  A 	s connected to A B  and D 	s . 	

i 

	

out 	 n' A i out 	 n' 	
B 
 i out 

connected to 	Special measures must be taken to avoid, deadlock [71].in 
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For example, one or several conditional fork structures can be added to break 

possible deadlocks in a ioop configuration. 

3. Synchronisation. A modular system timed with the GALS scheme requires a 

synchronisation mechanism to coordinate the asynchronous input data with 

the local clock in a synchronous logic module. One of the most common 

ways is to use a synchroniser to synchronise the asynchronous input data 

to the event of the local clock in a module. An ideal synchroniser should 

be completely reliable. However, because synchronisers are usually imple-

mented with bistable structures, there is a probability of synchronisation 

failure in which the output of a synchroniser stays in a metastable state for 

an indefinite length of time instead of settling to one of the two stable states 

[63]. If this metastable state persists for too long, incorrect state may be 

resolved from the synchroniser. This is called a synchronisation failure. The 

synchronisation failure is caused by the physical nature of the continuous 

transition between bistable states; it is inevitable. But, various techniques 

can be used in synchroniser design so as to reduce the probability of syn-

chronisation failure to an acceptable low level. This problem is discussed in 

more detail with the design of a synchroniser in the next chapter. 

4.3.3 A Configurable GALS Array 

A configurable GALS Array (GALSA) system is constructed by placing an input 

and output guard with a synchroniser between an RC and its attached synchronous 

in each MPE in the PNCA. This structure enables the system level asyn-

chronous communication between locally synchronous PH,s. But this will not 

change the physical boundary of an MPE nor the RC interconnection network. 

Therefore the top-level system physical topology of the PNCA architecture is well 

preserved in the GALSA system. 
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The GALSA system has all the properties discussed so far for a configurable 

system to embed irregular algorithms: 

Regularity and scalability. The GALSA system is highly regular with a 2-

D array of MPEs. If the ports are properly placed on the boundaries of 

an MPE layout, a GALSA can be easily obtained by abutting the MPE in 

the horizontal and vertical direction. The system can be easily enlarged by 

directly connecting small sub-systems together. There are no system tim-

ing difficulties with different network configurations and it is operationally 

scalable because of the GALS timing scheme. 

Computation threads. The PNCA architecture is designed with the multiple 

threads computation model in mind. Therefore, threads can be easily formed 

in a GALSA. A thread is formed with a row or a column, or part of a row 

or column of RCs. The PH,s in a thread are physically placed one by one 

and connected in shortest paths corresponding to the tightly coupled nodes 

in a thread of a CTG. The communication between threads may be routed 

through unused paths in the H and V channels as loose connections. 

Primitive DFG mappings. Because a PH can be programmed to one of the 

logical/arithmetic functions defined in a primitive DFG, the programming 

of the PH,,,s in a GALSA system is straightforward to embed the nodes in 

a primitive DFG. 

Data Flow Computations. A GALSA system is a data flow computing engine 

by its GALS timing nature. A PH, is ready to "fire" when its outputs are 

cleared and matching data are presented at all of its inputs. This also applies 

to the firing of a computation thread, which enables the automatic detection 

and scheduling for parallel processing among threads and PH,,p  nodes. 

Minimum memory accesses to a host system. Once a GALSA system is 

configured, the memory accesses of the GALSA system to its host computer 

are minirnised to getting the initial input data from the memory and saving 

the final results to the memory. 
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The design of the GALSA system is decomposed to the design of an RC, a 

with a GALS interface, the configuration data stream loading circuitry, and an 

array I/O interface. Because the system is timed with the GALS scheme, the 

design of these components is independent from each other from the time point of 

view. The complexity of each decomposed component is relatively low and thus 

well manageable in the full-custom design method. 

4.4 RC and PH0  

The design of an RC and PH,, for a GALSA system is closely related to some 

DFG properties from the computation viewpoint. It is necessary to analyse these 

DFG properties in order to establish proper logical structures for the 1W and 

4.4.1 DFG Computation Properties 

A general classification on types of nodes in DFGs can give a clear indication on 

the RC and PH,,p  design. Three general types of nodes are classified in a DFG by 

examining the DFG example in figure 3-3. 

1. Arithmetic nodes (A-nodes). 

Arithmetic functions can be evaluated in arithmetic nodes, for example, the 

addition/subtraction, multiplication, and the square rooting nodes used in 

figure 3-3. The hardware complexity corresponding to these kinds of nodes 

is the highest, and computation delays through them are inevitably long 

because of the multi-step operations required in many complex arithmetic 

functions. It is always possible to decompose a complex arithmetic function 

to a set of simple arithmetic or even logical functions. Hence, a set of prim-

itive arithmetic nodes can be defined so that arithmetic functions of higher 

complexity can be decomposed to this set of primitive arithmetic nodes, and 

evaluated through this set of primitive nodes connected in a specific way. 
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Primitive arithmetic nodes are hardware counterparts of some unary and 

binary arithmetic operations; the number of required input operands < 3, 

and the number of outputs < 2. Thus, the number of I/O ports of these 

primitive arithmetic nodes PA will be 1 < "A 5. 

Boolean nodes (B-nodes). 

These are similar to arithmetic nodes, but the operations to be carried out 

in Boolean nodes are all Boolean type functions such as AND, OR, XOR, 

bitwise operations, comparisons. The 
[~ 0 ? node in figure 3-3 is a Boolean 

node. A set of primitive Boolean nodes can also be defined so that com-

plex Boolean functions can be decomposed and evaluated through this set 

of primitive Boolean nodes. Primitive Boolean nodes implement a set of 

Boolean functions of single opcode with one or two input operands. The 

output of a Boolean node is a logic value true or false. The number of I/O 

ports of primitive Boolean nodes PB will be 1 < PB  :5 3. 

Data flow control nodes (C-nodes). 

This is a set of nodes in which input data are diverted or selected in a way 

determined by the value of Boolean control input variables. At least one 

Boolean control input is presented to this type of node. Typical data flow 

control nodes are merger, gate, router, and self-iterator. 

• Merger. The function of a merger node is to select, according to the 

pattern of control inputs, one data item to output from a set of data 

inputs. In general, a merge node can have 2" data inputs, one output, 

and ii bits of Boolean input, PM = 21 + ii + 1. A primitive merger 

is defined as n = 1, PM = 4, that is, one of the two inputs to a 

primitive merger is selected by the value of a Boolean input to the 

output. In figure 3-3, the last four nodes, which generate rootl and 

root2, are primitive mergers. A merger having arbitrary input m can 

be constructed from (m - 1) primitive mergers with a Boolean input of 
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c bits and a c - (m - 1) bits Boolean decoder node to decode the c 

control bits, where 

I 1092 (m - 1) 	if 109 2  (m - 1) = 1092  (m - 1)1 
(4.10) 

( 1092 (m - 1) + 11 otherwise 

• Gate. A gate node has one data input, one data output and one pattern 

input, PG = 3. There is a special pattern attached to a gate node, for 

instance the nodes with a single Boolean true (T) or false (F) pattern in 

figure 3-3. Data presented at the input of a gate node will be passed to 

its output if and only if the input pattern matches the pattern attached 

to the node. 

• Router. A Routing node is the inverse of a merger node. An input data 

to a router is passed to only one of a set of its outputs, as determined 

by the pattern of the Boolean control input. A general router has one 

data input, 2' outputs, and n bits of Boolean input, PR = 2 + m + 1. 

A primitive router is defined as m = 1, PR =4, so that one Boolean 

variable input can select one of the two outputs, to which the single 

input datum is to be routed. Similarly, a router with arbitrary m 

outputs can be built from (rn — i) primitive routers and a c -p (m - 1) 

bits Boolean decoder node to decode the c control bits. c here also 

follows equation 4.10. 

• Iterator. The output of an iterator, which is controlled by certain con-

ditions, can be either fed back to its own input or directed to some 

other node. The input to an iterator must be selected either from the 

output from another node or the feedback from its own output. There-

fore, an iterator can actually be composed from a primitive merger at 

its input, a primitive router at its output, and an operational node in 

between. One of the outputs from the router is connected to one of the 

inputs of the merger. Conversion nodes may also be needed to convert 

other iterating conditions to Boolean control conditions. 
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Edges in DFGs are all directed, to represent data flow direction. Frequently en-

countered edge types are one-to-one and one-to-many edges. One-to-one edges do 

not impose any implementation or embedding difficulties. Many-to-one edges are 

prohibited in direct implementations because of the uncertainty caused by wired-

or connections. Besides the special care required in handling the asynchronous 

hand-shaking of the one-to-many type, as described in section 4.3.2, there are also 

many physical and technical factors to be considered, such as excessive capacitive 

loads, non-ideal switching behavior, signal propagation degradations/delays when 

an edge of a DFG is mapped into a GALSA system. If one data source is to be 

shared by too many destinations, exceeding the fan-out capability of the driving 

node, buffer stages must be added. 

4.4.2 The Routing Cell 

The configurability of a GALSA system will be mainly determined by the design 

of the Routing Cell. More importantly, the performance of the RC will heavily 

influence the performance of an overall system. It is a compromise between routing 

capability and area efficiency to select a number of ports PRc and a number 

of states SSRC  for an RC. PRC is determined by Wh  and W, by equation 4.5. 

Therefore the selection of a PRC is the problem of determining a Wh and W. 

According to equation 4.6, the upper bound of SSRC increases quickly with 

RC• So if a higher routing capability is required, PRC must be increased. However, 

a large PRC will be very area inefficient. The final system configurability depends 

not only on RC routing states but also on the size of an application problem. It is 

unrealistic and not necessary to select a very large Wh and W,, to achieve a very 

high configurability at the expense of area. On the other hand, interconnection re-

sources can be significantly saved when- the computation threads model is applied 

because only the shortest local connections are needed in each thread. A mod-

est Wh  and  W,  that can support configurability higher than nearest neighbour 
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rm _ 

Figure 4-4: The channel width and RC ports 

interconnection, much lower than a complete interconnection, will be sufficient in 

most cases. A system composed of an array of primitive type PH,s is a good 

compromise for PH,,p  granularity and area efficiency. As analysed in section 4.4.1, 

the number of I/O ports of all primitive DFG nodes is in the range [1, 5]. This 

indicates Wh + Wv = 5 as a reasonable choice without imposing too much area 

requirement for the H and V channels, and a primitive PH, can communicate its 

5 I/O data with 5 paths in the H and V channels. We set W, = 3 and Wh = 2 

to give the V channel more routing capability, so that threads extracted from an 

algorithm will be mainly mapped into the vertical direction in a GALS A array. 

Wh = 2 allocates a spare routing path in the H channel because one path may 

often be used for neighbour connections. Because data can enter and leave a 

in four NEWS directions, there are 2 x (W + Wh) = 10 channel I/O ports in an 

RC to interface its neighbouring 4 RCs. The inputs and outputs in a PH,,, are 

tapped from these 10 channel I/O ports. This assignment of channel width, RC 

ports and an Re/PH,,, interface is illustrated in figure 4-4. The black boxes in 

the figure are switch units which can divide a channel path into two segments and 

tap both path segments for the PH,,,. 

So we have Wp ff  = 10 and PRc = 20 for this RC design from equation 4.5. 

If a higher configurability is required, some PH(,,,s may be left unused to get more 

RCs, and H and V channel segments. Hence, routing congestions unsolvable with 

the 100% PH,,, utilization constraint may still be solved at the cost of a decreased 

PHI,,, utilization. 
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Figure 4-5: (a) A switch unit in an RC, and (b) Switching states of (a) 

The upper bound of routing states for the RC design can be obtained from 
 20 

equation 4.6: SSRC  ~ C - 20 + > C 0 (220 ' + i - 21). To implement all 

the routing states in this upper bond, the RC switching mechanism will be very 

complicated and expensive because of the high PRC. Therefore, a simple switch 

unit, as shown in figure 4-5(a), has been designed. 

The switch unit is a four terminal device consisting of three switch elements and 

a switch control. One switch element divides a channel path into two segments 

and the other two switch elements tap both segments of the path for a PH,. 

The orientation of the switch unit in the figure is for the V-channels. Switch 

units used in the H-channels are obtained by rotating the unit anti-clockwise by 

90° . Compared with the switch structures proposed in [15,88], this switch unit 

is much simpler while the routing capability is still sufficiently flexible because 

the segmentation of channel paths can improve routing capability efficiently. The 

tapping of the segmented paths makes it much easier to form computation threads 

and communication paths between threads. The interaction between a V channel 

and an H channel may only happen at their cross points. The two dots in figure 4-4 

are two switches linking two paths in the H channel to two paths in the V channel 

respectively. It is not necessary to have cross-point links (6 switches) because the 

5 switch units in an RC can tap any of the path segments for the PHc ,. 

Since there are three switch elements in one switch unit, all of the possible 

routing patterns in one switch unit can be found by various combinations of ON 
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Figure 4-6: PHI,, block diagram 

and OFF state of the three switch elements. Thus, the complete number of routing 

states of a switch unit can be calculated as: SS. = C + C3' + C + C = 8. These 

eight possible routing states are depicted in figure 4-5(b). From a performance 

viewpoint, it is best to make use of the states involving only one or at most two 

conducting switch elements. The last state in which three switch elements are all 

closed is not allowed because a wired-or condition may occur. 

There are four states for the H and V cross section links, so the actual RC 

routing states can be obtained as: 

SSRC  = 4 x SSNIIL 	 (4.11) 
8tL 

where N u  is the number of switch units in an RC. For SS 8  = 8 and N u  = 5, we 

get SSRC  = 131072 for the RC in figure 4-4. This RC should be sufficiently rich 

in its routing capability for most arithmetic applications. 

4.4.3 The Programmable H,, 

The top-level block diagram of a PH,, is shown in figure 4-6. In the figure, 

the I/O selector selects input and output ports from an RC; the Data Transfer 

Interface (DTI) and the Clock Management Unit (CMU) form a GALS interface; 

the Execution Code Register (ECR) stores binary codes to control the I/O selector, 

CMU, and the function of a primitive PH,, (PH,). 
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Conventional microprocessors usually have a very complicated control part for 

instruction decoding, scheduling, sequencing and various event handling, and a 

data path for processing data. The structure of PEs in MIMD parallel processing 

systems is similar to conventional microprocessors, in particular, a complex control 

part in each PE is required because every PE may behave independently on differ-

ent or even the same instructions decoded differently. The PEs in SIMD systems 

are usually much simpler in that there is no complex control part because all of the 

PEs are sharing a common central control part which sequences and broadcasts 

instiuctions executable in the data paths of all PEs. However, a simple control 

mechanism local to each PE can often be found very useful in SIMD architectures, 

to facilitate some local low level modifications to globally broadcasted instructions. 

Examples are the disable/enable mechanism and data memory address offsets. Dy-

namic programmability is another interesting approach in which interconnections 

and PE operations may be dynamically changed according to some conditions and 

data status generated during processing. Dynamic programmability will certainly 

require higher system complexity to implement. The dynamic control principle 

is very useful for applications with highly dynamic data dependencies, such as 

the region growing and the labelling problems in image processing, or dynamic 

particle movement in a particle system. Because the GALSA system is expected 

to be applied to arithmetic and logic evaluation applications, static programma-

bility should be sufficient. As opposed to broadcasting instructions during data 

processing as in SIMD systems, different executable instructions for statically pro-

grammable PEs are all loaded into each PE prior to the execution phase. In our 

case, it is not necessary to design a complex instruction handling control part for 

a PHc,p ; the PHc,, is programmed by loading codes into its local ECR at the same 

time as the array interconnection network is configured. 

