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Abstract 

Optimisations for Instruction-level Parallelism (ILP) in synchronous processors 

can assume deterministic execution times for instructions. However, in asynchron-

ous architectures it is less certain in advance when instructions complete execution 

and when results become available. The instruction latency depends on a number 

of factors, including the input data, the type of computation, and contention for 

architectural resources at run-time. In particular, in micronet-based asynchron-

ous processors, which feature non-linear pipelines and out-of-order completion, 

instructions would compete for resources and overtake other instructions. Such 

a behaviour makes it more difficult to consistently predict at compile-time, the 

optimal order of instruction execution. 

This thesis investigates the problem of optimisations for ILP in micronet-based 

asynchronous processors. A novel scheduler called Penalise True Dependency 

(PTD) is presented for scheduling instructions within basic blocks, which min-

imises stalls due to data dependencies and resource contentions. PTD has been 

extended to perform global optimisations using this metric on techniques such as 

code motion, code and tail duplication, and block merging, and in the appropriate 

order to minimise code expansion. 

The simulation results for a subset of the SPEC95Int benchmarks executing 

on an instruction set simulator of the micronet-based asynchronous processor 

demonstrate that the PTD scheduler outperforms traditional scheduling methods 

such as list schedulers, and has a better algorithmic time complexity. 
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Chapter 1 

Introduction 

There has recently been a revival of interest in asynchronous computer archi-

tectures [161]. Computer architectures have traditionally been synchronous, i.e. 

the components involved in computation and communication are controlled glob-

ally by a central clock. Asynchronous architectures, in contrast, sequence the 

operations using local handshaking protocols [145]. Experimental prototypes of 

asynchronous processors have been fabricated at the University of Manchester 

[56][57][63], California [111][113]  and Tokio Institute of Technology [121][164]. 

Notable examples in industry include Phillips' fully asynchronous DCC error cor-

rector [16] and an asynchronous 80051 micro-controller [59], Sharp's self-timed 

data-driven multimedia processor [166], and some asynchronous parts in SUN's 

U1traSPARCIII processor [99]. 

The execution times of instructions in a synchronous architecture is fixed at 

the design phase and is expressed in terms of clock cycles. In micronet-based asyn-

chronous architectures, in contrast, the operations proceed at their own speed, 

which implies that the execution times of instructions would vary in a manner 

dependent on the data and local delays, and the availability of resources. This 

poses an interesting problem for the compiler which can no longer assume a de-

terministic model which has been successfully exploited in instruction scheduling 

and optimisations for synchronous pipelined architectures [25][67]. For instance, 

it is now difficult to exploit conditions that cause a datapath to stall, such as 

data hazards, which are defined in terms of clock cycles, which the compiler uses 

to reorder instructions to avoid them. The complexity of the task of scheduling 

instructions to different types of resources is known to be NP-hard [61], and there 

exists a large body of work on heuristics for scheduling instructions in synchronous 

architectures [12][34][64][92][100][124][132], but not so for asynchronous ones. 

This thesis addresses the issue of efficient scheduling of instructions with un-

certain latencies in micronet-based asynchronous architectures. Micronet is a net- 
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work of entities which compute concurrently and communicate asynchronously. A 

micronet-based processor [4][6][151] exhibits fine-grained concurrency, both spa-

tial and temporal [5]. The datapath is modelled as a network of functional units, 

in which each instruction visits the appropriate functional units, and for as long 

as is necessary to execute that part of the instruction. There are several instruc-

tions active at any time, and they compete for functional unit resources, and may 

even overtake each other. Data consistency is maintained by a register locking 

mechanism [127] which locks the destination register every time an instruction 

is issued, and is only released when it is completed. Central to the performance 

of the architecture is the ability to issue instructions rapidly and keep all the 

functional units busy. 

Generating efficient schedules for such a target is a challenging task. It is 

uncertain when an instruction will be completed after it has been issued. Also, 

the order of completion is not known in advance, as the instructions can complete 

in an out-of-order fashion. The first attempt at a list-based scheduler did not 

consider any variance in the costs for the functional units and adopted worst-case 

figures [7]. 

1.1 Contributions of the Thesis 

This thesis has proposed a new scheduling algorithm for asynchronous processor 

architectures whose instruction latencies are uncertain. The uncertainty is due 

to instruction-issue stalls caused by data dependencies and resource contention. 

The scheduling algorithm statically estimates the effects of the instruction stall 

for a given schedule. Data dependences in consecutive instructions cause the issue 

unit to stall when waiting for the pending operand to be evaluated. A penalty 

is assigned based on the parametric cost model for the instruction set. Resource 

contention occurs when two instructions of the same type are scheduled and there 

are not enough functional units of that type. A correlation was demonstrated 

between a higher Penalise True Dependency (PTD) measure and longer execution 

times of the programs, and vice versa. 

The local scheduler which schedules instructions within a basic block is based 

on the PTD measure. The aim is to minimise the number of penalties within the 

basic block. The scheduler is prioritised to reduce the higher penalties first, e.g. 

penalties due to load instructions, before dealing with the lower penalties. Once 

the penalties due to consecutive instructions have been dealt with, the scheduler 

tackles those due to non-consecutive ones. 

12 



The scheduler differs from traditional techniques based on the list scheduler, 

i.e. ones which construct a list of ready instructions. The thesis demonstrates 

that the complexity of the PTD scheduler is governed by the number of penalties 

instead of the number of instructions, and its complexity is better than that of 

the list scheduler. 

The thesis also presents a global extension to the PTD scheduler whereby 

instructions can be moved across basic blocks to improve the penalty measure 

within local blocks. Global scheduling techniques such as code motion, code and 

tail duplication and block merging are incorporated within the scheduler. 

The local and global optimisation methods were compared with two well-

known methods based on the list scheduler. The scheduled programs were ex-

ecuted on a stochastic simulator using instruction set models of the micronet-

based processor architecture. The experimental results demonstrated that the 

PTD scheduler outperformed the other schedulers on issue unit stalls and pro-

gram execution times. 

1.2 Thesis Structure 

A description of the remaining chapters of this thesis is presented next. 

Chapter 2. This chapter introduces key ideas from three different areas of re-

search which overlap in this thesis: compiler design, ILP architectures and 

asynchronous hardware design. The compiler flow is described and the com-

piler optimisations covered in this thesis are located in this flow. The over-

view of ILP architectures presents their characteristics and limitations. The 

role of asynchronous control in architectural design is introduced. These 

ideas provide the background for appreciating the contributions in the rest 

of the thesis. 

Chapter 3. The definitions of local scheduling algorithms and their notations are 

introduced. Scheduling theory and the complexity of the task are reviewed. 

The revival of the asynchronous style in architectural design is recounted, 

along with the advantages and disadvantages of such an approach. The 

influence of an asynchronous architecture on the design of the back-end of 

the compiler is elaborated. 

Chapter 4. This chapter reviews examples of asynchronous architectures in the 

literature. Next the micronet-based asynchronous architecture is described 

in detail as this is the target for the schedulers. The modelling of this 
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architecture in the simulator for evaluating the performance of the compiler 

optimisations is discussed. 

Chapter 5. This chapter proposes an alternative approach to local scheduling 

for micronet-based asynchronous architectures. Traditional techniques are 

based on the list-based scheduling algorithm. This chapter introduces the 

Penalise True Dependency (PTD) measure which statically estimates the 

effect of issue unit stalls due to data and resource dependencies of different 

instruction schedules on the execution times of the programs. 

Chapter 5 introduces the algorithm of the PTD scheduler and its complexity 

is analysed. Two methods are described for further improving the scope for 

parallelism within the basic block. 

Chapter 6. This chapter extends the PTD scheduling algorithm so that instruc-

tions can be moved across basic blocks to reduce the penalty measure once 

the local scheduling cannot reduce it any further. The chapter describes 

the global optimisation techniques such as code motion, code duplication, 

tail duplication and block merging. Other research in the area of global 

optimisation is reviewed. 

Chapter 7. This chapter presents the framework for evaluating the PTD sched-

uler on a simulator of the micronet architecture. The benchmarks are sched-

uled using PTD and two other well-known schedulers, and simulated on 

different configurations of the micronet architecture. The makespan of the 

programs are compared against the unscheduled case. 

The results are presented separately for local and global optimisation tech-

niques. Data for issue stalls and program execution times are included for 

local scheduling. For global optimisation, comparisons are made in the case 

of code motion, tail duplication and the combined effect of both. These 

results are referred to those of local optimisation techniques. 

Chapter 8. This chapter reviews the work presented in the thesis and proposes 

future work for both the local and global versions of the PTD scheduler. 
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Chapter 2 

Background 

The topics covered in this thesis overlap three well-defined areas: compilers, pro-

cessor architectures and asynchronous circuit design. This chapter provides back-

ground information in each of these areas. 

2.1 Compilers 

A compiler transforms a source program into a target one under precise construc-

tion rules. One view of a compiler is that it transforms a high-level specification, 

i.e. a programming language, into a machine-level specification, in a series of 

steps. The front-end of a compiler analyses the input program in three main 

stages: lexical, syntactic and semantic analyses. The lexical stage recognises 

and matches lexems to tokens defined by a grammar and filters out unrecog-

nised tokens. Once all the tokens have been identified, the parsing stage builds 

a hierarchical parse tree according to precise grammatical rules. The final phase 

analyses the semantic coherence between the identifier types and operators. 

The intermediate code, which is an internal representation of the source code 

(to ease generating the machine code), is produced once the source code success-

fully passes the three phases. The back-end of the compiler reads this interme-

diate code, performs optimisations and generates code for the target machine. 

Figure 2.1 depicts the front-end of a typical compiler, while Figure 2.2 shows the 

three major functions in the back-end of the compiler. 

The partition of the compilation process into front- and back-ends allows the 

same source code to be translated into different machine codes independently 

of the analyses. Although optimisations can be performed after intermediate 

code generation, their purpose is to remove redundancies from the source code 

and any introduced during the generation of the intermediate code. This type 

of optimisation is not biased by the target platform, but instead prepares the 
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Figure 2.1: Front-end of a typical compiler. 

intermediate code for the machine-code generation phase. These are known as 

platform-independent optimisations and examples include common subexpression 
elimination, dead-code elimination and constant propagation [2]. 

In contrast, the optimisations performed after machine-code generation are 

intended to tune the performance on the target machine by optimising register 
allocation and instruction scheduling. The optimisations performed at this 

level are closely matched to the machine model and relate to the instruction set. 

The following sections will discuss these so-called Instruction-level Parallelism 

(ILP) optimisations. 

2.1.1 Compiler Optimisations 

The nature of intermediate code representation may vary significantly depending 

on the instruction set and the target architecture. The most common represent-

ations include postfix notations, virtual machine representations such as stack-

machine representation, graphical representations such as expression-trees and 

direct acyclic graphs (DAG), and three-address representations [2]. 

It is the case that ILP optimisations will be driven by the type of interme-

diate code representations, which in turn is influenced by the particular target 

architecture. For example, in stack-based environments such as the Java Vir-

tual Machine [104], stack-machine representations mimic a stack-like behaviour 

in which instruction operands are "pushed" onto the stack and "popped" for 

execution with the resultant value being pushed back onto the stack. With stack-

machine representations, optimisations must be performed to avoid unnecessary 
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Figure 2.2: Back-end of a typical compiler. 

operand push and pop operations [37]. 

In register-based architectures, however, it is more suitable to use graphical or 

even three-address schemes to represent the intermediate code. Nowadays, most 

processors have instruction sets with three operands: one destination register, 

and two source registers. Optimisations for register-based architectures seek to 

minimise the number of registers used. 

ILP optimisation seek efficient usage of both storage resources (register alloc-

ation) and fast execution times through instruction scheduling. The search space 

of solutions is vast, and moreover, the ordering suggested in Figure 2.2 is not 

entirely fixed. The interaction between instruction scheduling and register alloc-

ation is complex and is a research area in its own right [21]. Performing register 

allocation before instruction scheduling reduces ILP, because the former tries to 

reuse systematically the registers (an effect caused by minimising the number of 

registers). Conversely, if instruction scheduling precedes register allocation, then 

the lifetimes of the registers may increase, which in turn will require a greater 

number of them, contrary to the register allocation [23][118][171]. 

In order to reduce the counter effects of register allocation with respect to 

instruction scheduling and to evaluate the effectiveness of the latter in an asyn-

chronous target, this thesis will only concentrate on issues regarding instruction 

scheduling, and will therefore assume the scheme in Figure 2.2. 

2.1.1.1 Register Allocation 

Register allocation is an optimisation technique to make efficient use of the re- 

gisters. Registers store intermediate results during a computation and, as such, 
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are a scarce and costly resource, and therefore limited. Optimising the use of 

intermediate results reduces the need to store results in memory (which is even 

slower) - a process called spilling code. Hardware solutions tend to increase the 

number of registers or to include the use of cache mechanisms to reduce storage 

time and loading back a temporary result into a register. 

The task of the software register allocator is to map temporary values, usually 

called pseudo-registers, at the intermediate code level into physical registers, keep-

ing in mind their scarcity. The difficulty of register allocation though, is that dif-

ferent values have different "liveness", i.e. the total time that they must be kept 
alive in registers, so they often overlap. The register assignment must be care-

fully optimised with the aid of interference graphs representing the overlapping 

life-ranges of the pseudo-registers, and the use of the graph colouring algorithm 

[24]. The complexity of register allocation has been acknowledged in the past 

resulting in alternative solutions to find optimal and near-optimal results [14]. 

2.1.1.2 Instruction Scheduling 

Instruction scheduling aims to reorder the code output from the generation phase 

to improve its execution time. The reordering should preserve the semantics of 

the program while exploiting the architecture to improve performance. Local 

scheduling (unlike the global one) confines the reordering of instructions to those 

in the basic blocks. A basic block is defined as the group of instructions delimited 

by a single entry and a single exit. The instructions in a basic block share the same 

control properties. The functions in the program are decomposed into basic blocks 

connected by a control structure which reflects the semantics of the function. 

Chapters 3 and 5 discuss local ILP optimisations, and Chapter 6 covers global 

ILP optimisations. 

Acyclic optimisations take into account multiple basic blocks within an acyclic 

region, and instructions are moved to other basic blocks in the program. Cyclic 

optimisations perform optimisations from different iterations instead of just one. 

These are described in the following sections. 

2.1.1.3 Acyclic Optimisations 

Acyclic optimisations can be regarded as a generalisation of local scheduling in 

which the instruction reordering is not limited to the basic block boundary. The 

average number of instructions within a basic block is around twenty. Moving 

instructions between basic blocks increases the scope for ILP. However, in or-

der to maintain the semantics of the program, copies of the instruction called 
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compensation code, may have to be replicated. 

The movement of instructions can take place either with the need for com-

pensation code or without, which is either in the same or opposite direction to 

the flow of control. These four cases are depicted in Figure 2.3: B1  to B6  are 
basic blocks with B1  being a fork instruction for B2  and B3 , and B6  being the 
join block for B4  and B5 . Figure 2.3 (a) shows both cases when code movement 

requires compensation copies (represented by the dashed arrows) since moving 

instructions away from the fork (B 1 ) and the join (B6 ) blocks into one of the 

paths would cause instruction executions to miss in the other path. Instruction 

movements in Figure 2.3 (b) on the other hand, do not require the addition of 

compensation code since irrespective of the path taken, instructions will be ex-

ecuted as soon as the control flow arrives at the branch block B1 , or as late as the 

control flow reaches the join block B6 . In these cases, movement without copies 

introduces redundant executions if the path taken is the opposite to where the 

instruction was originally located. 

The issue in global acyclic optimisations is that the effectiveness of moving 

instructions depends on the run-time behaviour of the program. For example, 

if the blocks shown in Figure 2.3 are not frequently executed, then the benefit 

due to those movements may be insignificant. In addition, instruction movement 

with copies can increase the size of the program and the overhead on performance 

of redundant instructions. The performance issues of acyclic optimisations are 

discussed in more detail in Chapter 6 (Section 6.2). 

2.1.1.4 Cyclic Optimisations 

Cyclic optimisations exploit the cycles in the control flow to enable optimisations 

not only through basic blocks, but also through cycle iterations. These optimisa-

tions are driven by programs in which the control flow spends considerable time 

in the core of the loops. 

Data dependence information carried from the front-end of the compiler can 

help identify instructions that are independent across iterations. These can be 

grouped together and scheduled, thus providing aggressive optimising character-

istics. 

Another example of cyclic optimisation is to "unfold" the loop body, i.e. carry 

instructions from subsequent iterations to increase the size of the loop body, 

with the aim of augmenting ILP. This technique, also called loop unrolling, has 

been well studied [2][103}. Loop unrolling not only increases parallelism, but also 

reduces redundant branch comparisons and the use of loop indexing variables. 
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Figure 2.3: Movement with compensation code, (a), and without (b). 

The unrolling of the loop is limited by the following: there will be greater pressure 

in the register allocator phase as the registers are overcommitted, and also the 

expansion of the code is likely to overflow in the instruction cache [40]. 

Both local and global optimisations are governed by data and control depend-

encies, which respect the semantics of the program. Data and control dependen-

cies are described in the following sections. 

2.1.2 Data Dependencies 

Data dependencies must be respected throughout the compilation process. The 

use of pseudo-registers during code generation, and registers after register al-

location, reflect these dependencies. Three different types of data dependencies 

exist: 

True dependencies. The Read-After-Write (RAW), or true dependencies, oc-

cur when one instruction requires the contents of another, and must wait 

until the latter result is written. These dependencies cannot be removed 

and represent the flow of data during a computation and must be preserved. 
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An instruction that is truly dependent on another cannot be positioned 

before it. 

False dependencies. False or Write-After-Read (WAR) dependencies occur when 

one instruction needs to store a result, but this location which is either in 

memory, a register or a pseudo-register is to be read by another instruction. 

The former instruction must wait until the current value in the storage loc-

ation has been read by the second instruction, before committing its result. 

If the first instruction is placed ahead of the second one, then the value will 

be overwritten by the time it is read by the latter, and would therefore be 

the wrong value. 

Output dependencies. Output or Write-After-Write (WAW) dependencies oc-

cur when the same destination storage location is due to be written by two 

different instructions. In which case, the second one has to wait until the 

previous one has written into the destination. 

This is similar to false dependencies, as reversing the order of the instruc-

tions will result in the variable being assigned the wrong value. 

False and output dependencies can be removed if the name of the destination 

variable or the destination register is different from the one where it is originally 

read from in a WAR dependency, or where it is originally written to in a WAW 

dependency. In other words, if the destination location is renamed, then the 

dependency no longer applies. In some references, false and output dependencies 

are also termed as name dependencies. 

2.1.3 Control Dependencies 

Control dependencies occur when the execution of an instruction depends on the 

result of a conditional branch, such as an if statement. If the condition is true 

then the branch is taken and the instruction is executed; otherwise, not. 

With control dependencies, the control-dependent instructions cannot be moved 

out of the if section, as this would force the instruction to be executed under 

any condition. Similarly, an instruction cannot be moved inside the if section, 

as it would only be executed if that path of control was taken, unless a copy of it 

is placed in the else section. 

Data dependencies are defined entirely statically, whereas control ones have 

to be resolved at run-time. Data and control dependencies reflect sequentiality in 

the program, and their removal, where possible, is an important aspect of ILP. 
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2.2 ILP Processor Architectures 

Instruction-level parallelism architectures, as the name implies, exploit concur-

rency at the instruction level. An instruction is composed of an opcode type, 

represented by a unique mnemonic defined in the instruction set, and the op-

erands which include a destination operand and one or more source ones. The 

datapath of an ILP architecture allows more than one instruction to be active at 

the same time. An active instruction is one which is located in one of the follow-

ing steps in its execution: instruction fetch, decode, operand fetch, execution or 

write-back. The fetch unit fetches the instructions from the instruction cache (or 

from memory in the absence of one). The opcode is next decoded to determine 

the instruction destination in the datapath to reserve the appropriate resources. 

Once the instruction is decoded, its source operand values are retrieved from 

the registers. In the execution stage, the functional unit executes its operation 

and outputs the result. This result is written into the destination register in the 

write-back stage (as determined by the destination operand in the instruction). 

This process is repeated for all the instructions. However, data and control 

dependencies impose restrictions during their execution. One way of character-

ising ILP architectures is in the way in which ILP parallelism is interpreted, or 

in other words, how much of the data dependence information is passed from the 

compiler to be interpreted by the architecture [136]. This characterisation is illus-

trated in Figure 2.4. Sequential architectures such as scalar and superscalar ones, 

do not interpret any information from the compiler. The relationships between 

active instructions must be determined by the processor at run-time in order to 

maintain the correct order of execution. On the other hand, independent ar-

chitectures, such as VLIW ones, rely entirely upon the compiler to provide an 

independent stream of instructions for execution. They do not implement any re-

lationship analysis at run-time. The control logic for these processors is therefore 

much simplified. Section 2.2.2 and 2.2.3 describe the sequential and independent 

architectures in more detail. 

In between VLIW and superscalar architectures one can find the EPIC (Ex-

plicitly Parallel Instruction Computing) architectures [143]. EPIC architectures 

share with VLIW architectures in that the compiler is required to identify groups 

of independent operations to form very long instructions. However, the architec-

ture is now responsible to assign these operations to functional units and coordin-

ate the timing of their execution [142]. In a certain way, EPIC architectures take 

the best of both VLIW and superscalar architectures. 
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Figure 2.4: Classification of an architecture depending on the division of respons-
ibilities between the compiler and the architecture [136], and an extension to it 
according to [77]. 

Another completely different approach to the previous ones is in the case of 

Transport Triggered Architectures (TTA) [35]. A TTA is based on an intercon-

nection network in order to connect the functional units with the register file. 

With such a scheme, the compiler for a TTA has even more responsibilities than 

the one for a VLIW architecture as it can be seen in Figure 2.4, since it has to 

decide not only the assignment of operations to functional units, but also the 

paths that such instructions will be require to take within the interconnection 

network. 

EPIC and TTA architectures are explained in more detail in Sections 2.2.4 

and 2.2.5, respectively. 

2.2.1 Pipeline Hazards 

Pipelining is a technique for exploiting concurrency in the temporal domain. In a 

pipelined architecture several instructions are in flight executing in the different 

stages: being fetched, decoded, their operands being fetched and being executed, 

as long as they do not interfere with each other. These architectures require n 

instructions to fill a n-stage pipelined datapath to achieve maximum throughput 

and resource utilisation. In such a scheme, if the number of pipeline stages is 
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increased, then more instructions can he active at any time, and thereby achieving 

greater ILP. In theory at most, the execution time can be reduced by up to n times 

when compared to a non-pipelined datapath'. Figure 2.5 (a) shows a pipeline 

stream of instructions in a 4-stage pipeline. 

However, as mentioned in Sections 2.1.2 and 2.1.3, data and control de-

pendencies enforce sequentiality in the instruction execution order. Therefore, 

the pipelined architecture must ensure that the correct ordering is preserved by 

stalling some stages for a period of time, an effect called pipeline hazards. These 

include data hazards due to data dependencies, control hazards due to control 
dependencies and structural hazards due to resource conflicts. All of these will 

restraint the continuous flow of operations in the datapath, causing "bubbles" in 

the pipeline, and thus increasing the execution time. 

In the case of data hazards, the stall is related to the type of data dependency. 

For example, with a true dependency, the instruction that requires the result of 

the previous one will not have the result ready for it to be read at the operand fetch 

stage. For correct operation, the architecture must apply an interlock (a "bubble" 

in the pipeline) to the second instruction, so that it will remain stalled until its 

operand(s) is/are fetched. Figure 2.5 (b) shows a pipeline with two interlocks 

produced by data dependencies. In the example, instruction 1 3  requires the result 
of instruction I,; at the time that the operand is to be read by instruction 1 3 , 

it has not yet been written back by instruction Ii.  Therefore, 13  must wait for 

a clock cycle before resuming execution. Similarly, instruction 14  depends on 12, 

and causing another interlock. 

For name dependencies, i.e. WAR and WAW, interlocks are applied at later 

stages. In an output dependency, the architecture may only stall the write-back 

of an instruction to ensure that the previous write-back takes place first. 

One hardware solution for solving the problem of data hazards due to true 

dependencies is to forward the results or bypassing. In addition to writing the 

result in the register file, the functional unit forwards the result directly to the 

fetch stage where it is needed, in order to avoid the hardware interlock. However, 

if the true dependency stands for a load instruction, then the data hazard may 

not be avoided. A load instruction may incur a cache miss, in which case the 

time to load the value into the register will be delayed. In pipelined architectures 

the compiler is partially responsible for avoiding such cases. The compiler must 

ensure that the pipeline is full of independent instructions, and when that is not 

'In practice, the speedup is bound by the amount of parallelism in the code and by the clock 
cycle overhead with large number of pipeline stages [76]. The performance/cost ratio has also 
a peak in terms of the cost for all the logic stages and the latch and delay costs [84]. 
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Figure 2.5: Pipeline stages, without interlocks, (a), and, with (b). 

possible, it must try and avoid combination of instructions with true dependencies 

from a load. 

Data hazards due to name dependencies on the other hand, can be avoided 

by renaming the destination register that is common. Register renaming can be 

implemented either dynamically by the hardware or statically by the compiler. 

A hardware register renaming scheme consists of logical registers, as seen by the 

compiler, that are transparently mapped to a greater number of physical registers. 

If, for example, there are two instructions writing to the same logical register, two 

physical registers can be allocated to hold the values. A mapping table is used 

in the decode stage to map logical to physical registers. In software, register 

renaming can be easily achieved by using a different register name each time. At 

the software level, the overuse in the number of registers may cause spilling code 

(as described in Section 2.1.1.1), which might negate any gains due to removing 

the name dependencies. 
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A control hazard due to a conditional branch instruction arises because in-

structions following the branch one cannot start their execution until the outcome 

of the branch is resolved. Should the branch be taken, the program counter is 

updated with the new branch address and fetching can be resumed; otherwise, 

fetching continues with the instructions following the branch. In either case, there 

is a time delay represented in terms of clock cycles or delay slots, until the branch 

instruction is completed. The delay slots can be filled with control independent 

instructions such as as "nop" (no-operation). 

Another solution is to use branch prediction [149]. If the branch outcome is 

known by the time a subsequent instruction from the branch needs to be fetched, 

then the pipeline does not have to be stalled. Branch prediction allows instruc-

tions after a predicted branch to be executed speculatively; if the branch was 

mispredicted then the results have to be backtracked. Branch predictors use a 

history table where the occurrence of previous branches is stored. The individual 

number of hits and misses will decide the likelihood of a branch. The prediction 

rates achieved nowadays (between 80% and 95% depending on the type of branch 

prediction and the size of the history table) outweigh the cost of the misprediction 

penalty, i.e. recovering the state of the processor (pipeline and flags) before the 

misprediction. 

The last possible hazard in pipelined architectures is the structural hazard. 

This occurs when there are resource conflicts and the hardware cannot support 

the operating conditions for a particular set of active instructions. A resource 

conflict occurs when an instruction has all its operands ready but there are no 

functional units available or the buses are busy. 

2.2.2 Scalar and Superscalar Architectures 

There are two policies for issuing instructions: in-order, that issues all the in-

structions in the same order as they were fetched; and out-of-order, that issues 

instructions not necessarily in the original program order. 

When both issue and execution are implemented in-order, then dependent 

instructions and resource conflicts might stall subsequent instructions. A sub-

sequent and independent instruction will be forced to stall its write-back in order 

to maintain execution order. Alternatively, if this instruction is allowed to pro-

ceed with the help of additional hardware, then the outcome will be in-order issue, 

but out-of-order execution. A hardware mechanism that allows out-of-order ex-

ecution is the scoreboard. The scoreboard holds dependency records for all the 
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instructions in flight' and guarantees that they are issued as soon as their op-

erands become available; it also checks for data, control and structural hazards. 

This is achieved by gathering status information about the functional units, the 

register file and the instructions themselves. All this information serves to de-

termine which instruction can be issued. The penalty incurred by implementing 

the scoreboard is compensated by the extra parallelism gained from enabling 

concurrent instructions to avoid being stalled. 

These policies and mechanisms also apply to superscalar architectures. A 

superscalar architecture datapath is capable of issuing more than one instruction 

per cycle. A n-issue superscalar processor fetches and decodes n instructions at 

a time. To achieve this the complete datapath consists of n-parallel pipelines. 

The control logic in such architectures are more complicated due to the checking 

of dependencies along the different stages in the datapath, and resources such 

as functional units, buses and register file's write ports must be arbitrated and 

managed efficiently. 

In both scalar and superscalar architectures, out-of-order issue and execution 

imply dynamic re-arrangements at run-time, since one instruction can overtake 

another in the case of data hazards or if the latter requires more time to complete. 

Architectures with dynamic scheduling make less demands on the compiler as 

shown in [102], although local scheduling certainly contributes to performance in 

dynamic scheduling. 

2.2.3 VLIW Architectures 

Very-Long Instruction Word (VLIW) architectures, as the name implies, pack 

instructions into a single, long instruction word. This means that when a VU 

word is fetched, n independent operations can be decoded at the same time, and 

n operations can be issued concurrently to be executed in parallel. The number 

of operations per word can vary from 8 in the Multiflow computer [144], to up to 

20 in the IBM VLIW processor [117]. 

One of the principal features of VLIW architectures is that the task of finding 

independent instructions is performed by the compiler and not by the hardware. 

The compiler is responsible for grouping independent operations into VLI words. 

Subsequently, the control logic (fetch and decode stages) in VLIW architectures is 

simpler since it does not have to identify dependencies between active instructions 

and perform run-time resource management. The grouping of VLIW instructions 

2The number of instructions in flight depends on the size of the scoreboard. 
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by the compiler also specifies the mapping of operations to functional units. A 

VLIW architecture has neither dynamic scheduling, nor out-of-order execution; 

rather the instruction issue order is decided statically. When the parallelism in 

the code is less than the maximum ILP of the architecture, then the compiler 

must schedule no-operations to fill the vacant slots in the VLI word. 

VLIW architectures are targeted at scientific applications where the bulk of 

the program execution time is spent in core loops with potential for parallelism. 

For general-purpose applications VLIW architectures does not compare as well 

as superscalar machines since their efficiency, i.e. the ratio of useful instructions 

to the total number of instructions, decreases with the increase in the number of 

no-operations. 

2.2.4 EPIC architectures 

Explicitly Parallel Instruction Computing (EPIC) architectures [143] can be con-

sidered as an evolution of VLIW architectures. One of the drawbacks from VLIW 

architectures is that they are not compatible across different implementations, 

since compiled code for one implementation with a particular set of functional 

units and latencies will not run properly in another one with a different set of 

parameters. 

The compiler for an EPIC architecture is required to determine the data de-

pendencies in the code and group concurrent operations into VLIW instructions 

in a similar manner as in VLIW architectures, but the architecture is responsible 

for mapping them to functional units and coordinate the start of their execu-

tion. This particular characteristic allows the architecture to execute code from 

another implementation to run without compatibility problems. 

An EPIC architecture supports higher levels of ILP through the use of pre-

dicated and speculative execution to overcome frequent control transfers and am-

biguous memory dependencies [9][148]. These techniques, which have often been 

used in superscalar architectures, help EPIC architectures to perform well in more 

general-purpose applications. Since EPIC architectures time the execution of the 

operations, they are more capable of handling exceptions and interruptions. 

2.2.5 Transport-Triggered Architectures 

Transport-Triggered Architectures (TTA) [36][79] represent another type of ar-

chitectures evolved from VLIW ones, but with even more responsibilities given 

at compile-time and less at run-time [35]. 

28 



One of the main differences between VLIW and TTA architectures is that the 

functional units in the latter do not necessarily have dedicated connections to 

the register file, as in a traditional VLIW machine. Instead, they are connected 

through an interconnection network with the goal of having a better scalability 

by reducing the port requirements of the register file [78]. The interconnection 

network consists of data transport or move buses that enable functional units 

to communicate with each other and with the register file through sockets. The 

inputs and outputs of each functional unit are connected to the network by input 

and output sockets, respectively. The input sockets act as data multiplexers, 

whereas the output sockets act as demultiplexers. A fully connected network 

implies that every socket is connected to all of the move buses, which simplifies 

the code generation by the compiler, but with a side effect of impacting the cycle 

time. The connectivity of the sockets can be tailored so that certain functional 

units share more paths in common, e.g. memory units and arithmetic units, since 

the former requires an adder to determine the memory address. 

A TTA instruction is composed of one or more move operations which involve 

the data transport between two registers. The registers can be separated into 

operand, trigger and result registers. The moves between these registers represent 

the movement of data from the register file to a move bus (operand), from one 

socket of the move bus to the input socket of a functional unit (trigger), which 

effectively causes a functional unit to start the operation, and from the functional 

unit to an output socket (result). 

It is the task for the compiler to optimise such move operations and schedule 

them. All these move operations are pipelined to obtain a high throughput, and 

the scheduler is responsible for that. Some of the optimisations performed by 

the scheduler are TTA-specific and these include bypassing, operand and socket 

sharing and result move elimination [77][89]. These optimisations have to deal 

with the efficient use of the interconnection network. 

The compiler for a TTA architecture also has the responsibility of performing 

resource assignment which is a more complex task than for VLIW ones since 

not only functional units need to be assigned to instructions, but move buses 

and sockets to move operations as well. TTA architectures exhibit a datafiow 

characteristic in that data transports from different move operations must match 

so that functional units will operate on correct values. This represents an extra 

challenge for the compiler since there are more resources needed per instruction 

than in other type of architectures [80]. 



2.3 Asynchronous Control 

The communication of data between components of synchronous systems is di-

vided into two parts: one channel is dedicated to the data transmission, mainly 

through a directional bus from the sender to the receiver, while the other is the 

control channel represented by a uni- or bi-directional bus used for high-level con-

trol. These buses have timing restrictions in that the output data from the first 

component must be settled and the second component has some period of time to 

read the correct signals. This timing constraint is co-ordinated by a global signal 

- the clock - that feeds both components to synchronise them. Figure 2.6 (a) de-

picts two modules communicating data through a data bus, while control signals 

from both modules can be sent and received back and forth from a control unit. 

This scheme is centralised around the control unit and it is via the clock that it 

dictates the timing operation for all the components in the system. The control 

unit starts the communication process and regulates the flow of data through the 

control bus until its completion. 

An alternative way of communication between these components is by decent-

ralising the global synchronisation of the previous mechanism, with the removal 

of the clock. In this approach components communicate with each other via a 

handshaking mechanism. In this scheme the sender is responsible for the start of 

the transaction and the receiver responds when it is ready to receive. 

Figure 2.6 (b) shows two modules: Module 1 starts a new transaction with 

a request signal and awaits an acknowledge signal from the receiver (Module 2) 

before sending the data. Request/ acknowledge mechanisms are convenient for 

asynchronous communication since delays are prone to vary. Request and acknow-

ledge signals can be active during positive or negative edge transitions. When 

positive and negative edge transitions are treated equally during a handshake, 

then the handshake is called two-phase. If only positive-edge transitions are used 

in the handshake, it is called four-phase [161]. The two-phase and four-phase 

handshakes are shown in Figure 2.7. The term "two-phase" stems from the fact 

that two events take place: the first phase is represented by the sender requesting 

transfer of data (1), and the second phase by the actual transfer of the data (2), 

as depicted in Figure 2.7 (a). Similarly, four events take place in the case of the 

four-phase: (1) the sender starts the transaction, (2) the receiver acknowledges, 

(3) the sender stops sending the data, and (4), the receiver finishes the handshake, 

as shown in Figure 2.7 (b). The dashed lines represent a signal to the sender that 

the receiver has started or completed the transaction, and thus it can proceed to 
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Figure 2.6: Synchronous control flow (a), and, asynchronous (b). 

complete the transaction or start a new one. 

It is obvious that there are twice the number of transactions in a four-phase 

handshake than a two-phase one. The problem with the two-phase handshake 

approach is that circuit implementations require larger - and therefore slower - 

gates. Usually XOR gates are required as opposed to AND and OR gates as 

used in four-phase designs [161]. Another characteristic found in circuits with 

four-phase handshakes is that the second half of the handshake (events 3 and 4) 

can be concurrent with the computation. This is advantageous considering that 

transactions spend most of the time in computation rather than communication. 

Four-phase circuits can achieve higher performances and lower costs than two-

phase implementations using level-sensitive technologies such as CMOS [55]. 

The handshake examples in Figure 2.7 are called bundled-data handshakes and 

assume that the data is available in the bus prior to the control signal from the 

sender, or in other words, it is assumed that the delay from the request is longer 
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Figure 2.7: (a) Two-phase handshake and, (b) four-phase handshake. 

than the delay from each of the data bus signals. This assumption violates the 

delay-insensitive model where no timing restrictions are applied [172][173]. With 

delay-insensitive circuits signal delays are assumed to be unbounded, therefore 

a valid data bit is required in order to distinguish between a no-change signal 

from a delayed one. The extra line for each of the data bus signals ensures that 

a transition from the previous data to the actual data has taken place. One line 

can be used to represent the previous value while the other line represents the 

change in transition. With such schemes, the request signal by the sender is not 

necessary. 

2.4 Summary 

This chapter has reviewed background concepts in three major areas: compilers 

and the role of code optimisation, classification of ILP architectures such as su-

perscalar and VLIW ones, and asynchrony as a method of circuit and system 

design. 

1p  



The following chapters build upon these areas. Work described in Chapters 3, 

5 and 6 is concerned with code optimisation, covering local scheduling in Chapters 

3 and 5 and global scheduling in Chapter 6. These are targeted for an asyn-

chronous scalar architecture whose model of operation is described in detail in 

Chapter 4. 
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Chapter 3 

Towards Schedulers for 
Asynchronous Architectures 

Progress in silicon technology in the 70's had resulted in the emergence of faster 

and more complex processors as epitomised by the Complex Instruction Set Com-

puters (CISC). Compilers for high-level programming languages had matured to 

exploit the hardware capabilities. The emergence of VLSI in the early 80's saw 

however, a re-evaluation of processor architectures and a greater interest in the 

interaction between the compiler and architectures, as evidenced by Reduced In-

struction Set Computers (RISC). 

This interaction between the compiler and the hardware has been an import-

ant consideration in the design of high-performance systems. The concept behind 

early RISC architectures was to redefine a reduced instruction set resulting in a 

fast stream of short-cycle instructions, instead of a shorter stream of more com-

plex instructions, as experienced in the CISC approach. Immediate effects would 

be locality in the memory hierarchy, faster throughput, and hardware simplicity 

[125]. The advantage of using a bank of restricted number of registers to store 

intermediate results, instead of continuously loading and storing them in the 

memory demanded the optimisation of their usage, which was the responsibility 

of the compiler. 

One of the objectives of the back-end of a compiler is to convert intermediate 

code into assembly instructions as defined in the instruction set of the processor. 

This task, however, involves operations that require special attention: these are 

register allocation, resource mapping and instruction scheduling. Each is a non-

trivial problem and their individual interactions have been studied in the context 

of RISC architectures [23][131]. In particular, scheduling techniques have matured 

considerably for synchronous architectures. The early work in embedded systems, 

where highly optimised code must meet tight deadlines due to timing restrictions 
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in order to perform a task, stamped a strong impression in what code optimisation 

can achieve in co-operation with the hardware [157]. 

One of the motivation of this thesis lies in the fact that very little work has 

been undertaken to optimise code for asynchronous processors [7]. It is our belief 

that the scheduling assumptions for synchronous targets differ considerably from 

those for an asynchronous target, which will influence the scheduling mechanism. 

The key is to identify particular features of an architecture and characterise them 

in the compiler. Later in the chapter we will show how this is modelled by 

the compiler in some synchronous systems, and the difficulties to do so under 

asynchronous behaviour, given its unique properties. 

3.1 Local Scheduling Definitions 

The local scheduling model which is considered in this thesis is based upon in-

structions which are restricted in some way and executed in specific functional 

units with a corresponding assigned cost. The six-tuple (9, -<, R, T, C, C) is 

used to represent the graph 9, and is defined as follows: 

9: 	9 is a graph defined as 9 (9, 

9: 	9 = {Ii, '2,. . . , In } is the set of n instructions of a basic block to be 

executed. In early scheduling work this set was referred to as the set 

of tasks. 

-< is an irreflexive partial order which specifies the set of precedence 

constraints in 9. For two instructions 13  and I, E 9, 'r --< I, implies 

that instruction I must finish its execution before instruction I 

can start. In addition, the subset << E -< denotes that for three 

instructions I, I, and I, where j < Li,,, there is no I such that 

Ix  -< Iz - ly. 

= {T1 , T2 ,. . . , T} represents the set of different types, t, of func-

tional units contained in the architecture. 

R is the set of resources or functional units. For every instruction I, 

with 1 < i < n, there is at least one functional unit associated with 

it. That is, R= {R1Ta (Ij),...,Rp Ta (Ij)}, with p being the number 

of functional units and 1 a t. 

C: 	C is the set of execution times or latencies for the set 9 and is defined 

as C = {Ll ( RjTa)••L fl (RjTa )} with 1 < j < p and 1 	a 
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These values will depend upon architectural characteristics as will 

be shown in Sections 3.3.2 and 3.4.4 for the synchronous and the 

asynchronous approaches, respectively. 

C: 	C is the set of communication costs for every instruction for propagat- 

ing results. It is defined by C = {E 1 , E2 ,..  I  E, 1, if e is the total 

number of edges and can be considered proportional to the number 

of instructions ii. Like £, the values of C depend upon communic-

ation delays in the architecture, but the number e is related to 

where -< I = e. 

If there is a path from instruction I to instruction Ii,, where I and I E J and 

I - Ii,, I,, is called a predecessor of 4 and instruction 4 is called a successor of 

I. If I E< 4, then I is the immediate predecessor of 4 and  4 is the immediate 

successor of I. 

The partial order -< is acyclic. It has no transitive or redundant edges which 

implies that it cannot represent loops. The graph 9 is therefore a Directed Acyclic 

Graph, or a DAG for short. A graphical representation of a DAG is given in 

Figure 3.1, where nodes (instructions) from J are connected to their successors 

and predecessors via directional edges -<. Such a DAG is a basic block, as shown 

in Figure 3.11,  if it has single entry and exit nodes. 

If two instructions I and I. E J are not related in -<, i.e. I 	4 and 

I 4, then they are independent, i.e. I 4. By inspecting Figure 3.1 we 

can observe that instructions 12 and 13  are independent, for example. The order 

in which these instructions are selected for execution is called the schedule of 9, 
i.e. 89 = [..., I,  4, . . .]. For instructions that are "placed" consecutively in the 

schedule S, such as I and 4, we define I 4, if 1, is placed before 4. 

3.2 Local Scheduling Theory 

The completion of the schedule S9 implies the completion of the execution of all 

the instructions (J) when mapped to functional units (R.) of particular types (), 

while respecting the partial order -<. The time taken to complete the execution 

of all the instructions is called the completion time or the malcespan of execution, 

'The example in Figure 3.1 shows a DAG with n = 9 instructions and their execution times 
(L). The set -< is defined by < = {I .< 12, 11 _< 13 , 12 < 14 , 12 < 15 , 14  <'7,14 < 18,15 -< 17 ,  
15  _< '8, 13  < 16, 16 -< 19, 17 -.< 19, 18 -< 19 }. The latencies (IL) and communication costs () 
are defined as IL = {1,2,1,2,2,4,2,2,1} and E = {O,O,O,O,O,O,O,O,O,O,O,O}, respectively, 
with e = 12. 
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Figure 3.1: An example of a DAG 

denoted as w. The term makespan has traditionally been considered as the total 

time to complete tasks or jobs in job-shop scheduling theory [11][34][130]. The 

scheduling problem can be treated in different ways depending on the scheduling 

goals. The most common ones are to minimise the completion time, the number 

of functional units or the functional unit idle time (or maximise functional unit 

utilisation) [67]. Other goals include minimising the mean flow time', which is 

described in [34]. 

Throughout this thesis the goal of scheduling is to minimise the completion 

time w. The absolute minimum completion time is termed as the optimal solution 

w 0 . A schedule may have more than one optimal solution, although the aim is to 

find at least one. 

