
Instruction Scheduling in Micronet-based
Asynchronous ILP Processors

Salvador Sot elo-Salazar

Doctor of Philosophy
University of Edinburgh

2003

Abstract

Optimisations for Instruction-level Parallelism (ILP) in synchronous processors

can assume deterministic execution times for instructions. However, in asynchron-

ous architectures it is less certain in advance when instructions complete execution

and when results become available. The instruction latency depends on a number

of factors, including the input data, the type of computation, and contention for

architectural resources at run-time. In particular, in micronet-based asynchron-

ous processors, which feature non-linear pipelines and out-of-order completion,

instructions would compete for resources and overtake other instructions. Such

a behaviour makes it more difficult to consistently predict at compile-time, the

optimal order of instruction execution.

This thesis investigates the problem of optimisations for ILP in micronet-based

asynchronous processors. A novel scheduler called Penalise True Dependency

(PTD) is presented for scheduling instructions within basic blocks, which min-

imises stalls due to data dependencies and resource contentions. PTD has been

extended to perform global optimisations using this metric on techniques such as

code motion, code and tail duplication, and block merging, and in the appropriate

order to minimise code expansion.

The simulation results for a subset of the SPEC95Int benchmarks executing

on an instruction set simulator of the micronet-based asynchronous processor

demonstrate that the PTD scheduler outperforms traditional scheduling methods

such as list schedulers, and has a better algorithmic time complexity.

Acknowledgements

I would like to thank my supervisor Damal K. Arvind for all his encouragement

and support throughout this research. His numerous advises and suggestions have

had a very positive outcome for this work.

My parents, Salvador and Maria Guadalupe, who have been a constant unlim-

ited support, I thank them for their patience through all these years. Los quiero

mucho.

I would also like to thank to the members of the MAP group (Lennart Beringer,

Robert Mullins, Vinod Rebello, Johannes Schneiders and Christos Sotiriou) for

their useful discussions and comments. A pleasure to work with.

I could not forget Paul Coe, Adam Donlin, Jonathan Meddes, Dominic Stanyer

and Lawrence Williams for their friendship on and off work.

Many thanks to my friends Pedro, John, Arturo, Alex and many others that

made my stay in Edinburgh to be a very enjoyable experience.

Thanks to the School of Informatics from the University of Edinburgh for

providing me with the environment and the material to accomplish this research.

I would also like to thank my second supervisor Dr. Tim Hopkins for his

support during the early stages of this research.

Finally, I would like to thank Conacyt for the confidence and support they

offered me by granting me with the studentship.

Salvador Sotelo

Declaration

This thesis was written by myself. The work and results reported herein are

my own except where otherwise stated.

Salvador Sotelo

Table of Contents

List of Figures 	 5

List of Tables

Chapter 1 Introduction 	 11

	

1.1 	Contributions of the Thesis 12

	

1.2 	Thesis Structure13

Chapter 2 Background 15

2.1 	Compilers 15

2.1.1 	Compiler Optimisations 16

2.1.2 	Data Dependencies 20

2.1.3 	Control Dependencies 21

2.2 	ILP Processor Architectures 22

2.2.1 	Pipeline Hazards 23

2.2.2 	Scalar and Superscalar Architectures 26

2.2.3 	VLIW Architectures 27

2.2.4 	EPIC architectures 28

2.2.5 	Transport-Triggered Architectures 28

2.3 	Asynchronous Control 30

2.4 	Summary 32

Chapter 3 Towards Schedulers for Asynchronous Architectures 34

	

3.1 	Local Scheduling Definitions35

	

3.2 	Local Scheduling Theory36

3.2.1 	Complexity Issues40

3.2.2 Types of Scheduling Algorithms41

3.3 Instruction Scheduling in Synchronous Architectures43

3.3.1 List Scheduling for Synchronous Platforms43

3.3.2 Synchronous Model for the Compiler47

1

a

3.3.3 	Common Heuristics for List Schedulers 48

3.4 	Asynchronous Circuits 50

3.4.1 	Introduction 50

3.4.2 	Advantages 53

3.4.3 	Disadvantages 56

3.4.4 	A Compiler Model for Asynchronous Architectures 	. . 58

3.4.5 	Considerations for the Compiler 61

3.5 	Summary 62

Chapter 4 	Asynchronous Architectures 64

4.1 Introduction 64

4.2 Review of Asynchronous Architectures 64

4.2.1 	AMULET 64

4.2.2 	NSR and Fred 66

4.2.3 	Caltech Asynchronous Processors 66

4.2.4 	Counterfiow Architecture 67

4.2.5 	SCALP 67

4.3 The Micronet Architectural Model 69

4.3.1 	Preliminaries 69

4.3.2 	Previous Work 70

4.3.3 	Architectural Description 71

4.3.4 	Parametric Model 76

4.3.5 	Characteristics 79

4.3.6 	Event-driven Simulator 80

4.4 Summary 82

Chapter 5 Local Scheduling for Micronet-based Architectures 	84

5.1 	Introduction 84

5.2 	The Influence of Dependencies 85

5.2.1 	Data Dependencies 85

5.2.2 	The Effects of Resource Dependencies 90

5.2.3 	The Combined Effect of Data and Resource Dependencies 90

5.2.4 	Applying Penalties to a Schedule 91

5.3 	The Penalise True Dependencies (PTD) Scheduler 92

5.3.1 	Extending the PTD Measure 97

5.3.2 	Safety Conditions for Reducing Penalties 98

5.3.3 	Reduction of Resource Penalties 99

5.4 	The PTD Scheduler Algorithm 99

5.5 Additional Concepts in the PTD Scheduler 110

5.5.1 	Static Memory Disambiguation 110

5.5.2 	Subgraphs 113

5.6 Algorithmic Complexity 117

5.7 Discussion 119

5.7.1 	Overlapping Penalties 120

5.7.2 	Input Sensitivity 120

5.8 Summary 121

Chapter 6 	Global Optimisations 124

6.1 Introduction 124

6.2 Related Work 125

6.2.1 	Trace Scheduling 126

6.2.2 	Superblock Scheduling 126

6.2.3 	Hyperblock Scheduling 127

6.2.4 	Dominator-path Scheduling 127

6.2.5 	Code Motion 127

6.3 Global Scheduling for the Micronet Model 128

6.3.1 	Definitions 129

6.3.2 	Code Motion for the PTD Scheduler 131

6.3.3 	Code Duplication for the PTD Scheduler 135

6.3.4 	Safety Conditions 136

6.4 Global Optimiser for the Micronet Model 137

6.4.1 	Tail Duplication and Block Merging for the PTD Scheduler 138

6.5 Algorithms 140

6.6 Discussion 145

6.7 Summary 149

Chapter 7 	Experimental Results 151

7.1 Introduction 151

7.2 Evaluation Framework 151

7.2.1 	SUIF Compiler 152

7.2.2 	The Compilation Process 152

7.2.3 	Other Schedulers for Comparison 153

7.2.4 	Instruction-level Simulator for the Micronet Architecture 154

7.2.5 	Evaluation Process 154

7.3 Benchmarks 155

7.4 Experimental Results 158

3

7.4.1 Local Optimisations 	 158

7.4.2 	Global Optimisations186

	

7.5 	Discussion198

	

7.6 	Summary 201

Chapter 8 	Conclusions and Future Work 203

8.1 PTD 	Scheduler 204

8.1.1 	Penalty Measure 204

8.1.2 	Local Optimisations 204

8.1.3 	Global Optimisations 205

8.1.4 	Performance of the PTD Scheduler 206

8.2 Architectural Model 206

8.3 Future Work 207

8.3.1 	Profile Information 208

8.3.2 	Other Optimisations 209

8.4 Conclusions 209

Appendix A Published Papers 	 210

A.1 Scheduling Instructions with Uncertain Latencies in

Asynchronous Architectures210

A.2 An Improved PTD Scheduler for MAP Architectures219

Appendix B Description File 	 227

Appendix C Comparison of the schedulers 	 232

C.1 	Local Scheduling233

C.2 Global Scheduling235

Bibliography 	 239

in

List of Figures

2.1 Front-end of a typical compiler 16

2.2 Back-end of a typical compiler 17

2.3 Movement with compensation code, (a), and without (b)..... 20

2.4 Classification of an architecture depending on the division of re-

sponsibilities between the compiler and the architecture [136], and

an extension to it according to [77] 23

2.5 Pipeline stages, without interlocks, (a), and, with (b)....... 25

2.6 Synchronous control flow (a), and, asynchronous (b)........ 31

2.7 (a) Two-phase handshake and, (b) four-phase handshake. 32

3.1 	An example of a DAG37

3.2 (a) Non-preemptive and (b) preemptive schedules 38

3.3 (a) Non-greedy and (b) greedy schedules 	39

3.4 Representation of the scheduling problem 	40

3.5 (a) An expression-tree and (b) an equivalent DAG representation 	45

3.6 An alternative interpretation for the DAG from Figure 3.1. . 	48

3.7 New representation of the scheduling problem 60

4.1 (a) A synchronous pipeline, (b) an asynchronous pipeline and (c)

an asynchronous pipeline that exploits spatial parallelism. 71

4.2 Architectural model of the micronet-based datapath 73

4.3 The micronet operation . 78

5.1 Pipeline execution with true data dependencies: (a) from a memory

instruction, and (b) from a non-memory instruction 88

5.2 Sequence of instructions with penalties 	89

5.3 An example C-code and its inner loop assembly code equivalent 	93

5.4 DAG of the core loop in Figure 5.3 94

5.5 Makespans of the simulated schedules (y-axis) on a model of the

micronet architecture against the penalty measure (x-axis). . . 	95

5.6 Instruction search procedure to reduce penalties in the PTD sched-

uler. 96

5.7 An example of overlapping penalties 114

5.8 Basic block from Figure 5.4 decomposed into subgraphs 115

5.9 Code example in Figure 5.3 after scheduled by the PTD scheduler. 117

6.1 (a) Control flow graph and (b) its control dependence subgraph 	130

6.2 (a) Dominator-tree and (b) post domi nator-tree 131

6.3 Control flow graph with a loop . 132

6.4 Code motion in the PTD Scheduler 134

6.5 Code duplication in the PTD Scheduler 136

6.6 Global optimisations applied to the CFG from Figure 6.1 (a). 	139

6.7 (a) Example of a CFG with a loop and (b) its transformation. 	140

7.1 Flow of the evaluation process 155

7.2 Influence of subgraphs and memory disambiguation on the PTD

scheduler (1 AU) in terms of percentage improvement in the exe-

cution time 162

7.3 Influence of subgraphs and memory disambiguation on the PTD

scheduler (2 AU) in terms of percentage improvement in the exe-

cution time 162

7.4 Influence of subgraphs and memory disambiguation on the PTD

scheduler (3 AU) in terms of percentage improvement in the exe-

cution time 163

7.5 Influence of subgraphs and memory disambiguation on the PTD

scheduler (4 AU) in terms of percentage improvement in the exe-

cution time 163

7.6 DAG from livermore without memory disambiguation 164

7.7 DAG from livermore with memory disambiguation 164

7.8 Schedule for livermore generated with memory disambiguation

(a), 	and, 	without 	(b)......................... 165

7.9 DAG of the fract benchmark with subgraphs being applied. 	. 166

7.10 Schedule generated with (a), and, without subgraphs (b), for a

portion of the fract benchmark 167

7.11 Percentage improvement in the issue stalls for 1 AU 172

7.12 Percentage improvement in the issue stalls for 2 AU 173

7.13 Percentage improvement in the issue stalls for 3 AU. 174

7.14 Percentage improvement in the issue stalls for 4 AU 175

7.15 Normalised percentage improvement in the issue stalls for 2 AU 176

7.16 Normalised percentage improvement in the issue stalls for 3 AU 177

7.17 Normalised percentage improvement in the issue stalls for 4 AU 178

7.18 Local scheduler execution performance for the 1 AU configuration 182

7.19 Local scheduler execution performance for the 2 AU configuration 182

7.20 Local scheduler execution performance for the 3 AU configuration 183

7.21 Local scheduler execution performance for the 4 AU configuration 183

7.22 Simulation results for 1 AU 191

7.23 Simulation results for 2 AU 192

7.24 Simulation results for 3 AU 193

7.25 Simulation results for 4 AU 194

7.26 The most frequently executed function from puzzle 200

7

List of Tables

4.1 Latency distribution for the different components in ns. 77

5.1 Degree of the penalties depending of the type of dependency. . . 91

5.2 Static memory disambiguation scheme for the PTD scheduler. . . 113

7.1 Benchmark characteristics . 	
. 	 156

7.2 Distribution of types of instructions in the benchmarks. 157
7.3 Average benchmark compilation times (in seconds) 158
7.4 Standard deviations of the benchmarks' compilation times. 	. 	 . 158
7.5 Static memory disambiguation statistics 160
7.6 Percentage reduction in the issue stall by the schedulers (1 AU) 168
7.7 Percentage reduction in the issue stall by the schedulers (2 AU) 168
7.8 Percentage reduction in the issue stall by the schedulers (3 AU) 169
7.9 Percentage reduction in the issue stall by the schedulers (4 AU) 169
7.10 Average issue stall improvements for the four configurations. 	. 170
7.11 Number of out-of-order instructions (1 AU) 179
7.12 Number of out-of-order instructions (2 AU) 179
7.13 Number of out-of-order instructions (3 AU) 180
7.14 Number of out-of-order instructions (4 AU) 180
7.15 Performance execution improvement of the local schedulers for the

four configurations, with functional units' latencies as defined in

Table4.1................................ 184
7.16 Performance execution improvement of the local schedulers for the

four configurations, with latencies with equal range of values. 	. 185
7.17 Performance execution improvement with a memory unit's cache

hit:miss ratio of 9:1, and with cache penalty hit:miss ratio of 1:10 186
7.18 Code motion and code duplication statistics 187
7.19 Tail duplication/block merging statistics 188

7.20 Performance execution improvement of code motion for the four

configurations . 	
. 	 195

.41

7.21 Performance execution improvement of code duplication for the

four configurations 196

7.22 Performance execution improvement of both code motion and tail

duplication for the four configurations 	 197

7.23 Percentage reduction in the issue stall by the schedulers for the

puzzle benchmark (1 AU) 	 198

7.24 Percentage reduction in the issue stall by the schedulers for the

puzzle benchmark (2 AU) 	 198

7.25 Percentage reduction in the issue stall by the schedulers for the

puzzle benchmark (3 AU) 	 199

7.26 Percentage reduction in the issue stall by the schedulers for the

puzzle benchmark (4 AU) 	 199

C.1 Performance execution improvement for the 1 AU configuration. 233

C.2 Performance execution improvement for the 2 AU configuration. 233

C.3 Performance execution improvement for the 3 AU configuration. 234

C.4 Performance execution improvement for the 4 AU configuration. 234

C.5 Performance execution improvement for the 1 AU configuration. 235

C.6 Performance execution improvement for the 2 AU configuration. 235

C.7 Performance execution improvement for the 3 AU configuration. 236

C.8 Performance execution improvement for the 4 AU configuration. 236

C.9 Performance execution improvement for the 1 AU configuration. 237

C.10 Performance execution improvement for the 2 AU configuration. 237

C.11 Performance execution improvement for the 3 AU configuration. 238

C.12 Performance execution improvement for the 4 AU configuration. 238

List of Algorithms

5.1 PTD_scheduler (entry) algorithm 	 . . 	 99

5.2 PTD_resource_phase (root) algorithm 	 101

5.3 P TD_cons ecutive_p has e (root) algorithm 	 102

5.4 P TD_noncons ecutive_p has e (root) algorithm 	 103

5.5 PTD_arrange_left_data (node) algorithm 	 106

5.6 PTD_arrange_right_data (node) algorithm 	 107

5.7 check-left-swap (node, aux) algorithm 	 108

5.8 check-local-move (node, aux) algorithm 	 109

5.9 divide_subgraph (node, pred, size) algorithm 	 116

6.1 code-motion (region) algorithm 	 142

6.2 tail-duplication (region) algorithm 	 144

6.3 move-up (node, source-block, dest_block) algorithm. 	146

6.4 check-global-move (node, aux) algorithm 147

6.5 update- best_position (node, aux) algorithm 	 148

10

Chapter 1

Introduction

There has recently been a revival of interest in asynchronous computer archi-

tectures [161]. Computer architectures have traditionally been synchronous, i.e.

the components involved in computation and communication are controlled glob-

ally by a central clock. Asynchronous architectures, in contrast, sequence the

operations using local handshaking protocols [145]. Experimental prototypes of

asynchronous processors have been fabricated at the University of Manchester

[56][57][63], California [111][113] and Tokio Institute of Technology [121][164].

Notable examples in industry include Phillips' fully asynchronous DCC error cor-

rector [16] and an asynchronous 80051 micro-controller [59], Sharp's self-timed

data-driven multimedia processor [166], and some asynchronous parts in SUN's

U1traSPARCIII processor [99].

The execution times of instructions in a synchronous architecture is fixed at

the design phase and is expressed in terms of clock cycles. In micronet-based asyn-

chronous architectures, in contrast, the operations proceed at their own speed,

which implies that the execution times of instructions would vary in a manner

dependent on the data and local delays, and the availability of resources. This

poses an interesting problem for the compiler which can no longer assume a de-

terministic model which has been successfully exploited in instruction scheduling

and optimisations for synchronous pipelined architectures [25][67]. For instance,

it is now difficult to exploit conditions that cause a datapath to stall, such as

data hazards, which are defined in terms of clock cycles, which the compiler uses

to reorder instructions to avoid them. The complexity of the task of scheduling

instructions to different types of resources is known to be NP-hard [61], and there

exists a large body of work on heuristics for scheduling instructions in synchronous

architectures [12][34][64][92][100][124][132], but not so for asynchronous ones.

This thesis addresses the issue of efficient scheduling of instructions with un-

certain latencies in micronet-based asynchronous architectures. Micronet is a net-

11

work of entities which compute concurrently and communicate asynchronously. A

micronet-based processor [4][6][151] exhibits fine-grained concurrency, both spa-

tial and temporal [5]. The datapath is modelled as a network of functional units,

in which each instruction visits the appropriate functional units, and for as long

as is necessary to execute that part of the instruction. There are several instruc-

tions active at any time, and they compete for functional unit resources, and may

even overtake each other. Data consistency is maintained by a register locking

mechanism [127] which locks the destination register every time an instruction

is issued, and is only released when it is completed. Central to the performance

of the architecture is the ability to issue instructions rapidly and keep all the

functional units busy.

Generating efficient schedules for such a target is a challenging task. It is

uncertain when an instruction will be completed after it has been issued. Also,

the order of completion is not known in advance, as the instructions can complete

in an out-of-order fashion. The first attempt at a list-based scheduler did not

consider any variance in the costs for the functional units and adopted worst-case

figures [7].

1.1 Contributions of the Thesis

This thesis has proposed a new scheduling algorithm for asynchronous processor

architectures whose instruction latencies are uncertain. The uncertainty is due

to instruction-issue stalls caused by data dependencies and resource contention.

The scheduling algorithm statically estimates the effects of the instruction stall

for a given schedule. Data dependences in consecutive instructions cause the issue

unit to stall when waiting for the pending operand to be evaluated. A penalty

is assigned based on the parametric cost model for the instruction set. Resource

contention occurs when two instructions of the same type are scheduled and there

are not enough functional units of that type. A correlation was demonstrated

between a higher Penalise True Dependency (PTD) measure and longer execution

times of the programs, and vice versa.

The local scheduler which schedules instructions within a basic block is based

on the PTD measure. The aim is to minimise the number of penalties within the

basic block. The scheduler is prioritised to reduce the higher penalties first, e.g.

penalties due to load instructions, before dealing with the lower penalties. Once

the penalties due to consecutive instructions have been dealt with, the scheduler

tackles those due to non-consecutive ones.

12

The scheduler differs from traditional techniques based on the list scheduler,

i.e. ones which construct a list of ready instructions. The thesis demonstrates

that the complexity of the PTD scheduler is governed by the number of penalties

instead of the number of instructions, and its complexity is better than that of

the list scheduler.

The thesis also presents a global extension to the PTD scheduler whereby

instructions can be moved across basic blocks to improve the penalty measure

within local blocks. Global scheduling techniques such as code motion, code and

tail duplication and block merging are incorporated within the scheduler.

The local and global optimisation methods were compared with two well-

known methods based on the list scheduler. The scheduled programs were ex-

ecuted on a stochastic simulator using instruction set models of the micronet-

based processor architecture. The experimental results demonstrated that the

PTD scheduler outperformed the other schedulers on issue unit stalls and pro-

gram execution times.

1.2 Thesis Structure

A description of the remaining chapters of this thesis is presented next.

Chapter 2. This chapter introduces key ideas from three different areas of re-

search which overlap in this thesis: compiler design, ILP architectures and

asynchronous hardware design. The compiler flow is described and the com-

piler optimisations covered in this thesis are located in this flow. The over-

view of ILP architectures presents their characteristics and limitations. The

role of asynchronous control in architectural design is introduced. These

ideas provide the background for appreciating the contributions in the rest

of the thesis.

Chapter 3. The definitions of local scheduling algorithms and their notations are

introduced. Scheduling theory and the complexity of the task are reviewed.

The revival of the asynchronous style in architectural design is recounted,

along with the advantages and disadvantages of such an approach. The

influence of an asynchronous architecture on the design of the back-end of

the compiler is elaborated.

Chapter 4. This chapter reviews examples of asynchronous architectures in the

literature. Next the micronet-based asynchronous architecture is described

in detail as this is the target for the schedulers. The modelling of this

13

architecture in the simulator for evaluating the performance of the compiler

optimisations is discussed.

Chapter 5. This chapter proposes an alternative approach to local scheduling

for micronet-based asynchronous architectures. Traditional techniques are

based on the list-based scheduling algorithm. This chapter introduces the

Penalise True Dependency (PTD) measure which statically estimates the

effect of issue unit stalls due to data and resource dependencies of different

instruction schedules on the execution times of the programs.

Chapter 5 introduces the algorithm of the PTD scheduler and its complexity

is analysed. Two methods are described for further improving the scope for

parallelism within the basic block.

Chapter 6. This chapter extends the PTD scheduling algorithm so that instruc-

tions can be moved across basic blocks to reduce the penalty measure once

the local scheduling cannot reduce it any further. The chapter describes

the global optimisation techniques such as code motion, code duplication,

tail duplication and block merging. Other research in the area of global

optimisation is reviewed.

Chapter 7. This chapter presents the framework for evaluating the PTD sched-

uler on a simulator of the micronet architecture. The benchmarks are sched-

uled using PTD and two other well-known schedulers, and simulated on

different configurations of the micronet architecture. The makespan of the

programs are compared against the unscheduled case.

The results are presented separately for local and global optimisation tech-

niques. Data for issue stalls and program execution times are included for

local scheduling. For global optimisation, comparisons are made in the case

of code motion, tail duplication and the combined effect of both. These

results are referred to those of local optimisation techniques.

Chapter 8. This chapter reviews the work presented in the thesis and proposes

future work for both the local and global versions of the PTD scheduler.

14

Chapter 2

Background

The topics covered in this thesis overlap three well-defined areas: compilers, pro-

cessor architectures and asynchronous circuit design. This chapter provides back-

ground information in each of these areas.

2.1 Compilers

A compiler transforms a source program into a target one under precise construc-

tion rules. One view of a compiler is that it transforms a high-level specification,

i.e. a programming language, into a machine-level specification, in a series of

steps. The front-end of a compiler analyses the input program in three main

stages: lexical, syntactic and semantic analyses. The lexical stage recognises

and matches lexems to tokens defined by a grammar and filters out unrecog-

nised tokens. Once all the tokens have been identified, the parsing stage builds

a hierarchical parse tree according to precise grammatical rules. The final phase

analyses the semantic coherence between the identifier types and operators.

The intermediate code, which is an internal representation of the source code

(to ease generating the machine code), is produced once the source code success-

fully passes the three phases. The back-end of the compiler reads this interme-

diate code, performs optimisations and generates code for the target machine.

Figure 2.1 depicts the front-end of a typical compiler, while Figure 2.2 shows the

three major functions in the back-end of the compiler.

The partition of the compilation process into front- and back-ends allows the

same source code to be translated into different machine codes independently

of the analyses. Although optimisations can be performed after intermediate

code generation, their purpose is to remove redundancies from the source code

and any introduced during the generation of the intermediate code. This type

of optimisation is not biased by the target platform, but instead prepares the

15

Source 	 Lexical 	 Syntactic 	 Semantic 	Intermediate
program 	analysis 	 analysis 	 analysis 	 code

 I --------------------

Grammatical
rules

Figure 2.1: Front-end of a typical compiler.

intermediate code for the machine-code generation phase. These are known as

platform-independent optimisations and examples include common subexpression
elimination, dead-code elimination and constant propagation [2].

In contrast, the optimisations performed after machine-code generation are

intended to tune the performance on the target machine by optimising register
allocation and instruction scheduling. The optimisations performed at this

level are closely matched to the machine model and relate to the instruction set.

The following sections will discuss these so-called Instruction-level Parallelism

(ILP) optimisations.

2.1.1 Compiler Optimisations

The nature of intermediate code representation may vary significantly depending

on the instruction set and the target architecture. The most common represent-

ations include postfix notations, virtual machine representations such as stack-

machine representation, graphical representations such as expression-trees and

direct acyclic graphs (DAG), and three-address representations [2].

It is the case that ILP optimisations will be driven by the type of interme-

diate code representations, which in turn is influenced by the particular target

architecture. For example, in stack-based environments such as the Java Vir-

tual Machine [104], stack-machine representations mimic a stack-like behaviour

in which instruction operands are "pushed" onto the stack and "popped" for

execution with the resultant value being pushed back onto the stack. With stack-

machine representations, optimisations must be performed to avoid unnecessary

16

Intermediate 	 Code 	 Register Instruction

-

	_H Machine
code 	 generation 	 allocation 	 scheduling 	code

Machine
description

Figure 2.2: Back-end of a typical compiler.

operand push and pop operations [37].

In register-based architectures, however, it is more suitable to use graphical or

even three-address schemes to represent the intermediate code. Nowadays, most

processors have instruction sets with three operands: one destination register,

and two source registers. Optimisations for register-based architectures seek to

minimise the number of registers used.

ILP optimisation seek efficient usage of both storage resources (register alloc-

ation) and fast execution times through instruction scheduling. The search space

of solutions is vast, and moreover, the ordering suggested in Figure 2.2 is not

entirely fixed. The interaction between instruction scheduling and register alloc-

ation is complex and is a research area in its own right [21]. Performing register

allocation before instruction scheduling reduces ILP, because the former tries to

reuse systematically the registers (an effect caused by minimising the number of

registers). Conversely, if instruction scheduling precedes register allocation, then

the lifetimes of the registers may increase, which in turn will require a greater

number of them, contrary to the register allocation [23][118][171].

In order to reduce the counter effects of register allocation with respect to

instruction scheduling and to evaluate the effectiveness of the latter in an asyn-

chronous target, this thesis will only concentrate on issues regarding instruction

scheduling, and will therefore assume the scheme in Figure 2.2.

2.1.1.1 Register Allocation

Register allocation is an optimisation technique to make efficient use of the re-

gisters. Registers store intermediate results during a computation and, as such,

17

are a scarce and costly resource, and therefore limited. Optimising the use of

intermediate results reduces the need to store results in memory (which is even

slower) - a process called spilling code. Hardware solutions tend to increase the

number of registers or to include the use of cache mechanisms to reduce storage

time and loading back a temporary result into a register.

The task of the software register allocator is to map temporary values, usually

called pseudo-registers, at the intermediate code level into physical registers, keep-

ing in mind their scarcity. The difficulty of register allocation though, is that dif-

ferent values have different "liveness", i.e. the total time that they must be kept
alive in registers, so they often overlap. The register assignment must be care-

fully optimised with the aid of interference graphs representing the overlapping

life-ranges of the pseudo-registers, and the use of the graph colouring algorithm

[24]. The complexity of register allocation has been acknowledged in the past

resulting in alternative solutions to find optimal and near-optimal results [14].

2.1.1.2 Instruction Scheduling

Instruction scheduling aims to reorder the code output from the generation phase

to improve its execution time. The reordering should preserve the semantics of

the program while exploiting the architecture to improve performance. Local

scheduling (unlike the global one) confines the reordering of instructions to those

in the basic blocks. A basic block is defined as the group of instructions delimited

by a single entry and a single exit. The instructions in a basic block share the same

control properties. The functions in the program are decomposed into basic blocks

connected by a control structure which reflects the semantics of the function.

Chapters 3 and 5 discuss local ILP optimisations, and Chapter 6 covers global

ILP optimisations.

Acyclic optimisations take into account multiple basic blocks within an acyclic

region, and instructions are moved to other basic blocks in the program. Cyclic

optimisations perform optimisations from different iterations instead of just one.

These are described in the following sections.

2.1.1.3 Acyclic Optimisations

Acyclic optimisations can be regarded as a generalisation of local scheduling in

which the instruction reordering is not limited to the basic block boundary. The

average number of instructions within a basic block is around twenty. Moving

instructions between basic blocks increases the scope for ILP. However, in or-

der to maintain the semantics of the program, copies of the instruction called

18

compensation code, may have to be replicated.

The movement of instructions can take place either with the need for com-

pensation code or without, which is either in the same or opposite direction to

the flow of control. These four cases are depicted in Figure 2.3: B1 to B6 are
basic blocks with B1 being a fork instruction for B2 and B3 , and B6 being the
join block for B4 and B5 . Figure 2.3 (a) shows both cases when code movement

requires compensation copies (represented by the dashed arrows) since moving

instructions away from the fork (B 1) and the join (B6) blocks into one of the

paths would cause instruction executions to miss in the other path. Instruction

movements in Figure 2.3 (b) on the other hand, do not require the addition of

compensation code since irrespective of the path taken, instructions will be ex-

ecuted as soon as the control flow arrives at the branch block B1 , or as late as the

control flow reaches the join block B6 . In these cases, movement without copies

introduces redundant executions if the path taken is the opposite to where the

instruction was originally located.

The issue in global acyclic optimisations is that the effectiveness of moving

instructions depends on the run-time behaviour of the program. For example,

if the blocks shown in Figure 2.3 are not frequently executed, then the benefit

due to those movements may be insignificant. In addition, instruction movement

with copies can increase the size of the program and the overhead on performance

of redundant instructions. The performance issues of acyclic optimisations are

discussed in more detail in Chapter 6 (Section 6.2).

2.1.1.4 Cyclic Optimisations

Cyclic optimisations exploit the cycles in the control flow to enable optimisations

not only through basic blocks, but also through cycle iterations. These optimisa-

tions are driven by programs in which the control flow spends considerable time

in the core of the loops.

Data dependence information carried from the front-end of the compiler can

help identify instructions that are independent across iterations. These can be

grouped together and scheduled, thus providing aggressive optimising character-

istics.

Another example of cyclic optimisation is to "unfold" the loop body, i.e. carry

instructions from subsequent iterations to increase the size of the loop body,

with the aim of augmenting ILP. This technique, also called loop unrolling, has

been well studied [2][103}. Loop unrolling not only increases parallelism, but also

reduces redundant branch comparisons and the use of loop indexing variables.

19

B, I%B

(a)

(b)

Figure 2.3: Movement with compensation code, (a), and without (b).

The unrolling of the loop is limited by the following: there will be greater pressure

in the register allocator phase as the registers are overcommitted, and also the

expansion of the code is likely to overflow in the instruction cache [40].

Both local and global optimisations are governed by data and control depend-

encies, which respect the semantics of the program. Data and control dependen-

cies are described in the following sections.

2.1.2 Data Dependencies

Data dependencies must be respected throughout the compilation process. The

use of pseudo-registers during code generation, and registers after register al-

location, reflect these dependencies. Three different types of data dependencies

exist:

True dependencies. The Read-After-Write (RAW), or true dependencies, oc-

cur when one instruction requires the contents of another, and must wait

until the latter result is written. These dependencies cannot be removed

and represent the flow of data during a computation and must be preserved.

20

An instruction that is truly dependent on another cannot be positioned

before it.

False dependencies. False or Write-After-Read (WAR) dependencies occur when

one instruction needs to store a result, but this location which is either in

memory, a register or a pseudo-register is to be read by another instruction.

The former instruction must wait until the current value in the storage loc-

ation has been read by the second instruction, before committing its result.

If the first instruction is placed ahead of the second one, then the value will

be overwritten by the time it is read by the latter, and would therefore be

the wrong value.

Output dependencies. Output or Write-After-Write (WAW) dependencies oc-

cur when the same destination storage location is due to be written by two

different instructions. In which case, the second one has to wait until the

previous one has written into the destination.

This is similar to false dependencies, as reversing the order of the instruc-

tions will result in the variable being assigned the wrong value.

False and output dependencies can be removed if the name of the destination

variable or the destination register is different from the one where it is originally

read from in a WAR dependency, or where it is originally written to in a WAW

dependency. In other words, if the destination location is renamed, then the

dependency no longer applies. In some references, false and output dependencies

are also termed as name dependencies.

2.1.3 Control Dependencies

Control dependencies occur when the execution of an instruction depends on the

result of a conditional branch, such as an if statement. If the condition is true

then the branch is taken and the instruction is executed; otherwise, not.

With control dependencies, the control-dependent instructions cannot be moved

out of the if section, as this would force the instruction to be executed under

any condition. Similarly, an instruction cannot be moved inside the if section,

as it would only be executed if that path of control was taken, unless a copy of it

is placed in the else section.

Data dependencies are defined entirely statically, whereas control ones have

to be resolved at run-time. Data and control dependencies reflect sequentiality in

the program, and their removal, where possible, is an important aspect of ILP.

21

2.2 ILP Processor Architectures

Instruction-level parallelism architectures, as the name implies, exploit concur-

rency at the instruction level. An instruction is composed of an opcode type,

represented by a unique mnemonic defined in the instruction set, and the op-

erands which include a destination operand and one or more source ones. The

datapath of an ILP architecture allows more than one instruction to be active at

the same time. An active instruction is one which is located in one of the follow-

ing steps in its execution: instruction fetch, decode, operand fetch, execution or

write-back. The fetch unit fetches the instructions from the instruction cache (or

from memory in the absence of one). The opcode is next decoded to determine

the instruction destination in the datapath to reserve the appropriate resources.

Once the instruction is decoded, its source operand values are retrieved from

the registers. In the execution stage, the functional unit executes its operation

and outputs the result. This result is written into the destination register in the

write-back stage (as determined by the destination operand in the instruction).

This process is repeated for all the instructions. However, data and control

dependencies impose restrictions during their execution. One way of character-

ising ILP architectures is in the way in which ILP parallelism is interpreted, or

in other words, how much of the data dependence information is passed from the

compiler to be interpreted by the architecture [136]. This characterisation is illus-

trated in Figure 2.4. Sequential architectures such as scalar and superscalar ones,

do not interpret any information from the compiler. The relationships between

active instructions must be determined by the processor at run-time in order to

maintain the correct order of execution. On the other hand, independent ar-

chitectures, such as VLIW ones, rely entirely upon the compiler to provide an

independent stream of instructions for execution. They do not implement any re-

lationship analysis at run-time. The control logic for these processors is therefore

much simplified. Section 2.2.2 and 2.2.3 describe the sequential and independent

architectures in more detail.

In between VLIW and superscalar architectures one can find the EPIC (Ex-

plicitly Parallel Instruction Computing) architectures [143]. EPIC architectures

share with VLIW architectures in that the compiler is required to identify groups

of independent operations to form very long instructions. However, the architec-

ture is now responsible to assign these operations to functional units and coordin-

ate the timing of their execution [142]. In a certain way, EPIC architectures take

the best of both VLIW and superscalar architectures.

22

Front-end I Optimiser 	I

	

T= 	Sequential

Superscalar)
JJDe Dependencies 	 fft 1

Dependence 	
Determine Dependencies

(Dataflow)
Determine Independencies 	 Determine Independencies

I 	 Independent

(EPIC)

	

operations to FU I 	 I Dispatch operations to FU
dependent

_T 	 (VLIW)

	

Dispatch transports to buses I 	 I Dispatch transports to buses
Independent

(TFA)
I 	Execute 	I

Compiler 	 Hardware

Figure 2.4: Classification of an architecture depending on the division of respons-
ibilities between the compiler and the architecture [136], and an extension to it
according to [77].

Another completely different approach to the previous ones is in the case of

Transport Triggered Architectures (TTA) [35]. A TTA is based on an intercon-

nection network in order to connect the functional units with the register file.

With such a scheme, the compiler for a TTA has even more responsibilities than

the one for a VLIW architecture as it can be seen in Figure 2.4, since it has to

decide not only the assignment of operations to functional units, but also the

paths that such instructions will be require to take within the interconnection

network.

EPIC and TTA architectures are explained in more detail in Sections 2.2.4

and 2.2.5, respectively.