A set of proper primitive functions for the design of the PHP.P  need to be 

selected, so that the circuit complexity of a designed PHp,,p  is not too high for the 

range of selected functions. Any other complex functions can be implemented by 
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node type function symbol H, operands outputs 

Arithmetic add/sub +/- full adder A, B, Cm  5, C 

Boolean NoT/AND/OR 

XOR/XNOR 

-' A V 

0 

Boolean functions A, B C 

Merger/Gate selection v 1 	2-1 multiplexer L, R, C 	1.  0 

Table 4-1: Selected primitive functions for 

connecting a group of PH,s in an appropriate way. According to the DFG node 

properties analysed in section 4.4.1, a PHP.P  should be able to perform at least 

some simple A-node, B-node, merger and gate functions. All the other types of 

nodes or the same type of node with higher complexity can be built from these 

primitive nodes. For example, a 1-to-2 router can be formed with 2 gate nodes 

having the same input; an iterator node can be constructed with a merger and 2 

gate nodes. The simplest arithmetic function is addition and subtraction, which 

will be supported by the PH,7,. NOT/AND/OR/XOR/XNOR are chosen as the 

available Boolean functions because these functions can be derived directly from 

an addition function which will be illustrated in section 5.4.3. Other Boolean 

functions can be obtained from these 5 primitive functions. The merger and gate 

can be implemented with a 24o-1 multiplexer. These selected primitive functions 

are listed in table 4-1. 

4.5 PH Local Memory 

Since most of the massively parallel processing systems are designed for image 

processing or matrix related applications, a common approach is to load a complete 

set of data, such as an array of image pixels, into a processing array, and to 

save the intermediate and final results in the array. If there are enough PEs 



Chapter 4. A Configurable GALS Array 	 110 

in the array, each PE will hold only one data item, otherwise each PE needs 

to hold a subset of data items. Thus the minimum local memory requirement 

for a PE will be at least the word length of one data item. In actual system 

implementations, it is normally desirable to allocate as much local memory as 

possible so as to reduce local memory reading and writing traffic to a host computer 

during data processing. However, the choice of the local memory size is limited 

by the available chip size and technologies. One of the common solutions to 

this is to design an external RAM port in each PE so that the local memory 

can be easily expanded with the off-the-shelf RAM chips to meet application 

requirements. Besides local memories, a set of registers are often required to 

facilitate data manipulation operations. Because we adopt the data flow processing 

principle, data are processed on-the-fly. That is, every time a finite set of input 

data flows through a set of connected programmed PH,'s, they are modified 

through a sequence of intermediate data, and a final set of required results can be 

obtained with a finite number of processing steps. One important characteristic 

of this, processing data on-the-fly approach is that once all of the subsequent 

modified data from the previous step are generated, there is no need to preserve 

their ancestor data. In [70,30], memory requirements for systolic arrays which 

are based on the 'processing on-the-fly computation principle are analysed. In 

general, the use of input/output and some temporary registers will be suitable 

for systems based on the processing on-the-fly computation principle. Thus, there 

is no requirement for high local memory for PH07,s in a GALSA system as in a 

conventional massively parallel computing system. As can be seen from table 4-

1, there should be at least three input registers to hold input variables and two 

temporary registers for output results in a 
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4.6 Summary 

In this chapter, some basic architecture constraints are discussed and several typ-

ical configurable interconnection topologies are analysed and compared. Based 

on this analysis and the data-flow computation principle, an algorithmically con-

figurable array architecture called Pseudo Nearest neighbour Configurable Array 

(PNCA) is proposed for the multiple threads computation model. A top-level 

GALSA system is illustrated by imposing a guarded GALS timing scheme on top 

of this PNCA architecture. The dependency between two connected PH,,,s is 

controlled through a guarded asynchronous hand-shaking protocol and each 

runs synchronously with a local clock. A VLSI implementation of this GALSA 

system will be described in the following two chapters. 



Chapter 5 

An Implementation of a GALSA 

From the top-level GALSA system structure described in chapter 4, we are ready 

to implement the building blocks while moving down the system hierarchy. There 

are four major parts to be designed: a an RC, a configuration data stream 

loading control and an I/O interface for the array boundaries. Because the commu-

nication between P1107,s are asynchronous, the design of each part is independent 

from the timing point of view, i.e. we focus on the design of functions for each 

part. There is no need for special timing considerations between any two parts. 

5.1 Design Tools and Implementation Technology 

During the progress of this project, there were several choices in the use of CAD 

systems. Available systems include the MAGIC interactive layout system with 

DRC check and netlist extraction capability, to interface with various simulators 

[17,104,22], and the ES2 Solo gate array compiler [28]. Later on, the Cadence 

Edge and latest Opus design system became available. 

The ES2 Solo software is basically a gate array and macro cell silicon compi-

lation system. A design is taken from either a schematic or netlist entry, through 

112 
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simulation, automatic place and route for gate array style layout, post-layout simu-

lation, package choice and design validation to obtain a chip design for fabrication. 

Since the architecture of the GALSA system is highly regular, it can be im-

plemented by the duplication of the RCs and PH01,s in horizontal and vertical 

directions as a two dimensional rectangular array. The area efficiency of an entire 

GALSA system will be largely determined by the design of the RC and PHI,,,. 

Hence, the ES2 Solo was not used. The logic of the RC and PH, needed to be 

fully custom-designed and their layouts needed to be implemented with an inter-

active layout system. The Berkeley MAGIC CAD system has a set of assisting 

programs which can extract layout data and convert them into several netlist for-

mats which can be used as inputs to some simulators. This makes the post-layout 

simulation possible. The Cadence Opus is a much more powerful system, which 

can perform many more functions, including most of the tasks that the ES2 Solo 

and MAGIC can do. Therefore, we migrated to use the Cadence Opus system 

to design our GALSA system. All logic functions are custom-built with MOS 

transistors so that the transistor sizes can be properly adjusted. 

There are several simulators available, such as Crystal and ESIM from the 

UCB CAD package [17], RNL [104], and Spice [17,104]. Crystal is an interactive 

VLSI circuit timing analyser which can estimate the speed of a circuit and print 

out information about the critical paths. ESIM is an interactive event-driven 

switch level simulator. Both Crystal and ESIM take . sim format files extracted 

from layouts by MAGIC. Both use very simple models and are not appropriate 

for complex circuits. RNL is another switch level timing and logic simulator with 

a LISP based interface. Although the circuit model used in RNL is simple, it 

can be fine tuned at the user level so as to suit the different requirements of 

different types of circuit. RNL can take the circuit netlist extracted from the 

layouts designed with MAGIC and can be run either interactively or in batch 

mode. Spice is a circuit level simulator which has much more elaborate models for 

various devices and thus can get more accurate simulation results at the expense 
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of more CPU time than other higher level simulators. Spice is often used in 

simulating composition blocks or key components of a large VLSI system. At the 

outset, Spice 2G6 was used, but this is an old version which is slow and has very 

poor convergence behaviour. During the course of this project, Spice 3C1 was 

obtained and installed; this version has much better performance with improved 

numerical algorithms and an improved graphics interface for waveform outputs. 

Spice 3C1 can still take input data extracted by the MAGIC system. When 

we migrated to the Cadence Opus system, the Hspice circuit simulator, which is 

based on Spice, became available. The Hspice simulator has even better numerical 

convergence performance and a very impressive graphics user interface. Thus, the 

current design of the GALSA system is simulated with the Hspice simulator. 

The fabrication technology and libraries, which are also integrated into the 

Opus system, are from Mietec 21m N-well double poly-silicon, double metal CMOS 

process. Electrical parameters (NMOS and PMOS models) for Hspice simulation 

are provided by Mietec. 

5.2 The Confi'ri1ratii_Technique -------------- - 

There are many different configuration techniques to interconnect PH37,s in accor-

dance with the data dependency of an algorithm. Each of these techniques has 

different system reusability, implementation requirement, switching performance, 

and silicon area requirement. The interconnection network in a GALSA system 

can be implemented with either non-volatile hard restructuring or soft configuring 

technique. 

Non-volatile hard restructuring techniques are usually based on the physical 

blowing of a wire or connection between two points by special techniques such as 

laser, electron-beam or applying a programming voltage. Therefore a restructuring 

is non-volatile and permanent. A hard restructuring is often performed after wafer 



Chapter 5. An Implementation of a GALSA 	 115 

fabrication to improve yields, for instance for RAMs, by disconnecting faulty cells 

and bringing in redundant fault free cells [111,94]. Some of these techniques are 

also used in Field Programmable Gate Arrays (FPGA) for final customisation. In 

[39,25], "anti-fuses", which can be irreversibly changed from high to low resistance 

when "blown" by applying a programming voltage across them, are used in an 

electrically configurable gate array design. The ON or OFF characteristics of a 

connection resulted from hard restructuring methods are the best, and they also 

take up the smallest area of the various configuration methods. However, hard 

restructurability can only be used once, i.e. it is impossible to "undo" a change. 

The implementation of a hard restructurable system normally requires a special 

and expensive processing technique. 

As opposed to irreversible physical changes in hard restructurings, various 

electronic switches can be designed for soft configuration purposes. A soft con-

figuration is defined as a configuration which can be done repeatedly without 

permanent physical changes to a configurable system, i.e. configuration changes 

are reversible. There are two common ways to control the ON/OFF status of a 

soft switch. One is the non-volatile switch control, in which switch settings can 

be retained even when the system power is switched off such as the EPROM or 

EEPROM techniques used in [56,105,54]. The other is to use static bistable ele-

ments, for instance using static RAM (SRAM), to control the ON/OFF settings 

of switches. The SRAM control is volatile because once the system power is off, all 

switch settings will disappear. There are many configurable systems implemented 

with the SRAM switch control technique [139,109,59,58,9,14,81,90,134]. 

Soft configurable systems provide much higher configuration flexibility at the 

user level, i.e. configurations are achieved by changing electronic control signals 

to switches, and can be done repeatedly at any time. An extra benefit of using 

SRAM cntrolled switches is that conventional common VLSI fabrication tech-

nologies can be used for silicon implementation, and it is fairly simple to configure 

such a system which is just the same as writing a normal RAM array. Therefore, a 



Chapter 5. An Implementation of a CALSA 	 116 

soft configurable system with SRAM controlled switches has the best user config-

urability and reusability. It can be implemented with less expensive technologies 

while EPROM or EEPROM processing technologies are more complicated than 

a SRAM process. The flexibility of soft configuration techniques is obtained at 

the expense of more area consumed by switching logic than hard restructuring 

methods, and some extra delays introduced into communication paths by switch-

ing logic. The cost of larger area requirement is compensated by less expensive 

processing technologies. A high system throughput (bandwidth) can still be ob-

tained because communications can be pipelined [88] to overcome latencies caused 

by the soft switching devices. The performance of switching devices is also being 

improved continuously. 

Our GALSA system was to be designed with high user configurability, and to be 

implemented with a conventional CMOS processing technology and design tools. It 

is not suitable to use hard restructuring techniques because of the non-reusability 

after a restructuring; the restructuring process is slow and the implementation 

requires special and expensive processing technologies. We do not choose the 

EPROM or EEPROM approach because some special implementation techniques 

and programming process are also required. Therefore, the soft configuration 

approach with SRAM controlled switching logic was chosen in the design of the 

GALSA system. 

As illustrated in chapter 4, the design of the GALSA system can be divided to 

the task of designing a PHc,,,, an RC, a configuration data stream loading circuit 

and an array boundary I/O interface. Although an asynchronous data transfer 

interface is included in the PH, depicted in figure 4-6, we shall first describe 

the design of such an interface for its special and important role in our GALS 

approach to the design of.configurable hardware algorithms. 
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5.3 Asynchronous Data Transfer Interface 

The asynchronous data transfer interface (DTI) controls the data movement be-

tween two connected PH,s. In our GALS approach, the DTI will be asynchronous 

following the guarded communication protocol illustrated in figure 4-3. This DTI 

consists of a hand-shaking Input Guard (IC), an Output Guard (OG) and a data 

status signal generator for the input and output of a PH,. 

5.3.1 Hand-Shaking Cycle 

There are two basic control signals involved in the guarded communication be-

tween a pair of connected modules: a request to output data when available and 

an acknowledge to complete a hand-shaking cycle when input data are correctly 

accepted. A logic module can be in either input or output mode. When new 

data are valid and stable on output lines of a module, the module is said to be 

in an output mode and an signal is sent to the module which will accept 

the output data. When the destination module is ready to accept the data, the 

module is said to be in an input mode, and the data presented on the input lines 

of the module are transferred to the module. Upon the completion of this data 

transfer, an A.t  signal is sent back from the destination module to the source 

module. This A.t  signal frees the source module from the output mode, and 

resets the data output request signal. A complete hand-shaking procedure can be 

regarded as a cycle: a data output request signal starts a hand-shaking cycle, and 

an acknowledge signal terminates a hand-shaking cycle. During one hand-shaking 

cycle, the module which outputs data is in control until an acknowledge signal 

is generated, at which time the control moves to the module receiving the data. 

The state of the DTI between two communicating modules is determined by the 

way in which, the request and acknowledge signal are represented. The interface is 
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Figure 5-2: Transition signalling 

said to be in a quiescent state if there are no active hand-shaking signals between 

them. 

There are two common ways of representing the state of an asynchronous 

bundled data interface: level signalling and transition signalling. In the level 

signalling representation, which is shown in figure 5-1, both the request and the 

acknowledge signal are low in the quiescent state. A request event is signalled 

when the output module raises its signal. The corresponding input module 

acts according to its own state and raises its A t  signal when input data are 

accepted. Upon receiving this acknowledge signal, the output module resets the 

signal to indicate the completion of the current hand-shaking cycle, and finally 

the input module resets the signal to return the interface to the quiescent 

state. This requires two round-loop trips between two communicating modules 

to complete one hand-shaking cycle. In the transition signalling representation in 

figure 5-2, level transitions in request and acknowledge signal are used to control 

hand-shaking and data communications. A data output request is signalled when 

the R.Ut  signal is toggled. This is acknowledged by a following toggle in the 

Aout signal to complete one hand-shaking cycle. A transition in a signal is an 
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event, therefore a transition signalling interface is event-driven. If both the request 

and the acknowledge signal are initialised to low, a transition signalling interface 

is in the quiescent state when the request and the acknowledge signal have the 

same logic state. Hand-shaking Control signals require only one round-loop trip 

in the transition signalling interface. Thus, the time required to return to the 

low-low quiescent state in the level signalling interface is eliminated. The delays 

caused by configurable switches in interconnection paths can be very different 

with algorithm mappings and some of these delays may be comparable with gate 

delays. So this saving of time in one extra round-loop trip is very important 

in configurable systems which can improve the communication performance over 

the level signalling interface. The event-driven hand-shaking is also a concise 

protocol which fits well to the asynchronous guarded communication defined in 

section 4.3.2. Therefore the transition signalling representation is adopted for the 

design of our asynchronous DTI. 

5.3.2 Data Status Signal 

One of the key issues in designing asynchronous hand-shaking logic is to generate 

a data status signal which can represent the existence of valid data, for example, 

stable results after a data evaluation or a register write, at the output or input of a 

logic module. The asynchronous DTI will be activated and will generate a correct 

sequence of control signals upon the value of this data status signal. There are 

three basic structures which can be used to generate a data status signal for the 

output of an evaluation logic module: a pre-determined simple worst case delay 

unit, a data transition detector, or differential logic with complementary output 

data values. 