Scheduling for uniprocessor architectures is usually performed using the non-

preemptive and work-greedy approaches. In the non-preemptive approach, once 

an instruction has started its execution, it cannot be stopped and resumed in 

another functional unit from the point of suspension. It can be expensive in 

hardware to stop an instruction and resume its execution from a restartable state. 

Figure 3.2 shows an example of a non-preemptive and preemptive schedules with 

2 Mean flow time is the average completion time for a instructions. The lower this value is, 
the less time (on average), resources like memory or cache, will need to keep values in use. Flow 
time is the sum of the completion times of the individual instructions. 
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Figure 3.2: (a) Non-preemptive and (b) preemptive schedules. 

Gantt charts. Preemptive techniques can produce better schedules than non-

preemptive ones, assuming that the instruction-switching overhead is not very 

costly. The strategy usually adopted in non-preemptive scheduling follows the 

work-greedy approach. This means that if a functional unit is idle at some point 

and there is a ready instruction that can be executed by it, then this instruction 

is assigned to that unit. In practice, the resources are kept busy, but it does 

not necessarily lead to optimal results. Figure 3.3 depicts scheduling examples 

for the DAG in Figure 3.1, where assuming a greedy approach could not obtain 

the optimal schedule, whereas by keeping functional unit R 1  idle for one unit 

of time, the optimal schedule is achieved. Given that the completion time w 

represents the total time, i.e. the sum of busy and idle times, then maximising 

the functional unit utilisation should minimise the idle time. Hereafter, we will 

only discuss non-preemptive and greedy scheduling techniques - the ones mostly 

commonly used in uniprocessors. 

In some cases such as in real-time scheduling, it is necessary to introduce 

deadlines to instructions, or to a subset of instructions, by when they must meet 

timing constraints. In a hard real-time system [116] all the instructions must meet 

their deadlines with no exception. In order to do so, it may be necessary to stop 

one instruction to allow another to resume its execution and meet its deadline, 

with the use of preemptive algorithms. In firm real-time systems, scheduling takes 

either earliest-deadline-first or smallest-slack-time approaches. In both cases, an 

accumulative value gets incremented every time an instruction misses its deadline 

[98]. 

Another important idea is that of deterministic scheduling that are applied 

to problems that are fully deterministic, i.e. all the information governing the 
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Figure 3.3: (a) Non-greedy and (b) greedy schedules. 

	

scheduling decision is known in advance. That is, the sets T, R, £ and 	are 

known, and fixed, before the scheduling process and can be thought of as target-

specific input parameters. The sets 9 and -<, on the other hand, can be considered 

as problem-dependent inputs of the scheduling problem, as shown in Figure 3.4. 

In fact, in early scheduling work [25][34][67], task scheduling did not contem-

plate the sets T and & Most of the problems had a combination of one or more 

functional units - usually called processors - as part of the set R and single or 

multiple unit duration times for set C. In majority of the cases, these processors 

were identical, with no allowance for different types and their execution periods 

were integer-based only. E was regarded as a set of null, weighted edges like the 

DAG in Figure 3.1. Early research was mainly dedicated to showing that a class 

of scheduling problems had optimal solutions [34]. Failing that, the approach was 

to bound the scheduling solution (belonging to a class of problems) within a con-

stant margin of the optimal, in order to evaluate the effectiveness of a scheduling 

algorithm. The constant margin determined how close the proposed solution was 

to the optimal. The rationale was that greedy techniques cannot be worse than 

R 1  

R 2  

R 1  

R 2  
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Figure 3.4: Representation of the scheduling problem. 

the optimal by a constant factor 3 . 

3.2.1 Complexity Issues 

It has been noted that the complexity of the scheduling-length problem for n 

instructions with a non-preemptive approach for a general p-functional unit pro-

cessor' is NP-complete [34][170]. By extending this problem by having variable 

lengths in C and the addition of different types T, the scheduling problem be-

comes NP-hard [61]. Searching through an exponential space to find an optimal 

schedule is an expensive task that has surprisingly not always been avoided. Mas-

salin [114] exhaustively executes all possible schedules to get to the optimal; in 

[10] the compiler generates a small subset of good schedules that are filtered using 

a machine model, and then simulated to discard the sequences with lower per-

formance results. Although the exponential set of schedules is not considered for 

execution, the compiler must perform an exponential search through the filtered 

set to gather the best ones. Another example is in real-time scheduling [106], 

which also considers as an option, exponential-time algorithms such as exhaustive-

enumeration and branch-and-bound. They inspect all legal schedules to calculate 

their costs'. The first schedule with a non-positive cost, i.e. every instruction 

meets its deadline, is returned. The branch-and-bound algorithm is a modifica- 

31f w' is the makespan for a particular solution and w, represents the makespan of the 
optimal solution, w'/w 0  < c, with c 1, expresses the goodness of an algorithm. If c = 1 then 
the solution is as good as the optimal. 

'At least p > 3. For p = 2 the problem complexity is polynomial, if and only if, all values 
of IL are single unit and all the functional units 3t are identical (T = 1 and VEj E E, E1 = 0). 

'The cost represents the total sum of delayed-times when an instruction misses its deadline. 
The delay-time is the amount of time-slots from the instruction's deadline. 
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tion of exhaustive-enumeration that aims to reduce the running-time. It sets an 

upper-bound cost, and every time the algorithm finds a schedule with a lower 

cost, the upper bound is updated. Once again, the algorithm terminates as soon 

as a non-negative cost is found. 

Another scheduling example is found in [32], where a solution tree for de-

riving optimal schedules is generated by keeping track of all partial schedules. 

In order to reduce the solution space, equivalence and dominance relationships 

between partial schedules are deduced, and nodes from the tree are eliminated as 

early as possible. Two instructions, Ii  and I, are equivalent when they can be 

interchanged in the schedule without affecting the length of the makespan, and 

dominant when instruction Ii  can always be scheduled no later than I. The al-

gorithm starts by creating the root node of the tree. The root node consists of all 

the instructions with no predecessors at the start of the scheduling process. Then, 

all the possible combinations that can occur (mapping instructions to types and 

functional units), are allocated to successors nodes from the root. The equival-

ence and dominance relations help to reduce the excessive growth of child nodes. 

The tree is constructed until all the instructions have been scheduled; each of its 

paths being a valid schedule. The final schedule is generated simply by parsing 

the solution tree. 

However, performing these expensive computations may not only require ex-

ponential time to terminate, but may also need exponential resources which may 

be restricted. Secondly, finding an optimal solution for one architecture family 

may be sub-optimal for another, even with small changes. Thus, heuristic-based 

approaches have become a viable option to get an approximation of the optimal 

solution with a reasonable, polynomial, complexity time and reasonable amount 

of resources. The use of heuristics helps to capture the little differences in the 

architectures to get a more general, sub-optimal solution, without the need to re-

compile a program every time. Some of these heuristics are discussed in greater 

detail in Section 3.3.1. 

3.2.2 Types of Scheduling Algorithms 

3.2.2.1 Simulated Annealing 

Simulated annealing is a stochastic approach to complex combinatorial optim-

isation problems based on Metropolis's algorithm. In [28], [95] and [106], this 

optimisation technique is the core of a scheduler for embedded systems, but can 

also be found in diverse applications ranging from VLSI block placement and 

global routing [150], to the airline crew scheduling problem [46], to mention just 
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a few. The algorithm follows a probabilistic distribution that converges to a local 

minimum close to the absolute optimal solution, and its behaviour has a pattern 

which avoids local minima. 

The core of the scheduler works as follows: first, an initial schedule is ran-

domly generated and values for initial and final temperature, T2  and T1  are set. 

The algorithm then sets a reference temperature T to T, and this is compared 

to T. Then, while T stays beyond the final value of T, the core-loop of the 

scheduler is repeatedly executed. The loop consists of a random perturbation of 

the actual schedule (the initial schedule at start) called the new schedule, which 

produces a new temperature, Tnew . If L, Z.C. Tnew - T, is positive, then the 

schedule is updated and replaced by the actual one; otherwise, it would be up-

dated following a probability distribution that defines the acceptance criteria of 

solutions (C = e_T/T). Finally, the temperature T is reduced gradually, by a 

cooling factor (a), resulting in a decreasing exponential distribution. 

There are important issues for efficiently using annealing for scheduling pur-

poses. The first one is the random choice of both an appropriate initial schedule 

and the perturbation function. The initial schedule and the perturbation function 

must return "reasonably" good schedules. The second, is the choice of a suitable 

rate to decrease the temperature through the use of a. A slow rate tends to 

result in optimal solutions, but at the cost of more iterations. 

3.2.2.2 Level Scheduling 

Level scheduling was originally proposed in [82], as a solution to the problem of 

assigning products to different operation lines, a variant of the minimum-length-

schedule problem. The algorithm allocates the same priority to the products from 

the same hierarchical level in the DAG, but products from higher levels get higher 

priorities. The outcome of this prioritisation scheme is a topological sort. The 

problem has an optimal solution when all the operations take a single unit of time 

and there are only two processors or processing units. In the case of greater than 

two processors, the solution is bounded within the optimal [67]. For example, 

if there are three processors, the ratio between the solution and the theoretical 

optimal solution, wLS/wo,  is 1.5. 

3.2.2.3 List Scheduling 

List scheduling uses a priority list to order in advance the set of instructions IJ, by 

respecting -<. This list is then scanned sequentially in decreasing order, to assign 

an instruction to an available functional unit. The difference between algorithms, 
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and therefore priorities, resides in the classes of heuristics that are considered. 

Once the instruction is assigned to a functional unit, it is removed from the list 

and the cycle continues. This behaviour leads to a lack of preemptions in the 

algorithm, and is therefore a non-preemptive approach'. If multiple functional 

units of the same type are ready, then the priority list gives preference according 

to the order in which instructions are placed. The algorithm terminates once all 

the instructions have been assigned to functional units, i.e. the priority list is 

empty. 

List scheduling has traditionally been used for scheduling in uniprocessors. 

In particular, the priority list is filled at the start with instructions with no 

predecessors, usually called "ready" instructions, from which the heuristic will 

decide the best candidate to be scheduled next. As soon as an instruction is 

removed from the ready list, all of its successors become available, and they are 

included in the list for consideration in the following cycle. 

3.3 Instruction Scheduling in Synchronous 
Architectures 

3.3.1 List Scheduling for Synchronous Platforms 

The list scheduling technique has been used in innumerable synchronous schedul- 

ing applications. The following are important work in the area of local scheduling. 

Scheduling with no Hardware Support for Interlocks 1 - One of the earli-

est examples of list scheduling in a synchronous uniprocessor is found in [75]. 

The MIPS processor [91] does not support interlocks, so the compiler is re-

sponsible for characterising the pipeline constraints and re-scheduling the 

code to avoid them, and in some cases with the help of no-operations (nop) 

instructions. 

An alternative register allocation scheme was also conceived for the lack 

of hardware support for interlocks. Register allocation for an interlocked-

pipelined architecture does not necessarily have to avoid a combination 

of instructions with a Read-After-Write dependency (in such a case the 

datapath would introduce an interlock). But for a MIPS processor, in the 

register allocation phase, the use of registers must be modified in order to 

avoid such hazards systematically. 

'List scheduling is therefore a subset of preemptive schedules. 
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Register allocation is an NP-complete problem in its own right [124]. This 

approach to scheduling has to deal not only with the scheduling problem but 

with the register allocation one as well. The combination of both problems 

is shown to be NP-hard, though with the use of no-operations, the problem 

can be reduced to NP-complete [75]. 

Due to the nature of the problem, the approach is not meant to be optimal, 

but to select the shortest legal schedule from a subset which is generated. 

The algorithm finds the shortest legal schedule in polynomial time, i.e. in 

0(n4 ) time [74]. 

Scheduling with no Hardware Support for Interlocks 2 - Results in [132], 

on the other hand, show that with some restricted set of pipeline constraints 

in Delayed-load architectures such as the MIPS, optimal scheduling and re-

gister allocation can be achieved in linear time. The necessary conditions 

though, include that all instructions are executed in one clock cycle and 

that all destination registers in load instructions cannot be accessed until 

one cycle has elapsed (delay = 1). If they are accessed before one cycle, i.e. 

just after the load, a pipeline interlock occurs. 

Another simplification is the use of expression-trees rather than DAGs. An 

expression-tree differs from a DAG in that each node must either be a sym-

bol or a parameter (an address or a number), whereas in a DAG, each node 

represents an instruction with its own opcode and operands. The complex-

ity of dependencies in a DAG (-<) makes register allocation particularly 

difficult. With the use of binary expression-trees, the task is much simpler. 

Expression-trees help implement register allocation and instruction schedul-

ing in polynomial time; the complexity is proportional to the size of the tree 

when the value of delay is one. Figures 3.5 (a) and 3.5 (b) show examples 

of an expression-tree and a DAG for the assignment m = A [1];. 

For cases where the delay is greater than one, optimal scheduling results 

are maintained such that the shortest schedule is obtained, but the register 

allocation results are no longer optimal. Such a schedule does not guarantee 

the use of minimum number of registers. In [100], the binary tree algorithm 

is used as a heuristic to schedule instructions with arbitrary delay slots 

when a DAG is used. The run-time complexity of the scheduler is 0(n). 

Scheduling with Hardware Support for Interlocks - The work by Gibbons 

and Muchnick [64] differs from the previous two cases in that it is targeted 
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Figure 3.5: (a) An expression-tree and (b) an equivalent DAG representation. 

at architectures with hardware support for interlocks. In deeply pipelined 

architectures, an optimal schedule is one that causes the minimum number 

of stalls in the pipeline. In particular, a scheduler has to be able to perform 

well under various implementations with different sets of interlocks. The 

resulting schedule might not be optimal for a particular set, but will still 

perform well overall. The algorithm uses two main criteria for selecting a 

candidate instruction from the ready list: the candidate must not cause an 

interlock with a previous scheduled instruction, and it has to be the most 

likely instruction to interlock the instruction after it. 

The algorithm was implemented without lookahead in order to maintain 

a low run-time complexity. Lookahead is a property of an algorithm in 

that it looks for "near future" features, i.e. choosing ready instructions 

which will trigger ready candidates in the future. The scheduler considers 

some heuristics to mimic lookahead properties at the moment of choosing 

an instruction from the ready list. These include the number of immediate 

successors, the longest path from the candidate to the leaves of the DAG, 

and whether the candidate would cause an interlock with its immediate 

successors. The scheduler has a run-time complexity of 0(n2 ). 

Rank Algorithm - Another well known work in scheduling RISC architectures 

is presented in [124]. Palem and Simons use the latency information from 
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every instruction I, (1 	i < n), together with the deadline, to define the 

rank of I, called rank (Ii ). The scheduling algorithm uses this rank to 

construct the list and then schedules it in a greedy fashion. The deadline is 

a sufficiently large figure by when the instructions are guaranteed to have 

been executed. An example of a deadline time is n (k + 1), where k is the 

maximum possible latency. The time complexity of the scheduler based on 

the rank algorithm is O(en + e log n), where e is the number of edges in 

the DAG. 

This work was extended in [101] to include the presence of deadlines and 

release-times for embedded applications and real-time systems. Due to the 

nature of the overhead involved in computing the deadlines, the run-time 

complexity becomes 0(n 3 
  a(n)). o(n) is the inverse of the Ackermann func-

tion, and should be considered a small constant as n increases [69]. 

Balanced Scheduler - The balanced scheduler [92] is another example of list 

scheduling that introduces the concept of measuring load-level parallelism 

to the algorithm. The reason for this is that the latency of a load is not 

always constant due to a possible cache miss in the memory hierarchy; 

therefore, waiting for a value from memory can lead to undesirable stalls in 

the pipeline. Architectures with non-blocking loads allow other instructions 

to be executed concurrently with a load instruction; hence, it is important 

to pad an appropriate number of non-load instructions for every load one. 

One of the differences with the other list schedulers is that the balanced 

scheduler does not allow a free instruction to be inserted in the ready list 

until its predecessors have exhausted their expected latencies. The heur-

istics used by the balanced scheduler to select a candidate from the ready 

list are the priority, i.e. the weight based on the load-level parallelism, 

the maximum priority of its successors, the largest difference between con-

sumed and defined registers (to monitor register pressure), and the number 

of successors of the candidate if it were to be scheduled. 

The balanced scheduler is the first example in the literature that considers 

latencies that vary at run-time. The results show, however, that if the 

latency gap between the cache hit and cache miss grows, it becomes harder 

to compensate the effect of a miss by inserting independent instructions, 

and performance degrades considerably. The run-time complexity of the 

balanced scheduler is 0(n 2  c(n)). 
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3.3.2 Synchronous Model for the Compiler 

The RISC experience has shown that a simple instruction set offers several advant-

ages for the compiler. Firstly, simple instructions run faster by using pipelining, 

and secondly, the majority of the instructions have the same execution time, so 

the compiler does not have to implement a complicated algorithm in order to 

distribute long latency instructions amongst those with short latencies. 

In early synchronous RISC architectures, instruction sets included simple in-

structions that normally execute at the rate of one instruction per cycle through 

the use of pipelined datapaths [125]. Examples of these include the MIPS pro-

cessor from Stanford University, and the RISC I and RISC II processors from 

University of California at Berkeley. In the early schedulers all instructions are 

considered to take the same amount of time to execute [75]; in [100] and [132], 

all the pipeline stages of the delayed-load architecture take only one clock cycle 

to complete. Furthermore, the rank algorithm in [124], and its extension in [101], 

consider all latencies to be either zero or one unit to achieve optimal results. 

The "uniform" latency assumption simplifies the compiler model described in 

Section 3.1. For the set C, we now have : 'c/L 2  E C, L i  = 1. This means that 

the scheduler can assume that after choosing a ready instruction and removing 

it from the ready list, it can be considered as executed. The next step of the 

algorithm is to update all its immediate successors and insert them in the ready 

list. These iterations of the algorithm have an implicit, discrete timing. If the 

latencies are integer values, then the scheduler must wait for a number of "cycles" 

until the completion of the instruction before activating its successors [174]. An 

important point to note is that, in some approaches, the values from the latencies 

are used as part of the set E, instead of £ [10][19]. This means that the set 

C becomes empty (C = 0), with the assumption that the communication costs 

are neglected. The DAG in Figure 3.1 would become a DAG with delay values 

assigned to the edges as depicted in Figure 3.6. If a node has multiple immediate 

successors, then the value is broadcast to all its edges. The ability to integrate 

the hardware latencies directly into the model has been an important factor in 

the success of these schedulers. 

However, more recent RISC architectures with organisations containing a 

number of functional units in their datapaths, a higher degree of pipelining, and 

different levels in the memory hierarchy are more difficult to model [10]. It is 

recognised that latency variations of memory accesses lead to a degradation in 

the quality of scheduling. The balanced scheduler [92] is the first example of a 

scheduler in which the latencies are not considered fixed, because of variations in 
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Figure 3.6: An alternative interpretation for the DAG from Figure 3.1. 

the memory hierarchy. Two machine cases are presented: one RISC-type machine 

with a cache ratio bounded between two and five clock cycles, for a hit and a miss 

respectively, and an interconnect-based network whose memory latency is defined 

by a normal distribution with both its mean and standard deviation ranging from 

two to five clock cycles. It is worth mentioning that, for the sake of evaluating the 

scheduler, an unbalanced configuration 7 , where not enough load-level parallelism 

can be found, was selected. In some benchmarks, the degradation was so signi-

ficant that the scheduler performed worse than a list scheduler implementation 

without the load-level information. 

Even with these run-time variations in latencies, computational models for 

synchronous architectures can still capture the principal features effectively with 

the use of heuristics. The next section presents some of the most common heur-

istics used in list schedulers. 

3.3.3 Common Heuristics for List Schedulers 

The effectiveness of list schedulers depends on a crucial decision that is taken 

during the execution of the algorithm: instructions from the ready list must be 

chosen according to heuristics such that the most "important" instructions are 

7A mean value of 30 clock cycles and a standard deviation of 5 clock cycles. 
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selected first. These heuristics are usually combined to a weighted sum that can 

be tuned to improve the scheduler. There are a number of possible factors that 

can be used for a heuristic. The key is to find which factors affect the performance 

for a particular architecture. This section describes some of the commonly-used 

criteria: 

Critical path. The critical path is one of the most commonly used heuristics. It 

describes the longest path from the entry point to the exit point of a basic 

block. The critical path is an upper bound for any scheduler. If the edges 

of the DAG are not zero, then the critical path is the one with the greatest 

collective weight from the entry node to the exit node. For example, the 

critical paths in Figure 3.6 are Ij , 12, 14 , 17 , 19  and I, 12, 15 , 17 , 19 . 

Number of successors. The number of successors describes how much the res-

ult of a node is needed by its successors, i.e. the importance of an in-

struction's result. The more successors an instruction has, the earlier this 

result must be resolved in order that its successors become ready as soon 

as possible. 

This heuristic can be interpreted on the immediate number of successors or 

the total number of successors. The immediate number of successors can 

be used to eliminate ties in the main heuristic. 

Number of predecessors. The number of predecessors describes the number 

of parents of a node. An instruction with many predecessors represents a 

synchronisation point, thus reducing concurrency and must be scheduled as 

late as possible, so that all its predecessors produce their data as early as 

possible. The immediate number of predecessors can be applied in the same 

way as the immediate number of successors. 

Distance to the leaves of the DAG. This is the distance in terms of the num-

ber of edges, from an instruction to any sink in the DAC (all the sink nodes 

are joined to the exit node as mentioned in Section 3.1). This heuristic is 

used in [64]. 

Number of operands. The purpose of this metric is to identify register pres-

sure. More operands in an instruction implies more releases of registers 

as soon as these operands are read. This is relevant as releasing registers 

means other temporary values can be assigned to them and spilled code 

can be avoided. This heuristic is subject to the number of registers in the 

architecture in question. 



Resource usage. This factor helps to track the instructions when there are lim-

ited number and types of functional units. When an instruction is selected 

from the ready list, its functional unit is recorded, so that the scheduler 

recalls which types have been recently used. Depending on past selections, 

the scheduler uses this information to choose instructions so that run-time 

contentions for resources are reduced. This heuristic is subject to the num-

ber and types of functional units. 

The work in [13] uses genetic algorithms to tune a large set of heuristics for 

an instruction scheduler targeted at three different synchronous machines. The 

statistical data show that the critical path is indeed the most beneficial heuristic, 

and that the number of successors and predecessors heuristics are not as effective. 

The results also show that the distance to the leaves of the DAG and the number 

of operands heuristics are not as useful, at least for the machines which were 

tested. 

3.4 Asynchronous Circuits 

3.4.1 Introduction 

In recent years, there has been a revival of interest in asynchronous circuits. This 

is in part due to serious problems that are beginning to affect the design and 

implementation of high performance synchronous systems, which will be aggrav-

ated in the future, as the clock period shrinks. Among these, the clock skew 

and power consumption remain crucial issues in the design of future synchronous 

architectures [109]. 

Clock skew represents the small differences in the arrival times of the clock at 

different parts of the integrated circuit. The problem with clock skew is that it 

has an effect on a small, and crucial, window of time where the clock edge must 

take place. This period of time is comprised of the setup time (the maximum 

time that the output values of the combinational logic from the previous state 

have to be stable), and the hold time (which is the minimum time that it takes 

for the input nodes to be charged at the present state). If the clock edge does 

not take place within this window, either the values from the previous state will 

not have time to settle and cause a setup violation, or there will not be enough 

time to charge the new entries from the current state, and thereby incur a hold 

violation. 

There are several physical reasons which cause these variations in the ar-

rival times such as temperature, technology process, threshold voltage, and signal 
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propagation delays in conjunction with the routing and the topology of the clock 

signal. The importance of the clock distribution in high-speed and high-density 

implementations is that the clock load must be equally balanced all over the chip. 

The implications of the clock routing topology are decisive in the trade-off between 

several metrics such as clock skew, clock load, the maximum clock frequency, and 

the power consumption of the clock buffers. But other issues will contribute to 

the pressure on the clock skew with the projected scaling trends [146]: firstly, it 

is known that clock frequencies allow around twenty fanout-of-four' (F04) in-

verter delays per clock cycle, but this figure will be reduced to around five at the 

feature size of 0.05 pm technology and clocking at speeds of 10 GHz, according 

to the SIA projections [1][81]. The clocking overhead will use a significant part 

of the cycle time making conventional flip-flop schemes more difficult to design 

[52]. Secondly, the ever increasing operating frequencies will tighten the timing 

restrictions, i.e. the window within which the clock transition must take place 

will narrow. And thirdly, the continuous increase in the die size will naturally 

lengthen the clock wires, and thereby producing longer delays. Signal delays are 

governed by electromagnetic wave propagation and are directly proportional to 

the wire length', so this tendency of longer paths for the clock will also have 

major effects on the clock skew. 

The second main cause of concern in synchronous systems is their power con-

sumption. The power consumption at the device level for CMOS logic is pro-

portional to the operation frequency (f), the total output capacitance (CT), the 

supply voltage (VDD), and to the short-circuit current (I)  and the leakage cur-

rent ('leak)  [175], as defined by Equation 3.1. 

P = fCTVDD 2  + ( VDD - 2 l4h) 3 I + VDDIleak 	 (3.1) 

Among these three terms, the one that dominates is the first term, called the 

switching current. In recent years, the supply voltage (VDD) has consistently been 

reduced, but it is reaching a limit as VDD  closes the gap with the threshold voltage 

Vth in deep sub-micron technologies. There are clear indications that lowering 

the supply voltage requires lowering the threshold voltage, and low threshold 

voltages lead to significantly large subthreshold leakage currents [88]. It also 

has been shown in [43], that at a feature size of 0.18 jrn there are difficulties 

F04 is a delay metric to estimate circuit speeds independent of the process technology. The 
F04 delay is the time for an inverter to drive four copies of itself. 

'The delay of a wire is quadratically proportional to its length and independent of its width. 
Widening the wire will reduce its resistivity but will proportionally increase its capacitance. 
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to lowering the supply voltage and the threshold voltage below 1.0 V and 0.3 V 

respectively, without loss in speed. Scaling analysis shows that V2h seems to be 

limited at 0.3 V for room temperature of CMOS circuits [38]. This suggests that 

there is a potential lower bound for the supply voltage, while clock frequencies 

will maintain their relentless increase. The actual trend in microprocessors (for 

the last 15 years) is that clock frequency increases 30% per year [52]. The power 

consumption therefore might become strictly related to the switching frequency: 

a prediction that by the year 2006 the devices will operate at frequencies around 

4 GHz, and consuming more than 170 Watts [22][146]. 

Even though the clock can be gated in synchronous designs [134], it is not 

always straight-forward to find a suitable condition to shut down the clock and it is 

likely that some parts of the clock tree will still be switching, therefore consuming 

power [177]. Moreover, it has been shown that in high-performance processors, the 

clock circuitry, i.e. generation, drivers, distribution tree and loading, represents 

up to 40% of the power consumption in high-performance processors [168], and 

between 15% and 45% in more generic synchronous designs [128]. Asynchronous 

designs on the other hand, will only consume power when being active. There 

have been several examples where the asynchronous design is often larger than its 

synchronous counterpart, but with the advantage of having considerable power 

savings [16][93][141], and even some of them having no impact in terms of area 

[140] [165]. 

There are other reasons that lead us to believe that future VLSI circuits will 

find it difficult to continue with the trends described above. All these reasons 

have motivated research into asynchronous circuits and systems, so underlying 

their differences is the first step in understanding them. 

In synchronous design there are two main assumptions: all signals are binary 

and the time is discrete [26][72]. The former has permitted Boolean algebra 

not only to express in mathematical terms combinational circuits, but to help 

methodologically their realisation and optimisation; the latter means that hazards 

and feedback can be ignored to some extent. 

In the asynchronous domain, the only assumption that is held is that all signals 

are binary; time is no longer considered discrete. This difference is the basis for 

several positive features not found in clocked circuits. This section looks at some 

of the benefits and drawbacks that result from this property. 

All these implications are relevant when designing a scheduler with an asyn-

chronous architecture in mind. Later, we will describe the principal features that 

such a scheduler should embody, and how best to model the behaviour of the 

asynchronous target. 
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3.4.2 Advantages 

The main advantages of asynchronous circuits are summarised as follows: 

Low power. As asynchronous circuits do not use a clock for synchronisation, 

their components only consume power during useful operations or transac-

tions. During the rest of the time, they remain in a quiescent state, when 

only leakage current is consumed' ° . It is believed, however, that more sig-

nal transactions take place during activity, but they only occur in areas 

involved in the computation. 

Synchronous circuits however, consume power even when they are not per-

forming any useful operation. An alternative solution is to gate the clock 

(which effectively turns the clock off) in areas that are not used frequently, 

but this has been pointed out to be the source of other problems during syn-

thesis and verification, because modified clocks generally generate glitches. 

The other concern when gating the clock is due to current variation. The 

switching variation from different blocks toggling on and off strains the 

power delivery mechanism [168]. 

Furthermore, the patterns seen in synchronous circuits over recent years 

when technology scales down (frequency doubling, supply voltages scaling 

down 30%, capacitance growing from 30% to 35% and die size growing 

around 25%) show that the main limitation for performance and integra-

tion in future technologies will be the power dissipation and power delivery 

[22][168]. Even reducing the power supply does not help enough to reduce 

the power consumption of today's processors. 

So far, several examples of asynchronous implementations found in the liter-

ature have presented low power consumption characteristics [113] [126] [167]. 

Some of them have shown power savings with respect to comparable syn-

chronous implementations. 

Average case instead of worse case. One of the main advantages of asyn-

chrony is that components do not need to wait after they complete a trans-

action; they can proceed immediately to the next operation if requested. 

The speed therefore will depend on the average speeds of all the entities. In 

order to increase the overall speed, one should analyse their "standard de-

viation" over time: since there is a collection of different speeds, one should 

"For CMOS circuits, the leakage current can be neglected when compared to the current 
consumed in active mode [17]. 
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look at the frequency of operation of the slower components, and depend-

ing on their number of occurrences, those with a higher figure, should be 

improved. Doing this will actually increase the average speed of the circuit, 

i.e. reducing its standard deviation. 

In the synchronous approach the clock speed is determined by the speed 

of the slowest component, i.e. the worst-case. To increase the speed of 

such a system, all the slower components must be able to operate faster 

altogether, resulting in a new clock frequency which is determined by the 

improved speed of the slowest element(s). 

No clock skew. The lack of a clock in asynchronous systems means that there 

is no clock skew. When the clock signal is propagated, the differences in 

the arrival times impinge upon the behaviour of the circuit; if the clock 

frequency is incremented, there is a higher probability for variations in the 

clock skew, so special attention is paid to the clock routing and buffering. 

This is a major concern in synchronous designs nowadays, due to the in-

creasing clock operating frequencies. The removal of the clock skew problem 

helps asynchronous circuit design to relax the global timing demands. 

Automatic adaptation to physical properties. In synchronous design, the 

physical environment of the circuit such as temperature, power supply and 

fabrication specifications, needs to be taken into account so that the circuit 

should work under the worst possible operating conditions. It must operate 

within a safety margin in order to guarantee its functionality in case of 

variations, so typical values cannot be used. The term, worst-case, applies 

in the same way as before. 

On the other hand, asynchronous circuits are more tolerant to physical vari-

ations. Since there are no critical timing requirements to match a specific 

clock speed, circuits may have different delays corresponding to a particular 

variation and will run as fast as their operation conditions will allow. Their 

functionality, and more importantly, their correctness, will be maintained 

in any case. 

Low noise and low emission. The downside effects produced by clocking at 

very fast speeds can be often found in power lines where noise is induced. 

This is relevant if the circuit includes analog or RF circuits, since the noise 

caused by the clock could interfere in their operation. The high-frequency 

harmonics induced could be confused for a proper signal. An example of 
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these negative effects are found in analog-to-digital converters, where fluc-

tuations in the power supply caused by noise can lead to wrong voltage 

reference levels, and therefore, to wrong conversions. In such cases, these 

implementations require expensive circuitry for filtering the noise generated. 

On the other hand, the levels of noise in an asynchronous circuit are better 

tolerated [17]. In [59] for example, an asynchronous version of the 80051 

micro-controller is presented in which the level of noise is substantially 

reduced compared to its synchronous counterpart. In [126], a low-noise, 

low-power, self-timed DSP is described. It is characterised by substantial 

reductions of noise and electromagnetic interference (EMI) emissions. 

Locality. Asynchrony supports a modular approach to system design. The ab-

sence of a clock isolates the different components that communicate locally, 

from the rest of the system. These could be replaced, expanded or removed 

without having a side-effect on the rest of the system. Furthermore, com-

ponents can be fully designed and optimised independently. Again, in a 

synchronous platform where balancing the clock load, optimising and rout-

ing the clock are important design issues, any of the previous actions would 

require global modifications to the circuit, i.e. re-computing the clock speed 

and revising both the clock load and the clock routing scheme. The whole 

optimisation process has to be performed in a global manner. 

Locality also helps to expose fine-grain concurrency. Components in a 

datapath only communicate with neighbouring components in order to per-

form a computation. Other components, independent of this computation, 

can operate freely without the need for synchronisation. This model ex-

poses a finer degree of concurrency [5][6][7]. This will be discussed in more 

detail in Section 4.3.1. 

Globally asynchronous - locally synchronous. An area where asynchrony 

might have an immediate impact on synchronous systems will be to replace 

the global clock with an asynchronous protocol, to benefit the clock skew 

and the overall power consumption. The principle is to have a collection 

of synchronous components that communicate with each other asynchron-

ously - the so-called Globally Asynchronous Locally Synchronous (GALS) 

systems [30]. A design methodology for GALS systems is presented in [73]. 

The methodology aims to find an optimum balance between partitioning 

a chip in large synchronous blocks with low asynchronous communication 

overheads. Results show that up to 70% of power consumption can be 
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Just recently, there has been a surge in the availability of research tools and 

methodologies for asynchronous design, varying from high-level description 

languages to hardware verification and synthesis techniques [135]. Although 

their increasing use can be found in numerous examples [16][63], they are 

still immature when compared to the infrastructure available for synchron-

ous design. Although these tools produce working designs, the performance 

results achieved in terms of speed are inadequate, as reported in [159]. Dir-

ections for future research in CAD tools can be found in [158]. 

Testing. In synchronous designs, testing has been developed around the clock: 

testing wrappers are built-in around components, and when a testing mode 

is set, testing vectors are applied to the circuit. In the testing mode, one 

can proceed with the flow of operation and stop it at any point by disabling 

the clock signals. The state of the system at that point in time can be 

checked. Online testing is a technique that consists of a circuit checker that 

analyses illegal states representing illegal outputs. The testing overhead is 

considerable but is compensated by the effectiveness of this technique. 

On the other hand, testing an equivalent asynchronous circuit is a difficult 

problem [15]. The main reasons that make this task particularly difficult 

stem from the fact that, first, there is a larger presence of state-holding ele-

ments at the point where the test generation seems practically impossible; 

secondly, the inability to "freeze" the state of the circuit and "single step" 

from it; thirdly, the larger overhead of logic to be paid around the asyn-

chronous circuitry, and lastly, due to the difficulties in detecting hazards 

and races [83], that have to be avoided in the first place. 

These difficulties are challenging, but there are examples where testing can 

be implemented under control with some degree of success. Self-checking 

circuits offer an interesting property only seen in self-timed circuits. During 

the handshake of an asynchronous transaction a request from the sender 

initiates the process and the receiver must eventually acknowledge back the 

sender, when ready to receive. If the process of this handshake is never 

completed (an indefinite wait), it is likely due to a fault in the circuit. Self-

checking circuits halt when faulty, a characteristic that makes them known 

as fully testable circuits [83][129]. 

Test generation is another complex task in asynchronous design, not only 

because during testing hazards could be introduced (a problem not found 

when testing synchronous circuits), but because testing for a particular fault 
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may require a series of input patterns that need to be fed up to the known 

state where the input vector will then exercise that fault. 

Testing still represents a challenging area in the synchronous domain and 

will continue to be so with the emergence of the recent system-on-chip 

(SOC) methodologies [178]. This means that the challenge will be even 

greater for testing entire asynchronous systems. 

Performance measurement. Measuring the speed performance of an asyn-

chronous circuit is not a trivial task compared to its synchronous coun-

terpart. With clocked circuits this task involves measuring the length of 

the critical path and then counting the number of clock cycles. For an 

asynchronous circuit, the time it will take to complete a task will depend 

on its delays (related to hardware issues) and on the input data (related 

to software issues). This means that the performance measures are prone 

to be variable. (The reasons of this are explained in more detail in the 

next section). The performance metric used must be based on the average 

measure. 

An alternative method for measuring the performance of asynchronous mi-

croprocessors is the MIPS/Watt metric. This metric measures the perform-

ance by showing how fast a processor runs, at the expense of its power 

consumption. To counter the criticisms that asynchronous microprocessors 

are not as fast as their synchronous counterparts, this metric shows that 

performance can be related to power consumption, and that a design could 

be thermally more efficient for its performance. In [113], an asynchron-

ous implementation of a MIPS R3000 microprocessor is checked at different 

supply voltages to compare its performance per wattage. It is shown that 

one can trade a higher speed at a higher voltage, and thus a higher power 

consumption, for a lower supply voltage with lower power dissipation, but 

with lower performance overall. 

3.4.4 A Compiler Model for Asynchronous Architectures 

As discussed in Section 3.3.2, compilers, and importantly, schedulers for synchron-

ous targets have benefited from the regular streams in the instruction execution. 

The method for forcing all events to occur with the clock, and eventually the ex-

ecution of the instructions, eases the scheduling model described in Section 3.1. 

The behaviour of the architecture is captured in 9, giving the algorithm full 

control for accurate optimisations. 



However, the assumptions made in the synchronous model do not hold for an 

asynchronous target, simply because events do not have precise timings, i.e. they 

do not have a pre-defined time to resolve. Values from set C are variable and are 

certainly not integers. They are governed by a number of different factors: (1) 

At the physical level, the time it takes for an asynchronous datapath to complete 

a task depends upon its design, its physical layout and its operating conditions. 

The dynamic behaviour when executing a sequence of instructions (3) 

is based on the number and type of resources; sets R and T, respectively. If, 

for example, instructions from this sequence belong to the same type and there 

is only one functional unit available of that type, then structural hazards will 

occur and introduce additional delays which affect the execution times. The 

dynamic influence of these delays comes from a tight relationship between both 

the sequence of instructions and the architecture configuration (number and types 

of functional units and the connectivity between them). 

Another important dynamic effect in asynchronous designs is that the 

time it takes to process an action depends on its input data as well. A typical 

example is found in asynchronous adders where the time to complete an addition 

is proportional to the number of one-plus-one's, say m (number of ones from one 

operand added to the ones from the other), because carry signals must propagate 

m stages to allow the addition to complete [94][151]. 

And (4), statically, the latencies are dependent upon the instructions them-

selves and their ordering. The opcode of the instruction defines which type of 

functional unit will execute the instruction; the operands determine from which 

registers the data will be read or written accordingly. 

Finally, the ordering in which they are scheduled is decisive in the way events 

will take place in order to avoid stalls due to data dependencies during execution. 

This series of interdependencies can be illustrated in Figure 3.7. The figure de-

picts a different representation of the scheduling problem from the scheme shown 

in Figure 3.4. 

The dashed lines in the figure represent the latency information that is only 

available at run-time and not statically. The solid lines represent set of inform-

ation that are fully available before scheduling takes place. The feedback from 

89 does not mean that the output schedule is being fed back, but to illustrate 

that the ordering in the schedule needs to be processed in combination with all 

aspects explained above, and that will determine the final values of the latencies. 

The dashed line leaving the block where C is determined implies only that these 

values are not available at compile-time. 
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Figure 3.7: New representation of the scheduling problem. 

Given all the factors and combinations involved in defining the latencies values, 

they are found to be bounded within a best and a worst case. The best case 

is when there are optimal operating conditions, minimum delays coming from 

the inputs, minimum dynamic delays and minimum processing time of data. In 

the adder example, the best case is when adding zero to zero. Conversely, the 

upper bound, i.e. the worst case, is when the operation is performed under the 

worst operating conditions, with maximum delays from the inputs and maximum 

processing of data. In the case of the adder (the case of adding maximum numbers 

together), i.e. numbers with maximum number of ones, the carry has to propagate 

to its maximum. The data is mostly responsible for the operating range of the 

adder. Its delay function is therefore, an ascendent curve directly proportional 

to the amount of one-plus-ones m, starting from the best case and bound at the 

worst case [62]. 

Finally, asynchronous circuits require an additional time to become ready 

to operate when they complete an operation. During this period of time an 

asynchronous component settles and goes to an initial state whereby it can start a 

new operation. In synchronous circuits this period of time is included in the cycle 

time, which is calculated from the slowest component. However, the cycle time 

in asynchronous circuits is particular to each component. Its duration is mainly 
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due to the implementation of the circuit, but is also affected by the physical 

conditions explained earlier. The cycle time of a component can be considered to 

be a fraction of its latency time, but cannot necessarily be ignored. 

3.4.5 Considerations for the Compiler 

As has been mentioned before, the scheduling problem becomes NP-hard when 

pipeline stages are no longer equal, even if the basic block consists of independent 

instructions [61][124]. Having different types of units and variable latencies poses 

a challenging optimisation problem for the compiler. The number of variables 

involved in the determination of the latency values is large and diverse enough 

to integrate into a single computational model. The complexity of such a model 

combined with the complexity of the scheduling task seems to have a intractable 

solution. In order to simplify the problem, the compiler has to make some as-

sumptions without removing the principal features of asynchrony: the operating 

conditions can be assumed to be fixed to some extent, and the delays between 

neighbouring components can be neglected since they should be placed together 

in the physical layout. 

The dynamic variations due to data dependencies, data processing and re-

source contention cannot be simplified because they are only resolved at run-time, 

which makes it difficult to parametrise them. However, they can be decomposed 

in terms of costs. Some operations or events may be more costly in terms of 

delay than others. In this way, priorities can be incorporated into the scheduler. 

It has been shown that in delayed-load architectures without hardware support 

for interlocks, the scheduler must ensure that there cannot be two data dependent 

instructions scheduled consecutively. A dedicated heuristic can be implemented 

in such a way that this case should never happen. 

In [7], data dependencies (RAW, WAR and WAW), are categorised by the 

amount of stall they induce in an asynchronous architecture and prove to be 

a good mechanism for consideration as a heuristic. Capturing the impact of 

different costs instead of the actual latency values seems an attractive approach 

to the problem. Detailed explanations will be presented in Chapter 4. 

However, one could not presume to find optimal solutions for asynchronous 

architectures. As mentioned before, the scheduling problem expects to obtain 

near-optimal solutions given its complexity. The assumptions made for asyn-

chronous circuits may lead, to some degree, to relatively good solutions, but the 

non-deterministic nature of the problem makes it impossible to always achieve 

optimal results. Furthermore, a schedule may have different optimal values over 
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different runs due to the dynamic characteristics explained earlier. It is expec-

ted that several runs of the same scheduled code will have different makespans. 

Hardware considerations in [7] include different costs for different functional units 

based upon SPICE-level simulations, but latencies are fixed figures during the 

simulation process. Although the ratios between costs and latencies are repres-

entative of the architecture, they do not reflect the variability as a result of input 

data and resource contentions at run-time. 

From the scheme shown in Figure 3.7, one can parameterise the number and 

types of functional units (T, R). The cost involved in the communication of results 

(E) can be associated to the delay function of the register file after SPICE simula-

tions. As for JL, the scheduler may use a range of values covering a maximum and 

minimum latencies in the parametrised model, in order to apply different costs 

to combination of instructions at compile-time. All this information will serve to 

capture the computation model for the scheduler. 

3.5 Summary 

Scheduling techniques for uniprocessors have matured enormously since the prob-

lem was first approached, and has been helped by previous scheduling research 

in other domains such as management science and operations research. These 

studies have focused on the optimisation concerning people, equipment and raw 

materials. These problems have dealt basically with integer numbers, and it is 

this reason that enabled the subtle transition to scheduling code in instruction 

set architectures. 

List scheduling has become a de facto solution for the "p-functional unit 

processor, n-instructions" problem. The sparse diversity of heuristics offers an 

appropriate method to overcome the constraint's complexity and is able to tune 

scheduling optimisations for different target specifications. However, these spe-

cifications rely upon regular and synchronous behaviours. The scheduling ex-

amples described in this chapter show the tight relationship between the back-end 

of the compiler and the architecture. This relationship is greatly responsible for 

the success of scheduling in synchronous architectures in achieving good perform-

ances. 