2.2.1 Pipeline Hazards

Pipelining is a technique for exploiting concurrency in the temporal domain. In a

pipelined architecture several instructions are in flight executing in the different

stages: being fetched, decoded, their operands being fetched and being executed,

as long as they do not interfere with each other. These architectures require n

instructions to fill a n-stage pipelined datapath to achieve maximum throughput

and resource utilisation. In such a scheme, if the number of pipeline stages is

23

increased, then more instructions can he active at any time, and thereby achieving

greater ILP. In theory at most, the execution time can be reduced by up to n times

when compared to a non-pipelined datapath'. Figure 2.5 (a) shows a pipeline

stream of instructions in a 4-stage pipeline.

However, as mentioned in Sections 2.1.2 and 2.1.3, data and control de-

pendencies enforce sequentiality in the instruction execution order. Therefore,

the pipelined architecture must ensure that the correct ordering is preserved by

stalling some stages for a period of time, an effect called pipeline hazards. These

include data hazards due to data dependencies, control hazards due to control
dependencies and structural hazards due to resource conflicts. All of these will

restraint the continuous flow of operations in the datapath, causing "bubbles" in

the pipeline, and thus increasing the execution time.

In the case of data hazards, the stall is related to the type of data dependency.

For example, with a true dependency, the instruction that requires the result of

the previous one will not have the result ready for it to be read at the operand fetch

stage. For correct operation, the architecture must apply an interlock (a "bubble"

in the pipeline) to the second instruction, so that it will remain stalled until its

operand(s) is/are fetched. Figure 2.5 (b) shows a pipeline with two interlocks

produced by data dependencies. In the example, instruction 1 3 requires the result
of instruction I,; at the time that the operand is to be read by instruction 1 3 ,

it has not yet been written back by instruction Ii. Therefore, 13 must wait for

a clock cycle before resuming execution. Similarly, instruction 14 depends on 12,

and causing another interlock.

For name dependencies, i.e. WAR and WAW, interlocks are applied at later

stages. In an output dependency, the architecture may only stall the write-back

of an instruction to ensure that the previous write-back takes place first.

One hardware solution for solving the problem of data hazards due to true

dependencies is to forward the results or bypassing. In addition to writing the

result in the register file, the functional unit forwards the result directly to the

fetch stage where it is needed, in order to avoid the hardware interlock. However,

if the true dependency stands for a load instruction, then the data hazard may

not be avoided. A load instruction may incur a cache miss, in which case the

time to load the value into the register will be delayed. In pipelined architectures

the compiler is partially responsible for avoiding such cases. The compiler must

ensure that the pipeline is full of independent instructions, and when that is not

'In practice, the speedup is bound by the amount of parallelism in the code and by the clock
cycle overhead with large number of pipeline stages [76]. The performance/cost ratio has also
a peak in terms of the cost for all the logic stages and the latch and delay costs [84].

24

Time

I i II OF Ex WB

12 II OF Ex WB

13 II OF Ex WB

14 11 OF Ex WB

(a)

Time

It F il
OF Ex WB

12 If OF Ex WB

13 II OF Ex WB

14 1 	OF Ex WB

Key

II: Instruction Fetch,
Decode and Issue

OF: Operand Fetch

Ex : Exection stage

WB : Write-back

Key

II: Instruction Fetch,
Decode and issue

OF: Operand Fetch

Ex : Exection stage

WB : Write-back

(b)

Figure 2.5: Pipeline stages, without interlocks, (a), and, with (b).

possible, it must try and avoid combination of instructions with true dependencies

from a load.

Data hazards due to name dependencies on the other hand, can be avoided

by renaming the destination register that is common. Register renaming can be

implemented either dynamically by the hardware or statically by the compiler.

A hardware register renaming scheme consists of logical registers, as seen by the

compiler, that are transparently mapped to a greater number of physical registers.

If, for example, there are two instructions writing to the same logical register, two

physical registers can be allocated to hold the values. A mapping table is used

in the decode stage to map logical to physical registers. In software, register

renaming can be easily achieved by using a different register name each time. At

the software level, the overuse in the number of registers may cause spilling code

(as described in Section 2.1.1.1), which might negate any gains due to removing

the name dependencies.

25

A control hazard due to a conditional branch instruction arises because in-

structions following the branch one cannot start their execution until the outcome

of the branch is resolved. Should the branch be taken, the program counter is

updated with the new branch address and fetching can be resumed; otherwise,

fetching continues with the instructions following the branch. In either case, there

is a time delay represented in terms of clock cycles or delay slots, until the branch

instruction is completed. The delay slots can be filled with control independent

instructions such as as "nop" (no-operation).

Another solution is to use branch prediction [149]. If the branch outcome is

known by the time a subsequent instruction from the branch needs to be fetched,

then the pipeline does not have to be stalled. Branch prediction allows instruc-

tions after a predicted branch to be executed speculatively; if the branch was

mispredicted then the results have to be backtracked. Branch predictors use a

history table where the occurrence of previous branches is stored. The individual

number of hits and misses will decide the likelihood of a branch. The prediction

rates achieved nowadays (between 80% and 95% depending on the type of branch

prediction and the size of the history table) outweigh the cost of the misprediction

penalty, i.e. recovering the state of the processor (pipeline and flags) before the

misprediction.

The last possible hazard in pipelined architectures is the structural hazard.

This occurs when there are resource conflicts and the hardware cannot support

the operating conditions for a particular set of active instructions. A resource

conflict occurs when an instruction has all its operands ready but there are no

functional units available or the buses are busy.

2.2.2 Scalar and Superscalar Architectures

There are two policies for issuing instructions: in-order, that issues all the in-

structions in the same order as they were fetched; and out-of-order, that issues

instructions not necessarily in the original program order.

When both issue and execution are implemented in-order, then dependent

instructions and resource conflicts might stall subsequent instructions. A sub-

sequent and independent instruction will be forced to stall its write-back in order

to maintain execution order. Alternatively, if this instruction is allowed to pro-

ceed with the help of additional hardware, then the outcome will be in-order issue,

but out-of-order execution. A hardware mechanism that allows out-of-order ex-

ecution is the scoreboard. The scoreboard holds dependency records for all the

26

instructions in flight' and guarantees that they are issued as soon as their op-

erands become available; it also checks for data, control and structural hazards.

This is achieved by gathering status information about the functional units, the

register file and the instructions themselves. All this information serves to de-

termine which instruction can be issued. The penalty incurred by implementing

the scoreboard is compensated by the extra parallelism gained from enabling

concurrent instructions to avoid being stalled.

These policies and mechanisms also apply to superscalar architectures. A

superscalar architecture datapath is capable of issuing more than one instruction

per cycle. A n-issue superscalar processor fetches and decodes n instructions at

a time. To achieve this the complete datapath consists of n-parallel pipelines.

The control logic in such architectures are more complicated due to the checking

of dependencies along the different stages in the datapath, and resources such

as functional units, buses and register file's write ports must be arbitrated and

managed efficiently.

In both scalar and superscalar architectures, out-of-order issue and execution

imply dynamic re-arrangements at run-time, since one instruction can overtake

another in the case of data hazards or if the latter requires more time to complete.

Architectures with dynamic scheduling make less demands on the compiler as

shown in [102], although local scheduling certainly contributes to performance in

dynamic scheduling.

2.2.3 VLIW Architectures

Very-Long Instruction Word (VLIW) architectures, as the name implies, pack

instructions into a single, long instruction word. This means that when a VU

word is fetched, n independent operations can be decoded at the same time, and

n operations can be issued concurrently to be executed in parallel. The number

of operations per word can vary from 8 in the Multiflow computer [144], to up to

20 in the IBM VLIW processor [117].

One of the principal features of VLIW architectures is that the task of finding

independent instructions is performed by the compiler and not by the hardware.

The compiler is responsible for grouping independent operations into VLI words.

Subsequently, the control logic (fetch and decode stages) in VLIW architectures is

simpler since it does not have to identify dependencies between active instructions

and perform run-time resource management. The grouping of VLIW instructions

2The number of instructions in flight depends on the size of the scoreboard.

27

by the compiler also specifies the mapping of operations to functional units. A

VLIW architecture has neither dynamic scheduling, nor out-of-order execution;

rather the instruction issue order is decided statically. When the parallelism in

the code is less than the maximum ILP of the architecture, then the compiler

must schedule no-operations to fill the vacant slots in the VLI word.

VLIW architectures are targeted at scientific applications where the bulk of

the program execution time is spent in core loops with potential for parallelism.

For general-purpose applications VLIW architectures does not compare as well

as superscalar machines since their efficiency, i.e. the ratio of useful instructions

to the total number of instructions, decreases with the increase in the number of

no-operations.

2.2.4 EPIC architectures

Explicitly Parallel Instruction Computing (EPIC) architectures [143] can be con-

sidered as an evolution of VLIW architectures. One of the drawbacks from VLIW

architectures is that they are not compatible across different implementations,

since compiled code for one implementation with a particular set of functional

units and latencies will not run properly in another one with a different set of

parameters.

The compiler for an EPIC architecture is required to determine the data de-

pendencies in the code and group concurrent operations into VLIW instructions

in a similar manner as in VLIW architectures, but the architecture is responsible

for mapping them to functional units and coordinate the start of their execu-

tion. This particular characteristic allows the architecture to execute code from

another implementation to run without compatibility problems.

An EPIC architecture supports higher levels of ILP through the use of pre-

dicated and speculative execution to overcome frequent control transfers and am-

biguous memory dependencies [9][148]. These techniques, which have often been

used in superscalar architectures, help EPIC architectures to perform well in more

general-purpose applications. Since EPIC architectures time the execution of the

operations, they are more capable of handling exceptions and interruptions.

2.2.5 Transport-Triggered Architectures

Transport-Triggered Architectures (TTA) [36][79] represent another type of ar-

chitectures evolved from VLIW ones, but with even more responsibilities given

at compile-time and less at run-time [35].

28

One of the main differences between VLIW and TTA architectures is that the

functional units in the latter do not necessarily have dedicated connections to

the register file, as in a traditional VLIW machine. Instead, they are connected

through an interconnection network with the goal of having a better scalability

by reducing the port requirements of the register file [78]. The interconnection

network consists of data transport or move buses that enable functional units

to communicate with each other and with the register file through sockets. The

inputs and outputs of each functional unit are connected to the network by input

and output sockets, respectively. The input sockets act as data multiplexers,

whereas the output sockets act as demultiplexers. A fully connected network

implies that every socket is connected to all of the move buses, which simplifies

the code generation by the compiler, but with a side effect of impacting the cycle

time. The connectivity of the sockets can be tailored so that certain functional

units share more paths in common, e.g. memory units and arithmetic units, since

the former requires an adder to determine the memory address.

A TTA instruction is composed of one or more move operations which involve

the data transport between two registers. The registers can be separated into

operand, trigger and result registers. The moves between these registers represent

the movement of data from the register file to a move bus (operand), from one

socket of the move bus to the input socket of a functional unit (trigger), which

effectively causes a functional unit to start the operation, and from the functional

unit to an output socket (result).

It is the task for the compiler to optimise such move operations and schedule

them. All these move operations are pipelined to obtain a high throughput, and

the scheduler is responsible for that. Some of the optimisations performed by

the scheduler are TTA-specific and these include bypassing, operand and socket

sharing and result move elimination [77][89]. These optimisations have to deal

with the efficient use of the interconnection network.

The compiler for a TTA architecture also has the responsibility of performing

resource assignment which is a more complex task than for VLIW ones since

not only functional units need to be assigned to instructions, but move buses

and sockets to move operations as well. TTA architectures exhibit a datafiow

characteristic in that data transports from different move operations must match

so that functional units will operate on correct values. This represents an extra

challenge for the compiler since there are more resources needed per instruction

than in other type of architectures [80].

2.3 Asynchronous Control

The communication of data between components of synchronous systems is di-

vided into two parts: one channel is dedicated to the data transmission, mainly

through a directional bus from the sender to the receiver, while the other is the

control channel represented by a uni- or bi-directional bus used for high-level con-

trol. These buses have timing restrictions in that the output data from the first

component must be settled and the second component has some period of time to

read the correct signals. This timing constraint is co-ordinated by a global signal

- the clock - that feeds both components to synchronise them. Figure 2.6 (a) de-

picts two modules communicating data through a data bus, while control signals

from both modules can be sent and received back and forth from a control unit.

This scheme is centralised around the control unit and it is via the clock that it

dictates the timing operation for all the components in the system. The control

unit starts the communication process and regulates the flow of data through the

control bus until its completion.

An alternative way of communication between these components is by decent-

ralising the global synchronisation of the previous mechanism, with the removal

of the clock. In this approach components communicate with each other via a

handshaking mechanism. In this scheme the sender is responsible for the start of

the transaction and the receiver responds when it is ready to receive.

Figure 2.6 (b) shows two modules: Module 1 starts a new transaction with

a request signal and awaits an acknowledge signal from the receiver (Module 2)

before sending the data. Request/ acknowledge mechanisms are convenient for

asynchronous communication since delays are prone to vary. Request and acknow-

ledge signals can be active during positive or negative edge transitions. When

positive and negative edge transitions are treated equally during a handshake,

then the handshake is called two-phase. If only positive-edge transitions are used

in the handshake, it is called four-phase [161]. The two-phase and four-phase

handshakes are shown in Figure 2.7. The term "two-phase" stems from the fact

that two events take place: the first phase is represented by the sender requesting

transfer of data (1), and the second phase by the actual transfer of the data (2),

as depicted in Figure 2.7 (a). Similarly, four events take place in the case of the

four-phase: (1) the sender starts the transaction, (2) the receiver acknowledges,

(3) the sender stops sending the data, and (4), the receiver finishes the handshake,

as shown in Figure 2.7 (b). The dashed lines represent a signal to the sender that

the receiver has started or completed the transaction, and thus it can proceed to

30

clk

data

control

(a)

data

handshake
signals

control

(b)

Figure 2.6: Synchronous control flow (a), and, asynchronous (b).

complete the transaction or start a new one.

It is obvious that there are twice the number of transactions in a four-phase

handshake than a two-phase one. The problem with the two-phase handshake

approach is that circuit implementations require larger - and therefore slower -

gates. Usually XOR gates are required as opposed to AND and OR gates as

used in four-phase designs [161]. Another characteristic found in circuits with

four-phase handshakes is that the second half of the handshake (events 3 and 4)

can be concurrent with the computation. This is advantageous considering that

transactions spend most of the time in computation rather than communication.

Four-phase circuits can achieve higher performances and lower costs than two-

phase implementations using level-sensitive technologies such as CMOS [55].

The handshake examples in Figure 2.7 are called bundled-data handshakes and

assume that the data is available in the bus prior to the control signal from the

sender, or in other words, it is assumed that the delay from the request is longer

31

0 	 0

(
request

control <

L acknowledge

data

request

control

L acknowledge

data

0 	 0

ff/ 	 I c
/

Figure 2.7: (a) Two-phase handshake and, (b) four-phase handshake.

than the delay from each of the data bus signals. This assumption violates the

delay-insensitive model where no timing restrictions are applied [172][173]. With

delay-insensitive circuits signal delays are assumed to be unbounded, therefore

a valid data bit is required in order to distinguish between a no-change signal

from a delayed one. The extra line for each of the data bus signals ensures that

a transition from the previous data to the actual data has taken place. One line

can be used to represent the previous value while the other line represents the

change in transition. With such schemes, the request signal by the sender is not

necessary.

2.4 Summary

This chapter has reviewed background concepts in three major areas: compilers

and the role of code optimisation, classification of ILP architectures such as su-

perscalar and VLIW ones, and asynchrony as a method of circuit and system

design.

1p

The following chapters build upon these areas. Work described in Chapters 3,

5 and 6 is concerned with code optimisation, covering local scheduling in Chapters

3 and 5 and global scheduling in Chapter 6. These are targeted for an asyn-

chronous scalar architecture whose model of operation is described in detail in

Chapter 4.

33

Chapter 3

Towards Schedulers for
Asynchronous Architectures

Progress in silicon technology in the 70's had resulted in the emergence of faster

and more complex processors as epitomised by the Complex Instruction Set Com-

puters (CISC). Compilers for high-level programming languages had matured to

exploit the hardware capabilities. The emergence of VLSI in the early 80's saw

however, a re-evaluation of processor architectures and a greater interest in the

interaction between the compiler and architectures, as evidenced by Reduced In-

struction Set Computers (RISC).

This interaction between the compiler and the hardware has been an import-

ant consideration in the design of high-performance systems. The concept behind

early RISC architectures was to redefine a reduced instruction set resulting in a

fast stream of short-cycle instructions, instead of a shorter stream of more com-

plex instructions, as experienced in the CISC approach. Immediate effects would

be locality in the memory hierarchy, faster throughput, and hardware simplicity

[125]. The advantage of using a bank of restricted number of registers to store

intermediate results, instead of continuously loading and storing them in the

memory demanded the optimisation of their usage, which was the responsibility

of the compiler.

One of the objectives of the back-end of a compiler is to convert intermediate

code into assembly instructions as defined in the instruction set of the processor.

This task, however, involves operations that require special attention: these are

register allocation, resource mapping and instruction scheduling. Each is a non-

trivial problem and their individual interactions have been studied in the context

of RISC architectures [23][131]. In particular, scheduling techniques have matured

considerably for synchronous architectures. The early work in embedded systems,

where highly optimised code must meet tight deadlines due to timing restrictions

34

in order to perform a task, stamped a strong impression in what code optimisation

can achieve in co-operation with the hardware [157].

One of the motivation of this thesis lies in the fact that very little work has

been undertaken to optimise code for asynchronous processors [7]. It is our belief

that the scheduling assumptions for synchronous targets differ considerably from

those for an asynchronous target, which will influence the scheduling mechanism.

The key is to identify particular features of an architecture and characterise them

in the compiler. Later in the chapter we will show how this is modelled by

the compiler in some synchronous systems, and the difficulties to do so under

asynchronous behaviour, given its unique properties.

3.1 Local Scheduling Definitions

The local scheduling model which is considered in this thesis is based upon in-

structions which are restricted in some way and executed in specific functional

units with a corresponding assigned cost. The six-tuple (9, -<, R, T, C, C) is

used to represent the graph 9, and is defined as follows:

9: 	9 is a graph defined as 9 (9,

9: 	9 = {Ii, '2,. . . , In } is the set of n instructions of a basic block to be

executed. In early scheduling work this set was referred to as the set

of tasks.

-< is an irreflexive partial order which specifies the set of precedence

constraints in 9. For two instructions 13 and I, E 9, 'r --< I, implies

that instruction I must finish its execution before instruction I

can start. In addition, the subset << E -< denotes that for three

instructions I, I, and I, where j < Li,,, there is no I such that

Ix -< Iz - ly.

= {T1 , T2 ,. . . , T} represents the set of different types, t, of func-

tional units contained in the architecture.

R is the set of resources or functional units. For every instruction I,

with 1 < i < n, there is at least one functional unit associated with

it. That is, R= {R1Ta (Ij),...,Rp Ta (Ij)}, with p being the number

of functional units and 1 a t.

C: 	C is the set of execution times or latencies for the set 9 and is defined

as C = {Ll (RjTa)••L fl (RjTa)} with 1 < j < p and 1 	a

35

These values will depend upon architectural characteristics as will

be shown in Sections 3.3.2 and 3.4.4 for the synchronous and the

asynchronous approaches, respectively.

C: 	C is the set of communication costs for every instruction for propagat-

ing results. It is defined by C = {E 1 , E2 ,.. ­ I E, 1, if e is the total

number of edges and can be considered proportional to the number

of instructions ii. Like £, the values of C depend upon communic-

ation delays in the architecture, but the number e is related to

where -< I = e.

If there is a path from instruction I to instruction Ii,, where I and I E J and

I - Ii,, I,, is called a predecessor of 4 and instruction 4 is called a successor of

I. If I E< 4, then I is the immediate predecessor of 4 and 4 is the immediate

successor of I.

The partial order -< is acyclic. It has no transitive or redundant edges which

implies that it cannot represent loops. The graph 9 is therefore a Directed Acyclic

Graph, or a DAG for short. A graphical representation of a DAG is given in

Figure 3.1, where nodes (instructions) from J are connected to their successors

and predecessors via directional edges -<. Such a DAG is a basic block, as shown

in Figure 3.11, if it has single entry and exit nodes.

If two instructions I and I. E J are not related in -<, i.e. I 	4 and

I 4, then they are independent, i.e. I 4. By inspecting Figure 3.1 we

can observe that instructions 12 and 13 are independent, for example. The order

in which these instructions are selected for execution is called the schedule of 9,
i.e. 89 = [..., I, 4, . . .]. For instructions that are "placed" consecutively in the

schedule S, such as I and 4, we define I 4, if 1, is placed before 4.

3.2 Local Scheduling Theory

The completion of the schedule S9 implies the completion of the execution of all

the instructions (J) when mapped to functional units (R.) of particular types (),

while respecting the partial order -<. The time taken to complete the execution

of all the instructions is called the completion time or the malcespan of execution,

'The example in Figure 3.1 shows a DAG with n = 9 instructions and their execution times
(L). The set -< is defined by < = {I .< 12, 11 _< 13 , 12 < 14 , 12 < 15 , 14 <'7,14 < 18,15 -< 17 ,
15 _< '8, 13 < 16, 16 -< 19, 17 -.< 19, 18 -< 19 }. The latencies (IL) and communication costs ()
are defined as IL = {1,2,1,2,2,4,2,2,1} and E = {O,O,O,O,O,O,O,O,O,O,O,O}, respectively,
with e = 12.

36

2

4

Figure 3.1: An example of a DAG

denoted as w. The term makespan has traditionally been considered as the total

time to complete tasks or jobs in job-shop scheduling theory [11][34][130]. The

scheduling problem can be treated in different ways depending on the scheduling

goals. The most common ones are to minimise the completion time, the number

of functional units or the functional unit idle time (or maximise functional unit

utilisation) [67]. Other goals include minimising the mean flow time', which is

described in [34].

Throughout this thesis the goal of scheduling is to minimise the completion

time w. The absolute minimum completion time is termed as the optimal solution

w 0 . A schedule may have more than one optimal solution, although the aim is to

find at least one.

Scheduling for uniprocessor architectures is usually performed using the non-

preemptive and work-greedy approaches. In the non-preemptive approach, once

an instruction has started its execution, it cannot be stopped and resumed in

another functional unit from the point of suspension. It can be expensive in

hardware to stop an instruction and resume its execution from a restartable state.

Figure 3.2 shows an example of a non-preemptive and preemptive schedules with

2 Mean flow time is the average completion time for a instructions. The lower this value is,
the less time (on average), resources like memory or cache, will need to keep values in use. Flow
time is the sum of the completion times of the individual instructions.

37

R i 	1 1 	 1 3

R2 	12

0 	1 	2 	3 	4

Time

(a)

R1 1 	'2

R2 	12 	1 3

0 	1 	2 	3

Time

(b)

Figure 3.2: (a) Non-preemptive and (b) preemptive schedules.

Gantt charts. Preemptive techniques can produce better schedules than non-

preemptive ones, assuming that the instruction-switching overhead is not very

costly. The strategy usually adopted in non-preemptive scheduling follows the

work-greedy approach. This means that if a functional unit is idle at some point

and there is a ready instruction that can be executed by it, then this instruction

is assigned to that unit. In practice, the resources are kept busy, but it does

not necessarily lead to optimal results. Figure 3.3 depicts scheduling examples

for the DAG in Figure 3.1, where assuming a greedy approach could not obtain

the optimal schedule, whereas by keeping functional unit R 1 idle for one unit

of time, the optimal schedule is achieved. Given that the completion time w

represents the total time, i.e. the sum of busy and idle times, then maximising

the functional unit utilisation should minimise the idle time. Hereafter, we will

only discuss non-preemptive and greedy scheduling techniques - the ones mostly

commonly used in uniprocessors.

In some cases such as in real-time scheduling, it is necessary to introduce

deadlines to instructions, or to a subset of instructions, by when they must meet

timing constraints. In a hard real-time system [116] all the instructions must meet

their deadlines with no exception. In order to do so, it may be necessary to stop

one instruction to allow another to resume its execution and meet its deadline,

with the use of preemptive algorithms. In firm real-time systems, scheduling takes

either earliest-deadline-first or smallest-slack-time approaches. In both cases, an

accumulative value gets incremented every time an instruction misses its deadline

[98].

Another important idea is that of deterministic scheduling that are applied

to problems that are fully deterministic, i.e. all the information governing the

38

fl
VA -VA
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

Time

V4
0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11

Time

Figure 3.3: (a) Non-greedy and (b) greedy schedules.

	

scheduling decision is known in advance. That is, the sets T, R, £ and 	are

known, and fixed, before the scheduling process and can be thought of as target-

specific input parameters. The sets 9 and -<, on the other hand, can be considered

as problem-dependent inputs of the scheduling problem, as shown in Figure 3.4.

In fact, in early scheduling work [25][34][67], task scheduling did not contem-

plate the sets T and & Most of the problems had a combination of one or more

functional units - usually called processors - as part of the set R and single or

multiple unit duration times for set C. In majority of the cases, these processors

were identical, with no allowance for different types and their execution periods

were integer-based only. E was regarded as a set of null, weighted edges like the

DAG in Figure 3.1. Early research was mainly dedicated to showing that a class

of scheduling problems had optimal solutions [34]. Failing that, the approach was

to bound the scheduling solution (belonging to a class of problems) within a con-

stant margin of the optimal, in order to evaluate the effectiveness of a scheduling

algorithm. The constant margin determined how close the proposed solution was

to the optimal. The rationale was that greedy techniques cannot be worse than

R 1

R 2

R 1

R 2

39

Figure 3.4: Representation of the scheduling problem.

the optimal by a constant factor 3 .

3.2.1 Complexity Issues

It has been noted that the complexity of the scheduling-length problem for n

instructions with a non-preemptive approach for a general p-functional unit pro-

cessor' is NP-complete [34][170]. By extending this problem by having variable

lengths in C and the addition of different types T, the scheduling problem be-

comes NP-hard [61]. Searching through an exponential space to find an optimal

schedule is an expensive task that has surprisingly not always been avoided. Mas-

salin [114] exhaustively executes all possible schedules to get to the optimal; in

[10] the compiler generates a small subset of good schedules that are filtered using

a machine model, and then simulated to discard the sequences with lower per-

formance results. Although the exponential set of schedules is not considered for

execution, the compiler must perform an exponential search through the filtered

set to gather the best ones. Another example is in real-time scheduling [106],

which also considers as an option, exponential-time algorithms such as exhaustive-

enumeration and branch-and-bound. They inspect all legal schedules to calculate

their costs'. The first schedule with a non-positive cost, i.e. every instruction

meets its deadline, is returned. The branch-and-bound algorithm is a modifica-

31f w' is the makespan for a particular solution and w, represents the makespan of the
optimal solution, w'/w 0 < c, with c 1, expresses the goodness of an algorithm. If c = 1 then
the solution is as good as the optimal.

'At least p > 3. For p = 2 the problem complexity is polynomial, if and only if, all values
of IL are single unit and all the functional units 3t are identical (T = 1 and VEj E E, E1 = 0).

'The cost represents the total sum of delayed-times when an instruction misses its deadline.
The delay-time is the amount of time-slots from the instruction's deadline.

ELI

tion of exhaustive-enumeration that aims to reduce the running-time. It sets an

upper-bound cost, and every time the algorithm finds a schedule with a lower

cost, the upper bound is updated. Once again, the algorithm terminates as soon

as a non-negative cost is found.

Another scheduling example is found in [32], where a solution tree for de-

riving optimal schedules is generated by keeping track of all partial schedules.

In order to reduce the solution space, equivalence and dominance relationships

between partial schedules are deduced, and nodes from the tree are eliminated as

early as possible. Two instructions, Ii and I, are equivalent when they can be

interchanged in the schedule without affecting the length of the makespan, and

dominant when instruction Ii can always be scheduled no later than I. The al-

gorithm starts by creating the root node of the tree. The root node consists of all

the instructions with no predecessors at the start of the scheduling process. Then,

all the possible combinations that can occur (mapping instructions to types and

functional units), are allocated to successors nodes from the root. The equival-

ence and dominance relations help to reduce the excessive growth of child nodes.

The tree is constructed until all the instructions have been scheduled; each of its

paths being a valid schedule. The final schedule is generated simply by parsing

the solution tree.

However, performing these expensive computations may not only require ex-

ponential time to terminate, but may also need exponential resources which may

be restricted. Secondly, finding an optimal solution for one architecture family

may be sub-optimal for another, even with small changes. Thus, heuristic-based

approaches have become a viable option to get an approximation of the optimal

solution with a reasonable, polynomial, complexity time and reasonable amount

of resources. The use of heuristics helps to capture the little differences in the

architectures to get a more general, sub-optimal solution, without the need to re-

compile a program every time. Some of these heuristics are discussed in greater

detail in Section 3.3.1.

3.2.2 Types of Scheduling Algorithms

3.2.2.1 Simulated Annealing

Simulated annealing is a stochastic approach to complex combinatorial optim-

isation problems based on Metropolis's algorithm. In [28], [95] and [106], this

optimisation technique is the core of a scheduler for embedded systems, but can

also be found in diverse applications ranging from VLSI block placement and

global routing [150], to the airline crew scheduling problem [46], to mention just

41

a few. The algorithm follows a probabilistic distribution that converges to a local

minimum close to the absolute optimal solution, and its behaviour has a pattern

which avoids local minima.

The core of the scheduler works as follows: first, an initial schedule is ran-

domly generated and values for initial and final temperature, T2 and T1 are set.

The algorithm then sets a reference temperature T to T, and this is compared

to T. Then, while T stays beyond the final value of T, the core-loop of the

scheduler is repeatedly executed. The loop consists of a random perturbation of

the actual schedule (the initial schedule at start) called the new schedule, which

produces a new temperature, Tnew . If L, Z.C. Tnew - T, is positive, then the

schedule is updated and replaced by the actual one; otherwise, it would be up-

dated following a probability distribution that defines the acceptance criteria of

solutions (C = e_T/T). Finally, the temperature T is reduced gradually, by a

cooling factor (a), resulting in a decreasing exponential distribution.

There are important issues for efficiently using annealing for scheduling pur-

poses. The first one is the random choice of both an appropriate initial schedule

and the perturbation function. The initial schedule and the perturbation function

must return "reasonably" good schedules. The second, is the choice of a suitable

rate to decrease the temperature through the use of a. A slow rate tends to

result in optimal solutions, but at the cost of more iterations.

3.2.2.2 Level Scheduling

Level scheduling was originally proposed in [82], as a solution to the problem of

assigning products to different operation lines, a variant of the minimum-length-

schedule problem. The algorithm allocates the same priority to the products from

the same hierarchical level in the DAG, but products from higher levels get higher

priorities. The outcome of this prioritisation scheme is a topological sort. The

problem has an optimal solution when all the operations take a single unit of time

and there are only two processors or processing units. In the case of greater than

two processors, the solution is bounded within the optimal [67]. For example,

if there are three processors, the ratio between the solution and the theoretical

optimal solution, wLS/wo, is 1.5.

3.2.2.3 List Scheduling

List scheduling uses a priority list to order in advance the set of instructions IJ, by

respecting -<. This list is then scanned sequentially in decreasing order, to assign

an instruction to an available functional unit. The difference between algorithms,

FIV

and therefore priorities, resides in the classes of heuristics that are considered.

Once the instruction is assigned to a functional unit, it is removed from the list

and the cycle continues. This behaviour leads to a lack of preemptions in the

algorithm, and is therefore a non-preemptive approach'. If multiple functional

units of the same type are ready, then the priority list gives preference according

to the order in which instructions are placed. The algorithm terminates once all

the instructions have been assigned to functional units, i.e. the priority list is

empty.

List scheduling has traditionally been used for scheduling in uniprocessors.

In particular, the priority list is filled at the start with instructions with no

predecessors, usually called "ready" instructions, from which the heuristic will

decide the best candidate to be scheduled next. As soon as an instruction is

removed from the ready list, all of its successors become available, and they are

included in the list for consideration in the following cycle.

3.3 Instruction Scheduling in Synchronous
Architectures

3.3.1 List Scheduling for Synchronous Platforms

The list scheduling technique has been used in innumerable synchronous schedul-

ing applications. The following are important work in the area of local scheduling.

Scheduling with no Hardware Support for Interlocks 1 - One of the earli-

est examples of list scheduling in a synchronous uniprocessor is found in [75].

The MIPS processor [91] does not support interlocks, so the compiler is re-

sponsible for characterising the pipeline constraints and re-scheduling the

code to avoid them, and in some cases with the help of no-operations (nop)

instructions.

An alternative register allocation scheme was also conceived for the lack

of hardware support for interlocks. Register allocation for an interlocked-

pipelined architecture does not necessarily have to avoid a combination

of instructions with a Read-After-Write dependency (in such a case the

datapath would introduce an interlock). But for a MIPS processor, in the

register allocation phase, the use of registers must be modified in order to

avoid such hazards systematically.

'List scheduling is therefore a subset of preemptive schedules.

43

Register allocation is an NP-complete problem in its own right [124]. This

approach to scheduling has to deal not only with the scheduling problem but

with the register allocation one as well. The combination of both problems

is shown to be NP-hard, though with the use of no-operations, the problem

can be reduced to NP-complete [75].

Due to the nature of the problem, the approach is not meant to be optimal,

but to select the shortest legal schedule from a subset which is generated.

The algorithm finds the shortest legal schedule in polynomial time, i.e. in

0(n4) time [74].

Scheduling with no Hardware Support for Interlocks 2 - Results in [132],

on the other hand, show that with some restricted set of pipeline constraints

in Delayed-load architectures such as the MIPS, optimal scheduling and re-

gister allocation can be achieved in linear time. The necessary conditions

though, include that all instructions are executed in one clock cycle and

that all destination registers in load instructions cannot be accessed until

one cycle has elapsed (delay = 1). If they are accessed before one cycle, i.e.

just after the load, a pipeline interlock occurs.

Another simplification is the use of expression-trees rather than DAGs. An

expression-tree differs from a DAG in that each node must either be a sym-

bol or a parameter (an address or a number), whereas in a DAG, each node

represents an instruction with its own opcode and operands. The complex-

ity of dependencies in a DAG (-<) makes register allocation particularly

difficult. With the use of binary expression-trees, the task is much simpler.

Expression-trees help implement register allocation and instruction schedul-

ing in polynomial time; the complexity is proportional to the size of the tree

when the value of delay is one. Figures 3.5 (a) and 3.5 (b) show examples

of an expression-tree and a DAG for the assignment m = A [1];.

For cases where the delay is greater than one, optimal scheduling results

are maintained such that the shortest schedule is obtained, but the register

allocation results are no longer optimal. Such a schedule does not guarantee

the use of minimum number of registers. In [100], the binary tree algorithm

is used as a heuristic to schedule instructions with arbitrary delay slots

when a DAG is used. The run-time complexity of the scheduler is 0(n).

Scheduling with Hardware Support for Interlocks - The work by Gibbons

and Muchnick [64] differs from the previous two cases in that it is targeted

ii $9,1

T
la $10,$29,0 	 muli $11, $9,4

addu $13,$12,$11

1w $13, $12,0

sw $13, $29, T1
(b) (a)

Figure 3.5: (a) An expression-tree and (b) an equivalent DAG representation.

at architectures with hardware support for interlocks. In deeply pipelined

architectures, an optimal schedule is one that causes the minimum number

of stalls in the pipeline. In particular, a scheduler has to be able to perform

well under various implementations with different sets of interlocks. The

resulting schedule might not be optimal for a particular set, but will still

perform well overall. The algorithm uses two main criteria for selecting a

candidate instruction from the ready list: the candidate must not cause an

interlock with a previous scheduled instruction, and it has to be the most

likely instruction to interlock the instruction after it.

The algorithm was implemented without lookahead in order to maintain

a low run-time complexity. Lookahead is a property of an algorithm in

that it looks for "near future" features, i.e. choosing ready instructions

which will trigger ready candidates in the future. The scheduler considers

some heuristics to mimic lookahead properties at the moment of choosing

an instruction from the ready list. These include the number of immediate

successors, the longest path from the candidate to the leaves of the DAG,

and whether the candidate would cause an interlock with its immediate

successors. The scheduler has a run-time complexity of 0(n2).

Rank Algorithm - Another well known work in scheduling RISC architectures

is presented in [124]. Palem and Simons use the latency information from

45

every instruction I, (1 	i < n), together with the deadline, to define the

rank of I, called rank (Ii). The scheduling algorithm uses this rank to

construct the list and then schedules it in a greedy fashion. The deadline is

a sufficiently large figure by when the instructions are guaranteed to have

been executed. An example of a deadline time is n (k + 1), where k is the

maximum possible latency. The time complexity of the scheduler based on

the rank algorithm is O(en + e log n), where e is the number of edges in

the DAG.

This work was extended in [101] to include the presence of deadlines and

release-times for embedded applications and real-time systems. Due to the

nature of the overhead involved in computing the deadlines, the run-time

complexity becomes 0(n 3
 a(n)). o(n) is the inverse of the Ackermann func-

tion, and should be considered a small constant as n increases [69].