Pre-determined logic module latency 

It is possible to estimate a maximum latency for a logic module. Therefore, a 

delay unit designed with the same maximum possible latency can be inserted into 
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a hand-shaking path which is in parallel with a data flow path in logic modules 

as shown in figure 5-3. A data status signal is passed through the delay unit 

in parallel whilst the input data at Din is  processed through the logic module. 

The Data-Valid (DV) signal is passed from DV1  to DVout  with the same delay 

just as the output data becomes stable at Dout . This DV signal will activate an 

asynchronous DTI which in turn controls the data-flow rhythm in the data path. 

Because the delay unit reflects the worst possible latency in a logic module, the 

performance of this structure will also be the slowest. In our GALS approach 

to configurable hardware algorithms, the number of clock cycles required in each 

PH, may be different depending on algorithms. This fixed delay unit structure 

is not a suitable choice for our design. 

Data state transitions 

The basic idea in this structure is to make use of data logic state transitions to 

generate a DV signal. There are many different ways to detect the logic state 

transition of a datum. In figure 5-4, the logic state of output data from a logic 

module is kept by a delay unit and then compared with the new output data logic 

value via an XOR tree, any logic transitions at the output of the previous stage 

will set the DV to high. In actual implementation, a lock mechanism is required 

to lock the DV at high until the current set of output data are no longer needed 
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Figure 5-4: A data transition detector 

by the next stage. There is one extreme situation which cannot be easily handled 

by this logic structure, i.e. all of the outputs (output 1 , output 2 , ..., output) remain 

unchanged but represent a new set of data. On the other hand, at least two stages 

of delay are introduced before a DV signal is generated. In the following sections, 

we will find that this structure can be used in our transition signailing DTI design 

where only request and acknowledge control signals are involved. 

Exploitation of differential logic 

Differential logic can be easily modified to generate a data status signal DV. Fig-

ure 5-5 shows such an example which is very similar to domino logic. A precharge 

mechanism is used in this differential logic structure with an NMOS evaluation 

tree and two PMOS pull-ups. Two distinct operation phases can be defined in the 

block: precharge/neutral and evaluation. When I = 0, the logic block is said to 

be in precharge/neutral phase since out and i are both precharged to 1 through 

the two PMOS pull-ups regardless the logic states of inputs to the NMOS tree. 

When I = 1, the NMOS tree is enabled and either out or Th will be discharged 

to 0 which is determined by the input logic states to the NMOS tree. The logic 

block is thus said to be in evaluation state. The NAND gate in figure 5-5 acts as 
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Figure 5-5: Hand-shaking signals generated from differential logic 

an AND element for values at out and &. Therefore, when (out, iI) - 1, we 

have P•V 0 which signals the establishment of a neutral state and the logic 

block is ready to evaluate a new set of input data. When one of the out and Th is 

discharged to 0, we have DV -i 1 which signals the completion of an evaluation 

and the availability of a stable result at (out, i). A variation of this structure 

can be found in [41] for a dynamic self-timed adder design. The static NAND 

gate is replaced by a dynamic NAND tree and a dual-rail carry path is used to 

propagate a DV signal through the NAND tree for the adder. 

The size of the NMOS tree depends on the number of inputs and the complexity 

of the logic function being implemented. The NMOS tree does not necessarily grow 

linearly with the complexity of the logic function because it can be optimized to 

share some transistors from out and 5Rt side of the tree. 

In a GALSA system, each PH, has a local clock to control its function. 

Different functions may require different numbers of clock cycles to complete. 

This differential logic structure cannot make use of this particular local clock 

property and can complicate the clocked logic design, so it is not used in our 
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GALS approach. A special Clock Management Unit (CMU) will be described 

later which makes use of this property to generate a DV signal at the output of 

the PH, module. 

A Tn-state Register 

The data transfer between two connected PH01,s is through input registers. With 

input registers, it is possible to overlap some part of a hand-shaking cycle with the 

internal operations in PH,s to improve the overall system performance further. 

For example, if a PH, is activated after new data are stable in its input registers, 

the time required for the PH,,, to send out an to complete the current hand-

shaking cycle is overlapped with the PH,,,'s normal computation. 

A data status signal for input registers is also required to enable the overlapping 

of a hand-shaking cycle and a computation. Because a normal register has two 

stable states 0 or 1, this makes it relatively simple to design a tn-state register 

with a third state similar to the DV signal of differential logic in the last section. 

This tn-state register can hold input data as a normal input register. It can also 

interact with the hand-shaking guard and the CMU to form a complete general 

GALS DTI. 

When a normal register is in one of the two stable states, two circuit nodes can 

always be found whose logic levels are complementary to each other. A tn-state 

register can be formed by creating another stable state where these two nodes 

are set to the same logic level. Figure 5-6 shows the design of such a register. 

When it is stable, if a Data-Valid flag: DVR = Q . = 1, the register is in an 

occupied state where data must be kept and the register must be write-protected. 

If DVR = Q . = 0, the register is in an empty state and it is ready to accept a 

new datum. 

Signal R comes from the hand-shaking guard which clears the register and 

keeps it in the empty state when an acknowledge event is received. The register 
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Figure 5-6: A tn-state register design with WEN, i, DV, 

is write-enabled (WEN) when it is in the empty state. However, a datum can 

only be written into the register when an input request event is detected by the 

hand-shaking guard. Note that WEN and J should be mutually exclusive, i.e. 

they should not be active at the same time. 

Although this tn-state register design requires 7 more transistors than a normal 

static register, it improves data transfer performance and reliability over the pre-

defined worst case delay structure. On the other hand, because a delay unit needs 

at least 6 transistors, the cost of our tn-state register design is comparable in 

total. There are also two choices for multiple inputs in a logic module: to use tn-

state registers for all inputs to gain maximum performance or to use one tn-state 

register and normal registers for the rest of inputs to minimise cost. In the latter 

case, the tn-state register acts as a register and a delay unit as well. 

5.3.3 Event-Driven Hand-shaking 

At the output side of an output module, three events can be identified in a transi- 

tion signalling hand-shaking cycle: request, acknowledge, and clear. At the input 

side of an input module, three events can also be identified: request, input-setup, 
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Figure 5-7: Event sequence in event-driven hand-shaking 

Figure 5-8: Muller C-element and its variations 

and acknowledge. The request and acknowledge event are the same for a pair of 

communicating modules. Therefore there is a total of four events involved. The 

transition signalling hand-shaking logic derived from these events is event-driven 

hand-shaking. As illustrated in figure 5-7, events at an output always happen in 

the order of request - acknowledge -i clear - request and events at an input 

are in the order of request -i input-setup -p acknowledge -p request. 

Six event processing elements are illustrated in [128]. Two most basic event 

elements are exclusive OR (XOR) and Muller C-element [100]. An XOR element 

implements the OR logic for events, that is, when either input of an XOR changes 

state, its output also changes state. The Muller C-element carries out the AND 

operation on events. When both inputs of a C-element are in the same logical 
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state, the C-element and its output copy that state. When the two inputs differ, 

the C-element uses its internal storage to keep its output on previous state. Thus 

only after an event takes place on both of its inputs will a C-element produce 

an event at its output. Both XOR and C-element can be easily generalised to 

multiple inputs. The XOR element can be represented by the conventional XOR 

symbol. The Muller C-element and its variations are shown in figure 5-8. Since 

the Muller C-element uses the concept of state, i.e. the logical levels of signals, 

the level signalling hand-shaking scheme can be easily implemented with the C-

element [128,99,98]. In our transition signalling guarded communication approach, 

an event-driven Input Guard and Output Guard are to be designed whilst the C-

element can be used to merge the multiple independent input request or input 

acknowledge events to save the cost of multiple input/output guards. 

5.3.4 An Event-Driven Register Transfer Interface 

We developed a transition signalling DTI for register data transfer based on the 

XOR data transition detection structure illustrated in section 5.3.2. One basic 

assumption, to ensure each new input state is captured for the structure, is that the 

logic state generated after an event on a signal always differs from its immediately 

previous logic state. This condition is guaranteed on the request and acknowledge 

control signal in the transition signalling hand-shaking representation described 

in section 5.3.1. 

The schematic of the top level event-driven register transfer DTI is shown in 

figure 5-9. In the figure, there is an input guard (IC), an output guard (OG), 

a tn-state register (R3S) and some glue logic. The DVF  is a flag signal for the 

output data status in a function module Ti,, and are input and output 

transition event signals. EVT1  and EVT0  are the flags for the input and output 

events respectively. The mit signal initialises the whole interface after power on. 
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After a further analysis on the event sequence illustrated in figure 5-7, detailed 

control signal state transition graphs for the IG and OG are generated as shown in 

figure 5-10. Throughout the rest of this thesis, superscripts +, —, T, T+, T— to 

any signal name represent logic high, logic low, a transition event (any direction), 

a transition to high and a transition to low respectively. All input signals are 

initially set to low by an external mit signal except ACK and ACK 1  which 

are initially set high. 

Figure 5-10(a) shows the signal state transitions for an input guard. An in-

put communication cycle starts with a transition event REQ on Tin which sets 
in 

EVT. If DV by which is meant the tn-state input register R3S is in occupied 

state, EVT will wait until D' to proceed. When DV, R3S starts to take in 

a new datum and resolves to a stable register occupied state with Once 
+ 	 T 

DVR , an event ACKL  is generated on 	and EVT is cleared. Another input 

cycle starts again when REQ. A similar signal state transition graph for an out-

put guard is shown in figure 5-10(b). DVM  (Module Data-Valid) is another state 

flag similar to DVR  in a tn-state register which represents the state of an entire 

logic module PH. DVM  is derived from DVR  and DVF. If there is no valid data 
T+ at the output of a module, DVM  = 0. A DVR  will activate a new computation 
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Figure 5-10: State transition graphs: (a) input guard, (b) output guard 

in the PH,, and a DVFT_  occurs after a pre-defined number of clocks. An output 

cycle starts with DVFT_  which enables the OG to send a REQUt  event to its next 

module. The OG then waits for an ACKT  event from the next module. Once an 
in 

ACK is received, the OG sends the clear signal W to clear the DVR  and DVF  

flag in the current module. A new computation and output cycle starts again 

following a new D1 7' from the next input cycle. 

The IG and OG are designed according to the signal state transition graphs in 

figure 5-10. The schematics of the designed IG and OG are shown in figure 5-11. 

The heart of this guard logic is a master-slave flip-flop which keeps T rn 's previous 

state. When W = 1, the slave Dlatch is open for writing; when W = 0, the master 

Diatch takes 7's new state and the slave Dlatch is locked to keep T rn 's old state. 

The XOR element is used to set the input event flag E VT/E VT 0  when T makes 

a transition. 

A data transfer cycle in the event-dnven DTI in figure 5-9 starts with REQ T  
. 

Then the IG follows the state transition graph in figure 5-10(a). When DV, 

the function module is activated by the CMU and DVF  after a number of clock 

cycles following the activation of the function module. The OG is activated when 
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Figure 5-11: Event-driven (a) input guard, (b) output guard 

DVT_ and follows the transition graph shown in figure 5-10(b). 	= 0 when 

EVT and DVJ  (no REQ event, keeping R3S empty), or 
T- 

 if an ACK, 

event is received and EVT" by the OG (clear R3S and DVF ). = 1 will keep 

the value in the R3S. 

The advantage of this event-driven guarded DTI design is that it is now an 

easy task to design a total scalable modular system because a logic module with 

this DTI is completely self-contained and portable. A system constructed from 

such modules can be easily scaled up or down. A module can be easily adapted 

in any other GALS based system without worrying about the system level timing 

design and scheduling problem. 

5.4 The Implementation of a PH0  

The abstract structure of a PH,, has been illustrated in section 4.4.3. The essential 

function of a PH, is to transform, in its primitive programmable operator 

• set of input data selected from a set of input ports, and output modified data to 

• set of output ports. The data transformation function and I/O ports selections 

are directly programmed by bits stored in an execution code register (ECR). The 

data transfer interface (DTI) and the clock management unit (CMU) form a GALS 
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interface that connects and controls the data transfer between PHc,i,S: In this 

section, we describe the design and implementation of the PH in detail. 

5.4.1 The Clock Management Unit 

In a seff-timed system, a combinational function module is activated immediately 

after a DV in the tn-state input register, and the completion flag DVF  for a 

computation can be generated by adopting differential cascade voltage logic [99] or 

a dual-rail complementary carry chain [41]. Because a PH,,p  runs with a local clock 

and has asynchronous data input from the event-driven DTI, a clock management 

unit (CMU) is required to synchronise the asynchronous input data with the local 

clock and computation in the PHc,,,. The CMU also controls the DVF  flag for the 

PH,. Figure 5-12 shows the block diagram of the CMU. syn is a synchroniser, 

clkbuf is a local clock buffer and DVF  shifter is a shifter that controls the DVF  

flag. 

Synchronisation 

A common approach to interfacing asynchronous input data with a clocked logic 

module is to use a synchroniser. A synchroniser can be a type of flip-flop controlled 

by a local clock to synchronise an asynchronous input data to an event of the local 

clock (usually a rising clock edg). A particular problem in synchronisation is the 

possibility of entering a metastable state in a flip-flop. A metastable state may 
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happen when a data input changes just before the flip-flop write-enable goes low. 

If a metastable state appears the flip-flop may not be able to resolve to one of its 

two stable states for the input data for a long period of time. If this happens, 

this is called a synchronisation failure. Although various solutions, such as a stop-

pable clock, a pausable clock and extensible clock schemes, have been investigated 

[84,107,127,83], the possibility of synchronisation failures remains a fundamental 

problem in these approaches. Given a synchroniser design, a probability of syn-

chronisation failure can be estimated [63]. Then, various design techniques can be 

used to reduce the synchronisation failure probability to an acceptable low level. 

We propose a different approach to synchronisation in our implementation. 

Firstly, the tn-state input register, as described in section 5.3.2, is controlled by 

the event-driven DTI instead of the local clock. Thus, the asynchronous input 

data can be safely locked into the input register without the interference from the 

local clock. Secondly, the synchronisation between the asynchronous data in the 

input register and the local clock for a PH is controlled through the DVR  flag of 

the tn-state input register and the local clock. In this approach, the probability 

of generating wrong results caused by a synchronisation failure can be reduced 

further because data in the input register are always set up correctly before a 

possible synchronisation failure between the DVR  and the local clock, and the 

PH, can still process the correct input data to produce correct results. 

Because a locally synchronous computation module is activated by the DVR  

flag from the tn-state input register, a safer and faster design without using syn-

chroniser is to assign an independent local clock generator in each module. The 

local clock generator and hence the computation function are activated by the 

DVR  and stopped by the DVF + . In this way, each clock cycle can be efficiently 

used in the computation module and there will be no risk of synchronisation fail-

ure. However, this structure is very expensive in hardware when the complexity 

of a module is relatively low and the number of modules in a system is high. So 

it is not adopted in our configurable GALSA design. 
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Another choice is to distribute a global clock to each independent PH.P  for 

local use. Different from the strict restriction on minimum clock skews imposed 

on distributing a global clock for a synchronous system, the only requirement 

to distribute a global clock in our GALSA system is that it has enough driving 

power to each PH. Clock skews caused by the distribution are no longer a 

fatal problem because the distributed clock is only local to a PH,, i.e. clocks to 

different PH,,,s can be regarded as independent whilst sharing a common clock 

source. Given the restriction that the physical size of a PH, is either within the 

size of an equipotential region of a chosen technology or a scale that a local clock 

can be easily distributed inside it with the minimum clock skew restriction, the 

effort and cost required to distribute such a global clock for local use in a GALSA 

system is much less than in a synchronous system. 