The challenge for scheduling asynchronous architectures though is apparent. 

Despite all the advantages of asynchronous circuits described in this chapter, the 

property of exploiting average case delays is in fact the primary reason for the 

difficulties in scheduling. The result of having ranges in the latencies for the set C, 
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instead of single point values, raises the question whether traditional scheduling 

techniques would be as effective for asynchronous architectures, and at first sight 

reduces expectations for achieving optimal solutions. 

The next chapter will present an overview of some well-known asynchronous 

architectures, including the Micronet-based asynchronous architecture. Descrip-

tions and characteristics of the Micronet architectural approach will be presented 

along with the behaviour of its model. The scheduling schemes proposed later in 

this thesis will be targeted towards such an architecture, and will be evaluated 

on a simulator using a detailed model of the micronet architecture. 
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Chapter 4 

Asynchronous Architectures 

4.1 Introduction 

The benefits of asynchronous circuits, as explained in Chapter 3, have triggered a 

revival of interest in asynchronous architectures and their design. Early research 

investigated the feasibility of large asynchronous systems by "porting" contem-

porary synchronous processors in order to build up credibility and confidence. 

Experiences from this research in asynchronous systems [42][137][145] helped to 

understand that asynchronous architecture design needed to develop alternative 

methods in order to ease the design process and to exploit the advantages of 

asynchronous circuits [15] [72] [110]. 

This chapter presents an overview of contemporary asynchronous architec-

tures, and is not meant to be an exhaustive list. The chapter also describes the 

Micronet [4], an asynchronous architecture in which not only temporal parallel-

ism, but also spatial parallelism is exploited. The micronet model used in this 

thesis and its functionality and characteristics are detailed. The architecture has 

been modelled in a stochastic event-driven simulator to evaluate the potential of 

code scheduling in asynchronous architectures. 

4.2 Review of Asynchronous Architectures 

4.2.1 AMULET 

The AMULET group at Manchester University has developed three asynchronous 

processor implementations based on the ARM (synchronous) processors. The 

first of them, the AMULET1 [56], is an asynchronous micropipelined version 

of the ARM6 microprocessor. The implementation used a two-phase, bundled-

data communication protocol. Its register bank is accessed through the use of 

a register-lock FIFO buffer to allow for multiple, pending write operations and 
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maintaining data coherence. The width of the register-lock FIFO buffer is equal 

to the number of registers, whereas the size of the buffer (its height) defines the 

number of pending write operations. Each location consists of a bit that indicates 

which register is to be written. Control logic ensures that at most one column 

attempts to write to a register. The datapath of the AMULET1 includes an ALU, 

a shifter, a multiplier and a memory unit, so as to be able to execute the ARM 

instruction set. The results showed that the AMULET1 was slightly larger in 

size and consumed more power, when compared with an ARM6 implementation 

using the same technology process. However, the ARM6 is a compact design 

and a highly efficient commercial processor in terms of performance per Watt, so 

this comparison was not entirely fair. AMULET1 did prove the feasibility of a 

large-scale asynchronous architecture. 

The AMULET2 [57] improved on the AMULET1 in several aspects. The 

AMULET2 used the four-phase handshake scheme, which is faster and more 

power efficient; a data-forwarding mechanism reduced pressure on the register 

file and a branch prediction mechanism reduced the percentage of prefetched in-

structions that were discarded when a branch was taken. The AMULET1 was 

reported to have an average of three discarded instructions per branch. With 

branch prediction, this average was reduced to one. The AMULET2 design and 

manufacturing costs were equivalent to that of a similar clocked processor. Fur-

thermore, the AMULET2 also demonstrated the potential for power efficiency (in 

terms of MIPS/Watt) and better EMI characteristics [58]. 

The AMULET3 [63] is the most recent implementation in this series. It offers 

similar performance and functionality as the ARM9TDMI microprocessor. The 

AMULET3 introduced new mechanisms and improved upon several aspects of 

AMULET2. For example, a Thumb decoder was incorporated for full compat-

ibility with the Thumb instruction set, and a reorder buffer was incorporated at 

the write-back stage. The reorder buffer replaced the register-lock FIFO buffer 

used in previous AMULET designs. It enables data forwarding to be more dy-

namic and flexible. The result to be forwarded is stored in the reorder buffer 

until needed. The forwarding event can take place in parallel with the register 

write-back. The reorder buffer shortens the path for results normally written and 

read immediately via the register file, thus reducing the response time for res-

ults to be available. If the instruction results do not need to be forwarded, then 

they are written back in order. The AMULET3 performs favourably against the 

ARM9, in terms of power consumption, performance and size (they were both 

implemented in the same 0.35 urn CMOS process). 
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4.2.2 NSR and Fred 

NSR [138] and Fred [139] were asynchronous processors designed at the University 

of Utah which feature decoupled datapaths to hide the latency of slow operations, 

such as memory instructions. Pipeline stages communicate via variable-length 

FIFO buffers which allow instructions to proceed at their own pace. They also 

allow other instructions not to be held up by slow ones, such as memory or branch 

operations. However, the main disadvantage of FIFO buffers in between stages is 

the latency delays introduced into the pipelines which lowers the throughput. 

Both processors issue one instruction at a time, but have out-of-order execu-

tion. They use register-locking schemes to preserve data consistency, similar to 

the ones used in the AMULET1 and AMULET2 processors. However, the NSR 

processor is a 16-bit implementation, whereas the Fred processor is a 32-bit one, 

with more functional units and is based on the Motorola 88100 instruction set. 

4.2.3 Caltech Asynchronous Processors 

The Caltech Asynchronous Processor was the first VLSI implementation of an 

asynchronous microprocessor [111]. It uses a 16-bit RISC-like instruction set and 

consists of three functional units: an ALU, a memory and a program counter. Its 

register file consisted of 16 registers that could be accessed concurrently. Meas-

urements on the prototype [112] demonstrated the potential for wide operating 

conditions, i.e. testing was successful at a broad range of supply voltages (from 

20V to 0.35V), and the ambient temperature varying from room temperature 

(300°K) down to 77°K. 

The second Caltech processor was an asynchronous implementation of the 

MIPS R3000 [113]. The asynchronous MIPS processor considered architectural 

features not covered in the first design. These included caches, precise exceptions, 

register forwarding, branch prediction and the branch delay slot. Although the 

asynchronous MIPS processor was compatible with the MIPS instruction set, the 

datapath was not a straight synchronous to asynchronous pipeline conversion. 

The execution stage of the datapath was decomposed to allow for out-of-order 

execution, through the use of multiple functional units and a register unit. The 

register unit consisted of a register file, a register lock, and execution and bypass 

buses. The register file had two read and write ports which could operate concur-

rently. Results could be written either solely to the register file or written to both 

the register file and forwarded to a functional unit, if the following instruction 

requires the result. 

Performance, as defined by E-r' (where E is the average energy per instruc- 



tion and 'i-  is the average instruction execution time), compares favourably against 

other synchronous and asynchronous implementations. Furthermore, as the voltage 

is independent of this metric, it can be adjusted to select either high performance 

and a higher power consumption operation or a lower performance with a lower 

power consumption operation. 

4.2.4 Counterfiow Architecture 

The counterfiow pipeline processor (CFPP) [153] is different in that the instruc-

tions and results flow in opposite direction in the pipelines, in order to perform 

data-forwarding. In the instruction pipeline, instructions flow towards the re-

gister file, whilst results flow in the opposite direction towards the instruction 

fetch stage, in the results pipeline. Each instruction carries binding information 

about its source and destination operands. Each binding consists of a register 

name, a data value and a validity bit. This validity bit indicates whether an 

instruction should be cancelled by a trap or a branch. The instruction pipeline 

has several stages, each associated with a different functional unit. 

Once a result is committed, the instruction binding is passed into the result 

pipeline. The result binding flows in the opposite direction in order to "meet" 

the instruction that requires that result. At every stage, instruction and result 

bindings are compared for a register name match. If there is a match, then the 

result is copied to the instruction binding. 

However, the asynchronous counterfiow datapath presents limitations mainly 

in two aspects. Firstly, the throughput of the pipeline is limited by the amount 

of control in each stage. The coordination between the instruction and res-

ult pipelines to compare their corresponding bindings requires arbitration. An 

arbiter-based mechanism is used to decide whether an instruction or a result can 

proceed to the next stage, in their corresponding direction. This depends on the 

state of the stage and its neighbouring stages, i.e. whether the stages are busy or 

not. Secondly, average-case execution cannot be fully exploited in the datapath 

because instructions from one pipeline need to 'synchronise' with results from the 

other pipeline. The speed in which instructions and results advance is therefore 

adjusted to the speed of the slower pipeline. 

4.2.5 SCALP 

SCALP was a superscalar asynchronous low-power processor [47]. The SCALP 

processor issued more than one instruction at a time. Instructions were encoded 

previously by the compiler with opcode, destination and functional unit specifiers. 
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The functional unit specifier indicated which functional unit was assigned to the 

instruction for execution, and the destination specifier denoted where the result 

had to be forwarded. The compiler, therefore, removed the tasks of identifying 

data dependencies and performing dynamic resource allocation, in the same way 

as compilers for VLIW architectures do. This information allowed the simplific-

ation of the issue unit for distributing instructions to functional units in parallel 

[48]. A crossbar switch was responsible for connecting the issue unit to multiple 

functional units. 

In the SCALP architecture the concept of data-forwarding was taken beyond 

conventional data-forwarding schemes. Since all instructions embed the destin-

ation of their results, these were immediately redirected to their corresponding 

functional unit's queues after execution. This scheme has similarities to a data-

flow machine, although control is not governed by the data, but by control logic. 

The SCALP processor treated the register bank as another functional unit. It was 

only used for medium-term storage, i.e. when a result was not immediately re-

quired by a following instruction. Short-term storage, i.e. consecutive dependent 

instructions, was substituted by data-forwarding. A result router was responsible 

for the distribution of results to the input queues of the functional units. 

The programming model for a compiler targeted at the SCALP processor re-

quired several considerations. Both the code generation and the instruction set 

had to be tailored for such a data-forwarding mechanism. One typical example 

that differs from traditional programming models was when an operand was used 

more than once in a computation. Normally, in a register-based processor, one 

load operation would retrieve the value from memory into a register so that it 

could be used as many times as was needed (one producer to multiple consumers). 

With the dedicated data-forwarding scheme of SCALP (one producer to one con-

sumer), the operand must be duplicated the number of times it will be needed, in 

order to be multiplely forwarded. Thus, in the code generation phase, duplicate 

instructions were inserted after the load instruction to avoid the use of multiple 

loads. 

The compiler has to produce code to exploit the potential of explicit data-

forwarding, and also not introduce deadlocks and non-determinism in the ar-

chitecture. Deadlocks could occur if instructions sent multiple results and no 

instruction would consume them, whereas non-determinism would occur, if for 

example, two functional units sent results of the same operand to the same func-

tional unit at the same time. 



4.3 The Micronet Architectural Model 

4.3.1 Preliminaries 

The speed of synchronous pipelines is determined by the speed of the slowest 

stage, and the throughput is proportional to the length of the pipeline, i.e. the 

number of active instructions at a time. Figure 4.1 (a) shows a synchronous 

pipeline that exploits temporal parallelism. The pipeline shows four pipeline 

stages. The shadows represent the activity of the stages, while the white spaces 

represent idle times. It can be seen that resource efficiency is degraded when 

the latencies of the stages are not well balanced. The throughput of synchronous 

pipelines is dictated by the cycle time, which is determined by the speed of the 

slowest stage. 

The speed of asynchronous pipelines is characterised by the average-case speed 

of their components'. Figure 4.1 (b) shows an asynchronous pipeline that offers 

the same amount of temporal parallelism, but exploits the actual delays, thus 

resulting in a more efficient resource utilisation. Micropipelines, as described 

by Sutherland [161], are representative of this type of asynchronous pipelines. 

In such pipelines only different instruction stages can operate concurrently. For 

example, the execution stages of two different instructions cannot overlap. The 

average throughput of such pipelines is limited by the stage with the slowest 

average throughput. 

The work in [6] has proposed an asynchronous model of operation that not 

only exploits temporal parallelism, but spatial parallelism as well. Figure 4.1 (c) 

shows such a pipeline, in which stages from different instructions can overlap. 

From the example shown in the figure, it can be seen that the execution stages 

from two instructions take place concurrently at any time. In such pipelines 

further resource utilisation can be achieved. Furthermore, a degree of elasticity is 

exposed that allows for all the stages to operate concurrently. It has to be noted 

that in both asynchronous pipelines (Figures 4.1 (b) and 4.1 (c)), the self-timed 

protocols have been omitted for the sake of clarity. 

1 1n fact, research has shown that, asynchronous pipelines operate closer to worse-case rather 
than average-case [68]. The reason is that in asynchronous pipelines, the maximum throughput 
requires a receiver to be always ready when its sender is going to transmit data, but also that 
by the time the receiver has completed its operation, its own receiver will also have to be ready. 
A continuous flow of data in this manner is described as wave pipelining [27][71]. In wave 
pipelines, the maximum throughput is determined by the difference between the fastest and 
the slowest component, as opposed to being determined by the slowest one, as in conventional 
pipelines. 



4.3.2 Previous Work 

4.3.2.1 An Asynchronous Network of Micro-operations 

A micro net is a network of entities which compute concurrently and commu-

nicate asynchronously without centralised control [4]. This network of entities 

can be regarded as a generalisation of micropipelines. In micropipelines, instruc-

tions propagate at their own pace, and their execution times are bounded by 

the speed of the slowest stage. This effect has been presented as analogous to 

one-dimensional wave propagation. Such pipelines may exploit further temporal 

parallelism by relaxing the synchronous control, but the parallelism is limited by 

regular structures. For example, in a micropipeline datapath there cannot be 

more active instructions than the number of stages in the pipeline. 

In contrast, the micronet model is limited by the number of functional units. 

The execution of an instruction consists of executing several micro-operations. 

Micro-operations communicate with each other only when necessary. An instruc-

tion only uses the micro-operations required for its execution. This enables other 

instructions to use resources within the same stage, if they are not used. For ex-

ample, an instruction that requires only one operand, and therefore one read bus, 

will leave the other read bus and its entity available. The second read bus and 

its entity can be used concurrently by another instruction that also has just one 

operand. In this manner, fast instructions are able to overtake slower ones. In 

fact, this model of operation enables the competition for resources. The micronet 

datapath offers a finer-level of concurrency than the level of concurrency offered 

by micropipelines [5]. Simulations had demonstrated the following features of the 

micronet architecture: variable instruction execution due to the type of instruc-

tion and the availability of operands; the control overhead in a micronet is hidden 

by the concurrent operations inherent in the model; the concurrent execution of 

micro-operations of different instructions in the same datapath. In effect a scalar 

micronet datapath can exploit both temporal as well as spatial parallelism. 

4.3.2.2 VLSI Implementation 

The implementation feasibility of the micronet model has recently been studied 

in [151], in which a transistor-level VLSI implementation of a micronet-based 

asynchronous processor is presented. The VLSI micronet implementation is a 

32-bit scalar processor that contains a register file with two read ports and one 

write port, and three functional units, namely an arithmetic unit, a memory 

interface unit and a branch unit. 
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Figure 4.1: (a) A synchronous pipeline, (b) an asynchronous pipeline and (c) an 
asynchronous pipeline that exploits spatial parallelism. 

4.3.3 Architectural Description 

The model of the micronet architecture used throughout this work is shown in 

Figure 4.2. The micronet processor is composed of an issue unit, an operand fetch 

unit, a set of functional units and a write-back unit. The functional units include 
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a memory unit, an arithmetic unit, a logical unit and a floating-point unit. The 

architecture can be configured to have more than one instance of the arithmetic, 

logical and floating point units. The typical operations of an arithmetic unit 

are integer addition, substraction, multiplication and division, but it may also 

include immediate and address loads (a load operation writes a single address 

value directly into a register). The logical unit performs bitwise operations such as 

bit shifting, bitwise comparisons and logical operations, i.e. AND, OR, XOR and 

NOT. The floating-point unit performs similar arithmetic operations on floating-

point numbers. The memory unit loads from, and stores values into, the memory 

through a data cache. The memory unit includes an internal adder for calculating 

the effective memory address. Each functional unit is independently connected 

to both the operand fetch unit and the write-back unit, to allow instructions with 

different types to be executed concurrently. Furthermore, each functional unit is 

assigned a pair of read buses and a write bus. During a computation, temporary 

results are stored in a multiported register file. 

The order of events during execution is the following. Initially, the issue unit 

fetches instructions from the instruction cache and issues them to the operand 

fetch unit. The operand fetch unit reads the operand values from the register 

file through the pair of read buses and hands them over to the corresponding 

functional unit. When the functional unit completes its execution, the result is 

sent to the write-back unit. Finally, the write-back unit stores the results in the 

register file via a write bus. 

The issue unit issues one instruction at a time in an in-order manner. It is 

responsible for issuing instructions as soon as their operands become ready, i.e. 

their operands have been written into the register file. If the operands are ready, 

then the issue unit inspects if both read buses and a functional unit corresponding 

to the appropriate instruction type are available. Depending on the availability of 

these resources, the issue unit issues or stalls the instruction. If the resources are 

available then the instruction is issued, otherwise the instruction is conditionally 

issued, so that it proceeds up to the resource that is busy, and stalls. The outcome 

of this scheme provides for different cases depending on the availability of these 

resources. These are described as follows: 

• If there are no functional units of the type required which are ready, but 

the read buses and the operands are available, then the instruction will 

be issued and the operand fetch unit will proceed normally, but will stall 

immediately after reading the operands. The instruction will remain stalled 

until a functional unit becomes ready to execute the operation. 
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Figure 4.2: Architectural model of the micronet-based datapath. 

• If any of the source operands of the instruction are not ready (data re-

quirement), or the read buses are not available (resource requirement), the 

instruction will not be issued. The instruction will remain stalled until all of 

its operands are ready and there are read buses available. Since the architec-

ture issues instructions in-order, when these data and resource requirements 

are not available, the issue unit will remain stalled. 
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When a functional unit completes the execution of an instruction, it will send 

the result, only if there is a write bus available. If no write buses are ready, then 

the functional unit stalls and remains in the "busy" state until it can deliver its 

result to the write-back unit. 

4.3.3.1 Data Coherence 

The register file contains a bank of registers with one or more read ports and 

one write port. The register contents are retrieved from one of the read ports, 

whereas results are written to the registers via the write port. Read and write 

accesses can take place in parallel if they refer to different register locations. If a 

register has more than one read port, then its contents can be read concurrently. 

The mechanism for ensuring data coherence during instruction execution using 

a register file is based on the register locking scheme [127]. The concept of locking 

registers has been a common solution in many asynchronous implementations 

[56] [57] [139]. The VLSI implementation of the micronet-based processor [151] also 

uses the register locking approach. The locking scheme is required to guarantee 

correct data operation in the presence of asynchronous accesses to the register 

file. The mechanism consists of a device that contains an individual lock bit 

per register. The lock bit indicates that a register is yet to be written by a 

pending instruction. In the micronet model, if the lock bit is set, it is implied that 

the register cannot be read from, or written to, by any subsequent instruction. 

Conversely, if the lock bit is unset, any instruction  can read the contents of the 

register until the register is locked again. 

Since there is no way of knowing how long it will take for a register to con- 

tain valid data, the issue unit cannot issue instructions that depend on a locked 

register, i.e. if there is a RAW or a WAW dependency. In either case, the issue 

unit remains stalled until the value of the operand is available, i.e. the register is 

unlocked. The register locking mechanism ensures that locked registers cannot be 

accessed (read or written) by any instruction before their results are committed. 

When the issue unit proceeds to issue an instruction, its destination register is 

locked. This register remains locked throughout the duration of the instruction's 

execution, and only after the write-back unit commits the result will the register 

be unlocked. The write-back of a result will cause a pending instruction waiting 

for that result to update its status. As mentioned before, the issue unit checks for 

the availability of operands; if the unlocked register was the only operand that 

2As many instructions as the number of read ports. 
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was being awaited for, then the destination register of the stalled instruction is 

locked similarly, and the instruction can be issued and will proceed as long as its 

resources are available (buses and functional unit). 

Maintaining data coherence for memory accesses is more complicated than 

the register locking mechanism. The architecture shown in Figure 4.2 does not 

consider more than one memory in the interest of simplicity. If multiple memory 

units were available, that would allow for concurrent memory operations. Imple-

menting concurrent memory operations introduces the possibility that loads may 

overtake stores and vice-versa. This means that every time such a case should 

arise, the memory locations being referenced would have to be disambiguated, 

i.e. compared and proved to be different, in order to avoid violating memory 

dependencies. Such dependencies occur when loads and stores refer to the same 

memory location. If a store precedes a load in the code, it means that there 

is a true dependency (RAW), whereas if a load precedes a store, it represents 

an anti-dependency (WAR). If two stores refer to the same memory address, it 

means that there is an output dependency (WAW). 

With the current architecture (one memory unit with in-order issue) dynamic 

memory disambiguation is not required, simply because loads and stores execute 

in-order. Implementing run-time memory disambiguation in synchronous pro-

cessor architectures poses substantial hardware overheads [53]. In an asynchron-

ous design, run-time memory disambiguation may restrict the performance even 

further because memory references need to be synchronised in order to be disam-

biguated. 

4.3.3.2 Write-back Operation 

When a functional unit completes the execution of an instruction, the only po-

tential contention in the write-back operation is the need for a write bus. Since 

the register has been previously locked, it is guaranteed that none of the other 

functional units will attempt to write to the same register. This means that it is 

safe to write to the register as soon as a write bus is available. The architecture 

shown in Figure 4.2 assigns a write bus to every functional unit, thus removing 

this resource contention. 

4.3.3.3 Control-flow Operations 

The execution of control-flow instructions in the architecture shown in Figure 4.2 

is performed by the issue unit. The processor's program counter (PC) is updated 

depending on the type of control instruction, i.e. jump, call, return or branch. 
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When a jump instruction is issued, the PC is updated with the address specified 

by its operand. The issue unit then resumes instruction fetch from the new 

PC. A call instruction causes the PC to be updated in the same way as jump 

instructions do, with the difference that the PC is saved to the stack memory, 

before its value is updated. A return instruction simply restores the PC from 

the stack memory. Finally, branch instructions modify the PC depending on the 

result of register comparisons. The result of such comparisons is written into a 

register. Once the result of the comparison is committed, the issue unit issues 

the branch instruction and the operand can be fetched. The operand fetch unit 

returns the value of the register back to the issue unit (c.f. Figure 4.2), where 

the PC is updated depending upon the value. In the case of a branch-if-true 

branch instruction, the PC is updated if the register contents are not a zero 

value, i.e. usually one. In the case of a branch-if-false branch instruction, if the 

register contains the value zero, then the PC is updated. A branch instruction is 

regarded as a conditional jump instruction. 

This concept of "test-and-branch" is similar to the branch decoupling scheme 

of the NSR processor [138]. The difference is that the outcome of the test in the 

NSR processor is stored in a flag bit rather than a register, but the branching 

mechanism waiting for the flag to be set is similar. Instructions can be scheduled 

between the test and the branch in order to avoid the hazard. 

4.3.4 Parametric Model 

4.3.4.1 Configuration Description 

The description of the architecture may be parameterised in order to be able to 

include different types of components and various connectivities between them. 

A configuration file describes the architecture, i.e. the type and number of func-

tional units, the number of read and write buses, the latencies of the various 

components and the instruction set. The instruction set is defined by specify-

ing the instruction types that can be executed by the various types of functional 

units. For each group of instructions, read buses, a functional unit and a write 

bus are assigned. These resources will be required during the execution of any of 

the instructions belonging to a particular group. In this way, functional units can 

be "specialised" to perform specific operations. Instructions from each group are 

described by their opcode and the number and type of operands they require. 

In asynchronous architectures the completion time of a functional unit depends 

on both static and dynamic factors, as discussed in Section 3.4.4. The static factor 
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Component Type 
Latency time Cycle time 

Minimum Maximum Minimum Maximum 
Issue unit 	 (IU) 1.00 2.00 0.50 1.00 
Read buses 	 (RF) 2.00 4.00 0.50 1.00 
Write buses 	(RF) 2.00 4.00 0.50 1.00 
Arithmetic unit 	(AU) 4.00 8.50 0.50 1.00 
Logical unit 	(LU) 2.00 7.00 0.50 1.00 
Floating point unit 	(FU) 6.00 8.00 0.50 1.00 
Memory unit 	(MU) 10.00 20.00 0.50 1.00 

Table 4.1: Latency distribution for the different components in ns. 

is based on the type of functional unit. The type of functional unit operation 

determines the range of delays. For each architectural component its latency 

and cycle time must be specified whose operating range is bounded between a 

minimum and a maximum value. This range is set to model dynamic factors 

such as the input data. 

The range of latency and cycle times for the different architectural components 

is shown in Table 4.1. Some of these values are based on SPICE simulations 

from a prototype of a micronet datapath in 0.7gm CMOS process technology 

[4]. These include the issue unit, the read and write buses and the arithmetic 

unit. The values from the table will be used systematically throughout this thesis. 

The range of latencies in the table attempts to reflect values with a reasonable 

variance, so that operations are not considered to complete in fixed times. The 

variance represented in the table reflects delays due to all the possible aspects 

that affect the latency as described in Section 3.4.5, i.e. from data-related ones 

to process and temperature variation. Moreover, the relative latencies imply that 

some operations are more costly than others in terms of delay. This configuration 

presents arithmetic and logical units which are relatively faster than the memory 

unit, since a memory operation may include an addition, and the actual process 

of loading from, or storing into, memory is relatively slow. Similarly, the issue 

unit is faster than any other component in order to model a considerably fast 

single-issue architecture in which resources are kept busy [4]. The register file has 

been partitioned into separate components: the access times of the read buses 

and the access times of the write buses. The table also shows cycle times that 
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Figure 4.3: The micronet operation. 

are relatively smaller than latency times. Cycle time represents the delay for 

components to become ready again after the completion of an operation. 

An example of the asynchronous pipeline of the micronet architecture is shown 

in Figure 4.3 which incorporates both latency and cycle times. 

4.3.4.2 Components Distributions 

The latency distribution of the different architectural components are defined 

depending on the nature of their type. For example, the memory unit has a 

bimodal distribution which attempts to simulate the cache behaviour, i.e. either 

a cache hit or a cache miss. The minimum latency time represents a cache hit and 

the maximum latency time represents a cache miss. The distribution is equally 

balanced so that cache hits and cache misses have the same probability 3 . 

The arithmetic unit has a linear distribution starting from the minimum 

latency value towards the maximum latency. Previous research in asynchron-

ous adders [94] demonstrated that for a random set of input data, 50% of the 

additions can be completed with delays close the minimum. For the rest of the 

additions, the completion times are incremented significantly towards the max-

imum latency. This behaviour, of course, depends on the implementation, but a 

continuous linear distribution is normally expected [62][151]. 

The rest of the components have been modelled with uniform distributions 

bounded within minimum and maximum latencies and cycle times as specified in 

Table 4.1. 

3This is a pessimistic assumption considering that cache hit:miss ratios achieved nowadays 
can be as high as 95% for some benchmarks. 
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4.3.4.3 Instruction Set 

The instruction set used for the micronet model is based on the MIPS instruction 

set [91]. Appendix B shows an example of the configuration file that contains 

the parametric description of the architecture. The description file contains the 

number and types of functional units and their latencies in nanoseconds. The 

description of the instruction set includes the assignment of instructions to func-

tional units and buses for execution. 

4.3.5 Characteristics 

The architectural model described in Section 4.3.3 in conjunction with the latency 

distribution from Table 4.1 offers interesting characteristics. The micronet-based 

model presents a scalar architecture that features a fast in-order single issue unit, 

and a write-back stage where results are committed fully out-of-order. Having 

a fast single issue unit models a processor capable of issuing more than one 

instruction at a time, without the additional hardware cost of superscalar designs 

[45][48]. Single instruction issue also restrains the potential growth of complexity 

and size of asynchronous superscalar issue units. 

Out-of-order write-back schemes avoid the need to reorder write-back events 

when results are ready to be committed. Reordering these events to maintain 

in-order write-backs introduces synchronisation, which reduces the benefits of 

average-case execution. The use of both out-of-order execution and out-of-order 

write-back exploits more parallelism. 

These features give the asynchronous micronet model some characteristics 

similar to VLIW and superscalar architectures. To sustain a fast issue rate, 

streams of independent instructions must be available. VLIW and superscalar 

architectures sustain a fast issue rate by issuing multiple independent instruc-

tions. VLIW architectures issue more than one instruction at a time, because the 

code has previously been analysed and scheduled by a compiler. As a result, the 

control section of a VLIW architecture is much simplified. Superscalar architec-

tures, on the other hand, require significant hardware control to perform dynamic 

scheduling, when the compiler is unable to provide independent instructions. 

The micronet architecture shares with VLIW architectures the characteristic 

of not having to perform dynamic scheduling, which is expensive in terms of hard-

ware complexity, and it shares with superscalar architectures the need to prevent 

hazards at run-time. The micronet model shares with both architectural schemes, 

the need to identify independent instructions in order to issue as fast as possible. 
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This model can be regarded as if the issue unit were "dealing" instructions to the 

group of functional units. To a certain extent, VLIW architectures operate in the 

same manner, but with the difference being that the multiple issue process takes 

place in parallel. 

Another similarity between a micronet and a VLIW architecture is that data-

forwarding is not implemented. Once an instruction is executed, its result is 

committed into the register file. Although in principle data-forwarding can re-

duce an instruction's execution time, it requires that the operand fetch stage is 

synchronised with the write-back stage. This synchronisation will inevitably slow 

down the faster stage, i.e. the fetch stage, when two dependent instructions are 

fetched and issued one after the other. In such cases this synchronisation will take 

place, whether or not data forwarding is implemented. However, if the instruc-

tions are not scheduled one after the other, or there is more than one instruction 

waiting for the result of the first instruction, then the write-back stage of the first 

instruction could be held up unnecessarily'. 

In the micronet model, not having data-forwarding allows instructions to ex-

ecute as fast as possible. As soon as their requirements are fulfilled (operands and 

functional unit), instructions will run to completion without synchronisations. 

This is the fundamental difference with VLIW architectures. In the VLIW 

approach, the compiler uses aggressive compilation techniques to expose ILP to 

utilise the functional units. When the compiler cannot provide enough independ-

ent operations in one cycle, bubbles, i.e. no-operations, fill the empty slots of 

the VLIW instruction word. In the micronet architecture on the other hand, the 

introduction of no-operations is impractical as the issue unit would be spending 

time processing instructions that do not contribute to the execution of the pro-

gram. Thus, the micronet compiler must schedule independent instructions in 

such a way that the issue unit does not stall, or stalls minimally if it does. The 

goal of the scheduler is therefore to maintain a fast instruction issue rate. 

4.3.6 Event-driven Simulator 

A stochastic event-driven simulator for the micronet architecture had already been 

implemented [97]. It works by executing assembly-level instructions compiled 

from source programs. During instruction execution, the simulator creates events 

4 Forwarding in asynchronous architectures does not have straightforward solutions, and it 
raises specific synchronisation issues. The SCALP architecture [47], for example, is located 
at the other end of the scale, where most of the communication is based through the use of 
data-forwarding. The complexity of the datapath is quite considerable. Since results can be 
required by any functional unit, a result router connects the outputs to the input buffers. 
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for the different datapath components. These events are dynamically created 

depending on an instruction's component requirements. An instruction's type 

is used to decide its execution path through the micronet datapath. During 

execution, events from neighbouring components communicate when the data is 

ready to be transfered from one stage to the other. For example, the issue unit 

generates an event to the operand fetch stage unit when an instruction is issued. 

Then, when the instruction is ready for execution, the operand fetch unit will 

generate an event to the appropriate unit. When the functional unit completes 

the execution of the instruction, a write-back event is generated. The write-back 

event emulates the write-back stage, and writes the result back to the register file 

and unlocks the register. 

Every time an event is generated, both the latency and the cycle times are 

dynamically associated with it depending on the instruction type. The instruc-

tion type also determines which random distribution needs to be selected. The 

latency time denotes the time when data becomes available, whereas the cycle 

time represents the time when that particular stage can restart its operation. The 

startup time of an event is based on the latency time of another event that has 

been previously generated. When an issue event has completed for example, the 

simulator will assign to the next event, i.e. the operand fetch, a startup time 

which is equal to the latency of the issue event'. The next issue event, however, 

starts only when the current issue event expires its cycle time. Therefore, the 

start time of the new issue event corresponds to the cycle time of the current 

event, i.e. the one which is about to finish. 

When the event is created and its set of timings are assigned (startup, latency 

and cycle times), the event is inserted into an event list, which is ordered by event 

startup times. Each event is processed according to the simulation time. It is 

possible that two events occur concurrently, i.e. have the same time stamp, but 

are processed sequentially. The simulation finishes when the event list is empty. 

The simulator uses a global time variable that holds the time of the event 

that is currently in process. An event that cannot proceed, because for example 

due to the lack of available resources or because a register is locked, must delay 

its startup time until the resources become available or the register is unlocked. 

Of course by that time, many other non-related events may take place. When 

an event needs to be stalled, the simulator creates a new event with the same 

'The simulator does not assign additional time for handshake delays during communication, 
with the premise that handshakes take considerably smaller time than latency or cycle delays. 
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attributes as the former, i.e. the same unit and instruction information, updated 

startup time, and the old event is deleted. 

When a program is to be simulated, memory instructions must be 'pre-

loaded", so that load and store instructions refer to a common and global memory 

map. This means that global variables and data structures are pre-assigned to 

fixed memory locations used by the simulator. These fixed memory locations 

belong to a memory map. All program references to global locations are modi-

fied accordingly. For example, a global variable max-value in a load instruction 

(for example 1w $17, max-value) will be modified to 1w $17, num, where num 

corresponds to the particular memory location pre-loaded, which will be used at 

run-time. In this way, values from global variables can be initialised so that the 

simulator begins instruction execution with the correct data. 

The simulator actually executes the instructions, hence does not need an ex-

ecution trace. It is effectively a data-driven simulator in which the data are 

responsible for taking the correct paths during the execution of a program. At 

the end of a simulation, the simulator produces real results, i.e. both the memory 

and registers hold the correct data. 

The simulator's level of abstraction allows for the interaction between events 

in the micronet datapath to be captured. It is implemented at such granularity 

so that the simulation speed is not compromised. If all control handshaking was 

explicitly modelled, the simulation speed would be significantly slower. 

4.4 Summary 

Different asynchronous architectures have been developed to investigate feasib-

ility, power efficiency and performance. The AMULET group at Manchester 

University has implemented three asynchronous versions of synchronous ARM 

processors, achieving different goals. The AMULET1 proved the feasibility of a 

large design comparable in size to the ARM6 processor; in the AMULET2, ar-

chitectural improvements were incorporated such as data-forwarding and branch 

prediction that increased prefetch efficiency, and the AMULET3 core included 

Thumb-instruction execution compatibility, the use of interrupts and a write-back 

reorder buffer, that overall helped perform favourably against the ARM9TDMI 

processor. 

The asynchronous processors from Caltech have shown the potential of per-

formance and adaptation to wide physical conditions in asynchrony. The counter-

flow architecture has been proposed as an alternative approach to data-forwarding, 
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although synchronisation at every stage appeared to limit throughput and par-

allelism. The SCALP processor has demonstrated the complexity involved in 

superscalar asynchronous design, particularly in the distribution of instructions 

from the issue unit to the functional units, and the distribution of results back to 

the functional units. 

This chapter has also described the micronet asynchronous architecture which 

distributes control in order to exploit both temporal and spatial parallelism. The 

micronet architectural model presented features single instruction issue and out-

of-order write-back. The architecture is capable of issuing one instruction at a 

time at a fast rate. This characteristic attempts to mimic multiple instruction 

issue without the expense of implementing it. 

The variability of instruction latencies presents a challenging problem for the 

compiler. A compiler is required to schedule the code in order to minimise issue 

stalls due to data and resource dependencies. The next chapter introduces a 

novel instruction scheduling approach for asynchronous architectures. A local 

instruction scheduler targeted at the micronet model described in this chapter is 

next presented. 



Chapter 5 

Local Scheduling for 
Micronet-based Architectures 

"If a processor exposes the variations in actual memory reference 
latency to the compiler through non-blocking load instructions, in-
struction scheduling becomes more complicated" [92]. 

5.1 Introduction 

The previous chapter described the model of an asynchronous micronet-based 

processor. Its basic characteristics are that it issues one instruction at a time 

at a very fast rate and writes the results back in an out-of-order fashion. The 

datapath of a micronet-based processor exploits fine-grain temporal and spatial 

parallelism by executing instructions on a network of microagents that commu-

nicate asynchronously. 

The ability of these microagents to communicate independently between them, 

allows instructions to be executed as fast as possible without unnecessary global 

synchronisations. Furthermore, mi croagents of different instructions within the 

same pipeline stage can execute concurrently. The maximum number of active 

instructions in a micronet is limited by the number of microagents as opposed 

to the number of pipeline stages as in micropipelines. Instructions that do not 

require resources from a pipeline stage are able to skip the stage and thus enabling 

them to overtake one another. 

The asynchronous nature of the processor provides the benefits of average-case 

execution, i.e. exploits the actual delays of the functional units. The delays due 

to the functional units depend on several aspects. These include the nature of the 

input data, the type of the functional unit and the particular order of execution 

of the instructions, since their order might introduce resource contentions at run- 
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time 

The combination of all these characteristics pose a challenging problem for the 

compiler, not only because instructions do not have fixed completion times, but 

because the order in which instructions are executed cannot always be enforced. 

This implies that the compiler does not have an accurate model to consistently 

predict when results will be available. This makes efficient code scheduling diffi-

cult since typical scheduling heuristics (as used for synchronous targets) rely on 

deterministic and timing-precise execution models. This knowledge is necessary 

to decide whether instructions dependent on a result can become ready to be 

scheduled, as has been described in Chapter 3. 

The performance of the micronet processor is dependent on maintaining a high 

instruction issue rate to maintain high resource utilisation rates. The stream of 

instructions must be scheduled in such a way that the issue unit stalls for the 

minimum possible time. 

This chapter presents a novel technique for implementing local instruction 

scheduling, as specified in Chapters 2 and 3, which can be applied to an asynchron-

ous processor based on the micronet model. The proposed scheduling technique is 

not based on the list scheduler [64] which is traditionally used for scheduling syn-

chronous ILP architectures. The technique in this thesis is based on identifying 

and producing a measure of the cost of true data dependencies in the code. This 

measure is then used to arrange the instructions in order to minimise the cost of 

the dependencies, and therefore, minimise the stalls in the instruction issue unit. 

5.2 The Influence of Dependencies 

5.2.1 Data Dependencies 

Data dependencies impose a serialisation in the execution of instructions. ILP 

architectures are characterised by a single thread of control in which instruction-

level parallelism can be exploited. However, data dependencies restrain the scope 

of parallelism. In particular, true dependencies or Read-After-Write (RAW) de-

pendencies, require the completion of an instruction before its result can be used 

by its dependent instructions. 

The cost of the effect of true dependencies in an architecture can be addressed 

either in hardware or software. In hardware, for example, the data-forwarding 

mechanism was conceived to avoid the penalty of having to write to the register 

bank, and some time later, reading the result from it. Data-forwarding is a very 

common solution in synchronous designs. However, in asynchronous architectures 
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this solution may be less effective because it may introduce undesired synchron-

isations, as explained in Section 4.3.5. 

In software, the method for minimising the effect of true dependencies is 

through the use of instruction scheduling. Independent instructions are placed 

in between the producer and the consumer instructions in order to hide the cost 

incurred at run-time. 

Schedulers for synchronous architectures rely on an accurate knowledge of the 

penalty in the presence of true-dependent instructions. The penalty in synchron-

ous architectures is expressed in terms of number of clock cycles. The compiler 

can decide the number of 'clock cycles' that the dependent instructions should be 

distanced by. 

In contrast, the schedulers for asynchronous architectures do not have such 

a precise model of execution. This implies that the penalty of true dependen-

cies cannot be precisely fixed, and therefore, it is unclear how one decides the 

number of independent instructions that are required to minimise the cost of the 

dependency. The balance should be right: too few instructions may not reduce 

completely the effect of the stall, and too many instructions may deprive inde-

pendent instructions for reducing the stalls in other parts of the code. The next 

section proposes a method for measuring the cost of true dependencies for the 

asynchronous micronet model. 

5.2.1.1 True Data Dependencies in the Micronet Model 

Although the latencies of asynchronous functional units are not fixed, they are 

bounded within minimum and maximum values, based on best and worst cases, 

respectively. The actual value of the latency depends on several static and dy-

namic elements as discussed in Section 3.4.4. Among the elements contributing 

to the latency value, only the static ones are available to the compiler. These ele-

ments can be divided into two groups: the first one relates to the code itself, that 

covers the ordering of instructions and their data dependencies; the second one 

covers the parametric model of the architecture, which includes the number and 

types of functional units and their minimum and maximum latency values. The 

dynamic elements which contribute to the latency are related to the. input data, 

and to run-time variations such as resource contentions and operating conditions. 

In the micronet model, in order to issue instructions, the issue unit must 

check that the operands and the necessary resources are available. Otherwise, 

the instruction will not proceed, and the issue unit will remain stalled until the 

requirements are fulfilled. The total amount of time due to the stall depends on 



the degree of conflict during the instruction execution. For example, the minimum 

stall produced will be when the operands and the read buses are available, but the 

functional unit of the required type is unavailable. In this case, the instruction will 

be issued and its operands will be fetched, but it will stall until the functional unit 

becomes free. In contrast, the maximum stall will take place when the operands 

of an instruction are unavailable, i.e. they are locked. In such cases, the issue 

unit stalls until they are unlocked. 

The exact stall times cannot be determined statically, although the cost of the 

different stalls relates to the type of dependency. In synchronous architectures, 

data dependencies do impinge on the cost of the stall, but this cost will be constant 

in terms of clock cycles [76]. 

In the micronet datapath, the stall due to a true dependency is directly re-

lated to the completion time of the instruction that produces the result. (The 

completion time of the instruction is the sum of the times to fetch its operands, to 

operate the functional unit, and to write the result in the register file). Since the 

issue unit has to wait until the register is unlocked, before issuing the dependent 

instruction, the execution time of the producer instruction is related to the type 

of its functional unit. The relative differences between the range of latencies of 

different functional units can distinguish an instruction type to be slower than 

another, and therefore produce a longer stall. 

In general, memory operations are slower than any other register-based op-

eration, so one should expect that the cost of true dependencies from memory 

operations is higher than the cost from other non-memory true dependencies. 

However, generalising this assumption to any case may be difficult to guarantee, 

since latencies have a range of operation and the range of latencies may be over-

lapped within different functional units. Figure 5.1 shows the execution stages 

of two true-dependent instructions Ii  and 12.  In Figure 5.1 (a), instruction 12 

depends on a memory instruction Ii,  whereas in Figure 5.1 (b), instruction 12 de-

pends on a non-memory instruction Ii '. It can be seen that even with variations 

of delay in the stages from instructions I  and  Ii',  the functional unit dominates 

the completion time. 

5.2.1.2 Penalising True Data Dependencies 

Given that true dependencies contribute significantly to stall-times of the issue 

unit, a mechanism to assign penalties to them has the potential to discriminate 

between schedules. The penalty provides a measure to evaluate the accumulative 
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Figure 5.1: Pipeline execution with true data dependencies: (a) from a memory 
instruction, and (b) from a non-memory instruction. 

stall incurred by the issue unit at run-time. 

The measure of penalty consists of the accumulative cost incurred by true data 

dependencies. For a fully sequential code, the penalty measure should return a 

high value of measure as every true dependency is assigned a penalty. For a fully 

parallel code, the measure of penalty should return a zero measure, given that 

there are no data dependencies. 