Balanced Scheduler - The balanced scheduler [92] is another example of list

scheduling that introduces the concept of measuring load-level parallelism

to the algorithm. The reason for this is that the latency of a load is not

always constant due to a possible cache miss in the memory hierarchy;

therefore, waiting for a value from memory can lead to undesirable stalls in

the pipeline. Architectures with non-blocking loads allow other instructions

to be executed concurrently with a load instruction; hence, it is important

to pad an appropriate number of non-load instructions for every load one.

One of the differences with the other list schedulers is that the balanced

scheduler does not allow a free instruction to be inserted in the ready list

until its predecessors have exhausted their expected latencies. The heur-

istics used by the balanced scheduler to select a candidate from the ready

list are the priority, i.e. the weight based on the load-level parallelism,

the maximum priority of its successors, the largest difference between con-

sumed and defined registers (to monitor register pressure), and the number

of successors of the candidate if it were to be scheduled.

The balanced scheduler is the first example in the literature that considers

latencies that vary at run-time. The results show, however, that if the

latency gap between the cache hit and cache miss grows, it becomes harder

to compensate the effect of a miss by inserting independent instructions,

and performance degrades considerably. The run-time complexity of the

balanced scheduler is 0(n 2 c(n)).

ENO

3.3.2 Synchronous Model for the Compiler

The RISC experience has shown that a simple instruction set offers several advant-

ages for the compiler. Firstly, simple instructions run faster by using pipelining,

and secondly, the majority of the instructions have the same execution time, so

the compiler does not have to implement a complicated algorithm in order to

distribute long latency instructions amongst those with short latencies.

In early synchronous RISC architectures, instruction sets included simple in-

structions that normally execute at the rate of one instruction per cycle through

the use of pipelined datapaths [125]. Examples of these include the MIPS pro-

cessor from Stanford University, and the RISC I and RISC II processors from

University of California at Berkeley. In the early schedulers all instructions are

considered to take the same amount of time to execute [75]; in [100] and [132],

all the pipeline stages of the delayed-load architecture take only one clock cycle

to complete. Furthermore, the rank algorithm in [124], and its extension in [101],

consider all latencies to be either zero or one unit to achieve optimal results.

The "uniform" latency assumption simplifies the compiler model described in

Section 3.1. For the set C, we now have : 'c/L 2 E C, L i = 1. This means that

the scheduler can assume that after choosing a ready instruction and removing

it from the ready list, it can be considered as executed. The next step of the

algorithm is to update all its immediate successors and insert them in the ready

list. These iterations of the algorithm have an implicit, discrete timing. If the

latencies are integer values, then the scheduler must wait for a number of "cycles"

until the completion of the instruction before activating its successors [174]. An

important point to note is that, in some approaches, the values from the latencies

are used as part of the set E, instead of £ [10][19]. This means that the set

C becomes empty (C = 0), with the assumption that the communication costs

are neglected. The DAG in Figure 3.1 would become a DAG with delay values

assigned to the edges as depicted in Figure 3.6. If a node has multiple immediate

successors, then the value is broadcast to all its edges. The ability to integrate

the hardware latencies directly into the model has been an important factor in

the success of these schedulers.

However, more recent RISC architectures with organisations containing a

number of functional units in their datapaths, a higher degree of pipelining, and

different levels in the memory hierarchy are more difficult to model [10]. It is

recognised that latency variations of memory accesses lead to a degradation in

the quality of scheduling. The balanced scheduler [92] is the first example of a

scheduler in which the latencies are not considered fixed, because of variations in

47

Figure 3.6: An alternative interpretation for the DAG from Figure 3.1.

the memory hierarchy. Two machine cases are presented: one RISC-type machine

with a cache ratio bounded between two and five clock cycles, for a hit and a miss

respectively, and an interconnect-based network whose memory latency is defined

by a normal distribution with both its mean and standard deviation ranging from

two to five clock cycles. It is worth mentioning that, for the sake of evaluating the

scheduler, an unbalanced configuration 7 , where not enough load-level parallelism

can be found, was selected. In some benchmarks, the degradation was so signi-

ficant that the scheduler performed worse than a list scheduler implementation

without the load-level information.

Even with these run-time variations in latencies, computational models for

synchronous architectures can still capture the principal features effectively with

the use of heuristics. The next section presents some of the most common heur-

istics used in list schedulers.

3.3.3 Common Heuristics for List Schedulers

The effectiveness of list schedulers depends on a crucial decision that is taken

during the execution of the algorithm: instructions from the ready list must be

chosen according to heuristics such that the most "important" instructions are

7A mean value of 30 clock cycles and a standard deviation of 5 clock cycles.

48

selected first. These heuristics are usually combined to a weighted sum that can

be tuned to improve the scheduler. There are a number of possible factors that

can be used for a heuristic. The key is to find which factors affect the performance

for a particular architecture. This section describes some of the commonly-used

criteria:

Critical path. The critical path is one of the most commonly used heuristics. It

describes the longest path from the entry point to the exit point of a basic

block. The critical path is an upper bound for any scheduler. If the edges

of the DAG are not zero, then the critical path is the one with the greatest

collective weight from the entry node to the exit node. For example, the

critical paths in Figure 3.6 are Ij , 12, 14 , 17 , 19 and I, 12, 15 , 17 , 19 .

Number of successors. The number of successors describes how much the res-

ult of a node is needed by its successors, i.e. the importance of an in-

struction's result. The more successors an instruction has, the earlier this

result must be resolved in order that its successors become ready as soon

as possible.

This heuristic can be interpreted on the immediate number of successors or

the total number of successors. The immediate number of successors can

be used to eliminate ties in the main heuristic.

Number of predecessors. The number of predecessors describes the number

of parents of a node. An instruction with many predecessors represents a

synchronisation point, thus reducing concurrency and must be scheduled as

late as possible, so that all its predecessors produce their data as early as

possible. The immediate number of predecessors can be applied in the same

way as the immediate number of successors.

Distance to the leaves of the DAG. This is the distance in terms of the num-

ber of edges, from an instruction to any sink in the DAC (all the sink nodes

are joined to the exit node as mentioned in Section 3.1). This heuristic is

used in [64].

Number of operands. The purpose of this metric is to identify register pres-

sure. More operands in an instruction implies more releases of registers

as soon as these operands are read. This is relevant as releasing registers

means other temporary values can be assigned to them and spilled code

can be avoided. This heuristic is subject to the number of registers in the

architecture in question.

Resource usage. This factor helps to track the instructions when there are lim-

ited number and types of functional units. When an instruction is selected

from the ready list, its functional unit is recorded, so that the scheduler

recalls which types have been recently used. Depending on past selections,

the scheduler uses this information to choose instructions so that run-time

contentions for resources are reduced. This heuristic is subject to the num-

ber and types of functional units.

The work in [13] uses genetic algorithms to tune a large set of heuristics for

an instruction scheduler targeted at three different synchronous machines. The

statistical data show that the critical path is indeed the most beneficial heuristic,

and that the number of successors and predecessors heuristics are not as effective.

The results also show that the distance to the leaves of the DAG and the number

of operands heuristics are not as useful, at least for the machines which were

tested.

3.4 Asynchronous Circuits

3.4.1 Introduction

In recent years, there has been a revival of interest in asynchronous circuits. This

is in part due to serious problems that are beginning to affect the design and

implementation of high performance synchronous systems, which will be aggrav-

ated in the future, as the clock period shrinks. Among these, the clock skew

and power consumption remain crucial issues in the design of future synchronous

architectures [109].

Clock skew represents the small differences in the arrival times of the clock at

different parts of the integrated circuit. The problem with clock skew is that it

has an effect on a small, and crucial, window of time where the clock edge must

take place. This period of time is comprised of the setup time (the maximum

time that the output values of the combinational logic from the previous state

have to be stable), and the hold time (which is the minimum time that it takes

for the input nodes to be charged at the present state). If the clock edge does

not take place within this window, either the values from the previous state will

not have time to settle and cause a setup violation, or there will not be enough

time to charge the new entries from the current state, and thereby incur a hold

violation.

There are several physical reasons which cause these variations in the ar-

rival times such as temperature, technology process, threshold voltage, and signal

50

propagation delays in conjunction with the routing and the topology of the clock

signal. The importance of the clock distribution in high-speed and high-density

implementations is that the clock load must be equally balanced all over the chip.

The implications of the clock routing topology are decisive in the trade-off between

several metrics such as clock skew, clock load, the maximum clock frequency, and

the power consumption of the clock buffers. But other issues will contribute to

the pressure on the clock skew with the projected scaling trends [146]: firstly, it

is known that clock frequencies allow around twenty fanout-of-four' (F04) in-

verter delays per clock cycle, but this figure will be reduced to around five at the

feature size of 0.05 pm technology and clocking at speeds of 10 GHz, according

to the SIA projections [1][81]. The clocking overhead will use a significant part

of the cycle time making conventional flip-flop schemes more difficult to design

[52]. Secondly, the ever increasing operating frequencies will tighten the timing

restrictions, i.e. the window within which the clock transition must take place

will narrow. And thirdly, the continuous increase in the die size will naturally

lengthen the clock wires, and thereby producing longer delays. Signal delays are

governed by electromagnetic wave propagation and are directly proportional to

the wire length', so this tendency of longer paths for the clock will also have

major effects on the clock skew.

The second main cause of concern in synchronous systems is their power con-

sumption. The power consumption at the device level for CMOS logic is pro-

portional to the operation frequency (f), the total output capacitance (CT), the

supply voltage (VDD), and to the short-circuit current (I) and the leakage cur-

rent ('leak) [175], as defined by Equation 3.1.

P = fCTVDD 2 + (VDD - 2 l4h) 3 I + VDDIleak 	 (3.1)

Among these three terms, the one that dominates is the first term, called the

switching current. In recent years, the supply voltage (VDD) has consistently been

reduced, but it is reaching a limit as VDD closes the gap with the threshold voltage

Vth in deep sub-micron technologies. There are clear indications that lowering

the supply voltage requires lowering the threshold voltage, and low threshold

voltages lead to significantly large subthreshold leakage currents [88]. It also

has been shown in [43], that at a feature size of 0.18 jrn there are difficulties

F04 is a delay metric to estimate circuit speeds independent of the process technology. The
F04 delay is the time for an inverter to drive four copies of itself.

'The delay of a wire is quadratically proportional to its length and independent of its width.
Widening the wire will reduce its resistivity but will proportionally increase its capacitance.

51

to lowering the supply voltage and the threshold voltage below 1.0 V and 0.3 V

respectively, without loss in speed. Scaling analysis shows that V2h seems to be

limited at 0.3 V for room temperature of CMOS circuits [38]. This suggests that

there is a potential lower bound for the supply voltage, while clock frequencies

will maintain their relentless increase. The actual trend in microprocessors (for

the last 15 years) is that clock frequency increases 30% per year [52]. The power

consumption therefore might become strictly related to the switching frequency:

a prediction that by the year 2006 the devices will operate at frequencies around

4 GHz, and consuming more than 170 Watts [22][146].

Even though the clock can be gated in synchronous designs [134], it is not

always straight-forward to find a suitable condition to shut down the clock and it is

likely that some parts of the clock tree will still be switching, therefore consuming

power [177]. Moreover, it has been shown that in high-performance processors, the

clock circuitry, i.e. generation, drivers, distribution tree and loading, represents

up to 40% of the power consumption in high-performance processors [168], and

between 15% and 45% in more generic synchronous designs [128]. Asynchronous

designs on the other hand, will only consume power when being active. There

have been several examples where the asynchronous design is often larger than its

synchronous counterpart, but with the advantage of having considerable power

savings [16][93][141], and even some of them having no impact in terms of area

[140] [165].

There are other reasons that lead us to believe that future VLSI circuits will

find it difficult to continue with the trends described above. All these reasons

have motivated research into asynchronous circuits and systems, so underlying

their differences is the first step in understanding them.

In synchronous design there are two main assumptions: all signals are binary

and the time is discrete [26][72]. The former has permitted Boolean algebra

not only to express in mathematical terms combinational circuits, but to help

methodologically their realisation and optimisation; the latter means that hazards

and feedback can be ignored to some extent.

In the asynchronous domain, the only assumption that is held is that all signals

are binary; time is no longer considered discrete. This difference is the basis for

several positive features not found in clocked circuits. This section looks at some

of the benefits and drawbacks that result from this property.

All these implications are relevant when designing a scheduler with an asyn-

chronous architecture in mind. Later, we will describe the principal features that

such a scheduler should embody, and how best to model the behaviour of the

asynchronous target.

52

3.4.2 Advantages

The main advantages of asynchronous circuits are summarised as follows:

Low power. As asynchronous circuits do not use a clock for synchronisation,

their components only consume power during useful operations or transac-

tions. During the rest of the time, they remain in a quiescent state, when

only leakage current is consumed' ° . It is believed, however, that more sig-

nal transactions take place during activity, but they only occur in areas

involved in the computation.

Synchronous circuits however, consume power even when they are not per-

forming any useful operation. An alternative solution is to gate the clock

(which effectively turns the clock off) in areas that are not used frequently,

but this has been pointed out to be the source of other problems during syn-

thesis and verification, because modified clocks generally generate glitches.

The other concern when gating the clock is due to current variation. The

switching variation from different blocks toggling on and off strains the

power delivery mechanism [168].

Furthermore, the patterns seen in synchronous circuits over recent years

when technology scales down (frequency doubling, supply voltages scaling

down 30%, capacitance growing from 30% to 35% and die size growing

around 25%) show that the main limitation for performance and integra-

tion in future technologies will be the power dissipation and power delivery

[22][168]. Even reducing the power supply does not help enough to reduce

the power consumption of today's processors.

So far, several examples of asynchronous implementations found in the liter-

ature have presented low power consumption characteristics [113] [126] [167].

Some of them have shown power savings with respect to comparable syn-

chronous implementations.

Average case instead of worse case. One of the main advantages of asyn-

chrony is that components do not need to wait after they complete a trans-

action; they can proceed immediately to the next operation if requested.

The speed therefore will depend on the average speeds of all the entities. In

order to increase the overall speed, one should analyse their "standard de-

viation" over time: since there is a collection of different speeds, one should

"For CMOS circuits, the leakage current can be neglected when compared to the current
consumed in active mode [17].

53

look at the frequency of operation of the slower components, and depend-

ing on their number of occurrences, those with a higher figure, should be

improved. Doing this will actually increase the average speed of the circuit,

i.e. reducing its standard deviation.

In the synchronous approach the clock speed is determined by the speed

of the slowest component, i.e. the worst-case. To increase the speed of

such a system, all the slower components must be able to operate faster

altogether, resulting in a new clock frequency which is determined by the

improved speed of the slowest element(s).

No clock skew. The lack of a clock in asynchronous systems means that there

is no clock skew. When the clock signal is propagated, the differences in

the arrival times impinge upon the behaviour of the circuit; if the clock

frequency is incremented, there is a higher probability for variations in the

clock skew, so special attention is paid to the clock routing and buffering.

This is a major concern in synchronous designs nowadays, due to the in-

creasing clock operating frequencies. The removal of the clock skew problem

helps asynchronous circuit design to relax the global timing demands.

Automatic adaptation to physical properties. In synchronous design, the

physical environment of the circuit such as temperature, power supply and

fabrication specifications, needs to be taken into account so that the circuit

should work under the worst possible operating conditions. It must operate

within a safety margin in order to guarantee its functionality in case of

variations, so typical values cannot be used. The term, worst-case, applies

in the same way as before.

On the other hand, asynchronous circuits are more tolerant to physical vari-

ations. Since there are no critical timing requirements to match a specific

clock speed, circuits may have different delays corresponding to a particular

variation and will run as fast as their operation conditions will allow. Their

functionality, and more importantly, their correctness, will be maintained

in any case.

Low noise and low emission. The downside effects produced by clocking at

very fast speeds can be often found in power lines where noise is induced.

This is relevant if the circuit includes analog or RF circuits, since the noise

caused by the clock could interfere in their operation. The high-frequency

harmonics induced could be confused for a proper signal. An example of

54

these negative effects are found in analog-to-digital converters, where fluc-

tuations in the power supply caused by noise can lead to wrong voltage

reference levels, and therefore, to wrong conversions. In such cases, these

implementations require expensive circuitry for filtering the noise generated.

On the other hand, the levels of noise in an asynchronous circuit are better

tolerated [17]. In [59] for example, an asynchronous version of the 80051

micro-controller is presented in which the level of noise is substantially

reduced compared to its synchronous counterpart. In [126], a low-noise,

low-power, self-timed DSP is described. It is characterised by substantial

reductions of noise and electromagnetic interference (EMI) emissions.

Locality. Asynchrony supports a modular approach to system design. The ab-

sence of a clock isolates the different components that communicate locally,

from the rest of the system. These could be replaced, expanded or removed

without having a side-effect on the rest of the system. Furthermore, com-

ponents can be fully designed and optimised independently. Again, in a

synchronous platform where balancing the clock load, optimising and rout-

ing the clock are important design issues, any of the previous actions would

require global modifications to the circuit, i.e. re-computing the clock speed

and revising both the clock load and the clock routing scheme. The whole

optimisation process has to be performed in a global manner.

Locality also helps to expose fine-grain concurrency. Components in a

datapath only communicate with neighbouring components in order to per-

form a computation. Other components, independent of this computation,

can operate freely without the need for synchronisation. This model ex-

poses a finer degree of concurrency [5][6][7]. This will be discussed in more

detail in Section 4.3.1.

Globally asynchronous - locally synchronous. An area where asynchrony

might have an immediate impact on synchronous systems will be to replace

the global clock with an asynchronous protocol, to benefit the clock skew

and the overall power consumption. The principle is to have a collection

of synchronous components that communicate with each other asynchron-

ously - the so-called Globally Asynchronous Locally Synchronous (GALS)

systems [30]. A design methodology for GALS systems is presented in [73].

The methodology aims to find an optimum balance between partitioning

a chip in large synchronous blocks with low asynchronous communication

overheads. Results show that up to 70% of power consumption can be

55

9

Spump 	ol anp sajoka uIsp jo suds iJo1Js

pup 'sajvB JO TaqLunu pup azis UI qqmojO qsej AUISJDUI T4IM sujs1cs

jio UOiJUi alpos 05.iel aill qiM do ol sn poJJe axeq sJoo

UOVpDJIJA pup uino 'sisquAs 'uoinuns 'uIsop ur sdpj ipnp 'sIoo
aruui jo Apoq riq e pdopAp sq suisAs snouonpus jio uIsp 	sooJ

TUt SSXY

aqj pJp p1nom pUiS uovIduioD p'pp pup 'mep 5uo.TAx @qj peal

ol a5v4s 5ulmolloj aqj asneD PIUOM JeUIS UOiJdUIOD 1c1je uy •aeJ ool JOU

'XI.Tva 004 JTJIU paqviaua5 jou si 11 lelql poinsu@ aq ol SeTJ 41 Inq 'Js!

j!n3jt3 aq4uo spudp sIql -pajvjaua5 @q uvo uoieido Up jo jeuis uoijd

-moo aqj iAoq SnolAqo 4OU Si 11 'UaIJal 5UTU.Ilj OH Si @J@TjJ a:)UTS SJeUIS

uoqJduxoD jo uoqe.T@uaB aq4Si 'sJedJauno3 SnOuOnpUIcS jtaqq UI pUIIOJ

OU 'SInJia suouoipuicse jo S)peqiwI?Jp oiI4 Jo UO uoqzpp uoqdu1o3

SSaioJd WJJ!P v- mv JO 4U@LUOLU X.I@A@ 4P SJeU!S JO sanleA@ql pup

iflaliD aiql jo JnoiAeqq aqj AJTds ol alqv aq oq spu iuIsp aiqjL JUO!A

-eipq paiJO 	alflSU o (msruiuiip-uou) SD1?J prn SpJeZeq piOAe pHI?

SIeU!s jo Xqjjei4u@nbas aqj I{IM IP ol aApq jJI? ipITjM 'SI[L3JHI 	Z2SU9UZ

-tvp o4 iupudpu?-pds uioij 	'[9] SIJflDJiD SUOUOJTpUIcSI? aqljos@p O

sjAs quajajjlp pup SflOJUJflU palqvua SI?14 41 	DO 11? 4noq4lm SIUJLI But

-UiSp Ut 	pasodxa SIJ SUOqoIaSal Buituil 1,eqoIB BuiAPTJIOU

Jo mopaij ij 'ipJes jo aido 	ue uiee Si JcUOJTpUJcSe 4vqj MON

SSD3flS qqe@j5 pI?q Seq pUl? q5noua aldLuts si atuaiqm

Sfl[JJ eS quasaid aqj pjoq pup sndno aiqq ai0s o4 sUOipS 2uiiqDqpj

pup JeU0V4I?UIqWOD dno2 ol alenbape SM poud pop

V 'SJU@Aa Jo iijequnbs @ill @:)jojua oq ¶Op aiql pSfl aAeiq SJU!SG

UiSp ol jjn-DUj!p,, aip StflOJH SHOHOJqDUASe ¶q!S qsjU IV 	njjjij uisaQ

DUedD3e ipTM papnja JeJ Os Seq icuonpuicse AIJM Uiejdx 'c1ueiodmi

atom nq 'SJalpJeSar JOJ UOqeAVOm SI? OAJS Jeq4 SeUeApeStp UMOU)I-IPM 3UIOS

ate aiq 'StnitD snoUoJqouAse Jo suque Aitsod pUOTUWatOJe al[

S1U1EAp1S!Q

-SolO UOTITRU C J3AO IJTM

mw 91 JO Z!S alp e UIJAOD 'spoq Zg ouT puoiiied si DISV up HqM

'ivi' aq UI?D JJTflaltD uotedHurnumoD snoUonpuAse atç pup palnpat

Just recently, there has been a surge in the availability of research tools and

methodologies for asynchronous design, varying from high-level description

languages to hardware verification and synthesis techniques [135]. Although

their increasing use can be found in numerous examples [16][63], they are

still immature when compared to the infrastructure available for synchron-

ous design. Although these tools produce working designs, the performance

results achieved in terms of speed are inadequate, as reported in [159]. Dir-

ections for future research in CAD tools can be found in [158].

Testing. In synchronous designs, testing has been developed around the clock:

testing wrappers are built-in around components, and when a testing mode

is set, testing vectors are applied to the circuit. In the testing mode, one

can proceed with the flow of operation and stop it at any point by disabling

the clock signals. The state of the system at that point in time can be

checked. Online testing is a technique that consists of a circuit checker that

analyses illegal states representing illegal outputs. The testing overhead is

considerable but is compensated by the effectiveness of this technique.

On the other hand, testing an equivalent asynchronous circuit is a difficult

problem [15]. The main reasons that make this task particularly difficult

stem from the fact that, first, there is a larger presence of state-holding ele-

ments at the point where the test generation seems practically impossible;

secondly, the inability to "freeze" the state of the circuit and "single step"

from it; thirdly, the larger overhead of logic to be paid around the asyn-

chronous circuitry, and lastly, due to the difficulties in detecting hazards

and races [83], that have to be avoided in the first place.

These difficulties are challenging, but there are examples where testing can

be implemented under control with some degree of success. Self-checking

circuits offer an interesting property only seen in self-timed circuits. During

the handshake of an asynchronous transaction a request from the sender

initiates the process and the receiver must eventually acknowledge back the

sender, when ready to receive. If the process of this handshake is never

completed (an indefinite wait), it is likely due to a fault in the circuit. Self-

checking circuits halt when faulty, a characteristic that makes them known

as fully testable circuits [83][129].

Test generation is another complex task in asynchronous design, not only

because during testing hazards could be introduced (a problem not found

when testing synchronous circuits), but because testing for a particular fault

57

may require a series of input patterns that need to be fed up to the known

state where the input vector will then exercise that fault.

Testing still represents a challenging area in the synchronous domain and

will continue to be so with the emergence of the recent system-on-chip

(SOC) methodologies [178]. This means that the challenge will be even

greater for testing entire asynchronous systems.

Performance measurement. Measuring the speed performance of an asyn-

chronous circuit is not a trivial task compared to its synchronous coun-

terpart. With clocked circuits this task involves measuring the length of

the critical path and then counting the number of clock cycles. For an

asynchronous circuit, the time it will take to complete a task will depend

on its delays (related to hardware issues) and on the input data (related

to software issues). This means that the performance measures are prone

to be variable. (The reasons of this are explained in more detail in the

next section). The performance metric used must be based on the average

measure.

An alternative method for measuring the performance of asynchronous mi-

croprocessors is the MIPS/Watt metric. This metric measures the perform-

ance by showing how fast a processor runs, at the expense of its power

consumption. To counter the criticisms that asynchronous microprocessors

are not as fast as their synchronous counterparts, this metric shows that

performance can be related to power consumption, and that a design could

be thermally more efficient for its performance. In [113], an asynchron-

ous implementation of a MIPS R3000 microprocessor is checked at different

supply voltages to compare its performance per wattage. It is shown that

one can trade a higher speed at a higher voltage, and thus a higher power

consumption, for a lower supply voltage with lower power dissipation, but

with lower performance overall.

3.4.4 A Compiler Model for Asynchronous Architectures

As discussed in Section 3.3.2, compilers, and importantly, schedulers for synchron-

ous targets have benefited from the regular streams in the instruction execution.

The method for forcing all events to occur with the clock, and eventually the ex-

ecution of the instructions, eases the scheduling model described in Section 3.1.

The behaviour of the architecture is captured in 9, giving the algorithm full

control for accurate optimisations.

However, the assumptions made in the synchronous model do not hold for an

asynchronous target, simply because events do not have precise timings, i.e. they

do not have a pre-defined time to resolve. Values from set C are variable and are

certainly not integers. They are governed by a number of different factors: (1)

At the physical level, the time it takes for an asynchronous datapath to complete

a task depends upon its design, its physical layout and its operating conditions.

The dynamic behaviour when executing a sequence of instructions (3)

is based on the number and type of resources; sets R and T, respectively. If,

for example, instructions from this sequence belong to the same type and there

is only one functional unit available of that type, then structural hazards will

occur and introduce additional delays which affect the execution times. The

dynamic influence of these delays comes from a tight relationship between both

the sequence of instructions and the architecture configuration (number and types

of functional units and the connectivity between them).

Another important dynamic effect in asynchronous designs is that the

time it takes to process an action depends on its input data as well. A typical

example is found in asynchronous adders where the time to complete an addition

is proportional to the number of one-plus-one's, say m (number of ones from one

operand added to the ones from the other), because carry signals must propagate

m stages to allow the addition to complete [94][151].

And (4), statically, the latencies are dependent upon the instructions them-

selves and their ordering. The opcode of the instruction defines which type of

functional unit will execute the instruction; the operands determine from which

registers the data will be read or written accordingly.

Finally, the ordering in which they are scheduled is decisive in the way events

will take place in order to avoid stalls due to data dependencies during execution.

This series of interdependencies can be illustrated in Figure 3.7. The figure de-

picts a different representation of the scheduling problem from the scheme shown

in Figure 3.4.

The dashed lines in the figure represent the latency information that is only

available at run-time and not statically. The solid lines represent set of inform-

ation that are fully available before scheduling takes place. The feedback from

89 does not mean that the output schedule is being fed back, but to illustrate

that the ordering in the schedule needs to be processed in combination with all

aspects explained above, and that will determine the final values of the latencies.

The dashed line leaving the block where C is determined implies only that these

values are not available at compile-time.

59

S9

Figure 3.7: New representation of the scheduling problem.

Given all the factors and combinations involved in defining the latencies values,

they are found to be bounded within a best and a worst case. The best case

is when there are optimal operating conditions, minimum delays coming from

the inputs, minimum dynamic delays and minimum processing time of data. In

the adder example, the best case is when adding zero to zero. Conversely, the

upper bound, i.e. the worst case, is when the operation is performed under the

worst operating conditions, with maximum delays from the inputs and maximum

processing of data. In the case of the adder (the case of adding maximum numbers

together), i.e. numbers with maximum number of ones, the carry has to propagate

to its maximum. The data is mostly responsible for the operating range of the

adder. Its delay function is therefore, an ascendent curve directly proportional

to the amount of one-plus-ones m, starting from the best case and bound at the

worst case [62].

Finally, asynchronous circuits require an additional time to become ready

to operate when they complete an operation. During this period of time an

asynchronous component settles and goes to an initial state whereby it can start a

new operation. In synchronous circuits this period of time is included in the cycle

time, which is calculated from the slowest component. However, the cycle time

in asynchronous circuits is particular to each component. Its duration is mainly

ZE

due to the implementation of the circuit, but is also affected by the physical

conditions explained earlier. The cycle time of a component can be considered to

be a fraction of its latency time, but cannot necessarily be ignored.

3.4.5 Considerations for the Compiler

As has been mentioned before, the scheduling problem becomes NP-hard when

pipeline stages are no longer equal, even if the basic block consists of independent

instructions [61][124]. Having different types of units and variable latencies poses

a challenging optimisation problem for the compiler. The number of variables

involved in the determination of the latency values is large and diverse enough

to integrate into a single computational model. The complexity of such a model

combined with the complexity of the scheduling task seems to have a intractable

solution. In order to simplify the problem, the compiler has to make some as-

sumptions without removing the principal features of asynchrony: the operating

conditions can be assumed to be fixed to some extent, and the delays between

neighbouring components can be neglected since they should be placed together

in the physical layout.

The dynamic variations due to data dependencies, data processing and re-

source contention cannot be simplified because they are only resolved at run-time,

which makes it difficult to parametrise them. However, they can be decomposed

in terms of costs. Some operations or events may be more costly in terms of

delay than others. In this way, priorities can be incorporated into the scheduler.

It has been shown that in delayed-load architectures without hardware support

for interlocks, the scheduler must ensure that there cannot be two data dependent

instructions scheduled consecutively. A dedicated heuristic can be implemented

in such a way that this case should never happen.

In [7], data dependencies (RAW, WAR and WAW), are categorised by the

amount of stall they induce in an asynchronous architecture and prove to be

a good mechanism for consideration as a heuristic. Capturing the impact of

different costs instead of the actual latency values seems an attractive approach

to the problem. Detailed explanations will be presented in Chapter 4.

However, one could not presume to find optimal solutions for asynchronous

architectures. As mentioned before, the scheduling problem expects to obtain

near-optimal solutions given its complexity. The assumptions made for asyn-

chronous circuits may lead, to some degree, to relatively good solutions, but the

non-deterministic nature of the problem makes it impossible to always achieve

optimal results. Furthermore, a schedule may have different optimal values over

61

different runs due to the dynamic characteristics explained earlier. It is expec-

ted that several runs of the same scheduled code will have different makespans.

Hardware considerations in [7] include different costs for different functional units

based upon SPICE-level simulations, but latencies are fixed figures during the

simulation process. Although the ratios between costs and latencies are repres-

entative of the architecture, they do not reflect the variability as a result of input

data and resource contentions at run-time.

From the scheme shown in Figure 3.7, one can parameterise the number and

types of functional units (T, R). The cost involved in the communication of results

(E) can be associated to the delay function of the register file after SPICE simula-

tions. As for JL, the scheduler may use a range of values covering a maximum and

minimum latencies in the parametrised model, in order to apply different costs

to combination of instructions at compile-time. All this information will serve to

capture the computation model for the scheduler.

3.5 Summary

Scheduling techniques for uniprocessors have matured enormously since the prob-

lem was first approached, and has been helped by previous scheduling research

in other domains such as management science and operations research. These

studies have focused on the optimisation concerning people, equipment and raw

materials. These problems have dealt basically with integer numbers, and it is

this reason that enabled the subtle transition to scheduling code in instruction

set architectures.

List scheduling has become a de facto solution for the "p-functional unit

processor, n-instructions" problem. The sparse diversity of heuristics offers an

appropriate method to overcome the constraint's complexity and is able to tune

scheduling optimisations for different target specifications. However, these spe-

cifications rely upon regular and synchronous behaviours. The scheduling ex-

amples described in this chapter show the tight relationship between the back-end

of the compiler and the architecture. This relationship is greatly responsible for

the success of scheduling in synchronous architectures in achieving good perform-

ances.

The challenge for scheduling asynchronous architectures though is apparent.

Despite all the advantages of asynchronous circuits described in this chapter, the

property of exploiting average case delays is in fact the primary reason for the

difficulties in scheduling. The result of having ranges in the latencies for the set C,

ED

instead of single point values, raises the question whether traditional scheduling

techniques would be as effective for asynchronous architectures, and at first sight

reduces expectations for achieving optimal solutions.

The next chapter will present an overview of some well-known asynchronous

architectures, including the Micronet-based asynchronous architecture. Descrip-

tions and characteristics of the Micronet architectural approach will be presented

along with the behaviour of its model. The scheduling schemes proposed later in

this thesis will be targeted towards such an architecture, and will be evaluated

on a simulator using a detailed model of the micronet architecture.

63

Chapter 4

Asynchronous Architectures

4.1 Introduction

The benefits of asynchronous circuits, as explained in Chapter 3, have triggered a

revival of interest in asynchronous architectures and their design. Early research

investigated the feasibility of large asynchronous systems by "porting" contem-

porary synchronous processors in order to build up credibility and confidence.

Experiences from this research in asynchronous systems [42][137][145] helped to

understand that asynchronous architecture design needed to develop alternative

methods in order to ease the design process and to exploit the advantages of

asynchronous circuits [15] [72] [110].

This chapter presents an overview of contemporary asynchronous architec-

tures, and is not meant to be an exhaustive list. The chapter also describes the

Micronet [4], an asynchronous architecture in which not only temporal parallel-

ism, but also spatial parallelism is exploited. The micronet model used in this

thesis and its functionality and characteristics are detailed. The architecture has

been modelled in a stochastic event-driven simulator to evaluate the potential of

code scheduling in asynchronous architectures.

4.2 Review of Asynchronous Architectures

4.2.1 AMULET

The AMULET group at Manchester University has developed three asynchronous

processor implementations based on the ARM (synchronous) processors. The

first of them, the AMULET1 [56], is an asynchronous micropipelined version

of the ARM6 microprocessor. The implementation used a two-phase, bundled-

data communication protocol. Its register bank is accessed through the use of

a register-lock FIFO buffer to allow for multiple, pending write operations and

64

maintaining data coherence. The width of the register-lock FIFO buffer is equal

to the number of registers, whereas the size of the buffer (its height) defines the

number of pending write operations. Each location consists of a bit that indicates

which register is to be written. Control logic ensures that at most one column

attempts to write to a register. The datapath of the AMULET1 includes an ALU,

a shifter, a multiplier and a memory unit, so as to be able to execute the ARM

instruction set. The results showed that the AMULET1 was slightly larger in

size and consumed more power, when compared with an ARM6 implementation

using the same technology process. However, the ARM6 is a compact design

and a highly efficient commercial processor in terms of performance per Watt, so

this comparison was not entirely fair. AMULET1 did prove the feasibility of a

large-scale asynchronous architecture.

The AMULET2 [57] improved on the AMULET1 in several aspects. The

AMULET2 used the four-phase handshake scheme, which is faster and more

power efficient; a data-forwarding mechanism reduced pressure on the register

file and a branch prediction mechanism reduced the percentage of prefetched in-

structions that were discarded when a branch was taken. The AMULET1 was

reported to have an average of three discarded instructions per branch. With

branch prediction, this average was reduced to one. The AMULET2 design and

manufacturing costs were equivalent to that of a similar clocked processor. Fur-

thermore, the AMULET2 also demonstrated the potential for power efficiency (in

terms of MIPS/Watt) and better EMI characteristics [58].

The AMULET3 [63] is the most recent implementation in this series. It offers

similar performance and functionality as the ARM9TDMI microprocessor. The

AMULET3 introduced new mechanisms and improved upon several aspects of

AMULET2. For example, a Thumb decoder was incorporated for full compat-

ibility with the Thumb instruction set, and a reorder buffer was incorporated at

the write-back stage. The reorder buffer replaced the register-lock FIFO buffer

used in previous AMULET designs. It enables data forwarding to be more dy-

namic and flexible. The result to be forwarded is stored in the reorder buffer

until needed. The forwarding event can take place in parallel with the register

write-back. The reorder buffer shortens the path for results normally written and

read immediately via the register file, thus reducing the response time for res-

ults to be available. If the instruction results do not need to be forwarded, then

they are written back in order. The AMULET3 performs favourably against the

ARM9, in terms of power consumption, performance and size (they were both

implemented in the same 0.35 urn CMOS process).

65

4.2.2 NSR and Fred

NSR [138] and Fred [139] were asynchronous processors designed at the University

of Utah which feature decoupled datapaths to hide the latency of slow operations,

such as memory instructions. Pipeline stages communicate via variable-length

FIFO buffers which allow instructions to proceed at their own pace. They also

allow other instructions not to be held up by slow ones, such as memory or branch

operations. However, the main disadvantage of FIFO buffers in between stages is

the latency delays introduced into the pipelines which lowers the throughput.

Both processors issue one instruction at a time, but have out-of-order execu-

tion. They use register-locking schemes to preserve data consistency, similar to

the ones used in the AMULET1 and AMULET2 processors. However, the NSR

processor is a 16-bit implementation, whereas the Fred processor is a 32-bit one,

with more functional units and is based on the Motorola 88100 instruction set.