The synchronisation problem now is: D+  can happen at any time relative 

to the rising edge of a running local clock in a PHc,,. Therefore, the activation of 

the PH,, has to be at the start of the first clock cycle after the DVJ '. Figure 5— 

13 shows the design of such a synchroniser for the asynchronous DVR  and a local 

clock CLK. ENA (enable signal) is a control signal which activates the PHc,, 

timed by CLK when it goes high. CLK is a buffered local clock driven by a 

free-running system clock. When DVR  is low, ENA is held low which sets the 

PHI,,, idle. An ENAT+  follows the first CLKT+  after a D1 1'. The major part 

of a CLK time interval can be safely used to sample the DVR  signal from the 

tri-state register. A sampling time interval is called a DVR  detection window in 

the CLK. The sampling rate is the same as the CLK frequency. Once a D 7' 1 ft  

is detected in a DVR  detection window, the A signal in figure 5-13 will be locked 

to low, and ENA will be raised to high at the immediate next. CLKT+  edge after 

AT .  

There is also a probability of synchronisation failure with this synchroniser 

because the gate G1/G2 may enter the metastable state where signal A is balanced 

between making a decision to resolve to a logic high or low state. This is depicted 
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CLK 

DVR 

Figure 5-13: A synchroniser for DVR  and CLK 

by VC and VA' on the G1/G2 input and output voltage transfer curves in figure 5-

14, when both DVR  and CLK input are very close to the effective threshold voltage 

of G1/G2 at the same time. A metastable state may appear if a DV happens 

at a very short time just before the end of a DVR  detection window or at the 

same time as a CLKT+.  This short period of time is called a synchronisation risk 

zone in a DVR  detection window. In practice, noise (switching and thermal) or 

a slight initial imbalance on signals can eventually push the signal A one way or 

the other. The time taken to reach an output decision is called the decision time 

td [63]. The synchroniser design shown in figure 5-13 allows a whole clock cycle 

TC  for the output A from G1/G2 to resolve. If id> T, a synchronisation failure 

may be caused. Using the formula given in [63], a Mean Time Between Failure 

(MTBF) can be estimated as: 

MTBF = 
1 

2r x fc  x IDVR 

td/T 
X e 	 (5.1) 

where fc  and fDVR  are clock and DVR  input frequency respectively, td is assumed 

as Tc, r is a circuit parameter which is typically 0.2ns in the chosen 2jtm CMOS 

technology. Given fc  = 100MHz, IDVR = 25MHz, we got MTBF = 5.18 x iø' 

seconds. This is iø times longer than the expected 15 years normal silicon chip's 

life span. 

Circuit and layout design techniques can also be used to reduce the synchroni-

sation failure probability to an even lower level if the NMOS and PMOS effective 

gains of Gi, G2, G3, and G4 are designed to meet the following conditions: 
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so that the four gates effective threshold voltages will be set apart as shown in 

figure 5-14. If a metastable state appears in G1/G2, VA may be vibrating in a small 

range around the VA point for G2 in figure 5-14, VA' < VA < 2VC - VA'. For 

G3, the ENA signal will have much better chance to stay outside the metastable 

state by either keeping 0 or flipping to 1 state for, the synchroniser. Therefore, 

the worst case delay after a is one clock cycle before a PH is activated. 

With this analysis on MTBF and this circuit design technique, this synchroniser 

should be safe enough to be used in our GALSA system. 

To verify our analysis, an intensive simulation on the synchroniser design with 

the Hspice circuit simulator has been carried out. The simulation strategy is to 

move a D1 R1'+  edge across a region from a CLKT_  edge to a point just after a 

CLKT+ edge. Although it is impossible to simulate a consecutive move of the 

DVR  edge in Hspice, we identified a synchronisation risk zone which is about a 

lops overlap when a DVR 
T+ edge and CLK edge are between 1.7v and 3.3v. 

If both DV and CLKT+  fail in this voltage and time risk zone, it can take a 

longer time (about 1.7ns) than usual (0.4ns) for the synchroniser to resolve VA to a 
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Figure 5-15: A local clock buffer 

stable state. When this happens, VENA is still kept as 0 or changes to 1 after 1.5ns 

delay. Nevertheless, no synchronisation failure is seen in all simulation results and 

a worst case of one clock cycle delay does appear at a point in the synchronisation 

risk zone. Several typical simulation waveforms obtained by moving the DV 

edge are given in the appendix. 

Local clock buffer 

The local clock to each PH, is driven by a shared clock source in a GALSA 

system, and a PH,, is activated by the ENA signal from the CMU in the PH,. 

A local clock buffer, as shown in figure 5-15, is used to generate a two phase 

local clock from a globally distributed clock GCLK. The two phase local clock is 

activated and stopped by the ENA signal. This buffer plays two important roles: 

it compensates the time lost in the synchroniser for the LCLK phase, and it holds 

LCLK and LCLK to minimise the power consumption in a PH,, when the PH, 

is not active. 

DVF  control 

As illustrated in section 5.3.2, a data status flag DVF  for a locally synchronous 

PHrj , can be generated by taking advantage of the number of clock cycles required 

to run a programmed function. 
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Figure 5-16: A dynamic shifter for DVt control 

A DV is generated through a simple dynamic linear shifter controlled by 

the local clock LCLK. A 4-stage dynamic shifter is shown in figure 5-16. The 

total length of the shifter L 9  equals the possible maximum number of clock cycles 

required by a PHc4,. A multiplexer is used to select an output from stage n, 1 < 

n < L, in the shifter. n is specified in a clock cycle field in the ECR. The shifter 

is activated by the ENA signal from the synchroniser. The DVF  flag is cleared 

by the R signal from the event-driven DTI. 

5.4.2 An Event-Driven General GALS Logic Module 

A complete event-driven GALS data transfer interface can now be constructed by 

combining the event-driven DTI described in section 5.3.4 and the CMU depicted 

in the last section. With this GALS data transfer interface, a general GALS logic 

module, which can be used to build a GALS system, is shown in figure 5-17. In 

the figure, the GALS interface is enclosed in the dash box and the logic module 

can perform arbitrary logic functions with the local clock control. This general 

GALS building module exhibits an excellent portability and timing independency 

which meets the requirement of developing configurable hardware algorithms we 

aim to achieve in this project. The issue of using this general GALS logic module 

to construct a general GALS system or a GALS pipeline is discussed in [40]. 

The GALS logic module works in three phases in a GALSA system: the pre- 

loading of ECR and other configuration bit streams, the initialisation (mit = 1) 

of the GALS interface, and the normal system operation phase (mit = 0) where 
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Figure 5-18: Waveforms for the event-driven GALS data transfer interface 

sequences of asynchronous data transfer and computation events take place. At 

the boundaries of a GALSA system, Rin and Ai,, must be initialised from external 

sources. 

Figure 5-18 depicts a group of typical waveforms for the GALS interface signals 

in figure 5-17. It is noted that all the rising and falling edges of the signals 

illustrated in figure 5-18 represent effective events. A complete hand-shaking cycle 

consists of a sequence of such events. Also the design in figure 5-17 is a delay-

insensitive GALS system. That is, results from the synchronous logic module will 
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Figure 5-19: A PH and its I/O multiplexers 

not be affected no matter what the length of delay is involved in the communication 

path between two communicating modules and the logic module works correctly 

with a properly chosen clock speed. If the delay in a communication path changes, 

only the time to generate correct results will vary accordingly. 

5.4.3 The PH, and I/O Selector 
PO 

In a primitive hardware operator PHPP,  there are three input registers for A, B 

and Cm  respectively. These input registers are controlled by the event-driven DTI. 

There is one carry register (CR) for C,.t  and one temporary register (TR) for S 

output. For the I/O selector in a PH,, there are three 6-to-1 input multiplexers 

to select inputs for A, B and C,, and five 3-to-1 multiplexers to select S, Co., or 

T to 5 output ports. Figure 5-19 depicts the block diagram of the PH and its 

associated I/O selectors. All I/O multiplexers are controlled by the ECR. 

In the heart of the PH there is an Execution Unit (EU) which can carry 

out the primitive functions described in table 4-1. There are many different ways 

to implement such an EU. A variety of design structures was considered for the 

EU. One interesting ALU structure which is very flexible is given in Mead and 

Conway's book [95, chapter 51. However, it requires 12 bits of control to form an 
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ALU with three general functional blocks consisting of pass transistors. Because 

our target GALSA system is arithmetic computation intensive algorithms oriented, 

we decided to design an EU based on a full adder similar to the PEs in most of 

the massively parallel processing systems. 

The EU basically consists of a full adder and a 2-to-1 multiplexer. This is 

sufficient to run the primitive functions listed in table 4-1. We first analyse the 

functions that can be performed by a i-bit full adder and determine how a full 

adder can be programmed to implement these functions. In the following sections, 

i-bit full adder is assumed if not specified otherwise. 

A full adder takes in three inputs A, B and a carry Jm  from a lower bit, and 

outputs a sum S and a carry C,,.t  to a higher bit. S and C are calculated 

by equation 5.4 and 5.5. From these two equations, it can be seen that a set of 

functions as depicted in table 5-1 can be realised by setting C i,, and/or B input 

and choosing either S or C.,,t  as output respectively. 

S = 

(5.4) 

C=A•B+B.C1 +A.C2 	 (5.5) 

There are many different ways to design a full adder [137, section 8.2]. An 

adder design based on transmission gates, as depicted in figure 5-20, is adopted in 

our implementation because this adder can be implemented efficiently in CMOS 

from the area point of view and it has an equivalent sum and carry delay with 

buffered and non-inverted sum/carry output. The part inclosed in the dash box 

in figure 5-20 is capable of generating the A ED B and A e B function. This adder 

has been intensively simulated with the Hspice simulator with the chosen Mietec 

CMOS technology, and proved correct. A sub control input to the adder selects 

either B or W for an addtion or a 2's complement subtract function. If the adder 

is programmed for a 2's complement subtract function, B is selected as an input 
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Function inputs outputs 

addition Gin  A B S C 

subtract Ci,, A B S C 

inverse 0 A 1 A x 

OR 1 AB x. AvB 

AND 0 A B x AAB 

XOR 0 AB AeB x 

XNOR 1  1 1  A B AeB x 

x: Don't care 

Table 5-1: Possible functions from a full adder 

to the adder and Cm  is initialised to 1. The AS block in figure 5-19 sets the sub 

flag and initiaiises the carry register CR if a subtract op-code is set in the ECR. 

If a result S is to be saved into the TR, two clock cycles are required, one for 

add/sub function and one for TR write. This TR is included in our PH,,,7, design 

because it is anticipated that sometimes an S value may be required at the next 

cycle of computation. 

There are up to five possible input request and five input acknowledge signals 

to each PH,. Two 5-input Muller C-elements are used to AND together input 

request and acknowledge events to get one REQ i,, event and one ACK event to 

the event-driven DTI. Figure 5-21 shows the design for a simple 5-input Muller 

C-element. The DFF, which is similar to the Diatch used in the Input Guard and 

Output Guard but without the write control W, is initialised to 0. The other part 

of the PHI,,, ensures that at least one of the R, i = 0, 1,. . . , 4 is initially zero. The 

ACK'signal is looped back as a request signal from unused input ports, and the 

REQ.. t  signal is looped back as an acknowledge signal from unused output ports. 
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Figure 5-20: A transmission gate full adder 

The ACK.,, t  and REQ L  signal are also sent to the selected input and output 

ports respectively. 

5.4.4 The Execution Code Register 

The Execution Code Register sets the function of a PH,, and the number of 

clock cycles required to run the function. It also sets input constants and selects 

I/O ports for the PH,. There are four fields in an ECR: op-code, Ndk, input 

constants, and I/O port select, as shown in figure 5-22. The content of the 

Execution Code Register is preloaded at the same time as the routing network 

is configured. 

The first three bits b0 , b 1 , b 2  in the op-code field define, in conjunction with 

the Co in  and B °  constant field b6 , b7 , the function to be performed in a PH. 

Functions and their corresponding op-codes are listed in table 5-2. b3  is a pattern 

bit for the gate function. The next Ndk field has two bits b4  and b5 . Ndk defines 

the number of clock cycles required by an Eli function. In this case, at most 4 

clock cycles can be accommodated. This Ndk field makes it possible to design 
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Figure 5-21: A 5-input Muller C-element 

op-code (b2 b1 b0 ) function(s) 

000 -  VAe 

001 + 
010 - 
100 merge 

111 gate 

Table 5-2: Functions defined by op-code 

142 
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op—code NdkC?, ° 	Input ports 	 Out put ports 
lo 

Figure 5-22: The Execution Code Register 

more complicated synchronous EU functions for a PH, in the future, and more 

bits may be used in this field to allow more clock cycles for a function. The Ndk 

field is fed into the CMU in a PH,. 

Therefore for the AS block in figure 5-19, the sub flag is generated by equa-

tion 5.6 according to table 5-2: 

sub = F0  . 	 (5.6) 

Functions in table 4-1 that have to be implemented separately are the 2-to-1 

merger and the gate. A 2-to-1 multiplexer is used for a 2-to-1 merge function 

with (A, B) as inputs and Ci,, as the merger control. The logic design for the 

gate block in figure 5-19 is shown in figure 5-23. The match flag M = 0 and the 

gate is open if Gin  matches the pattern b3  in the ECR; otherwise M = 1 will keep 

the gate closed and set the reset signal T = 0 to clear the current node (DVR  

and DVF), and wait for the next cycle of input data and Boolean control input. 

For other functions, W from the DTI is passed directly to R9 . The T output is 

selected from either the merger multiplexer output or the temporary register TR. 

If b2  = 1, T selects the output from the merge or gate function. 

There is one input and one output port in each routing channel, so we have a 

total of five input and five output ports in the three vertical and two horizontal 

channels: vch< 0 : 2> and hch< 0: 1>. b8  to b16  are for A, B and C1  operands. 

Each operand needs 3 bits to control a 6-to-1 multiplexer which chooses an input 

from the five possible input ports or a constant. b17  to b 26  are for the three output 

results, S, C,,.t  and a T. Every 2 bits are used to control a 3-to-1 multiplexer which 
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Figure 5-23: Gate logic block 

A, B, C m  vch0 vchl vch2 hch0 hchl constant/register 

bi+2bi+lbi 001 010 011 100 101 000 

(a) Input port selection for A, i = 8; B, i = 11; Gin , i = 14 

L Tch<0:2>,hch<0:1> S C,,t  T NIL 

b, 1 b3  01 10 11 00 

(b) Selection of S, 	or T to output ports, j = 17, 19, 21, 23, 25 

Table 5-3: Bit settings for I/O port selection in an ECR 

selects one of the three outputs to one of the five output ports vch< 0 : 2 > and 

hch< 0 : 1 >. T is an output which is from either the 2-to-1 merger multiplexer 

or a PH,,, internal temporary register (TR) as shown in figure 5-19. With this 

output structure, it is possible to broadcast one output to up to five different 

PH,s and process returned acknowledge signals properly. The I/O channel port 

selection table 5-3 elaborates b8  to b26  settings for the I/O ports. 