Given that the delay-cost from a true data dependency caused by a memory 

instruction is higher than that due to a true dependency caused by an arithmetic 

operation, the penalty for the memory instruction is higher than the penalty 

assigned to the arithmetic one. Figure 5.2 (on the left) shows a sequence of un-

scheduled instructions, in which an address is obtained (instruction 1 5 ) in order 

to load a value from memory (instruction 16), which is required by another in-

struction (instruction Ii). The penalty Pb assigned to instruction 16 represents a 

higher penalty than the penalty Pa  assigned to instruction 15 , in order to reflect 

better the effect on stalls. The penalties are applied to the instructions rather 

than to the dependencies (arcs) because in this way the producer of a result can 

be recorded, even if independent instructions are placed in between the producer 

and the consumer. 

The method to establish the degree of cost due to data dependencies is per-

formed by comparing the relative latency times from the different types of the 
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Figure 5.2: Sequence of instructions with penalties. 

functional units. The difference in the range of latencies provides a guideline of 

the difference in delay-costs. A greater difference in latencies corresponds to a 

greater effect on the stall of the issue unit. 

Among the true dependencies, the ones between the compare-and-branch in-

struction are particularly costly. This instruction represents a change in the 

control flow and acts as a synchronisation point for all the instructions that pre-

cede it in the basic block. Typically, this synchronisation point implies that less 

parallelism is available when the issue approaches the branch. In a loop for ex-

ample, it is important to capture the cost of the true dependency on the branch 

with independent instructions. Otherwise, the execution of the loop will have to 

be stalled in every iteration until the branch is resolved. 

5.2.1.3 Other Data Dependencies 

WAR dependencies are not penalised as they do not cause stalls to the issue unit. 

If one instruction depends on another via a WAR dependency, by the time the 

register of the former instruction is locked, the latter instruction has been issued 

(in-order issue). The operand fetch of the latter instruction takes place much 

earlier than the time the register has to be written by the former instruction. 

In WAW dependencies, the penalty of stalling the issue unit is the same as for 

true dependencies, because the dependent instruction cannot attempt to lock its 

destination register when it is already locked. However, the occurrence of these 

type of dependencies after the code generation phase is rare'. 

'For all the benchmark programs described in Chapter 7 only one instance of WAW depend-
encies was found. 
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5.2.2 The Effects of Resource Dependencies 

The scheduling problem is based on selecting a schedule that minimises the num-

ber of stalls of the issue unit during the execution of instructions. These stalls 

can be caused either by data dependencies or by resource contentions. So even 

scheduling independent instructions may produce stalls because the instruction 

sequence could exhaust the resources of the architecture at run-time. 

The sequence of instructions must be scheduled in such a way that the types 

of instructions match the resources in the architecture. For example, if there are 

three functional units of a particular type, then three instructions of that type can 

be issued in succession without causing stalls (assuming that there are no data 

dependencies). However, a fourth instruction of the same type will be expected 

to stall until one of the functional units become available. In this case, to avoid 

resource contention, the type of the fourth instruction that is scheduled must be 

different. 

5.2.2.1 Penalising Resource Dependencies 

When more than one instruction of the same type is scheduled consecutively and 

in the absence of functional units of the appropriate type, a penalty is imposed 

to the latter instructions. For instance, given that the delay from memory in-

structions is relatively larger than the ones due to other instruction types and 

that there is only one memory unit in the architecture, the scheduling of two 

consecutive memory instructions produces a considerable stall in the datapath. 

The amount of stall caused by consecutive memory instructions is comparable to 

that due to true dependencies. Although the instruction can be issued and the 

operands can be fetched (something that cannot happen with true dependencies), 

the wait delay until the memory unit completes its operation is non-trivial. For 

other types of functional units, this situation might not be as important for two 

reasons. Firstly, the non-memory functional units may be replicated, so scal-

ing the architecture can be a solution. Secondly, the latencies of non-memory 

instructions are smaller, and the effect on the stall is proportionally lighter. 

5.2.3 The Combined Effect of Data and Resource 
Dependencies 

Table 5.1 shows the scheme for applying penalties to the different cases of de- 

pendencies. The values shown in the table represent the penalties for the latency 

distribution in Table 4.1. True dependencies due to memory loads incur the 
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Types of dependencies 
Consecutive C 

instructions 

Separated 
 

by one inst. 
True dependency with a load instruction 3 1 
True dependency with a branch instruction 2 0 
Any other true dependency 1 0 
Resource dependency from a memory instruction 1 0 

Table 5.1: Degree of the penalties depending of the type of dependency. 

longest stall, and are therefore assigned the highest penalty. The cost-effect of 

a memory load is such that even when an independent instruction separates the 

load and its successor, a single penalty has to be applied. 

The penalty due to true dependencies with branch instructions is assigned 

the next level of cost. The resulting stall is comparable to the other true de-

pendencies since the penalty is the result of a compare instruction. However, 

the synchronisation nature of branch instructions makes these true dependencies 

more important to reduce. The rest of the data dependencies are treated at the 

same level. 

The penalties in Table 5.1 attempt to both characterise the delay-cost of the 

dependencies, and provide an ordering that prioritises the penalties that ought 

to be reduced by the scheduler. 

5.2.4 Applying Penalties to a Schedule 

The scheme to penalise the dependencies defined in Section 5.2.3 is evaluated in 

this section. Figure 5.3 shows a fragment of a C program and its equivalent MIPS-

like assembly code of the inner loop. The figure on the right shows the penalties 

applied to the true dependencies according to the scheme listed in Table 5.1, and 

the overall penalty measure for this particular schedule. The penalty measure of a 

schedule is determined by the sum of the individual penalties, resulting in a total 

of 12 units for the schedule shown in Figure 5.3. The assembly code generated 

prior to the scheduling phase produces many penalties due to several consumer 

instructions being scheduled immediately after the producer. This is a common 

feature after performing code generation, and before instruction scheduling. 

The relationship between the instructions of the loop core is displayed by 

the DAC in Figure 5.4. The solid lines connecting the nodes represent true 
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dependencies, while the dashed lines represent other dependencies. For instance, 

the dependency between instructions Is  and 114  represents a WAR dependency, 

while the one between instructions 113  and 116  only specifies that 113  should be 

issued before '16. 

The core of the loop has been exhaustively scheduled to determine the one 

with the minimum penalty measure. Furthermore, every schedule has been simu-

lated executing its instructions on the micronet architecture, to relate the overall 

penalty measure to the makespan. Even such a small example (16 instructions) 

has a considerable number of possible combinations - 1,567,742 valid schedules. 

Each one was simulated on a model of the micronet architecture with latency 

distributions from Table 4.12.  The makespans of the valid schedules were plotted 

as a function of the measure, as shown in Figure 5.5. Each point in the graph 

represents the simulated makespan of a schedule in nanoseconds. 

The distribution of the makespans shown in the figure is characterised by 

an ascendent pattern: as the measure increases, so does the makespans of the 

schedules. Ideally the distribution should be a strict monotonic function, so 

that there would be no overlapping regions between neighbouring penalties. In 

practice however, the overlaps between the schedules of neighbouring penalties are 

tolerable for considering this measure as the basis for a heuristic for a scheduler 

for micronet-based asynchronous processors. 

The schedule displayed in Figure 5.3 has a penalty measure of 12 which is close 

to the maximum penalty measure of 14. On the other hand, the minimum penalty 

measure for this group of instructions is 0. Figure 5.5 shows that the optimal 

schedule is indeed located in the section with the minimum penalty measure. 

5.3 The Penalise True Dependencies (PTD) 
Scheduler 

The PTD scheduler is a novel approach for performing local scheduling of in-

structions, that is based on minimising the penalty measure of a basic block. The 

penalty measure is used as a metric for statically categorising the goodness of a 

schedule. 

The PTD scheduler differs from traditional mechanisms such as the list sched-

uler. The list scheduler constructs a list of ready instructions and selects the best 

candidate based upon heuristics (the list is initiated with instructions from the 

top-level of Figure 5.4 which do not have predecessors). Once an instruction is 

'The configuration of the micronet architecture consisted of an arithmetic unit, a memory 
unit and a logic unit. 



1]. 	$9,0 
ii. 	$16,10 

L5.main: 
muli 	$123,$8,4 
la $122,$29,32 1 
addu $121,$122,$123 
muli $127,$8,4 
la $126,$29,32 1 
addu $125,$126,$127 1 
1w $87,$125,0 
muli $131,$9,4 
la $130,$29,32 1 
addu $129,$130,$131 1 
1w $92,$129,0 3 
mul $86,$87,$92 1 
sw $86,$121,0 
addui $9,$9,1 1 
sit $136,$16,$9 2 
bt $136, L5.main 

L7.main: 12 
addui $8,$8,1 

main() { 

mt i, j, n = 10; 
mt x[10] 

for (i = 0; i < n; j++) 
for (j = 0; j < n; ji.-t.) 

x[i] = x[iJ * x[j] ; 

} 

Figure 5.3: An example C-code and its inner loop assembly code equivalent. 

removed, i.e. scheduled, its immediate successors become ready. This allows 

them to be inserted in the ready list for selection. The process of choosing an 

instruction and updating the ready list repeats itself until all the instructions of 

the basic block have been scheduled. 

In contrast, the PTD scheduler analyses the schedule based on the PTD meas-

ure. If the measure returns a zero value, then the code is not modified. Otherwise, 

the scheduler traverses the schedule to evaluate optimisations on every instruc-

tion that is penalised. In order to reduce the penalty, the scheduler must find an 

independent and unrelated instruction to place in between the producer and the 

consumer instructions. 

A schedule, as shown on the top of Figure 5.6, can be regarded as an "hori-

zontal sequence" of instructions which are executed in order from left to right. 

When a penalised instruction is encountered, an independent instruction, and 

preferably an unrelated one at that, is searched on both sides of the penalised 

instruction starting from the left side of the penalised instruction, and if a candid- 
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ji..main 	L 

______________________  
1 I mull $123 $84 	L 21 lu $122 $2932 J 4 1  mull $127 $84 	 I SI lu $126 $2932 	I 81 mull $131 	I 	I 91 lu $130 $2932 

I -dd- $121 $122 $123 1 	 I 61 addu $125 $126 $127 I 	I 141 addul $9991 I 	I 101 8ddu $129 $130 $131 

1 1w $8791250 I 	I 151 .l.$136$16$9 1 	I iii Iw$92$1290 

I 121 mul $86987992 I 

I 131 	$86 $1210 

161 bI $136 1.5.muln 

Figure 5.4: DAG of the core loop in Figure 5.3. 

ate instruction cannot be found, then the search switches to the right side of the 

penalised instruction. The schedule in Figure 5.6 is representative of the DAG 

in Figure 5.4; Figure 5.6 (a) shows the traversal on the left side starting with the 

immediate neighbour instruction 15, and Figure 5.6 (b) the traversal on the right 

side of the penalty. 

There are two necessary conditions for an instruction to be considered as a 

candidate for movement ahead of the penalised instruction. Firstly, the instruc-

tion in question has to be independent of the penalised instruction, and secondly, 

the instruction has to be independent of all the instructions scheduled in between 

the candidate and the penalised instruction. These conditions are necessary to 

preserve the semantics of the code and are known as the valid conditions. They 

only allow valid movement of instructions in which the order of execution is pre-

served, but the performance of the outcome of such movements has to be analysed 

further. The safety conditions, i.e. the rules to ensure that the movement of an 

instruction improves the quality of the schedule are discussed in Section 5.3.2. 

From Figure 5.6 (a), instruction 1 5  fails to comply with the first condition 

since it is data-dependent on instruction 16,  and is therefore not a valid candid-

ate. Similarly, instruction 16 depends on instruction 14 , and, therefore, 14  cannot 
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Figure 5.5: Makespans of the simulated schedules (y-axis) on a model of the 
micronet architecture against the penalty measure (x-axis). 

be a candidate either. An instruction Ii  is a candidate for movement, if it is 

independent of all the instructions from Ii  to 16.  If an independent instruction 

cannot be found that would satisfy both conditions in the left side of the pen-

alty, then the search is continued on the right side. From Figure 5.6 (b), the first 

instruction to be considered is instruction '8  since instruction 17  is dependent on 

the penalised instruction. The candidate instruction Ij  must be independent of 

all instructions from 17  to 1j1. 

The main reason for searching candidate instructions starting from the left 

hand side of the penalty is because there is a higher likelihood of finding one 

faster. The exit of the basic block, which is located at the right hand side, can 

be seen as a synchronisation point, so it may offer fewer options. Conversely, the 

entry of the basic block at the left hand side may have a wider scope for finding 

a candidate sooner. 
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(b) Right search for a valid candidate. 

Figure 5.6: Instruction search procedure to reduce penalties in the PTD scheduler. 



A first pass over the basic block attempts to reduce penalties with the higher 

penalty values according to Table 5.1, which corresponds to data dependencies 

due to loads. The second pass reduces penalties due to branch instructions in 

the basic block, if it ends with such an instruction. And, in the final pass, the 

scheduler reduces the remaining penalties with a value one. 

Such a priority scheme aims to reduce penalties with the higher delay-costs 

to the issue unit first. Even in the case when a basic block does not have enough 

parallelism to reduce all the penalties, the dependencies causing the higher stalls 

are more likely to be reduced. For the two penalties shown in Figure 5.2, the 

one due to the load instruction (16) is handled in the first pass, while the data 

dependency due to the other instruction (1 5 ) is reduced in a subsequent pass. 

5.3.1 Extending the PTD Measure 

Placing an independent instruction between two consecutive instructions that 

share a true dependency will certainly reduce the stall, but is not removed en-

tirely. For some types of dependency, it may be necessary to place more than 

one instruction in between the pair. The penalty measure was extended so that 

dependent instructions at a distance of more than one instruction can also be 

penalised. 

The delay-cost of true dependencies when there are independent instructions 

placed in between the producer and consumer instructions is lower than the delay-

cost of consecutive true-dependent instructions. When two true-dependent in-

structions are scheduled consecutively, no other instruction can be issued so the 

amount of stall is considerable. On the other hand, if one or more instructions 

separate the pair of dependent instructions, then they can execute during the 

period when waiting for the result to be written by the producer instruction. The 

intervening instructions allow the issue unit to continue the issuing process, al-

though the consumer instruction may still have to be stalled, albeit for a shorter 

period of time. The penalties applied to non-consecutive dependent instructions 

are therefore smaller than those for consecutive penalties as listed in Table 5.1. 

The PTD scheduler makes a distinction between consecutive and non-consecutive 

penalties to prioritise the order of their reduction. Given the degree of stalls 

caused by consecutive dependencies, consecutive penalties are given a higher pri-

ority than non-consecutive ones. A first pass reduces consecutive penalties, while 

a second pass reduces the others. This is equivalent to improving the schedule in 

larger steps first, followed by finer optimisations. 
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5.3.2 Safety Conditions for Reducing Penalties 

The quality of a schedule depends on safety conditions when reducing the pen-

alties. When moving an instruction, it is necessary to check that doing so does 

not introduce another penalty to the instructions around the source, and to those 

around the destination. This is to guarantee that after each transformation the 

penalty measure is always reduced. 

When a candidate instruction is found, a penalty comparison of the schedule 

before and after the movement is performed. The movement is permitted only if 

the quality of the schedule is improved, i.e. the penalty measure is reduced after 

the movement. The safety condition is defined by the following equation: 

	

Pajjr  < 	E Pb,f ore 	 (5.1) 

The above equation must hold for consecutive and non-consecutive penalties in 

their respective passes. Since consecutive and non-consecutive penalties cannot be 

compared because the stalls produced by them are different, the penalty measures 

must be treated separately. Equation 5.1 is split into two equations for consecutive 

and non-consecutive penalties, respectively 

p i 

	

fier < 	'before 	 (5.2) 

'F 

	

I 'd after < 	'before 	 (5.3) 

Equation 5.2 represents the behaviour of a greedy algorithm: the movement 

of a candidate instruction is permitted as long as it reduces the penalty measure. 

However, should the penalty measure from consecutive dependencies (F') stay 

constant after the potential movement, then that due to non-consecutive depend-

encies (P") is used as a second criteria to allow the movement, if the penalty 

measure due to it is reduced. This case is represented by the following equation 

pt 
after = 	1 before A 	P 'a'fter < 	'b'efore 	 (5.4) 

The penalty measurement for a specific movement is centered around the 

candidate and penalised instructions. This means that only the penalties around 

these instructions are involved in the analysis, and not the entire basic block. 
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5.3.3 Reduction of Resource Penalties 

The candidate for movement is an instruction that not only has to comply with 

both the valid and safety conditions, but should also be of a different instruction 

type than the penalised instruction. The process of finding the best candidate 

may therefore require further search, since more conditions have to be met. 

In order to reduce the extensive restriction when reducing the penalties, the 

scheduler has been partitioned to reduce penalties due to resource contentions 

first and penalties due to data dependencies after. 

The reduction of the penalties due to resource contentions is a similar process 

to that explained in Section 5.3. The difference being that the safety conditions for 

the candidate instruction only require to address the difference of the instruction 

types. 

5.4 The PTD Scheduler Algorithm 

The PTD scheduler has been partitioned into three phases. The first phase oper-

ates on resources penalties, the second phase manipulates penalties from consec-

utive dependencies and the third phase deals with penalties from non-consecutive 

dependencies. The decision to reduce the resource penalties first is not only to 

reduce the stalls produced by resource contentions, but also to introduce a certain 

degree of 'randomness' to the other scheduling phases. This is explained in more 

detail in Section 5.7.2. Algorithm 5.1 shows the top-level structure of the PTD 

scheduler. 

Algorithm 5.1 PTD_scheduler (entry) algorithm. 	- 

root = first-instruction (entry) 

PTD_resource_phase (root) 
P TD_ cons ecutive_ phase (root) 
PTD...nonconsecutive_ phase (root) 

The structure of the three functions in Algorithm 5.1 is similar, but they 

call different routines with different parameters to perform the movement of the 

instructions. These functions are shown in Algorithms 5.2, 5.3 and 5.4. The 

functions receive as their operand the root instruction of the basic block. The 

first step is to compute the PTD measure (lines 1); if the measure is positive, 

J!] 



then the core of the scheduling process is repeated. Since it is not possible to 

know a priori the value of the minimum penalty measure which would imply 

a knowledge of the optimal schedule, the algorithm must endeavour to reduce 

any penalty. This process is repeated as long as the penalty measure is reduced. 

Conversely, if the measure stays constant after a pass, then it is assumed that 

there are no more reductions possible, and the loop is terminated. The decision to 

stop the algorithm when no further reductions of the PTD measure can be made 

ensures the termination of the algorithm. This is represented by lines 15, 16, 29 

and 30 in the three algorithms, together with lines 43 and 44 in Algorithms 5.3 

and 5.4. 

The difference between these algorithms is based on the type of penalties that 

are being reduced. Algorithm 5.2 calls functions PTD_arrange_resource, whilst 

Algorithms 5.3 and 5.4, call the function PTD_arrarige_data. These functions are 

responsible for performing the instruction movements while respecting all data 

dependencies. The PTD_arrange_resonrce routine is restricted to move instruc-

tions that reduce resource penalties, while the PTD_arrange_data routine has the 

responsibility of reducing penalties due to data dependencies. 

The difference between functions PTD_consecutivephase (Algorithm 5.3) and 

PTDnonconsecutive. phase (Algorithm 5.4) is the way in which the second para-

meter of the function PTDmeasure is specified. The parameter is used to dif-

ferentiate the number of neighbouring instructions which are checked around the 

candidate and penalised instructions. The function PTDmeasure not only com-

putes the penalty measure of a schedule, but penalises the instructions as well, 

according to its type, the distance between the producer and consumer instruc-

tions, and the scheduling phase. 

Algorithms 5.2, 5.3 and 5.4 are characterised by a series of repeat loops 

(lines 3, 17 and 31). In these inner loops the two functions PTD_arrange_lefl and 

PTDarrangeright are responsible for the instruction movements to reduce the 

penalties on either sides the right hand side is called if the left hand side search 

cannot perform a reduction, as explained in Section 5.3. The different loops are 

targeted at different penalties, in order to prioritise them. The order of the loops 

corresponds to the degree of the penalty; higher penalties such as those from load 

instructions are targeted first, while instructions with lower penalties are treated 

last. 

The functions P TLLarrarzge_lcft_data and P TDarran ge_right_data that per-

form the instruction movements are displayed in Algorithms 5.5 and 5.6 respect-

ively. Both functions receive the penalised instruction as their parameter. An 
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Algorithm 5.2 PTD_resource_phase (root) algorithm. 

measure = PTD_measure (root, resource-phase) 
if measure > 0 then 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty-resource (node) = 3 then {PENALTIES MEMORY INST.} 

PTD_arrange_left_resource (node) 
end if 
if penalty-resource (node) = 3 then {PENALTIES MEMORY INST.} 

PTD_arrange_right_resource (node) 
end if 
node = next (node) 

end while 
measure = PTD_measure (root, resource-phase) 

until measure = last-measure 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty-resource (node) = 1 then {PENALTIES OTHER TYPES.} 

PTD_arrange_left_resource (node) 
end if 
if penalty-resource (node) = 1 then {PENALTIES OTHER TYPES.} 

PTD_arrange_right_resource (node) 
end if 
node = next (node) 

end while 
measure = PTD_measure (root, resource-phase) 

until measure = last-measure 
end if 
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Algorithm 5.3 P TD_cons ecutive_p has e (root) algorithm. 

measure = PTD_measure (root, first-phase) 
if measure > 0 then 

repeat 
node = root 
last-measure 	measure 
while node NULL do 

if penalty-consecutive (node) = 3 then {PENALTIES LOAD INST.} 

PTD_arrange_left_data (node) 
end if 
if penalty-consecutive (node) = 3 then {PENALTIES LOAD INST.} 

P TD_arrange_right_data (node) 
end if 
node = next (node) 

end while 
measure = PTD_measure (root, first-phase) 

until measure = last-measure 

repeat 
node = root 
last-measure = measure 
while node 54 NULL do 

if penalty-consecutive(node) = 2 then {PENALTIES BRANCH INST.} 

PTD_arrange_left_data (node) 
end if 
if penalty-consecutive (node) = 2 then {PENALTIES BRANCH INST.} 

PTD_arrange_right_data (node) 
end if 
node = next (node) 

end while 
measure = PTD_measure (root, first-phase) 

until measure = last-measure 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty-consecutive (node) = 1 then {PENALTIES OTHER INST.} 

PTD_arrange_left_data (node) 
end if 
if penalty-consecutive (node) = 1 then {PENALTIES OTHER INST.} 

PTD_arrange_right_data (node) 
end if 
node = next(node) 

end while 
measure = PTD_measure (root, first-phase) 

until measure = last-measure 
end if 	 102 



Algorithm 5.4 P TD_noncons ecutive_phase (root) algorithm. 

measure = PTD_measure (root, second-phase) 
if measure > 0 then 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty-nonconsecutive (node) = 3 then {DISTANCED 1 INST.} 

PTD_arrange_left_data (node) 
end if 
if penalty-nonconsecutive (node) = 3 then {DISTANCED 1 INST.} 

P TD_arran ge_right_data (node) 
end if 
node = next(node) 

end while 
measure = PTD_measure (root, second-phase) 

until measure = last-measure 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty- nonconsecutive (node) = 2 then {DISTANCED 2 INST.} 

P TD-arrange-left- data (node) 
end if 
if penalty-nonconsecutive (node) = 2 then {DISTANCED 2 INST.} 

PTD_arrange_right_data (node) 
end if 
node = next(node) 

end while 
measure = PTD_measure (root, second-phase) 

until measure = last-measure 

repeat 
node = root 
last-measure = measure 
while node NULL do 

if penalty-nonconsecutive (node) = 1 then {DISTANCED 3 INST.} 

P TD-arrange-left- data (node) 
end if 
if penalty-nonconsecutive (node) = 1 then {DISTANCED 3 INST.} 

PTD_arrange_right_data (node) 
end if 
node = next (node) 

end while 
measure = PTD_measure (root, second-phase) 

until measure = last-measure 
end if 	 103 



auxiliary pointer, auxi, is used to identify candidate instructions. It traverses 

the schedule, starting from the penalised instruction towards the entry of the 

schedule, in the case of the PTD_arrange_left algorithm, or towards the exit of 

the schedule in the PTD_arrange_right algorithm. A second auxiliary pointer, 

aux2, traverses the schedule in the opposite direction towards the penalised in-

struction. 

Since the auxiliary pointer, auxi, starts its route from the neighbour of the 

penalised instruction, there is a possibility that the neighbour instruction is a 

candidate itself. The if statement in line 7 in both the PTD_arrange algorithms 

evaluates the condition of the neighbouring instruction. The independent func-

tion determines whether the neighbouring instruction has dependencies with the 

penalised instruction (valid condition). The dependency check is performed using 

an nxn matrix of relationship between the instructions of a basic block. The 

check-left-swap and check-right-swap functions determine whether the movement 

of the neighbouring instruction reduces the penalty measure of the basic block 

(safety condition). The purpose of the function check_subgraphs (located in lines 

7 and 18) is explained in more detail in Section 5.5.2. 

If the conditions are met, then the candidate and the penalised instructions 

are swapped and the penalties around these instructions are updated (lines 8, 9 

and 10). Otherwise, auxi is required to search for a candidate instruction further 

away from the penalised instruction which is performed within the while loop, 

starting at lines 12, in Algorithms 5.5 and 5.6. 

Pointer aux2 is used to check the dependency (valid conditions) within the 

inner while loop located between lines 14 and 17. The variable inthnodes holds 

the collective status of the candidate being checked against all the instructions 

scheduled up to the penalised instruction. The while loop is aborted as soon as 

one of the instructions is found to be dependent on the candidate instruction, or 

aux2 reaches the penalised instruction node; otherwise, it advances to the next 

instruction. 

If the candidate is independent of all the instructions scheduled between itself 

and the penalised instruction, then its safety condition is checked. The function, 

check_local_move, in lines 21 in both algorithms performs the penalty analysis. If 

there is a reduction, then the movement is allowed and the candidate instruction is 

moved (line 28). Similarly, the penalties are updated and the penalised instruction 

is cleared. In the case of a consecutive penalty from a load instruction, the penalty 

is not fully cleared but reduced from 3 units to 1 unit, according to Table 5.1. 
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The functions, PTD_arrange_left_resource and PTD_arrange_right_resource, 

which are omitted for brevity, have the same structure as the functions shown 

in Algorithms 5.5 and 5.6. The differences lie in the way the safety condi-

tions are checked when calling the functions check-left-swap, check-right-swap 

and check-local-move. 

The routine check-left-swap in Algorithm 5.7 evaluates the state of the pen-

alty measures before and after the movement. The variables before-swap and 

after-swap hold the penalty values before and after the instruction movement. 

The variables consecutive and nonconsecutive hold the penalty values of the first 

criteria, i.e. the value of the consecutive penalties, and the second criteria, re-

spectively. 

The function penalty_ data (instl, inst2, closeness) used in lines 1 to 4 returns 

the value of the penalty between two instructions insti and inst2. The function 

treats the instruction insti as being scheduled before inst. The parameter close-

ness is used to define the distance between insti and inst2. The penalty returned 

by the function depends on whether the instructions are consecutive or not, and 

null is returned if the instructions are independent. 

As explained in Section 5.3.2, a safe movement is one which strictly reduces 

the penalty measure. Line 5 of Algorithm 5.7 compares the two consecutive 

measures: if the penalty measure is reduced then the swap is permitted; if equal 

(line 8), then the non-consecutive comparison is considered. If the second criteria 

is smaller after the movement (line 9), then the swap proceeds. 

The function check-right-swap has the same behaviour and the same structure 

as the check-left-swap, but has been omitted for the sake of brevity. 

The other algorithm for performing instruction movements is shown in Al-

gorithm 5.8: the function check-local-move has a similar construction to the 

check-swap functions, but requires more consideration. The first if-section (lines 

1-4) specifies the penalty conditions before and after the movement, when the 

candidate is positioned at the entry of the basic block; the second one (lines 5-8) 

specifies the opposite case, when the candidate is positioned at the exit of the 

basic block, and the last (lines 9-12) deals with any other case. The variables 

before-move and after-move hold the state of the penalties before and after. 
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Algorithm 5.5 PTD_arrange_left_data (node) algorithm. 

auxi = prev(node) 
ind_rzodes = 1 
cond_out = 0 

if .  auxi NULL then 
auxi = prev(auxl) 

end if 

if independent (prev(node), node) and 
check-left-swap (node, auxi) and 
check_subgraphs (node, auxi) then 

update-node (node) 
update-node (auxi) 
swap (prev(node), node) {SWAPS THE PREVIOUS INSTRUCTION.} 

else 
while auxi 0 NULL and condout = 0 do 

aux2 = next (auxi) 

while aux2 next (node) and indnodes 0 0 do 
md_nodes = id-nodes and independent (auxl, aux) 
aux2 = next (aux2) 

end while 

if id-nodes 	0 and check_subgraphs (node, auxi) then 
md_nodes = 0 

end if 

if id-nodes 	0 and check_locaLmove (node, auxl) then 
id-nodes = 0 

end if 

if id-nodes 54 0 then 
cond_out = 1 
update-node (node) 
update-node (auxi) 
move-ahead (auxi, node) 

end if 

id-nodes = 1 
auxl = prev(auxl) 

end while 
end if 

{MOVES THE CANDIDATE INSTRUCTION.} 
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Algorithm 5.6 PTD_arrange_right_data (node) algorithm. 

auxi = next (next (node)) 
md_nodes = 1 
cond_out = 0 

if auxi NULL then 
auxi = next (auxi) 

end if 

if independent (next (node) , next (next (node))) and 
check-right-swap (node, auxi) and 
ch eck_subgraphs (node, auxl) then 

update-node (node) 
update-node (next (node) ) 
swap (next(node), next (next (node)) {SWAPS THE FOLLOWING TWO INST.} 

else 
while auxi NULL and condout = 0 do 

aux2 = prev(auxl) 

while aux2 node and id-nodes 0 do 
id-nodes = id-nodes and independent (auxi, aux2) 
a'ux2 = prev(aux) 

end while 

if id-nodes 	0 and check_subgraphs (node, auxi) then 
id-nodes = 0 

end if 

if id-nodes 	0 and check_local_move (node, auxi) then 
id-nodes = 0 

end if 

if id-nodes 	0 then 
cond_out = 1 
update-node (node) 
update-node (auxi) 
move-ahead (auxi, node) {MovEs THE CANDIDATE INSTRUCTION.} 

end if 

id-nodes = 1 
auxi = next (auxl) 

end while 
end if 
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Algorithm 5.7 check-left-swap (node, aux) algorithm. 

consecutive_before_swap = 
pen alty_data (aux, next(aux), consec) + 
penalty_data (aux, node, consec) + 
penalty_data (node, next (node) , consec) + 
penalty-data (node, next (next (node)), consec) 

consecutive-after-swap = 
penalty_data (aux, node, consec) + 
penalty_data (aux, next(aux), consec) + 
penalty_data (next(aux), next (node) , consec) + 
penalty_data (next(aux), next (next (node)), consec) 

nonconsecutive_ before-swap = 
penalty-data (prev(anx), next(aux), not consec) + 
penalty-data (prev(anx), node, not consec) + 
penalty-data (aux, node, not consec) + 
penalty-data (next(aux), next (node), not consec) + 
penalty-data (next(aux), next (next (node)), not consec) + 
penalty-data (node, next (next (node)), not consec) 

nonconsecutive_ after-swap = 
penalty-data (prev(anx), node, not consec) + 
penalty-data (prev(aux), next(aux), not consec) + 
penalty-data (aux, next(aux), not consec) + 
penalty-data (node, next (node) , not consec) + 
penalty-data (node, next (next (node)), not consec) + 
penalty-data (next(aux), next (next (node)), not consec) 

if consecutive_after_swap < consecutive_before_swap then 
return 1 {FIRsT CRITERIA IS SMALLER AFTER THE MOVEMENT.} 

else 
if consecutive_after_swap = consecutive-before-swap then 

if nonconsecutive- after-swap < nonconsecutive-before-swap then 
return 1 {SECOND CRITERIA IS SMALLER AFTER THE MOVEMENT.} 

else 
return 0 {SECOND CRITERIA IS GREATER AFTER THE MOVEMENT.} 

end if 
else 

return 0 {FIRST CRITERIA IS GREATER AFTER THE MOVEMENT.} 

end if 
end if 
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Algorithm 5.8 check-local-move (node, aux) algorithm. 

before-move = 
penalty-data (prev(prev(aux)), aux, not consec) + 
penalty-data (prev(aux), aux, consec) + 
penalty-data (prev(aux), next(aux), not consec) + 
penalty-data (aux, next(aux), consec) + 
penalty-data (aux, next (next (aux)), not consec) + 
penalty-data (prev(node), next (node), not consec) + 
penalty-data (node, next (node) , consec) + 
penalty-data (node, next (next (node)), not consec) 

after-move = 
penalty-data (prev(prev(aux)), next (aux), not consec) + 
penalty_data (prev(aux), next(aux), consec) + 
penalty-data (prev(aux), next (next (aux)), not consec) + 
penalty-data (prev(node), aux, not consec) + 
penalty-data (node, aux, consec) + 
penalty-data (node, next (node) , not consec) + 
penalty-data (aux, next (node) , consec) + 
penalty-data (aux, next (next (node)), not consec) 

if after-move < before-move then 
return 1 {PENALTY MEASURE IS SMALLER AFTER THE MOVEMENT.} 

else 
if after-move = before-move then 

return 0 {PENALTY MEASURE IS EQUAL AFTER THE MOVEMENT.} 
else 

return -1 {PENALTY MEASURE IS GREATER AFTER THE MOVEMENT.} 
end if 

end if 
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5.5 Additional Concepts in the PTD Scheduler 

5.5.1 Static Memory Disambiguation 

Memory instructions restrict the available parallelism as they may introduce im-

plicit data dependencies through memory locations. A data dependency exists 

when two memory instructions refer to the same location. For instance, a load 

cannot be scheduled ahead of a store if they both refer to the same address, in 

the case when the store is scheduled first. Similarly, a store cannot be moved 

ahead of a load if they refer to the same memory address, if the load is scheduled 

ahead of the store. Two stores have to be scheduled in order, if they refer to the 

same address. 

The process of determining if two memory instructions access the same memory 

location is called memory disambiguation. Memory disambiguation can be imple-

mented either at run-time [41] [53] [123], called dynamic memory disambiguation, 

or at compile-time [31][105], called static memory disambiguation, or a combina-

tion of both [60]. 

Dynamic memory disambiguation schemes keep track of the memory instruc-

tions in the order in which they are decoded. When a memory instruction is to be 

issued, its address must be compared to the addresses of all previously decoded 

memory operations, to check whether the address has been referenced. However, 

as the number of entries grow, the hardware would become slow and complex. 

Static memory disambiguation on the other hand, has the flexibility of af-

fording more aggressive algorithms to disambiguate the memory references. The 

memory disambiguation problem is often related to a form of integer linear pro-

gramming, i.e. of finding an integer solution to a set of linear equalities. This 

process can be implemented at different levels in the compiling framework. At a 

higher level for example, when performing the data dependence analysis, memory 

references need to be disambiguated in order to apply high-level optimisations and 

transformations [115][133]. At the back-end of the compiler, memory disambigu-

ation is required to identify more independent instructions, and thereby increase 

parallelism. 

Ideally, the scheduler should discard all the data dependencies from the memory 

instructions that do not share the same address. The problem with static memory 

disambiguation is that it is not always possible to disambiguate memory refer-

ences. When the scheduler cannot determine whether two memory instructions 

refer to the same location in memory, the memory instructions have to be assigned 

a data dependency in order to enforce the order of execution. 
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Static memory disambiguation mechanisms analyse the address expression 

of memory instructions. Memory instructions are characterised by having two 

operands: the data operand which holds the value that is to be loaded or stored, 

and the address operand, which holds the address in the memory where the data 

is to be loaded or stored. The address expression depends on the nature of the 

addressing mode. The following list describes the most common addressing modes 

[76]. 

Immediate. 	Mem [a] 

The constant a represents the exact address of the store or 

the load. 

Register. 	Mem [ R 1 ] 

R 1  specifies the value of the address - R 1  "points" to that 

memory location. 

Displacement. Mem[R 1  + a] 

R 1  specifies a base address and a is an offset to that base 

address. It is used when indexing arrays, e.g. x[i + 11. 

Indexed. 	Mem[Ri + R2 ] 

The address is the result of the addition of the contents of 

registers R 1  and R 2 , in a similar way to the displacement 

mode. 

Indirect. 	Mem [Mem [ R 1 ]] 

The memory location pointed by R i  contains the actual 

memory location being referred. This addressing mode is 

found in the case of double indexing, e.g. x [y [1]]. 

For most of these addressing modes, the address expression is transformed to 

one consisting of a base address and an offset. Only in the immediate addressing 

mode is the address transformed into a constant value reference. Memory instruc-

tions at the assembly level use one register to hold the base address and another 

to hold the offset value. In the immediate addressing mode, only one register is 

used to hold the immediate value representing the address. 

The memory instructions from the code in Figure 5.3 can be used as an ex-

ample to describe how the memory references are compared. The address of the 

the memory operations is expanded in order to get the memory expression. The 

three memory instructions and their memory expressions are shown below: 
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 1w $87,$125,0 1w $87,($29 + 32) + ($8 * 4) + 0 

 1w $92,$129,0 1w $92,($29 + 32) + ($9 * 4) + 0 

 sw $86,$121,0 sw $86,($29 + 32) + ($8 * 4) + 0 

From the memory expressions, it is clear that instruction (1) and instruction 

(3) are dependent since they have the same expression (($29 + 32) + ($8 * 4) 

+ 0). However, the disambiguation from instruction (2) against (3), refers to 

solving the equation $8 = $9. In such cases, the scheduler assumes a conservative 

approach and assigns a dependency, since the values of registers $8 and $9 are 

not known at compile-time, but may have the same value at some point during 

execution. 

The static memory disambiguation scheme which was incorporated into the 

PTD scheduler is shown in Table 5.2. The table displays all the cases with memory 

instructions for both the base-offset and immediate types. The first two columns 

show the different combinations of address expressions, for a pair of memory 

instructions'. The third column shows the resultant equalities of the address 

expressions from both instructions. In the table, x and y represent registers, 

which are considered as variables; a and b represent constants with dissimilar 

values and are not zero. The last column shows the outcome of the memory 

disambiguation scheme for all the possible cases. 

There are three possible outcome of two memory references: the first outcome 

is when the memory instructions have the same address expression, in which case 

there is a data dependency irrespective of the values of the registers and the 

type of the expression. The second outcome is when the memory references can 

be disambiguated, i.e. the memory address is not the same. In these cases, the 

address expressions can be disambiguated because they differ by a constant value. 

Constant values do not change during execution, so if the register used as the base 

address is the same, and the offset constants differ, then it can be safely assumed 

that the address is not the same. Thus, the memory disambiguation mechanism 

does not apply a data dependency to the instructions. The third outcome is 

when the memory addresses cannot be disambiguated because different registers 

are part of the expression, as in the example above. This case is generalised, 

when more than two registers are involved in either of the address expressions. 

31f both memory references are load instructions, it implies that there is no dependency 
between them. 

112 



Instruction 1 Instruction 2 Equality Outcome 

X x x = x Data dependency 

X y x = y Not disambiguated 

X a x = a Not disambiguated 
a a a = a Data dependency 

a b a b Disambiguated 

X x + a x x + a Disambiguated 

x + a x + a x + a = x + a Data dependency 

x + a x + b x + a x + b Disambiguated 

x + a y + a x + a y + a Not disambiguated 

X +... y +... x +... = y +... Not disambiguated 

Table 5.2: Static memory disambiguation scheme for the PTD scheduler. 

This is represented in the last case of the table. The results and statistics from 

the memory disambiguation mechanism used for the PTD scheduler are shown in 

Section 7.4. 

5.5.2 Subgraphs 

The PTD scheduler searches for candidate instructions starting from the in-

struction neighbouring the penalised one, which reduces the average search time. 

However, this can lead to a mix of instructions such that no further reductions 

can be made. Figure 5.7 shows a list of instructions before and after scheduling. 

Figure 5.7 (a) depicts a schedule with two penalties due to consecutive data de-

pendencies. Figure 5.7 (b) shows the same code after the first scheduling phase. 

The penalties were reduced by swapping instructions 12 and 13 . The resulting 

penalties become non-consecutive. 

If no independent instruction can be moved to reduce these penalties during 

the second scheduling phase, then they might never be removed. For instance, 

instructions 12 and 13  cannot be moved away since they reduce the penalties 

due to instructions 13  and Ii.  If instruction 12 is moved further away from 

instruction I, then the non-consecutive penalty due to 13 becomes a consec-

utive one. Similarly, if instruction 13  is moved further away from 14 , then the 

penalty due to I  becomes consecutive. This is thanks to the safety conditions 

explained earlier. Figure 5.7 (b) shows that overlapping penalties may produce 

under-optimised code. 
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11 	

%$131$15

,o 1 la 

/2 	mul 13  1w 	$12$8,O 

13 	1w 
12 2 

--1' 

mul 	$13'$25L$15 

14 	addu 14  addu 	$11 	$9 

(a) 	 (b) 

Figure 5.7: An example of overlapping penalties. 

A solution to this problem is to mask the scope for searching candidate in-

structions within the basic block. A basic block can be regarded as a group of 

instructions that are related in an ordered way to perform a computation. The 

basic block can be divided into subcomponents (subgraphs) that perform part of 

the overall computation. For example, two separate subgraphs can be identified 

in a memory operation. The first one involves the computation of the address, 

and the second one involves the computation of the actual data that is to be 

loaded from or stored at that address. This can be seen in the store instruction 

(11 3 : sw $86,$121,0) in the code example in Figure 5.3. Figure 5.8 displays 

the DAG from Figure 5.4 which has been decomposed into three subgraphs: the 

address is computed in the first subgraph (A), formed by instructions Ii,  12  and 

13 ; the second subgraph (B) is dedicated to computing the data, as formed by 

instructions 14  to 112; and the third subgraph (C) is responsible for updating 

the array index which is checked by the branch instructions 115  and 116.  The 

node numbering reflects the same order as in the schedule in Figure 5.3 and the 

highlighted arcs represent the penalties from consecutive data dependencies. 

Without the subgraphs, the PTD scheduler might reduce the consecutive pen-

alties due to instructions 19 , 110  and 11 , with instructions from the group 14 , I, 

'6 and 17 . These movements may reduce the penalties due to instructions 1 5  and 

16 as well, at the expense of creating overlapping penalties that will be difficult 

to reduce in subsequent scheduling phases. 

The subgraph B forbids the selection of a candidate instruction that belongs 

to the same subgraph, when reducing penalties. The candidates can only be 

selected from the other two subgraphs. 

The selection and size of the subgraphs is particularly important. If the size 

of the subgraph is too small, then there is a greater likelihood of producing 
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Figure 5.8: Basic block from Figure 5.4 decomposed into subgraphs. 

overlapping penalties. If the size of the subgraph is too large, then it becomes 

more difficult to find a suitable candidate. The granularity of the subgraphs plays 

an important role for the scheduler. This can be exemplified in the DAC example 

in Figure 5.8. If the subgraph B is divided into two subgraphs, one formed by 

instructions 14 , 15 , 16 and 17 , and the other formed by instructions 18,  19 , 110, 111 

and 112, then the scheduler will try to intermix their penalties so that overlapping 

penalties will occur. 