4.2.3 Caltech Asynchronous Processors

The Caltech Asynchronous Processor was the first VLSI implementation of an

asynchronous microprocessor [111]. It uses a 16-bit RISC-like instruction set and

consists of three functional units: an ALU, a memory and a program counter. Its

register file consisted of 16 registers that could be accessed concurrently. Meas-

urements on the prototype [112] demonstrated the potential for wide operating

conditions, i.e. testing was successful at a broad range of supply voltages (from

20V to 0.35V), and the ambient temperature varying from room temperature

(300°K) down to 77°K.

The second Caltech processor was an asynchronous implementation of the

MIPS R3000 [113]. The asynchronous MIPS processor considered architectural

features not covered in the first design. These included caches, precise exceptions,

register forwarding, branch prediction and the branch delay slot. Although the

asynchronous MIPS processor was compatible with the MIPS instruction set, the

datapath was not a straight synchronous to asynchronous pipeline conversion.

The execution stage of the datapath was decomposed to allow for out-of-order

execution, through the use of multiple functional units and a register unit. The

register unit consisted of a register file, a register lock, and execution and bypass

buses. The register file had two read and write ports which could operate concur-

rently. Results could be written either solely to the register file or written to both

the register file and forwarded to a functional unit, if the following instruction

requires the result.

Performance, as defined by E-r' (where E is the average energy per instruc-

tion and 'i- is the average instruction execution time), compares favourably against

other synchronous and asynchronous implementations. Furthermore, as the voltage

is independent of this metric, it can be adjusted to select either high performance

and a higher power consumption operation or a lower performance with a lower

power consumption operation.

4.2.4 Counterfiow Architecture

The counterfiow pipeline processor (CFPP) [153] is different in that the instruc-

tions and results flow in opposite direction in the pipelines, in order to perform

data-forwarding. In the instruction pipeline, instructions flow towards the re-

gister file, whilst results flow in the opposite direction towards the instruction

fetch stage, in the results pipeline. Each instruction carries binding information

about its source and destination operands. Each binding consists of a register

name, a data value and a validity bit. This validity bit indicates whether an

instruction should be cancelled by a trap or a branch. The instruction pipeline

has several stages, each associated with a different functional unit.

Once a result is committed, the instruction binding is passed into the result

pipeline. The result binding flows in the opposite direction in order to "meet"

the instruction that requires that result. At every stage, instruction and result

bindings are compared for a register name match. If there is a match, then the

result is copied to the instruction binding.

However, the asynchronous counterfiow datapath presents limitations mainly

in two aspects. Firstly, the throughput of the pipeline is limited by the amount

of control in each stage. The coordination between the instruction and res-

ult pipelines to compare their corresponding bindings requires arbitration. An

arbiter-based mechanism is used to decide whether an instruction or a result can

proceed to the next stage, in their corresponding direction. This depends on the

state of the stage and its neighbouring stages, i.e. whether the stages are busy or

not. Secondly, average-case execution cannot be fully exploited in the datapath

because instructions from one pipeline need to 'synchronise' with results from the

other pipeline. The speed in which instructions and results advance is therefore

adjusted to the speed of the slower pipeline.

4.2.5 SCALP

SCALP was a superscalar asynchronous low-power processor [47]. The SCALP

processor issued more than one instruction at a time. Instructions were encoded

previously by the compiler with opcode, destination and functional unit specifiers.

rtj

The functional unit specifier indicated which functional unit was assigned to the

instruction for execution, and the destination specifier denoted where the result

had to be forwarded. The compiler, therefore, removed the tasks of identifying

data dependencies and performing dynamic resource allocation, in the same way

as compilers for VLIW architectures do. This information allowed the simplific-

ation of the issue unit for distributing instructions to functional units in parallel

[48]. A crossbar switch was responsible for connecting the issue unit to multiple

functional units.

In the SCALP architecture the concept of data-forwarding was taken beyond

conventional data-forwarding schemes. Since all instructions embed the destin-

ation of their results, these were immediately redirected to their corresponding

functional unit's queues after execution. This scheme has similarities to a data-

flow machine, although control is not governed by the data, but by control logic.

The SCALP processor treated the register bank as another functional unit. It was

only used for medium-term storage, i.e. when a result was not immediately re-

quired by a following instruction. Short-term storage, i.e. consecutive dependent

instructions, was substituted by data-forwarding. A result router was responsible

for the distribution of results to the input queues of the functional units.

The programming model for a compiler targeted at the SCALP processor re-

quired several considerations. Both the code generation and the instruction set

had to be tailored for such a data-forwarding mechanism. One typical example

that differs from traditional programming models was when an operand was used

more than once in a computation. Normally, in a register-based processor, one

load operation would retrieve the value from memory into a register so that it

could be used as many times as was needed (one producer to multiple consumers).

With the dedicated data-forwarding scheme of SCALP (one producer to one con-

sumer), the operand must be duplicated the number of times it will be needed, in

order to be multiplely forwarded. Thus, in the code generation phase, duplicate

instructions were inserted after the load instruction to avoid the use of multiple

loads.

The compiler has to produce code to exploit the potential of explicit data-

forwarding, and also not introduce deadlocks and non-determinism in the ar-

chitecture. Deadlocks could occur if instructions sent multiple results and no

instruction would consume them, whereas non-determinism would occur, if for

example, two functional units sent results of the same operand to the same func-

tional unit at the same time.

4.3 The Micronet Architectural Model

4.3.1 Preliminaries

The speed of synchronous pipelines is determined by the speed of the slowest

stage, and the throughput is proportional to the length of the pipeline, i.e. the

number of active instructions at a time. Figure 4.1 (a) shows a synchronous

pipeline that exploits temporal parallelism. The pipeline shows four pipeline

stages. The shadows represent the activity of the stages, while the white spaces

represent idle times. It can be seen that resource efficiency is degraded when

the latencies of the stages are not well balanced. The throughput of synchronous

pipelines is dictated by the cycle time, which is determined by the speed of the

slowest stage.

The speed of asynchronous pipelines is characterised by the average-case speed

of their components'. Figure 4.1 (b) shows an asynchronous pipeline that offers

the same amount of temporal parallelism, but exploits the actual delays, thus

resulting in a more efficient resource utilisation. Micropipelines, as described

by Sutherland [161], are representative of this type of asynchronous pipelines.

In such pipelines only different instruction stages can operate concurrently. For

example, the execution stages of two different instructions cannot overlap. The

average throughput of such pipelines is limited by the stage with the slowest

average throughput.

The work in [6] has proposed an asynchronous model of operation that not

only exploits temporal parallelism, but spatial parallelism as well. Figure 4.1 (c)

shows such a pipeline, in which stages from different instructions can overlap.

From the example shown in the figure, it can be seen that the execution stages

from two instructions take place concurrently at any time. In such pipelines

further resource utilisation can be achieved. Furthermore, a degree of elasticity is

exposed that allows for all the stages to operate concurrently. It has to be noted

that in both asynchronous pipelines (Figures 4.1 (b) and 4.1 (c)), the self-timed

protocols have been omitted for the sake of clarity.

1 1n fact, research has shown that, asynchronous pipelines operate closer to worse-case rather
than average-case [68]. The reason is that in asynchronous pipelines, the maximum throughput
requires a receiver to be always ready when its sender is going to transmit data, but also that
by the time the receiver has completed its operation, its own receiver will also have to be ready.
A continuous flow of data in this manner is described as wave pipelining [27][71]. In wave
pipelines, the maximum throughput is determined by the difference between the fastest and
the slowest component, as opposed to being determined by the slowest one, as in conventional
pipelines.

4.3.2 Previous Work

4.3.2.1 An Asynchronous Network of Micro-operations

A micro net is a network of entities which compute concurrently and commu-

nicate asynchronously without centralised control [4]. This network of entities

can be regarded as a generalisation of micropipelines. In micropipelines, instruc-

tions propagate at their own pace, and their execution times are bounded by

the speed of the slowest stage. This effect has been presented as analogous to

one-dimensional wave propagation. Such pipelines may exploit further temporal

parallelism by relaxing the synchronous control, but the parallelism is limited by

regular structures. For example, in a micropipeline datapath there cannot be

more active instructions than the number of stages in the pipeline.

In contrast, the micronet model is limited by the number of functional units.

The execution of an instruction consists of executing several micro-operations.

Micro-operations communicate with each other only when necessary. An instruc-

tion only uses the micro-operations required for its execution. This enables other

instructions to use resources within the same stage, if they are not used. For ex-

ample, an instruction that requires only one operand, and therefore one read bus,

will leave the other read bus and its entity available. The second read bus and

its entity can be used concurrently by another instruction that also has just one

operand. In this manner, fast instructions are able to overtake slower ones. In

fact, this model of operation enables the competition for resources. The micronet

datapath offers a finer-level of concurrency than the level of concurrency offered

by micropipelines [5]. Simulations had demonstrated the following features of the

micronet architecture: variable instruction execution due to the type of instruc-

tion and the availability of operands; the control overhead in a micronet is hidden

by the concurrent operations inherent in the model; the concurrent execution of

micro-operations of different instructions in the same datapath. In effect a scalar

micronet datapath can exploit both temporal as well as spatial parallelism.

4.3.2.2 VLSI Implementation

The implementation feasibility of the micronet model has recently been studied

in [151], in which a transistor-level VLSI implementation of a micronet-based

asynchronous processor is presented. The VLSI micronet implementation is a

32-bit scalar processor that contains a register file with two read ports and one

write port, and three functional units, namely an arithmetic unit, a memory

interface unit and a branch unit.

70

Time

I '

12

13

14

(a)

Time

II

12

13

14

I! 	OF 	Ex 	WB

	

II 	OF 	 Ex

II 	 OF

II

WB

Ex 	WB

OF 	 Ex 	WB

(b)

Time

11 OF Ex WB

II OF Ex WB

II OF Ex

II OF I 	Ex

(c)

Figure 4.1: (a) A synchronous pipeline, (b) an asynchronous pipeline and (c) an
asynchronous pipeline that exploits spatial parallelism.

4.3.3 Architectural Description

The model of the micronet architecture used throughout this work is shown in

Figure 4.2. The micronet processor is composed of an issue unit, an operand fetch

unit, a set of functional units and a write-back unit. The functional units include

I '

12

13

14

WB

PIU

71

a memory unit, an arithmetic unit, a logical unit and a floating-point unit. The

architecture can be configured to have more than one instance of the arithmetic,

logical and floating point units. The typical operations of an arithmetic unit

are integer addition, substraction, multiplication and division, but it may also

include immediate and address loads (a load operation writes a single address

value directly into a register). The logical unit performs bitwise operations such as

bit shifting, bitwise comparisons and logical operations, i.e. AND, OR, XOR and

NOT. The floating-point unit performs similar arithmetic operations on floating-

point numbers. The memory unit loads from, and stores values into, the memory

through a data cache. The memory unit includes an internal adder for calculating

the effective memory address. Each functional unit is independently connected

to both the operand fetch unit and the write-back unit, to allow instructions with

different types to be executed concurrently. Furthermore, each functional unit is

assigned a pair of read buses and a write bus. During a computation, temporary

results are stored in a multiported register file.

The order of events during execution is the following. Initially, the issue unit

fetches instructions from the instruction cache and issues them to the operand

fetch unit. The operand fetch unit reads the operand values from the register

file through the pair of read buses and hands them over to the corresponding

functional unit. When the functional unit completes its execution, the result is

sent to the write-back unit. Finally, the write-back unit stores the results in the

register file via a write bus.

The issue unit issues one instruction at a time in an in-order manner. It is

responsible for issuing instructions as soon as their operands become ready, i.e.

their operands have been written into the register file. If the operands are ready,

then the issue unit inspects if both read buses and a functional unit corresponding

to the appropriate instruction type are available. Depending on the availability of

these resources, the issue unit issues or stalls the instruction. If the resources are

available then the instruction is issued, otherwise the instruction is conditionally

issued, so that it proceeds up to the resource that is busy, and stalls. The outcome

of this scheme provides for different cases depending on the availability of these

resources. These are described as follows:

• If there are no functional units of the type required which are ready, but

the read buses and the operands are available, then the instruction will

be issued and the operand fetch unit will proceed normally, but will stall

immediately after reading the operands. The instruction will remain stalled

until a functional unit becomes ready to execute the operation.

72

Figure 4.2: Architectural model of the micronet-based datapath.

• If any of the source operands of the instruction are not ready (data re-

quirement), or the read buses are not available (resource requirement), the

instruction will not be issued. The instruction will remain stalled until all of

its operands are ready and there are read buses available. Since the architec-

ture issues instructions in-order, when these data and resource requirements

are not available, the issue unit will remain stalled.

73

When a functional unit completes the execution of an instruction, it will send

the result, only if there is a write bus available. If no write buses are ready, then

the functional unit stalls and remains in the "busy" state until it can deliver its

result to the write-back unit.

4.3.3.1 Data Coherence

The register file contains a bank of registers with one or more read ports and

one write port. The register contents are retrieved from one of the read ports,

whereas results are written to the registers via the write port. Read and write

accesses can take place in parallel if they refer to different register locations. If a

register has more than one read port, then its contents can be read concurrently.

The mechanism for ensuring data coherence during instruction execution using

a register file is based on the register locking scheme [127]. The concept of locking

registers has been a common solution in many asynchronous implementations

[56] [57] [139]. The VLSI implementation of the micronet-based processor [151] also

uses the register locking approach. The locking scheme is required to guarantee

correct data operation in the presence of asynchronous accesses to the register

file. The mechanism consists of a device that contains an individual lock bit

per register. The lock bit indicates that a register is yet to be written by a

pending instruction. In the micronet model, if the lock bit is set, it is implied that

the register cannot be read from, or written to, by any subsequent instruction.

Conversely, if the lock bit is unset, any instruction can read the contents of the

register until the register is locked again.

Since there is no way of knowing how long it will take for a register to con-

tain valid data, the issue unit cannot issue instructions that depend on a locked

register, i.e. if there is a RAW or a WAW dependency. In either case, the issue

unit remains stalled until the value of the operand is available, i.e. the register is

unlocked. The register locking mechanism ensures that locked registers cannot be

accessed (read or written) by any instruction before their results are committed.

When the issue unit proceeds to issue an instruction, its destination register is

locked. This register remains locked throughout the duration of the instruction's

execution, and only after the write-back unit commits the result will the register

be unlocked. The write-back of a result will cause a pending instruction waiting

for that result to update its status. As mentioned before, the issue unit checks for

the availability of operands; if the unlocked register was the only operand that

2As many instructions as the number of read ports.

74

was being awaited for, then the destination register of the stalled instruction is

locked similarly, and the instruction can be issued and will proceed as long as its

resources are available (buses and functional unit).

Maintaining data coherence for memory accesses is more complicated than

the register locking mechanism. The architecture shown in Figure 4.2 does not

consider more than one memory in the interest of simplicity. If multiple memory

units were available, that would allow for concurrent memory operations. Imple-

menting concurrent memory operations introduces the possibility that loads may

overtake stores and vice-versa. This means that every time such a case should

arise, the memory locations being referenced would have to be disambiguated,

i.e. compared and proved to be different, in order to avoid violating memory

dependencies. Such dependencies occur when loads and stores refer to the same

memory location. If a store precedes a load in the code, it means that there

is a true dependency (RAW), whereas if a load precedes a store, it represents

an anti-dependency (WAR). If two stores refer to the same memory address, it

means that there is an output dependency (WAW).

With the current architecture (one memory unit with in-order issue) dynamic

memory disambiguation is not required, simply because loads and stores execute

in-order. Implementing run-time memory disambiguation in synchronous pro-

cessor architectures poses substantial hardware overheads [53]. In an asynchron-

ous design, run-time memory disambiguation may restrict the performance even

further because memory references need to be synchronised in order to be disam-

biguated.

4.3.3.2 Write-back Operation

When a functional unit completes the execution of an instruction, the only po-

tential contention in the write-back operation is the need for a write bus. Since

the register has been previously locked, it is guaranteed that none of the other

functional units will attempt to write to the same register. This means that it is

safe to write to the register as soon as a write bus is available. The architecture

shown in Figure 4.2 assigns a write bus to every functional unit, thus removing

this resource contention.

4.3.3.3 Control-flow Operations

The execution of control-flow instructions in the architecture shown in Figure 4.2

is performed by the issue unit. The processor's program counter (PC) is updated

depending on the type of control instruction, i.e. jump, call, return or branch.

75

When a jump instruction is issued, the PC is updated with the address specified

by its operand. The issue unit then resumes instruction fetch from the new

PC. A call instruction causes the PC to be updated in the same way as jump

instructions do, with the difference that the PC is saved to the stack memory,

before its value is updated. A return instruction simply restores the PC from

the stack memory. Finally, branch instructions modify the PC depending on the

result of register comparisons. The result of such comparisons is written into a

register. Once the result of the comparison is committed, the issue unit issues

the branch instruction and the operand can be fetched. The operand fetch unit

returns the value of the register back to the issue unit (c.f. Figure 4.2), where

the PC is updated depending upon the value. In the case of a branch-if-true

branch instruction, the PC is updated if the register contents are not a zero

value, i.e. usually one. In the case of a branch-if-false branch instruction, if the

register contains the value zero, then the PC is updated. A branch instruction is

regarded as a conditional jump instruction.

This concept of "test-and-branch" is similar to the branch decoupling scheme

of the NSR processor [138]. The difference is that the outcome of the test in the

NSR processor is stored in a flag bit rather than a register, but the branching

mechanism waiting for the flag to be set is similar. Instructions can be scheduled

between the test and the branch in order to avoid the hazard.

4.3.4 Parametric Model

4.3.4.1 Configuration Description

The description of the architecture may be parameterised in order to be able to

include different types of components and various connectivities between them.

A configuration file describes the architecture, i.e. the type and number of func-

tional units, the number of read and write buses, the latencies of the various

components and the instruction set. The instruction set is defined by specify-

ing the instruction types that can be executed by the various types of functional

units. For each group of instructions, read buses, a functional unit and a write

bus are assigned. These resources will be required during the execution of any of

the instructions belonging to a particular group. In this way, functional units can

be "specialised" to perform specific operations. Instructions from each group are

described by their opcode and the number and type of operands they require.

In asynchronous architectures the completion time of a functional unit depends

on both static and dynamic factors, as discussed in Section 3.4.4. The static factor

76

Component Type
Latency time Cycle time

Minimum Maximum Minimum Maximum
Issue unit 	 (IU) 1.00 2.00 0.50 1.00
Read buses 	 (RF) 2.00 4.00 0.50 1.00
Write buses 	(RF) 2.00 4.00 0.50 1.00
Arithmetic unit 	(AU) 4.00 8.50 0.50 1.00
Logical unit 	(LU) 2.00 7.00 0.50 1.00
Floating point unit 	(FU) 6.00 8.00 0.50 1.00
Memory unit 	(MU) 10.00 20.00 0.50 1.00

Table 4.1: Latency distribution for the different components in ns.

is based on the type of functional unit. The type of functional unit operation

determines the range of delays. For each architectural component its latency

and cycle time must be specified whose operating range is bounded between a

minimum and a maximum value. This range is set to model dynamic factors

such as the input data.

The range of latency and cycle times for the different architectural components

is shown in Table 4.1. Some of these values are based on SPICE simulations

from a prototype of a micronet datapath in 0.7gm CMOS process technology

[4]. These include the issue unit, the read and write buses and the arithmetic

unit. The values from the table will be used systematically throughout this thesis.

The range of latencies in the table attempts to reflect values with a reasonable

variance, so that operations are not considered to complete in fixed times. The

variance represented in the table reflects delays due to all the possible aspects

that affect the latency as described in Section 3.4.5, i.e. from data-related ones

to process and temperature variation. Moreover, the relative latencies imply that

some operations are more costly than others in terms of delay. This configuration

presents arithmetic and logical units which are relatively faster than the memory

unit, since a memory operation may include an addition, and the actual process

of loading from, or storing into, memory is relatively slow. Similarly, the issue

unit is faster than any other component in order to model a considerably fast

single-issue architecture in which resources are kept busy [4]. The register file has

been partitioned into separate components: the access times of the read buses

and the access times of the write buses. The table also shows cycle times that

04

Time

1 1

12

13

14

Key

Latency time

Cycle time

Figure 4.3: The micronet operation.

are relatively smaller than latency times. Cycle time represents the delay for

components to become ready again after the completion of an operation.

An example of the asynchronous pipeline of the micronet architecture is shown

in Figure 4.3 which incorporates both latency and cycle times.

4.3.4.2 Components Distributions

The latency distribution of the different architectural components are defined

depending on the nature of their type. For example, the memory unit has a

bimodal distribution which attempts to simulate the cache behaviour, i.e. either

a cache hit or a cache miss. The minimum latency time represents a cache hit and

the maximum latency time represents a cache miss. The distribution is equally

balanced so that cache hits and cache misses have the same probability 3 .

The arithmetic unit has a linear distribution starting from the minimum

latency value towards the maximum latency. Previous research in asynchron-

ous adders [94] demonstrated that for a random set of input data, 50% of the

additions can be completed with delays close the minimum. For the rest of the

additions, the completion times are incremented significantly towards the max-

imum latency. This behaviour, of course, depends on the implementation, but a

continuous linear distribution is normally expected [62][151].

The rest of the components have been modelled with uniform distributions

bounded within minimum and maximum latencies and cycle times as specified in

Table 4.1.

3This is a pessimistic assumption considering that cache hit:miss ratios achieved nowadays
can be as high as 95% for some benchmarks.

0

4.3.4.3 Instruction Set

The instruction set used for the micronet model is based on the MIPS instruction

set [91]. Appendix B shows an example of the configuration file that contains

the parametric description of the architecture. The description file contains the

number and types of functional units and their latencies in nanoseconds. The

description of the instruction set includes the assignment of instructions to func-

tional units and buses for execution.

4.3.5 Characteristics

The architectural model described in Section 4.3.3 in conjunction with the latency

distribution from Table 4.1 offers interesting characteristics. The micronet-based

model presents a scalar architecture that features a fast in-order single issue unit,

and a write-back stage where results are committed fully out-of-order. Having

a fast single issue unit models a processor capable of issuing more than one

instruction at a time, without the additional hardware cost of superscalar designs

[45][48]. Single instruction issue also restrains the potential growth of complexity

and size of asynchronous superscalar issue units.

Out-of-order write-back schemes avoid the need to reorder write-back events

when results are ready to be committed. Reordering these events to maintain

in-order write-backs introduces synchronisation, which reduces the benefits of

average-case execution. The use of both out-of-order execution and out-of-order

write-back exploits more parallelism.

These features give the asynchronous micronet model some characteristics

similar to VLIW and superscalar architectures. To sustain a fast issue rate,

streams of independent instructions must be available. VLIW and superscalar

architectures sustain a fast issue rate by issuing multiple independent instruc-

tions. VLIW architectures issue more than one instruction at a time, because the

code has previously been analysed and scheduled by a compiler. As a result, the

control section of a VLIW architecture is much simplified. Superscalar architec-

tures, on the other hand, require significant hardware control to perform dynamic

scheduling, when the compiler is unable to provide independent instructions.

The micronet architecture shares with VLIW architectures the characteristic

of not having to perform dynamic scheduling, which is expensive in terms of hard-

ware complexity, and it shares with superscalar architectures the need to prevent

hazards at run-time. The micronet model shares with both architectural schemes,

the need to identify independent instructions in order to issue as fast as possible.

79

This model can be regarded as if the issue unit were "dealing" instructions to the

group of functional units. To a certain extent, VLIW architectures operate in the

same manner, but with the difference being that the multiple issue process takes

place in parallel.

Another similarity between a micronet and a VLIW architecture is that data-

forwarding is not implemented. Once an instruction is executed, its result is

committed into the register file. Although in principle data-forwarding can re-

duce an instruction's execution time, it requires that the operand fetch stage is

synchronised with the write-back stage. This synchronisation will inevitably slow

down the faster stage, i.e. the fetch stage, when two dependent instructions are

fetched and issued one after the other. In such cases this synchronisation will take

place, whether or not data forwarding is implemented. However, if the instruc-

tions are not scheduled one after the other, or there is more than one instruction

waiting for the result of the first instruction, then the write-back stage of the first

instruction could be held up unnecessarily'.

In the micronet model, not having data-forwarding allows instructions to ex-

ecute as fast as possible. As soon as their requirements are fulfilled (operands and

functional unit), instructions will run to completion without synchronisations.

This is the fundamental difference with VLIW architectures. In the VLIW

approach, the compiler uses aggressive compilation techniques to expose ILP to

utilise the functional units. When the compiler cannot provide enough independ-

ent operations in one cycle, bubbles, i.e. no-operations, fill the empty slots of

the VLIW instruction word. In the micronet architecture on the other hand, the

introduction of no-operations is impractical as the issue unit would be spending

time processing instructions that do not contribute to the execution of the pro-

gram. Thus, the micronet compiler must schedule independent instructions in

such a way that the issue unit does not stall, or stalls minimally if it does. The

goal of the scheduler is therefore to maintain a fast instruction issue rate.

4.3.6 Event-driven Simulator

A stochastic event-driven simulator for the micronet architecture had already been

implemented [97]. It works by executing assembly-level instructions compiled

from source programs. During instruction execution, the simulator creates events

4 Forwarding in asynchronous architectures does not have straightforward solutions, and it
raises specific synchronisation issues. The SCALP architecture [47], for example, is located
at the other end of the scale, where most of the communication is based through the use of
data-forwarding. The complexity of the datapath is quite considerable. Since results can be
required by any functional unit, a result router connects the outputs to the input buffers.

EM

for the different datapath components. These events are dynamically created

depending on an instruction's component requirements. An instruction's type

is used to decide its execution path through the micronet datapath. During

execution, events from neighbouring components communicate when the data is

ready to be transfered from one stage to the other. For example, the issue unit

generates an event to the operand fetch stage unit when an instruction is issued.

Then, when the instruction is ready for execution, the operand fetch unit will

generate an event to the appropriate unit. When the functional unit completes

the execution of the instruction, a write-back event is generated. The write-back

event emulates the write-back stage, and writes the result back to the register file

and unlocks the register.

Every time an event is generated, both the latency and the cycle times are

dynamically associated with it depending on the instruction type. The instruc-

tion type also determines which random distribution needs to be selected. The

latency time denotes the time when data becomes available, whereas the cycle

time represents the time when that particular stage can restart its operation. The

startup time of an event is based on the latency time of another event that has

been previously generated. When an issue event has completed for example, the

simulator will assign to the next event, i.e. the operand fetch, a startup time

which is equal to the latency of the issue event'. The next issue event, however,

starts only when the current issue event expires its cycle time. Therefore, the

start time of the new issue event corresponds to the cycle time of the current

event, i.e. the one which is about to finish.

When the event is created and its set of timings are assigned (startup, latency

and cycle times), the event is inserted into an event list, which is ordered by event

startup times. Each event is processed according to the simulation time. It is

possible that two events occur concurrently, i.e. have the same time stamp, but

are processed sequentially. The simulation finishes when the event list is empty.

The simulator uses a global time variable that holds the time of the event

that is currently in process. An event that cannot proceed, because for example

due to the lack of available resources or because a register is locked, must delay

its startup time until the resources become available or the register is unlocked.

Of course by that time, many other non-related events may take place. When

an event needs to be stalled, the simulator creates a new event with the same

'The simulator does not assign additional time for handshake delays during communication,
with the premise that handshakes take considerably smaller time than latency or cycle delays.

1j
NI

attributes as the former, i.e. the same unit and instruction information, updated

startup time, and the old event is deleted.

When a program is to be simulated, memory instructions must be 'pre-

loaded", so that load and store instructions refer to a common and global memory

map. This means that global variables and data structures are pre-assigned to

fixed memory locations used by the simulator. These fixed memory locations

belong to a memory map. All program references to global locations are modi-

fied accordingly. For example, a global variable max-value in a load instruction

(for example 1w $17, max-value) will be modified to 1w $17, num, where num

corresponds to the particular memory location pre-loaded, which will be used at

run-time. In this way, values from global variables can be initialised so that the

simulator begins instruction execution with the correct data.

The simulator actually executes the instructions, hence does not need an ex-

ecution trace. It is effectively a data-driven simulator in which the data are

responsible for taking the correct paths during the execution of a program. At

the end of a simulation, the simulator produces real results, i.e. both the memory

and registers hold the correct data.

The simulator's level of abstraction allows for the interaction between events

in the micronet datapath to be captured. It is implemented at such granularity

so that the simulation speed is not compromised. If all control handshaking was

explicitly modelled, the simulation speed would be significantly slower.

4.4 Summary

Different asynchronous architectures have been developed to investigate feasib-

ility, power efficiency and performance. The AMULET group at Manchester

University has implemented three asynchronous versions of synchronous ARM

processors, achieving different goals. The AMULET1 proved the feasibility of a

large design comparable in size to the ARM6 processor; in the AMULET2, ar-

chitectural improvements were incorporated such as data-forwarding and branch

prediction that increased prefetch efficiency, and the AMULET3 core included

Thumb-instruction execution compatibility, the use of interrupts and a write-back

reorder buffer, that overall helped perform favourably against the ARM9TDMI

processor.

The asynchronous processors from Caltech have shown the potential of per-

formance and adaptation to wide physical conditions in asynchrony. The counter-

flow architecture has been proposed as an alternative approach to data-forwarding,

82

although synchronisation at every stage appeared to limit throughput and par-

allelism. The SCALP processor has demonstrated the complexity involved in

superscalar asynchronous design, particularly in the distribution of instructions

from the issue unit to the functional units, and the distribution of results back to

the functional units.

This chapter has also described the micronet asynchronous architecture which

distributes control in order to exploit both temporal and spatial parallelism. The

micronet architectural model presented features single instruction issue and out-

of-order write-back. The architecture is capable of issuing one instruction at a

time at a fast rate. This characteristic attempts to mimic multiple instruction

issue without the expense of implementing it.

The variability of instruction latencies presents a challenging problem for the

compiler. A compiler is required to schedule the code in order to minimise issue

stalls due to data and resource dependencies. The next chapter introduces a

novel instruction scheduling approach for asynchronous architectures. A local

instruction scheduler targeted at the micronet model described in this chapter is

next presented.

Chapter 5

Local Scheduling for
Micronet-based Architectures

"If a processor exposes the variations in actual memory reference
latency to the compiler through non-blocking load instructions, in-
struction scheduling becomes more complicated" [92].

5.1 Introduction

The previous chapter described the model of an asynchronous micronet-based

processor. Its basic characteristics are that it issues one instruction at a time

at a very fast rate and writes the results back in an out-of-order fashion. The

datapath of a micronet-based processor exploits fine-grain temporal and spatial

parallelism by executing instructions on a network of microagents that commu-

nicate asynchronously.

The ability of these microagents to communicate independently between them,

allows instructions to be executed as fast as possible without unnecessary global

synchronisations. Furthermore, mi croagents of different instructions within the

same pipeline stage can execute concurrently. The maximum number of active

instructions in a micronet is limited by the number of microagents as opposed

to the number of pipeline stages as in micropipelines. Instructions that do not

require resources from a pipeline stage are able to skip the stage and thus enabling

them to overtake one another.

The asynchronous nature of the processor provides the benefits of average-case

execution, i.e. exploits the actual delays of the functional units. The delays due

to the functional units depend on several aspects. These include the nature of the

input data, the type of the functional unit and the particular order of execution

of the instructions, since their order might introduce resource contentions at run-

01

time

The combination of all these characteristics pose a challenging problem for the

compiler, not only because instructions do not have fixed completion times, but

because the order in which instructions are executed cannot always be enforced.

This implies that the compiler does not have an accurate model to consistently

predict when results will be available. This makes efficient code scheduling diffi-

cult since typical scheduling heuristics (as used for synchronous targets) rely on

deterministic and timing-precise execution models. This knowledge is necessary

to decide whether instructions dependent on a result can become ready to be

scheduled, as has been described in Chapter 3.

The performance of the micronet processor is dependent on maintaining a high

instruction issue rate to maintain high resource utilisation rates. The stream of

instructions must be scheduled in such a way that the issue unit stalls for the

minimum possible time.

This chapter presents a novel technique for implementing local instruction

scheduling, as specified in Chapters 2 and 3, which can be applied to an asynchron-

ous processor based on the micronet model. The proposed scheduling technique is

not based on the list scheduler [64] which is traditionally used for scheduling syn-

chronous ILP architectures. The technique in this thesis is based on identifying

and producing a measure of the cost of true data dependencies in the code. This

measure is then used to arrange the instructions in order to minimise the cost of

the dependencies, and therefore, minimise the stalls in the instruction issue unit.

5.2 The Influence of Dependencies

5.2.1 Data Dependencies

Data dependencies impose a serialisation in the execution of instructions. ILP

architectures are characterised by a single thread of control in which instruction-

level parallelism can be exploited. However, data dependencies restrain the scope

of parallelism. In particular, true dependencies or Read-After-Write (RAW) de-

pendencies, require the completion of an instruction before its result can be used

by its dependent instructions.

The cost of the effect of true dependencies in an architecture can be addressed

either in hardware or software. In hardware, for example, the data-forwarding

mechanism was conceived to avoid the penalty of having to write to the register

bank, and some time later, reading the result from it. Data-forwarding is a very

common solution in synchronous designs. However, in asynchronous architectures

EW

this solution may be less effective because it may introduce undesired synchron-

isations, as explained in Section 4.3.5.

In software, the method for minimising the effect of true dependencies is

through the use of instruction scheduling. Independent instructions are placed

in between the producer and the consumer instructions in order to hide the cost

incurred at run-time.

Schedulers for synchronous architectures rely on an accurate knowledge of the

penalty in the presence of true-dependent instructions. The penalty in synchron-

ous architectures is expressed in terms of number of clock cycles. The compiler

can decide the number of 'clock cycles' that the dependent instructions should be

distanced by.

In contrast, the schedulers for asynchronous architectures do not have such

a precise model of execution. This implies that the penalty of true dependen-

cies cannot be precisely fixed, and therefore, it is unclear how one decides the

number of independent instructions that are required to minimise the cost of the

dependency. The balance should be right: too few instructions may not reduce

completely the effect of the stall, and too many instructions may deprive inde-

pendent instructions for reducing the stalls in other parts of the code. The next

section proposes a method for measuring the cost of true dependencies for the

asynchronous micronet model.

5.2.1.1 True Data Dependencies in the Micronet Model

Although the latencies of asynchronous functional units are not fixed, they are

bounded within minimum and maximum values, based on best and worst cases,

respectively. The actual value of the latency depends on several static and dy-

namic elements as discussed in Section 3.4.4. Among the elements contributing

to the latency value, only the static ones are available to the compiler. These ele-

ments can be divided into two groups: the first one relates to the code itself, that

covers the ordering of instructions and their data dependencies; the second one

covers the parametric model of the architecture, which includes the number and

types of functional units and their minimum and maximum latency values. The

dynamic elements which contribute to the latency are related to the. input data,

and to run-time variations such as resource contentions and operating conditions.

In the micronet model, in order to issue instructions, the issue unit must

check that the operands and the necessary resources are available. Otherwise,

the instruction will not proceed, and the issue unit will remain stalled until the

requirements are fulfilled. The total amount of time due to the stall depends on

the degree of conflict during the instruction execution. For example, the minimum

stall produced will be when the operands and the read buses are available, but the

functional unit of the required type is unavailable. In this case, the instruction will

be issued and its operands will be fetched, but it will stall until the functional unit

becomes free. In contrast, the maximum stall will take place when the operands

of an instruction are unavailable, i.e. they are locked. In such cases, the issue

unit stalls until they are unlocked.

The exact stall times cannot be determined statically, although the cost of the

different stalls relates to the type of dependency. In synchronous architectures,

data dependencies do impinge on the cost of the stall, but this cost will be constant

in terms of clock cycles [76].

In the micronet datapath, the stall due to a true dependency is directly re-

lated to the completion time of the instruction that produces the result. (The

completion time of the instruction is the sum of the times to fetch its operands, to

operate the functional unit, and to write the result in the register file). Since the

issue unit has to wait until the register is unlocked, before issuing the dependent

instruction, the execution time of the producer instruction is related to the type

of its functional unit. The relative differences between the range of latencies of

different functional units can distinguish an instruction type to be slower than

another, and therefore produce a longer stall.

In general, memory operations are slower than any other register-based op-

eration, so one should expect that the cost of true dependencies from memory

operations is higher than the cost from other non-memory true dependencies.

However, generalising this assumption to any case may be difficult to guarantee,

since latencies have a range of operation and the range of latencies may be over-

lapped within different functional units. Figure 5.1 shows the execution stages

of two true-dependent instructions Ii and 12. In Figure 5.1 (a), instruction 12

depends on a memory instruction Ii, whereas in Figure 5.1 (b), instruction 12 de-

pends on a non-memory instruction Ii '. It can be seen that even with variations

of delay in the stages from instructions I and Ii', the functional unit dominates

the completion time.

5.2.1.2 Penalising True Data Dependencies

Given that true dependencies contribute significantly to stall-times of the issue

unit, a mechanism to assign penalties to them has the potential to discriminate

between schedules. The penalty provides a measure to evaluate the accumulative

E;tj

Time

'I

12

Time

II 	OF 	Ex 	WB

12 	 Issue Unit Stall 	II 	OF 	Ex 	WB

Figure 5.1: Pipeline execution with true data dependencies: (a) from a memory
instruction, and (b) from a non-memory instruction.

stall incurred by the issue unit at run-time.