From table 5-2 and 5-3, the content of the ECR can also be expressed in 

text format, like an assembly language, for clarity and easy understanding. Two 

execution code examples are given in table 5-4. The first example is an execution 

code for an ADD, with A input from vch0, B input from vchl and Gin  input from 

an internal feedback carry register (CR); S output is duplicated to vch0 and hch0, 

T is output to vch2, and C. t  to hchl. This function requires 2 clock cycles to 
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Function ECR code Text expression 

A + B 001610001000100001000111001 ADD 0 2 0 0 vch0 vchl CR S NIL T S 

A B 000000000011011111000001000 
1 
 XOR 0 1 0 0 hchO hchl CST S NIL S NIL NIL 

Table 5-4: ECR execution codes and text expressions 

complete. The second example sets an XOR function with A input from hchO, B 

input from hchl, Cm  = 0 as a constant (CST); the result S is duplicated to vchO 

and vch2. The other output ports are not used. 

5.4.5 Multiplexers 

Multiplexers are heavily used in many array architectures and configurable ar-

chitectures. The in a GALSA system is no exception as this can be seen 

from figure 5-19. A detailed analysis on various multiplexer designs based on the 

conventional CMOS technology can be found in [58]. 

Two particular multiplexer designs are preferable: one RAM control per switch 

or NMOS pass transistor trees. The multiplexer constructed from one RAM per 

switch scheme has the best performance because there is only one transistor switch 

to connect a path. The area of this type of multiplexers grows rapidly when the 

number of inputs increases. On the other hand, an NMOS pass transistor tree 

has the area advantage while its performance is slightly slower than that of the 

one RAM per switch scheme if the number of inputs is not too high. For example 

in an NMOS 6-to-1 multiplexer tree as depicted in figure 5-24, only two more 

pass transistor delays are added in each input to output path but saves 3 RAM 

bits compared with the direct RAM control design. We adopted a compromise 

approach for area and performance: directly RAM controlled transistor switches 

for the Routing Cells and NMOS pass transistor trees for the multiplexers in a 

PH,,, design. The 6-to-1 multiplexer in figure 5-24 is used as the input selector 

in figure 5-19. A 2-to-1 or 3-to-1 multiplexer is just a small sub-tree (z 01  x1 ) or 
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Figure 5-24: A 6-to-1 NMOS pass transistor tree multiplexer 

(20) x 1 , 22) of the 6-to-1 multiplexer. Controls of these multiplexers come from 

the corresponding fields of the ECR as illustrated in the last section. 

5.5 The Routing Network 

The implementation of the routing network in a GALSA system is based on the 

discussion on network principles in section 4.2.5 and the decision on the Routing 

Cell capability made in section 4.4.2. 

5.5.1 Switches 

A basic switch device, that can be used to connect or disconnect two points, must 

be chosen before we design the switch unit for the Routing Cell. With conventional 

CMOS technologies, there are three possible choices for a basic switch device: a 

transmission gate, an NMOS pass transistor, or a tn-state non-inverting buffer. 

A transmission gate or tn-state buffer switch requires Q and Q from a Boolean 

control, but a pass transistor switch needs only one Q from a Boolean control. Both 

transmission gate and pass transistor switches have native bi-clirectional switching 

capability whilst it is very expensive to have bi-direction flow capability with tn-

state buffer switches. Among these three types of switches, a tn-state buffer 

switch has its own driving power at the expense of larger area. A pass transistor 
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switch is the smallest amongst the three switch types, so are parasitic capacitances 

in an NMOS switch. The NMOS threshold voltage (VT) loss, (V dd - VT) when 

a Vdd  passes through the NMOS pass transistor, is the major drawback. The 

"bootstrap" technique was considered and simulated for restoring the lost high 

voltage. However, this technique is not recommended in conventional CMOS 

processes because bootstrapping is very likely to the lead to devastating latch-up 

effect. 

Further analysis and simulations show that if a set of NMOS pass transistors 

are connected in series, the high voltage degradation after the first pass transis-

tor's VT loss will be just the voltage drop through the effective "on" resistance 

of the conducting transistor. Because this resistance voltage drop is very small, 

the VT voltage loss is no longer a concerning factor after the first pass transistor 

switch. The only problem left is that the more the pass transistors are in series, 

the slower will be the following waveform rising edges. Although there is almost 

no high voltage loss with transmission gate switches, the delays of both rising and 

falling edges are not greatly improved for a transmission gate switch because of 

the larger parasitic capacitances with one NMOS and one PMOS in parallel. Two 

serial switch chains with 8 NMOS pass transistors and 8 transmission gates (TG) 

are simulated with Hspice. The NMOS switch chain is also simulated with two 

power supplies: 5V for data signals and 7V for switch control. Table 5-5 shows 

the delays with one driver before and one driver after each switch chain. From 

this table, it is clear that the TG chain has poor low signal propagation speed 

and marginally better high signal propagation speed than the NMOS chain. The 

NMOS chain with a separate V + VT switch control voltage supply shows the 

best signal propagation speed for both low and high signals. The transmission 

gate switch will have even worse performance with the large parasitic capaci-

tances in our routing network because a switch chain can be branched. On the 

other hand, NMOS pass transistor switches, which will be scattered around asyn-

chronously communicating PH,s, meet the requirement of the delay-insensitive 
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Delays (ns) TG chain NMOS chain NMOS chain (5V + 7V) 

Low Signal 7.5 4.7 4.1 

High Signal 9.1 10.7 4.9 

Table 5-5: Delays in switch chains 
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Figure 5-25: A six transistor static CCM 

DTI described in section 5.4.2. Therefore, the NMOS pass transistor is chosen as 

the switch device in the switch unit design. We also designed the routing network 

and the configuration control memory with two separate power supply networks, 

this will enable us to test the system with either one power supply or two separate 

supplies for the routing network performance. 

5.5.2 The Configuration Control Memory 

Memories used in the GALSA system for storing configuration control data are 

called configuration control memory (CCM). NM  is the number of CCM bits 

required to configure a Routing Cell. 

A full detailed analysis and comparison of dynamic and static RAM designs 

can be found in [58]. With conventional CMOS technologies and our particular 

configuration requirements, a six transistor static RAM, as shown in figure 5-25, 

has been selected as a CCM in our GALSA implementation. 
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Figure 5-26: A switch unit with 4 bits CCM and 4 NMOS pass transistors 

5.5.3 The Routing Cell 

The basic element repeatedly used in an RC is a switch unit. As shown in figure 4-

5, a switch unit is a four terminal device which can internally route data from one 

terminal to another terminal. The data routing is controlled by a CCM. 

There are different ways available to implement the switch control. For ex-

ample, central storage can be used for each RC and logic can be used to decode 

the actual controlling signal to each switch element. This method can reduce the 

number of CCM bits, at the expense of decoding logic. Another way is to store a 

control bit for each switch directly in a CCM. Thus a total of 4 bits of memory 

is needed in one switch unit. This direct switch control can retain the regularity 

of the RC and simplify the RC design, thus this control structure is used in the 

routing network. Figure 5-26 shows the design of the switch unit. The total num-

ber of direct control'CCM bits required in an RC N CM  can be calculated from 

equation 5.7. 

RC 
NccM =4xNth+2 	 (5.7) 

where N hd  is the total number of routing channels to the RC and the extra 2 

bits are used to control the two cross points between the two vertical and horizontal 

channels. Because 3 vertical and 2 horizontal routing channels are selected for each 
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iq  

Figure 5-27: A bi-directional channel buffer 

row and column of PH,,,s, as illustrated in section 4.4.2, the total number of CCM 

bits in an RC is 22. For each channel, there are three switch units: one for data, 

two for request and acknowledge, which share one 4-bit CCM. Thus there are 15 

switch units in an RC. 

5.5.4 Routing Channel Buffers 

Because of the delay and waveform distortions caused by the RCs, buffers are 

used in the routing channels to recover signal waveforms and add driving power to 

signals. Since signals may flow in both directions in a channel path depending on 

the mapping of an algorithm, bi-directional buffers are used in each routing path 

with every RC. The schematic of a bi-directional buffer is shown in figure 5-27. 

There are two tn-state buffers in the figure. The DM is 1 bit CCM which always 

sets one buffer ON and one OFF. 

5.6 A GALSA System 

The core of a GALSA array chip is formed by duplicating an array element which 

consists of a Routing Cell with channel buffers, a PH, and a block of CCM, in the 

X and Y dimension. All ports of this array element will be properly positioned on 

the boundaries of a square area so that an N x N array core layout can be simply 

constructed by abutting this element layout in rows and columns. Other major 

considerations for the chip level implementation are peripheral control circuits 

around the core of the array. These peripheral circuits have three majpr functions: 
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distributing a global clock for each PH,1, local use, preloading configuration bit 

streams into CCMs and ECRs, and providing I/O interface on the boundaries of 

a chip. 

The clock distribution network is a tree structure with an external clock GLCK 

at the root. This GCLK drives a clock buffer at each row in the core array through 

one or two levels of buffers depending on the number of columns in the array. This 

row clock buffer then drives N clock buffers to N PH07,s in a row. 

5.6.1 The Pre-loading Circuits 

The operation of a GALSA system runs in three phases. A configuration phase 

must be performed to download network configuration and ECR bit streams for 

a particular algorithm once the system is powered on. The configuration phase 

is also called algorithm embedding phase for this reason. After this configuration 

phase, the system is initialised and then runs in the normal operation mode for 

the embedded algorithm. 

In the configuration phase, the GALSA system is simply treated as a mem-

ory array. The way to write this "memory" array is similar to writing a word 

to a memory. For each write step, a row of CCMs is selected and written si-

multaneously. CCMs and ECRs are arranged in 2 columns in each array element, 

therefore, there are 2N bits ma "memory" row for an array with N columns. This 

requires 2N pins for downloading a sequence of configuration bit stream words. A 

column shifter which has the same number of stages as the total number of bits 

in a "memory" column is used to generate a sequence of row write control signals 

for "memory" writing. This shifter is controlled by a clock which also controls 

the flow of input configuration bit stream words so that the write of a "memory" 

row is lock-stepped with the configuration word flow. Therefore, downloading of 

configuration words is in synchronous mode in the configuration phase. This does 

not impose any difficulties in design because there are no complex data depen- 
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Figure 5-28: A configuration preloading structure 

dencies with rows of write lines and two vertical clock lines which can be easily 

distributed to the column shifter. The clock does not need to run at a very fast 

speed. This will ensure that each write signal is enabled at the right time for an 

input configuration word. The clock input is shared with the clock input used 

in the GALS operation phase. Figure 5-28 shows this configuration preloading 

"memory" structure. 

To save on the number of configuration word pins, an extra synchronous serial-

in parallel-out row shift register of length equal to that of a "memory" word can 

be used. This shifter is placed on the top edge of the array. Only one configuration 

pin, which is the input to the row shifter, is required in this scheme. A sequence of 

configuration bits of a word length is first shifted into the row shifter, then a write 

line is enabled and the whole content of the row shifter is copied into a row of the 

"memory". This downloading procedure is repeated for all the rows to complete 

the configuration phase. An N-bit counter is required to generate a modulo-N 

control to the column shifter for the row writing signals. 

There are two ways to to retain a system configuration. The easiest way is 

to keep the system power on once it is configured. The other way is to duplicate 

configuration vectors in an EEPROM which is connected to a system. Every time 

the system is powered on, the configuration vectors are automatically downloaded 

into the system from the EEPROM. 
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5.6.2 GALS Array I/O Interface 

The GALSA system is a pad-limited architecture, namely the number of pads 

may determine the final size of a chip. Therefore slim pads are used for the pad 

ring. Multiplexers are also used at the ends of horizontal and vertical channels 

to multiplex the three vertical channels to one I/O pad group (3 pins), and also 

the two horizontal channels into one I/O pad group (3 pin). This may reduce the 

routability on the boundaries of a chip. However, efforts can be made to map 

sub-DFGs of an algorithm with less I/O requirements into a chip to avoid the 

I/O congestion on the boundaries of the chip. Figure 5-29 depicts the top level 

schematic of a 4 x 4 GALSA system with 8 configuration bit stream downloading 

pins. 

5.7 Testability 

It can be seen from the definition of the GALSA architecture that a GALS array 

can be tested in two phases. The test of the routing network is quite straightfor-

ward. First the conduction and switch ON function of each channel and switch are 

tested, then the independence of each channel and switch OFF function of each 

switch are tested. This will also test the function of CCM blocks. Once the routing 

network is tested, each PH, can be tested in turn. The data transfer interface 

can be tested by setting all PH,s to the merge function. The next step is to 

test all the primitive functions of each PH. This GALS array system has some 

degree of graceful degradation fault-tolerance on the array size. Malfunctioning 

PHc,,,s can be marked in a file and are avoided in the algorithm mapping proce-

dure. As far as the routing network is concerned, some open connection faults 

can also be marked in the same file and avoided in algorithm mapping. However, 

if there are too many faults in the routing network, in particular a fault cluster 
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Figure 5-29: The schematic of a 4 x 4 GALS array 
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which cuts a whole section of an array, or some short circuit faults in a chip, the 

chip is rendered unusable. 

5.8 Summary 

The design of a configurable GALSA system is described in this chapter. One 

of the most important design blocks implemented is an event-driven GALS data 

transfer interface. A novel tn-state register and new synchronisation scheme for 

the GALS interface are presented. These designs are carefully analysed and proved 

working with simulated results by Hspice. The GALS approach presented here can 

also be extended to the design of general GALS systems. The design details of a 

programmable hardware operator (PH,1,) and the routing network for the GALSA 

system architecture established in the preceding chapters are also elaborated in 

this chapter. In the next chapter, some simulation results on the performance 

of these designs will be presented and some algorithm mapping examples will be 

described. A performance comparison with some existing systems will also be 

made. 



Chapter 6 

Example Algorithms and 

Simulation Results 

Intensive simulations with the lispice circuit simulator on each individual design 

block described in chapter 5 were carried out to ensure that they function correctly, 

and to obtain typical timing characteristics of these elements. It is not easy to 

simulate an entire blank GALSA system, so we thoroughly tested the configuration 

vector pre-loading logic design, the routing network and a complete array element 

module. Several example application algorithms are studied and mapped into 

the GALSA system. Complete system level simulations were carried out for the 

configured GALSA systems with these embedded algorithms. 

6.1 Typical Timing Characteristics 

This section contains the typical timing characteristics of the key components 

designed for the GALSA system. Each component is. analysed with the Hspice 

simulator under typical operating conditions which are described next. The com-

ponents characterised are: the tn-state register, the input and output guard, 

the event-driven data transfer interface, the synchroniser, the transmission gate 

156 
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Q load DVR  load -f-  - 	 DVR1' -f 	—, D1' 
QT+  2ns 2ns 0.95ns 1.04ns 
QT_ 2ns 2ns 0.70ns 0.79ns 

Table 6-1: The tn-state register timing 

adder/subtractor, multiplexers, the Routing Cell, and the configuration bit-stream 

preloading circuit. 

6.1.1 Simulation and Measurement Conditions 

All Spice device models are taken from Mietec 21im, double poiy, double metal, 

N-well CMOS process. All circuits are simulated with 5V Vdd and OV Vss at 

27° C. 

All time measurements given in the following tables are in nanoseconds and 

the load at an output is the number of standard inverters unless otherwise stated. 

Input stimuli ramp 0 — 100% in ins. The propagation delay is measured from 

the 50% point of the input to the 50% point on the output. The rise/fall time is 

measured between the 10% and 90% value of the output. 