The mechanism for selecting subgraphs defines the whole basic block as one 

subgraph and recursively divides it into several subgraphs. The subgraph separ-

ation depends on the relative parallelism of each instruction. The relative paral-

lelism of an instruction is defined as the number of predecessors divided by the 

level of the instruction, terms that are defined by true data dependencies. The 

level represents the critical path relative to the instruction. This ratio suggests 

that for a bigger value, there are more instructions per level (less sequentiality), 

which can be considered as a measure of concurrency: greater the value of this 

measure, bigger is the subgraph. Since the algorithm starts with a subgraph the 

size of the basic block, this metric defines which instruction must delimit a new 

subgraph. 
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Algorithm 5.9 divide_subgraph (node, P7d, size) algorithm. 

parallel = (float) predecessors (pred) / (float) level (pred) 
{LEVEL(PRED) IS EQUAL TO LEVEL(NODE) - 1} 

if size < 23 then 
if predecessors (node) 	6 and parallel > 1.5 then 

createsubgraph (node) {INsT. SEPARATED INTO ANOTHER SUBGRAPH.} 
end if 

else 
if predecessors (node) > 10 and parallel > 2.0 then 

create.subgraph (node) {INsT. SEPARATED INTO ANOTHER SUBGRAPH.} 
end if 

end if 

Algorithm 5.9 shows the function divide_snbgraph that separates the basic 

block into subgraphs. The routine is called for every predecessor of an instruction 

in the basic block. The function receives the instruction, its predecessor and the 

size of the basic block. Line 1 of the algorithm computes the relative parallelism 

of the predecessor. Line 2 selects which ratio value has to be selected: basic blocks 

with a small number of instructions require a lower ratio threshold, otherwise, the 

algorithm might not divide the subgraph. A basic block with a size lower than 

23 instructions creates a new subgraph if the ratio is greater than 1.5 (line 3); if 

the basic block has a size bigger than 23, then the ratio must be greater than 2 

(line 7). These values have been customised through experimentation. The rest 

of the condition of lines 3 and 7 specifies that a minimum number of predecessors 

are required, otherwise it will not be necessary to identify a new subgraph. 

For instruction 113  of Figure 5.8 the parallel variable holds a value of 2.25 

(9 predecessors with a level of 4) corresponding to the arc of predecessor 112,  and 

1.5 (3 predecessors with a level of 2) corresponding to the arc of predecessor 1 3 . 

The ratio of the predecessor 112  is adequate to consider a subgraph, while the 

ratio of the predecessor 1 3  is not sufficient. 

Figure 5.9 shows the scheduled output of the PTD scheduler for the code in 

Figure 5.3. The label marks beside the instructions illustrate to which subgraph 

each instruction belongs. The instructions are scheduled in such a way that the 

label marks are mixed as if they were different threads. Masking the instructions 

with the subgraphs method helps to achieve this. 

The figure also shows the PTD measure after scheduling the code which cor-

responds to the minimum measure that this code exhibits. The makespan of this 
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L5.main: 
B muli $127,$8,4 
B la $126,$29,32 
B muli $131,$9,4 
B la $130,$29,32 
B addu $125,$126,$127 
A la $122,$29,32 
B addu $129,$130,$131 
B 1w $87,$125,0 
A muli $123,$8,4 
B 1w $92,$129,0 
C addui $9,$9,1 
A addu $121,$122,$123 
B mul $86,$87,$92 
C sit $136,$16,$9 
A sw $86,$121,0 
C bt $136, L5.main 

L7.main: 0 

Figure 5.9: Code example in Figure 5.3 after scheduled by the PTD scheduler. 

particular schedule is 12085.067ns is one which is among the best schedules in 

the makespan distribution in Figure 5.5. 

The subgraphs checking between the candidate and the penalised instruction 

is performed by function checksubgraphs in lines 7 and 18 in Algorithms 5.5 

and 5.6. The function performs the checking in a way similar to the dependency 

checking: a n x n matrix relates the different subgraphs for every instruction. The 

function returns null if two instructions belong to the same subgraph, otherwise, 

a one is returned. 

The order of checking the instruction in these functions is as follows: data 

dependency check, subgraph check and safety condition check. The instruction is 

moved if it satisfies all these conditions. 

5.6 Algorithmic Complexity 

The structure of the PTD scheduler is different from traditional techniques be-

cause the algorithm is driven by the penalties in the code. The complexity of the 

PTD scheduler is derived next. 
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The while sections in the functions PTD...resource_phase (Algorithm 5.2), 

PTD_consecutive_ phase (Algorithm 5.3) and P TD-no rz cons ecutive_ phase (Algo-

rithm 5.4) traverse the basic block stopping at every penalty. These sections 

have a complexity of 0 (et 2  + (n - e)), where n is the number of instructions 

in the basic block, and e is the number of penalties. The term et 2  corresponds 

to the time spent searching for a candidate instruction and checking its depend-

encies when the functions PTD_arrangeieft and PTD_arrangeright are called. 

The term n - e covers the instructions that are not penalised. 

The repeat loops (lines 3-16, 17-30 and 31-44 in Algorithms 5.2, 5.3 and 

5.4) ensure that at least one scheduling pass is performed. The repeat sections 

continue until there are no reductions in the penalty measure. The number of 

times these sections are repeated is denoted by c. Thus, the above term becomes 

0(cet2 + c(n—e)). 

However, the parameters c, e and t are not general. Basic blocks have different 

number of penalties (e) of a given type and particular number of retries (c) for 

each basic block. Similarly, penalties have different instruction distances (t) when 

searching for a candidate. For our purposes, these factors will be considered 

general in the interest of clarity and simplification. 

The repeat block is replicated eight times in the three scheduling phases. 

Therefore, the complexity of the PTD scheduler is 

0(8 Cet2  + 8c(n - e) + 8nc+ 3n) 	 (5.5) 

The terms 8 nc and 3n represent the computation of the penalty measure 

throughout the three scheduling phases, both inside and outside the repeat sec-

tions, respectively. 

Equation 5.5 has a few important simplifications. Observations of the schedul-

ing process show that the number of times the repeat sections are looped is not 

greater than three or four. Therefore, c can be considered to be a small constant 

(c = 2, 3,4). Since the search for candidate instructions start from the instruction 

neighbouring the penalised one, it is expected that the search (on either side) does 

not reach n/2. Furthermore, if the candidate is found on the left hand side of the 

penalised instruction, the search on the right hand side is not necessary. Thus, 

the factor t can be considered to be t <<n. As for the term e, it is often the case 

that there are not as many penalties of the same type as there are instructions, 

resulting in e <n. 

The upper and lower bounds of Equation 5.5 are defined by two opposite 

scenarios. The upper bound is represented by a pure sequential code. It takes 
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place when there are as many penalties as instructions (e = n), there are no 

candidates found for all of those penalties (t = m - 1), and there can only be two 
retries (c = 2). The upper bound of Equation 5.5 is therefore 

0 (16 n (n - 1)2 + 19n) 	 (5.6) 

However, since the same type of penalties cannot affect more than one repeat 

section, only one term is governed by cn (n - 1) 2 ,  while the other seven share the 

term cm (e = 0). The former term dominates the rest of the terms, so the equation 

has an upper bound of n3 . The upper bound in practice becomes 

0(2n(n - 1)2 +33n) 	 (5.7) 

The lower bound of Equation 5.5 is represented by a purely independent code. 

In this case, there are no penalties (e = 0, = i = 0) and no retries (c = 0). The 

complexity is therefore 

0(3n) 
	

(5.8) 

The if conditions before the repeat sections avoid any scheduling attempt if 

there are no penalties. Only the initial PTD measures take part in the complexity. 

The lower bound of the PTD scheduler is therefore of the order of n. 

If all the constants are removed from the Equation 5.5, then the complexity 

of the PTD scheduler becomes 

0( et' +m— e) 
	

(5.9) 

In normal conditions, however, the parameters c and t have particular values 

with respect to n. As the algorithm progresses, the number of penalties are 

reduced, so e becomes e << n. Similarly, t is much smaller than m (t <<n) since 

in general, the candidate is meant to be found from a close neighbour. Therefore, 

as the algorithm progresses in normal conditions, the Equation 5.5 is found to be 

of the order of n. 

5.7 Discussion 

The nature of the PTD scheduler differs from traditional scheduling techniques. It 

offers interesting properties and has different characteristics. These are discussed 

in the following section. 
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5.7.1 Overlapping Penalties 

The priorities given to the different penalties by the PTD scheduler are not only 

meant to target more expensive stalls first, but also to manage the amount of 

penalties in the code. During the second scheduling phase, penalties from data 

dependencies due to different distances between producers and consumers have 

to be compared. On many occasions the movements are disallowed because of 

the intermix of instructions and the overlapping of penalties. It has to be ensured 

that the penalty measure is always reduced after a movement. 

By strictly reducing penalties, the PTD scheduler moves through the schedul-

ing space towards the minimum penalty measure. However, the overlapping pen-

alties constrains this search. If they cannot be reduced, it implies that there is 

no independent instruction in the basic block which when placed in between the 

penalised instructions, reduces the penalty measure. 

In order to overcome the effect of overlapping penalties when a penalty cannot 

be reduced, the algorithm is required to perform two or more instruction move-

ments. The scheduler must be capable of identifying an instruction that could 

be moved to a place where the penalty measure stays constant, and from there, 

evaluate if there is a second instruction that could be placed in the desired po-

sition and reduce the penalty measure. If this combination of instructions fails 

to satisfy the safety conditions, then the transformations are reversed and the 

process of testing other combinations has to continue. 

The problem with this approach is that the number of transformations can-

not be known in advance. Furthermore, the complexity of performing a two-

instruction transformation is of the order of 0( t + ti), where t j  is the distance 

from the first instruction to its final position, and t2  is the distance from the 

second instruction to the penalised instruction. In the worst case, the instruction 

has to be checked against all the instructions in the basic block. This case implies 

that t 1  = n, resulting in a complexity of the order of 0(n 2 ). 

The solution for this task seems more complex than the scheduling algorithm 

itself. Overlapping penalties is a characteristic of the PTD scheduler. The concept 

of subgraphs incorporated into the scheduler helps to attenuate their effect. 

5.7.2 Input Sensitivity 

Another characteristic is that the PTD scheduler is sensitive to the initial order 

of the instructions. This means that the scheduler is non-deterministic to -<, 
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unlike the list scheduler. The latter produces the same output independently of 

the initial order, given that the data dependencies between the instructions are 

preserved. 

However, the PTD scheduler is driven by the penalties in the code and there-

fore is susceptible to their form. Since the penalties are applied in accordance 

with the position of the instructions in the schedule, different initial schedules 

will be approached by the scheduler uniquely. Although higher penalties are 

handled before penalties with lower ones, the algorithm has to choose among the 

penalties that share values. This decision leads to different 'paths' during the 

transformations which result in different schedules. 

Given that the PTD scheduler is sensitive to the initial order, it is convenient 

to shuffle its order, before applying the scheduling process. This is in response to 

the amount of penalties that can be produced by the compiler. An analogy can 

be drawn with simulated annealing where the initial code is randomly generated. 

The first scheduling phase (PTD_resource_phase) is considered to be the ran-

dom factor introduced into the initial schedule. This phase only performs in-

struction movements to reduce penalties due to resource contentions, and the 

number of movements is not considerable. However, these transformations serve 

to produce a better initial schedule. 

5.8 Summary 

The micronet-based asynchronous processor described in Chapter 4 requires in-

struction scheduling with the aim of minimising the issue unit stalls due to data 

dependencies and resource contentions. The processor features an in-order issue 

unit and out-of-order write-back. Its datapath is characterised by instructions 

that run as fast as their requirements are fulfilled, and that may overtake other 

instructions and compete for resources. The functional units operate within dif-

ferent range of latencies depending on several static and dynamic factors. This 

model presents particular problems to the scheduler, because the dynamic beha-

viour of the instruction execution makes it difficult to consistently predict the 

time when results become available. 

This chapter has presented a novel and alternative way of performing local 

scheduling for the micronet-based asynchronous processors. The new method is 

not based on traditional techniques such as the list scheduling. In contrast, the 

PTD scheduler is based on a scalar measure that quantifies the amount of stall 

incurred in the issue unit by data and resource dependencies. 
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Consecutive instructions with data and resource dependencies are penalised 

because the issue unit cannot issue the dependent instruction until its operand 

becomes available, or because consecutive instructions share a common functional 

unit and there are not enough instances of that type. The penalties are given 

different degrees in order to reflect different amounts of stall to the issue unit. 

Data dependencies are more costly in terms of delay; therefore, consecutive data 

dependencies are assigned higher penalties. 

The PTD scheduler performs instruction scheduling within the basic block 

with the aim of reducing these penalties. The different degrees of penalties help 

to prioritise the order in which the scheduler reduces them. Valid conditions 

are introduced to avoid dependency violations, while safety conditions have been 

defined in order to improve the overall state of the schedule every time an in-

struction is moved. 

The scheduler is divided into several scheduling stages to give priorities to the 

different spacing of the penalties. Penalties from consecutive data dependencies 

are treated in a first pass since the delay produced by them is the most signific-

ant. Non-consecutive penalties are treated in the following pass, after consecutive 

penalties have all been reduced. 

The PTD scheduler uses concepts such as memory disambiguation and sub-

graphs to improve the scope for parallelism and the quality of the instruction 

movements. Memory disambiguation is a well known technique for discarding 

data dependencies between memory operations when their addresses are not the 

same. This procedure not only reduces the data dependencies between memory 

instructions, but those inherited by all their successors. This dependency reduc-

tion increases the scope for ILP within basic blocks that can be exploited by the 

scheduler. 

The concept of subgraphs in a basic block was introduced as a heuristic to 

mask the instructions when selecting candidates to reduce penalties. The PTD 

scheduler moves independent instructions to reduce a penalty that are located 

closer to the penalised instruction. The long-term effect due to this practice is 

that the penalties become overlapped and cannot be reduced further. These over-

lapping penalties restraint instruction movements in accordance with the safety 

conditions. Subgraphs are composed by a group of instructions from the basic 

block involved in a part of the computation. The PTD scheduler is forced to 

search for candidate instructions from different subgraphs in order to reduce the 

penalty. This mechanism attenuates the effect of overlapping penalties. 
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The complexity of the PTD scheduler is based on the number of penalties, and 

is of the order of et 2  + n - e. Since the number of penalties (e) decreases as the 

scheduler progresses, its value becomes smaller when compared to the number of 

instructions n. In the long-term, the complexity can be considered to the order 

of n. This results in a better complexity than those of list schedulers, which are 

of the order of n 2 . 

The PTD scheduler offers an alternative method for implementing local in-

struction scheduling which is tuned to the requirements of asynchronous archi-

tectures. The results of the local PTD scheduler are presented in Chapter 7. 

The next chapter presents a global extension to the PTD scheduler so that 

instructions from different basic blocks can be moved across in order to reduce 

further the penalties. 
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Chapter 6 

Global Optimisations 

6.1 Introduction 

In the previous chapter a new technique was presented for performing local 

scheduling which is targeted at micronet architectures. The PTD scheduler is 

based on penalising the effect of data and resource dependencies which stalls the 

issue unit of the processor. The objective of the scheduler is to minimise the 

penalties which are reduced by inserting independent and unrelated instructions 

in between the dependent ones. The scheduler terminates when the number of 

penalties cannot be reduced any further. 

However, there are two reasons why the schedule for the basic blocks can 

potentially be under-optimised. Firstly, the mechanism for reducing the pen-

alties introduces an effect called overlapping penalties. This takes place when a 

group of penalties that are in close proximity restrict the movement of an instruc-

tion to reduce another penalty. The safety conditions that guarantee instruction 

movements to strictly reduce the penalty measure, are often forced to avoid the 

reduction of a pending penalty as a result of these overlapping penalties. The 

second reason is the limited amount of ILP that can be found within basic blocks. 

It is well known that basic blocks may not offer enough parallelism to maintain 

high levels of resource utilisation, and in the case of the PTD scheduler, the 

parallelism may not be adequate to minimise the stalls in the issue unit. 

It is common practice to search for independent instructions beyond the ba-

sic block in order to improve their ILP. Instructions from different basic blocks 

can fill the scheduling "gaps" produced by basic blocks with insufficient ILP. 

Global scheduling techniques exploit higher levels of ILP to those obtained by 

local scheduling. A wider scope of the program is considered for regrouping the 

instructions in order to distribute the parallelism. Global information about the 

program such as basic block structure and frequency of instruction execution is 
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used to combine instructions from different basic blocks. 

The advantage of global optimisations is apparent, but there is considerable 

scope for arbitrary decisions where heuristics may be globally optimal, but locally 

suboptimal. The penalty measure offers the possibility of a single metric for 

use in both local and global decisions. A global scheduler capable of moving 

instructions across different basic blocks to reduce the remaining penalties in the 

local scheduler represents a natural extension. 

In this chapter, the scope of the PTD scheduler for searching candidate in-

structions is extended beyond basic blocks. A global version of the PTD scheduler 

allows movement of instructions beyond the basic block boundary in order to re-

duce penalties. The global scheduler is also based on the PTD measure which is 

used as a reference metric to perform global code motion. Basic blocks with a 

resultant positive measure are eligible for global code motion. The context of code 

motion within this chapter represents global movement of instructions without 

the need for copies or speculation. When code motion cannot be performed due 

to data dependencies, code duplication (code motion with copies) is applied, in 

an effort to reduce the penalties left after local scheduling. 

This chapter describes some underlying concepts for applying code motion 

without copies or speculation. The safety conditions introduced previously for 

reducing the penalty measure are extended to handle code motion and code du-

plication. Code motion and code duplication, along with their generalisation in 

tail duplication and block merging are also explained. Finally, a description of a 

global PTD scheduling algorithm is presented. 

6.2 Related Work 

Global scheduling is an optimisation technique that involves instruction move- 

ment and scheduling across multiple basic blocks, with the aim of reducing the 

program execution time. Global program representations that include data and 

control relationships allow schedulers to group instructions from different basic 

blocks. When moving instructions over different basic blocks the semantics of the 

program must be preserved. When an instruction is moved into another basic 

block that is located in a different path of the program, it has to be ensured that 

complementary measures are taken to respect the overall meaning of the program. 

There are several approaches to forming regions larger than basic blocks, which 

can be categorised under either cyclic or acyclic optimisations. Cyclic optimisa- 

tions include instructions from different iterations of the program to increase the 
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parallelism. Conversely, acyclic optimisations only include basic blocks within 

the same acyclic region. The optimisations discussed in this chapter are strictly 

acyclic. A region is defined as a series of related basic blocks as a result of the 

compilation of a function. 

Global scheduling can also be divided into two types based on whether the 

transformations are based on profile information - the recorded run-time beha-

viour of a program, for a particular set of inputs. The inputs must be carefully 

selected with representative data. The profile information is annotated on all the 

basic blocks of the program with their percentage of execution, for the partic-

ular set of- inputs. Given the frequency of execution for each basic block, the 

frequencies of all possible paths can be determined. 

A selection of global acyclic scheduling techniques, including profile-based 

transformations, are described in this section. 

6.2.1 Trace Scheduling 

Trace scheduling [44] [51] [105] is a global optimisation technique that considers a 

sequence of basic blocks as a trace. The selection of basic blocks is performed 

upon the most likely trace - often called the on-trace - of the program. The 

information is retrieved from several runs of the program operating on typical 

data. The resultant trace is scheduled with a list scheduler as a large single basic 

block. 

If an instruction is moved across basic block boundaries, then one or more 

copies of compensation code may be required in the off-trace. If the instruction 

is moved above a join or below a fork, then compensation copies are inserted 

into the off-trace paths. This process of inserting compensation code is called 

bookkeeping. One of the side-effects is an explosion in code size, but policies exist 

to limit the generation of compensation code [54]. 

6.2.2 Superblock Scheduling 

Superblock scheduling [85] is a variation of trace scheduling. The main difference 

is that the traces do not have side entrances. Profile information is used to select 

the most frequent traces. After these traces have been generated, a technique 

called tail duplication is performed in order to remove the side entrances [29]. 

The resulting traces are called superbiocks. After all the superbiocks have been 

defined, the Superbiock Scheduler uses list scheduling techniques to optimise the 

superbiocks. 
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The benefits due to optimisations performed along the frequent paths, such 

as the on-trace and the superbiock, are often made at the expense of the non-

frequent paths. 

6.2.3 Hyperbiock Scheduling 

Hyperbiocks [108] are similar to superbiocks in that the control flow can only 

enter from the top, but can leave from different exits. The difference between a 

superbiock and a hyperbiock is that the latter is based on predicated execution. 

Predicated execution refers to the conditional execution of instructions depending 

upon the value of a boolean source operand. If the operand, also called a predicate, 

is true, then the instruction is executed normally; otherwise, it is treated as a no-

operation (nop) instruction. The advantage of hyperbiocks over superbiocks is 

that hyperbiocks contain instructions from more than one path of control when 

there exist multiple, important paths [86]. 

6.2.4 Dominator-path Scheduling 

Dominator-path scheduling [163] is a global scheduling technique similar to trace 

scheduling in that several basic blocks are treated as a single block. The main 

difference is that the blocks are selected from the dominator-path of the region, 

and not from traces. This path is selected from the dominator tree' with the help 

of heuristics or profile information. 

Another difference with trace scheduling is that dominator-path scheduling 

uses this dominator analysis to avoid the use of compensation code, which is a 

significant concern. Once the blocks are selected, they are scheduled with a list 

scheduler. 

6.2.5 Code Motion 

All the previous examples of global scheduling are characterised by the basic 

blocks being considered as the unit of transformation. The frequently-encountered 

basic blocks are grouped as a single meta-block in which local scheduling can 

exploit more parallelism. However, the effectiveness of these techniques depend 

on grouping frequent paths that outweigh the degradation of other paths that are 

less frequent. Trace-based scheduling techniques though are less effective when 

targeting programs with paths that are evenly frequent. 

'The dominator tree [2] represents the dominance set between basic blocks. One block is 
said to dominate another, if the former is executed, and then eventually, the latter has to be 
executed. The concept of dominance is explained further in Section 6.3.1. 
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Other types of global scheduling consider the instruction as the unit of trans-

formation. Instead of grouping basic blocks, instructions are individually moved 

to other basic blocks. Considering single instructions as the unit for the trans-

formations provides a finer granularity in the ILP improvement. 

The term code motion has been overloaded. It has been used to describe the 

motion of expressions in the intermediate code, and also to describe the motion 

of assembly instructions after code generation. At the intermediate code level, 

code motion is applied to eliminate redundancies in the code, such as constant 

propagation and partial redundancy elimination [33][96], or to distribute coarse-

grain parallelism [3]. 

At a lower level, the term code motion is used to describe the movement of 

assembly instructions within a scheduler. A global scheduler is presented in [20], 

in which useful instructions are moved beyond basic blocks within an acyclic 

region. Useful instructions represent instructions that can be moved without the 

need for compensation code, or speculation (c.f. Section 2.1.1.3). The movement 

of useful instructions has the characteristic of being profile-independent, since the 

movements do not compromise any of the paths that the control flow may take 

in between the source and destination blocks. The scheduler does not consider 

code duplication in any of the code motion transformations. 

Another example of code motion of instructions is found in [107], in which the 

scheduler is targeted to work with or without the use of profile information. The 

code motion within this scheduler does consider limited cases of code duplication. 

6.3 Global Scheduling for the Micronet Model 

Global schedulers have used the list scheduling algorithm for optimising the order 

of instructions in the meta-blocks. The ones described previously usually define 

instruction markers to specify the boundaries of the original basic blocks. These 

markers range from compiler directives to instruction identifiers. The list sched-

uler interprets these markers so that the heuristic can be tailored for scheduling 

instructions from more than one basic block. For instance, the instructions within 

a meta-block may no longer have the same weight and priorities as instructions 

in local scheduling do. There are several reasons behind this, some of them being 

particular to the global scheduler itself. One reason being that an instruction 

from the new meta-block may not have the same number of execution as the 

others [87] [163], or the same control properties, in the case of a speculative move-

ment. Another reason is that by moving one instruction beyond its basic block 
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causes the life of its registers to be prolonged' - an important issue if register 

allocation is performed after global scheduling [122]. 

A global version of the PTD scheduler differs from those described in Section 

6.2, since the underlying scheduling method is not based on the list scheduler; 

instead, the global PTD scheduler is based on the penalty measure. The next 

section defines the terms used to explain the heuristics for code motion in the 

global PTD scheduler. The global PTD scheduler with code motion, but without 

compensation code, is described in Section 6.3.2, and with code duplication is 

described in Section 6.3.3. The global PTD scheduler does not consider either 

speculative movement of instructions or the use of profile information. 

6.3.1 Definitions 

The word region is another overloaded term. For example, in [70] and [3], a 

program is divided into regions that are composed of code statements in order to 

perform region optimisations. In [90] programs are divided into control regions, 

i.e. sections of the program with the same control dependencies. 

The term region, as described in this thesis, defines a group of basic blocks 

containing assembly instructions with a single entry and multiple exits. They are 

the result of compiling the functions of a program. A region is defined as part of 

a program in which the basic blocks are strongly connected [162]. 

Let A and B be two basic blocks in a region. A is said to dominate B 

(A dom B), if block A appears in all the paths from the entry of the region to 

block B. Similarly, B is said to post-dominate A (B post A), if block B appears 

on all the paths from block A to the exit of the region [2]. Figure 6.1 (a) depicts a 

control flow graph (CFG) of a region with its entry and exit nodes. It can be seen 

that B 1  dominates all the other basic blocks, as it appears in all the paths from 

the entry of the region up to all of the blocks. Similarly, block B7  post-dominates 

the other blocks since it appears in all the paths from these blocks to the exit of 

the region. 

If both conditions hold for blocks A and B, i.e A dominates B and B postdom-

mates A (A dom B A B post A), then it is said that A is equivalent to B [20]. 

This is an important characteristic because it means that should A be executed, 

then B will definitely be executed. It can be seen in Figure 6.1 (a), that whichever 

path is taken after executing block B 1 , the flow of control will eventually arrive 

at block B 7 . In practice, the equivalence condition implies that blocks A and 

21f the instruction is moved against the flow of control, the life of the destination register is 
prolonged. Conversely, the source register is prolonged when the instruction is moved along the 
control flow. 
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(a) 	 (b) 

Figure 6.1: (a) Control flow graph and (b) its control dependence subgraph. 

B can be executed in parallel, as long as their data dependencies are respected. 

Therefore, instructions from equivalent blocks can be moved without the need for 

copying instructions, and without the risk of speculation. Blocks A and B are 

said to be control-independent. In the example, only blocks B 1  and B 7  fulifill the 

equivalence definition. 

Figure 6.1 (b) shows the control dependence subgraph of the control flow graph 

of Figure 6.1(a). The control dependence subgraph shows the control flow de-

pendencies between the basic blocks. It is shown that basic blocks B 1  and B7  

are control independent, as are blocks B4 , B5  and B6 . However, blocks B4 , B5  
and B6  are not equivalent. Although block B6  postdominates blocks B4  and 

B5 , blocks B4  and B 5  do not dominate block B6 . This is shown graphically in 

Figure 6.2. Figure 6.2 (a) shows the dominator tree, and Figure 6.2 (b) shows the 

postdominator tree of the control flow graph in Figure 6.1 (a). 

When there are back entries as in loops in the region, it must be ensured that 

the equivalent blocks are contained within the same sub-region. If a loop is added 

to the control flow graph of Figure 6.1 (a), then the basic blocks, B 1  and B7 , are 

no longer equivalent. Figure 6.3 depicts the new control flow graph with a back 

entry. Although B 1  still dominates B 7  and 137  postdominates B 1 , B 1  may be 
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(a) 	 (b) 

Figure 6.2: (a) Dominator-tree and (b) postdominator-tree. 

executed more often than B7 . For the graph in Figure 6.3, basic blocks B 1  and 

B7  are not equivalent. 

6.3.2 Code Motion for the PTD Scheduler 

The local PTD scheduler attempts to minimise the penalty measure on each 

basic block by performing local movement of instructions. The local optimisation 

serves as a monitor of how much parallelism can be exploited by the micronet 

architecture (or how much stall to the issue unit is caused by true dependencies 

and resource contentions). If the ILP in the basic block is adequate, then the 

penalty measure will be proportionately reduced at the end of the local scheduling 

process. 

The natural extension to the local PTD scheduler is to allow instructions from 

different basic blocks to be moved, in order to reduce the penalty measure if it 

has not been totally cleared. Within the PTD scheduler, the penalty applied to 

an instruction can be regarded in two ways: one view is that the penalty indicates 

that another instruction has to be moved in order to reduce it (as in the local 

scheduler), and the other is that the instruction itself must be moved, in order 

to reduce its penalty. The global scheduler assumes the latter view. Since the 

search space for independent instructions can grow considerably when compared 

to a basic block, it is more feasible to move away the cause of the penalty (the 

penalised instruction) rather than searching for independent instructions. 

With this assumption, penalised instructions are considered candidate instruc- 
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Figure 6.3: Control flow graph with a loop. 

tions for global movement. The target destination for the code movement is re-

stricted by the equivalence definition. Code motion is only allowed to equivalent 

blocks. 

The equivalence definition enables code motion beyond basic blocks but without 

speculation or code duplication. This definition determines which group of in-

structions are executed and under what static control flow conditions. Thus, 

the task is reduced to deciding under which data conditions instructions can be 

moved. 

The data conditions are governed by the penalty measure. Since each basic 

block has its own penalty meaure, a global measure can be regarded as the total 

amount of stall caused to the issue unit within the region. The local scheduler 

minimises the penalty measure on every basic block, so the global effect is to 

reduce the collective measures. 

When the penalties cannot be completely reduced, the global scheduler's task 

is to distribute instructions within equivalent nodes. To do so, the global scheduler 

has to ensure that both the data dependencies and the safety conditions are 

respected. For the global scheduler, the safety conditions defined for the local 

scheduler are expanded to consider instructions from two basic blocks, i.e. the 

sender and the receiver block. 

The global extension of the PTD scheduler is applied after the local scheduling. 
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The global scheduler scans the regions of the program in topological order, that 

starts at the entry of the region and finishes at the exit. The global scheduler is 

restricted to moving instructions against the flow of control (without considering 

the back entries from loops). Since the candidate instructions for code motion 

are the penalised instructions, there would be very few occasions in which they 

could be allowed to move, if the direction of movement was in favour of the 

flow of control. This is because the likelihood of their successors being located 

on the trajectory of the movement is high. Another slight advantage of moving 

instructions against the flow of control is that only the life of one register is 

lengthened, as opposed to two. 

When the scheduler stops at a basic block with a positive penalty measure, the 

penalised instructions become candidates to be moved outside the basic block. 

The receiver block is selected among the set of equivalent blocks. The set is 

traversed in reverse order, i.e. from the closest equivalent block to the furthest. 

The penalised instructions are selected from the start of the block towards the 

exit. The penalised instruction is checked against the preceding instructions in 

the basic block in order to guarantee that the instruction can leave the block. 

The next step is to check the data dependency with the instructions from the 

basic blocks positioned in between the sender and receiver block, if any. This 

checking also includes memory disambiguation in the case of load instructions. If 

there is a function call within these blocks, then the dependency checking is also 

performed in that region. 

Figure 6.4 shows the region pictured in Figure 6.1 (a), with the final instruc-

tions from block B 1  and the first ones from block B7 . The global PTD scheduler 

traverses the region from blocks B 1  to B 7 . The instructions shown in basic blocks 

B 1  and B7  represent the code after local scheduling. Although B 1  is equivalent to 

B7 , the instructions cannot be moved in the direction of the control flow, from B 1  

to B7 . When the scheduler stops at block B7 , the penalised instructions Ii  and 

12 become candidates for code motion. Since both instructions are located on top 

of the basic block, and are independent, they are allowed to leave basic block B 7 . 

Both instructions are checked for data dependencies with the instructions from 

basic blocks B2  to B5 . In the example, it is assumed that instructions '1  and 12 

do not have data dependencies with any of the instructions from blocks B2  to B6 . 

When a candidate is able to be moved to another basic block, the selection of 

its final position becomes important. Since local scheduling has been performed 

previously at the receiver block, its instructions hold the penalties, if any, de-

pending on the ILP in the block. The ideal situation is to reduce a penalty at 
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Figure 6.4: Code motion in the PTD Scheduler. 

the receiver block and match a different type of functional unit to those of the 

instructions that share a penalty. The safety conditions of the global scheduler 

are responsible for deciding the final position of the candidate instruction. (The 

safety conditions are explained in Section 6.3.4). 

In Figure 6.4, instruction Ii  is the first candidate to leave its basic block. 

Instruction I is placed in between instructions 16 and 17  to reduce the penalty 

due to the true dependency. The type of instruction 11  is different from those of 

instructions 16 and 17 , to reduce any possibility of resource contentions. Similarly, 

instruction 12 is moved in between 1 5  and 16 to separate the true dependency. The 

load instruction also differs from the types of instructions 1 5  and '6. 

Since it is not known in advance how many candidate instructions will be 

amenable for code motion, when a candidate is moved it has to be placed at the 

site of the highest penalty in the receiver block. This position is represented by 

the penalty between the set and branch instructions (16 and 17 ) in basic block B 1 . 

When instruction I is moved the penalties at the receiver block are updated, so 

when instruction 12 is moved, the highest penalty is assigned to instruction 15. 

This procedure works well when the instructions moved into the receiver basic 

block are independent, as in the example in Figure 6.4. In contrast, if the can- 
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didate instructions are dependent, then the second instruction cannot be placed 

before the first one, in the case when the second highest penalty is located before. 

Due to this, when the first instruction is to be moved, the second-best position is 

always stored. When the second instruction is moved, the first one is relocated to 

the second-best desired place, so that the second instruction could fill the original 

place. 

The code motion algorithm terminates when there are no penalised instruc-

tions left in the sender block, or when the remaining penalised instructions cannot 

leave the block due to data dependencies. 

6.3.3 Code Duplication for the PTD Scheduler 

Data dependencies often restrict the code motion of an instruction from its basic 

block to an equivalent basic block. In an attempt to reduce the penalty of the 

instruction, it is still preferable to perform code duplication. Instead of moving 

the instruction to an equivalent basic block, the instruction is copied and moved 

to the immediate predecessor blocks. 

When there is code duplication, the expansion of the code is always a concern. 

The advantage of performing code duplication only when code motion cannot be 

called keeps the expansion of code to a minimum. 

The decision for selecting instructions for code duplication follows the same 

principle as that in code motion. When there is a data dependency in the tra-

jectory to the equivalent block that avoids the movement, the receiver block is 

replaced by the predecessor blocks instead. The copies of the instruction are in-

dividually placed in the best position at each of the receiver blocks. The safety 

conditions, which are described in the next section, are also the same as in the 

case of code motion. 

Figure 6.5 shows the same control flow graph of Figure 6.1 (a), this time in 

an attempt to reduce the penalties in basic block B63 . Since B6  does not have 

equivalent nodes and its predecessors have only one successor (B6  post-dominates 

both B4  and B 5 ), the penalised instructions I  and 12 are copied and moved into 

blocks B4  and B5 . First, instruction I from block B6  is moved into block B5 . 

The instruction is placed at the highest place to reduce the penalty of instruction 

11  in B5 . This is because the type of instruction is not relevant since all the 

instructions involved (Ii , 12 and 13  from B5 , and Ii  from B6 ) are arithmetic 

instructions. Similarly, instruction 11  is copied to the highest position to reduce 

the penalty of instruction 1 5  in block B4 , since all the instructions (15 , 16,  17  and 

'Instructions from B7 are ineligible for code duplication since B3 has a 'side-exit' (block B5 ). 
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Figure 6.5: Code duplication in the PTD Scheduler. 

18 in block B4 ) have different types. 

By the time the second instruction 12 from block B6  has to be copied, the 

penalties would have been updated at the receiver blocks. Instruction 12 is moved 

to the highest position to reduce the penalty in block B 5 . This time, the type of 

instruction is more important since the penalty due to data dependency has been 

reduced previously by distancing I and 13  in block B5  with instruction I from 

B6 . In the basic block B4 , the load instruction is moved before the recently-copied 

instruction I. This is also to distance the memory instructions (17  from B4  and 

12 from B6 ) in the basic block. 

6.3.4 Safety Conditions 

The safety conditions for the global scheduler are an extension of the one for local 

scheduler presented in the previous chapter. The difference rests in the need for 

strictly reducing not only the consecutive and non-consecutive penalties, but also 

instructions have to alternate ones from the different available types. 

A candidate instruction for code motion is allowed to leave the source block 

if it complies with the valid conditions, i.e. it does not have a data dependency 

with any instruction that belongs to basic blocks located in the trajectory of the 
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movement. When the candidate instruction is allowed to move to an equivalent 

basic block, then the first safety condition is to guarantee that the penalty measure 

is reduced in the source block. This is defined by the following equation 

P(s) after < 	P(s) before 	 (6.1) 

The penalty measure after the transformation P(S) after  considers a source 

block without the candidate instruction, a difference with the safety condition for 

local scheduling. If Equation 6.1 holds, then the safety condition is evaluated at 

the destination block. 

EP(r)after < : ii: P(r) before 	 (6.2) 

Similarly, the penalty measure after the transformation on the destination 

block (P(S) after ) considers the candidate instruction as being introduced, whereas 

the penalty measure before code motion does not include it. If Equation 6.2 holds, 

then the code movement is allowed. 

Among the instructions that can be moved, ones with certain registers are not 

considered as candidates for code motion or code duplication, if there is a function 

call in the trajectory of the movement. Instructions that reference registers $29 

and $2 are not allowed either to be copied or moved. Register $29 contains the 

stack pointer, while register $2 is used to pass the static link (return value) when 

there are nested procedure calls [91]. Instructions that refer to the stack, such as 

loads and stores, may modify the value of a memory location through a memory 

address stored in the stack (indirect addressing mode, c.f. Section 5.5.1). The 

memory disambiguator may not be able to detect these references, and thereby 

causing a data dependency violation. The restriction over instructions using 

register $2 is because the data dependencies from standard libraries cannot be 

detected since their code is not annotated after compilation (c.f. Section 7.2.2). 

6.4 Global Optimiser for the Micronet Model 

As mentioned in Section 6.2.5, the type of global optimisations are governed by the 

unit of transformation. Global scheduling in our case is a fine-grain optimisation 

and considers the instruction as the unit of transformation. Other methods such 

as region scheduling use the basic block as the unit for performing coarse-grain 

optimisations. 
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Region transformations have been studied at different levels in the compiler. 

At the intermediate code level, region transformations are usually implemented 

to remove redundancies in the code (c.f. Section 2.1). However, they can also 

be applied to distribute the parallelism in the code [70]. The list of region trans-

formations includes move, copy and merge region. The copy transformation is 

used to remove unconditional branches. It is also known in the literature as 

tail duplication or node splitting. Tail duplication refers to the duplication of a 

node (a basic block or a region) and its edges, when the node has more than 

one predecessor. This transformation was originally applied to break cycles of 

dependencies in order to generate better code for parallel machines. It helps to 

reduce communication and synchronisation costs [50]. Mueller and Whalley use 

code replication to both remove unconditional branches (jmp instructions) [119], 

and to avoid conditional branches as well [120]. The resultant code contains 

simplified control flow that benefits vector and parallel compilers. 

The merge transformation joins two regions (or basic blocks) by removing the 

unconditional branch. This transformation is performed when the regions share 

the same set of control dependencies, i.e. one region is equivalent to another, and 

the former has only one exit and the latter has only one entry. These nodes are 

said to be collapsible if these conditions are met. 

6.4.1 Tail Duplication and Block Merging for the PTD 
Scheduler 

Tail duplication along with block merging represent the same concept of code 

duplication as defined in Section 6.3.3 but with a different granularity. The dif-

ference being that the whole basic block is copied, instead of copying instructions 

on a one-by-one basis. 

Tail duplication and code merging are incorporated into the PTD scheduler 

with the aim of increasing the scope for ILP. The conditions for applying these 

techniques require that after the transformation the size of the merged basic block 

is incremented. In other words, it is required that the basic block that is to be 

duplicated has at least two predecessors, and at least one of them has at most one 

successor (no conditional branches), so that the block can be merged. Addition-

ally, the predecessors' basic blocks should not have to end with a call instruction, 

since this type of unconditional branch avoids block merging. (Function miming 

[39] is an optimising technique to overcome this limitation and merges code from 

the caller and callee functions). 

The result of applying tail duplication and block merging to the control flow 
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Figure 6.6: Global optimisations applied to the CFG from Figure 6.1 (a). 

graph shown in Figure 6.1 (a) is displayed in Figure 6.6. It can be seen that 

basic blocks, B6  and B7 , were duplicated and merged with blocks B4  and B5 , 

respectively, to form two larger basic blocks. One is formed with basic blocks B4 , 

B6  and B7  and another is formed with blocks B 5 , B6 ' ( a copy of B6 ) and B7 ' ( a 

copy of B7 ), respectively. 

Basic blocks B71' ( another copy of B7 ) and B4  cannot be merged with blocks 

B3  and B 2  respectively, because they have two successors (conditional branch). 

For the same reason, B 5  cannot be duplicated because neither of its copies would 

be merged with blocks B2  and 133 due to their conditional branches. 

Another example of a control flow graph including a loop is shown in Figure 6.7. 

Figure 6.7 (a) displays a control flow graph and Figure 6.7 (b) shows its trans-

formations. Tail duplication can be normally applied to basic block B5  even if its 

conditional branch represents a loop. Blocks B5  and B 7  were duplicated for mer-

ging with basic blocks B4  and B6 , respectively. Block B6  cannot be duplicated 

because all its predecessors (B2 , B 5  and B 5 1 ) have conditional branches. 

Tail duplication as well as code duplication offer the advantage of increasing 

the ILP available in the code. However, their indiscriminate use leads to code 

expansion. The code expansion due to tail duplication has an upper bound of 

the order of p2k , where p is the number of if-then statements that appear in the 

region [70]. The conditions for applying tail duplication only if there is an increase 

in the size of the basic block, help to limit the expansion of code. The control 

flow graph examples of Figures 6.6 and 6.7 show that not all the candidates for 

tail duplication are duplicated. 

Although tail duplication and block merging are very similar to code duplica- 
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(a) 	 (b) 

Figure 6.7: (a) Example of a CFG with a loop and (b) its transformation. 

tion, the decisions to tune the merged basic blocks after the transformation differ 

substantially. Since it is a complete basic block being merged with another, it be-

comes more practical to apply local scheduling to the resultant basic block. Once 

tail duplication and block merging have been performed in the region, the data 

dependencies of the modified blocks are updated and local scheduling is applied 

again. 

Tail duplication is performed in a bottom-up order. This represents a natural 

extension to the control flow graph since tail duplication folds its leaves as in a 

tree. 

6.5 Algorithms 

All the global optimisations described in this chapter are applied after local 

scheduling has been performed. The function code-motion in Algorithm 6.1, 

performs code motion and code duplication, whereas function taiLduplication 

in Algorithm 6.2, performs tail duplication and block merging. These functions 

identify the basic blocks that require further optimisations to reduce their pen-

alty measures. They traverse each region and stop at every basic block that 
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has a non-zero penalty measure. The region is traversed in control-flow order in 

the code-motion function, and in reverse control-flow order in the tail-duplication 

function. 

Line 1 in both algorithms sets the starting basic block (block). For code mo-

tion, the starting block is represented by the entry block of the region, while for 

tail duplication it is represented by the exit of the region. The repeat loop con-

tained within lines 2 and 46 in Algorithm 6.1 and lines 2 and 33 in Algorithm 6.2, 

traverse the whole region. 

The penalty measure and the number of equivalent nodes for code motion, or 

the number of predecessors for tail duplication, are computed to know whether 

the basic block requires further penalty reductions and identify the destination 

blocks. This is checked in lines S and 7 in Algorithms 6.1 and 6.2, respectively. 

In function code-motion, a penalised instruction can potentially be moved to 

any of the equivalent basic blocks. Line 7 selects from one of the equivalent basic 

blocks, under the for loop in line 6. Line 8 obtains the basic block identifier (id), 

which is compared against the equivalent block identifier (which_bik) in line 9, to 

ensure that the latter represents one that was previously scheduled, and therefore, 

against the flow of control. The variable equiv_ block holds the equivalent block 

(line 13), and variable node is assigned the entry instruction of the basic block 

(lines 12 and 10 from the algorithms). 

The two inner while loops in both algorithms traverse the basic block in an 

attempt to move any penalised instruction. The first while loop is dedicated 

to consecutive penalties, while the second one is dedicated to non-consecutive 

penalties. 