The measure of penalty consists of the accumulative cost incurred by true data

dependencies. For a fully sequential code, the penalty measure should return a

high value of measure as every true dependency is assigned a penalty. For a fully

parallel code, the measure of penalty should return a zero measure, given that

there are no data dependencies.

Given that the delay-cost from a true data dependency caused by a memory

instruction is higher than that due to a true dependency caused by an arithmetic

operation, the penalty for the memory instruction is higher than the penalty

assigned to the arithmetic one. Figure 5.2 (on the left) shows a sequence of un-

scheduled instructions, in which an address is obtained (instruction 1 5) in order

to load a value from memory (instruction 16), which is required by another in-

struction (instruction Ii). The penalty Pb assigned to instruction 16 represents a

higher penalty than the penalty Pa assigned to instruction 15 , in order to reflect

better the effect on stalls. The penalties are applied to the instructions rather

than to the dependencies (arcs) because in this way the producer of a result can

be recorded, even if independent instructions are placed in between the producer

and the consumer.

The method to establish the degree of cost due to data dependencies is per-

formed by comparing the relative latency times from the different types of the

14 mul $9,$8,$25 --------_74 	T 	'6 	17
— M8

15 la 	($29 0

16 1w

17 addu $11j,$9 	I
18 mull $13,$10,4 	 Penalty P 	Penalty Pb

	

from 15 to 	from 16 to 17

Figure 5.2: Sequence of instructions with penalties.

functional units. The difference in the range of latencies provides a guideline of

the difference in delay-costs. A greater difference in latencies corresponds to a

greater effect on the stall of the issue unit.

Among the true dependencies, the ones between the compare-and-branch in-

struction are particularly costly. This instruction represents a change in the

control flow and acts as a synchronisation point for all the instructions that pre-

cede it in the basic block. Typically, this synchronisation point implies that less

parallelism is available when the issue approaches the branch. In a loop for ex-

ample, it is important to capture the cost of the true dependency on the branch

with independent instructions. Otherwise, the execution of the loop will have to

be stalled in every iteration until the branch is resolved.

5.2.1.3 Other Data Dependencies

WAR dependencies are not penalised as they do not cause stalls to the issue unit.

If one instruction depends on another via a WAR dependency, by the time the

register of the former instruction is locked, the latter instruction has been issued

(in-order issue). The operand fetch of the latter instruction takes place much

earlier than the time the register has to be written by the former instruction.

In WAW dependencies, the penalty of stalling the issue unit is the same as for

true dependencies, because the dependent instruction cannot attempt to lock its

destination register when it is already locked. However, the occurrence of these

type of dependencies after the code generation phase is rare'.

'For all the benchmark programs described in Chapter 7 only one instance of WAW depend-
encies was found.

Es!]

5.2.2 The Effects of Resource Dependencies

The scheduling problem is based on selecting a schedule that minimises the num-

ber of stalls of the issue unit during the execution of instructions. These stalls

can be caused either by data dependencies or by resource contentions. So even

scheduling independent instructions may produce stalls because the instruction

sequence could exhaust the resources of the architecture at run-time.

The sequence of instructions must be scheduled in such a way that the types

of instructions match the resources in the architecture. For example, if there are

three functional units of a particular type, then three instructions of that type can

be issued in succession without causing stalls (assuming that there are no data

dependencies). However, a fourth instruction of the same type will be expected

to stall until one of the functional units become available. In this case, to avoid

resource contention, the type of the fourth instruction that is scheduled must be

different.

5.2.2.1 Penalising Resource Dependencies

When more than one instruction of the same type is scheduled consecutively and

in the absence of functional units of the appropriate type, a penalty is imposed

to the latter instructions. For instance, given that the delay from memory in-

structions is relatively larger than the ones due to other instruction types and

that there is only one memory unit in the architecture, the scheduling of two

consecutive memory instructions produces a considerable stall in the datapath.

The amount of stall caused by consecutive memory instructions is comparable to

that due to true dependencies. Although the instruction can be issued and the

operands can be fetched (something that cannot happen with true dependencies),

the wait delay until the memory unit completes its operation is non-trivial. For

other types of functional units, this situation might not be as important for two

reasons. Firstly, the non-memory functional units may be replicated, so scal-

ing the architecture can be a solution. Secondly, the latencies of non-memory

instructions are smaller, and the effect on the stall is proportionally lighter.

5.2.3 The Combined Effect of Data and Resource
Dependencies

Table 5.1 shows the scheme for applying penalties to the different cases of de-

pendencies. The values shown in the table represent the penalties for the latency

distribution in Table 4.1. True dependencies due to memory loads incur the

KE

Types of dependencies
Consecutive C

instructions

Separated

by one inst.
True dependency with a load instruction 3 1
True dependency with a branch instruction 2 0
Any other true dependency 1 0
Resource dependency from a memory instruction 1 0

Table 5.1: Degree of the penalties depending of the type of dependency.

longest stall, and are therefore assigned the highest penalty. The cost-effect of

a memory load is such that even when an independent instruction separates the

load and its successor, a single penalty has to be applied.

The penalty due to true dependencies with branch instructions is assigned

the next level of cost. The resulting stall is comparable to the other true de-

pendencies since the penalty is the result of a compare instruction. However,

the synchronisation nature of branch instructions makes these true dependencies

more important to reduce. The rest of the data dependencies are treated at the

same level.

The penalties in Table 5.1 attempt to both characterise the delay-cost of the

dependencies, and provide an ordering that prioritises the penalties that ought

to be reduced by the scheduler.

5.2.4 Applying Penalties to a Schedule

The scheme to penalise the dependencies defined in Section 5.2.3 is evaluated in

this section. Figure 5.3 shows a fragment of a C program and its equivalent MIPS-

like assembly code of the inner loop. The figure on the right shows the penalties

applied to the true dependencies according to the scheme listed in Table 5.1, and

the overall penalty measure for this particular schedule. The penalty measure of a

schedule is determined by the sum of the individual penalties, resulting in a total

of 12 units for the schedule shown in Figure 5.3. The assembly code generated

prior to the scheduling phase produces many penalties due to several consumer

instructions being scheduled immediately after the producer. This is a common

feature after performing code generation, and before instruction scheduling.

The relationship between the instructions of the loop core is displayed by

the DAC in Figure 5.4. The solid lines connecting the nodes represent true

91

dependencies, while the dashed lines represent other dependencies. For instance,

the dependency between instructions Is and 114 represents a WAR dependency,

while the one between instructions 113 and 116 only specifies that 113 should be

issued before '16.

The core of the loop has been exhaustively scheduled to determine the one

with the minimum penalty measure. Furthermore, every schedule has been simu-

lated executing its instructions on the micronet architecture, to relate the overall

penalty measure to the makespan. Even such a small example (16 instructions)

has a considerable number of possible combinations - 1,567,742 valid schedules.

Each one was simulated on a model of the micronet architecture with latency

distributions from Table 4.12. The makespans of the valid schedules were plotted

as a function of the measure, as shown in Figure 5.5. Each point in the graph

represents the simulated makespan of a schedule in nanoseconds.

The distribution of the makespans shown in the figure is characterised by

an ascendent pattern: as the measure increases, so does the makespans of the

schedules. Ideally the distribution should be a strict monotonic function, so

that there would be no overlapping regions between neighbouring penalties. In

practice however, the overlaps between the schedules of neighbouring penalties are

tolerable for considering this measure as the basis for a heuristic for a scheduler

for micronet-based asynchronous processors.

The schedule displayed in Figure 5.3 has a penalty measure of 12 which is close

to the maximum penalty measure of 14. On the other hand, the minimum penalty

measure for this group of instructions is 0. Figure 5.5 shows that the optimal

schedule is indeed located in the section with the minimum penalty measure.

5.3 The Penalise True Dependencies (PTD)
Scheduler

The PTD scheduler is a novel approach for performing local scheduling of in-

structions, that is based on minimising the penalty measure of a basic block. The

penalty measure is used as a metric for statically categorising the goodness of a

schedule.

The PTD scheduler differs from traditional mechanisms such as the list sched-

uler. The list scheduler constructs a list of ready instructions and selects the best

candidate based upon heuristics (the list is initiated with instructions from the

top-level of Figure 5.4 which do not have predecessors). Once an instruction is

'The configuration of the micronet architecture consisted of an arithmetic unit, a memory
unit and a logic unit.

1]. 	$9,0
ii. 	$16,10

L5.main:
muli 	$123,$8,4
la $122,$29,32 1
addu $121,$122,$123
muli $127,$8,4
la $126,$29,32 1
addu $125,$126,$127 1
1w $87,$125,0
muli $131,$9,4
la $130,$29,32 1
addu $129,$130,$131 1
1w $92,$129,0 3
mul $86,$87,$92 1
sw $86,$121,0
addui $9,$9,1 1
sit $136,$16,$9 2
bt $136, L5.main

L7.main: 12
addui $8,$8,1

main() {

mt i, j, n = 10;
mt x[10]

for (i = 0; i < n; j++)
for (j = 0; j < n; ji.-t.)

x[i] = x[iJ * x[j] ;

}

Figure 5.3: An example C-code and its inner loop assembly code equivalent.

removed, i.e. scheduled, its immediate successors become ready. This allows

them to be inserted in the ready list for selection. The process of choosing an

instruction and updating the ready list repeats itself until all the instructions of

the basic block have been scheduled.

In contrast, the PTD scheduler analyses the schedule based on the PTD meas-

ure. If the measure returns a zero value, then the code is not modified. Otherwise,

the scheduler traverses the schedule to evaluate optimisations on every instruc-

tion that is penalised. In order to reduce the penalty, the scheduler must find an

independent and unrelated instruction to place in between the producer and the

consumer instructions.

A schedule, as shown on the top of Figure 5.6, can be regarded as an "hori-

zontal sequence" of instructions which are executed in order from left to right.

When a penalised instruction is encountered, an independent instruction, and

preferably an unrelated one at that, is searched on both sides of the penalised

instruction starting from the left side of the penalised instruction, and if a candid-

93

ji..main 	L

1 I mull $123 $84 	L 21 lu $122 $2932 J 4 1 mull $127 $84 	 I SI lu $126 $2932 	I 81 mull $131 	I 	I 91 lu $130 $2932

I -dd- $121 $122 $123 1 	 I 61 addu $125 $126 $127 I 	I 141 addul $9991 I 	I 101 8ddu $129 $130 $131

1 1w $8791250 I 	I 151 .l.$136$16$9 1 	I iii Iw$92$1290

I 121 mul $86987992 I

I 131 	$86 $1210

161 bI $136 1.5.muln

Figure 5.4: DAG of the core loop in Figure 5.3.

ate instruction cannot be found, then the search switches to the right side of the

penalised instruction. The schedule in Figure 5.6 is representative of the DAG

in Figure 5.4; Figure 5.6 (a) shows the traversal on the left side starting with the

immediate neighbour instruction 15, and Figure 5.6 (b) the traversal on the right

side of the penalty.

There are two necessary conditions for an instruction to be considered as a

candidate for movement ahead of the penalised instruction. Firstly, the instruc-

tion in question has to be independent of the penalised instruction, and secondly,

the instruction has to be independent of all the instructions scheduled in between

the candidate and the penalised instruction. These conditions are necessary to

preserve the semantics of the code and are known as the valid conditions. They

only allow valid movement of instructions in which the order of execution is pre-

served, but the performance of the outcome of such movements has to be analysed

further. The safety conditions, i.e. the rules to ensure that the movement of an

instruction improves the quality of the schedule are discussed in Section 5.3.2.

From Figure 5.6 (a), instruction 1 5 fails to comply with the first condition

since it is data-dependent on instruction 16, and is therefore not a valid candid-

ate. Similarly, instruction 16 depends on instruction 14 , and, therefore, 14 cannot

RE

1750C

1700C

1650C

1600C

1550C

1500C

1450C

1400(

1350C

1300C

1250C

1200C

	

115001 	I 	 I 	 I 	 I 	 I 	I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	I 	 I

	

0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15

Figure 5.5: Makespans of the simulated schedules (y-axis) on a model of the
micronet architecture against the penalty measure (x-axis).

be a candidate either. An instruction Ii is a candidate for movement, if it is

independent of all the instructions from Ii to 16. If an independent instruction

cannot be found that would satisfy both conditions in the left side of the pen-

alty, then the search is continued on the right side. From Figure 5.6 (b), the first

instruction to be considered is instruction '8 since instruction 17 is dependent on

the penalised instruction. The candidate instruction Ij must be independent of

all instructions from 17 to 1j1.

The main reason for searching candidate instructions starting from the left

hand side of the penalty is because there is a higher likelihood of finding one

faster. The exit of the basic block, which is located at the right hand side, can

be seen as a synchronisation point, so it may offer fewer options. Conversely, the

entry of the basic block at the left hand side may have a wider scope for finding

a candidate sooner.

95

F;i 	 F;
4

Search direction

Penalty Pb
from 16 to 17

--------------- -1

I 	 $ __ __

	 Fj-] 	'i'4 '5 '6 '7 '8 	 _

H
Candidate 	 Penalty Pb
instruction 	 from 16 to 17

(a) Left search for a valid candidate.

H F14]HM5
16 H 17 H 18 H _

—

-- — — — — — — — —

 Search direction

Penalty Pb
from 16 to 17

_
-[7 4 H 15 H 16 I 1 H 7 H 18 H _Fj

H

	

Penalty 'b 	 Candidate

	

from 16 to 17 	 instruction

(b) Right search for a valid candidate.

Figure 5.6: Instruction search procedure to reduce penalties in the PTD scheduler.

A first pass over the basic block attempts to reduce penalties with the higher

penalty values according to Table 5.1, which corresponds to data dependencies

due to loads. The second pass reduces penalties due to branch instructions in

the basic block, if it ends with such an instruction. And, in the final pass, the

scheduler reduces the remaining penalties with a value one.

Such a priority scheme aims to reduce penalties with the higher delay-costs

to the issue unit first. Even in the case when a basic block does not have enough

parallelism to reduce all the penalties, the dependencies causing the higher stalls

are more likely to be reduced. For the two penalties shown in Figure 5.2, the

one due to the load instruction (16) is handled in the first pass, while the data

dependency due to the other instruction (1 5) is reduced in a subsequent pass.

5.3.1 Extending the PTD Measure

Placing an independent instruction between two consecutive instructions that

share a true dependency will certainly reduce the stall, but is not removed en-

tirely. For some types of dependency, it may be necessary to place more than

one instruction in between the pair. The penalty measure was extended so that

dependent instructions at a distance of more than one instruction can also be

penalised.

The delay-cost of true dependencies when there are independent instructions

placed in between the producer and consumer instructions is lower than the delay-

cost of consecutive true-dependent instructions. When two true-dependent in-

structions are scheduled consecutively, no other instruction can be issued so the

amount of stall is considerable. On the other hand, if one or more instructions

separate the pair of dependent instructions, then they can execute during the

period when waiting for the result to be written by the producer instruction. The

intervening instructions allow the issue unit to continue the issuing process, al-

though the consumer instruction may still have to be stalled, albeit for a shorter

period of time. The penalties applied to non-consecutive dependent instructions

are therefore smaller than those for consecutive penalties as listed in Table 5.1.

The PTD scheduler makes a distinction between consecutive and non-consecutive

penalties to prioritise the order of their reduction. Given the degree of stalls

caused by consecutive dependencies, consecutive penalties are given a higher pri-

ority than non-consecutive ones. A first pass reduces consecutive penalties, while

a second pass reduces the others. This is equivalent to improving the schedule in

larger steps first, followed by finer optimisations.

97

5.3.2 Safety Conditions for Reducing Penalties

The quality of a schedule depends on safety conditions when reducing the pen-

alties. When moving an instruction, it is necessary to check that doing so does

not introduce another penalty to the instructions around the source, and to those

around the destination. This is to guarantee that after each transformation the

penalty measure is always reduced.

When a candidate instruction is found, a penalty comparison of the schedule

before and after the movement is performed. The movement is permitted only if

the quality of the schedule is improved, i.e. the penalty measure is reduced after

the movement. The safety condition is defined by the following equation:

	

Pajjr < 	E Pb,f ore 	 (5.1)

The above equation must hold for consecutive and non-consecutive penalties in

their respective passes. Since consecutive and non-consecutive penalties cannot be

compared because the stalls produced by them are different, the penalty measures

must be treated separately. Equation 5.1 is split into two equations for consecutive

and non-consecutive penalties, respectively

p i

	

fier < 	'before 	 (5.2)

'F

	

I 'd after < 	'before 	 (5.3)

Equation 5.2 represents the behaviour of a greedy algorithm: the movement

of a candidate instruction is permitted as long as it reduces the penalty measure.

However, should the penalty measure from consecutive dependencies (F') stay

constant after the potential movement, then that due to non-consecutive depend-

encies (P") is used as a second criteria to allow the movement, if the penalty

measure due to it is reduced. This case is represented by the following equation

pt
after = 	1 before A 	P 'a'fter < 	'b'efore 	 (5.4)

The penalty measurement for a specific movement is centered around the

candidate and penalised instructions. This means that only the penalties around

these instructions are involved in the analysis, and not the entire basic block.

M.

5.3.3 Reduction of Resource Penalties

The candidate for movement is an instruction that not only has to comply with

both the valid and safety conditions, but should also be of a different instruction

type than the penalised instruction. The process of finding the best candidate

may therefore require further search, since more conditions have to be met.

In order to reduce the extensive restriction when reducing the penalties, the

scheduler has been partitioned to reduce penalties due to resource contentions

first and penalties due to data dependencies after.

The reduction of the penalties due to resource contentions is a similar process

to that explained in Section 5.3. The difference being that the safety conditions for

the candidate instruction only require to address the difference of the instruction

types.

5.4 The PTD Scheduler Algorithm

The PTD scheduler has been partitioned into three phases. The first phase oper-

ates on resources penalties, the second phase manipulates penalties from consec-

utive dependencies and the third phase deals with penalties from non-consecutive

dependencies. The decision to reduce the resource penalties first is not only to

reduce the stalls produced by resource contentions, but also to introduce a certain

degree of 'randomness' to the other scheduling phases. This is explained in more

detail in Section 5.7.2. Algorithm 5.1 shows the top-level structure of the PTD

scheduler.

Algorithm 5.1 PTD_scheduler (entry) algorithm. 	-

root = first-instruction (entry)

PTD_resource_phase (root)
P TD_ cons ecutive_ phase (root)
PTD...nonconsecutive_ phase (root)

The structure of the three functions in Algorithm 5.1 is similar, but they

call different routines with different parameters to perform the movement of the

instructions. These functions are shown in Algorithms 5.2, 5.3 and 5.4. The

functions receive as their operand the root instruction of the basic block. The

first step is to compute the PTD measure (lines 1); if the measure is positive,

J!]

then the core of the scheduling process is repeated. Since it is not possible to

know a priori the value of the minimum penalty measure which would imply

a knowledge of the optimal schedule, the algorithm must endeavour to reduce

any penalty. This process is repeated as long as the penalty measure is reduced.

Conversely, if the measure stays constant after a pass, then it is assumed that

there are no more reductions possible, and the loop is terminated. The decision to

stop the algorithm when no further reductions of the PTD measure can be made

ensures the termination of the algorithm. This is represented by lines 15, 16, 29

and 30 in the three algorithms, together with lines 43 and 44 in Algorithms 5.3

and 5.4.

The difference between these algorithms is based on the type of penalties that

are being reduced. Algorithm 5.2 calls functions PTD_arrange_resource, whilst

Algorithms 5.3 and 5.4, call the function PTD_arrarige_data. These functions are

responsible for performing the instruction movements while respecting all data

dependencies. The PTD_arrange_resonrce routine is restricted to move instruc-

tions that reduce resource penalties, while the PTD_arrange_data routine has the

responsibility of reducing penalties due to data dependencies.

The difference between functions PTD_consecutivephase (Algorithm 5.3) and

PTDnonconsecutive. phase (Algorithm 5.4) is the way in which the second para-

meter of the function PTDmeasure is specified. The parameter is used to dif-

ferentiate the number of neighbouring instructions which are checked around the

candidate and penalised instructions. The function PTDmeasure not only com-

putes the penalty measure of a schedule, but penalises the instructions as well,

according to its type, the distance between the producer and consumer instruc-

tions, and the scheduling phase.

Algorithms 5.2, 5.3 and 5.4 are characterised by a series of repeat loops

(lines 3, 17 and 31). In these inner loops the two functions PTD_arrange_lefl and

PTDarrangeright are responsible for the instruction movements to reduce the

penalties on either sides the right hand side is called if the left hand side search

cannot perform a reduction, as explained in Section 5.3. The different loops are

targeted at different penalties, in order to prioritise them. The order of the loops

corresponds to the degree of the penalty; higher penalties such as those from load

instructions are targeted first, while instructions with lower penalties are treated

last.

The functions P TLLarrarzge_lcft_data and P TDarran ge_right_data that per-

form the instruction movements are displayed in Algorithms 5.5 and 5.6 respect-

ively. Both functions receive the penalised instruction as their parameter. An

100

Algorithm 5.2 PTD_resource_phase (root) algorithm.

measure = PTD_measure (root, resource-phase)
if measure > 0 then

repeat
node = root
last-measure = measure
while node NULL do

if penalty-resource (node) = 3 then {PENALTIES MEMORY INST.}

PTD_arrange_left_resource (node)
end if
if penalty-resource (node) = 3 then {PENALTIES MEMORY INST.}

PTD_arrange_right_resource (node)
end if
node = next (node)

end while
measure = PTD_measure (root, resource-phase)

until measure = last-measure

repeat
node = root
last-measure = measure
while node NULL do

if penalty-resource (node) = 1 then {PENALTIES OTHER TYPES.}

PTD_arrange_left_resource (node)
end if
if penalty-resource (node) = 1 then {PENALTIES OTHER TYPES.}

PTD_arrange_right_resource (node)
end if
node = next (node)

end while
measure = PTD_measure (root, resource-phase)

until measure = last-measure
end if

101

Algorithm 5.3 P TD_cons ecutive_p has e (root) algorithm.

measure = PTD_measure (root, first-phase)
if measure > 0 then

repeat
node = root
last-measure 	measure
while node NULL do

if penalty-consecutive (node) = 3 then {PENALTIES LOAD INST.}

PTD_arrange_left_data (node)
end if
if penalty-consecutive (node) = 3 then {PENALTIES LOAD INST.}

P TD_arrange_right_data (node)
end if
node = next (node)

end while
measure = PTD_measure (root, first-phase)

until measure = last-measure

repeat
node = root
last-measure = measure
while node 54 NULL do

if penalty-consecutive(node) = 2 then {PENALTIES BRANCH INST.}

PTD_arrange_left_data (node)
end if
if penalty-consecutive (node) = 2 then {PENALTIES BRANCH INST.}

PTD_arrange_right_data (node)
end if
node = next (node)

end while
measure = PTD_measure (root, first-phase)

until measure = last-measure

repeat
node = root
last-measure = measure
while node NULL do

if penalty-consecutive (node) = 1 then {PENALTIES OTHER INST.}

PTD_arrange_left_data (node)
end if
if penalty-consecutive (node) = 1 then {PENALTIES OTHER INST.}

PTD_arrange_right_data (node)
end if
node = next(node)

end while
measure = PTD_measure (root, first-phase)

until measure = last-measure
end if 	 102

Algorithm 5.4 P TD_noncons ecutive_phase (root) algorithm.

measure = PTD_measure (root, second-phase)
if measure > 0 then

repeat
node = root
last-measure = measure
while node NULL do

if penalty-nonconsecutive (node) = 3 then {DISTANCED 1 INST.}

PTD_arrange_left_data (node)
end if
if penalty-nonconsecutive (node) = 3 then {DISTANCED 1 INST.}

P TD_arran ge_right_data (node)
end if
node = next(node)

end while
measure = PTD_measure (root, second-phase)

until measure = last-measure

repeat
node = root
last-measure = measure
while node NULL do

if penalty- nonconsecutive (node) = 2 then {DISTANCED 2 INST.}

P TD-arrange-left- data (node)
end if
if penalty-nonconsecutive (node) = 2 then {DISTANCED 2 INST.}

PTD_arrange_right_data (node)
end if
node = next(node)

end while
measure = PTD_measure (root, second-phase)

until measure = last-measure

repeat
node = root
last-measure = measure
while node NULL do

if penalty-nonconsecutive (node) = 1 then {DISTANCED 3 INST.}

P TD-arrange-left- data (node)
end if
if penalty-nonconsecutive (node) = 1 then {DISTANCED 3 INST.}

PTD_arrange_right_data (node)
end if
node = next (node)

end while
measure = PTD_measure (root, second-phase)

until measure = last-measure
end if 	 103

auxiliary pointer, auxi, is used to identify candidate instructions. It traverses

the schedule, starting from the penalised instruction towards the entry of the

schedule, in the case of the PTD_arrange_left algorithm, or towards the exit of

the schedule in the PTD_arrange_right algorithm. A second auxiliary pointer,

aux2, traverses the schedule in the opposite direction towards the penalised in-

struction.

Since the auxiliary pointer, auxi, starts its route from the neighbour of the

penalised instruction, there is a possibility that the neighbour instruction is a

candidate itself. The if statement in line 7 in both the PTD_arrange algorithms

evaluates the condition of the neighbouring instruction. The independent func-

tion determines whether the neighbouring instruction has dependencies with the

penalised instruction (valid condition). The dependency check is performed using

an nxn matrix of relationship between the instructions of a basic block. The

check-left-swap and check-right-swap functions determine whether the movement

of the neighbouring instruction reduces the penalty measure of the basic block

(safety condition). The purpose of the function check_subgraphs (located in lines

7 and 18) is explained in more detail in Section 5.5.2.

If the conditions are met, then the candidate and the penalised instructions

are swapped and the penalties around these instructions are updated (lines 8, 9

and 10). Otherwise, auxi is required to search for a candidate instruction further

away from the penalised instruction which is performed within the while loop,

starting at lines 12, in Algorithms 5.5 and 5.6.

Pointer aux2 is used to check the dependency (valid conditions) within the

inner while loop located between lines 14 and 17. The variable inthnodes holds

the collective status of the candidate being checked against all the instructions

scheduled up to the penalised instruction. The while loop is aborted as soon as

one of the instructions is found to be dependent on the candidate instruction, or

aux2 reaches the penalised instruction node; otherwise, it advances to the next

instruction.

If the candidate is independent of all the instructions scheduled between itself

and the penalised instruction, then its safety condition is checked. The function,

check_local_move, in lines 21 in both algorithms performs the penalty analysis. If

there is a reduction, then the movement is allowed and the candidate instruction is

moved (line 28). Similarly, the penalties are updated and the penalised instruction

is cleared. In the case of a consecutive penalty from a load instruction, the penalty

is not fully cleared but reduced from 3 units to 1 unit, according to Table 5.1.

104

The functions, PTD_arrange_left_resource and PTD_arrange_right_resource,

which are omitted for brevity, have the same structure as the functions shown

in Algorithms 5.5 and 5.6. The differences lie in the way the safety condi-

tions are checked when calling the functions check-left-swap, check-right-swap

and check-local-move.

The routine check-left-swap in Algorithm 5.7 evaluates the state of the pen-

alty measures before and after the movement. The variables before-swap and

after-swap hold the penalty values before and after the instruction movement.

The variables consecutive and nonconsecutive hold the penalty values of the first

criteria, i.e. the value of the consecutive penalties, and the second criteria, re-

spectively.

The function penalty_ data (instl, inst2, closeness) used in lines 1 to 4 returns

the value of the penalty between two instructions insti and inst2. The function

treats the instruction insti as being scheduled before inst. The parameter close-

ness is used to define the distance between insti and inst2. The penalty returned

by the function depends on whether the instructions are consecutive or not, and

null is returned if the instructions are independent.

As explained in Section 5.3.2, a safe movement is one which strictly reduces

the penalty measure. Line 5 of Algorithm 5.7 compares the two consecutive

measures: if the penalty measure is reduced then the swap is permitted; if equal

(line 8), then the non-consecutive comparison is considered. If the second criteria

is smaller after the movement (line 9), then the swap proceeds.

The function check-right-swap has the same behaviour and the same structure

as the check-left-swap, but has been omitted for the sake of brevity.

The other algorithm for performing instruction movements is shown in Al-

gorithm 5.8: the function check-local-move has a similar construction to the

check-swap functions, but requires more consideration. The first if-section (lines

1-4) specifies the penalty conditions before and after the movement, when the

candidate is positioned at the entry of the basic block; the second one (lines 5-8)

specifies the opposite case, when the candidate is positioned at the exit of the

basic block, and the last (lines 9-12) deals with any other case. The variables

before-move and after-move hold the state of the penalties before and after.

105

Algorithm 5.5 PTD_arrange_left_data (node) algorithm.

auxi = prev(node)
ind_rzodes = 1
cond_out = 0

if . auxi NULL then
auxi = prev(auxl)

end if

if independent (prev(node), node) and
check-left-swap (node, auxi) and
check_subgraphs (node, auxi) then

update-node (node)
update-node (auxi)
swap (prev(node), node) {SWAPS THE PREVIOUS INSTRUCTION.}

else
while auxi 0 NULL and condout = 0 do

aux2 = next (auxi)

while aux2 next (node) and indnodes 0 0 do
md_nodes = id-nodes and independent (auxl, aux)
aux2 = next (aux2)

end while

if id-nodes 	0 and check_subgraphs (node, auxi) then
md_nodes = 0

end if

if id-nodes 	0 and check_locaLmove (node, auxl) then
id-nodes = 0

end if

if id-nodes 54 0 then
cond_out = 1
update-node (node)
update-node (auxi)
move-ahead (auxi, node)

end if

id-nodes = 1
auxl = prev(auxl)

end while
end if

{MOVES THE CANDIDATE INSTRUCTION.}

IuT

Algorithm 5.6 PTD_arrange_right_data (node) algorithm.

auxi = next (next (node))
md_nodes = 1
cond_out = 0

if auxi NULL then
auxi = next (auxi)

end if

if independent (next (node) , next (next (node))) and
check-right-swap (node, auxi) and
ch eck_subgraphs (node, auxl) then

update-node (node)
update-node (next (node))
swap (next(node), next (next (node)) {SWAPS THE FOLLOWING TWO INST.}

else
while auxi NULL and condout = 0 do

aux2 = prev(auxl)

while aux2 node and id-nodes 0 do
id-nodes = id-nodes and independent (auxi, aux2)
a'ux2 = prev(aux)

end while

if id-nodes 	0 and check_subgraphs (node, auxi) then
id-nodes = 0

end if

if id-nodes 	0 and check_local_move (node, auxi) then
id-nodes = 0

end if

if id-nodes 	0 then
cond_out = 1
update-node (node)
update-node (auxi)
move-ahead (auxi, node) {MovEs THE CANDIDATE INSTRUCTION.}

end if

id-nodes = 1
auxi = next (auxl)

end while
end if

107

Algorithm 5.7 check-left-swap (node, aux) algorithm.

consecutive_before_swap =
pen alty_data (aux, next(aux), consec) +
penalty_data (aux, node, consec) +
penalty_data (node, next (node) , consec) +
penalty-data (node, next (next (node)), consec)

consecutive-after-swap =
penalty_data (aux, node, consec) +
penalty_data (aux, next(aux), consec) +
penalty_data (next(aux), next (node) , consec) +
penalty_data (next(aux), next (next (node)), consec)

nonconsecutive_ before-swap =
penalty-data (prev(anx), next(aux), not consec) +
penalty-data (prev(anx), node, not consec) +
penalty-data (aux, node, not consec) +
penalty-data (next(aux), next (node), not consec) +
penalty-data (next(aux), next (next (node)), not consec) +
penalty-data (node, next (next (node)), not consec)

nonconsecutive_ after-swap =
penalty-data (prev(anx), node, not consec) +
penalty-data (prev(aux), next(aux), not consec) +
penalty-data (aux, next(aux), not consec) +
penalty-data (node, next (node) , not consec) +
penalty-data (node, next (next (node)), not consec) +
penalty-data (next(aux), next (next (node)), not consec)

if consecutive_after_swap < consecutive_before_swap then
return 1 {FIRsT CRITERIA IS SMALLER AFTER THE MOVEMENT.}

else
if consecutive_after_swap = consecutive-before-swap then

if nonconsecutive- after-swap < nonconsecutive-before-swap then
return 1 {SECOND CRITERIA IS SMALLER AFTER THE MOVEMENT.}

else
return 0 {SECOND CRITERIA IS GREATER AFTER THE MOVEMENT.}

end if
else

return 0 {FIRST CRITERIA IS GREATER AFTER THE MOVEMENT.}

end if
end if

108

Algorithm 5.8 check-local-move (node, aux) algorithm.

before-move =
penalty-data (prev(prev(aux)), aux, not consec) +
penalty-data (prev(aux), aux, consec) +
penalty-data (prev(aux), next(aux), not consec) +
penalty-data (aux, next(aux), consec) +
penalty-data (aux, next (next (aux)), not consec) +
penalty-data (prev(node), next (node), not consec) +
penalty-data (node, next (node) , consec) +
penalty-data (node, next (next (node)), not consec)

after-move =
penalty-data (prev(prev(aux)), next (aux), not consec) +
penalty_data (prev(aux), next(aux), consec) +
penalty-data (prev(aux), next (next (aux)), not consec) +
penalty-data (prev(node), aux, not consec) +
penalty-data (node, aux, consec) +
penalty-data (node, next (node) , not consec) +
penalty-data (aux, next (node) , consec) +
penalty-data (aux, next (next (node)), not consec)

if after-move < before-move then
return 1 {PENALTY MEASURE IS SMALLER AFTER THE MOVEMENT.}

else
if after-move = before-move then

return 0 {PENALTY MEASURE IS EQUAL AFTER THE MOVEMENT.}
else

return -1 {PENALTY MEASURE IS GREATER AFTER THE MOVEMENT.}
end if

end if

109

5.5 Additional Concepts in the PTD Scheduler

5.5.1 Static Memory Disambiguation

Memory instructions restrict the available parallelism as they may introduce im-

plicit data dependencies through memory locations. A data dependency exists

when two memory instructions refer to the same location. For instance, a load

cannot be scheduled ahead of a store if they both refer to the same address, in

the case when the store is scheduled first. Similarly, a store cannot be moved

ahead of a load if they refer to the same memory address, if the load is scheduled

ahead of the store. Two stores have to be scheduled in order, if they refer to the

same address.

The process of determining if two memory instructions access the same memory

location is called memory disambiguation. Memory disambiguation can be imple-

mented either at run-time [41] [53] [123], called dynamic memory disambiguation,

or at compile-time [31][105], called static memory disambiguation, or a combina-

tion of both [60].

Dynamic memory disambiguation schemes keep track of the memory instruc-

tions in the order in which they are decoded. When a memory instruction is to be

issued, its address must be compared to the addresses of all previously decoded

memory operations, to check whether the address has been referenced. However,

as the number of entries grow, the hardware would become slow and complex.

Static memory disambiguation on the other hand, has the flexibility of af-

fording more aggressive algorithms to disambiguate the memory references. The

memory disambiguation problem is often related to a form of integer linear pro-

gramming, i.e. of finding an integer solution to a set of linear equalities. This

process can be implemented at different levels in the compiling framework. At a

higher level for example, when performing the data dependence analysis, memory

references need to be disambiguated in order to apply high-level optimisations and

transformations [115][133]. At the back-end of the compiler, memory disambigu-

ation is required to identify more independent instructions, and thereby increase

parallelism.

Ideally, the scheduler should discard all the data dependencies from the memory

instructions that do not share the same address. The problem with static memory

disambiguation is that it is not always possible to disambiguate memory refer-

ences. When the scheduler cannot determine whether two memory instructions

refer to the same location in memory, the memory instructions have to be assigned

a data dependency in order to enforce the order of execution.

110

Static memory disambiguation mechanisms analyse the address expression

of memory instructions. Memory instructions are characterised by having two

operands: the data operand which holds the value that is to be loaded or stored,

and the address operand, which holds the address in the memory where the data

is to be loaded or stored. The address expression depends on the nature of the

addressing mode. The following list describes the most common addressing modes

[76].

Immediate. 	Mem [a]

The constant a represents the exact address of the store or

the load.

Register. 	Mem [R 1]

R 1 specifies the value of the address - R 1 "points" to that

memory location.

Displacement. Mem[R 1 + a]

R 1 specifies a base address and a is an offset to that base

address. It is used when indexing arrays, e.g. x[i + 11.

Indexed. 	Mem[Ri + R2]

The address is the result of the addition of the contents of

registers R 1 and R 2 , in a similar way to the displacement

mode.

Indirect. 	Mem [Mem [R 1]]

The memory location pointed by R i contains the actual

memory location being referred. This addressing mode is

found in the case of double indexing, e.g. x [y [1]].