6.1.2 The tn-state register and the GALS DTI 

There are five signals in a tn-state register: Din, WEN, DV R , R, and Q. Table 6— 

1 lists the timing characteristics for 	—i D1 	when WEN, and 

DVJ ' when WEN with valid data at D1 . 

There are 4 signals: R1 , 	EVT, and DVR , in an input guard, and 

EVT 0 , and DVM , in an output guard. The timing characteristics for 

RT /A?' —f EVT"/EVT T  and DVT+/DVT+ , AT /RT are given in ta- sn in 	 o 	 R 	1W 	 out 	out 

ble 6-2. A complete shortest input cycle for an input guard, RT 	 T-I- . —* EVT. —p 
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IG A out  load R —, EVTT DVJ 	 — 

R' 2ns 0.52ns 0.98ns in 

T- R. 2ns 0.61ns 0.67ns 

OG Rout  load DVM   —, ou A - EV7 

2ns 0.98ns 0.47ns 
in 

A. 2ns 0.93ns 0.56ns 
In 

Table 6-2: The Input Guard and Output Guard 

— DV —* A, as illustrated in figure 5-10, is determined by the slowestOU  

EVTT+ — DV J  when DVJ  is before EVTT+.  This is measured as 1.71ns, 

therefore, T, IG = 0.61 + 1.71 + 0.98 = 3.4ns. A shortest output reset cycle for in 

an output guard is A - EVT 02' 	— (DV = DVJ  . DVA ) —+ 

EVT. It takes one NMOS transistor delay, 0.2lns, for EVT ' 
- TT_, and 

two AND gates delay, 0.62ns, for (DV 	D1') — DV. Thus, we have 

= 0.56+0.21+0.95+0.62 = 2.34ns. A shortest RT —+ DVT+ , RT path can 
ni_sn 	 in 	 R 	out 

be from a tn-state register to an output directly, 	= 0.61+1.71+0.98 = 3.30ns, in 

i.e. a data can pass through such a stage in only 3.30ns. Because DVR
T+ —* A 

T  
out 

is overlapped with 	- R in time an upper bound on a maximum sus- 

tainable data transfer rate can be estimated for the event-driven data transfer 

interface as: 1/(3.30 + 0.98 + 2.34) = 1/6.62ns = 151MBit/s for the bit-serial 

data transfer. When this event-driven data transfer interface is used in a GALSA 

system, there are extra delay factors caused by the Routing Cell switches and 

multiplexers in and this will be configuration dependent. 

The timing characteristics for the 5 input event-AND Muller C-element shown 

in figure 5-21 are in table 6-3. These parameters are the worst case figures after 

simulating different combinations of input event sequences. 
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Output load mit output 

TT+ 2ns 0.23ns 1.54ns out 

TT 2ns 0.21ns 1.43ns 

Table 6-3: Delays in the 5 input Muller C-element 

TGadder S load Gout  load S Gout  

add 2ns 2ns 1.25ns 1.25ns 

sub 2ns 2ns 1.32ns 1.32ns 

MUXs Output load 2-to-1 3-to-1 6-to-1 

rising 2ns 0.29ns 0.61ns 0.88ns 

failing 2ns 0.17ns 0.29ns 0.52ns 

Table 6-4: Delays in the transmission gate adder and multiplexers 

6.1.3 The Transmission Gate Adder and Multiplexers 

There are three data inputs A, B, Cm  and two outputs 5, Gout  in the transmis-

sion gate adder. The add/sub control is static before any inputs are applied to 

the adder. There are eight possible input combination situations which are all 

simulated for both add and sub function. Table 6-4 gives the worst case S and 

Gout output delays obtained from the simulation. This result conforms with the 

analysis of equal S and Gout  delay with the transmission gate adder. 

There are three types of multiplexers used in the PH, design: 2-to-1, 3-to-1 

and 6-to-1. The delays associated with these multiplexers are given in table 6-4. 

From table 6-4, an estimation can be made on an upper bound for the local 

clock speed. This is 2 times the worst case multiplexers' delay plus the worst case 

adder delay. Allowing 30% process variations, we get an upper bound for the local 

clock as 210MHz. 
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5V Output load NS/WE NW/SE NE SW BDCbuffer 

rising 1.5ns 0.94ns 1.10ns 2.18ns 0.43ns 0.71ns 

falling 1.5ns 0.67ns 0.85ns 1.92ns 0.23ns 0.68ns 

5V/7V  

rising 1.5ns 0.72ns 0.89ns 1.96ns 0.31ns 0.64ns 

falling 1.5ns 0.61ns 0.78ns 1.89ns 0.20ns 0.62ns 

Table 6-5: Delays in a Routing Cell and bi-directional channel buffer 

6.1.4 The Routing Cell and Channel Buffer 

Because there is no direct interaction between V channels or H channels, we only 

give the delay factors associated with one V-channel (vh0) and one H-channel 

(hch0). The other channels have the same delay factors. There are four typical 

channel delays in the vch0 and hchO routing: North-South (NS) or West-East 

(WE) involving only one switch unit of figure 5-26, NW/SE involving one switch 

unit and one pass transistor, NE involving two switch units and one pass transis-

tor, SW involving only one pass transistor. The delays for these channel routing 

patterns are given in table 6-5. The table lists both delays when one 5V power 

supply is used and a separate 7V supply is used for the CCM. Each input is driven 

by a bi-directional channel buffer of figure 5-27, and each output drives another 

bi-directional channel buffer. 

6.1.5 Array Element Test 

It is important to test a GALSA array element as an integrated module. An array 

element is formed by connecting one PH P.P
, 

as shown in figure 5-19, to one event-

driven GALS DTI, one Routing Cell and a CCM module. The CCM module sets 

the Routing Cell, the I/O ports and function of the PH 
POP 
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The testing strategy is to simulate one such array element with each function 

op-code defined in table 5-2 one by one. In each op-code simulation, all possible 

input vectors to the function are tested and each input vector comes from a dif-

ferent set of input ports in the Routing cell, and the corresponding outputs to a 

different set of output ports. For instance, there are eight possible input vectors to 

a full adder function. One of the first five possible A values is selected from vchO, 

vchl, vhc2, hchO, hchl in turn to test the A input multiplexer function thoroughly. 

Similar I/O selections are also applied to B/CIa  inputs and SIC,,. t  outputs. When 

there are less than five possible input vectors, for example a two input Boolean 

function has only four possible input vectors, some randomly chosen input vectors 

are used to make up the five input test vectors. Therefore, there are five different 

CCM settings to simulate for one op-code function. The last CCM setting is also 

used for other input vectors after the first five. The is looped back to 

and 	is looped back to A i,, in the GALS DTI in simulations. 

No function errors were found with this intensive test on the schematic design 

of this array element, so we believe that the element functions correctly. The 

synchronisation mechanism in the GALS DTI also undergoes a test each time an 

input vector is applied. No metastable state is observed from these simulations. 

6.1.6 Configuration Test 

As illustrated in section 5.6.1, a sequence of configuration words is loaded into 

each row of CCMs in the core array of a GALSA similar to writing a memory 

array. The write signal to each CCM row is generated from a column shifter 

which is controlled by a configuration clock. Because the configuration phase runs 

in synchronous mode, we must test that the column shifter can generate a correct 

sequence of write signals, and all CCM rows can be correctly written using a 

proper configuration clock speed. 
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A long column shifter is simulated first to obtain a correct sequence of CCM 

row write signals. Then we simulated the configuration phase in a 4 x 4 GALSA 

by downloading two sequences of test configuration words. Each CCM bit is 

complemented in these two sets of configuration data to test all CCM bits. After 

the first sequence of configuration data is loaded, a reverse procedure is performed 

to read back the sequence of configuration data which is compared with the original 

one. This is repeated for the second sequence of complementary configuration 

data. Because both read-back data did not produce any differences from their 

original ones, this test indicates that the CCM array and the configuration pre-

loading structure work correctly. The maximum configuration clock frequency 

that can ensure correct data loading to the CCM array depends on the size of the 

GALSA. Because all switches are statically driven by CCMs and a configuration 

phase is always carried out well in advance, the speed of a configuration process 

is not a particularly important factor as long as it is reasonably quick. Therefore, 

all transistors used in a CCM bit are the smallest allowed. For the 4 x 4 GALSA 

array, the simulation shows that configuration data can be loaded safely with a 

20MHz configuration clock. It only takes approximately 6s to configure a 4 x 4 

array with the 20MHz configuration clock. We estimate that a 100 x 100 array 

can be safely configured, with a 1MHz configuration clock, within just 4ms. 

To test the connectivity of the channels and Routing Cells, we simulated the 

system with a configuration where the I/Os of all the PH01,s to Routing Cells are 

disabled and all the V and H channels are set as N -* S and W - E conducting. 

A 0101 test vector is input into each channel after this configuration. This step 

is repeated for S - N and E - W channel settings so that the bi-directional 

channel buffers and Routing Cells are fully tested. The same 0101 output vector 

is observed at all channel outputs in all cases. This means the connections and 

the bi-directional channel buffers in each channel work properly. 
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6.2 A 4 x 4 Multiplier in a GALSA 

This section describes an example of embedding a 4 x 4 bits integer multiplication 

function into a GALSA array. 

6.2.1 Integer Multiplication 

Suppose there are two integers X, Y, 

	

x = 	Xi•2' 	 (6.1) 
:  

	

= 	•2' 	 (6.2) 

The product of the X and Y will be 

P = X.Y  

= (6.4) 

rn-i n-i 

= (6.5) 
i=O j=0 

rn+n-i 

= (6.6) 

where Ph = 	 forall(i, j)pa.irs that meeti+j = k. Fora4x4mul- 
ij 

tiplication, m = ii = 4. Table 6-6 lists all the partial products generated. From 

this table it can be found that such a multiplication can be directly implemented 

as an array multiplier. A straightforward carry-save array multiplier is depicted 

in figure 6-2. Figure 6-1 shows the multiplier cell which is used in the array. mul-

tiplier. One particular characteristic of this multiplier is that carries on each row 

are not added to the partial products of that row, instead carries are added to 

the partial products of the next row. This structure automatically eliminates the 

carry propagation delays in partial products generation apart from the last row. 
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x3  x2  x1  x0  

Y3  Y2  Y1  Y0  

x3 Y0  x2 Y0  x1 Yo  xoYo  

x3Y1  x2 Y1  x1 Y1  xoYi  

x3 Y2  x2 Y2  x1 Y2  x0 Y2  

x3Y3  x2 Y3  x1 Y3  x0 Y3  

P7 	P. 	P5 	p4  p3  P2  P1  P0  

Table 6-6: A 4 x 4 integer multiplication 

6.2.2 Embedding the 4 x 4 Array Multiplier into a GALSA 

2 Generally speaking, an n x ii array multiplier requires ii AND functions, n(n - 2) 

full adders, and n hail adders. The carry to each partial product is added to it 

with a delay of one step, but carries have to be added. at the same time when 

the final product is calculated. A carry-look-ahead technique can be used in 

this final product calculation. However, further analysis shows that for an n x n 

multiplication, only - 1) full adders are needed in the last stage which means 

that the worst case carry propagation delay is only n bits for the final 2 x n 

 

X. 	C,. Pk 

1? 

D#. i 

Figure 6-1: A multiplier cell for an array multiplier 
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x3  x2  x1  x0  

Y3  

Figure 6-2: An array multiplier for a 4 x 4 multiplication 

product terms if ripple-through carry adders are used. Therefore, three simple 

ripple-through adders are used in the final stage of the 4 x 4 multiplier. 

The calculation of each product term is identified as a computation thread in 

an array multiplication function. Carries will not stall the generation of a current 

partial product in such a thread because they are generated one step earlier. The 

final row of ripple-through additions is another thread because the final higher n 

product terms are generated while carries are propagated through. 

Four different macro-cells are composed for the array multiplier to match the 

elements used in figure 6-2 and the routing around these elements. Figure 6-3 

depicts these four macro-cells. The BD macros are located on the top and left 

boundaries of the array to generate the first row and the most significant bits for 

partial products in table 6-6. The second row of partial products in table 6-6 is 

generated from the RHA macros. The third and forth row of partial products are 

generated from RFA macros. The RTCA macros calculate the final four higher 

bits for the final product. 

Since routings are included in macro-cells, the 4 x 4 array multiplier is embed-

ded into a GALSA by stacking and abutting these macros to form a rectangular 
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1 1701 on 
11 17-7  L  UWiK_  - roil  - 

BD macro 
	

RHA macro 

"ElliI1 LI 
RFA macro 

Figure 6-3: Macro-cells for an array multiplier 

array as shown in figure 6-4. Macros on a diagonal (X e , l'), where j+j = k E [0, 6], 

form a computation thread for a partial product term PA,. There are seven such 

diagonal computation threads. The last row of RTCA macros is another thread 

to compute the final P4  to P7  product terms. 

There are 16 possible inputs for 4-bit integers X and Y. An average multipli-

cation speed can be obtained if all 256 multiplications are simulated. This is too 

time consuming. Instead, five X values: 0011, 0110, 1001, 1100, 1111, and five Y 

values: 0010, 0101 7  1011, 1101, 1111, are randomly chosen as inputs to simulate 

the embedded multiplication function. Because P7  is the slowest product term 

from the multiplier, we measured the time taken to generate P7  for each multipli-

cation. Then an average 23.76ns multiplication time from these 25 multiplications 

is obtained. 

FAI 



Boo m 
 .T.,  

Yo— 

Y1— 

Y2— 

Y3— 

—P0  

—P1  

—P2  

—P3  

Chapter 6. Example Algorithms and Simulation Results 	 167 

x3  x2  x1  x0  
I 	I 	I 	I 

I 	I 	I 	I 
P7  P6  P5  P4  

Figure 6-4: A 4 x 4 array multiplier in a GALSA array. 

a 

f 	b 
g 

e 	c 

d 

Figure 6-5: A seven segment display 

6.3 A Seven Segment Display Decoder 

In this algorithm mapping example, a seven segment display decoder function is 

mapped into a GALSA array. 

A seven segment display as shown in figure 6-5 has seven independent segments 

with a unique label assigned to each segment. Each segment is controlled by- a 

control signal. Different state combinations of the seven control signals will light 

the display as one of the digits of (0, 1, 2, ..., 9). 
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X 3X 2X 1 X 0  a b c d e f g 

0000 1 1 1 1 1 1 0 

0001 0 1 1 0 0 0 0 

0010 1 1 0 1 1 0 1 

0011 1 1 1 1 0 0 1 

0100 0 1 1 0 0 1 1 

0101 1 0 1 1 0 1 1 

0110 1 0 1 1 1 1 1 

0111 1 1 1 0 0 0 0 

1000 1 1 1 1 1 1 1 

1001 1 1 1 1 0 1 1 

1010 x x x x x x x 

1011 x x x x x x x 

1100 x x x x x x x 

1101 x x x x x x x 

1110 x x x x x x x 

1111 x x x x x x x 

Table 6-7: Seven segment decoder truth table 

There are 4 bits of input to a seven segment display decoder and 7 segment 

control signals as output from the decoder. The truth table for this decoder 

function is given in table 6-7. 

Because of the large number of "don't care" states in table 6-7, the decoding 

function for each segment control signal can be substantially simplified. The opti-

mised decoding functions for each segment control signal is listed in equation 6.7. 