The function free-for-motion in lines 16 and 31 in the code-motion algorithm, 

searches for data dependencies with respect to node from the current basic block 

(block) to the equivalent basic block (equiv_block). Also, if a function call is 

located within these blocks, then data dependency checking is carried out in that 

function against the registers used by the penalised instruction node. If it is 

a memory instruction, then memory disambiguation is also performed on any 

memory reference located in these basic blocks. The instruction is allowed to be 

moved, if there are no data dependencies (valid condition). 

move-up in lines 17 and 32 of Algorithm 6.1 is the function responsible for 

moving the instruction to the equivalent basic block. In contrast, if there are data 

dependencies and the instruction cannot be moved, then it is evaluated for code 

duplication. This is performed by the function validate- code- d'up in lines 19 and 

34. This function ensures that there are no call functions ending the predecessor 
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Algorithm 6.1 code-motion (region) algorithm. 

block = entry (region) {START FROM THE REGIONS' ENTRY BLOCK.} 

repeat 
measure = PTD_measure (block, first-phase) 
destblocks = eq'uiv (block) {RETURNS THE NUM. EQUIV. BLOCKS.} 

if measure and destblocks then {PENALTY & DESTINATION BLOCKS.} 

for j = 0 to j < dest_blocks and measure do 
which_blk = get_equiv_id (block, j) 
id = get-block-id (block) 

if whichblk <id then {RESTRICT MOVEMENT IN COUNTERFLOW.} 

predi = pred (block, 1) 
pred2 = pred (block, 2) 
node = first-instruction (block) 
equiv_block = equiv (block, j) 

while node NULL and measure > 0 do 
if penalty-consecutive (node) > 0 then {CONSEC. PENALTY.} 

if free-for-motion (node, block, equiv_block) then 
move-up (node, block, equiv_block) {IT IS CODE MOTION.} 

else {IT IS CODE DUPLICATION.} 

if validate_ code- dup (node, block, predi, pred2) then 
move-up (duplicate (node), block, predi) 
move-up (node, block, pred2) 

end if 
end if 

end if 
node = next (node) 

end while 

node = first-instruction (block) 
measure = PTD_measure (block, second-phase) 

while node $ NULL and measure > 0 do 
if penalty-nonconsecutive (node) > 0 then {NON-CONSEC.} 

if free-for-motion (node, block, equiv_block) then 
move-up (node, block, equiv_block) {IT IS CODE MOTION.} 

else {IT IS CODE DUPLICATION.} 

if validate_code_dup (node, block, predi, pred2) then 
move-up (duplicate_inst (node), block, predi) 
move-up (node, block, pred2) 

end if 
end if 

end if 
node = next (node) 

end while 
end if 

end for 
end if 	 142 
block = next (block) 

until block = NULL 



basic blocks. The functions free-for-motion and validate_code_dup also restrict 

any instruction for code motion, if the stack pointer (register $29) is referenced. 

The two function calls move-up in lines 20 and 21, and again in lines 35 and 36, 

represent the duplication of the instruction. A duplicated copy of the instruction 

is moved in the first call, while in the second call the original instruction is moved. 

The variables predl and pred2 hold the predecessors of the current basic block 

(lines 10 and 11 in Algorithm 6.1, and lines 8 and 9 in Algorithm 6.2), where the 

instructions are being destined. 

The main difference between Algorithms 6.1 and 6.2 lies in the validation 

checking for the potential transformations. The function validate_taiL dup in lines 

13 and 24 from Algorithm 6.2, checks that at least the current basic block can 

be merged with one of the predecessors (the predecessor must have only one 

successor and it must not end with a call). The function also checks that the 

predecessors are not empty, and that both the sender and receiver blocks have 

the same static count of loop iterations. The static count of loop iterations is 

maintained by incrementing a variable for every basic block when there is a back 

entry from a loop. 

The function move-up in Algorithm 6.3 is responsible for performing code 

motion, which when called it is assumed that the instruction has to be moved 

with no exceptions. The function then has to decide the best possible position at 

the particular time, for the instruction being moved into the basic block. (This 

search also records the second-best position for possible future considerations.) 

The variable, aux_rzode, is positioned at the last instruction of the destin-

ation basic block (line 1). From this position, the data dependency checking 

is performed in order to know the highest position of the incoming instruction 

(parameter node). The variable, move-node, holds the position of the destination 

node. 

Data dependencies and memory disambiguation are checked in lines 2 and 17, 

and in lines 7 and 29 (Algorithm 6.3), respectively. If there is a data dependency, 

then the instruction is moved to the end of the basic block, otherwise, the can-

didate instruction is checked with the rest of the instructions in the basic block 

(within the while loop in lines 16 and 40). The while loop stops either when a 

data dependency is found or the start of the basic block is detected. 

If there is a data dependency with an instruction that had been previously 

moved as a result of code motion (line 20), then this instruction is moved back 

to its second-best position, only if this is located earlier in the schedule (line 21). 

The idea is to place this instruction as early as possible in the schedule, since it 
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Algorithm 6.2 tail-duplication (region) algorithm. 

block = exit (region) {START FROM THE REGIONS' EXIT BLOCK.} 

repeat 
measure = PTD_measure (block, first-phase) 
if pred (block) = 2 then {RETURNS THE NUM. PRED. BLOCKS.} 

dest_blocks = 1 
end if 

if measure and destblocks then {PENALTY & DESTINATION BLOCKS.} 

predi = pred (block, 1) 
pred2 = pred (block, 2) 
node = first-instruction (block) 

while node 54 NULL and measure> 0 do 
if penalty-consecutive (node) > 0 then {CONSEC. PENALTY.} 

if validate_tail_dup (block, predi, pred2) then 

move-block (duplicate- block (block), predl) 
move-block (block, pred2) 

end if 
end if 

node = next (node) 
end while 

node = first-instruction (block) 
measure = PTD_measure (block, second-phase) 

while node 0 NULL and measure> 0 do 
if penalty-nonconsecutive (node) > 0 then {NON-CONSEC. PEN.} 

if validate_tail_dup (block, predi, pred2) then 

move-block (duplicate- block (block), predi) 
move-block (block, pred2) 

end if 
end if 

node = next (node) 
end while 

end if 

block = prey (block) 
until block = NULL 

144 



is not known in advance how many dependent instructions will be moved later 

on. The actual position is stored at move-node in order to place the incoming 

instruction at the place where the previously moved one was located (line 22). 

If there are no data dependencies, then the global safety conditions (function 

check-global-move in Algorithm 6.4) defined in Section 6.3.4 are applied to the 

instruction referenced by aux_node (line 35). If these conditions hold, a finer 

heuristic (function update- best_position in Algorithm 6.5) is applied in order to 

obtain the best and second-best positions (line 36). 

6.6 Discussion 

The global scheduler presented in this chapter uses well-known optimising tech-

niques such as code motion and code duplication, and tail duplication to improve 

fine-grain parallelism, and tail duplication and block merging to improve coarse-

grain parallelism. However, this differs from other approaches in the way decisions 

are taken based on the notion of penalties which are applied to instructions. 

In the case of code motion, for example, instructions are moved not only to 

reduce the penalties applied to them, but also to remove penalties located in 

the destination blocks. This idea is different from the global scheduler presented 

in [20]. This is basically a global list scheduler, where the ready list consists 

of instructions from a basic block and its equivalent blocks. If there are too 

many ready-instructions, then two heuristics are applied to each instruction to 

help selection. The delay heuristic obtains the maximum cumulative delay from 

any of the paths of the successors to the exit of the basic block; the critical-

path heuristic computes a measure of time required to complete the execution of 

all the successors. The priorities of the global scheduler when code duplication 

is considered [18] also ensure that code expansion is minimised. However, the 

main difference with the PTD scheduler is that the global scheduler performs tail 

duplication to unscheduled code. 

The global scheduler in [107] is also based on the list scheduler and considers 

the critical-path length, the critical resource usage and the register pressure as 

parameters in the heuristic. The critical-path length information is derived from 

local and global components. While the local component takes into account only 

the local distances to the leaves of the DAG, the global component considers the 

cumulative paths from all basic blocks to the exit of the region. Other global 

schedulers such as the trace-based ones also use the list scheduler for the final 

rearrangement. However, the candidate instructions from the ready list are selec- 
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Algorithm 6.3 move-up (node, source-block, dest_block) algorithm. 

aux_node = last- instruction (dest_block) 
if not independent (node, aux_node) then {CHECK FOR DATA DEPEND.} 

id-nodes = 0 
end if 
if indnodes 0 then {CHECK FOR MEMORY DISAMBIGUATION.} 

if is-store (node) and is-memory (aux_node) or 
is-memory (node) and is-store (aux_node) then 

if not disambiguated (node, aux_node) then 
id-nodes = 0 

end if 
end if 

end if 

if id-nodes 0 0 then 
aux_node = prey (aux_node) 

end if 

move-node = aux_node 
while auxnode 0 NULL and indnodes 54 0 do 

if not independent (node, auxnode) then {CHECK FOR DATA DEPEND.} 

id-nodes = 0 
else 

if previously_moved (aux_node) then 
if get_secondpos (aux_node) < get_actualpos (aux_node) then 

move-node = aux_node 
move-ahead (aux_node, secondpos (aux_node)) 

end if 
end if 

end if 
if indnodes 0 0 then {CHECK FOR MEMORY DISAMBIGUATION.} 

if is-store (node) and is-memory (aux_node) or 
is-memory (node) and is-store (aux_node) then 

if not disambiguated (node, auxnode) then 
id-nodes = 0 

end if 
end if 

end if 

if id-nodes 54 0 then 
if check-global-move (node, aux_node) then 

move-node = update-best-position (aux_node) 
end if 

end if 
aux_node = prey (aux_node) 

end while 

move-ahead (node, move-node) 
update-block (source-block) 	
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Algorithm 6.4 check-global-move (node, aux) algorithm. 

consecutive_before_move = 
penalty_data(prev(aux), next(aux), not consec) + 
penalty- data (aux, next(aux), consec) + 
pen alty_data (aux, next (next (node)), not consec) 

consecutive_after_move = 
penalty_data(prev(node), node, not consec) + 
penalty_data(aux, node, consec) + 
penalty_data(aux, next (node), not consec) + 
pen alty_data (node, next (aux), consec) + 
pen alty_data (node, next (next(aux)), not consec) 

nonconsecutive_ before-move = 
penalty_data (prev(prev(aux)), next (aux), 3) + 
penalty_data (prev(aux), next(aux), not consec) + 
penalty_data (prev(aux), next (next (aux)), 3) + 
pen alty_data (aux, next (aux), corzsec) + 
penalty-data (node, next (node), consec) + 
penalty-data (node, next (next (node)), not consec) 

nonconsecutive-after-move = 
penalty_data (prev(prev(aux)), node, 3) + 
penalty_data(prev(aux), node, not consec) + 
penalty_data (prev(aux), next (aux), 3) + 
pen alty_ data (aux, node, consec) + 
penalty_data(node, aux, consec) + 
penalty_data(aux, next (node), corzsec) 

unit_before_move = 
penalty_unit(aux, next (aux)) + 
penalty_unit(prev('node), node) + 
penalty-unit (node, next (node)) 

unit-after-move = 
penalty_unit(aux, node) + 
penalty-unit (node, next (aux)) + 
penalty-unit (prev(node), next (node)) 

if consecutive-after-move < consecutive-before-move or 
nonconsecutive-after-move < nonconsecutive- before-move then 

return 1 {PENALTY MEASURE IS SMALLER AFTER THE MOVEMENT.) 

else 
return 0 {PENALTY MEASURE IS GREATER AFTER THE MOVEMENT.) 

end if 
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Algorithm 6.5 update-best-position (node, aux) algorithm. 

penalties = number-penalties (aux) 
if consecutive-before-move > consecutive_after_move then 

return aux 
else 

if penalties > 1 then 
duff-consecutive = consecutive-before-move - consecutive-after-move 

if duff-consecutive > max-duff-consecutive then 
if duff-consecutive > rnax_diff_consecutive then 

max-duff-consecutive = duff-consecutive 
end if 
return aux 

else 
second-best = aux 

end if 
else 

if penalties > max-penalties then 
diff_non cons ecutive = nonconsecutive-before-move - 

nonconsecutive-after-move 

if penalties > max-penalties then 
max-penalties = penalties 
if diff_nonconsecutive > 0 then 

return aux 
end if 

end if 
end if 

end if 
end if 
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ted from the common path (on-trace) of the program, which may consider several 

basic blocks. 

Tail duplication and block merging are considered as profile-independent op-

timisations. This means that they are not dependent on the data input to the 

programs. Different input data may not only exercise different paths of the pro-

gram, but different frequencies as well. Trace-based techniques make use of this 

to guide the optimisations, but may require compilation when the input data 

changes the frequency of execution. 

There is, however, an observation regarding the frequency of the paths with 

the optimisations discussed in this chapter. If, for example, the path B 1 —B3 —B7 1' 

in the control flow graph in Figure 6.6 is executed ninety percent of the time, then 

the optimisations performed in blocks B4 , B5 , B6  and B7  will only benefit ten 

percent of the time the region is executed. For the control flow graph of Figure 6.7, 

it may appear that with the presence of a loop, the likelihood of the frequency 

execution of the basic blocks contained within the loop could be greater. Thus, 

the optimisations performed to blocks B4 , B5 , B6  and B7  may also have a greater 

impact on the program execution. 

The global optimisations presented in this chapter are purely static. The 

performance improvement of these techniques is subject to the actual behaviour 

of programs, defined by their input data. 

6.7 Summary 

Compiler optimisations have to be selected depending on the degree of parallelism 

supported by the architecture. Aggressive optimisation techniques such as trace-

based scheduling are oriented to VLIW architectures in which high levels of ILP 

can be exploited and data hazard detection is not supported. With the aid 

of profile information these techniques identify the most common paths during 

execution. Instructions are copied into the on-trace path in order to increase 

the parallelism exploitable by the local scheduler. Compensation code is often 

required to preserve the semantics of the program in the not-so-frequent paths. 

The performance gain in the on-trace path outweighs the degradation incurred 

in the off-trace path. 

Micronet-based architectures require a fast instruction issue rate in order to 

maintain resource utilisation in the datapath. Global optimisation techniques 

that operate without speculation and without an excessive use of compensation 

code were investigated for the micronet architecture. 
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Chapter 5 described a novel method for performing local scheduling. The PTD 

scheduler assigns penalties to instructions that stall the issue unit either due to 

true data dependencies or resource contentions. The local scheduler reorganises 

the order of instructions in order to minimise the number of penalties, with the 

aim of minimising the effect of the stalls on program execution. The overall 

effect of the local scheduler is that the individual local penalty measures are 

reduced. These measures may not be completely reduced either because of lack 

of parallelism in the program or due to overlapping penalties in the code. 

In this chapter, the local scheduler has been extended to allow movement of 

instructions beyond basic blocks. After local scheduling, the task of the global 

scheduler is to move the penalised instructions left in the basic block to other basic 

blocks within the same region. Instead of looking for independent instructions to 

reduce a penalty as in the local scheduler, the penalised instruction becomes a 

candidate for global motion. This decision reduces the scope of the search space. 

Within the global scheduler, instructions can be moved to basic blocks that 

have the same control flow characteristics called equivalent basic blocks, as long 

as their data dependencies are respected. If they cannot be moved to any of the 

equivalent basic blocks, then the instructions are duplicated and moved to the 

parent basic blocks. This order in the scheduling process attempts to minimise 

the number of instances of code duplication. 

Code motion and code duplication provide a fine granularity of optimisation 

since instructions are moved on an individual basis. Tail duplication, in conjunc-

tion with block merging on the other hand, represents a generalisation of code 

duplication, where coarse-grain parallelism can be exploited. This optimisation 

requires the local PTD scheduler to be applied after the transformation, since 

two groups of instructions are merged. 

The optimisations described in this chapter do not require the use of profile 

information, which makes the optimised code independent of the input. 

The next chapter describes the experimental framework for evaluating the 

local and global optimisations of the PTD scheduler. It includes a description 

of the compilation process and the benchmarks selected for the evaluation. The 

chapter draws comparisons with two well-known schedulers for both local and 

global scheduling, on the basis of issue stall reduction and performance execution 

over a set of benchmarks. 
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Chapter 7 

Experimental Results 

7.1 Introduction 

The PTD scheduler performs local and global scheduling based on a static meas-

ure, which corresponds to the potential stall imposed on the issue unit by data 

and resource dependencies. The local scheduler attempts to minimise the stalls 

within basic blocks. The global scheduler reduces the penalties further after local 

scheduling, by relocating the penalised instructions to other basic blocks within 

the same region. 

This chapter presents the experimental framework for investigating the effect-

iveness of both local and global optimisations using the PTD scheduler. Compar-

isons were carried out between the PTD scheduler and two well-known methods 

- the list scheduler [64] and a balanced scheduler [92]. 

The compilation framework for the work in this thesis is based on the SUIF 

compiler [155]. It provides a flexible implementation environment for schedulers 

aimed at micronet targets. The schedulers were exercised by benchmarks pro-

grams derived mainly from the SPEC95 [152] benchmark suite. 

The performance results presented in this chapter is divided into two sections: 

results based on the local optimisations as described in Chapter 5, such as com-

parisons of compilation times, reductions in issue unit stalls and execution times; 

and, those based on global optimisations, as described in Chapter 6. 

7.2 Evaluation Framework 

There exist a handful of compiler environments that provide the necessary in-

frastructure for performing custom transformations and analysis. Trimaran [169] 

is one which is oriented towards ILP optimisations. Trimaran is the product 

of the IMPACT group, a consortium consisting of the University of Illinois, the 
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CAR group at HP Research Laboratory and the ReaCT-ILP group at New York 

University. SCI Pro64 [147] is a suite of optimising compiler development tools 

resulting from a joint project between the compiler group at SOT and the CAPSL 

compiler team at the University of Delaware. The SUIF compiler [155] is yet an-

other such compiler framework from Stanford University. Although the Trimaran 

framework suits our purposes, at the time of starting this research, SUIF was the 

only framework available. 

7.2.1 SUIF Compiler 

The SUIF (Stanford University Intermediate Format) is a compiler development 

framework from Stanford University [176]. It provides the necessary infrastruc-

ture to perform optimisations ranging from high-level transformations to dataflow 

optimisations. These transformations can be performed progressively and inter-

changeably over multiple passes, over structures represented as abstract syntax 

trees (AST) [156]. The ASTs can be converted into a series of sequential lists of 

instructions oriented for the back-end of the SUIF compiler, which supports code 

generation, local scheduling and register allocation. 

7.2.2 The Compilation Process 

During compilation a number of intermediate code optimisations are performed 

ahead of the code generation phase, which are part of the built-in optimisations 

included in the SUIF compiler, such as no_struct_copy, no_sub_vars, no_calL expr, 

no-index-spill, copy-prop (copy propagation) and ivar (induction variable detec-

tion) [154]. 

During the code generation phase, register allocation is called with the follow-

ing options: infinite temporary registers and finite saved registers. The temporary 

registers represent the results that are local to a procedure call that have a single 

definition and are used within the same region. The saved registers represent 

ones that are preserved across procedure calls [91]. With infinite number of tem-

porary registers, a new register is allocated each time a result is generated. This 

configuration is used in order to minimise the WAR dependencies introduced by 

reusing the registers (the task of the register allocator), an effect that reduces 

considerably the ILP. 

The results presented in [8] (Appendix A) were obtained from compilation with 

both temporary and saved register models as finite, i.e. register allocation was 

performed before local scheduling. As a result, the ILP reported was noticeable 

limited by the WAR dependencies; the overall ILP gain of performing instruction 
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scheduling after register allocation was hindered by the systematic reuse of the 

registers from the latter. This is the main reason as to why setting an infinite 

number of registers in order to evaluate the scheduling capabilities of the PTD 

scheduler can be considered as a valid assumption. The order in which register 

allocation and instruction scheduling are performed affects the schedulers being 

evaluated in a similar way since the ILP within basic blocks stays constant, and 

therefore does not represent an advantage for the PTD scheduler. 

All the scheduling results presented in this chapter are obtained with an in-

finite number of temporary registers being assumed. 

7.2.3 Other Schedulers for Comparison 

7.2.3.1 The Gibbons and Muchnick (GM) Scheduler 

This is a well-known example of a list scheduling algorithm proposed originally for 

scheduling instructions in pipelined architectures [64]. The ready instructions in 

this scheduler are prioritised on the basis that the candidate instruction will not 

cause an interlock with the previous one, and that given a choice, the candidate 

instruction is more likely to interlock with instructions after it. 

7.2.3.2 The Balanced Scheduler 

The second scheduler for comparison is the Balanced scheduler [92], which was 

originally devised to take account of unpredictable memory access latencies. The 

idea is to compute weights for load instructions based on the number of available 

independent instructions. The instructions are scheduled, as in a traditional list 

scheduler, with independent instructions being distributed behind loads to buffer 

against unpredictable memory accesses. This idea is generalised to micronet-

based architectures in which all the instructions have unpredictable latencies. 

The priority for ready instructions is based on a weighted sum of values derived 

from heuristics tailored to the micronet architecture. These include whether the 

instruction uses the same resources as the previous scheduled one, the number of 

immediate successors of the instruction and the length of the longest path from 

the instruction to the leaves of the DAG. The heuristics also include the number 

of source registers which are freed should the instruction be scheduled, which 

effectively takes account of register pressure. 

During the code generation phase, the local scheduler as part of the SUIF 

compiler was not used since it is tailored towards synchronous MIPS processors. 

Furthermore, the GM scheduler represents an equivalent implementation of a 
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list scheduler and has been extended to optimise instructions in micronet-based 

architectures. 

7.2.4 Instruction-level Simulator for the Micronet 
Architecture 

The simulator for the micronet architecture, as described in Section 4.3.6, is an 

event-driven stochastic simulator [97] that reads and executes assembly instruc-

tions generated from the SUIF compiler. Each instruction is associated with a 

handful of events that emulate the necessary stages in the datapath for its ex-

ecution. The events are created dynamically and their latency depend on the 

type of instruction and on resource contentions at run-time. The events from 

neighbouring stages communicate with each other asynchronously. 

A configuration file enables the simulator to emulate a number of stages for 

each group of instructions, e.g. arithmetic, logical or memory. The simulator 

models a scalar architecture with a single issue unit which issues instructions 

in-order as soon as the instructions' operands and resources become available. 

When instructions are issued, they progress at their own pace. This allows for 

instructions to be overtaken, and since the write-back stage is not reordered, they 

can commit their results out-of-order. 

7.2.5 Evaluation Process 

Figure 7.1 shows the overall view of the evaluation process. Firstly, C programs 

are compiled using SUIF; secondly, a loader program converts the resulting as-

sembly code so that the global memory references and labels fit into a global 

referencing scheme, and lastly, this output is fed into the instruction-level sim-

ulator of the micronet architecture [97] for evaluation. This path is considered 

to be the base case since the code is not scheduled after code generation. In 

a different path, the output from SUIF is fed into a scheduling phase, which is 

performed using one of the following: GM, Balanced or the PTD scheduler. The 

scheduled output is loaded for simulation, as before. 

The output of the simulator provides comprehensive information about the 

execution of the instructions, which includes the number of instructions executed, 

the total time of the simulation, the stall time of the issue unit, the values of both 

the registers and memory, and the time spent in each resource. 

The set of benchmarks were each scheduled by the three schedulers. The 

benchmarks were each simulated five times and their makespans were averaged. 

All the comparisons presented in this chapter were normalised against the base 

case. 	
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Figure 7.1: Flow of the evaluation process. 

The simulations were performed on architectures consisting of one memory 

unit, one logical unit, one floating point unit and one, two, three and four arith-

metic units (referred to as 1 AU, 2 AU )  3 AU and 4 AU, respectively). The 

architectures also scale the number of register read buses to support the paral-

lelism introduced by increasing the number of functional units. The latencies for 

the functional units are the same shown in Table 4.1. The cache model used for 

the memory unit describes a bimodal distribution, i.e. a cache hit:miss ratio of 

2:1 and a latency hit:miss ratio of 1:2. 

7.3 Benchmarks 

The benchmarks were a basket of programs drawn from the SPEC95 suite [152], 

including compress, ii, go and m88k, from the livermore loops [49], and mis-

cellaneous ones, such as integer matrix multiplication intmm, puzzle, and fract 

which simulates a variation of the Mandelbrot fractal set'. Table 7.1 gives some 

basic characteristics of the benchmarks, such as the numbers of MIPS instructions 

executed, functions and the basic blocks generated by the compiler. 

The SPEC95 benchmarks were modified to execute the relevant subset of their 

full specification. For example, the compress benchmark would normally com-

press and decompress twenty-five times, a random set of data of 1.4 million char-

acters. The benchmark was modified to operate only three times instead, over 

a set of fourteen thousand characters. The go benchmark, which is based upon 

'The equation was taken from the hydra fractal [65], and its graphic representation can be 
seen in [66]. 
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Benchmark Functions Basic Blocks Instructions Initialisation phase 

intmni 6 11 196,074 12.000% 
livermore 16 48 1 1 601,672 84.504% 
fract 70 505 3,392 1 216 2.421 % 
ii 386 2,228 15,207,508 2.007% 

puzzle 20 137 16,055,217 0.509% 

compress 18 128 16 1 269,122 20.847% 

go 396 8,880 18,242,718 7.906% 

m88k 259 3 1 841 34,323,842 7.504% 

Table 7.1: Benchmark characteristics. 

the game, Many faces of Go, was modified to reduce the size of the board from 

51 to 4. The m88k benchmark, a simulator for the M88100 Motorola micropro-

cessor, was modified to reduce the total number of M88100 instructions to ten 

thousand from around 13.6 million. Finally, the ii benchmark is a lisp interpreter 

and the workload used was a lisp implementation of the queens problem. 

The main reason for these modifications was to shorten the simulation time. 

The simulator is data-driven (as opposed to trace-driven), and its speed is consid-

erably slower, since all the instructions are being executed. However, truncating 

the length of the simulation can be misleading as the execution times may be 

dominated by the initialisation sections of the programs. Initialisation sections 

could either be very regular, offering scope for more parallelism, or they could 

have extensive I/O operations, resulting in a much slower pattern of execution. 

The last column of Table 7.1 shows the percentage of instructions dedicated to 

initialisation phase for each benchmark. These values have been gathered after 

simulating all the programs exclusively with their initialisation functions enabled. 

Only the initialisation section of the livemore benchmark consumes a significant 

percentage of the program. The consideration to reduce the total number of in-

structions executed in the SPEC95 benchmarks was chosen carefully to maintain 

low initialisation percentages. 

Further modifications to the benchmarks were required to remove all instances 

of dynamic allocation of memory (with the exception of the go and compress 

benchmarks which do not allocate any variables dynamically). All the variables 

that were normally allocated dynamically were redefined to be static, removing 
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Benchmark Arithmetic Logic Memory Floating Branch 

intmm 70.11% 5.13% 20.04% 0.00% 4.72% 
livermore 73.75% 6.60% 13.35% 0.00% 6.30% 
fract 26.40% 8.22% 19.64% 42.85% 2.89% 
ii 21.50% 23.30% 41.21% 0.05% 13.94% 
puzzle 52.08% 22.12% 11.43% 0.00% 14.37% 
compress 38.52% 26.64% 24.56% 3.10% 7.18% 
go 46.29% 20.76% 18.87% 0.00% 14.08% 

m88k 36.07% 24.62% 27.86% 0.00% 11.45% 

Average 45.59% 17.17% 22.12% 5.75% 9.37% 

Table 7.2: Distribution of types of instructions in the benchmarks. 

the overhead of a dynamic memory manager and simplifying the implementation 

of the simulator. 

Another minor modification was to include the source code from standard lib-

raries (stdlib, stdio, string, setjmp, stdarg and varargs) in the benchmark 

programs before compilation. Normally, this code is only added during the link-

ing process. However, in SUIF even with the 'static compilation' flags enabled, 

the code derived from the standard libraries could not be generated. 

The outputs from the benchmarks when compiled using SUIF and simulated 

on the MAP simulator, were compared to the outputs from the same benchmarks 

when compiled using cc under Unix; the outputs were corroborated to confirm 

correct compilation and execution. 

The distribution of the instructions types for the benchmarks is listed in 

Table 7.2. Arithmetic instructions dominated followed by memory instructions. 

Some of the benchmarks required floating-point instructions; for instance, the 

compress benchmark uses them for the random selection of the input data, and 

the ii benchmark uses a few for comparisons. The fract benchmark cannot 

be considered to be a truly integer benchmark as a major proportion of its in-

structions were floating-point ones; the core body of the benchmark performs 

floating-point operations over complex numbers. 

The benchmarks can be divided into two types: those dominated by the loop 

sections, e.g. the intmm, livermore and fract benchmarks, and others, which 

are dominated by frequent changes in the control flow, e.g. puzzle, go and li 

benchmarks. 
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Benchmark Total lines GM. Time Bal. Time PTD Time Percen. 

intmin 151 0.0836 0.0839 0.0680 22.94% 

livermore 1915 3.7947 3.8388 2.7817 36.42% 

fract 5336 3.5940 3.5588 2.1920 62.35% 

ii 16832 8.7857 8.1169 4.4349 83.02%. 

puzzle 936 0.7781 0.6369 0.4711 35.19% 

compress 1236 0.9757 0.7300 0.5494 32.87% 

go 83838 65.2829 60.1321 44.0446 36.53% 

m88k 34089 22.0481 20.6159 12.6411 63.09% 

Table 7.3: Average benchmark compilation times (in seconds). 

Benchmark GM. Time Bal. Time PTD Time 

intmni 0.00013 0.00046 0.01183 

livermore 0.06702 0.03591 0.11787 

fract 0.03355 0.01517 0.16728 

ii 0.10623 0.06615 0.09527 

puzzle 0.16317 0.00607 0.01297 

compress 0.24775 0.00344 0.02311 

go 5.96753 2.90291 0.18597 

m88k 0.63226 0.06168 0.10197 

Table 7.4: Standard deviations of the benchmarks' compilation times. 

7.4 Experimental Results 

7.4.1 Local Optimisations 

7.4.1.1 Complexity 

The PTD scheduler has the characteristic of reducing the number of iterations as 

the penalties decrease (c.f. Section 5.6). This compares favourably with tradi-

tional techniques in which the number of iterations is constant and proportional 

to the number of instructions. 

The compilation of the benchmarks were timed for comparison. Table 7.3 lists 

the average of five compilation times (in seconds) of the scheduling sections in 

the three schedulers. (This was obtained using the gethrtime function from the 

time. h standard library). The last column represents the percentage improve- 
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ment of the PTD scheduler against the faster of the other two schedulers. It is 

observed that the compilation times of PTD are on average 39% better than the 

faster of the other two schedulers, with notable improvement of more than 60% 

for the fract and m88k benchmarks, and reaching a peak of 83% for the ii 

benchmark. Table 7.4 lists the standard deviation of the compilation times for 

the three schedulers. The figures shown in this table reveal that the compilation 

times do not have a considerable range of variation. 

7.4.1.2 Static Memory Disambiguation 

A static memory disambiguation scheme was proposed in Section 5.5.1 in order 

to reduce unnecessary data dependencies due to memory instructions, and the 

statistics from this scheme are shown in Table 7.5. The memory references shown 

in the second column represent the number of memory instructions that are liable 

for disambiguation, i.e. after discarding all the comparisons between loads and 

any other memory references that already have a data dependency. The last three 

columns show the results of applying the memory disambiguation scheme within 

basic blocks. The last column shows that most of the memory instructions are 

disambiguated. In fact, on average, only around 8% of the memory references do 

have a data dependency (third column). The table also shows that the propor-

tion of memory references that cannot be disambiguated due to multiple use of 

registers in the address expressions is quite low, at around 2% (fourth column). 

The memory disambiguation mechanism can potentially improve the paral-

lelism by not only reducing unnecessary dependencies being applied to memory 

operations, but also by removing all the data dependencies that are introduced 

to their successors. In the absence of memory disambiguation, memory instruc-

tions are by default, assumed to be dependent. Consequently, other instructions 

that are dependent upon them, also become dependent. By analysing the ad-

dresses, the memory disambiguation removes a considerable proportion of these 

dependencies which are propagated by references. 

The increase in parallelism achieved by applying the memory disambiguation 

scheme is discussed in Section 7.4.1.4. 

7.4.1.3 Subgraphs 

The idea of subgraphs was introduced in Section 5.5.2. Recall that partitioning a 

basic block into a group of subgraphs aims to guide the selection of independent 

instructions when reducing the penalty. The practice of selecting instructions 
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Benchmark 
Memory 

references 
Data 

dependency 
Cannot be 

disambiguated 
Successful 

disambiguation 

intmm 21 14.29% 0.00% 85.71% 

livermore 1,366 3.95% 5.93% 90.12% 

fract 2 1 998 8.97% 0.47% 90.56% 

ii 9,704 3.70% 1.44% 94.86% 

puzzle 156 1.92% 0.00% 98.08% 

compress 614 23-61% 0.33% 76.06% 

go 22,911 3.32% 2.09% 94.59% 

m88k 16,052 4.73% 2.40% 92.87% 

Average 6,727 8.06% 1.58% 90.36% 

Table 7.5: Static memory disambiguation statistics. 

within the same subgraph may lead to overlapping penalties. The movement of 

the closest independent instruction tends to mix the data dependencies in such a 

way that no further reductions can be made. 

The PTD scheduler is now forced to find an independent instruction from 

another subgraph to reduce the penalty. This reduces the number of instances of 

overlapping penalties. However, the decision to either choose, or not to, an inde-

pendent instruction from one subgraph over another, leads to different scheduling 

paths. A scheduling path refers to the steps of progressively improving a schedule 

until its minimum penalty measure is reached. Although the scheduler is con-

ceived to obtain a schedule with the minimum penalty measure, but due to these 

decisions, one scheduling path can result in a considerably better schedule than 

another. 

The evaluation of this heuristic is based on performance simulations which is 

presented in the next section. 

7.4.1.4 Performance Comparison due to Memory Disambiguation 
and Subgraphs 

The performance comparison of the memory disambiguation scheme and the idea 

of subgraphs as applied to the PTD scheduler is displayed in Figures 7.2 to 7.5, 

for one to four AU configurations, for the eight benchmarks. 

The graphs show the performance improvement in execution time of the PTD 

scheduler when unaided (first column), with either one of subgraphs or memory 
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disambiguation schemes being applied (second and third columns, respectively), 

and finally, with both schemes (fourth column). The results show that, in general, 

applying the suhgraphs heuristic and memory disambiguation results in better 

performances for the four configurations. 

The figures show that memory disambiguation helps to improve the perform-

ance of the PTD scheduler by reducing dependencies, and exposing parallelism. 

The most noticeable improvements are in the cases of the compress, fract and 

ii benchmarks. On average, this scheme improves by 3% to 4% when compared 

to the unaided cases. 

However, there are a few examples in which the combined use of both the 

schemes does not result in the best performance. For example, the livermore 

benchmark performs better (except for the 1 AU case) when the subgraphs scheme 

alone is applied. This benchmark, in particular, spends a considerable amount of 

time in the initialisation phase, as shown in Table 7.1. This section features three 

basic blocks with similar characteristics, in which three arrays are initialised. 

The DAG of one of these basic blocks is depicted with (Figure 7.7) and without 

(Figure 7.6) memory disambiguation. 

The basic block has three store operations that initialise the arrays. In the 

absence of memory disambiguation, the memory operations, which are marked 

in the figures, have to be considered to be dependent, as shown in Figure 7.6. 

Conversely, when aided by the scheme, they are found to be independent 

referring to three different arrays, x, y and z, as shown in Figure 7.7. 

The reason why the PTD scheduler performs better when not applying memory 

disambiguation, lies in its critical path. In Figure 7.6, the critical path is 1, - 13 — 

15  - 110 - 115 - 119, which is imposed by the dependencies between the memory 

instructions. 

Once the dependencies between the stores are released thanks to memory 

disambiguation, it is less clear which is the critical path. Figure 7.7 shows that 

there are three candidates in the DAG: I - 13  - 15 - 119, 16 - I - 11 0 - 119, and 

Ill - 113 - 115 - 119. 

The schedule, when generated with the memory disambiguation enabled, still 

has an untouched non-consecutive penalty from 1 3  (addu $398,$399,$400) to 15  

in one of the critical paths (as can be seen in Figure 7.8 (a)). In contrast, although 

there are two penalties which are untouched in the schedule generated unaided 

by memory disambiguation, as shown in Figure 7.8 (b), these non-consecutive 

penalties are not located in any of the critical paths mentioned earlier. 
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Figure 7.2: Influence of suhgraphs and memory disambiguation on the PTD 
scheduler (1 AU) in terms of percentage improvement in the execution time. 
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Figure 7.3: Influence of subgraphs and memory disambiguation on the PTD 
scheduler (2 AU) in terms of percentage improvement in the execution time. 

162 



60% 	 - 	- 	-- 

50% 	 - 	-- - 

40% 

30% - - 	 - 	 - 

OUnaided 

0 Both schemes 

:    	

° jo 

Figure 7.4: Influence of subgraphs and memory disambiguation on the PTD 
scheduler (3 AU) in terms of percentage improvement in the execution time. 
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Figure 7.5: Influence of subgraphs and memory disambiguation on the PTD 
scheduler (4 AU) in terms of percentage improvement in the execution time. 

163 



- - 

-  
I 	1 -1_

11 

 

	

_
I I_n_$O_45I4_  I7II

P  
3y 1_61_61_1  lII14$4$64  	 14IH 	I 	I7lW$414l1I15$6C$6l 	 2IiS3 	 _$  

31 	SM S30 SM I 
	

II Oft $4Q$1O 
	

addW$I $6 I I I 131 M SISIS4$6 $157 

No  

101 	$83S#020 

3108.51 

III 6 $113 $41411 

Figure 7.6: DAG from livermore without memory disambiguation. 

mh $408514 	 ___ 

-- 

3 1 addu $30853085408 

511w $7$$40 

I llul1  $4 U 4  11 2 1 W$4O7 z1 	14 1 85081  

4151511 1 1 13I41&$408$408$4$7 

1511w $0851080 I 	I 181155413541458 

17111 $414 l 

[151 	5413128.41$ 

Figure 7.7: DAG from livermore with memory disambiguation. 

Given that the DAG in Figure 7.7 has several critical paths, more penalties 

need to be removed. Any priority scheme applied to the penalties would give 

preference to one critical path over another. On the other hand, the DAG in 

Figure 7.6 has only one critical path. The increase of data dependencies upon 

the memory instructions does seem to constraint the movement of instructions. 

The evidence is that more penalties are left unremoved. However, they are less 

costly since they are not on the critical path. 

The results in Figures 7.2 to 7.5 also show that the fract benchmark per- 

164 



L1.init: 
	 L1. mit: 
lai $403,y muii $400,$8,4 
ii $76,1 lai $399,x 
muli $408,$8,4 ii $76,1 
lal $407,z muli $404,$8,4 
ii $83,1 lai 
mull $404,$8,4 addu $398,$399,$400 
lai $399,x ii $83,1 
addu $406,$408,$407 mull $408,$8,4 
ii $90,1 sw $76,$398,0 
mull $400,$8,4 addu $402,$404,$403 
addu $402,$404,$403 lai $407,z 
addui $8,$8,1 addui $8,$8,1 
ii $414,1000 ii $414,1000 
SW $90,$406,0 addu $406,$408,$407 
addu $398,$399,$400 	1 ii $90,1 
SW $83,$402,0 SW $83,$402,0 
sit $413,$414,$8 	2 sit $413,$414,$8 
SW $76,$398,0 SW $90,$406,0 
bf $413, L1.lnit bf $413, Li.init 

(a) (b) 

Figure 7.8: Schedule for livermore generated with memory disambiguation (a), 
and, without (b). 

forms better when the subgraphs heuristic is not applied to the PTD scheduler. 

To explain this case, a basic block from the core of the fract benchmark was 

analysed. The DAG, which is displayed in Figure 7.9, shows that the basic block 

is dominated by memory instructions. The marked instructions in the figure show 

the main subgraph. 

As the scheduler does not allow for memory instructions to be moved to re-

duce penalties, it is more difficult to find a good candidate when the majority 

of instructions are of the aforementioned type. Moreover, the subgraph intro-

duces more constraints when searching for a candidate, which further limits the 

possibilities for reduction. 

Figure 7.10 (a) shows the code produced by the PTD scheduler when aided 

by the subgraphs heuristic. The code has two non-consecutive penalties left 

unreduced (18 and as opposed to one (18), in the code produced unaided by 

subgraphs (Figure 7.10 (b)). 

1 

1 
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Figure 7.9: DAG of the fract benchmark with subgraphs being applied. 

These examples show that a lower penalty measure with equally distanced 

penalties do not necessarily produce a better schedule, and hence a shorter stall 

in the issue unit. Furthermore, since these basic blocks are executed considerably 

more often than the rest of the program, the effects of the penalties are magnified, 

and hence, the program execution time is lengthened. 

7.4.1.5 Issue Stall 

The central idea in the PTD scheduler is to minimise the instruction issue stall and 

thereby maximise the issue rate. The penalties in a schedule relate to the amount 

of stall in the issue unit due to data dependencies and resource contentions. 

Tables 7.6, 7.7, 7.8 and 7.9, which correspond to 1 AU, 2 AU, 3 AU and 

4 AU configurations respectively, show the reduction of time spent on issue stalls 

achieved by the three schedulers compared to the base case, i.e. the unscheduled 

code. They represent the percentage improvement with respect to the unsched-

uled code simulated with one, two, three and four arithmetic units. 

It can be observed that the PTD scheduler outperforms the other two sched-

ulers for the 1 AU and 2 AU configurations, and is competitive in a majority of 

the cases, for the 3 AU and 4 AU configurations. 
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L1.hydra: L1.hydra: 
subui $29,$29,72 subui $29,$29,72 
1.di $151,constant l.di $152,constant+8 
sw $4,$29,72 1.di. $151,constant 
1w $8,$29,72 sw $4,$29,72 
sw $16,$29,16 1w $8,$29,72 
sw $31,$29,20 Sw $16,$29,16 
l.di $152,constant+8 l.d $149,$8,0 
l.d $149,$8,0 1 	l.d $150,$8,8 
1.d $150,$8,8 1 	sw $31,$29,20 
ii $16,1 s.d $149,$29,24 
s.d $149,$29,24 s.d $151,$29,40 
s.d $150,$29,32 s.d $150,$29,32 
s.d $151,$29,40 ii $16,1 
s.d $152,$29,48 s.d $152,$29,48 

(a) (b) 

Figure 7.10: Schedule generated with (a), and, without subgraphs (b), for a 
portion of the tract benchmark. 

The effect of overlapping penalties in the PTD scheduler is demonstrated by 

lower improvement in the percentage reduction of stalls, as the architecture is 

scaled. It can be seen that in some cases, such as puzzle, compress and go, the 

reduction of issue stalls cannot achieve the same performance figures as the other 

schedulers. 

Figures 7.11 to 7.14 expand the results from the aforementioned tables and 

show the percentage improvement in the issue stall when broken down by its 

causes. These causes are divided into ones due to general data dependencies 

(Data), data dependencies due to a branch instruction (Branch), resource con-

tention of the read buses (Bus) and resource contention due to a functional unit 

(Rsc). 

The figures show that the three schedulers are successful in reducing the issue 

stalls due to data dependencies (Data and Branch), - the bars always lie in the 

positive half of the axis. This reflects that unscheduled code frequently stalls the 

issue unit due to data dependencies, where an instruction consumes the result 

from a previous one immediately. 
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Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 26.08% 22.17% 33.38% 
livermore 24.48% 28.68% 34.27% 

fract 28.47% 34.41% 39.40% 

ii 8.55% 9.73% 10.67% 

puzzle 6.39% 3.65% 7.07% 
compress 24.06% 25.35% 30.12% 

go 11.46% 11.60% 17.54% 

m88k 14.54% 15.17% 19.35% 

Average 18.00% 18.85% 23.98% 

Geo. Mean 15.85% 15.58% 20.79% 

Table 7.6: Percentage reduction in the issue stall by the schedulers (1 AU). 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 59.00% 50.45% 63.88% 
livermore 67.23% 57.57% 77.23% 

fract 31.61% 37.13% 40.32% 

ii 7.82% 8.59% 8.97% 

puzzle 8.12% 2.15% 6.76% 
compress 35.40% 36.51% 35.70% 

go 13.75% 14.39% 14.13% 

m88k 19.36% 20.03% 21.47% 

Average 30.29% 28.35% 33.56% 

Geo. Mean 22.88% 19.51% 24.52% 

Table 7.7: Percentage reduction in the issue stall by the schedulers (2 AU). 