For most of these addressing modes, the address expression is transformed to

one consisting of a base address and an offset. Only in the immediate addressing

mode is the address transformed into a constant value reference. Memory instruc-

tions at the assembly level use one register to hold the base address and another

to hold the offset value. In the immediate addressing mode, only one register is

used to hold the immediate value representing the address.

The memory instructions from the code in Figure 5.3 can be used as an ex-

ample to describe how the memory references are compared. The address of the

the memory operations is expanded in order to get the memory expression. The

three memory instructions and their memory expressions are shown below:

111

 1w $87,$125,0 1w $87,($29 + 32) + ($8 * 4) + 0

 1w $92,$129,0 1w $92,($29 + 32) + ($9 * 4) + 0

 sw $86,$121,0 sw $86,($29 + 32) + ($8 * 4) + 0

From the memory expressions, it is clear that instruction (1) and instruction

(3) are dependent since they have the same expression (($29 + 32) + ($8 * 4)

+ 0). However, the disambiguation from instruction (2) against (3), refers to

solving the equation $8 = $9. In such cases, the scheduler assumes a conservative

approach and assigns a dependency, since the values of registers $8 and $9 are

not known at compile-time, but may have the same value at some point during

execution.

The static memory disambiguation scheme which was incorporated into the

PTD scheduler is shown in Table 5.2. The table displays all the cases with memory

instructions for both the base-offset and immediate types. The first two columns

show the different combinations of address expressions, for a pair of memory

instructions'. The third column shows the resultant equalities of the address

expressions from both instructions. In the table, x and y represent registers,

which are considered as variables; a and b represent constants with dissimilar

values and are not zero. The last column shows the outcome of the memory

disambiguation scheme for all the possible cases.

There are three possible outcome of two memory references: the first outcome

is when the memory instructions have the same address expression, in which case

there is a data dependency irrespective of the values of the registers and the

type of the expression. The second outcome is when the memory references can

be disambiguated, i.e. the memory address is not the same. In these cases, the

address expressions can be disambiguated because they differ by a constant value.

Constant values do not change during execution, so if the register used as the base

address is the same, and the offset constants differ, then it can be safely assumed

that the address is not the same. Thus, the memory disambiguation mechanism

does not apply a data dependency to the instructions. The third outcome is

when the memory addresses cannot be disambiguated because different registers

are part of the expression, as in the example above. This case is generalised,

when more than two registers are involved in either of the address expressions.

31f both memory references are load instructions, it implies that there is no dependency
between them.

112

Instruction 1 Instruction 2 Equality Outcome

X x x = x Data dependency

X y x = y Not disambiguated

X a x = a Not disambiguated
a a a = a Data dependency

a b a b Disambiguated

X x + a x x + a Disambiguated

x + a x + a x + a = x + a Data dependency

x + a x + b x + a x + b Disambiguated

x + a y + a x + a y + a Not disambiguated

X +... y +... x +... = y +... Not disambiguated

Table 5.2: Static memory disambiguation scheme for the PTD scheduler.

This is represented in the last case of the table. The results and statistics from

the memory disambiguation mechanism used for the PTD scheduler are shown in

Section 7.4.

5.5.2 Subgraphs

The PTD scheduler searches for candidate instructions starting from the in-

struction neighbouring the penalised one, which reduces the average search time.

However, this can lead to a mix of instructions such that no further reductions

can be made. Figure 5.7 shows a list of instructions before and after scheduling.

Figure 5.7 (a) depicts a schedule with two penalties due to consecutive data de-

pendencies. Figure 5.7 (b) shows the same code after the first scheduling phase.

The penalties were reduced by swapping instructions 12 and 13 . The resulting

penalties become non-consecutive.

If no independent instruction can be moved to reduce these penalties during

the second scheduling phase, then they might never be removed. For instance,

instructions 12 and 13 cannot be moved away since they reduce the penalties

due to instructions 13 and Ii. If instruction 12 is moved further away from

instruction I, then the non-consecutive penalty due to 13 becomes a consec-

utive one. Similarly, if instruction 13 is moved further away from 14 , then the

penalty due to I becomes consecutive. This is thanks to the safety conditions

explained earlier. Figure 5.7 (b) shows that overlapping penalties may produce

under-optimised code.

113

11 	

%$131$15

,o 1 la

/2 	mul 13 1w 	$12$8,O

13 	1w
12 2

--1'

mul 	$13'$25L$15

14 	addu 14 addu 	$11 	$9

(a) 	 (b)

Figure 5.7: An example of overlapping penalties.

A solution to this problem is to mask the scope for searching candidate in-

structions within the basic block. A basic block can be regarded as a group of

instructions that are related in an ordered way to perform a computation. The

basic block can be divided into subcomponents (subgraphs) that perform part of

the overall computation. For example, two separate subgraphs can be identified

in a memory operation. The first one involves the computation of the address,

and the second one involves the computation of the actual data that is to be

loaded from or stored at that address. This can be seen in the store instruction

(11 3 : sw $86,$121,0) in the code example in Figure 5.3. Figure 5.8 displays

the DAG from Figure 5.4 which has been decomposed into three subgraphs: the

address is computed in the first subgraph (A), formed by instructions Ii, 12 and

13 ; the second subgraph (B) is dedicated to computing the data, as formed by

instructions 14 to 112; and the third subgraph (C) is responsible for updating

the array index which is checked by the branch instructions 115 and 116. The

node numbering reflects the same order as in the schedule in Figure 5.3 and the

highlighted arcs represent the penalties from consecutive data dependencies.

Without the subgraphs, the PTD scheduler might reduce the consecutive pen-

alties due to instructions 19 , 110 and 11 , with instructions from the group 14 , I,

'6 and 17 . These movements may reduce the penalties due to instructions 1 5 and

16 as well, at the expense of creating overlapping penalties that will be difficult

to reduce in subsequent scheduling phases.

The subgraph B forbids the selection of a candidate instruction that belongs

to the same subgraph, when reducing penalties. The candidates can only be

selected from the other two subgraphs.

The selection and size of the subgraphs is particularly important. If the size

of the subgraph is too small, then there is a greater likelihood of producing

114

c

Figure 5.8: Basic block from Figure 5.4 decomposed into subgraphs.

overlapping penalties. If the size of the subgraph is too large, then it becomes

more difficult to find a suitable candidate. The granularity of the subgraphs plays

an important role for the scheduler. This can be exemplified in the DAC example

in Figure 5.8. If the subgraph B is divided into two subgraphs, one formed by

instructions 14 , 15 , 16 and 17 , and the other formed by instructions 18, 19 , 110, 111

and 112, then the scheduler will try to intermix their penalties so that overlapping

penalties will occur.

The mechanism for selecting subgraphs defines the whole basic block as one

subgraph and recursively divides it into several subgraphs. The subgraph separ-

ation depends on the relative parallelism of each instruction. The relative paral-

lelism of an instruction is defined as the number of predecessors divided by the

level of the instruction, terms that are defined by true data dependencies. The

level represents the critical path relative to the instruction. This ratio suggests

that for a bigger value, there are more instructions per level (less sequentiality),

which can be considered as a measure of concurrency: greater the value of this

measure, bigger is the subgraph. Since the algorithm starts with a subgraph the

size of the basic block, this metric defines which instruction must delimit a new

subgraph.

115

Algorithm 5.9 divide_subgraph (node, P7d, size) algorithm.

parallel = (float) predecessors (pred) / (float) level (pred)
{LEVEL(PRED) IS EQUAL TO LEVEL(NODE) - 1}

if size < 23 then
if predecessors (node) 	6 and parallel > 1.5 then

createsubgraph (node) {INsT. SEPARATED INTO ANOTHER SUBGRAPH.}
end if

else
if predecessors (node) > 10 and parallel > 2.0 then

create.subgraph (node) {INsT. SEPARATED INTO ANOTHER SUBGRAPH.}
end if

end if

Algorithm 5.9 shows the function divide_snbgraph that separates the basic

block into subgraphs. The routine is called for every predecessor of an instruction

in the basic block. The function receives the instruction, its predecessor and the

size of the basic block. Line 1 of the algorithm computes the relative parallelism

of the predecessor. Line 2 selects which ratio value has to be selected: basic blocks

with a small number of instructions require a lower ratio threshold, otherwise, the

algorithm might not divide the subgraph. A basic block with a size lower than

23 instructions creates a new subgraph if the ratio is greater than 1.5 (line 3); if

the basic block has a size bigger than 23, then the ratio must be greater than 2

(line 7). These values have been customised through experimentation. The rest

of the condition of lines 3 and 7 specifies that a minimum number of predecessors

are required, otherwise it will not be necessary to identify a new subgraph.

For instruction 113 of Figure 5.8 the parallel variable holds a value of 2.25

(9 predecessors with a level of 4) corresponding to the arc of predecessor 112, and

1.5 (3 predecessors with a level of 2) corresponding to the arc of predecessor 1 3 .

The ratio of the predecessor 112 is adequate to consider a subgraph, while the

ratio of the predecessor 1 3 is not sufficient.

Figure 5.9 shows the scheduled output of the PTD scheduler for the code in

Figure 5.3. The label marks beside the instructions illustrate to which subgraph

each instruction belongs. The instructions are scheduled in such a way that the

label marks are mixed as if they were different threads. Masking the instructions

with the subgraphs method helps to achieve this.

The figure also shows the PTD measure after scheduling the code which cor-

responds to the minimum measure that this code exhibits. The makespan of this

116

L5.main:
B muli $127,$8,4
B la $126,$29,32
B muli $131,$9,4
B la $130,$29,32
B addu $125,$126,$127
A la $122,$29,32
B addu $129,$130,$131
B 1w $87,$125,0
A muli $123,$8,4
B 1w $92,$129,0
C addui $9,$9,1
A addu $121,$122,$123
B mul $86,$87,$92
C sit $136,$16,$9
A sw $86,$121,0
C bt $136, L5.main

L7.main: 0

Figure 5.9: Code example in Figure 5.3 after scheduled by the PTD scheduler.

particular schedule is 12085.067ns is one which is among the best schedules in

the makespan distribution in Figure 5.5.

The subgraphs checking between the candidate and the penalised instruction

is performed by function checksubgraphs in lines 7 and 18 in Algorithms 5.5

and 5.6. The function performs the checking in a way similar to the dependency

checking: a n x n matrix relates the different subgraphs for every instruction. The

function returns null if two instructions belong to the same subgraph, otherwise,

a one is returned.

The order of checking the instruction in these functions is as follows: data

dependency check, subgraph check and safety condition check. The instruction is

moved if it satisfies all these conditions.

5.6 Algorithmic Complexity

The structure of the PTD scheduler is different from traditional techniques be-

cause the algorithm is driven by the penalties in the code. The complexity of the

PTD scheduler is derived next.

117

The while sections in the functions PTD...resource_phase (Algorithm 5.2),

PTD_consecutive_ phase (Algorithm 5.3) and P TD-no rz cons ecutive_ phase (Algo-

rithm 5.4) traverse the basic block stopping at every penalty. These sections

have a complexity of 0 (et 2 + (n - e)), where n is the number of instructions

in the basic block, and e is the number of penalties. The term et 2 corresponds

to the time spent searching for a candidate instruction and checking its depend-

encies when the functions PTD_arrangeieft and PTD_arrangeright are called.

The term n - e covers the instructions that are not penalised.

The repeat loops (lines 3-16, 17-30 and 31-44 in Algorithms 5.2, 5.3 and

5.4) ensure that at least one scheduling pass is performed. The repeat sections

continue until there are no reductions in the penalty measure. The number of

times these sections are repeated is denoted by c. Thus, the above term becomes

0(cet2 + c(n—e)).

However, the parameters c, e and t are not general. Basic blocks have different

number of penalties (e) of a given type and particular number of retries (c) for

each basic block. Similarly, penalties have different instruction distances (t) when

searching for a candidate. For our purposes, these factors will be considered

general in the interest of clarity and simplification.

The repeat block is replicated eight times in the three scheduling phases.

Therefore, the complexity of the PTD scheduler is

0(8 Cet2 + 8c(n - e) + 8nc+ 3n) 	 (5.5)

The terms 8 nc and 3n represent the computation of the penalty measure

throughout the three scheduling phases, both inside and outside the repeat sec-

tions, respectively.

Equation 5.5 has a few important simplifications. Observations of the schedul-

ing process show that the number of times the repeat sections are looped is not

greater than three or four. Therefore, c can be considered to be a small constant

(c = 2, 3,4). Since the search for candidate instructions start from the instruction

neighbouring the penalised one, it is expected that the search (on either side) does

not reach n/2. Furthermore, if the candidate is found on the left hand side of the

penalised instruction, the search on the right hand side is not necessary. Thus,

the factor t can be considered to be t <<n. As for the term e, it is often the case

that there are not as many penalties of the same type as there are instructions,

resulting in e <n.

The upper and lower bounds of Equation 5.5 are defined by two opposite

scenarios. The upper bound is represented by a pure sequential code. It takes

118

place when there are as many penalties as instructions (e = n), there are no

candidates found for all of those penalties (t = m - 1), and there can only be two
retries (c = 2). The upper bound of Equation 5.5 is therefore

0 (16 n (n - 1)2 + 19n) 	 (5.6)

However, since the same type of penalties cannot affect more than one repeat

section, only one term is governed by cn (n - 1) 2 , while the other seven share the

term cm (e = 0). The former term dominates the rest of the terms, so the equation

has an upper bound of n3 . The upper bound in practice becomes

0(2n(n - 1)2 +33n) 	 (5.7)

The lower bound of Equation 5.5 is represented by a purely independent code.

In this case, there are no penalties (e = 0, = i = 0) and no retries (c = 0). The

complexity is therefore

0(3n)
	

(5.8)

The if conditions before the repeat sections avoid any scheduling attempt if

there are no penalties. Only the initial PTD measures take part in the complexity.

The lower bound of the PTD scheduler is therefore of the order of n.

If all the constants are removed from the Equation 5.5, then the complexity

of the PTD scheduler becomes

0(et' +m— e)
	

(5.9)

In normal conditions, however, the parameters c and t have particular values

with respect to n. As the algorithm progresses, the number of penalties are

reduced, so e becomes e << n. Similarly, t is much smaller than m (t <<n) since

in general, the candidate is meant to be found from a close neighbour. Therefore,

as the algorithm progresses in normal conditions, the Equation 5.5 is found to be

of the order of n.

5.7 Discussion

The nature of the PTD scheduler differs from traditional scheduling techniques. It

offers interesting properties and has different characteristics. These are discussed

in the following section.

119

5.7.1 Overlapping Penalties

The priorities given to the different penalties by the PTD scheduler are not only

meant to target more expensive stalls first, but also to manage the amount of

penalties in the code. During the second scheduling phase, penalties from data

dependencies due to different distances between producers and consumers have

to be compared. On many occasions the movements are disallowed because of

the intermix of instructions and the overlapping of penalties. It has to be ensured

that the penalty measure is always reduced after a movement.

By strictly reducing penalties, the PTD scheduler moves through the schedul-

ing space towards the minimum penalty measure. However, the overlapping pen-

alties constrains this search. If they cannot be reduced, it implies that there is

no independent instruction in the basic block which when placed in between the

penalised instructions, reduces the penalty measure.

In order to overcome the effect of overlapping penalties when a penalty cannot

be reduced, the algorithm is required to perform two or more instruction move-

ments. The scheduler must be capable of identifying an instruction that could

be moved to a place where the penalty measure stays constant, and from there,

evaluate if there is a second instruction that could be placed in the desired po-

sition and reduce the penalty measure. If this combination of instructions fails

to satisfy the safety conditions, then the transformations are reversed and the

process of testing other combinations has to continue.

The problem with this approach is that the number of transformations can-

not be known in advance. Furthermore, the complexity of performing a two-

instruction transformation is of the order of 0(t + ti), where t j is the distance

from the first instruction to its final position, and t2 is the distance from the

second instruction to the penalised instruction. In the worst case, the instruction

has to be checked against all the instructions in the basic block. This case implies

that t 1 = n, resulting in a complexity of the order of 0(n 2).

The solution for this task seems more complex than the scheduling algorithm

itself. Overlapping penalties is a characteristic of the PTD scheduler. The concept

of subgraphs incorporated into the scheduler helps to attenuate their effect.

5.7.2 Input Sensitivity

Another characteristic is that the PTD scheduler is sensitive to the initial order

of the instructions. This means that the scheduler is non-deterministic to -<,

120

unlike the list scheduler. The latter produces the same output independently of

the initial order, given that the data dependencies between the instructions are

preserved.

However, the PTD scheduler is driven by the penalties in the code and there-

fore is susceptible to their form. Since the penalties are applied in accordance

with the position of the instructions in the schedule, different initial schedules

will be approached by the scheduler uniquely. Although higher penalties are

handled before penalties with lower ones, the algorithm has to choose among the

penalties that share values. This decision leads to different 'paths' during the

transformations which result in different schedules.

Given that the PTD scheduler is sensitive to the initial order, it is convenient

to shuffle its order, before applying the scheduling process. This is in response to

the amount of penalties that can be produced by the compiler. An analogy can

be drawn with simulated annealing where the initial code is randomly generated.

The first scheduling phase (PTD_resource_phase) is considered to be the ran-

dom factor introduced into the initial schedule. This phase only performs in-

struction movements to reduce penalties due to resource contentions, and the

number of movements is not considerable. However, these transformations serve

to produce a better initial schedule.

5.8 Summary

The micronet-based asynchronous processor described in Chapter 4 requires in-

struction scheduling with the aim of minimising the issue unit stalls due to data

dependencies and resource contentions. The processor features an in-order issue

unit and out-of-order write-back. Its datapath is characterised by instructions

that run as fast as their requirements are fulfilled, and that may overtake other

instructions and compete for resources. The functional units operate within dif-

ferent range of latencies depending on several static and dynamic factors. This

model presents particular problems to the scheduler, because the dynamic beha-

viour of the instruction execution makes it difficult to consistently predict the

time when results become available.

This chapter has presented a novel and alternative way of performing local

scheduling for the micronet-based asynchronous processors. The new method is

not based on traditional techniques such as the list scheduling. In contrast, the

PTD scheduler is based on a scalar measure that quantifies the amount of stall

incurred in the issue unit by data and resource dependencies.

121

Consecutive instructions with data and resource dependencies are penalised

because the issue unit cannot issue the dependent instruction until its operand

becomes available, or because consecutive instructions share a common functional

unit and there are not enough instances of that type. The penalties are given

different degrees in order to reflect different amounts of stall to the issue unit.

Data dependencies are more costly in terms of delay; therefore, consecutive data

dependencies are assigned higher penalties.

The PTD scheduler performs instruction scheduling within the basic block

with the aim of reducing these penalties. The different degrees of penalties help

to prioritise the order in which the scheduler reduces them. Valid conditions

are introduced to avoid dependency violations, while safety conditions have been

defined in order to improve the overall state of the schedule every time an in-

struction is moved.

The scheduler is divided into several scheduling stages to give priorities to the

different spacing of the penalties. Penalties from consecutive data dependencies

are treated in a first pass since the delay produced by them is the most signific-

ant. Non-consecutive penalties are treated in the following pass, after consecutive

penalties have all been reduced.

The PTD scheduler uses concepts such as memory disambiguation and sub-

graphs to improve the scope for parallelism and the quality of the instruction

movements. Memory disambiguation is a well known technique for discarding

data dependencies between memory operations when their addresses are not the

same. This procedure not only reduces the data dependencies between memory

instructions, but those inherited by all their successors. This dependency reduc-

tion increases the scope for ILP within basic blocks that can be exploited by the

scheduler.

The concept of subgraphs in a basic block was introduced as a heuristic to

mask the instructions when selecting candidates to reduce penalties. The PTD

scheduler moves independent instructions to reduce a penalty that are located

closer to the penalised instruction. The long-term effect due to this practice is

that the penalties become overlapped and cannot be reduced further. These over-

lapping penalties restraint instruction movements in accordance with the safety

conditions. Subgraphs are composed by a group of instructions from the basic

block involved in a part of the computation. The PTD scheduler is forced to

search for candidate instructions from different subgraphs in order to reduce the

penalty. This mechanism attenuates the effect of overlapping penalties.

122

The complexity of the PTD scheduler is based on the number of penalties, and

is of the order of et 2 + n - e. Since the number of penalties (e) decreases as the

scheduler progresses, its value becomes smaller when compared to the number of

instructions n. In the long-term, the complexity can be considered to the order

of n. This results in a better complexity than those of list schedulers, which are

of the order of n 2 .

The PTD scheduler offers an alternative method for implementing local in-

struction scheduling which is tuned to the requirements of asynchronous archi-

tectures. The results of the local PTD scheduler are presented in Chapter 7.

The next chapter presents a global extension to the PTD scheduler so that

instructions from different basic blocks can be moved across in order to reduce

further the penalties.

123

Chapter 6

Global Optimisations

6.1 Introduction

In the previous chapter a new technique was presented for performing local

scheduling which is targeted at micronet architectures. The PTD scheduler is

based on penalising the effect of data and resource dependencies which stalls the

issue unit of the processor. The objective of the scheduler is to minimise the

penalties which are reduced by inserting independent and unrelated instructions

in between the dependent ones. The scheduler terminates when the number of

penalties cannot be reduced any further.

However, there are two reasons why the schedule for the basic blocks can

potentially be under-optimised. Firstly, the mechanism for reducing the pen-

alties introduces an effect called overlapping penalties. This takes place when a

group of penalties that are in close proximity restrict the movement of an instruc-

tion to reduce another penalty. The safety conditions that guarantee instruction

movements to strictly reduce the penalty measure, are often forced to avoid the

reduction of a pending penalty as a result of these overlapping penalties. The

second reason is the limited amount of ILP that can be found within basic blocks.

It is well known that basic blocks may not offer enough parallelism to maintain

high levels of resource utilisation, and in the case of the PTD scheduler, the

parallelism may not be adequate to minimise the stalls in the issue unit.

It is common practice to search for independent instructions beyond the ba-

sic block in order to improve their ILP. Instructions from different basic blocks

can fill the scheduling "gaps" produced by basic blocks with insufficient ILP.

Global scheduling techniques exploit higher levels of ILP to those obtained by

local scheduling. A wider scope of the program is considered for regrouping the

instructions in order to distribute the parallelism. Global information about the

program such as basic block structure and frequency of instruction execution is

124

used to combine instructions from different basic blocks.

The advantage of global optimisations is apparent, but there is considerable

scope for arbitrary decisions where heuristics may be globally optimal, but locally

suboptimal. The penalty measure offers the possibility of a single metric for

use in both local and global decisions. A global scheduler capable of moving

instructions across different basic blocks to reduce the remaining penalties in the

local scheduler represents a natural extension.

In this chapter, the scope of the PTD scheduler for searching candidate in-

structions is extended beyond basic blocks. A global version of the PTD scheduler

allows movement of instructions beyond the basic block boundary in order to re-

duce penalties. The global scheduler is also based on the PTD measure which is

used as a reference metric to perform global code motion. Basic blocks with a

resultant positive measure are eligible for global code motion. The context of code

motion within this chapter represents global movement of instructions without

the need for copies or speculation. When code motion cannot be performed due

to data dependencies, code duplication (code motion with copies) is applied, in

an effort to reduce the penalties left after local scheduling.

This chapter describes some underlying concepts for applying code motion

without copies or speculation. The safety conditions introduced previously for

reducing the penalty measure are extended to handle code motion and code du-

plication. Code motion and code duplication, along with their generalisation in

tail duplication and block merging are also explained. Finally, a description of a

global PTD scheduling algorithm is presented.

6.2 Related Work

Global scheduling is an optimisation technique that involves instruction move-

ment and scheduling across multiple basic blocks, with the aim of reducing the

program execution time. Global program representations that include data and

control relationships allow schedulers to group instructions from different basic

blocks. When moving instructions over different basic blocks the semantics of the

program must be preserved. When an instruction is moved into another basic

block that is located in a different path of the program, it has to be ensured that

complementary measures are taken to respect the overall meaning of the program.

There are several approaches to forming regions larger than basic blocks, which

can be categorised under either cyclic or acyclic optimisations. Cyclic optimisa-

tions include instructions from different iterations of the program to increase the

125

parallelism. Conversely, acyclic optimisations only include basic blocks within

the same acyclic region. The optimisations discussed in this chapter are strictly

acyclic. A region is defined as a series of related basic blocks as a result of the

compilation of a function.

Global scheduling can also be divided into two types based on whether the

transformations are based on profile information - the recorded run-time beha-

viour of a program, for a particular set of inputs. The inputs must be carefully

selected with representative data. The profile information is annotated on all the

basic blocks of the program with their percentage of execution, for the partic-

ular set of- inputs. Given the frequency of execution for each basic block, the

frequencies of all possible paths can be determined.

A selection of global acyclic scheduling techniques, including profile-based

transformations, are described in this section.

6.2.1 Trace Scheduling

Trace scheduling [44] [51] [105] is a global optimisation technique that considers a

sequence of basic blocks as a trace. The selection of basic blocks is performed

upon the most likely trace - often called the on-trace - of the program. The

information is retrieved from several runs of the program operating on typical

data. The resultant trace is scheduled with a list scheduler as a large single basic

block.

If an instruction is moved across basic block boundaries, then one or more

copies of compensation code may be required in the off-trace. If the instruction

is moved above a join or below a fork, then compensation copies are inserted

into the off-trace paths. This process of inserting compensation code is called

bookkeeping. One of the side-effects is an explosion in code size, but policies exist

to limit the generation of compensation code [54].

6.2.2 Superblock Scheduling

Superblock scheduling [85] is a variation of trace scheduling. The main difference

is that the traces do not have side entrances. Profile information is used to select

the most frequent traces. After these traces have been generated, a technique

called tail duplication is performed in order to remove the side entrances [29].

The resulting traces are called superbiocks. After all the superbiocks have been

defined, the Superbiock Scheduler uses list scheduling techniques to optimise the

superbiocks.

126

The benefits due to optimisations performed along the frequent paths, such

as the on-trace and the superbiock, are often made at the expense of the non-

frequent paths.

6.2.3 Hyperbiock Scheduling

Hyperbiocks [108] are similar to superbiocks in that the control flow can only

enter from the top, but can leave from different exits. The difference between a

superbiock and a hyperbiock is that the latter is based on predicated execution.

Predicated execution refers to the conditional execution of instructions depending

upon the value of a boolean source operand. If the operand, also called a predicate,

is true, then the instruction is executed normally; otherwise, it is treated as a no-

operation (nop) instruction. The advantage of hyperbiocks over superbiocks is

that hyperbiocks contain instructions from more than one path of control when

there exist multiple, important paths [86].

6.2.4 Dominator-path Scheduling

Dominator-path scheduling [163] is a global scheduling technique similar to trace

scheduling in that several basic blocks are treated as a single block. The main

difference is that the blocks are selected from the dominator-path of the region,

and not from traces. This path is selected from the dominator tree' with the help

of heuristics or profile information.

Another difference with trace scheduling is that dominator-path scheduling

uses this dominator analysis to avoid the use of compensation code, which is a

significant concern. Once the blocks are selected, they are scheduled with a list

scheduler.

6.2.5 Code Motion

All the previous examples of global scheduling are characterised by the basic

blocks being considered as the unit of transformation. The frequently-encountered

basic blocks are grouped as a single meta-block in which local scheduling can

exploit more parallelism. However, the effectiveness of these techniques depend

on grouping frequent paths that outweigh the degradation of other paths that are

less frequent. Trace-based scheduling techniques though are less effective when

targeting programs with paths that are evenly frequent.

'The dominator tree [2] represents the dominance set between basic blocks. One block is
said to dominate another, if the former is executed, and then eventually, the latter has to be
executed. The concept of dominance is explained further in Section 6.3.1.

127

Other types of global scheduling consider the instruction as the unit of trans-

formation. Instead of grouping basic blocks, instructions are individually moved

to other basic blocks. Considering single instructions as the unit for the trans-

formations provides a finer granularity in the ILP improvement.

The term code motion has been overloaded. It has been used to describe the

motion of expressions in the intermediate code, and also to describe the motion

of assembly instructions after code generation. At the intermediate code level,

code motion is applied to eliminate redundancies in the code, such as constant

propagation and partial redundancy elimination [33][96], or to distribute coarse-

grain parallelism [3].

At a lower level, the term code motion is used to describe the movement of

assembly instructions within a scheduler. A global scheduler is presented in [20],

in which useful instructions are moved beyond basic blocks within an acyclic

region. Useful instructions represent instructions that can be moved without the

need for compensation code, or speculation (c.f. Section 2.1.1.3). The movement

of useful instructions has the characteristic of being profile-independent, since the

movements do not compromise any of the paths that the control flow may take

in between the source and destination blocks. The scheduler does not consider

code duplication in any of the code motion transformations.

Another example of code motion of instructions is found in [107], in which the

scheduler is targeted to work with or without the use of profile information. The

code motion within this scheduler does consider limited cases of code duplication.

6.3 Global Scheduling for the Micronet Model

Global schedulers have used the list scheduling algorithm for optimising the order

of instructions in the meta-blocks. The ones described previously usually define

instruction markers to specify the boundaries of the original basic blocks. These

markers range from compiler directives to instruction identifiers. The list sched-

uler interprets these markers so that the heuristic can be tailored for scheduling

instructions from more than one basic block. For instance, the instructions within

a meta-block may no longer have the same weight and priorities as instructions

in local scheduling do. There are several reasons behind this, some of them being

particular to the global scheduler itself. One reason being that an instruction

from the new meta-block may not have the same number of execution as the

others [87] [163], or the same control properties, in the case of a speculative move-

ment. Another reason is that by moving one instruction beyond its basic block

128

causes the life of its registers to be prolonged' - an important issue if register

allocation is performed after global scheduling [122].

A global version of the PTD scheduler differs from those described in Section

6.2, since the underlying scheduling method is not based on the list scheduler;

instead, the global PTD scheduler is based on the penalty measure. The next

section defines the terms used to explain the heuristics for code motion in the

global PTD scheduler. The global PTD scheduler with code motion, but without

compensation code, is described in Section 6.3.2, and with code duplication is

described in Section 6.3.3. The global PTD scheduler does not consider either

speculative movement of instructions or the use of profile information.

6.3.1 Definitions

The word region is another overloaded term. For example, in [70] and [3], a

program is divided into regions that are composed of code statements in order to

perform region optimisations. In [90] programs are divided into control regions,

i.e. sections of the program with the same control dependencies.

The term region, as described in this thesis, defines a group of basic blocks

containing assembly instructions with a single entry and multiple exits. They are

the result of compiling the functions of a program. A region is defined as part of

a program in which the basic blocks are strongly connected [162].

Let A and B be two basic blocks in a region. A is said to dominate B

(A dom B), if block A appears in all the paths from the entry of the region to

block B. Similarly, B is said to post-dominate A (B post A), if block B appears

on all the paths from block A to the exit of the region [2]. Figure 6.1 (a) depicts a

control flow graph (CFG) of a region with its entry and exit nodes. It can be seen

that B 1 dominates all the other basic blocks, as it appears in all the paths from

the entry of the region up to all of the blocks. Similarly, block B7 post-dominates

the other blocks since it appears in all the paths from these blocks to the exit of

the region.

If both conditions hold for blocks A and B, i.e A dominates B and B postdom-

mates A (A dom B A B post A), then it is said that A is equivalent to B [20].

This is an important characteristic because it means that should A be executed,

then B will definitely be executed. It can be seen in Figure 6.1 (a), that whichever

path is taken after executing block B 1 , the flow of control will eventually arrive

at block B 7 . In practice, the equivalence condition implies that blocks A and

21f the instruction is moved against the flow of control, the life of the destination register is
prolonged. Conversely, the source register is prolonged when the instruction is moved along the
control flow.

129

(a) 	 (b)

Figure 6.1: (a) Control flow graph and (b) its control dependence subgraph.

B can be executed in parallel, as long as their data dependencies are respected.

Therefore, instructions from equivalent blocks can be moved without the need for

copying instructions, and without the risk of speculation. Blocks A and B are

said to be control-independent. In the example, only blocks B 1 and B 7 fulifill the

equivalence definition.

Figure 6.1 (b) shows the control dependence subgraph of the control flow graph

of Figure 6.1(a). The control dependence subgraph shows the control flow de-

pendencies between the basic blocks. It is shown that basic blocks B 1 and B7

are control independent, as are blocks B4 , B5 and B6 . However, blocks B4 , B5
and B6 are not equivalent. Although block B6 postdominates blocks B4 and

B5 , blocks B4 and B 5 do not dominate block B6 . This is shown graphically in

Figure 6.2. Figure 6.2 (a) shows the dominator tree, and Figure 6.2 (b) shows the

postdominator tree of the control flow graph in Figure 6.1 (a).

When there are back entries as in loops in the region, it must be ensured that

the equivalent blocks are contained within the same sub-region. If a loop is added

to the control flow graph of Figure 6.1 (a), then the basic blocks, B 1 and B7 , are

no longer equivalent. Figure 6.3 depicts the new control flow graph with a back

entry. Although B 1 still dominates B 7 and 137 postdominates B 1 , B 1 may be

130

(a) 	 (b)

Figure 6.2: (a) Dominator-tree and (b) postdominator-tree.

executed more often than B7 . For the graph in Figure 6.3, basic blocks B 1 and

B7 are not equivalent.

6.3.2 Code Motion for the PTD Scheduler

The local PTD scheduler attempts to minimise the penalty measure on each

basic block by performing local movement of instructions. The local optimisation

serves as a monitor of how much parallelism can be exploited by the micronet

architecture (or how much stall to the issue unit is caused by true dependencies

and resource contentions). If the ILP in the basic block is adequate, then the

penalty measure will be proportionately reduced at the end of the local scheduling

process.

The natural extension to the local PTD scheduler is to allow instructions from

different basic blocks to be moved, in order to reduce the penalty measure if it

has not been totally cleared. Within the PTD scheduler, the penalty applied to

an instruction can be regarded in two ways: one view is that the penalty indicates

that another instruction has to be moved in order to reduce it (as in the local

scheduler), and the other is that the instruction itself must be moved, in order

to reduce its penalty. The global scheduler assumes the latter view. Since the

search space for independent instructions can grow considerably when compared

to a basic block, it is more feasible to move away the cause of the penalty (the

penalised instruction) rather than searching for independent instructions.

With this assumption, penalised instructions are considered candidate instruc-

131

Figure 6.3: Control flow graph with a loop.

tions for global movement. The target destination for the code movement is re-

stricted by the equivalence definition. Code motion is only allowed to equivalent

blocks.

The equivalence definition enables code motion beyond basic blocks but without

speculation or code duplication. This definition determines which group of in-

structions are executed and under what static control flow conditions. Thus,

the task is reduced to deciding under which data conditions instructions can be

moved.

The data conditions are governed by the penalty measure. Since each basic

block has its own penalty meaure, a global measure can be regarded as the total

amount of stall caused to the issue unit within the region. The local scheduler

minimises the penalty measure on every basic block, so the global effect is to

reduce the collective measures.

When the penalties cannot be completely reduced, the global scheduler's task

is to distribute instructions within equivalent nodes. To do so, the global scheduler

has to ensure that both the data dependencies and the safety conditions are

respected. For the global scheduler, the safety conditions defined for the local

scheduler are expanded to consider instructions from two basic blocks, i.e. the

sender and the receiver block.

The global extension of the PTD scheduler is applied after the local scheduling.

132

The global scheduler scans the regions of the program in topological order, that

starts at the entry of the region and finishes at the exit. The global scheduler is

restricted to moving instructions against the flow of control (without considering

the back entries from loops). Since the candidate instructions for code motion

are the penalised instructions, there would be very few occasions in which they

could be allowed to move, if the direction of movement was in favour of the

flow of control. This is because the likelihood of their successors being located

on the trajectory of the movement is high. Another slight advantage of moving

instructions against the flow of control is that only the life of one register is

lengthened, as opposed to two.

When the scheduler stops at a basic block with a positive penalty measure, the

penalised instructions become candidates to be moved outside the basic block.

The receiver block is selected among the set of equivalent blocks. The set is

traversed in reverse order, i.e. from the closest equivalent block to the furthest.

The penalised instructions are selected from the start of the block towards the

exit. The penalised instruction is checked against the preceding instructions in

the basic block in order to guarantee that the instruction can leave the block.

The next step is to check the data dependency with the instructions from the

basic blocks positioned in between the sender and receiver block, if any. This

checking also includes memory disambiguation in the case of load instructions. If

there is a function call within these blocks, then the dependency checking is also

performed in that region.

Figure 6.4 shows the region pictured in Figure 6.1 (a), with the final instruc-

tions from block B 1 and the first ones from block B7 . The global PTD scheduler

traverses the region from blocks B 1 to B 7 . The instructions shown in basic blocks

B 1 and B7 represent the code after local scheduling. Although B 1 is equivalent to

B7 , the instructions cannot be moved in the direction of the control flow, from B 1

to B7 . When the scheduler stops at block B7 , the penalised instructions Ii and

12 become candidates for code motion. Since both instructions are located on top

of the basic block, and are independent, they are allowed to leave basic block B 7 .

Both instructions are checked for data dependencies with the instructions from

basic blocks B2 to B5 . In the example, it is assumed that instructions '1 and 12

do not have data dependencies with any of the instructions from blocks B2 to B6 .