Each function can be embedded into an independent computation thread. How-

ever, it can be seen from these functions that there are some terms which are 

shared by several control signals. Although these functions are independent from 
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Figure 6-6: A seven segment display decoder in a GALSA array 

each other, we tried to take advantage of these shared terms when mapping these 

equations into a GALSA array. While some array elements are saved as result 

of sharing some terms, more routings are needed. Figure 6-6 depicts the final 

mapping of the seven segment decoder into a GALSA array. 

a = X 3 +X1 +X0 ®X 2  

b = X 3 +X0 OX 1 +X•X 

= x3 +x2 +X+x0  

d = 	 (6.7) 

= X 1 X0 X 2 X 1 X 0  

I = 

9 = x3 +x1 .X+.x1 +x2 .x1 .x0  

Ten possible inputs are all simulated with the embedded decoding functions. 

The average time to obtain all seven decoded control signals is 15.29ns. 



Chapter 6. Example Algorithms and Simulation Results 	 170 

6.4 Evaluation of Polynomial Expressions 

High speed evaluation of a large number of polynomial expressions has considerable 

application in the modelling and real-time display of objects in computer graphics. 

VLSI techniques have already been used for the design and implementation of 

frame buffers for computer graphics. A traditional frame buffer is usually a two 

dimensional memory array storing an array of picture elements (pixels) that are 

to be displayed on a bitmap screen. A frame buffer is one of the most important 

devices used in modern raster graphics displays. In this section, an algorithm for 

evaluation of polynomial expressions described in [93] is mapped into a GALSA 

system as a high performance frame buffer. 

6.4.1 Display of Pixels for Different Objects 

To display an object on a screen, the value of each pixel in the screen has to be 

calculated according to a certain function which is often a polynomial expression 

of various orders. Suppose a screen is represented as a fixed square grid of (m + 

1) x (m + 1) pixels, a white line can be drawn by illuminating the pixels close to 

(X, Y) points in the screen coordinates which satisfy: 

Az-I-By+C=0 	 (6.8) 

For a pixel at (x,y), 0 < x,y 	m, on the screen, the value Ax + By + C is 

the perpendicular distance of the pixel to the line. An entire line can be drawn 

by highlighting all the pixels for which JAx + By + C1 < W, where W > 1 is 

a line width threshold. A half plane is turned on by illuminating all pixels for 

which Ax + By + C < 0. Generating arcs and circles involves evaluating quadratic 

polynomial expressions. A circle of radius r centered at point (a, b) can be drawn 

by illuminating all pixels at (x,y) for which 1r2 - [(z - a) 2  + (y - b) 2 ] W, 
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(a) 	 (b) 

Figure 6-7: Pixel display: (a) a line; (b) a circle 

where W is also a circle line width threshold value. Figure 6-7 shows a line and 

a circle drawn on a screen. If pixels satisfying [r2  - [(x - a) 2  + (y - b) 2] > 0 

are illuminated, a light dot of r radius centered at point (a, b) is turned on. For 

applications involving display of molecules, atoms are modelled as spheres, and 

the bonds between them as cylinders. The orthogonal projection of the atoms and 

their bonds reduces to evaluating quadratic expressions. 

Thus, a large amount of calculation is required, for example to display a picture 

in a window area of 400 x 400 pixels. If these calculations were carried out in a 

CPU, which is also responsible for other computation tasks, the whole system 

speed and the graphics display would be very slow. Efforts have been made to 

design fast frame buffers with an array of identical simple processing elements [37, 

93] to drive graphics displays directly. 

6.4.2 Polynomials in Single Variable 

A forward difference method is described in [93] to evaluate polynomials in single 

variable, and is extended to polynomials in two variables. The main property 

used by this method is that the nth difference for a polynomial of degree n is a 

constant. 

Consider a polynomial of degree n given by 

P(x) = Eaixt 	 (6.9) 
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The forward difference P(x + 1)— P(x) is a polynomial P_1 (z) in degree (n—i). 

Applying the same reasoning repeatedly, we get 

P(x + 1) - P(x) 	= P_1 (x) 

P_1 (z + 1) - P_1 (z) = P. 2 (z) 

P_2 (x + 1) - P_2 (z) = P_3 (x) 
	

(6.10) 

P1 (x + 1) - P1 (x) 
	

= Po (x) = constant 

Thus, if all F(0), 0 ( i < n, are known, the polynomial in equation 6.9 

can be incrementally evaluated by equation 6.10 at all grid points 0 < x < M. 

[P0 (0), P1(0),.. , P,(0)]" is defined as an initial vector. This initial vector can 

be obtained by using a linear transform from the coefficients of equation 6.9 as 

equation 6.11. 

P0 (0) 	 a 

P1 (0) 
	

w1 ,n- 1 	a1 	
(6.11) 

P(0) 
	

wn,1  •.. wn,n_ l  w 	an  

The elements w, n < i+j <2n, in the lower right triangular transform matrix 

are integers which depend only on n so an initial vector can be precomputed once 

the coefficients of a polynomial in degree n are provided. A linear transform 

to obtain an initial vector for a general cubic polynomial n = 3 is shown in 

equation 6.12. The transform matrices for linear and quadratic polynomials are 

the lower left 2 x 2 and 3 x 3 sub-matrix in equation 6.12 respectively. 

P0 (0) 	0 0 0 6 	a0 	6a3  

P1 (0) = 0 0 2 6 	a1  = 	2a2  + 6a3 	
(6.12) 

P2 (0) 	0 1 1 1 	a2 	a 1  + a2  + a3  

P3 (0) 	1 0 0 0 	a3 . 	a0  

A sequential algorithm to compute a polynomial in n degree at grid points 

0 <a, <m is given below. 
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z=1 	= =2 	z = 3 	0 =m-1 z=m 

P3(1) 	P3(2) 	P3(3) 
	

P3(m-1) P3(m) 

Figure 6-8: A linear array for evaluating cubic polynomials 

Algorithm polynomiaLin.x 

begin 

step 1: 	Compute the initial vector P1 (0),O<i<n; 

step 2: 	for z:=O to rn — i do 

step 3: 	{* compute the polynomial at x *} 

begin 

P0(x + i) := Po(z); 

step 4: 	for i := 1 to n do 

step 5: 	 P(x + 1) := P 1 (x) + P(x); 

end; 

end; 

From this sequential algorithm, the for ioop can be easily unwound into an 

array organisation. This process also creates a pipeline structure without feed-

back so that the initial vectors of a large number of polynomials with different 

coefficients can be completely pipelined for evaluation. As a result, a linear array 

which evaluates cubic polynomials is shown in figure 6-8. The initial vector is 

calculated by a host computer and fed into the array. Because for an n degree 

polynomial, there are only (ii + 1) elements in an initial vector, the calculation of 

these (n + 1) elements does not impose much load on the host computer. In the 

figure, D element is a delay unit. 
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6.4.3 Polynomials in Two Variables 

A polynomial of degree n with two variables is given as 

i Q(z,y)= L axi  y 
0<j+j<n 

This Q,(x, y) can be treated as a single variable P(z) of degree n 

P(z) = 

= (a0 ,o  + a0, 1y + a02y 2  + a0,3y 3 ) 

+(aj , o  + a1 , 1 y + a1 , 2y 2 )x 

+(a2 , 0  + a2 , 1 y)z 2  + a3 ,0x 3  

= f3 (y) + f2 (y)x + f()2  + fo (y)x 3  

(6.13) 

(6.14) 

Each coefficient in equation 6.14 is a polynomial with single variable y of degree 

n - i. For a particular y, a set of coefficients can be obtained from f,t(y)  for a 

P(z) at y. The initial vector for P(x) can still be calculated from equation 6.12 

by replacing a 1  with f, 1 (y) 

P0(0) = g0(y) = 6a3 , 0  
P1 (0) = g1 (y) = (2a20  + 6a3 , o ) + 2a2,1y 	

(6.15) 2 P2(0) = g2 (y) = (a1 ,o  + a2 , 0  + a3 , 0 ) + ( a1 , 1  + a2 , 1 )y + a1 , 2y 

P3(0) = g(y) = a0 ,0 +a0, 1y+a0, 2y 2 +a0,3y 3  

A separate y-array similar to the one shown in figure 6-8 to evaluate these g 1 (y) 

polynomials for y e [0, mJ is required. Figure 6-9 shows one element of the y-

array. The four outputs at each y point from this y-array, which are the initial 

vector for the x-array same as the one shown in figure 6-8 at y, are fed into 

the z-array for the evaluation of a P(x) polynomial at that y. There are m 

x-arrays in total for the frame buffer. From equation 6.15 and 6.12, four initial 

vectors to the y-array are [(6a 0 , 3) (2a0 , 2  + 6a0 , 3 ) (a0 , 1  + a0 , 2  + ao,3) (ao,o)]T  for g(y), 

[(2a1 , 2 ) (a1 , 1  + a2 , 1  + a1 ,2 ) ( a1 ,0  + a2 ,0  + a3,0)JT for 92 (y), [(2a 2 , 1 ) (2a2 ,0  + 6a3,0)]T for 

91(Y), and [6a 3,0 1 for .go(y). 
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90 (Vi) 

gi(Vi) 

92 (vi) 
93 (vi) 

Figure 6-9: A y-array element at y 

6.4.4 A Bit-Serial Frame Buffer 

To reduce the cost, a bit-serial y-array and m bit-serial z-arrays are adopted in 

our design which matches nicely the structure of a GALSA system. 

Referring back to figure 6-8, we can input each initial vector element F(0) in 

bit-serial format from the lowest significant bit (LSB) to the most significant bit 

(MSB), use bit-serial adders with the carry output fed back to the carry input 

at each adder, and replace the delay element with a register. As a result, a 

bit-serial array for evaluating single variable cubic polynomials is obtained. One 

particular advantage of this bit-serial array organisation is that it can be used for 

any polynomials with different coefficients and variable word length. A complete 

bit-serial frame buffer organisation is shown in figure 6-10 with one y-array and 

three x-arrays as an example. The initial vectors are input into the y-array in 

bit-serial format. 

6.4.5 Embedding the Frame Buffer into a GALSA 

As is clearly shown in figure 6-10 for the bit-serial frame buffer, the y-array can 

be extracted as one vertical y-thread and each horizontal x-array can be extracted 

as a horizontal x-thread. The activation of the y-thread is by the input of initial 

vectors to the y-array. An x-thread is activated once the initial vector generated 

by the corresponding stage in the y-thread is available to the z-thread. 
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Figure 6-10: A bit-serial frame buffer processing array 
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uuIIuIIuI..IIIIuDIIIItii 
uuiiiiiuuiuitruu 
IIIlUIiIIiI!!!I!I!!I!I 

Figure 6-12: A Y-element for the y-thread 
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It is a fairly straightforward procedure to map an x-thread and a y-thread into 

a GALSA. Firstly, a macro cell called X-element for one stage in an x-thread can be 

generated as shown in figure 6-11, then this X-element is concatenated horizontally 

to form an z-thread. Secondly, four macro cells for each g 1 (y), i = 0, 1, 2, 3 are 

generated for one stage in the y-thread. Figure 6-11 also depicts the four macro 

cells for g(y). A Y-element as shown in figure 6-12 is obtained by concatenating 

these four cells horizontally with some additional routings. A y-thread is formed 

by concatenating this Y-element vertically. An entire frame buffer is embedded 

into a GALSA system by attaching an x-thread to the right of each Y-element in 

the y-thread. 

It is too time consuming to simulate a real size, such as 400 x 400, embedded 

polynomial evaluation frame buffer. A much smaller 10 x 10 frame buffer was 

simulated instead. The upper left corner is the origin of the array coordinate 

(x )  y) = (0, 0). The first bit of the first pixel at (0,0) is generated just 14.70ns after 

initial vectors enter the y-thread. An average of 6.65ns is required to generate a 

bit for the pixel at (x + 1, 0) from the pixel at (x, 0). It takes 117.2ns and 176.65ns 

to get an 8-bit pixel at (0, 0) and (9, 0) respectively. An average of 18.87ns was 

measured to obtain the first bit of the pixel at (0, y + 1) after the first bit of the 

pixel at (0, y) was generated. It takes 371.78ns to get the last bit of the pixel at 

(9,9). 

6.5 Comparisons 

We compared the performance of the 4 x 4 multiplier and seven segment display 

decoder embedded into the GALSA with Xilinx FPGA and CAL implementations. 

Table 6-8 compares the average performance on the same set of inputs. Functions 

in Xilinx FPGAs are simulated. The figures for a CAL system is estimated from 

its cell delay characteristics. It is apparent that the CAL has the best performance 
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GALSA Xilinx CAL 

multiplier 23. 76ns 21. 52ns 24.40ns 

decoder 15.29ns 11.41ns 10.10ns 

Table 6-8: Multiplier and decoder comparison 

600 x 600 GALSA MPP AAP RAP 

Pipeline Latency 781ts 240 jis 120Ls 180 jis 

Max Refresh Rate 0.13ts 1.6/Ls 0.81LB 0.31is 

Table 6-9: Polynomial evaluation performance comparison 

for the decoder function. This is because it is very good at bit-level combinational 

logic functions. Although the Xilinx FPGA has slightly better performance than 

our GALSA in this particular 4 x 4 multiplication case, we anticipate that our 

GALSA will perform better than the Xilinx FPGA on average when real long 

word multiplications, for example 512 bits, are carried out. The GALSA system 

is therefore not suitable for embedding combinational logic functions because of 

low performance and the high hardware cost compared with the CAL system. 

We extended the simulation results for the polynomial evaluation in the 10 x 10 

frame buffer to a 600 x 600 8-plane frame buffer. It is estimated that it would take 

approximately 78jis to fill up the last row of the x-thread to get a complete 8-bit 

pixel at (599,599). From this point, each pixel can be refreshed with a new pixel 

value as fast as 0.13/LB. We can compare the performance of this frame buffer with 

the estimated performance of the same algorithm on MPP, AAP and RAP. The 

estimation results were calculated according to the system clock speed and the 

number of clock cycles required to run the algorithm. MPP runs with a 10MHz 

clock. Both AAP and RAP run with a 20MHz clock. The results are given in 

table 6-9. 
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The frame buffer embedded into a GALSA system has an apparent advantage 

in performance when a large number of pixels are to be evaluated. This is mainly 

because of the asynchronous communication approach adopted at the system level. 

With such a large number of pixels in a large physical array, it is very difficult to 

run a faster clock for MPP, AAP or RAP system to improve their performance. 

The Connection Machine and DDVA are too expensive to be used for this 

algorithm. On the other hand, they do not seem to be able to offer a substantial 

increase in performance for this algorithm. 

6.6 Summary 

In this chapter, we discussed the timing characteristics obtained from Hspice sim-

ulations on our designs. Three example algorithms were studied and embedded 

into our GALSA system to test the functionality of our design at system level. 

This also enables us to compare the performance with some existing systems for 

hardware algorithms. Our GALSA system has much better performance when the 

physical size of an array is very large where synchronous systems cannot operate 

with a fast global clock. 



Chapter 7 

Conclusions and Future Prospects 

7.1 Overview of the Thesis 

Chapter 1 introduced some fundamental concepts upon which our algorithmically 

configurable architecture principle is established. This chapter also introduced 

the basics on computation models, hardware algorithm models and system tim-. 

ing schemes from which a globally asynchronous locally synchronous configurable 

array system for algorithm embeddings was developed in the rest of this thesis. 