As the code is optimised, the issue unit stalls shift from data dependencies 

to resource contentions (Bus and Rsc), because the functional units and their 

buses become busier. This is reflected in the graphs by their negative effect on 

the issue stalls, when compared to the base case. In Figure 7.11 the stall due to 

buses is still considerable, although the overall improvement is positive. As the 

architecture scales (Figures 7.12, 7.13 and 7.14) the stalls due to bus contentions 

become less important; in fact, the simulations with the 4 AU configuration in 

Figure 7.14 show that these stalls are practically negligible. 
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Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 66.63% 58.03% 63.24% 

livermore 102.74% 91.08% 100.84% 

fract 32.01% 37.90% 41.65% 

ii 7.76% 8.41% 8.70% 

puzzle 3.90% 2.55% 3.73% 

compress 37.18% 38.30% 35.61% 

go 14.27% 14.85% 13.54% 

m88k 19.41% 20.20% 20.15% 

Average 35.49% 33.91% 35.93% 

Geo. Mean 22.61% 21.71% 23.19% 

Table 7.8: Percentage reduction in the issue stall by the schedulers (3 AU). 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 68.06% 58.90% 62.21% 

livermore 113.46% 101.36% 107.05% 

fract 32.02% 37.91% 41.05% 

ii 7.71% 8.40% 8.69% 

puzzle 3.87% 2.53% 3.73% 

compress 37.31% 38.47% 35.60% 

go 14.38% 14.88% 13.70% 

m88k 19.28% 20.05% 20.09% 

Average 37.01% 35.31% 36.52% 

Geo. Mean 22.93% 22.01% 23.30% 

Table 7.9: Percentage reduction in the issue stall by the schedulers (4 AU). 

• The stalls due to functional units contentions (Rsc) are also reduced as the 

architecture scales; however, their reduction is not as clear cut as bus contentions. 

This is because the scaling is confined only to arithmetic functional units. Bench-

marks with more memory instructions such as the li cannot take advantage of 

the larger amount of parallelism in the architecture. The fract benchmark has 

the same limitation, since it is dominated by floating point instructions (as shown 

in Table 7.2). When the fract benchmark was simulated with four floating point 

units, the average reduction in the issue stalls due to resource contentions went 

down from -17.91% (one FPU) to -9.80% (four FPU), in the case of the PTD 

scheduler. 
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Conf. Scheduler Data Branch Bus Rsc. Cumul. 

GM. 37.33% 2.56% -3.13% -18.76% 18.00% 

1 AU Bal. 34.32% 2.49% -2.80% -15.16% 18.85% 

PTD 41.43% 3.46% -8.61% -12.30% 23.98% 

GM. 40.68% 3.09% 4.99% -18.47% 30.29% 

2 AU Bal. 35.22% 3.10% 4.94% -14.91% 28.35% 

PTD 41.29% 2.52% 4.00% -14.25% 33.56% 

GM. 43.14% 3.70% 1.39% -12.74% 35.49% 

3 AU Bal. 38.97% 3.51% 1.42% -9.99% 33.91% 

PTD 39.94% 2.87% 1.48% -8.36% 35.93% 

GM. 43.62% 3.99% -0.08% -10.52% 37.01% 

4 AU Bal. 39.74% 3.71% -0.07% -8.07% 35.31% 

PTD 39.60% 3.14% -0.17% -6.05% 36.52% 

Table 7.10: Average issue stall improvements for the four configurations. 

The livermore benchmark, on the other hand, is the benchmark with the 

highest number of arithmetic instructions. The large negative percentages for 

the three schedulers shown in Figure 7.14 represents scope for further improve-

ment. In fact, when the benchmark was simulated with an additional arithmetic 

functional unit, the percentage of issue stall is reduced from -11.22% (with four 

arithmetic units) to _10.18%2,  in the case of the PTD scheduler. 

A distinctive characteristic of the PTD scheduler is that it does not reduce the 

issue stall as much by data dependencies compared to the other two schedulers, 

but it reduces the issue stalls due to resource contentions significantly more than 

the two. This pattern can be seen clearly in Figure 7.12 with the compress 

benchmark. Both the GM scheduler and the Balanced scheduler have a significant 

effect on the issue stalls due to data dependencies (data), by almost 50%. The 

PTD scheduler does not show the same increase (almost 40%), but it reduces the 

resource stalls (rsc) to around -1%, whereas the other two schedulers are less 

effective in reducing to around -10%. 

This can be explained as follows. On one hand, the effects of the residual 

overlapping penalties restrains the PTD scheduler in improvements to stalls due 

to data dependencies. On the other hand, the PTD scheduler tackles resource 

'The remaining stalls are due to memory operations only. 
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dependencies by applying penalties to consecutive instructions of the same type 

when there are not enough functional units of that type. The net result is that 

the overall percentage improvement of the issue stall due to applying the PTD 

scheduler compares well with the other two. 

Table 7.10 gives a summary of the average issue stall improvements for the set 

of benchmarks. The table reinforces the pattern that considerable improvements 

are achieved on the stalls due to data dependencies (Data and Branch columns), 

but degradation in stalls due to resource contentions (Bus and Rsc. columns). 

However, the important factor is the net percentage reduction in the execution 

time thanks to the improvement in the issue stalls. The last column shows the 

cumulative average improvement for the set of benchmarks, which is the sum of 

the averages; the PTD scheduler outperforms the others by a small margin in all 

but one case. 

The data between Figures 7.11 to 7.14 cannot be compared as the figures in 

each graph are normalised against different base cases. The data from the 2 AU, 

3 AU and 4 AU configurations is normalised against the 1 AU configuration, so 

that they can be related. This is represented in Figures 7.15 to 7.17 to show 

the percentage of improvement in the issue stalls for configurations which are 

normalised against the very base case, i.e. unscheduled code simulated with the 

1 AU configuration. 

These graphs confirm the limitations suffered by the ii and fract bench-

marks, where there are not enough resources (memory and floating-point units, 

respectively). Both benchmarks sustain a negative percentage in the issue stall 

due to lack of appropriate functional units as the architecture scales. 

The go benchmark, on the other hand, presents an interesting scaling pattern. 

For greater than two arithmetic functional units (Figures 7.16 and 7.17), the 

benchmark features a degradation in the data stalls which is not perceived in 

the 2 AU configuration (Figure 7.15). This is due to the limited parallelism in 

the benchmark. In contrast, the bus and rsc stalls improve as the architecture 

scales. 

The puzzle benchmark exhibits a similar behaviour in the absence of sufficient 

parallelism. It is recursive in nature which explains the high number of branch 

instructions in Table 7.2. An increase in the number of arithmetic functional 

units does not result in a corresponding improvement in the issue stalls. 

In contrast, the loop-oriented benchmarks such as intmm and livermore show 

significant improvement as the architecture is scaled from the 1 AU towards the 

4 AU configurations, as can be seen in Figures 7.11 to Figure 7.17. 
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Figure 7.11: Percentage improvement in the issue stalls for 1 AU. 
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Figure 7.12: Percentage improvement in the issue stalls for 2 AU. 
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Figure 7.13: Percentage improvement in the issue stalls for 3 AU. 
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Figure 7.14: Percentage improvement in the issue stalls for 4 AU. 
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Figure 7.15: Normalised percentage improvement in the issue stalls for 2 AU. 
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Figure 7.16: Normalised percentage improvement in the issue stalls for 3 AU. 

177 



60% 	 -.- .-- 	-..------ -- 

50% 

	

i::: JM . 	*!' I 
-10% 

GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 

Comp Camp Camp 	Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88K 

225% 

200% - - -- - 	 - 	 -. 

175% .. . 	 -. 

150%  

125% - 

100% 

75% - 

fl fl j_ 13 Rsc 50% 
I DBranch 

2:;:, H  H 0 Data 

0 Bus 

-25% . 	 . 	 . 	 . . 

GM. 	Bal. PTD 	GM 	Bal. 	PTD 	GM Ba] PTD 	GM Bal. 	PTD 

lntmm 	lntmm Intnrn 	Liver 	Liver 	Liver 	Puzzle Puzzle Puzzle 	Frat Fract 	Fract 

Figure 7.17: Normalised percentage improvement in the issue stalls for 4 AU. 
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Benchmark No sch. GM. sch. Bal. sch. PTI) sch. 

intmm 1131 392 386 408 

livermore 1492 480 1055 1621 

fract 284 364 426 638 

ii 1431 486 490 488 

puzzle 1065 2169 3154 3222 

compress 437 743 1003 1945 

go 1038 1000 1179 1348 

m88k 851 923 967 1326 

Table 7.11: Number of out-of-order instructions (1 AU). 

Benchmark No sch. GM. sch. Bal. sch. PTD sch. 

intmm 1976 1565 1447 1360 

livermore 4166 1980 3883 4068 

fract 849 1249 1380 1077 

ii 4088 2983 2985 2987 

puzzle 2411 4689 5517 5060 

compress 1265 2107 3053 3264 

go 2705 2709 3661 3029 

m88k 2085 2192 2207 2536 

Table 7.12: Number of out-of-order instructions (2 AU). 

7.4.1.6 Out-of-order Instructions 

One feature of the micronet-based processor is that although the instructions are 

issued in-order, independent instructions can overtake others and can he written 

back out-of-order. The numbers of instructions which are executed out-of-order 

are listed in Tables 7.11 to 7.14, show that the number of these instructions scales 

with the increase in arithmetic functional units. 

Nevertheless, the out-or-order instructions are a small percentage of the total 

number of instructions which are executed per benchmark, mainly due to the 

data dependencies in the code. Even so, the PTD scheduler averages a higher 

number of out-of-order instructions. Although this does not contribute signific-

antly towards the performance of the schedulers, they do serve to highlight the 

properties of the PTD scheduler. 
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Benchmark No sch. GM. sch. Bal. sch. PTD sch. 

intmm 2125 2012 2426 2662 

livermore 4200 2869 3805 4803 

fract 886 1319 1343 1161 

ii 4214 3333 3334 3337 

puzzle 2373 5274 5698 6383 

compress 1504 2933 3728 3837 

go 3022 3452 3618 3841 

m88k 2221 2132 2146 2498 

Table 7.13: Number of out-of-order instructions (3 AU). 

Benchmark No sch. GM. sch. Bal. sch. PTD sch. 

intmm 2220 2214 2919 2596 

livermore 4251 3768 4601 5384 

fract 860 1264 1326 1128 

ii 4226 5304 5365 5409 

puzzle 2601 2169 3154 3267 

compress 1438 3201 4210 4223 

go 2950 3679 3998 4013 

m88k 2236 2293 2273 2540 

Table 7.14: Number of out-of-order instructions (4 AU). 

7.4.1.7 Performance Execution 

The performance comparisons of the execution times for the three local schedulers 

are displayed in Figures 7.18 to 7.21. They represent the percentage improvement 

against base cases with the 1 AU, 2 AU, 3 AU and 4 AU configurations. Memory 

disambiguation was applied to all the three schedules. The performance of the 

PTD scheduler shown in these figures is the same as those displayed in the last 

column of Figures 7.2 to 7.5. Subgraphs was only applied to the PTD scheduler 

since it is a particular heuristic designed for it. 

For the 1 AU architecture, it can be seen that the PTD scheduler outper-

forms consistently the other two schedulers by an average of 4%. For the other 

configurations, the average improvement is reduced to within 2% as the architec-

ture scales. This effect is the result of the overlapping penalties produced by the 

PTD schedulers as it optimises the code. The full listing of results of the local 



schedulers is displayed in Appendix C.I. 

The results from Figures 7.18 to 7.21 show the same pattern of the perform-

ance reduction clue to issue stalls from Tables 7.6 to 7.9. As the architecture 

is scaled, there is a slight reduction of performance in the PTD scheduler when 

compared to the Balanced and GM schedulers. With the 2 AU, 3 AU and 4 AU 

configurations, the performance of the PTD scheduler is not as dominant as in 

the 1 AU architecture. The average for the 4 AU configuration shows that it 

performs as well as the others. In some of the cases, the PTD scheduler displays 

better improvements (fract, ii and m88k benchmarks), although not as well in 

the case of compress and go benchmarks. This is the effect due to the overlapping 

penalties left in the code by the PTD scheduler. 

The results of the local schedulers shown in Figures 7.18 to 7.21 are also 

shown in Table 7.15. The table shows the performance execution for the four 

configurations and their geometric means. It can he seen that the PTD scheduler's 

geometric means are better than the other schedulers in all the configurations. 

7.4.1.8 Tolerance of the PTD scheduler 

One important factor in the performance of the PTD scheduler is the ability to 

work for different range in the latencies, i.e. to ensure that the scheduler is not 

sensitive to high variations. Table 7.16 shows that even with the same latencies 

for all of the functional units, the PTD scheduler performs as well as in the case 

of different ranges in the latencies. 

It can he observed that there is a general reduction in performance by all the 

schedulers when comparing these results against the performance improvements 

with different latencies as shown in Table 7.15, but only for the 1 AU configur-

ation. This is because the non-scheduled code causes less stalls to the issue unit 

and the effect of scheduling consecutive dependent instructions can be masked to 

a certain degree since all the instructions have short and equal latencies. In turn, 

the results achieved by all three schedulers cannot reach the same levels as the 

ones with wider range in latencies. However, for the other three configurations, 

scaling the architecture enables higher improvements because the instructions 

tend to be completed sooner and thus, the issue unit does not need to stall as 

long as in configurations with different and longer latencies. 

Another experiment to evaluate how the PTD scheduler handles different con-

figurations is when the memory cache model is changed from a cache hit:miss 

ratio of 2:1 to a ratio of 9:1 and the cache hit:rniss latency ratio from 1:2 to 1:10. 

Table 7.17 shows the results of this test for three of the benchmarks in all the 

configurations. 
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Conf. Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 20.37% 17.30% 25.85% 

livermore 18.66% 21.72% 25.76% 

fract 22.26% 26.72% 30.50% 

ii 7.14% 8.13% 8.89% 

1 AU puzzle 5.26% 3.02% 5.81% 

compress 19.26% 20.25% 24.01% 

go 9.28% 9.41% 14.09 0/c 

m88k 11.81% 12.31% 15.54% 

Geometric Mean 12.68% 12.45% 16.51% 

intmm 40.55% 35.19% 43.37% 

livermore 43.52% 36.90% 47.40% 

fract 24.25% 28.21% 30.48% 

ii 6.45% 7.08% 7.38% 

2 AU puzzle 6.46% 1.73% 5.39% 

compress 26.63% 27.44% 26.85% 

go 10.71% 11.20% 11.02% 

m88k 15.17% 15.68% 16.86% 

Geometric Mean 17.22% 14.68% 18.27% 

intmm 43.96% 39.02% 42.26% 

livermore 58.61% 53.27% 57.76% 

fract 24.53% 28.74% 31.38% 

ii 6.35% 6.92% 7.16% 

3 AU puzzle 3.11% 2.04% 2.98% 

compress 27.74% 28.45% 26.65% 

go 11.07% 11.51% 10.52% 

m88k 15.16% 15.76% 15.72% 

Geometric Mean 16.62% 16.02% 17.06% 

intmm 44.66% 39.39% 41.31% 

livermore 63.27% 57.98% 60.50% 

fract 24.53% 28.74% 30.95% 

li 6.35% 6.91% 7.15% 

4 AU puzzle 3.09% 2.02% 2.98% 

compress 27.82% 28.63% 26.63% 

go 11.16% 11.53% 10.64% 

m88k 15.06% 15.65% 15.67% 

Geometric Mean 16.80% 16.20% 17.10% 

Table 7.15: Performance execution improvement of the local schedulers for the 
four configurations. with functional units latencies as defined in Table 4.1. 
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Conf. Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 16.10% 15.02% 21.10% 

livermore 18.01% 17.97% 18.59% 

fra.ct 18.27% 19.98% 21.98% 

ii 3.35% 3.26% 4.88% 

1 AU puzzle 3.17% 0.85% 3.34% 

compress 9.95% 10.06% 12.61% 

go 5.13% 3.88% 7.43% 

m88k 5.23% 5.38% 7.88% 

Geometric Mean 7.89% 6.49% 10.04% 

intmia 54.73% 48.25% 56.13% 

livermore 58.93% 52.68% 53.44% 

fract 33.33% 35.10% 34.81% 

ii 8.01% 8.07% 9.69% 

2 AU puzzle 4.54% 1.35% 4.49% 

compress 29.61% 29.66% 31.49% 

go 13.10% 11.72% 14.53% 

m88k 15.66% 16.46% 19.21% 

Geometric Mean 19.81% 16.53% 21.14% 

intmm 65.06% 59.52% 61.44% 

livermore 83.98% 70.07% 64.35% 

fract 35.91% 39.04% 37.55% 

ii 8.69% 9.14% 9.94% 

3 AU puzzle 3.79% 2.16% 3.63% 

compress 34.40% 35.00% 32.90% 

go 14.88% 14.02% 14.74% 

m88k 17.15% 18.18% 20.06% 

Geometric Mean 22.09% 20.29% 21.85% 

intmm 62.56% 59.22% 64.27% 

livermore 88.90% 73.43% 64.75% 

fract 35.94% 39.13% 36.85% 

ii 8.75% 9.22% 9.95% 

4 AU puzzle 3.75% 2.13% 3.62% 

compress 34.64% :35.34% 33.10% 

go 14.79% 13.91% 14.69% 

m88k 17.06% 18.09% 19.99% 

Geometric Mean 22.12% 20.38% 21.94% 

Table 7.16: Performance execution improvement of the local schedulers for the 
four configurations, with latencies with equal range of values. 
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Conf. Benchmark GM. sch. Bal. sch. PTD sch. 

ii 2.90% 3.06% 3.21% 

1 AU go 2.62% 2.94% 5.87% 

m88k 7.68% 7.70% 7.62% 

Geometric Mean 3.88% 4.11% 5.24% 

ii 2.35% 2.47% 2.46% 

4 AU go 3.48% 3.79% 3.37% 

m88k 7.11% 7.17% 6.94% 

Geometric Mean 3.88% 4.07% 3.86% 

Table 7.17: Performance execution improvement with a memory unit's cache 
hit:miss ratio of 9:1, and with cache penalty hit:miss ratio of 1:10. 

The results show that all of the schedulers achieve very little improvements 

against the non-scheduled code, if we compare them against the ones with a cache 

hit:miss ratio of 2:1, displayed in Table 7.15. The main reasons for this behaviour 

is that there is only one memory unit and that given the delay penalty for a 

cache miss, there is not enough parallelism in the code to overcome such long 

delays. Even with such cache model, the PTD scheduler performs comparably 

well against the other schedulers. 

7.4.2 Global Optimisations 

The evaluation of the global scheduler is divided according to the performance 

clue to code motion, tail duplication and the combined effect of both. The results 

from these global optimisations are also compared against the improvements due 

to local optimisations. 

7.4.2.1 Code Motion and Code Duplication 

As described previously in Chapter 6, code motion represents the first attempt at 

reducing the penalties after local scheduling. Only if code motion fails to remove 

a penalty is code duplication called which checks code expansion. Table 7.18 

shows the statistics for code motion (first column of each scheduler) and code 

duplication (second and third columns). It can be observed that code motion is 

employed consistently more often than code duplication. The figures also reveal 

that the number of lines of code affected by the transformations is very low when 

compared to the total number of lines in the benchmarks (c.f. Table 7.3). The 

third column for each scheduler shows the percentage of code expansion due to 
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GM. scheduler Bal. scheduler PTD scheduler 

Benchmark Code Code dup. Code Code dup. Code Code dup. 

motion inst. perc. motion inst. perc. motion inst. perc. 

intmm 10 0 0.0% 9 0 0.0% 18 0 0.0% 
livermore 42 0 0.0% 49 0 0.0 1% 73 0 0.0% 
fract 73 19 0.3% 74 21 0.3% 122 38 0.7% 

ii 30 35 0.2% 50 50 0.3% 60 61 0.4% 
puzzle 63 10 1.0% 55 12 1.3% 45 9 0.9% 

compress 42 7 0.5% 50 7 0.5% 57 7 0.7% 

go 2,388 322 0.3% 2,342 312 0.3% 2,608 423 0.5% 
m88k 222 55 0.2% 599 138 0.4% 616 160 0.5% 

Table 7.18: Code motion and code duplication statistics. 

code duplication where applicable. 

The table also shows a pattern in the number of movements which is greater in 

the case of the PTD scheduler. However, this cannot always he related to a per-

formance improvement. This is because the effectiveness of the movements is sub-

ject to the run-time behaviour of the program. For instance, a single movement 

on a most commonly-executed path can he more effective from a performance 

point of view, than a number of movements in rarely-executed ones. 

7.4.2.2 Tail Duplication and Block Merging 

Tail duplication and block merging represent transformations which are independ-

ent of code motion. Table 7.19 displays the statistics regarding instances of tail 

duplication together with block merging (first column for each scheduler). The 

table also displays the total number of instructions duplicated as a result of those 

transformations (second column). The third column for each scheduler represents 

the percentage of code expansion clue to tail duplication. It can he seen that the 

code expansion produced by tail duplication is much higher than in the case of 

code duplication. Even after merging non-empty blocks to increase ILP, the code 

expansion for some of the benchmarks is a cause for concern. 

Another observation is that the number of instructions that are copied is the 

same for the three schedulers. The reason for this is that once a penalty is to 

be removed, the whole basic block is duplicated and merged, whereas in code 

duplication, the decision is made on the basis of individual instructions. 
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GM. scheduler Bal. scheduler PTD scheduler 
Benchmark Tail Inst. dup. Tail Inst. dup. Tail Inst.dup. 

dup. dup. dup. inst. perc. inst. perc. inst. perc. 
intrnm 0 0 0% 0 0 0% 0 0 0% 

livermore 14 306 15% 14 306 15% 14 306 15% 
fract 69 1,036 19% 69 1.036 19% 69 1,036 19% 

ii 130 1,403 8% 130 1,403 8% 130 1,403 8% 
puzzle 15 183 19% 15 183 19% 15 183 19% 
compress 16 122 9% 16 122 9% 16 122 9% 
go 1,557 13,993 16% 1,557 13,993 16% 1,557 13,993 16% 
m88k 561 5,005 14% 561 5,005 14% 561 5,005 14% 

Table 7.19: Tail duplication/block merging statistics. 

7.4.2.3 Performance Benefits due to Global Optimisations 

The comparisons of the performance execution achieved due to global optimisa-

tion techniques are displayed in Figures 7.22 to 7.25. The figures show the per-

formance of the three schedulers divided in four categories (top right-hand corner 

key in each figure): local optimisations, code motion and code duplication, tail 

duplication and block merging, and the combined effect of both techniques. (The 

performance results of the local optimisations displayed in the first three bars 

for each benchmark correspond to the results previously shown in Figures 7.18 

to 7.21. This clarifies the performance gains of global optimisations against the 

local ones). 

The graphs show that, in general, a further improvement due to the global 

optimisations is achieved. This performance can be dissected into three parts: 

due to code motion, due to tail duplication and the combined effect of these two. 

Code Motion/Code Duplication. The performance due to code motion and 

code duplication averages between 3.4% to 4.8% against local scheduling for 

the three benchmarks, in the four configurations. For the PTD scheduler, 

the improvements with respect to the local scheduler vary from 0.2% for 

the ii benchmark to around 16% for the puzzle benchmark. For the 1 AU 

and 2 AU configurations, the PTD scheduler consistently outperforms the 

other two. For the 3 AU and 4 AU configurations, the performance of the 

schedulers is on par, with a slightly higher average for the PTD scheduler. 



For benchmarks such as compress and go, local scheduling does not obtain 

the same performances as the balanced and GM schedulers. However, when 

code motion is applied, it can be seen that the PTD scheduler is able to 

outperform them. 

It can also be observed that the performance patterns due to local schedul-

ing results are preserved after both code motion and code duplication are 

applied. This implies that the PTD scheduler is not benefiting overly due 

to the global movements being triggered by the PTD measure. 

The results also show that the performance suffers no degradation after 

global code motion with respect to the local scheduling results. This is 

an improvement on the work on code motion in [20], in which some of 

the benchmarks suffer from degradation. Appendix C.2 shows the exact 

percentage of improvement for the schedulers in the four AU configurations 

with respect to their base cases, i.e. unscheduled code. 

Tail Duplication/Block Merging. The results from tail duplication and block 

merging show that they do not achieve the the same gain in performance as 

due to code motion. In fact, for many of the benchmarks there is very little 

improvement. The average improvements vary around 0.5% with respect to 

the local ones (The intmm benchmark does not show any tail duplication 

transformations). However, there are two benchmarks in which a greater 

improvement was obtained when compared to the code motion results. The 

m88k benchmark averages a 2.6% against local scheduling, which represents 

an additional 1.7% improvement over code motion for the four configur-

ations. The benchmark ii marginally outperforms the performance gain 

achieved by code motion, when applied to the PTD scheduler. 

As with code motion, the pattern observed from the local optimisations 

results is maintained when tail duplication is performed. Furthermore, the 

optimisation does not cause performance degradation when compared to 

local scheduling. The actual figures for performance improvements from 

tail duplication and block merging are shown in Appendix C.2. 

Combined Effect of Code Motion and Tail Duplication. The combined ef-

fect of code motion and tail duplication presents one particular case that 

does not provide the best performance. The livermore benchmark actu-

ally suffers a slight degradation of 0.8% over local scheduling for the 1 AU 



configuration. After code motion and tail duplication have both been ap-

plied, local scheduling also needs to be applied since it is more convenient 

to handle the complexity of the dependencies and penalties in the merged 

block in order to optimise it. However, the optimisation of the new block is 

subject to its new set of dependencies and initial schedule. The livermore 

benchmark shows that with the newer set of initial conditions, there may 

be cases in which the optimisations cannot necessarily yield the best per-

formance. 

As mentioned in Section 7.4.1.4, the livermore benchmark spends a con-

siderable amount of time in the initialisation section. Any penalty that 

is left unreduced in the critical path of this section is subject to perform-

ance degradation. After analysing this example it was observed that if local 

scheduling had not been used after code motion and tail duplication, there 

would not have been any degradation. 

Even with this degradation, the PTD scheduler performs better than the 

other schedulers for the 1 AU configuration. In general, although tail du-

plication does not yield a considerable improvement over local scheduling, 

the best performance levels are obtained when both code motion and tail 

duplication are utilised. The average improvements over local scheduling 

for the set of benchmarks range between 4.2% to 5.6%, for the four config-

urations - puzzle is the benchmark that achieves the highest performance 

of all, with an average improvement of 16.8%. 

When compared to code motion, the technique with the greatest improve-

ment over local scheduling, the combined effect of both code motion and 

tail duplication offers an additional average improvement of 0.7%. The m88k 

and fract benchmarks feature greater improvements with 2.9% and 1.2%, 

respectively. 

Tables C.9 to C.12 in Appendix C.2 show the exact percentage of improve-

ment of the combined effect of code motion and tail duplication for the four 

configurations. 
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Figure 7.22: Simulation results for 1 AU. 
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Figure 7.23: Simulation results for 2 AU. 
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Conf. Benchmark GM. sch. Bal. sch. PTD sch. 

intmin 21.72% 17.37% 26.98% 

livermore 19.16% 22.04% 26.80% 

fract 23.71% 27.67% 30.81% 

ii 7.94% 8.89% 9.12% 

1 AU puzzle 10.92% 10.96% 23.47% 

compress 20.27% 21.06% 27.13% 

go 11.42% 11.80% 17.35% 

m88k 12.60% 13.11% 16.22% 

Geometric Mean 14.95% 15.52% 20.90% 

intmm 42.53% 36.64% 46.77% 

livermore 45.70% 38.66% 51.33% 

fract 25.85% 29.33% 30.67% 

ii. 7.40% 7.85% 7.58% 

2 AU puzzle 14.41% 12.47% 22.42% 

compress 27.80% 28.41% 30.52% 

go 15.08% 15.15% 17.25% 

m88k 17.05% 17.47% 17.84% 

Geometric Mean 21.03% 20.45% 24.20% 

intmni 45.71% 40.26% 47.10% 

livermore 61.65% 56.08% 62.82% 

fract 26.12% 29.87% 31.66% 

li 7.34% 7.74% 7.37% 

3 AU puzzle 16.05% 14.78% 19.21% 

compress 28.93% 29.68% 30.34% 

go 15.53% 15.74% 17.19% 

m88k 16.37% 16.89% 16.65% 

Geometric Mean 22.42% 22.29% 24.14% 

intmin 46.46% 40.66% 46.00% 

livermore 66.48% 61.06% 65.71% 

fract 26.13% 29.88% 32.28% 

ii 7.34% 7.73% 7.37% 

4 AU puzzle 17.40% 16.02% 19.21% 

compress 28.99% 29.83% 30.32% 

go 15.61% 15.73% 17.34% 

m88k 16.27% 16.77% 16.68% 

Geometric Mean 22.91% 22.77% 24.29% 

Table 7.20: Performance execution improvement of code motion for the four 
configurations. 
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Conf. Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 20.37% 17.30% 25.85% 

livermore 18.66% 21.72% 25.78% 

fract 22.26% 26.80% 30.84% 

ii 7.40% 8.76% 9.28% 

1 AU puzzle 5.35% :3.14% 6.04% 

compress 19.71% 20.78% 24.32% 

go 10.04% 10.20% 15.05% 

m88k 14.16% 14.61% 17.71% 

Geometric Mean 13.2:3% 13.08% 17.15% 

intmm 40.55% 35.19% 43.37% 

livermore 43.53% 36.91% 47.38% 

fract 24.26% 28.22% :30.48% 

ii 6.90% 7.67% 7.83% 

2AU puzzle 6.71% 1.98% 5.64% 

compress 27.59% 28.43% 27.35% 

go 11.84% 12.30% 12.05% 

m88k 18.29% 18.74% 19.56% 

Geometric Mean 18.16% 15.68% 19.12% 

intmm 43.96% 39.02% 42.26% 

livermore 58.63% 53.26% 57.62% 

fract 24.57% 29.01% 31.41% 

li 6.82% 7.49% 7.62% 

3 AU puzzle :3.39% 2.31% 3.17% 

compress 28.79% 29.54% 27.09% 

go 12.25% 12.67% 11.57% 

m88k 18.19% 18.72% 18.50% 

Geometric Mean 17.65% 17.10% 17.93% 

intmm 44.66% 3L39% 41.31% 

livermore 63.29% 57.97% 60.42% 

fract 24.58% 29.01% :31.11% 

ii 6.82% 7.49% 7.61% 

4 AU puzzle 3.36% 2.28% 3.16% 

compress 28.88% 29.72% 27.07% 

go 12.32% 12.67% 11.70% 

m88k 18.09% 18.61% 18.45% 

Geometric Mean 17.84% 17.27% 17.98% 

Table 7.21: Performance execution improvement of code duplication for the four 
con figu rat ions. 
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Conf. Benchmark GM. sch. Bal. sch. P'-I'D sch. 

intmm 21.72% 17.37% 29.13% 

livermore 19.16% 22.05% 24.96% 

fract 23.78% 27.75% :32.99% 

ii 8.01% 9.05% 9.30% 

1 AU puzzle 10.96% 11.00% 23.53% 

compress 20.27% 21.06% 27.13% 

go 11.93% 12.39% 18.10% 

m88k 14.14% 14.65% 18.62% 

Geometric Mean 15.28% 15.88% 21.64% 

intmin 42.53% 36.64% 46.77% 

livermore 45.72% 38.66% 50.92% 

fract 25.95% 29.44% 30-67% 

ii 7.48% 8.01% 7.86% 

2 AU puzzle 14.60% 12.65% 22.48% 

compress 27.80% 28.41% 30.98% 

go 15.76% 15.88% 18.10% 

m88k 19.74% 20.09% 20.84% 

Geometric Mean 21.61% 21.03% 24.96% 

intmm 45.71% 40.26% 47.10% 

livermore 61.65% 56.06% 62.42% 

fract 26.21% 29.97% 32.47% 

ii 7.41% 7.84% 7.68% 

3 AU puzzle 16.17% 14.89% 19.22% 

compress 28.93% 29.69% 30.84% 

go 16.28% 16.52% 18.08% 

m88k 19.34% 19.80% 19.73% 

Geometric Mean 23.09% 22.94% 25.05 % 
intmm 44.66% 39.39% 41.31% 

livermore 63.29% 57.97% 60.42% 

fract 24.58% 29.01% 31.11% 

li 6.82% 7.49% -1.61% 

4 AU puzzle 3.36% 2.28% 3.16% 

compress 28.88% 29.72% 27.07% 

go 12.32% 12.67% 11.70% 

m88k 18.09% 18.61% 18.45% 

Geometric Mean 17.84% 17.27% 17.98% 

Table 7.22: Performance execution improvement of both code motion and tail 
duplication for the four configurations. 
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Approach GM. sch. Bal. sch. PTD sch. 

Local scheduling 6.39% 3.65% 7.07% 

Code motion 13.43% 13.48% 28.79% 

Tail duplication 6.51% 3.80% 7.35% 

Both techniques 13.49% 13.53% 28.88% 

Table 7.23: Percentage reduction in the issue stall by the schedulers for the puzzle 
benchmark (1 AU). 

Approach GM. sch. Bal. sch. PTD sch. 

Local scheduling 8.12% 2.15% 6.76% 

Code motion 18.48% 15.91% 29.33% 

Tail duplication 8.44% 2.47% 7.08% 

Both techniques 18.73% 16.15% 29.41% 

Table 7.24: Percentage reduction in the issue stall by the schedulers for the puzzle 
benchmark (2 AU). 

7.5 Discussion 

To explain the results shown in the previous section, the puzzle benchmark is 

analysed in detail. The puzzle benchmark offers the greatest improvements with 

code motion for any of the benchmarks, but it offers very little improvements 

when tail duplication is applied. 

The benchmark has a function that executes for 60% of the total time. The 

control flow graph of this function is displayed in Figure 7.26 (c). Figures 7.26 (a) 

and (h) show the DAGs from two of the function's basic blocks, B 1  and B 5 , 

respectively. 

The function is characterised by basic blocks with many data dependencies 

that serialise the execution, and thus restrict local scheduling. The improvement 

achieved by code motion is based on the movement of instructions from block B5  

to block B 1  that reduces the consecutive penalties in both basic blocks. Even 

when there are non-consecutive penalties left in basic block B 1  (as a result of 

mixing instructions from B 1  and B5 ), the increased ILP reduces the stalls of the 

issue unit. Of course, the effects of these movements are magnified by the fact 

that this function is executed considerably more often than the others. 
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Approach GM. sch. Bal. sch. PTD sch. 

Local scheduling 3.90% 2.55% 3.73% 

Code motion 20.78% 19.07% 25.08% 

Tail duplication 4.25% 2.88% 3.97% 

Both techniques 20.95% 19.23% 25.09% 

Table 7.25: Percentage reduction in the issue stall by the schedulers for the puzzle 
benchmark (3 AU). 

Approach GM. sch. Bal. sch. PTD sch. 

Local scheduling 3.87% 2.53% 3.73% 

Code motion 22.61% 20.75% 25.07% 

Tail duplication 4.21% 2.85% 3.97% 

Both techniques 22.79% 20.91% 25.09% 

Table 7.26: Percentage reduction in the issue stall by the schedulers for the puzzle 
benchmark (4 AU). 

The PTD scheduler is not the only one to benefit from this scenario. Both 

GM and Balanced schedulers reduce the stalls of the issue unit after code motion. 

Tables 7.23 to 7.26 list the percentage improvement of the issue stalls due to 

different techniques when compared to unscheduled code. It can be observed 

that the three schedulers achieve substantial stall reductions to the issue unit 

with the help of code motion. 

In contrast, when tail duplication is applied, even if basic blocks B5  and B8  in 

Figure 7.26 (c) are duplicated and merged, the data dependencies between basic 

blocks B6 , B7  and B8  limit the scope for improvement, i.e. the instructions from 

basic blocks B6  and B7  cannot be mixed with the ones from basic block B8 . 

This is in line with the results for puzzle in Section 7.4.2.3. Tables 7.23 to 7.26 

confirm the small improvement in stall reduction over local scheduling when tail 

duplication alone is enabled. 

When both code motion and tail duplication are applied to the benchmark, 

then the improvement is dominated by code motion. It can be seen from the tables 

that there is a small percentage reduction in the issues stall when compared to 

code motion alone for the four configurations, and this reflects, in general, the 

best performance in terms of execution time. 
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(c) The CFG of the function. 
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(a) Basic block B1  (L3. Fit). 
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(b) Basic block B5  (M. Fit). 

Figure 7.26: The most frequently executed function from puzzle. 
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7.6 Summary 

This chapter has presented the framework for evaluating the PTD scheduler. 

Within this framework, the SUIF compiler was selected to perform the back-end 

optimisations and to generate machine code for the micronet-based processor. 

The optimisations have been evaluated by compiling a set of C benchmarks and 

simulating their output schedules in the instruction-level simulator. The set of 

benchmarks covers a range of applications including loop-oriented and control-

flow intensive programs. 

The comparisons presented in this chapter were made against two well-known 

schedulers: the original list scheduler from Gibbons and Muchnick and the Bal-

anced scheduler from Kerns and Eggers. The evaluation of the PTD scheduler 

has been separated between the use of local and global optimisations techniques. 

The PTD scheduler attempts to maximise the rate of instruction issue of the 

micronet-based processor, by minimising the stalls incurred due to data depend-

encies and resource contentions. The results from the issue stalls to the issue unit 

reveal several characteristics of the PTD scheduler. Firstly, the stalls caused by 

resource contentions when instructions of the same type are scheduled, and there 

are not enough resources of that type, are reduced considerably. This reduction is, 

in general, greater than the reduction achieved by the other schedulers. Secondly, 

although the stalls caused by data dependencies are not reduced as much as the 

other schedulers, the total stall reduction of the issue unit is higher. This repres-

ents a higher overall reduction in relation to the base cases, when compared to 

the other well-known schedulers. 

The performance of the local optimisations has shown that the PTD scheduler 

consistently produces better code than the other two. The scheduler achieves an 

average improvement of 18.81% for the 1 AU configuration, as opposed to 14.25% 

and 14.86% in the case of the GM and balanced schedulers, respectively. When 

the architecture is scaled, the average improvement of the PTD scheduler com-

pares well against the other schedulers. For the 4 AU configuration, the average 

improvement is 24.48% which levels to 24.49% and 23.86% for the other two sched-

ulers. These results show that the PTD scheduler produces, in general, better 

schedules, or at worst, comparable schedules for the micronet-based processor. 

The complexity of the PTD scheduler described in Section 5.6 was evaluated 

by measuring the compilation times of the set of benchmarks. The algorithm 

complexity is governed by the number of penalties, and as the algorithm pro- 
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gresses the number of penalties is reduced. This represents an advantage over 

the algorithmic complexity of list-based schedulers which are of the order of n2  

(where n is the number of instructions). This advantage is confirmed by the 

results of the compilations times, in which the PTD scheduler averaged 46.55% 

faster compilation times than the other two schedulers. 

The performance of the global optimisations applied to the local schedulers 

showed that the movement of instructions beyond basic blocks achieved further 

improvement. The results in this chapter have shown how the PTD measure 

represents an effective method to perform global optimisations. Although the 

improvement of the global movements is limited by data dependencies and influ-

enced by the run-time behaviour of the programs, the results showed an overall 

improvements to the local scheduling. Code motion was responsible for the major 

percentage of improvement within global optimisations. 

This chapter has shown that the PTD scheduler achieves better performances 

in terms of issue unit stall reductions and instruction execution times, when com-

pared to two well-known schedulers. Furthermore, the PTD scheduler exhibits a 

better algorithm complexity. 
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Chapter 8 

Conclusions and Future Work 

The clock in a synchronous processor architecture provides precise timings for co-

ordinating its operations. The trend towards increasing the clock speed will yield 

diminishing returns in the future for reasons outlined in Chapter 3. This thesis 

considered the problem of compiling for a micronet-based processor architecture 

which is composed of a network of functional units which operate concurrently and 

communicate asynchronously. Compiling for such a target poses unique problems 

due to the lack of precise timing models for the instructions. 

Compiler optimisations which are dependent on the platform require a good 

understanding of the interactions between the back-end of the compiler and the 

target architecture. Optimising compilers for synchronous RISC architectures 

have been successful for the reason that precise timing models of datapath op-

erations have been available. The datapath components have latencies defined 

in terms of clock cycles. The instruction scheduler in the back-end of the com-

piler uses this information to produce an efficient schedule (but not necessarily 

an optimal one) which minimises the makespan of the program. In the case of 

micronet-based asynchronous architectures by contrast, it is impossible to pre-

cisely model the instruction latencies, and hence the run-time behaviour of the 

programs. The latencies of the operations depend on a number of factors such as 

the input data, the type of components and the interaction between them. The 

order of instructions and their time of completion cannot be consistently pre-

dicted. This makes the task of optimising the instruction schedule for a micronet 

target a challenging one. 

The micronet architecture has functional units connected as a network, which 

operate concurrently and supports fully out-of-order write-back. Instructions are 

issued at a rate which is limited by the dependencies between the instructions and 

the availability of functional units. The PTD scheduler aims to produce an in-

struction schedule so that they can be issued in quick succession without stalling 
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the issue unit either due to data dependencies or resource contention. Penalties 

are assigned to instructions with true dependencies and those which compete for 

the same functional unit. PTD first performs optimisations on the instructions 

within basic blocks to reduce their penalties. Next, global optimisations tech-

niques which use code motion, code and tail duplication and block merging are 

applied to try and reduce the penalties remaining after local scheduling. 

8.1 PTD Scheduler 

8.1.1 Penalty Measure 

The penalty measure is a useful metric for describing the goodness of a schedule 

at compilation time for programs targeted at micronet architectures. Although 

the measure is not strictly monotonic, however, in practice, schedules with lower 

measures display corresponding lower execution times. The measure has been 

demonstrated to be effective as a metric for the search heuristic when analysing 

schedules. PTD prioritises the order in which the penalties due to different types 

of instructions are reduced: those due to memory instructions are tackled first as 

they exhibit the longest delays, followed by the penalties due to true dependencies 

and the rest of the dependencies. 

Such a priority scheme makes sense as long as the memory unit remains the 

slowest component in the datapath. For instance, if the latencies of the functional 

units are assumed to be even, then so would the priorities as the data dependencies 

due to either memory or arithmetic instructions would cause the same amount of 

stall and should therefore be penalised equally. Branch instructions preserve their 

priority as the cost of stalling the issue unit for every control flow change remains 

unaltered. Experiments using the same minimum and maximum latencies for 

all the architectural components are summarised in Table 7.16. They yielded 

the following results in the 1 AU case for the two largest benchmarks: PTD 

outperformed the other two competitors and was able to cope with the low priority 

penalties just as well. 

8.1.2 Local Optimisations 

The local PTD scheduler is different from other traditional techniques which are 

all based on a list-based scheduler. The penalty measure is simple yet an effective 

metric for statically evaluating the goodness of a schedule. When there is at least 

one penalty, the scheduler will traverse the basic block to find an independent 

instruction to reduce the penalty. Penalties due to resource contentions are re- 
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duced first; those due to data dependencies in consecutive and non-consecutive 

instructions are next tackled in that order. Safety conditions have been defined to 

restrict the movement of candidate instructions when the penalty measure cannot 

be strictly decremented. It terminates after two passes after the penalty measure 

cannot be reduced. 

The complexity of the PTD scheduler is derived to be 0 ( et 2  + n - e), where 

e is the number of penalties in the basic block, n is the number of instructions 

and t is the distance in terms of number of instructions between the penalised 

and candidate instructions. It is observed that the complexity is governed by 

the number of penalties in a basic block, rather than the number of instructions. 

Also note that the number of penalties is reduced as the algorithm progresses. 

The figures for average compilation times for the benchmarks in Section 7.4.1.1 

confirm the speed advantage over list-based schedulers. This is an useful attribute 

for just-in-time compilers which have fast scheduling requirements [37] [160]. 

Memory disambiguation and subgraphs were introduced to further reduce pen-

alties in the PTD scheduler. Without the former, memory instructions must be 

considered to be dependent as they might refer to the same location. Results in 

Section 7.4.1.2 have demonstrated that a considerable number of memory refer-

ences can be disambiguated which in turn increases the scope for instruction-level 

parallelism in the program. Subgraphs were introduced to cope with the negat-

ive effects of patterns termed as overlapping penalties. These are the result of 

reducing penalties with neighbouring instructions under the safety conditions. 