When a candidate is able to be moved to another basic block, the selection of

its final position becomes important. Since local scheduling has been performed

previously at the receiver block, its instructions hold the penalties, if any, de-

pending on the ILP in the block. The ideal situation is to reduce a penalty at

133

15 add

B1
16 sit

%2,$22,1

,iOO

1 7 bf $17,B3.label

1 1 	la 	($2.,$29,o

12 	1
B7

13 	mul 	$i3$25;, $15

14 	addu 	$ii ,i, $9

.4- ------ I

	

.4--- 	I

	

• 	I

Figure 6.4: Code motion in the PTD Scheduler.

the receiver block and match a different type of functional unit to those of the

instructions that share a penalty. The safety conditions of the global scheduler

are responsible for deciding the final position of the candidate instruction. (The

safety conditions are explained in Section 6.3.4).

In Figure 6.4, instruction Ii is the first candidate to leave its basic block.

Instruction I is placed in between instructions 16 and 17 to reduce the penalty

due to the true dependency. The type of instruction 11 is different from those of

instructions 16 and 17 , to reduce any possibility of resource contentions. Similarly,

instruction 12 is moved in between 1 5 and 16 to separate the true dependency. The

load instruction also differs from the types of instructions 1 5 and '6.

Since it is not known in advance how many candidate instructions will be

amenable for code motion, when a candidate is moved it has to be placed at the

site of the highest penalty in the receiver block. This position is represented by

the penalty between the set and branch instructions (16 and 17) in basic block B 1 .

When instruction I is moved the penalties at the receiver block are updated, so

when instruction 12 is moved, the highest penalty is assigned to instruction 15.

This procedure works well when the instructions moved into the receiver basic

block are independent, as in the example in Figure 6.4. In contrast, if the can-

134

didate instructions are dependent, then the second instruction cannot be placed

before the first one, in the case when the second highest penalty is located before.

Due to this, when the first instruction is to be moved, the second-best position is

always stored. When the second instruction is moved, the first one is relocated to

the second-best desired place, so that the second instruction could fill the original

place.

The code motion algorithm terminates when there are no penalised instruc-

tions left in the sender block, or when the remaining penalised instructions cannot

leave the block due to data dependencies.

6.3.3 Code Duplication for the PTD Scheduler

Data dependencies often restrict the code motion of an instruction from its basic

block to an equivalent basic block. In an attempt to reduce the penalty of the

instruction, it is still preferable to perform code duplication. Instead of moving

the instruction to an equivalent basic block, the instruction is copied and moved

to the immediate predecessor blocks.

When there is code duplication, the expansion of the code is always a concern.

The advantage of performing code duplication only when code motion cannot be

called keeps the expansion of code to a minimum.

The decision for selecting instructions for code duplication follows the same

principle as that in code motion. When there is a data dependency in the tra-

jectory to the equivalent block that avoids the movement, the receiver block is

replaced by the predecessor blocks instead. The copies of the instruction are in-

dividually placed in the best position at each of the receiver blocks. The safety

conditions, which are described in the next section, are also the same as in the

case of code motion.

Figure 6.5 shows the same control flow graph of Figure 6.1 (a), this time in

an attempt to reduce the penalties in basic block B63 . Since B6 does not have

equivalent nodes and its predecessors have only one successor (B6 post-dominates

both B4 and B 5), the penalised instructions I and 12 are copied and moved into

blocks B4 and B5 . First, instruction I from block B6 is moved into block B5 .

The instruction is placed at the highest place to reduce the penalty of instruction

11 in B5 . This is because the type of instruction is not relevant since all the

instructions involved (Ii , 12 and 13 from B5 , and Ii from B6) are arithmetic

instructions. Similarly, instruction 11 is copied to the highest position to reduce

the penalty of instruction 1 5 in block B4 , since all the instructions (15 , 16, 17 and

'Instructions from B7 are ineligible for code duplication since B3 has a 'side-exit' (block B5).

135

15 or! $1;,$23,1

addu $18)$17,$16

B 4 17 SW1 $15;, sum

1 8
imp B6.1abel

Ii sub! ($1d,$18,1

B5
'2 la $11>1000

1 3 addu $ 7, $ 8,3 1 O

1 1 la ($25,,$29,O ----'0:
!, 1w $1$8,O

B6
1 3 mul $13$25;, $15

14 addu $11,$1,$9

-0•

Figure 6.5: Code duplication in the PTD Scheduler.

18 in block B4) have different types.

By the time the second instruction 12 from block B6 has to be copied, the

penalties would have been updated at the receiver blocks. Instruction 12 is moved

to the highest position to reduce the penalty in block B 5 . This time, the type of

instruction is more important since the penalty due to data dependency has been

reduced previously by distancing I and 13 in block B5 with instruction I from

B6 . In the basic block B4 , the load instruction is moved before the recently-copied

instruction I. This is also to distance the memory instructions (17 from B4 and

12 from B6) in the basic block.

6.3.4 Safety Conditions

The safety conditions for the global scheduler are an extension of the one for local

scheduler presented in the previous chapter. The difference rests in the need for

strictly reducing not only the consecutive and non-consecutive penalties, but also

instructions have to alternate ones from the different available types.

A candidate instruction for code motion is allowed to leave the source block

if it complies with the valid conditions, i.e. it does not have a data dependency

with any instruction that belongs to basic blocks located in the trajectory of the

136

movement. When the candidate instruction is allowed to move to an equivalent

basic block, then the first safety condition is to guarantee that the penalty measure

is reduced in the source block. This is defined by the following equation

P(s) after < 	P(s) before 	 (6.1)

The penalty measure after the transformation P(S) after considers a source

block without the candidate instruction, a difference with the safety condition for

local scheduling. If Equation 6.1 holds, then the safety condition is evaluated at

the destination block.

EP(r)after < : ii: P(r) before 	 (6.2)

Similarly, the penalty measure after the transformation on the destination

block (P(S) after) considers the candidate instruction as being introduced, whereas

the penalty measure before code motion does not include it. If Equation 6.2 holds,

then the code movement is allowed.

Among the instructions that can be moved, ones with certain registers are not

considered as candidates for code motion or code duplication, if there is a function

call in the trajectory of the movement. Instructions that reference registers $29

and $2 are not allowed either to be copied or moved. Register $29 contains the

stack pointer, while register $2 is used to pass the static link (return value) when

there are nested procedure calls [91]. Instructions that refer to the stack, such as

loads and stores, may modify the value of a memory location through a memory

address stored in the stack (indirect addressing mode, c.f. Section 5.5.1). The

memory disambiguator may not be able to detect these references, and thereby

causing a data dependency violation. The restriction over instructions using

register $2 is because the data dependencies from standard libraries cannot be

detected since their code is not annotated after compilation (c.f. Section 7.2.2).

6.4 Global Optimiser for the Micronet Model

As mentioned in Section 6.2.5, the type of global optimisations are governed by the

unit of transformation. Global scheduling in our case is a fine-grain optimisation

and considers the instruction as the unit of transformation. Other methods such

as region scheduling use the basic block as the unit for performing coarse-grain

optimisations.

137

Region transformations have been studied at different levels in the compiler.

At the intermediate code level, region transformations are usually implemented

to remove redundancies in the code (c.f. Section 2.1). However, they can also

be applied to distribute the parallelism in the code [70]. The list of region trans-

formations includes move, copy and merge region. The copy transformation is

used to remove unconditional branches. It is also known in the literature as

tail duplication or node splitting. Tail duplication refers to the duplication of a

node (a basic block or a region) and its edges, when the node has more than

one predecessor. This transformation was originally applied to break cycles of

dependencies in order to generate better code for parallel machines. It helps to

reduce communication and synchronisation costs [50]. Mueller and Whalley use

code replication to both remove unconditional branches (jmp instructions) [119],

and to avoid conditional branches as well [120]. The resultant code contains

simplified control flow that benefits vector and parallel compilers.

The merge transformation joins two regions (or basic blocks) by removing the

unconditional branch. This transformation is performed when the regions share

the same set of control dependencies, i.e. one region is equivalent to another, and

the former has only one exit and the latter has only one entry. These nodes are

said to be collapsible if these conditions are met.

6.4.1 Tail Duplication and Block Merging for the PTD
Scheduler

Tail duplication along with block merging represent the same concept of code

duplication as defined in Section 6.3.3 but with a different granularity. The dif-

ference being that the whole basic block is copied, instead of copying instructions

on a one-by-one basis.

Tail duplication and code merging are incorporated into the PTD scheduler

with the aim of increasing the scope for ILP. The conditions for applying these

techniques require that after the transformation the size of the merged basic block

is incremented. In other words, it is required that the basic block that is to be

duplicated has at least two predecessors, and at least one of them has at most one

successor (no conditional branches), so that the block can be merged. Addition-

ally, the predecessors' basic blocks should not have to end with a call instruction,

since this type of unconditional branch avoids block merging. (Function miming

[39] is an optimising technique to overcome this limitation and merges code from

the caller and callee functions).

The result of applying tail duplication and block merging to the control flow

UNN

Figure 6.6: Global optimisations applied to the CFG from Figure 6.1 (a).

graph shown in Figure 6.1 (a) is displayed in Figure 6.6. It can be seen that

basic blocks, B6 and B7 , were duplicated and merged with blocks B4 and B5 ,

respectively, to form two larger basic blocks. One is formed with basic blocks B4 ,

B6 and B7 and another is formed with blocks B 5 , B6 ' (a copy of B6) and B7 ' (a

copy of B7), respectively.

Basic blocks B71' (another copy of B7) and B4 cannot be merged with blocks

B3 and B 2 respectively, because they have two successors (conditional branch).

For the same reason, B 5 cannot be duplicated because neither of its copies would

be merged with blocks B2 and 133 due to their conditional branches.

Another example of a control flow graph including a loop is shown in Figure 6.7.

Figure 6.7 (a) displays a control flow graph and Figure 6.7 (b) shows its trans-

formations. Tail duplication can be normally applied to basic block B5 even if its

conditional branch represents a loop. Blocks B5 and B 7 were duplicated for mer-

ging with basic blocks B4 and B6 , respectively. Block B6 cannot be duplicated

because all its predecessors (B2 , B 5 and B 5 1) have conditional branches.

Tail duplication as well as code duplication offer the advantage of increasing

the ILP available in the code. However, their indiscriminate use leads to code

expansion. The code expansion due to tail duplication has an upper bound of

the order of p2k , where p is the number of if-then statements that appear in the

region [70]. The conditions for applying tail duplication only if there is an increase

in the size of the basic block, help to limit the expansion of code. The control

flow graph examples of Figures 6.6 and 6.7 show that not all the candidates for

tail duplication are duplicated.

Although tail duplication and block merging are very similar to code duplica-

139

(a) 	 (b)

Figure 6.7: (a) Example of a CFG with a loop and (b) its transformation.

tion, the decisions to tune the merged basic blocks after the transformation differ

substantially. Since it is a complete basic block being merged with another, it be-

comes more practical to apply local scheduling to the resultant basic block. Once

tail duplication and block merging have been performed in the region, the data

dependencies of the modified blocks are updated and local scheduling is applied

again.

Tail duplication is performed in a bottom-up order. This represents a natural

extension to the control flow graph since tail duplication folds its leaves as in a

tree.

6.5 Algorithms

All the global optimisations described in this chapter are applied after local

scheduling has been performed. The function code-motion in Algorithm 6.1,

performs code motion and code duplication, whereas function taiLduplication

in Algorithm 6.2, performs tail duplication and block merging. These functions

identify the basic blocks that require further optimisations to reduce their pen-

alty measures. They traverse each region and stop at every basic block that

140

has a non-zero penalty measure. The region is traversed in control-flow order in

the code-motion function, and in reverse control-flow order in the tail-duplication

function.

Line 1 in both algorithms sets the starting basic block (block). For code mo-

tion, the starting block is represented by the entry block of the region, while for

tail duplication it is represented by the exit of the region. The repeat loop con-

tained within lines 2 and 46 in Algorithm 6.1 and lines 2 and 33 in Algorithm 6.2,

traverse the whole region.

The penalty measure and the number of equivalent nodes for code motion, or

the number of predecessors for tail duplication, are computed to know whether

the basic block requires further penalty reductions and identify the destination

blocks. This is checked in lines S and 7 in Algorithms 6.1 and 6.2, respectively.

In function code-motion, a penalised instruction can potentially be moved to

any of the equivalent basic blocks. Line 7 selects from one of the equivalent basic

blocks, under the for loop in line 6. Line 8 obtains the basic block identifier (id),

which is compared against the equivalent block identifier (which_bik) in line 9, to

ensure that the latter represents one that was previously scheduled, and therefore,

against the flow of control. The variable equiv_ block holds the equivalent block

(line 13), and variable node is assigned the entry instruction of the basic block

(lines 12 and 10 from the algorithms).

The two inner while loops in both algorithms traverse the basic block in an

attempt to move any penalised instruction. The first while loop is dedicated

to consecutive penalties, while the second one is dedicated to non-consecutive

penalties.

The function free-for-motion in lines 16 and 31 in the code-motion algorithm,

searches for data dependencies with respect to node from the current basic block

(block) to the equivalent basic block (equiv_block). Also, if a function call is

located within these blocks, then data dependency checking is carried out in that

function against the registers used by the penalised instruction node. If it is

a memory instruction, then memory disambiguation is also performed on any

memory reference located in these basic blocks. The instruction is allowed to be

moved, if there are no data dependencies (valid condition).

move-up in lines 17 and 32 of Algorithm 6.1 is the function responsible for

moving the instruction to the equivalent basic block. In contrast, if there are data

dependencies and the instruction cannot be moved, then it is evaluated for code

duplication. This is performed by the function validate- code- d'up in lines 19 and

34. This function ensures that there are no call functions ending the predecessor

141

Algorithm 6.1 code-motion (region) algorithm.

block = entry (region) {START FROM THE REGIONS' ENTRY BLOCK.}

repeat
measure = PTD_measure (block, first-phase)
destblocks = eq'uiv (block) {RETURNS THE NUM. EQUIV. BLOCKS.}

if measure and destblocks then {PENALTY & DESTINATION BLOCKS.}

for j = 0 to j < dest_blocks and measure do
which_blk = get_equiv_id (block, j)
id = get-block-id (block)

if whichblk <id then {RESTRICT MOVEMENT IN COUNTERFLOW.}

predi = pred (block, 1)
pred2 = pred (block, 2)
node = first-instruction (block)
equiv_block = equiv (block, j)

while node NULL and measure > 0 do
if penalty-consecutive (node) > 0 then {CONSEC. PENALTY.}

if free-for-motion (node, block, equiv_block) then
move-up (node, block, equiv_block) {IT IS CODE MOTION.}

else {IT IS CODE DUPLICATION.}

if validate_ code- dup (node, block, predi, pred2) then
move-up (duplicate (node), block, predi)
move-up (node, block, pred2)

end if
end if

end if
node = next (node)

end while

node = first-instruction (block)
measure = PTD_measure (block, second-phase)

while node $ NULL and measure > 0 do
if penalty-nonconsecutive (node) > 0 then {NON-CONSEC.}

if free-for-motion (node, block, equiv_block) then
move-up (node, block, equiv_block) {IT IS CODE MOTION.}

else {IT IS CODE DUPLICATION.}

if validate_code_dup (node, block, predi, pred2) then
move-up (duplicate_inst (node), block, predi)
move-up (node, block, pred2)

end if
end if

end if
node = next (node)

end while
end if

end for
end if 	 142
block = next (block)

until block = NULL

basic blocks. The functions free-for-motion and validate_code_dup also restrict

any instruction for code motion, if the stack pointer (register $29) is referenced.

The two function calls move-up in lines 20 and 21, and again in lines 35 and 36,

represent the duplication of the instruction. A duplicated copy of the instruction

is moved in the first call, while in the second call the original instruction is moved.

The variables predl and pred2 hold the predecessors of the current basic block

(lines 10 and 11 in Algorithm 6.1, and lines 8 and 9 in Algorithm 6.2), where the

instructions are being destined.

The main difference between Algorithms 6.1 and 6.2 lies in the validation

checking for the potential transformations. The function validate_taiL dup in lines

13 and 24 from Algorithm 6.2, checks that at least the current basic block can

be merged with one of the predecessors (the predecessor must have only one

successor and it must not end with a call). The function also checks that the

predecessors are not empty, and that both the sender and receiver blocks have

the same static count of loop iterations. The static count of loop iterations is

maintained by incrementing a variable for every basic block when there is a back

entry from a loop.

The function move-up in Algorithm 6.3 is responsible for performing code

motion, which when called it is assumed that the instruction has to be moved

with no exceptions. The function then has to decide the best possible position at

the particular time, for the instruction being moved into the basic block. (This

search also records the second-best position for possible future considerations.)

The variable, aux_rzode, is positioned at the last instruction of the destin-

ation basic block (line 1). From this position, the data dependency checking

is performed in order to know the highest position of the incoming instruction

(parameter node). The variable, move-node, holds the position of the destination

node.

Data dependencies and memory disambiguation are checked in lines 2 and 17,

and in lines 7 and 29 (Algorithm 6.3), respectively. If there is a data dependency,

then the instruction is moved to the end of the basic block, otherwise, the can-

didate instruction is checked with the rest of the instructions in the basic block

(within the while loop in lines 16 and 40). The while loop stops either when a

data dependency is found or the start of the basic block is detected.

If there is a data dependency with an instruction that had been previously

moved as a result of code motion (line 20), then this instruction is moved back

to its second-best position, only if this is located earlier in the schedule (line 21).

The idea is to place this instruction as early as possible in the schedule, since it

143

Algorithm 6.2 tail-duplication (region) algorithm.

block = exit (region) {START FROM THE REGIONS' EXIT BLOCK.}

repeat
measure = PTD_measure (block, first-phase)
if pred (block) = 2 then {RETURNS THE NUM. PRED. BLOCKS.}

dest_blocks = 1
end if

if measure and destblocks then {PENALTY & DESTINATION BLOCKS.}

predi = pred (block, 1)
pred2 = pred (block, 2)
node = first-instruction (block)

while node 54 NULL and measure> 0 do
if penalty-consecutive (node) > 0 then {CONSEC. PENALTY.}

if validate_tail_dup (block, predi, pred2) then

move-block (duplicate- block (block), predl)
move-block (block, pred2)

end if
end if

node = next (node)
end while

node = first-instruction (block)
measure = PTD_measure (block, second-phase)

while node 0 NULL and measure> 0 do
if penalty-nonconsecutive (node) > 0 then {NON-CONSEC. PEN.}

if validate_tail_dup (block, predi, pred2) then

move-block (duplicate- block (block), predi)
move-block (block, pred2)

end if
end if

node = next (node)
end while

end if

block = prey (block)
until block = NULL

144

is not known in advance how many dependent instructions will be moved later

on. The actual position is stored at move-node in order to place the incoming

instruction at the place where the previously moved one was located (line 22).

If there are no data dependencies, then the global safety conditions (function

check-global-move in Algorithm 6.4) defined in Section 6.3.4 are applied to the

instruction referenced by aux_node (line 35). If these conditions hold, a finer

heuristic (function update- best_position in Algorithm 6.5) is applied in order to

obtain the best and second-best positions (line 36).

6.6 Discussion

The global scheduler presented in this chapter uses well-known optimising tech-

niques such as code motion and code duplication, and tail duplication to improve

fine-grain parallelism, and tail duplication and block merging to improve coarse-

grain parallelism. However, this differs from other approaches in the way decisions

are taken based on the notion of penalties which are applied to instructions.

In the case of code motion, for example, instructions are moved not only to

reduce the penalties applied to them, but also to remove penalties located in

the destination blocks. This idea is different from the global scheduler presented

in [20]. This is basically a global list scheduler, where the ready list consists

of instructions from a basic block and its equivalent blocks. If there are too

many ready-instructions, then two heuristics are applied to each instruction to

help selection. The delay heuristic obtains the maximum cumulative delay from

any of the paths of the successors to the exit of the basic block; the critical-

path heuristic computes a measure of time required to complete the execution of

all the successors. The priorities of the global scheduler when code duplication

is considered [18] also ensure that code expansion is minimised. However, the

main difference with the PTD scheduler is that the global scheduler performs tail

duplication to unscheduled code.

The global scheduler in [107] is also based on the list scheduler and considers

the critical-path length, the critical resource usage and the register pressure as

parameters in the heuristic. The critical-path length information is derived from

local and global components. While the local component takes into account only

the local distances to the leaves of the DAG, the global component considers the

cumulative paths from all basic blocks to the exit of the region. Other global

schedulers such as the trace-based ones also use the list scheduler for the final

rearrangement. However, the candidate instructions from the ready list are selec-

145

Algorithm 6.3 move-up (node, source-block, dest_block) algorithm.

aux_node = last- instruction (dest_block)
if not independent (node, aux_node) then {CHECK FOR DATA DEPEND.}

id-nodes = 0
end if
if indnodes 0 then {CHECK FOR MEMORY DISAMBIGUATION.}

if is-store (node) and is-memory (aux_node) or
is-memory (node) and is-store (aux_node) then

if not disambiguated (node, aux_node) then
id-nodes = 0

end if
end if

end if

if id-nodes 0 0 then
aux_node = prey (aux_node)

end if

move-node = aux_node
while auxnode 0 NULL and indnodes 54 0 do

if not independent (node, auxnode) then {CHECK FOR DATA DEPEND.}

id-nodes = 0
else

if previously_moved (aux_node) then
if get_secondpos (aux_node) < get_actualpos (aux_node) then

move-node = aux_node
move-ahead (aux_node, secondpos (aux_node))

end if
end if

end if
if indnodes 0 0 then {CHECK FOR MEMORY DISAMBIGUATION.}

if is-store (node) and is-memory (aux_node) or
is-memory (node) and is-store (aux_node) then

if not disambiguated (node, auxnode) then
id-nodes = 0

end if
end if

end if

if id-nodes 54 0 then
if check-global-move (node, aux_node) then

move-node = update-best-position (aux_node)
end if

end if
aux_node = prey (aux_node)

end while

move-ahead (node, move-node)
update-block (source-block) 	

146
update-block (dest_ block)

Algorithm 6.4 check-global-move (node, aux) algorithm.

consecutive_before_move =
penalty_data(prev(aux), next(aux), not consec) +
penalty- data (aux, next(aux), consec) +
pen alty_data (aux, next (next (node)), not consec)

consecutive_after_move =
penalty_data(prev(node), node, not consec) +
penalty_data(aux, node, consec) +
penalty_data(aux, next (node), not consec) +
pen alty_data (node, next (aux), consec) +
pen alty_data (node, next (next(aux)), not consec)

nonconsecutive_ before-move =
penalty_data (prev(prev(aux)), next (aux), 3) +
penalty_data (prev(aux), next(aux), not consec) +
penalty_data (prev(aux), next (next (aux)), 3) +
pen alty_data (aux, next (aux), corzsec) +
penalty-data (node, next (node), consec) +
penalty-data (node, next (next (node)), not consec)

nonconsecutive-after-move =
penalty_data (prev(prev(aux)), node, 3) +
penalty_data(prev(aux), node, not consec) +
penalty_data (prev(aux), next (aux), 3) +
pen alty_ data (aux, node, consec) +
penalty_data(node, aux, consec) +
penalty_data(aux, next (node), corzsec)

unit_before_move =
penalty_unit(aux, next (aux)) +
penalty_unit(prev('node), node) +
penalty-unit (node, next (node))

unit-after-move =
penalty_unit(aux, node) +
penalty-unit (node, next (aux)) +
penalty-unit (prev(node), next (node))

if consecutive-after-move < consecutive-before-move or
nonconsecutive-after-move < nonconsecutive- before-move then

return 1 {PENALTY MEASURE IS SMALLER AFTER THE MOVEMENT.)

else
return 0 {PENALTY MEASURE IS GREATER AFTER THE MOVEMENT.)

end if

147

Algorithm 6.5 update-best-position (node, aux) algorithm.

penalties = number-penalties (aux)
if consecutive-before-move > consecutive_after_move then

return aux
else

if penalties > 1 then
duff-consecutive = consecutive-before-move - consecutive-after-move

if duff-consecutive > max-duff-consecutive then
if duff-consecutive > rnax_diff_consecutive then

max-duff-consecutive = duff-consecutive
end if
return aux

else
second-best = aux

end if
else

if penalties > max-penalties then
diff_non cons ecutive = nonconsecutive-before-move -

nonconsecutive-after-move

if penalties > max-penalties then
max-penalties = penalties
if diff_nonconsecutive > 0 then

return aux
end if

end if
end if

end if
end if

148

ted from the common path (on-trace) of the program, which may consider several

basic blocks.

Tail duplication and block merging are considered as profile-independent op-

timisations. This means that they are not dependent on the data input to the

programs. Different input data may not only exercise different paths of the pro-

gram, but different frequencies as well. Trace-based techniques make use of this

to guide the optimisations, but may require compilation when the input data

changes the frequency of execution.

There is, however, an observation regarding the frequency of the paths with

the optimisations discussed in this chapter. If, for example, the path B 1 —B3 —B7 1'

in the control flow graph in Figure 6.6 is executed ninety percent of the time, then

the optimisations performed in blocks B4 , B5 , B6 and B7 will only benefit ten

percent of the time the region is executed. For the control flow graph of Figure 6.7,

it may appear that with the presence of a loop, the likelihood of the frequency

execution of the basic blocks contained within the loop could be greater. Thus,

the optimisations performed to blocks B4 , B5 , B6 and B7 may also have a greater

impact on the program execution.

The global optimisations presented in this chapter are purely static. The

performance improvement of these techniques is subject to the actual behaviour

of programs, defined by their input data.

6.7 Summary

Compiler optimisations have to be selected depending on the degree of parallelism

supported by the architecture. Aggressive optimisation techniques such as trace-

based scheduling are oriented to VLIW architectures in which high levels of ILP

can be exploited and data hazard detection is not supported. With the aid

of profile information these techniques identify the most common paths during

execution. Instructions are copied into the on-trace path in order to increase

the parallelism exploitable by the local scheduler. Compensation code is often

required to preserve the semantics of the program in the not-so-frequent paths.

The performance gain in the on-trace path outweighs the degradation incurred

in the off-trace path.

Micronet-based architectures require a fast instruction issue rate in order to

maintain resource utilisation in the datapath. Global optimisation techniques

that operate without speculation and without an excessive use of compensation

code were investigated for the micronet architecture.

149

Chapter 5 described a novel method for performing local scheduling. The PTD

scheduler assigns penalties to instructions that stall the issue unit either due to

true data dependencies or resource contentions. The local scheduler reorganises

the order of instructions in order to minimise the number of penalties, with the

aim of minimising the effect of the stalls on program execution. The overall

effect of the local scheduler is that the individual local penalty measures are

reduced. These measures may not be completely reduced either because of lack

of parallelism in the program or due to overlapping penalties in the code.

In this chapter, the local scheduler has been extended to allow movement of

instructions beyond basic blocks. After local scheduling, the task of the global

scheduler is to move the penalised instructions left in the basic block to other basic

blocks within the same region. Instead of looking for independent instructions to

reduce a penalty as in the local scheduler, the penalised instruction becomes a

candidate for global motion. This decision reduces the scope of the search space.

Within the global scheduler, instructions can be moved to basic blocks that

have the same control flow characteristics called equivalent basic blocks, as long

as their data dependencies are respected. If they cannot be moved to any of the

equivalent basic blocks, then the instructions are duplicated and moved to the

parent basic blocks. This order in the scheduling process attempts to minimise

the number of instances of code duplication.

Code motion and code duplication provide a fine granularity of optimisation

since instructions are moved on an individual basis. Tail duplication, in conjunc-

tion with block merging on the other hand, represents a generalisation of code

duplication, where coarse-grain parallelism can be exploited. This optimisation

requires the local PTD scheduler to be applied after the transformation, since

two groups of instructions are merged.

The optimisations described in this chapter do not require the use of profile

information, which makes the optimised code independent of the input.

The next chapter describes the experimental framework for evaluating the

local and global optimisations of the PTD scheduler. It includes a description

of the compilation process and the benchmarks selected for the evaluation. The

chapter draws comparisons with two well-known schedulers for both local and

global scheduling, on the basis of issue stall reduction and performance execution

over a set of benchmarks.

150

Chapter 7

Experimental Results

7.1 Introduction

The PTD scheduler performs local and global scheduling based on a static meas-

ure, which corresponds to the potential stall imposed on the issue unit by data

and resource dependencies. The local scheduler attempts to minimise the stalls

within basic blocks. The global scheduler reduces the penalties further after local

scheduling, by relocating the penalised instructions to other basic blocks within

the same region.

This chapter presents the experimental framework for investigating the effect-

iveness of both local and global optimisations using the PTD scheduler. Compar-

isons were carried out between the PTD scheduler and two well-known methods

- the list scheduler [64] and a balanced scheduler [92].

The compilation framework for the work in this thesis is based on the SUIF

compiler [155]. It provides a flexible implementation environment for schedulers

aimed at micronet targets. The schedulers were exercised by benchmarks pro-

grams derived mainly from the SPEC95 [152] benchmark suite.

The performance results presented in this chapter is divided into two sections:

results based on the local optimisations as described in Chapter 5, such as com-

parisons of compilation times, reductions in issue unit stalls and execution times;

and, those based on global optimisations, as described in Chapter 6.

7.2 Evaluation Framework

There exist a handful of compiler environments that provide the necessary in-

frastructure for performing custom transformations and analysis. Trimaran [169]

is one which is oriented towards ILP optimisations. Trimaran is the product

of the IMPACT group, a consortium consisting of the University of Illinois, the

151

CAR group at HP Research Laboratory and the ReaCT-ILP group at New York

University. SCI Pro64 [147] is a suite of optimising compiler development tools

resulting from a joint project between the compiler group at SOT and the CAPSL

compiler team at the University of Delaware. The SUIF compiler [155] is yet an-

other such compiler framework from Stanford University. Although the Trimaran

framework suits our purposes, at the time of starting this research, SUIF was the

only framework available.

7.2.1 SUIF Compiler

The SUIF (Stanford University Intermediate Format) is a compiler development

framework from Stanford University [176]. It provides the necessary infrastruc-

ture to perform optimisations ranging from high-level transformations to dataflow

optimisations. These transformations can be performed progressively and inter-

changeably over multiple passes, over structures represented as abstract syntax

trees (AST) [156]. The ASTs can be converted into a series of sequential lists of

instructions oriented for the back-end of the SUIF compiler, which supports code

generation, local scheduling and register allocation.

7.2.2 The Compilation Process

During compilation a number of intermediate code optimisations are performed

ahead of the code generation phase, which are part of the built-in optimisations

included in the SUIF compiler, such as no_struct_copy, no_sub_vars, no_calL expr,

no-index-spill, copy-prop (copy propagation) and ivar (induction variable detec-

tion) [154].

During the code generation phase, register allocation is called with the follow-

ing options: infinite temporary registers and finite saved registers. The temporary

registers represent the results that are local to a procedure call that have a single

definition and are used within the same region. The saved registers represent

ones that are preserved across procedure calls [91]. With infinite number of tem-

porary registers, a new register is allocated each time a result is generated. This

configuration is used in order to minimise the WAR dependencies introduced by

reusing the registers (the task of the register allocator), an effect that reduces

considerably the ILP.

The results presented in [8] (Appendix A) were obtained from compilation with

both temporary and saved register models as finite, i.e. register allocation was

performed before local scheduling. As a result, the ILP reported was noticeable

limited by the WAR dependencies; the overall ILP gain of performing instruction

152

scheduling after register allocation was hindered by the systematic reuse of the

registers from the latter. This is the main reason as to why setting an infinite

number of registers in order to evaluate the scheduling capabilities of the PTD

scheduler can be considered as a valid assumption. The order in which register

allocation and instruction scheduling are performed affects the schedulers being

evaluated in a similar way since the ILP within basic blocks stays constant, and

therefore does not represent an advantage for the PTD scheduler.

All the scheduling results presented in this chapter are obtained with an in-

finite number of temporary registers being assumed.

7.2.3 Other Schedulers for Comparison

7.2.3.1 The Gibbons and Muchnick (GM) Scheduler

This is a well-known example of a list scheduling algorithm proposed originally for

scheduling instructions in pipelined architectures [64]. The ready instructions in

this scheduler are prioritised on the basis that the candidate instruction will not

cause an interlock with the previous one, and that given a choice, the candidate

instruction is more likely to interlock with instructions after it.

7.2.3.2 The Balanced Scheduler

The second scheduler for comparison is the Balanced scheduler [92], which was

originally devised to take account of unpredictable memory access latencies. The

idea is to compute weights for load instructions based on the number of available

independent instructions. The instructions are scheduled, as in a traditional list

scheduler, with independent instructions being distributed behind loads to buffer

against unpredictable memory accesses. This idea is generalised to micronet-

based architectures in which all the instructions have unpredictable latencies.

The priority for ready instructions is based on a weighted sum of values derived

from heuristics tailored to the micronet architecture. These include whether the

instruction uses the same resources as the previous scheduled one, the number of

immediate successors of the instruction and the length of the longest path from

the instruction to the leaves of the DAG. The heuristics also include the number

of source registers which are freed should the instruction be scheduled, which

effectively takes account of register pressure.

During the code generation phase, the local scheduler as part of the SUIF

compiler was not used since it is tailored towards synchronous MIPS processors.

Furthermore, the GM scheduler represents an equivalent implementation of a

153

list scheduler and has been extended to optimise instructions in micronet-based

architectures.

7.2.4 Instruction-level Simulator for the Micronet
Architecture

The simulator for the micronet architecture, as described in Section 4.3.6, is an

event-driven stochastic simulator [97] that reads and executes assembly instruc-

tions generated from the SUIF compiler. Each instruction is associated with a

handful of events that emulate the necessary stages in the datapath for its ex-

ecution. The events are created dynamically and their latency depend on the

type of instruction and on resource contentions at run-time. The events from

neighbouring stages communicate with each other asynchronously.

A configuration file enables the simulator to emulate a number of stages for

each group of instructions, e.g. arithmetic, logical or memory. The simulator

models a scalar architecture with a single issue unit which issues instructions

in-order as soon as the instructions' operands and resources become available.

When instructions are issued, they progress at their own pace. This allows for

instructions to be overtaken, and since the write-back stage is not reordered, they

can commit their results out-of-order.

7.2.5 Evaluation Process

Figure 7.1 shows the overall view of the evaluation process. Firstly, C programs

are compiled using SUIF; secondly, a loader program converts the resulting as-

sembly code so that the global memory references and labels fit into a global

referencing scheme, and lastly, this output is fed into the instruction-level sim-

ulator of the micronet architecture [97] for evaluation. This path is considered

to be the base case since the code is not scheduled after code generation. In

a different path, the output from SUIF is fed into a scheduling phase, which is

performed using one of the following: GM, Balanced or the PTD scheduler. The

scheduled output is loaded for simulation, as before.

The output of the simulator provides comprehensive information about the

execution of the instructions, which includes the number of instructions executed,

the total time of the simulation, the stall time of the issue unit, the values of both

the registers and memory, and the time spent in each resource.

The set of benchmarks were each scheduled by the three schedulers. The

benchmarks were each simulated five times and their makespans were averaged.

All the comparisons presented in this chapter were normalised against the base

case. 	
154

_____ 	SUIF 	______I 	Load 	

Harchitecture

RTL simulator 	Simulation C program 	- compiler 	 addresses of micronet
	

data

Local / global
scheduling

Figure 7.1: Flow of the evaluation process.

The simulations were performed on architectures consisting of one memory

unit, one logical unit, one floating point unit and one, two, three and four arith-

metic units (referred to as 1 AU, 2 AU) 3 AU and 4 AU, respectively). The

architectures also scale the number of register read buses to support the paral-

lelism introduced by increasing the number of functional units. The latencies for

the functional units are the same shown in Table 4.1. The cache model used for

the memory unit describes a bimodal distribution, i.e. a cache hit:miss ratio of

2:1 and a latency hit:miss ratio of 1:2.

7.3 Benchmarks

The benchmarks were a basket of programs drawn from the SPEC95 suite [152],

including compress, ii, go and m88k, from the livermore loops [49], and mis-

cellaneous ones, such as integer matrix multiplication intmm, puzzle, and fract

which simulates a variation of the Mandelbrot fractal set'. Table 7.1 gives some

basic characteristics of the benchmarks, such as the numbers of MIPS instructions

executed, functions and the basic blocks generated by the compiler.

The SPEC95 benchmarks were modified to execute the relevant subset of their

full specification. For example, the compress benchmark would normally com-

press and decompress twenty-five times, a random set of data of 1.4 million char-

acters. The benchmark was modified to operate only three times instead, over

a set of fourteen thousand characters. The go benchmark, which is based upon

'The equation was taken from the hydra fractal [65], and its graphic representation can be
seen in [66].