In chapter 2, we took a detailed look at some typical array architectures devel-

oped by others for massively parallel processing. The analysis and comparison of 

these systems focused on the common characteristics and problems these systems 

have, and what are the problems and basic principles we need to solve in our 

approach to configurable hardware algorithms. Some practical implementation 

issues, such as interconnection structures, switching mechanisms, and processing 

element internal structures, were also discussed. 

Chapter 3 presented and analysed in detail various computation, architecture 

and timing models. A multiple threads computation model for irregular algo-

rithms, a configurable architecture of connected programmable hardware oper-

ators, and a globally asynchronous locally synchronous (GALS) system timing 

control strategy were proposed as the foundations for the development of a con-

figurable GALS array system and for the efficient embedding of algorithms. 

180 
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in chapter 4, some basic architecture constraints were discussed, and four typ-

ical circuit-switched interconnection topologies were classified and compared first. 

Then we proposed an array architecture composed of programmable hardware op-

erators PH,3, connected by a configurable interconnection network which is timed 

with the GALS system timing control method for the multiple threads computa-

tion model. The top-level system topology, the routing network structure, and the 

primitive functions of a PH,, for the proposed system were also presented. 

The hierarchical design of a complete configurable GALS Array (GALSA) sys-

tem was described in chapter 5. An important event-driven GALS data transfer 

interface was elaborated in great detail. A novel synchronisation scheme was pro-

posed. Careful analysis and intensive simulations on this synchronisation scheme 

have been carried out to ensure an acceptable very low synchronisation failure 

rate. The design of the PH, based on a transmission gate adder and multiplex-

ers was presented. The system level routing network and the configuration data 

preloading structure were also illustrated. 

All the system composition components were intensively simulated with the 

Hspice circuit simulator to ensure their correct functionality. In chapter 6, im-

portant timing characteristics obtained from Hspice simulations were given, and 

three algorithm examples: a 4 x 4 integer multiplication function, a seven seg-

ment display decoder, and a polynomial evaluation algorithm for a pixel frame 

buffer were studied and embedded into our GALSA system. The performance of 

these embedded algorithms based on the simulation results was compared with 

some existing systems. This comparison confirms our initial aim of this project: 

a high performance configurable system with GALS timing control was developed 

for hardware algorithms. The system can offer a much better performance than 

synchronous systems for data and computation intensive algorithms. 

This concluding chapter clarifies the author's contributions and concludes the 

research presented in this thesis. Some related work to be done is illustrated. 
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Possible developments for configurable hardware algorithms in the future are also 

discussed. 

In the appendix, more simulation results from the Hspice transient analysis on 

the synchromser and the event-driven DTI design are given. 

7.2 Achievements and the Author's Contributions 

System timing problems attract more and more attention when the complexity of 

VLSI/ULSI systems is increasing so rapidly and the deep submicron technology 

is becoming mature. It is already a practical issue in deep sub-micron systems 

that the interconnection delays are one of the major factors that affects system 

performance or even the correct functioning. It will inevitably be an extremely 

difficult task to design such systems using a synchronous approach. 

The author tried to look at the system timing problem by combining the ad-

vantages from both the synchronous and asynchronous design approach. At the 

same time, in the light of prospects in achieving high performance by parallel 

processing in hardware algorithms, the author adopted a systematic approach to 

develop a configurable GALS array system for algorithm embeddings following 

the proposal and establishment of an appropriate computation, architecture and 

system timing control model. The author's work on the event-driven GALS data 

transfer interface was also extended to a general GALS system design approach. 

The development of this configurable GALS array system enables us to perform 

some initial tests on the GALS design approach idea and do some comparisons of 

performance with other systems. The initial comparison is very encouraging with 

the embedded polynomial evaluation algorithm as a pixel frame buffer. 
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7.3 Other Work to Be Done 

At the time this thesis is completed, a bit-serial GALSA system has been designed. 

However, there are still many ways in which the design itself can be improved. For 

instance, although the routing network can be easily tested, development of the 

testability for the overall system is still required. 

One of the future tasks is to design the system with the partial Bit Parallel 

partial Word Parallel (BPWP) processing principle. For example, a PH,,, should 

be capable of processing 4-bits of input operands at a time. Further engineering 

work is also required to get an actual working system on silicon. On the other 

hand, more testing algorithms need to be studied and embedded into the system 

to check the function and performance of the system further. Other work, such as 

automatic algorithm mapping and fault-tolerance, is equally important. 

7.4 Automatic Configuration Vector Generation 

Automatic design tools must be developed so as to get the full potential of a 

configurable system. It is by no means a simple task to transform an algorithm 

into a set of configuration vectors efficiently for a configurable system. Therefore 

an automatic algorithm mapping tool for configuration vector generation should 

be developed to ease the task. Two possible ways can be followed. 

7.4.1 Automatic Data Flow Mapping 

This method starts from the data flow description of an algorithm. An algorithm 

has to be either manually transformed into a data flow description or automatically 

transformed by other means. 
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Like other VLSI CAD systems, an automatic mapping system can take several 

forms of input, for example a front end data flow graph editor similar to the 

schematic capture front end in a CAD system or a data flow description similar 

to hardware descriptions to a VLSI CAD system. 

A library of macro hardware operators can be developed from a set of primitive 

functions. A user can also set up his own macro operator library. 

The automatic mapping system first decomposes the input data flow graph 

into a primitive data flow graph which only consists of connected primitive hard-

ware operators and macro operators available from libraries. The dependencies 

and timing information can be extracted into a threads graph. Then the ma-

jor task of the system is to map the edges and nodes in the primitive data flow 

graph and computation threads graph into the configurable array according to 

extracted threads, i.e. the allocation of operators and the routing of interconnec-

tions amongst these operators. Finally, a set of configuration vectors for Routing 

Cells and programming vectors for PH,,Ps can be generated from the mapping. 

7.4.2 Automatic Algorithm Mapping 

The ultimate solution is to describe an algorithm in a high level language such as C 

or C, or better still, a true data flow language. The automatic mapping system 

takes this high level algorithm description and transforms it into a primitive data 

flow description. From this point, the mapping method described in section 7.4.1 

can be used to generate configuration and programming vectors. 
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7.5 Fault-Tolerance 

Fault-tolerance is another important issue in massively parallel array architectures. 

There has been much research on fault-tolerance methodologies and schemes al-

ready carried out and published. Fault-tolerance for the GALSA architecture 

should be investigated in the future. The framework for this problem is outlined 

in this section. 

Each fault-tolerance scheme usually assumes a fault model with some addi-

tional conditions before the scheme can be effectively applied. If a fault pattern 

is beyond the capability of the scheme, the fault pattern is said to be unrecov-

erable. It is a common practice to assume random faults instead of clustered 

faults. Another common assumption in most of the fault-tolerance schemes for 

array architectures is that faults most likely happen in processing elements. In 

the GALSA architecture, we need to consider the possibility of failure in both 

the hardware operators and the routing network. This is because more than two 

thirds of transistors in a Routing Cell are in the CCM which may have a higher 

failure possibility. 

Generally speaking, there are three classes of methodology for fault-tolerance, 

i.e. redundancy, graceful degradation, and time sharing. Schemes based on the 

redundancy methodology use extra spare rows or columns of processing elements in 

an array, and try to replace the faulty processing elements in the array with spare 

processing elements so that the original physical size of the array can be restored. 

Rather than using physical redundancies, the time sharing methodology tries to 

restore an array logically equivalent to a physical array which has faulty processing 

elements, by time sharing a healthy processing element next to each faulty element. 

This methodology needs a complex swapping mechanism to make one element 

perform the role of two elements. The graceful degradation methodology adopts 

a completely different approach. Instead of trying to restore an array with faulty 
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elements to its original size, this method tries to establish a new largest possible 

rectangular sub-array out of the healthy elements from the physical array. The 

resultant sub-array will be smaller than its parent array but it is still usable. 

The combination of redundancy and the graceful degradation methodology ap-

pears to be a very attractive fault-tolerance approach for the GALSA architecture 

under the multiple threads computation model. Still further, we do not even need 

to re-establish a sub-array of rectangular shape. This is because if a slightly larger 

physical GALSA array is used than the requirement of an application, as long as 

there are enough healthy routable PH,s for the application in the array where 

faulty elements occur, it is not necessary to restore the array to its original physi-

cal size and shape. Routing resources can also be saved without re-establishing a 

rectangular sub-array. 

7.6 Future Developments and Prospects 

7.6.1 Taking Advantages of New Technologies 

There are two trends in the development of microelectronic technologies. The 

evolution of conventional technologies is the way most of the commercial products 

take, that is, the continuous improvement of technologies which make it possible 

to integrate more and more devices of smaller and smaller feature sizes into silicon 

dies which are becoming increasingly larger. The Digital Alpha processor and the 

Intel Pentium processor are two such examples. The GALSA architecture can 

benefit from this evolution in two aspects, first, more PH,s can be integrated; 

and second, the complexity of the routing network and PH,, can also be in-

creased to be more powerful. However, the conventional approach eventually will 

approach the physical limits of silicon and conventional CMOS properties. Thus, 

the emerging revolutionary breakthroughs of new devices and materials are be- 
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coming more appealing in the longer term. Silicon MOSFETs, which change state 

in the nanosecond scale, are generally slow as switching devices. The GaAs metal 

semiconductor (GaAs MES) FET is capable of switching in less than 30ps and op-

erating at frequencies in excess of 5GHz. This is because electrons in GaAs have 

a significantly higher mobility than electrons in silicon. Once the GaAs material 

manufacturing technology is mature, GaAs integrated circuits will certainly play 

an important role. All current VLSI architectures will benefit from high speed 

GaAs technology. For the GALSA architecture, improvement in the switching 

speed in the routing network is very important. On the other hand, the GALSA 

architecture is readily designed to incorporate any new faster and better switching 

devices because of its GALS system timing scheme. 

7.6.2 Multi-layer Metal and Three dimensional Structures 

The GALSA architecture is very wire demanding. The two metal layer processing 

technology used in the design in this thesis cannot meet the GALSA requirement 

because a large amount of silicon area is wasted for routing connections. Therefore, 

a multi-layer metal processing technology is desirable so that the network routing 

layers can overlap active areas. 

Many data flow graphs actually have three dimensional properties. Thus con-

gestion in the routing network is unavoidable if these three dimensional graphs 

are to be mapped into a two dimensional array. Hence, the GALSA architecture 

should particularly benefit from three dimensional integration structures. 

7.6.3 Wafer Scale Integrations 

The most common way to manufacture VLSI chips is to put together a group of 

designs or the replication of a design in the form of a two dimensional array of 

dies on a silicon wafer. A test is performed on each die area after the wafer is 
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processed and faulty dies are marked. This array of dies is then cut into chips, 

and working chips are mounted and packed into packages. 

The number of elements for an array on a die manufactured in such a way, 

which can range from a few to a couple of thousand depending on the size of 

the element, is very limited. In order to embed an application into such an ar-

ray, it is often necessary to connect a set of such chips to form a larger array. 

Therefore, this die cutting and packaging procedure appears unnecessary for ar-

ray architectures. One possible solution is to use Multi- Chip- Modules (MCM) by 

which multiple chips are mounted on a larger substrate and packed into one pack-

age. This technique can reduce the cost of packing individual chips and improve 

the communication speed among chips. However, the die cutting process is still 

required for MCMs. Wafer scale integration (WSI) technology is particularly at-

tractive for array architectures. The idea of WSI is to make a complete system on 

an entire wafer; the wafer is packed in one package and used as one system. Thus, 

if an entire wafer were to be used to accommodate a complete array, the cost of 

putting a pad ring on each die, the wafer cutting, the multiple packaging of smaller 

chips and the extra connection delays between packages would be eliminated. 

There are still many technical problems associated with WSI to be solved. For 

example, the power dissipation of an entire wafer tends to be very high, so the 

cooling of a whole wafer is very important and difficult. It is not an easy task 

to package a large wafer. A practical fault-tolerance technique must be applied 

to WSI because faults certainly will happen on some areas of a wafer. Current 

research has already made significant progress in WSI, but the three dimensional 

integration technology is still at an early stage of research. 

The theories and design methodologies developed in this thesis can be easily 

adapted to WSI architecture. The major changes required will be in the peripheral 

and configuration vector preloading parts. The inclusion of fault-detection and 

fault-tolerance mechanisms is also needed. 
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7.7 Conclusions 

A few years ago, the configurable logic methodology was still questioned by many 

people, now this methodology has been widely accepted and many commercial 

products on FPGAs and configurable logic arrays are already available. However, 

the asynchronous integrated circuit design methodology still needs more attention 

than it has so far received. System timing issues must be properly considered 

in VLSI/ULSI/WSI design, especially in large configuration systems. We believe 

that very large scale configurable logic is the area where asynchronous design 

methodology can be used as an effective system level timing control approach. 

The initial testing on the developed configurable GALSA system achieves a better 

average performance on large scale problems, such as polynomial evaluations as a 

frame buffer, than some other synchronous massively parallel processing systems. 

But the configurable logic is by no means the only area where asynchronous 

design methodology can be applied. Two effects of the rapid advance of technology 

are that integrated systems are becoming ever more complex and more computing 

tasks are directly implemented in hardware. With this trend of continuous increase 

of system complexity and decrease of hardware costs, the asynchronous design 

methodology will play at least as important a role as the synchronous design 

framework, for example the GALS timing scheme proposed in this thesis. 
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Appendix A 

Hspice Transient Analysis 

In this appendix, several typical input and output waveforms for the synchro-

niser and event-driven data transfer interface designs described in this thesis are 

given. These results were obtained by performing Hspice transient analysis on 

these circuits. 

A.1 The Synchroniser 

Four typical simulation results are given for the synchroniser design. Waveforms 

for a DV happening after a CLKT_  and before a CLKT+ , a DVJ ' happening 

at the start of a synchronisation risk zone are shown in figure A—i. In the figure, 

node 2 is a CLK input, and node 3 is a DVR  input. Node 5 is the A point in 

figure 5-13, and node 8 is the ENA output from the synchroniser as shown in 

figure 5-13. si.irO.55 is the simulation result for a DVJ ' before a CLKT+,  and 

si.trO.4 is the simulation result where a synchronisation risk zone appears around 

30ns. It can be seen from the figure that it takes longer time for the A point to 

resolve to the 0 state in this synchronisation risk zone. 

Waveforms for a D11'+  happening at the end of a synchronisation risk zone, 

and a DVJ ' happening after a CLKT+  are shown in figure A-2. si.trOO is the 
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simulation result for a DVR
T+  at the end of the synchronisation nsk zone around 

30ns, and si.trO.1 is the simulation result for a D1R1  after a CLKT+.  It is clearly 

shown in the si.trOO result that the A point is pull down to a middle value first 

in the synchronisation risk zone before it eventually resolves itself back to the 1 

state. 

The most important result obtained from these simulations is that the ENA 

can stay on low when the A resolves to one of the two stable states. The ENA 

either keeps low or flips to high after the A settles towards a stable state. 

A.2 The Event-Driven DTI 

Four simulated event-driven hand-shaking cycles are shown in figure A-3 for the 

event-driven DTI. This simulated event-driven DTI has an Input Guard, an Out-

put Guard and a tn-state register. The Din is the data input to the tn-state 

register, and Q/nQ are the output from the register. The DVIR is the status flag 

for the register. The D VHop is the status flag for the function module. The node 

net13 is the reset signal k. 

The waveforms in the figure clearly show that this DTI works properly with 

the tri-state input register and is event-driven. 
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