Subgraphs mask parts of the DAG which constraints the search for candidate in-

structions, which reduced the effects of overlapping penalties. Although in some 

of the cases the introduction of constraints in a basic block with meagre paral-

lelism resulted in under-optimised code. However, in general, the introduction of 

sub-graphs achieved better results in the case of the PTD scheduler. 

8.1.3 Global Optimisations 

The global optimisations presented in this thesis are an extension of the local 

scheduler when the parallelism found within basic blocks is limited as reflected 

in a number of penalties left by the local scheduler. Global movement of instruc-

tions after local scheduling offers the possibility of reducing the penalty measure 

further. The global extensions to the local PTD scheduler included code motion, 

code and tail duplication and code merging. These well-known techniques were 

implemented in the context of a micronet-based asynchronous architecture, and 

applied using the penalty-measure metric. 
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Dominator and post-dominator information from a region were used to de-

termine which basic blocks were control-independent, so that instructions could 

be moved under the same control conditions. Code duplication is performed when 

code motion cannot be applied, mainly due to data dependencies. Selected in-

structions are moved to the parents' basic blocks, in a further attempt to reduce 

the penalties. Results in Chapter 7 have shown that with this order, the instances 

of code duplication can be kept to a minimum. 

A generalisation of code duplication has also been considered as a global op-

timisation. Tail duplication copies and moves all the instructions of the basic 

block to its parents, as opposed to moving only the penalised instructions. These 

techniques were combined and applied to the PTD scheduler. 

8.1.4 Performance of the PTD Scheduler 

The main objective of the PTD scheduler was set to reduce as much as possible 

the stalls in the issue unit which are caused by data dependencies and resource 

contentions in a micronet-based processor. The results of the issue unit stalls 

presented in Section 7.4.1.5 showed that the local PTD scheduler achieved com-

parable levels of reduction against the other schedulers, and in some cases, the 

reductions were even higher. In general, the PTD scheduler reduced considerably 

more stalls due to resource contentions than the other two. Even though PTD 

fared less well in the case of stalls due to data dependencies for the four configur-

ations, the overall performance of the PTD scheduler is better against the other 

schedulers. Therefore the quality of the code produced by the PTD scheduler is 

comparable to its two competitors, but with a much improved time complexity. 

Benchmarks with extensive use of memory instructions are limited as there is 

only one memory unit considered. The ii and m88k benchmarks have the greatest 

demand for the memory unit, and their results suffer most when the architecture is 

scaled. Their performance can be improved by increasing the number of memory 

functional units. This requires a dynamic memory disambiguator if parallelism 

between memory instructions is to be exploited. 

8.2 Architectural Model 

Although the issue unit of the micronet-based processor issues one instruction at a 

time, it operates at a faster speed than the rest of the components, which emulates 

multiple issue of instructions. However, even when the architecture is scaled 

and global optimisations are performed, the available parallelism is not sufficient 



to maintain the issue unit without being stalled. Even when an independent 

instruction with its operands available is scheduled after an instruction that is 

stalled waiting for a result to be ready, the former instruction has to wait until 

the latter is issued. 

A centralised issue unit represents a bottleneck, a characteristic of scalar pro-

cessors. A possible solution is to have a multiple-instruction issue unit, but this 

would be considerably complex. The instruction set usually has to be modified 

as well, since independent instructions have to be made available by the compiler 

to the architecture explicitly. 

Another source of bottleneck is the presence of only one memory unit in 

the architecture. It was demonstrated that benchmarks with large percentages of 

memory instructions do not scale well. Having more than one memory unit would 

enable more parallelism to be exploited, but a dynamic memory disambiguator 

must be included. An asynchronous design of a memory disambiguator represents 

a challenge, since the memory operations must be compared in a buffer, a process 

which must be synchronised which would damage average-case advantages. 

The model described in Chapter 4 considers a datapath in which functional 

units do not have queues for holding more than one instruction when the func-

tional unit is busy. The use of queues is characterised by a decoupling effect in 

which undesirable latencies are introduced. These latencies pose, in general, a 

problem for the data consistency scheme, since more instructions can be in-flight 

at the same time. In turn, the issue unit will be stalled by data dependencies most 

of the time, and less from resource contentions. The register locking mechanism 

will then have to be questioned. 

Even with the use of queues, the PTD scheduler could still penalise the data 

dependencies, since the price of stalling the issue unit would hold. The penal-

ties from memory instructions would not be as expensive, since a queue could 

compensate with their delay. If the processor changes towards an out-of-order 

issue unit, the behaviour will become more dynamic (dynamic scheduling), the 

complexity in hardware will be increased substantially, but more importantly, the 

model for the compiler will become more imprecise. 

8.3 Future Work 

The PTD scheduler has demonstrated that in the attempt to minimise the cost of 

data dependencies and resource contentions in an asynchronous processor, better 

schedules can be achieved relatively fast. However, when key penalties, i.e. ones 

207 



located in the critical path, could not be reduced, the schedules can end under-

optimised. 

Part of the future work would be to include a specific scheduling pass to reduce 

penalties due to the critical path. These would normally include, a first pass for 

consecutive penalties and a second pass for non-consecutive penalties. After these 

passes, the rest of the penalties would be dealt with as normal. 

For global optimisations, an immediate work would be to include movement of 

instructions in the direction of the flow of control. This option may enable more 

movement, since it was observed that very little code is able to move. Another 

possible consideration is to change the method of moving a penalised instruction, 

by finding independent instructions to remove the penalties instead, as in the 

local scheduling approach. 

8.3.1 Profile Information 

The local and global optimisations described in this thesis have been developed 

without the use of profile information. The profile information could help tune 

both the global as well as local optimisations. 

Using the statistics for frequency of execution, a heuristic for often-used basic 

blocks could be tailored for deciding whether or not to use subgraphs during local 

scheduling. In basic blocks with very limited parallelism, the option for applying 

subgraphs can be overturned to avoid the restrictions introduced for selecting 

candidate instructions. On the other hand, more scheduling passes can be spent 

on a basic block which is heavily executed, with the aim of reducing penalties 

remaining after the normal passes. For example, if a consecutive penalty could 

not be removed after the first and second scheduling passes, then the first pass 

could be invoked again, in a second attempt to reduce it. Any movement of the 

previously-executed second pass would change the starting order, so that it may 

be possible to reduce it after a rerun of the first scheduling pass. 

For global optimisations, profile information could be used in frequently ex-

ecuted paths to put more effort in reducing penalties that could not normally 

be reduced. In fact, the use of speculative code motion could be applied if it 

can be statically evaluated that the cost of the increase of number of instructions 

executed can be outweighed by the gain obtained from penalty reductions. 

Another consideration for global optimisation is to concentrate only on the 

penalty reductions in paths where the program execution spends most of the 

time. This would result in a more efficient method to improve the code with 

faster compilation times. 
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8.3.2 Other Optimisations 

The global optimisations presented in this thesis are considered as acyclic optim-

isations. They represent an initial search space of code improvement around the 

PTD scheduler. Other global optimisations such as cyclic optimisations can be 

added to expose more parallelism. Loop unrolling is an example that will impact 

programs which contain loops. 

8.4 Conclusions 

Back-end compiler optimisations rely on an accurate timing model of the target 

architecture. This thesis has addressed the problem of optimisations for targets 

such as micronet-based asynchronous architectures which have uncertain laten-

cies. The PTD measure was conceived as a way of statically determining the 

effect of stalls due to data dependencies and resource contentions in such archi-

tectures. Local and global schedulers based on the PTD measure were devised 

and their goodness over competing schedulers have been demonstrated for a set 

of benchmarks. PTD-based schedulers will find applications in future processor 

architectures in which uncertain communication latencies will dominate the cost 

of program execution. 
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Latencies in Asynchronous Architectures 

D. K. Arvind and S. Sotelo-Salazar 
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Abstract. This paper addresses the problem of scheduling instructions 
in micronet-based asynchronous processors (MAP), in which the laten-
cies of the instructions are not precisely known. A PTD scheduler is 
proposed which minimises true dependencies, and results are compared 
with two list schedulers - the Gibbons and Muchnick scheduler, and a 
variation of the Balanced scheduler. The PTD scheduler has a lower 
time complexity and produces better quality schedules than the other 
two when applied to twenty-three loop- and control-intensive benchmark 
programs. 

1 Introduction 

There has been a revival of interest in the use of asynchrony, albeit in a restricted 
form known as self-timing, in the design of processor architectures. Asynchron-
ous circuits offer some distinct advantages. Their power consumption is generally 
much lower compared to their synchronous equivalent. This is because at any 
time only parts of the asynchronous system are active as required, with the rest 
remaining in a quiescent state. Self-timed systems allow a modular approach to 
processor design whereby parts can be added and deleted with little impact on 
the rest of the system. These systems are also robust to environmental changes. 

The feature which is of most interest to our work and which was first re-
cognised in the Micronet model [1] is that asynchrony offers scope for fine-grain 
concurrency in the processor architecture. The micronet model exposes this fea-
ture naturally, and asynchronous architectures based on this model are better 
able to exploit instruction-level parallelism. 

A micronet-based architecture is viewed as a network of typed functional 
units. These units operate concurrently and communicate asynchronously with 
the rest of the architecture. The functional units themselves can be described 
at different levels of abstraction. In this paper the architecture is composed of 
the following functional unit types: one or more Arithmetic Unit (AU), a Logic 
Unit (LU), a Memory Unit (MU) and a Branch Unit (BU). 

The issue and execution of an instruction consist of a sequence of micro-
operations involving the Issue Unit (IU), the Register Bank, and the appropriate 
functional unit. An instruction is issued when both its operands are available. 
Once the instruction has been issued, it runs to completion unless it is stalled 



due to contention for resources in the trajectory of the instruction at any one 
of these points: the read ports, the functional unit, the write-back port. The 
micronet model enables concurrent execution of the micro-operations of the dif-
ferent instructions in flight, and minimises the costs of instruction stalls due to 
resource contentions. The latency of the instruction depends on a number of 
factors: its type, the data on which it operates, and the contention for resources 
which depends on the mix of instructions. 

This paper proposes a relatively inexpensive method for scheduling instruc-
tions within the basic block. The objective of the scheduler is to ensure the rapid 
issue of independent instructions, thereby minimising the number of stalls of the 
issue unit, and in reducing the contention for the functional units by enabling in-
structions of different types to be in flight at the same time. This is achieved by 
assigning penalties to data dependencies and successive instructions of the same 
type, and transforming the schedule by moving instructions to reduce the pen-
alties. This results in a schedule in which dependent instructions are separated, 
and independent instructions of different types are issued in succession. 

The next section describes the traditional list scheduling algorithms such as 
Gibbons and Muchnick and the Balanced schedulers. 

2 Traditional scheduling heuristics 

2.1 The Gibbons and Muchnick (GM) scheduler 

This is a well-known example of a list scheduling algorithm proposed originally 
for scheduling instructions in pipelined architectures [2]. The algorithm selects 
the instructions to be scheduled from a directed acyclic graph, beginning at 
the roots. The instructions are selected for scheduling if all their immediate 
predecessors have been scheduled. These ready instructions are prioritised on the 
following basis: if possible, an instruction is scheduled that will not interlock with 
the one just scheduled; given a choice, an instruction will be scheduled which is 
most likely to cause interlocks with instructions after it. The complexity in the 
absence of any lookahead in the instructions is 0(n 2 ), where n is the number of 
instructions in a basic block. 

2.2 The Balanced scheduler 

The Balanced scheduler [3] was devised to take account of unpredictable memory 
access latencies. The idea is to compute weights for load instructions based on 
the number of available independent instructions. The instructions are scheduled 
as in a traditional list scheduler with independent instructions being distributed 
behind loads to buffer for unpredictable memory accesses. This idea is extended 
beyond the load instruction to all the instructions in the MAP architecture. The 
priority for ready instructions is based on a weighted sum of values derived from 
MAP tailored heuristics - whether the instruction uses the same resources as the 
previous scheduled one; the number of immediate successors of the instruction; 



the length of the longest path from the instruction to the leaves of the DAG; 
and the number of source registers which are freed should the instruction be 
scheduled which effectively takes account of the register pressure. 

3 The "Penalise True Dependencies" (PTD) scheduler 

The essence of this heuristic is to identify true data and resource dependencies 
and re-order, where possible, the instructions such that their detrimental effect 
is reduced. The schedule is allocated a penalty measure based on the number 
and type of these dependencies. A true consecutive data dependency is penalised 
by one which is treated as the base case. If the dependency is with a branch or 
load instruction then it is penalised more severely. The actual value depends on 
the relative latencies of the functional units as shown in Table 1. 

Instructions with resource dependencies are treated in a similar manner. If 
there are say p functional units of Type A, q units of Type B and r units of Type 
C, then a sequence containing more than p consecutive instructions of Type A, or 
q of Type B, or r of Type C will incur penalties. This assumes that the latencies 
of the three types of FUs are approximately the same; the run-length of the 
instructions can be suitably amended to take account of different latencies. The 
algorithm to derive this measure has a complexity of 0(n). 

Cases of Consecutive Separated 
dependencies instructions by one inst. 

True dependency 
with a load inst. 3 1 
True dependency 

with a branch inst. 2 0 
Resource dependency 

within mem. inst. 1 0 
Normal true 
dependencies 1 0 

Table 1. Table of penalties for true data dependencies. 

We next demonstrate the correlation between the penalty measure consid-
ering only the true data dependencies and the makespans of the schedules for 
the program in Figure 1. The target asynchronous architecture has three types 
of functional units: an arithmetic unit (AU), logic unit (LU) and the memory 
unit (MU). The latency values for the units ranged over an interval, as shown in 
Table 2, with a Gaussian distribution. The results from a stochastic simulator 
which exhaustively simulated all the schedules (24,192) and averaged the results 
over 20 runs are shown in Figure 2. This result is representative of simulations 
of other programs with different spread of latencies. We can observe the trend 
that the penalty measure increases in step with the makespans of the schedules. 
This should ideally be a strict monotonic function, but the overlaps between the 



schedules of neighbouring penalties are tolerable for the heuristic approach. A 
scheduler based on minimising the penalty measure is introduced in the next 
section. 

L4. main: 
muli $13,$9,4 
la $14,$29,0 

main() { addu $15,$14,$13 
muli $24,$9,4 
la $25,$29,0 

mt i, 	j, 	n = 	10; addu $11,$25,$24 
mt x[10]; 1w $12,$11,0 

muli $13,$10,4 
for (i = 0; 	i < n; 	i++) la $14,$29,0 
for (j = 0; 	j 	< n; 	j++) addu $24,$14,$13 

x[i] = x[i] 	* x[j]; 1w $25,$24,0 
mul $11,$12,$25 
SW $11,$15,0 

} addui $10,$10,1 
sit $12,$10,$8 
bt $12,L4.main 

Figure 1. C and MAP assembly code from our example. 

Component 
type 

Minimum 
latency 

Maximum 
latency 

Issue Unit (IU) 1.00 ns 2.00 ns 
Input buses 2.00 ns 4.00 ns 
Output buses 2.00 ns 4.00 ns 
Arithmetic Unit (AU) 4.00 ns 8.50 ns 
Logical Unit (LU) 2.00 ns 7.00 ns 
Memory Unit (MU) 10.00 ns 20.00 ns 

Table 2. Latencies values for the target architecture. 

3.1 The PTD scheduler 

The PTD scheduler works in two phases: in the first phase the contention for 
resources is minimised, and in the second phase consecutive data dependent 
instructions are separated. 

In the first phase, the types of consecutive instructions are compared and 
instructions are moved, where possible, so that the overall penalty measure is 
reduced, such that the number of consecutive instructions of the same type is 
no greater than the number of functional units of that type. 
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Figure 2. Execution distribution for the example. 

In the second phase, the schedule is again scanned from start to finish, 
to identify consecutive data dependencies, and independent instructions are 
sandwiched in between them so that the overall penalty measure is reduced 
to zero or cannot be reduced any further due to the lack of suitable instruc-
tions. The details of the PTD scheduler are shown in Figure 3. The functions 
PTD -arrange Jeft () and PTD_arrange..right () traverse the schedule in both 
directions in search of independent instructions for insertion immediately after 
the penalised one. Two transformations are employed: a swap operation and a 
move-ahead operation and their use is illustrated in the following example. 

Let 1, no, it and o represent consecutive instructions in a schedule with a data 
dependency between n and o. This is represented by n —* o. The conditions 
for performing a swap(m, it) transformation which eliminates (or reduces) the 
penalty to o, are the following: 

- in 	it (no is independent of n), 
- in 74 o (not producing a penalty) and 
—174n 

If the penalties go beyond consecutive instructions then in order to ensure 
that the penalty measure will be reduced after the swap, the necessary condition 
is that the sum of penalties before the movement is greater than the measure 
after the transformation is made. 

The conditions for performing a m.ove_aheod(x, n) (moves x ahead of n) to 
eliminate (or reduce) the penalty to o, are the following: 

- 	xIIa,...,xIIl,xlIzn,xIIn, 
- x 74o and 
— 	74 .r. 1  where x_ 1  and x1  are the instructions previous and following 

i, respectively. 



void PTD_second_phase(dagnodes *root) { 
measure = PTD_measure(root, second-phase); 
if (measure > 0) 
do { 

node = root; 
last-measure = measure; 

while (node ! NULL) { 
if (node -> PTD.penalised > 0) 
PTD_arrange_left (node); 

if (node -> PTD.penalised > 0) 
PTD_arrange_right (node); 

node = node -> next; 
} 

measure = PTD_measure(root, second_phase); 
} while (measure < last-measure && measure > 0); 

} 

Figure 3. The PTD scheduling algorithm - Phase 2. 

Again to generalise the rules to allow a move-ahead, the sum of penalties 
before the insertion must be greater than the total number of penalties after the 
instruction has moved. 

The conditions just outlined apply for the PTD -arrange left () function 
which examines the left-hand side of the penalised instruction. The analogous 
conditions apply for the PTD -arrange right() function but have been omitted 
for the sake of brevity. These conditions are sufficient to preserve the semantics 
of the program and reduce the PTD measure. 

There will be cases where the only way to decrease the PTD measure of a 
schedule would be to replace a high penalty, i.e. load from memory, with a less 
expensive one, such as a "move register" instruction. So in terms of the penalty, 
one of 3 is reduced to 2 by moving an offending instruction, but the goal of 
reducing the overall measure is still accomplished. 

The complexity of the PTD scheduler is 9(n e) where e is the number of 
penalties in the schedule. The worst case is one in which the schedule has at 
most n—i consecutive dependencies (a pure sequential code) giving a complexity 
of (n 2 ) and the best case is 0(n). The linear-time complexity for the PTD 
scheduler is better than the 0(n 2 ) for the list scheduler [2] and 0(n 2  a n) 1  for 
the balanced scheduler [3]. 

4 Results 

We next compare the quality of schedules produced by the Balanced, Gibbons 
and Muchnick (GM) and the PTD schedulers for a range of benchmarks which 

1  a is the inverse of the Ackerman function. 



represent both loop-intensive (Livermore loops) and control-intensive categories 
of programs. These were compiled on the SUIF Compiler for the MAP tar-
get, but without any MAP-specific optimisations, and provided the same base 
schedule for the three schedulers under comparison. 

The schedules were simulated on a discrete-event model of the MAP archi-
tecture. An architecture file describes the functionality and interconnection, 
and the spread of latencies as shown in Table 2. The distribution of latencies 
were chosen to best reflect the behaviour of the functional unit. The bimodal 
distribution for the Memory Unit captures the behaviour due to cache hits and 
misses. The distribution of the latencies for the Arithmetic Unit is based on the 
graph in Figure 4 in [4], and the distribution is uniform for the Logic Unit. 

The simulation results presented in Figure 4, represent the average of five 
simulation runs for each program. They represent the percentage improvement 
with respect to the base case, i.e. the SUIF compiler output. The PTD scheduler 
outperforms the other two schedulers on both the control-intensive and loop-
intensive programs. 

When the number of AUs is increased from one to two (Fig. 5), we see a 
marked improvement in the schedules, but this tapers off when the AUs are 
increased further. This could be improved upon by scheduling instructions bey-
ond the basic blocks. The favourable run-time complexity of the PTD algorithm 
makes this a practical proposition. 
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Figure 4. Average improvement for the whole set of benchmarks. 

5 Conclusions 

The PTD scheduler provides a simple yet effective method for scheduling in- 
structions within basic blocks for programs running on MAP architectures. It 
has a better time complexity than the other two well-known list schedulers, and 
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Figure 5. Ratio between the 1 AU and the other configurations. 

the quality of the PTD schedules are better for a range of control- and loop-
intensive benchmarks. The method reduces the stalls of the Issue Unit due to 
true data dependencies between instructions and enables better utilisation of 
the functional units by reducing the resource contention between instructions. 
The performance of the scheduler was investigated when the number of Arith-
metic Units was scaled from 1 to 4. Future work will investigate the scheduling 
of instructions beyond the basic block boundaries for better utilisation as the 
functional units are scaled. 
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Abstract 

The Penalise True Dependences (PTD) scheduler considered the 
effects of true dependences between successive instructions and con-
tention for resources to better utilise the functional units in micronet-
based asynchronous processors. This paper presents an improved ver-
sion which considers dependences beyond successive instructions, and 
identifies clearly through subgraphing instructions which could be mov-
ed to reduce the effects. Performance results are presented where 
the improved PTD scheduler compares favourably against two well-
known list schedulers - the Gibbons and Muchnick [4] and the balanced 
scheduler [5]. 

1 Introduction 

Micronet-based asynchronous processor (MAP) architectures [1] consist of 
a network of functional units which operate concurrently and communic-
ate asynchronously. The issue and execution of instructions consist of a 
sequence of micro-operations involving the Issue Unit, Operand Fetch Unit, 
the Register File and the appropriate Functional Units (Figure 1). An in-
struction is issued when its operands are available. It runs to completion 
unless it is stalled due to resource contention at any of the following points 
in the trajectory of the instruction: the read ports of the register files, the 
functional units, and the write-back port. The latencies of the instructions 
are not fixed (in contrast to clocked processors), but depend on a num-
ber of factors: instruction type, the data on which they operate, and the 
contention for resources which in turn depends on the mix of instructions. 
Data dependences between successive instructions introduce other delays in 
asynchronous architectures. In synchronous datapaths, for instance, we can 
predict exactly when the result of a previous instruction will be available in 
order to issue the following instruction. In the case of the micronet the issue 
unit will have to stall for a period of time until the result of the previous 
instruction is written back to the register file. 



In scheduling instructions for a micronet-based target, we seek to min-
imise the effects of resource contention and data dependences in an envir-
onment where the latencies of the instructions are themselves not fixed but 
vary over a range. In a previous paper [2], we had proposed a method for 
scheduling instructions for MAP datapaths. The Penalise True Dependence 
(PTD) scheduler calculates a penalty measure which reflects the degree of 
resource contention and stalls due to data dependences. The scheduler ad-
dresses the problem by moving instructions around which would result in a 
legal schedule with a lower penalty measure. (Tables 1 and 2 give the range 
of latencies for the functional units and the penalty measures). 

Figure 1: The MAP target architecture 

This paper presents improvements to the PTD scheduler. Firstly, candid-
ates for penalties are extended to include dependences beyond just successive 
instructions. Secondly, the basic blocks of instructions are subdivided into 
subgraphs to scope the candidates selected for moving instructions. 

In the rest of this paper, the algorithm is described and its time com-
plexity is derived, and performance results are presented where the improved 
PTD scheduler compares favourably against two well-known list schedulers 
- the Gibbons and Muchnick [4] and the balanced scheduler [5]. 



Component 
type 

I Minimum 
latency 

Maximum 
latency 

Issue Unit (IU) 1.00 ns 2.00 ns 
Input buses 2.00 ns 4.00 ns 
Output buses 2.00 ns 4.00 ns 
Arithmetic Unit (AU) 4.00 ns 8.50 ns 
Logical Unit (LU) 2.00 ns 7.00 ns 
Memory Unit (MU) 10.00 ns 20.00 ns 

Table 1. Latencies values for the target architecture. 

Cases of Consecutive Separated 
dependences instructions by one inst. 

True dependency 
with a load inst. 3 1 
True dependency 

with a branch inst. 2 0 
Resource dependency 

within mem. inst. 1 0 
Normal true 
dependences 1 0 

Table 2. Table of penalties for true data dependences. 

2 An improved PTD scheduler 

The objective of the scheduler is to minimise, where possible, the penalty 
measure for a given schedule of instructions within a basic block. The ap-
proach is a greedy one, whereby candidates for movement are chosen such 
that no new penalties are introduced. This guarantees that the penalty 
measure is always reduced after each movement. Consecutive instructions 
are assigned higher penalties as they can potentially result in larger stalls. 
The value of the penalty falls with the distance between the producer and 
consumer of the result. The maximum distance that we would need to con-
sider is equal to the number of functional units which can potentially operate 
in parallel. 

The value of the penalty also depends on the types of functional units 
involved. For example, the cost of a true dependency between a memory load 
instruction is higher than between a register one. Tables 1 and 2 illustrate 
the latencies of the different units and the respective penalties. The same 
idea is extended to penalising resource conflicts. 



2.1 Complexity 

The time complexity of the improved PTD scheduler is now 0( pnec+pnc+ 
pn), where n is the number of instructions in the basic block, e is the 
number of penalties, p is the number of functional units in the architecture, 
and c is a small constant (c = 2, 3,4). If we analyse the above expression, 
the complexity of the scheduler can be reduced to 0( ne). However, in 
general conditions, as the algorithm progresses the number of penalties is 
reduced and therefore n becomes bigger than e, which means that the 
complexity can be reduced to 0(n). 

The upper bound, which is represented by a pure sequential code, is 
0(n2 ), with e = n—i and c = 2. Conversely, the lower bound is represented 
by a pure independent code and is the order of 0(n), with e = 0. 

2.2 Subgraphs 

A basic block is composed of a group of instructions that are related in 
an ordered way which perform computation over data and which may be 
divided into subcomponents (subgraphs) that perform part of the overall 
computation. For example, two separate subgraphs would be the compu-
tation of an address and the data that would be loaded or stored in that 
address. An example of a directed acyclic graph DAG with two subgraphs 
is shown in Figure 2. The node numbering reflects the order in the schedule 
and the highlighted arcs denote penalties. 

A reordering of instructions by moving instruction 5 in between instruc-
tions 2 and 3, and instruction 6 in between 3 and 4, resulting in the sequence 
"2 5 3 6 4", would improve the penalty measure. Any further improvement 
is restricted by the overlapping chains of dependences between 2 and 3, and, 
5 and 6. Ideally, an unrelated instruction between 5 and 3 would further 
reduce the penalty measure. Dividing the basic block DAG into subgraphs 
identifies potential source of independent instructions which can be moved to 
a smaller search area. In the example, the subgraph on the right is a better 
prospect for independent instructions to move between 2 and 3, and, 3 and 
4, and would not result in overlapping chains. In practice, there is a greater 
probability of finding independent instructions from other subgraphs. 

The selection and size of the subgraphs deserve attention. If the size is 
too small, then there is a greater chance of producing overlapping chains. If 
the size is too large, then the advantages of the subgraphs are diluted. 

The granularity concern for the scheduler can be exemplified in the DAG 
example in Figure 2. If we choose a subgraph formed from nodes i, 2, 3 and 
4, and another subgraph from nodes 5, 6, 7, 8 and 9, the scheduler would try 
to intermix the penalties marked and this will end with overlapping chains. 



Figure 2: A basic block decomposed by two subgraphs. 

The selection of subgraphs is based on the number of predecessors of 
each instruction and the ratio between the number predecessors and the 
height from its leaves. The number of predecessors is needed to indicate the 
size of the DAG at the point and the ratio between this parameter and the 
actual height is a rough measure of the potential parallelism in that part of 
the DAG. 

3 Results 

The improved PTD scheduler was compared against two other local sched-
ulers, the balanced scheduler [5] and the original list scheduler from Gibbons 
and Muchnick (CM) [4]. In all the cases the scheduling was performed before 
register allocation and were tested over a set of benchmarks. An event-driven 
stochastic simulator was used to simulate them. The target architecture had 
one memory unit, one arithmetic unit, one logical unit and one branch unit. 

The set of benchmarks chosen was the set of Livermore loops [3] (few 
basic blocks), and a set of control-intensive programs with a larger number 
of small basic blocks. Figure 3 depicts the comparison in performance for the 
three schedulers. The results presented are the average of five simulations 
for each benchmark. 

The improved PTD scheduler consistently outperforms the other sched-
ulers for the two set of benchmarks. In the case of Loop7, we see the detri-
mental effect of overlapping chains which are located in the critical path of 
the basic block in spite of subgraphing. 
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Figure 3: Performance comparison between the three schedulers. 

4 Conclusions 

The results from the simulations show that the PTD scheduler produces 
better quality schedules and has a lower time complexity than the list and 
balanced schedulers (The complexity of the list scheduler being 9( n 2 ), and 
0(71 2 a(n)) for the Balanced scheduler). The potential limitation is the in-
troduction of overlapping chains, but in most cases this can be avoided by 
dividing the basic blocks into subgraphs. 
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Appendix B 

Description File 

#System 

II-UNIT 0 1 3 1.00 1.55 2.00 0.00 0.50 1.00 

XBUS 1 1 3 2.00 2.70 4.00 2.00 2.70 4.00 

YBUS 1 1 3 2.00 3.15 4.00 2.00 3.15 4.00 

ALUI 2 1 3 4.00 6.50 8.50 0.00 0.00 0.00 

LUNIT 4 1 3 2.00 4.00 7.00 0.00 0.00 0.00 

ZBUS 6 1 3 2.00 2.85 4.00 2.00 2.85 4.00 

XFBUS 1 1 3 2.00 3.05 4.00 2.00 2.95 4.00 

YFBUS 1 1 3 2.00 3.10 4.00 2.00 3.00 4.00 

ALUF 3 1 3 6.00 6.95 8.00 0.00 0.00 0.00 

ZFBUS 6 1 3 2.00 3.05 4.00 2.00 3.00 4.00 

MUNIT 5 1 3 10.00 15.00 20.00 0.00 0.00 0.00 

WBUS 1 1 3 2.00 3.25 4.00 2.00 3.25 4.00 

#Enddef 

#Group 0 Integer Alu Group 

Number of stages 4 

II-UNIT 

XBUS YBUS 

ALt) I 

ZBUS 

#Instruct ion 

add 	ALU_SUM 

addi ALU_SUM 

addu ALU_SUMU 

addui ALU SUMU 

sub 	ALU_DIF 

subi ALU_DIF 

subu ALU_DIFU 

subui ALU DIFU 

neg 	ALU_MEG 
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negu ALU_NEGU 

mov 	ALU_CPY 
la 	ALU_LDA 
ii 	ALU_LDC 
lai 	ALU_LDC 
rem 	ALU_REM 
remi ALU_REM 
remui ALU_REMU 

div ALU_DIV 
divi ALU_DIV 
divu ALU_DIVU 
divui ALU_DIVU 

mul 	ALU_MUL 
muli ALU_MUL 
mulu ALU_MULU 
mului ALU_MULU 

mtcl ALU_CPY 
mtcLd ALU_CPY 
ctcl ALU..CPY 
ctcl.d ALU_CPY 

#Group 1 Floating ALU Group 
Number of stages 4 
II-UNIT 
XFBUS YFBUS 
ALUF 
ZFBUS 

#Instruct ion 
add.s FALU_SUM 
sub.s FALU_DIF 
mul.s FALU_MUL 
div.s FALU_DIV 

add.d FPILU_SUM 
sub.d FALU_DIF 
mul.d FALU_MUL 
div.d FALU_DIV 

add.di FALU_SUM 
sub.di FALU_DIF 
mul.di FALU_MUL 
div.di FALU_DIV 

neg.d FALU_NEG 

mov.d FALU_CPY 
mov.s FALU_CPY 

li.d 	FALU_LDD 
u.s 	FALU_LDS 
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li.w 	FALU_LDW 

cfcl 	FALU_CPY 
cfcl.d FALUCPY 
mfcl 	FALU_CPY 
mfcl.d FALU_CPY 

sqrt.d 	FALU_SQRT 
sqrt.s 	FALU_SQRT 
sqrt.w 	FALU_SQRT 

trunc w d FALU_TRUNC 
trunc w. s FALU_TRUNC 
round w d FALU_ROUND 
round w. s FALU_ROUND 

cvt.d.s FALU_LDD 
cvt.d.w FALU_LDD 
cvt.s.d FALU_LDS 
cvt.s.w FALU_LDS 
cvt.w.d FALU_LDW 
cvt.w.s FALU_LDW 

c.eq.d 	FALU_EQ 
c.eq.s 	FALU_EQ 
c.f.d 	FALU_FALSE 
c.f.s 	FALU_FALSE 
c.ge.d 	FALU_GE 
c.ge.s 	FALU_GE 
c.gl.d 	FALU_GL 
c.gl.s 	FALU_GL 
c.gle.d FALU_GLE 
c.gle.s 	FALU_GLE 
c.gt.d 	FALU_GT 
c.gt.s 	FALU_GT 
c.le.d 	FALU_LE 
c.le.s 	FALU_LE 
c.lt.d 	FALU_LT 
c.lt.s 	FALU_LT 
c.neq.d FALU_NEQ 
c.neq.s FALU_NEQ 
c.nge.d FALU_NGE 
c.nge.s FALU_NGE 
c.ngl.d FALU_NGL 
c.ngl.s FALU_NGL 
c ngle d FALU_NGLE 
c ngle. s FALU_NGLE 
c.ngt.d FALU_NGT 
c.ngt.s FALU_NGT 
c.nle.d FALU_NLE 
c.nle.s FALU_NLE 
c.nit.d FALU_NLT 
c.nit.s FALU_NLT 
c.t.d 	FALU_TRUE 
c.t.s 	FALU_TRUE 
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bclt 	BUT 
bclf 	BCXF 

#Group 2 Memory load/store group 
Number of Stages 4 
II-UNIT 
XBUS YBUS 
MUNIT 
ZBUS 

#Instruction 
lv 	LD_W 
lvi 	LDI_W 
sv 	ST_W 
swi 	STI_W 

lh 	LD_B 
ihi 	LD_B 
ihu 	LD_BU 
lhui LDI_BU 
sh 	ST_B 
shi 	ST_B 
shu 	ST-BU 
shui STI_BU 

lb 	LD_B 
lbi 	LDI_B 
lbu 	LD_BU 
lbui LDI_BU 
sb 	ST_B 
sbi 	STI_B 
sbu 	ST-BU 
sbui STI_BU 

sd 	ST_W 

l.d 	FLD_W 
l.di FLDI_W 
l.s FLD_W 
l.si FLDI_W 

s.d 	FST_W 
s.di FSTI_W 
s.s FST_W 
s.si FSTI_W 

#Group 3 Logical operation group 
Number of stages 4 
II-UNIT 
XBUS YBUS 
LUNIT 
ZBUS 

#Instruction 
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sli 	LU_SL 
sili LU_SL 

sri 	LU_SR 
srii LU_SR 

sra 	LU_SRA 
srai LU_SRA 

and 	LUAND 
or 	LU_OR 
xor 	LU_XOR. 
mv 	LU_COM 
not 	LU_COM 

andi LU_AND 
ori LU_OR 
xori LU_XOR 
mnvi LU_COM 

seq 	LU_SEQ 
sne 	LU_SNE 
sit 	LU_SEL 
situ LU_SEL 
sie 	LU_SLE 
sieu LU_SLE 

flop 	LU_NO? 

imp 	JMP 
bf 	BRIF 
bt 	BRIT 
call CALL 
ret RET 
reti RETI 
halt HALT 

#Enddef 
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Appendix C 

Comparison of the schedulers 
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C.1 Local Scheduling 

Local Scheduling 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 20.37% 17.30% 25.85% 
livermore 18.66% 21.72% 25.76% 
fract 22.26% 26.72% 30.50% 
ii 7.14% 8.13% 8.89% 
puzzle 5.26% 3.02% 5.81% 
compress 19.26% 20.25% 24.01% 
go 9.28% 9.41% 14.09% 
m88k 11.81% 12.31% 15.54% 

Average 14.25% 14.86% 18.81% 

Geo. Mean 12.68% 12.45% 16.51% 

Table C.1: Performance execution improvement for the 1 AU configuration. 

Local Scheduling 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 40.55% 35.19% 43.37% 
livermore 43.52% 36.90% 47.40% 
fract 24.25% 28.21% 30.48% 
ii 6.45% 7.08% 7.38% 
puzzle 6.46% 1.73% 5.39% 
compress 26.63% 27.44% 26.85% 
go 10.71% 11.20% 11.02% 
m88k 15.17% 15.68% 16.86% 

Average 21.72% 20.43% 23.59% 
Geo. Mean 17.22% 14.68% 18.27% 

Table C.2: Performance execution improvement for the 2 AU configuration. 
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Local Scheduling 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmin 43.96% 39.02% 42.26% 
livermore 58.61% 53.27% 57.76% 
fract 24.53% 28.74% 31.38% 

ii 6.35% 6.92% 7.16% 
puzzle 3.11% 2.04% 2.98% 
compress 27.74% 28.45% 26.65% 
go 11.07% 11.51% 10.52% 

m88k 15.16% 15.76% 15.72% 

Average 23.82% 23.21% 24.30% 

Geo. Mean 16.62% 16.02% 17.06% 

Table C.3: Performance execution improvement for the 3 AU configuration. 

Local Scheduling 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 44.66% 39.39% 41.31% 

livermore 63.27% 57.98% 60.50% 
fract 24.53% 28.74% 30.95% 
li 6.35% 6.91% 7.15% 
puzzle 3.09% 2.02% 2.98% 
compress 27.82% 28.63% 26.63% 

go 11.16% 11.53% 10.64% 

m88k 15.06% 15.65% 15.67% 

Average 24.49% 23.86% 24.48% 

Geo. Mean 16.80% 16.20% 17.10% 

Table C.4: Performance execution improvement for the 4 AU configuration. 
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C.2 Global Scheduling 

Code Motion Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch. 

intmm 21.72% 17.37% 26.98% 20.37% 17.30% 25.85% 
livermore 19.16% 22.04% 26.80% 18.66% 21.72% 25.78% 
fract 23.71% 27.67% 30-81% 22.26% 26.80% 30.84% 

ii 7.94% 8.89% 9.12% 7.40% 8.76% 9.28% 
puzzle 10.92% 10.96% 23.47% 5.35% 3.14% 6.04% 
compress 20.27% 21.06% 27.13% 19.71% 20.78% 24.32% 
go 11.42% 11.80% 17.35% 10.04% 10.20% 15.05% 
m88k 12.60% 13.11% 16.22% 14.16% 14.61% 17.71% 

Average 15.97% 16.61% 22.23% 14.75% 15.41% 19.36% 

Geo. Mean 14.95% 15.52% 20.90% 13.23% 13.08% 17.15% 

Table C.5: Performance execution improvement for the 1 AU configuration. 

Code Motion Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch. 

intmm 42.53% 36.64% 46.77% 40.55% 35.19% 43.37% 
livermore 45.70% 38.66% 51.33% 43.53% 36.91% 47.38% 
fract 25.85% 29.33% 30.67% 24.26% 28.22% 30.48% 

li 7.40% 7.85% 7.58% 6.90% 7.67% 7.83% 
puzzle 14.41% 12.47% 22.42% 6.71% 1.98% 5.64% 

compress 27.80% 28.41% 30.52% 27.59% 28.43% 27.35% 

go 15.08% 15.15% 17.25% 11.84% 12.30% 12.05% 

m88k 17.05% 17.47% 17.84% 18.29% 18.74% 19.56% 

Average 24.48% 23.25% 28.05% 22.46% 21.18% 24.21% 

Geo. Mean 21.03% 20.45% 24.20% 18.16% 15.68% 19.12% 

Table C.6: Performance execution improvement for the 2 AU configuration. 
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Code Motion Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch. 
intmm 45.71% 40.26% 47.10% 43.96% 39.02% 42.26% 
livermore 61.65% 56.08% 62.82% 58.63% 53.26% 57.62% 
fract 26.12% 29.87% 31.66% 24.57% 29.01% 31.41% 
ii 7.34% 7.74% 7.37% 6.82% 7.49% 7.62% 
puzzle 16.05% 14.78% 19.21% 3.39% 2.31% 3.17% 
compress 28.93% 29.68% 30.34% 28.79% 29.54% 27.09% 
go 15.53% 15.74% 17.19% 12.25% 12.67% 11.57% 
m88k 16.37% 16.89% 16.65% 18.19% 18.72% 18.50% 

Average 27.21% 26.38% 29.04% 24.58% 24.00% 24.90% 
Geo. Mean 1 	22.42% 22.29% 24.14% 17.65% 17.10% 17.93% 

Table C.7: Performance execution improvement for the 3 AU configuration. 

Code Motion Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch. 

intmm 46.46% 40.66% 46.00% 44.66% 39.39% 41.31% 
livermore 66.48% 61.06% 65.71% 63.29% 57.97% 60.42% 
fract 26.13% 29.88% 32.28% 24.58% 29.01% 31-11% 
ii. 7.34% 7.73% 7.37% 6.82% 7.49% 7.61% 
puzzle 17.40% 16.02% 19.21% 3.36% 2.28% 3.16% 
compress 28.99% 29.83% 30.32% 28.88% 29.72% 27.07% 
go 15.61% 15.73% 17.34% 12.32% 12.67% 11.70% 
m88k 16.27% 16.77% 16.68% 18.09% 18.61% 18.45% 

Average 28.08% 27.21% 29.36% 25.25% 24.64% 25.10% 
Geo. Mean 22.91% 22.77% 24.29% 17.84% 17.27% 17.98% 

Table C.8: Performance execution improvement for the 4 AU configuration. 
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Code Motion and Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. 

intinm 21.72% 17.37% 29.13% 
livermore 19.16% 22.05% 24.96% 
fract 23.78% 27.75% 32.99% 
ii 8.01% 9.05% 9.30% 
puzzle 10.96% 11.00% 23.53% 
compress 20.27% 21.06% 27.13% 
go 11.93% 12.39% 18.10% 
m88k 14.14% 14.65% 18.62% 

Average 16.25% 16.92% 22.97% 
Geo. Mean 15.28% 15.88% 21.64% 

Table C.9: Performance execution improvement for the 1 AU configuration. 

Code Motion and Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 42.53% 36.64% 46.77% 
livermore 45.72% 38.66% 50.92% 
fract 25.95% 29.44% 30.67% 
ii 7.48% 8.01% 7.86% 
puzzle 14.60% 12.65% 22.48% 
compress 27.80% 28.41% 30.98% 
go 15.76% 15.88% 18.10% 
m88k 19.74% 20.09% 20.84% 

Average 24.95% 23.72% 28.58% 
Geo. Mean 21.61% 21.03% 24.96% 

Table C.10: Performance execution improvement for the 2 AU configuration. 
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Code Motion and Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmin 45.71% 40.26% 47.10% 
livermore 61.65% 56.06% 62.42% 
fract 26.21% 29.97% 32.47% 
ii 7.41% 7.84% 7.68% 
puzzle 16.17% 14.89% 19.22% 
compress 28.93% 29.69% 30.84% 
go 16.28% 16.52% 18.08% 
m88k 19.34% 19.80% 19.73% 

Average 27.71% 26.88% 29.69% 

Geo. Mean 23.09% 22.94% 25.05% 

Table C.11: Performance execution improvement for the 3 AU configuration. 

Code Motion and Tail Duplication 

Benchmark GM. sch. Bal. sch. PTD sch. 

intmm 46.46% 40.66% 46.00% 
livermore 66.48% 61.06% 65.52% 
fract 26.22% 29.98% 33.71% 
ii 7.41% 7.83% 7.67% 
puzzle 17.53% 16.14% 19.22% 
compress 28.99% 29.83% 30.93% 
go 16.35% 16.51% 18.19% 
m88k 19.22% 19.68% 19.73% 

Average 28.58% 27.71% 30.12% 
Geo. Mean 23.59% 23.44% 25.27% 

Table C.12: Performance execution improvement for the 4 AU configuration. 
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