155

Benchmark Functions Basic Blocks Instructions Initialisation phase

intmni 6 11 196,074 12.000%
livermore 16 48 1 1 601,672 84.504%
fract 70 505 3,392 1 216 2.421 %
ii 386 2,228 15,207,508 2.007%

puzzle 20 137 16,055,217 0.509%

compress 18 128 16 1 269,122 20.847%

go 396 8,880 18,242,718 7.906%

m88k 259 3 1 841 34,323,842 7.504%

Table 7.1: Benchmark characteristics.

the game, Many faces of Go, was modified to reduce the size of the board from

51 to 4. The m88k benchmark, a simulator for the M88100 Motorola micropro-

cessor, was modified to reduce the total number of M88100 instructions to ten

thousand from around 13.6 million. Finally, the ii benchmark is a lisp interpreter

and the workload used was a lisp implementation of the queens problem.

The main reason for these modifications was to shorten the simulation time.

The simulator is data-driven (as opposed to trace-driven), and its speed is consid-

erably slower, since all the instructions are being executed. However, truncating

the length of the simulation can be misleading as the execution times may be

dominated by the initialisation sections of the programs. Initialisation sections

could either be very regular, offering scope for more parallelism, or they could

have extensive I/O operations, resulting in a much slower pattern of execution.

The last column of Table 7.1 shows the percentage of instructions dedicated to

initialisation phase for each benchmark. These values have been gathered after

simulating all the programs exclusively with their initialisation functions enabled.

Only the initialisation section of the livemore benchmark consumes a significant

percentage of the program. The consideration to reduce the total number of in-

structions executed in the SPEC95 benchmarks was chosen carefully to maintain

low initialisation percentages.

Further modifications to the benchmarks were required to remove all instances

of dynamic allocation of memory (with the exception of the go and compress

benchmarks which do not allocate any variables dynamically). All the variables

that were normally allocated dynamically were redefined to be static, removing

156

Benchmark Arithmetic Logic Memory Floating Branch

intmm 70.11% 5.13% 20.04% 0.00% 4.72%
livermore 73.75% 6.60% 13.35% 0.00% 6.30%
fract 26.40% 8.22% 19.64% 42.85% 2.89%
ii 21.50% 23.30% 41.21% 0.05% 13.94%
puzzle 52.08% 22.12% 11.43% 0.00% 14.37%
compress 38.52% 26.64% 24.56% 3.10% 7.18%
go 46.29% 20.76% 18.87% 0.00% 14.08%

m88k 36.07% 24.62% 27.86% 0.00% 11.45%

Average 45.59% 17.17% 22.12% 5.75% 9.37%

Table 7.2: Distribution of types of instructions in the benchmarks.

the overhead of a dynamic memory manager and simplifying the implementation

of the simulator.

Another minor modification was to include the source code from standard lib-

raries (stdlib, stdio, string, setjmp, stdarg and varargs) in the benchmark

programs before compilation. Normally, this code is only added during the link-

ing process. However, in SUIF even with the 'static compilation' flags enabled,

the code derived from the standard libraries could not be generated.

The outputs from the benchmarks when compiled using SUIF and simulated

on the MAP simulator, were compared to the outputs from the same benchmarks

when compiled using cc under Unix; the outputs were corroborated to confirm

correct compilation and execution.

The distribution of the instructions types for the benchmarks is listed in

Table 7.2. Arithmetic instructions dominated followed by memory instructions.

Some of the benchmarks required floating-point instructions; for instance, the

compress benchmark uses them for the random selection of the input data, and

the ii benchmark uses a few for comparisons. The fract benchmark cannot

be considered to be a truly integer benchmark as a major proportion of its in-

structions were floating-point ones; the core body of the benchmark performs

floating-point operations over complex numbers.

The benchmarks can be divided into two types: those dominated by the loop

sections, e.g. the intmm, livermore and fract benchmarks, and others, which

are dominated by frequent changes in the control flow, e.g. puzzle, go and li

benchmarks.

157

Benchmark Total lines GM. Time Bal. Time PTD Time Percen.

intmin 151 0.0836 0.0839 0.0680 22.94%

livermore 1915 3.7947 3.8388 2.7817 36.42%

fract 5336 3.5940 3.5588 2.1920 62.35%

ii 16832 8.7857 8.1169 4.4349 83.02%.

puzzle 936 0.7781 0.6369 0.4711 35.19%

compress 1236 0.9757 0.7300 0.5494 32.87%

go 83838 65.2829 60.1321 44.0446 36.53%

m88k 34089 22.0481 20.6159 12.6411 63.09%

Table 7.3: Average benchmark compilation times (in seconds).

Benchmark GM. Time Bal. Time PTD Time

intmni 0.00013 0.00046 0.01183

livermore 0.06702 0.03591 0.11787

fract 0.03355 0.01517 0.16728

ii 0.10623 0.06615 0.09527

puzzle 0.16317 0.00607 0.01297

compress 0.24775 0.00344 0.02311

go 5.96753 2.90291 0.18597

m88k 0.63226 0.06168 0.10197

Table 7.4: Standard deviations of the benchmarks' compilation times.

7.4 Experimental Results

7.4.1 Local Optimisations

7.4.1.1 Complexity

The PTD scheduler has the characteristic of reducing the number of iterations as

the penalties decrease (c.f. Section 5.6). This compares favourably with tradi-

tional techniques in which the number of iterations is constant and proportional

to the number of instructions.

The compilation of the benchmarks were timed for comparison. Table 7.3 lists

the average of five compilation times (in seconds) of the scheduling sections in

the three schedulers. (This was obtained using the gethrtime function from the

time. h standard library). The last column represents the percentage improve-

158

ment of the PTD scheduler against the faster of the other two schedulers. It is

observed that the compilation times of PTD are on average 39% better than the

faster of the other two schedulers, with notable improvement of more than 60%

for the fract and m88k benchmarks, and reaching a peak of 83% for the ii

benchmark. Table 7.4 lists the standard deviation of the compilation times for

the three schedulers. The figures shown in this table reveal that the compilation

times do not have a considerable range of variation.

7.4.1.2 Static Memory Disambiguation

A static memory disambiguation scheme was proposed in Section 5.5.1 in order

to reduce unnecessary data dependencies due to memory instructions, and the

statistics from this scheme are shown in Table 7.5. The memory references shown

in the second column represent the number of memory instructions that are liable

for disambiguation, i.e. after discarding all the comparisons between loads and

any other memory references that already have a data dependency. The last three

columns show the results of applying the memory disambiguation scheme within

basic blocks. The last column shows that most of the memory instructions are

disambiguated. In fact, on average, only around 8% of the memory references do

have a data dependency (third column). The table also shows that the propor-

tion of memory references that cannot be disambiguated due to multiple use of

registers in the address expressions is quite low, at around 2% (fourth column).

The memory disambiguation mechanism can potentially improve the paral-

lelism by not only reducing unnecessary dependencies being applied to memory

operations, but also by removing all the data dependencies that are introduced

to their successors. In the absence of memory disambiguation, memory instruc-

tions are by default, assumed to be dependent. Consequently, other instructions

that are dependent upon them, also become dependent. By analysing the ad-

dresses, the memory disambiguation removes a considerable proportion of these

dependencies which are propagated by references.

The increase in parallelism achieved by applying the memory disambiguation

scheme is discussed in Section 7.4.1.4.

7.4.1.3 Subgraphs

The idea of subgraphs was introduced in Section 5.5.2. Recall that partitioning a

basic block into a group of subgraphs aims to guide the selection of independent

instructions when reducing the penalty. The practice of selecting instructions

159

Benchmark
Memory

references
Data

dependency
Cannot be

disambiguated
Successful

disambiguation

intmm 21 14.29% 0.00% 85.71%

livermore 1,366 3.95% 5.93% 90.12%

fract 2 1 998 8.97% 0.47% 90.56%

ii 9,704 3.70% 1.44% 94.86%

puzzle 156 1.92% 0.00% 98.08%

compress 614 23-61% 0.33% 76.06%

go 22,911 3.32% 2.09% 94.59%

m88k 16,052 4.73% 2.40% 92.87%

Average 6,727 8.06% 1.58% 90.36%

Table 7.5: Static memory disambiguation statistics.

within the same subgraph may lead to overlapping penalties. The movement of

the closest independent instruction tends to mix the data dependencies in such a

way that no further reductions can be made.

The PTD scheduler is now forced to find an independent instruction from

another subgraph to reduce the penalty. This reduces the number of instances of

overlapping penalties. However, the decision to either choose, or not to, an inde-

pendent instruction from one subgraph over another, leads to different scheduling

paths. A scheduling path refers to the steps of progressively improving a schedule

until its minimum penalty measure is reached. Although the scheduler is con-

ceived to obtain a schedule with the minimum penalty measure, but due to these

decisions, one scheduling path can result in a considerably better schedule than

another.

The evaluation of this heuristic is based on performance simulations which is

presented in the next section.

7.4.1.4 Performance Comparison due to Memory Disambiguation
and Subgraphs

The performance comparison of the memory disambiguation scheme and the idea

of subgraphs as applied to the PTD scheduler is displayed in Figures 7.2 to 7.5,

for one to four AU configurations, for the eight benchmarks.

The graphs show the performance improvement in execution time of the PTD

scheduler when unaided (first column), with either one of subgraphs or memory

160

disambiguation schemes being applied (second and third columns, respectively),

and finally, with both schemes (fourth column). The results show that, in general,

applying the suhgraphs heuristic and memory disambiguation results in better

performances for the four configurations.

The figures show that memory disambiguation helps to improve the perform-

ance of the PTD scheduler by reducing dependencies, and exposing parallelism.

The most noticeable improvements are in the cases of the compress, fract and

ii benchmarks. On average, this scheme improves by 3% to 4% when compared

to the unaided cases.

However, there are a few examples in which the combined use of both the

schemes does not result in the best performance. For example, the livermore

benchmark performs better (except for the 1 AU case) when the subgraphs scheme

alone is applied. This benchmark, in particular, spends a considerable amount of

time in the initialisation phase, as shown in Table 7.1. This section features three

basic blocks with similar characteristics, in which three arrays are initialised.

The DAG of one of these basic blocks is depicted with (Figure 7.7) and without

(Figure 7.6) memory disambiguation.

The basic block has three store operations that initialise the arrays. In the

absence of memory disambiguation, the memory operations, which are marked

in the figures, have to be considered to be dependent, as shown in Figure 7.6.

Conversely, when aided by the scheme, they are found to be independent

referring to three different arrays, x, y and z, as shown in Figure 7.7.

The reason why the PTD scheduler performs better when not applying memory

disambiguation, lies in its critical path. In Figure 7.6, the critical path is 1, - 13 —

15 - 110 - 115 - 119, which is imposed by the dependencies between the memory

instructions.

Once the dependencies between the stores are released thanks to memory

disambiguation, it is less clear which is the critical path. Figure 7.7 shows that

there are three candidates in the DAG: I - 13 - 15 - 119, 16 - I - 11 0 - 119, and

Ill - 113 - 115 - 119.

The schedule, when generated with the memory disambiguation enabled, still

has an untouched non-consecutive penalty from 1 3 (addu $398,$399,$400) to 15

in one of the critical paths (as can be seen in Figure 7.8 (a)). In contrast, although

there are two penalties which are untouched in the schedule generated unaided

by memory disambiguation, as shown in Figure 7.8 (b), these non-consecutive

penalties are not located in any of the critical paths mentioned earlier.

161

50%r 	 -

40%

30% -

20%

10%

0%
COOV,ese 	Li

ir

35% 	 - 	 -

30% 	 -

25% 	 -

20% -

15%

10%

 0 Unaided

:;0 	 riITIWI 	111
Conv)rees 	Li 	 Go 	 M88I< 	 von.r. 	Puzzle 	Fract

Figure 7.2: Influence of suhgraphs and memory disambiguation on the PTD
scheduler (1 AU) in terms of percentage improvement in the execution time.

0 Unaided

Subgraphs
OMem. Disamb.

• Both schemes

Figure 7.3: Influence of subgraphs and memory disambiguation on the PTD
scheduler (2 AU) in terms of percentage improvement in the execution time.

162

60% 	 - 	- 	--

50% 	 - 	-- -

40%

30% - - 	 - 	 -

OUnaided

0 Both schemes

: 	

° jo

Figure 7.4: Influence of subgraphs and memory disambiguation on the PTD
scheduler (3 AU) in terms of percentage improvement in the execution time.

60%

5O%-

40%

30% 	
-

20% 	

0 Unaided

___ 	nil ___ rflUW E
U 	 Go 	 M8&< 	 Le 	°zzo 	 F,act

Figure 7.5: Influence of subgraphs and memory disambiguation on the PTD
scheduler (4 AU) in terms of percentage improvement in the execution time.

163

- -

-
I 	1 -1_

11

	

_
I I_n_$O_45I4_ I7II

P
3y 1_61_61_1 lII14$4$64 	 14IH 	I 	I7lW$414l1I15$6C$6l 	 2IiS3 	 _$

31 	SM S30 SM I
	

II Oft $4Q$1O
	

addW$I $6 I I I 131 M SISIS4$6 $157

No

101 	$83S#020

3108.51

III 6 $113 $41411

Figure 7.6: DAG from livermore without memory disambiguation.

mh $408514 	 ___

--

3 1 addu $30853085408

511w $7$$40

I llul1 $4 U 4 11 2 1 W$4O7 z1 	14 1 85081

4151511 1 1 13I41&$408$408$4$7

1511w $0851080 I 	I 181155413541458

17111 $414 l

[151 	5413128.41$

Figure 7.7: DAG from livermore with memory disambiguation.

Given that the DAG in Figure 7.7 has several critical paths, more penalties

need to be removed. Any priority scheme applied to the penalties would give

preference to one critical path over another. On the other hand, the DAG in

Figure 7.6 has only one critical path. The increase of data dependencies upon

the memory instructions does seem to constraint the movement of instructions.

The evidence is that more penalties are left unremoved. However, they are less

costly since they are not on the critical path.

The results in Figures 7.2 to 7.5 also show that the fract benchmark per-

164

L1.init:
	 L1. mit:
lai $403,y muii $400,$8,4
ii $76,1 lai $399,x
muli $408,$8,4 ii $76,1
lal $407,z muli $404,$8,4
ii $83,1 lai
mull $404,$8,4 addu $398,$399,$400
lai $399,x ii $83,1
addu $406,$408,$407 mull $408,$8,4
ii $90,1 sw $76,$398,0
mull $400,$8,4 addu $402,$404,$403
addu $402,$404,$403 lai $407,z
addui $8,$8,1 addui $8,$8,1
ii $414,1000 ii $414,1000
SW $90,$406,0 addu $406,$408,$407
addu $398,$399,$400 	1 ii $90,1
SW $83,$402,0 SW $83,$402,0
sit $413,$414,$8 	2 sit $413,$414,$8
SW $76,$398,0 SW $90,$406,0
bf $413, L1.lnit bf $413, Li.init

(a) (b)

Figure 7.8: Schedule for livermore generated with memory disambiguation (a),
and, without (b).

forms better when the subgraphs heuristic is not applied to the PTD scheduler.

To explain this case, a basic block from the core of the fract benchmark was

analysed. The DAG, which is displayed in Figure 7.9, shows that the basic block

is dominated by memory instructions. The marked instructions in the figure show

the main subgraph.

As the scheduler does not allow for memory instructions to be moved to re-

duce penalties, it is more difficult to find a good candidate when the majority

of instructions are of the aforementioned type. Moreover, the subgraph intro-

duces more constraints when searching for a candidate, which further limits the

possibilities for reduction.

Figure 7.10 (a) shows the code produced by the PTD scheduler when aided

by the subgraphs heuristic. The code has two non-consecutive penalties left

unreduced (18 and as opposed to one (18), in the code produced unaided by

subgraphs (Figure 7.10 (b)).

1

1

165

Figure 7.9: DAG of the fract benchmark with subgraphs being applied.

These examples show that a lower penalty measure with equally distanced

penalties do not necessarily produce a better schedule, and hence a shorter stall

in the issue unit. Furthermore, since these basic blocks are executed considerably

more often than the rest of the program, the effects of the penalties are magnified,

and hence, the program execution time is lengthened.

7.4.1.5 Issue Stall

The central idea in the PTD scheduler is to minimise the instruction issue stall and

thereby maximise the issue rate. The penalties in a schedule relate to the amount

of stall in the issue unit due to data dependencies and resource contentions.

Tables 7.6, 7.7, 7.8 and 7.9, which correspond to 1 AU, 2 AU, 3 AU and

4 AU configurations respectively, show the reduction of time spent on issue stalls

achieved by the three schedulers compared to the base case, i.e. the unscheduled

code. They represent the percentage improvement with respect to the unsched-

uled code simulated with one, two, three and four arithmetic units.

It can be observed that the PTD scheduler outperforms the other two sched-

ulers for the 1 AU and 2 AU configurations, and is competitive in a majority of

the cases, for the 3 AU and 4 AU configurations.

166

L1.hydra: L1.hydra:
subui $29,$29,72 subui $29,$29,72
1.di $151,constant l.di $152,constant+8
sw $4,$29,72 1.di. $151,constant
1w $8,$29,72 sw $4,$29,72
sw $16,$29,16 1w $8,$29,72
sw $31,$29,20 Sw $16,$29,16
l.di $152,constant+8 l.d $149,$8,0
l.d $149,$8,0 1 	l.d $150,$8,8
1.d $150,$8,8 1 	sw $31,$29,20
ii $16,1 s.d $149,$29,24
s.d $149,$29,24 s.d $151,$29,40
s.d $150,$29,32 s.d $150,$29,32
s.d $151,$29,40 ii $16,1
s.d $152,$29,48 s.d $152,$29,48

(a) (b)

Figure 7.10: Schedule generated with (a), and, without subgraphs (b), for a
portion of the tract benchmark.

The effect of overlapping penalties in the PTD scheduler is demonstrated by

lower improvement in the percentage reduction of stalls, as the architecture is

scaled. It can be seen that in some cases, such as puzzle, compress and go, the

reduction of issue stalls cannot achieve the same performance figures as the other

schedulers.

Figures 7.11 to 7.14 expand the results from the aforementioned tables and

show the percentage improvement in the issue stall when broken down by its

causes. These causes are divided into ones due to general data dependencies

(Data), data dependencies due to a branch instruction (Branch), resource con-

tention of the read buses (Bus) and resource contention due to a functional unit

(Rsc).

The figures show that the three schedulers are successful in reducing the issue

stalls due to data dependencies (Data and Branch), - the bars always lie in the

positive half of the axis. This reflects that unscheduled code frequently stalls the

issue unit due to data dependencies, where an instruction consumes the result

from a previous one immediately.

167

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 26.08% 22.17% 33.38%
livermore 24.48% 28.68% 34.27%

fract 28.47% 34.41% 39.40%

ii 8.55% 9.73% 10.67%

puzzle 6.39% 3.65% 7.07%
compress 24.06% 25.35% 30.12%

go 11.46% 11.60% 17.54%

m88k 14.54% 15.17% 19.35%

Average 18.00% 18.85% 23.98%

Geo. Mean 15.85% 15.58% 20.79%

Table 7.6: Percentage reduction in the issue stall by the schedulers (1 AU).

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 59.00% 50.45% 63.88%
livermore 67.23% 57.57% 77.23%

fract 31.61% 37.13% 40.32%

ii 7.82% 8.59% 8.97%

puzzle 8.12% 2.15% 6.76%
compress 35.40% 36.51% 35.70%

go 13.75% 14.39% 14.13%

m88k 19.36% 20.03% 21.47%

Average 30.29% 28.35% 33.56%

Geo. Mean 22.88% 19.51% 24.52%

Table 7.7: Percentage reduction in the issue stall by the schedulers (2 AU).

As the code is optimised, the issue unit stalls shift from data dependencies

to resource contentions (Bus and Rsc), because the functional units and their

buses become busier. This is reflected in the graphs by their negative effect on

the issue stalls, when compared to the base case. In Figure 7.11 the stall due to

buses is still considerable, although the overall improvement is positive. As the

architecture scales (Figures 7.12, 7.13 and 7.14) the stalls due to bus contentions

become less important; in fact, the simulations with the 4 AU configuration in

Figure 7.14 show that these stalls are practically negligible.

IM

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 66.63% 58.03% 63.24%

livermore 102.74% 91.08% 100.84%

fract 32.01% 37.90% 41.65%

ii 7.76% 8.41% 8.70%

puzzle 3.90% 2.55% 3.73%

compress 37.18% 38.30% 35.61%

go 14.27% 14.85% 13.54%

m88k 19.41% 20.20% 20.15%

Average 35.49% 33.91% 35.93%

Geo. Mean 22.61% 21.71% 23.19%

Table 7.8: Percentage reduction in the issue stall by the schedulers (3 AU).

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 68.06% 58.90% 62.21%

livermore 113.46% 101.36% 107.05%

fract 32.02% 37.91% 41.05%

ii 7.71% 8.40% 8.69%

puzzle 3.87% 2.53% 3.73%

compress 37.31% 38.47% 35.60%

go 14.38% 14.88% 13.70%

m88k 19.28% 20.05% 20.09%

Average 37.01% 35.31% 36.52%

Geo. Mean 22.93% 22.01% 23.30%

Table 7.9: Percentage reduction in the issue stall by the schedulers (4 AU).

• The stalls due to functional units contentions (Rsc) are also reduced as the

architecture scales; however, their reduction is not as clear cut as bus contentions.

This is because the scaling is confined only to arithmetic functional units. Bench-

marks with more memory instructions such as the li cannot take advantage of

the larger amount of parallelism in the architecture. The fract benchmark has

the same limitation, since it is dominated by floating point instructions (as shown

in Table 7.2). When the fract benchmark was simulated with four floating point

units, the average reduction in the issue stalls due to resource contentions went

down from -17.91% (one FPU) to -9.80% (four FPU), in the case of the PTD

scheduler.

169

Conf. Scheduler Data Branch Bus Rsc. Cumul.

GM. 37.33% 2.56% -3.13% -18.76% 18.00%

1 AU Bal. 34.32% 2.49% -2.80% -15.16% 18.85%

PTD 41.43% 3.46% -8.61% -12.30% 23.98%

GM. 40.68% 3.09% 4.99% -18.47% 30.29%

2 AU Bal. 35.22% 3.10% 4.94% -14.91% 28.35%

PTD 41.29% 2.52% 4.00% -14.25% 33.56%

GM. 43.14% 3.70% 1.39% -12.74% 35.49%

3 AU Bal. 38.97% 3.51% 1.42% -9.99% 33.91%

PTD 39.94% 2.87% 1.48% -8.36% 35.93%

GM. 43.62% 3.99% -0.08% -10.52% 37.01%

4 AU Bal. 39.74% 3.71% -0.07% -8.07% 35.31%

PTD 39.60% 3.14% -0.17% -6.05% 36.52%

Table 7.10: Average issue stall improvements for the four configurations.

The livermore benchmark, on the other hand, is the benchmark with the

highest number of arithmetic instructions. The large negative percentages for

the three schedulers shown in Figure 7.14 represents scope for further improve-

ment. In fact, when the benchmark was simulated with an additional arithmetic

functional unit, the percentage of issue stall is reduced from -11.22% (with four

arithmetic units) to _10.18%2, in the case of the PTD scheduler.

A distinctive characteristic of the PTD scheduler is that it does not reduce the

issue stall as much by data dependencies compared to the other two schedulers,

but it reduces the issue stalls due to resource contentions significantly more than

the two. This pattern can be seen clearly in Figure 7.12 with the compress

benchmark. Both the GM scheduler and the Balanced scheduler have a significant

effect on the issue stalls due to data dependencies (data), by almost 50%. The

PTD scheduler does not show the same increase (almost 40%), but it reduces the

resource stalls (rsc) to around -1%, whereas the other two schedulers are less

effective in reducing to around -10%.

This can be explained as follows. On one hand, the effects of the residual

overlapping penalties restrains the PTD scheduler in improvements to stalls due

to data dependencies. On the other hand, the PTD scheduler tackles resource

'The remaining stalls are due to memory operations only.

170

dependencies by applying penalties to consecutive instructions of the same type

when there are not enough functional units of that type. The net result is that

the overall percentage improvement of the issue stall due to applying the PTD

scheduler compares well with the other two.

Table 7.10 gives a summary of the average issue stall improvements for the set

of benchmarks. The table reinforces the pattern that considerable improvements

are achieved on the stalls due to data dependencies (Data and Branch columns),

but degradation in stalls due to resource contentions (Bus and Rsc. columns).

However, the important factor is the net percentage reduction in the execution

time thanks to the improvement in the issue stalls. The last column shows the

cumulative average improvement for the set of benchmarks, which is the sum of

the averages; the PTD scheduler outperforms the others by a small margin in all

but one case.

The data between Figures 7.11 to 7.14 cannot be compared as the figures in

each graph are normalised against different base cases. The data from the 2 AU,

3 AU and 4 AU configurations is normalised against the 1 AU configuration, so

that they can be related. This is represented in Figures 7.15 to 7.17 to show

the percentage of improvement in the issue stalls for configurations which are

normalised against the very base case, i.e. unscheduled code simulated with the

1 AU configuration.

These graphs confirm the limitations suffered by the ii and fract bench-

marks, where there are not enough resources (memory and floating-point units,

respectively). Both benchmarks sustain a negative percentage in the issue stall

due to lack of appropriate functional units as the architecture scales.

The go benchmark, on the other hand, presents an interesting scaling pattern.

For greater than two arithmetic functional units (Figures 7.16 and 7.17), the

benchmark features a degradation in the data stalls which is not perceived in

the 2 AU configuration (Figure 7.15). This is due to the limited parallelism in

the benchmark. In contrast, the bus and rsc stalls improve as the architecture

scales.

The puzzle benchmark exhibits a similar behaviour in the absence of sufficient

parallelism. It is recursive in nature which explains the high number of branch

instructions in Table 7.2. An increase in the number of arithmetic functional

units does not result in a corresponding improvement in the issue stalls.

In contrast, the loop-oriented benchmarks such as intmm and livermore show

significant improvement as the architecture is scaled from the 1 AU towards the

4 AU configurations, as can be seen in Figures 7.11 to Figure 7.17.

171

50%

40%

30%.. 	 - 	-

10%

I

.DBranch

M Data

0 Bus

Li
- 	 -

-20% -

	

GM. 	Bal. 	PTD 	GM. 	Bat 	PTD 	GM, 	Bal. 	PTD 	GM. 	Bal. 	PTD
Coffp Gornp Comp 	Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88K

100%

80% ----- - 	- 	 - 	-

60%

r ci Rsc

20% 	
DBranch

0 Data

	

0%: 	 z 	 g 	
-

0 Bus

20%f 	 -

-40% -- 	 - - 	 - - 	 - 	-

-60%

	

GM. 	Bat 	PTD 	GM. 	

Bad.

	PTD 	GM 	Bal. 	PTD 	GM. 	Bal. 	PTD

	

!ntmm lntmm lntmm Liver 	Liver 	Liver Puzzle Puzzle Puzzle Fract Fract Fract

Figure 7.11: Percentage improvement in the issue stalls for 1 AU.

172

50%

40%

30%

20%

10%

0%

-10% -

-20% 4

0 Branch

M Data

GM. 	Bat 	PTO GM 	Bal. 	PTO GM. 	Bat 	PTO GM. 	Bal. 	PTO
Comp Comp Comp 	Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88}<

Figure 7.12: Percentage improvement in the issue stalls for 2 AU.

173

40% 	1. I

30%

20%

10%

0%

-10%
GM. 	Gal. 	PTO 	GM. 	Bal. 	PTO 	GM. 	Gal 	PTO 	GM. 	Gal. 	PTO

Comp Conip Camp 	Li 	Li 	Li 	Go 	Go 	Go M88K M881(M88K

140%

120% _____ - - -

100%

80% -

1r
60%

40% 	 DRsc

0 Branch
20% - 	- 	 UData

	

0% -! - = - 	 = = 	---- - -

	 OBus

-20% 	- 	 - 	- 	 - 	 ---- 	- -

-40% 	 -
GM 	Gal. 	PTO 	GM 	Gal. 	PTO 	GM. 	Gal 	PTO 	GM. 	Gal. 	PTO

lntmn, lntmrn lntmm Liver 	Liver 	Liver Puzzle Puzzle Puzzle Fract 	Fract Fract

Figure 7.13: Percentage improvement in the issue stalls for 3 AU.

174

140%

120% - 	'-- 	 -

1000/o

80%

60%

40%

20%

-20%

-40%

IDRsc 	I

-- 	

0 Branch

•Data

OBus

50%

40%

30%

20% -.

10%

0%

-10%

0 Branch

0 Data

0 Bus
_

Li

GM, 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Gal 	PTD
Camp Camp Camp 	Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88K

GM. 	BaJ 	PTD GM. 	Bat 	PTD GM. 	Bal. 	PTD GM, 	Bat 	PTD
lntm lrdmm lntmrn Liver 	Liver Liver Puzzle Puzzle Puzzle Fract Fract Fract

Figure 7.14: Percentage improvement in the issue stalls for 4 AU.

175

60%-

50%

40% 	 --

LI

-10%'
GM 	BaJ. 	PTD 	GM. 	Bal. 	PTD 	GM. 	BaJ 	PTD 	GM 	Bal. 	PTD

Cornp Comp Comp 	Li 	Li 	Li 	Go 	Go 	Go M881< M88K M88K

[thRsc

• Branch

• Data

DBus

150%

125%

100%-

750/0

500/0

2:::
0 Data

-25%
GM 	Bal. 	PTD 	GM Ba] 	PTD 	GM Ba] PlO 	GM Ba]. 	PTO

lntmm 	lntmm 	Intmm 	Liver Liver 	Liver 	Puzzle Puzzle Puzzle 	Fract Frt 	Fract

Figure 7.15: Normalised percentage improvement in the issue stalls for 2 AU.

176

60% 	 - 	 -

50%-

40%- 	 - 	- 	-

- 	 1T 111110 Branch 0 Data

0% 	 ri 	
13 Bus

10%
GM 	Bal. 	PTO 	GM. 	BaJ. 	PTO 	GM 	Bal. 	PTO 	GM. 	Bal. 	PTO

C-V Comp Comp Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88K

200% - 	 -

175%

150% -

125%

100%

E DAsc

D Branch

U"! •Data

OBus
0%

-25% _____
GM. Bal. 	PTO 	GM 	Bal. 	PTO 	GM. Bal. PT!) 	GM Bak 	PT!)

Intnii, lntmm 	lntmrn 	Liver 	Liver 	Liver 	Puzzle Puzzle Puzzle 	Fract Fract 	Fract

Figure 7.16: Normalised percentage improvement in the issue stalls for 3 AU.

177

60% 	 -.- .-- 	-..------ --

50%

	

i::: JM . 	*!' I
-10%

GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD 	GM. 	Bal. 	PTD

Comp Camp Camp 	Li 	Li 	Li 	Go 	Go 	Go M88K M88K M88K

225%

200% - - -- - 	 - 	 -.

175% .. . 	 -.

150%

125% -

100%

75% -

fl fl j_ 13 Rsc 50%
I DBranch

2:;:, H H 0 Data

0 Bus

-25%

GM. 	Bal. PTD 	GM 	Bal. 	PTD 	GM Ba] PTD 	GM Bal. 	PTD

lntmm 	lntmm Intnrn 	Liver 	Liver 	Liver 	Puzzle Puzzle Puzzle 	Frat Fract 	Fract

Figure 7.17: Normalised percentage improvement in the issue stalls for 4 AU.

178

Benchmark No sch. GM. sch. Bal. sch. PTI) sch.

intmm 1131 392 386 408

livermore 1492 480 1055 1621

fract 284 364 426 638

ii 1431 486 490 488

puzzle 1065 2169 3154 3222

compress 437 743 1003 1945

go 1038 1000 1179 1348

m88k 851 923 967 1326

Table 7.11: Number of out-of-order instructions (1 AU).

Benchmark No sch. GM. sch. Bal. sch. PTD sch.

intmm 1976 1565 1447 1360

livermore 4166 1980 3883 4068

fract 849 1249 1380 1077

ii 4088 2983 2985 2987

puzzle 2411 4689 5517 5060

compress 1265 2107 3053 3264

go 2705 2709 3661 3029

m88k 2085 2192 2207 2536

Table 7.12: Number of out-of-order instructions (2 AU).

7.4.1.6 Out-of-order Instructions

One feature of the micronet-based processor is that although the instructions are

issued in-order, independent instructions can overtake others and can he written

back out-of-order. The numbers of instructions which are executed out-of-order

are listed in Tables 7.11 to 7.14, show that the number of these instructions scales

with the increase in arithmetic functional units.

Nevertheless, the out-or-order instructions are a small percentage of the total

number of instructions which are executed per benchmark, mainly due to the

data dependencies in the code. Even so, the PTD scheduler averages a higher

number of out-of-order instructions. Although this does not contribute signific-

antly towards the performance of the schedulers, they do serve to highlight the

properties of the PTD scheduler.

179

Benchmark No sch. GM. sch. Bal. sch. PTD sch.

intmm 2125 2012 2426 2662

livermore 4200 2869 3805 4803

fract 886 1319 1343 1161

ii 4214 3333 3334 3337

puzzle 2373 5274 5698 6383

compress 1504 2933 3728 3837

go 3022 3452 3618 3841

m88k 2221 2132 2146 2498

Table 7.13: Number of out-of-order instructions (3 AU).

Benchmark No sch. GM. sch. Bal. sch. PTD sch.

intmm 2220 2214 2919 2596

livermore 4251 3768 4601 5384

fract 860 1264 1326 1128

ii 4226 5304 5365 5409

puzzle 2601 2169 3154 3267

compress 1438 3201 4210 4223

go 2950 3679 3998 4013

m88k 2236 2293 2273 2540

Table 7.14: Number of out-of-order instructions (4 AU).

7.4.1.7 Performance Execution

The performance comparisons of the execution times for the three local schedulers

are displayed in Figures 7.18 to 7.21. They represent the percentage improvement

against base cases with the 1 AU, 2 AU, 3 AU and 4 AU configurations. Memory

disambiguation was applied to all the three schedules. The performance of the

PTD scheduler shown in these figures is the same as those displayed in the last

column of Figures 7.2 to 7.5. Subgraphs was only applied to the PTD scheduler

since it is a particular heuristic designed for it.

For the 1 AU architecture, it can be seen that the PTD scheduler outper-

forms consistently the other two schedulers by an average of 4%. For the other

configurations, the average improvement is reduced to within 2% as the architec-

ture scales. This effect is the result of the overlapping penalties produced by the

PTD schedulers as it optimises the code. The full listing of results of the local

schedulers is displayed in Appendix C.I.

The results from Figures 7.18 to 7.21 show the same pattern of the perform-

ance reduction clue to issue stalls from Tables 7.6 to 7.9. As the architecture

is scaled, there is a slight reduction of performance in the PTD scheduler when

compared to the Balanced and GM schedulers. With the 2 AU, 3 AU and 4 AU

configurations, the performance of the PTD scheduler is not as dominant as in

the 1 AU architecture. The average for the 4 AU configuration shows that it

performs as well as the others. In some of the cases, the PTD scheduler displays

better improvements (fract, ii and m88k benchmarks), although not as well in

the case of compress and go benchmarks. This is the effect due to the overlapping

penalties left in the code by the PTD scheduler.

The results of the local schedulers shown in Figures 7.18 to 7.21 are also

shown in Table 7.15. The table shows the performance execution for the four

configurations and their geometric means. It can he seen that the PTD scheduler's

geometric means are better than the other schedulers in all the configurations.

7.4.1.8 Tolerance of the PTD scheduler

One important factor in the performance of the PTD scheduler is the ability to

work for different range in the latencies, i.e. to ensure that the scheduler is not

sensitive to high variations. Table 7.16 shows that even with the same latencies

for all of the functional units, the PTD scheduler performs as well as in the case

of different ranges in the latencies.

It can he observed that there is a general reduction in performance by all the

schedulers when comparing these results against the performance improvements

with different latencies as shown in Table 7.15, but only for the 1 AU configur-

ation. This is because the non-scheduled code causes less stalls to the issue unit

and the effect of scheduling consecutive dependent instructions can be masked to

a certain degree since all the instructions have short and equal latencies. In turn,

the results achieved by all three schedulers cannot reach the same levels as the

ones with wider range in latencies. However, for the other three configurations,

scaling the architecture enables higher improvements because the instructions

tend to be completed sooner and thus, the issue unit does not need to stall as

long as in configurations with different and longer latencies.

Another experiment to evaluate how the PTD scheduler handles different con-

figurations is when the memory cache model is changed from a cache hit:miss

ratio of 2:1 to a ratio of 9:1 and the cache hit:rniss latency ratio from 1:2 to 1:10.

Table 7.17 shows the results of this test for three of the benchmarks in all the

configurations.

181

If
Fract

MGM. sch.

•BaI. sch.

•PTD sch.

35%

30%- --

25% 	 -

20% 	 -

15%

:: 	

rfHT!T 1
L 	Lio 	M h. 	Iritmm

Figure 7.18: Local scheduler execution performance for the 1 AU configuration.

50%

40%

30%

20% 	 - 	-

10% Ii 	B IL
Compress 	Li 	Go 	M88K 	Intmm 	Livermore 	Puzzle 	Fract

MGM. sch.

•BaI. sch.

•PTD sch.

Figure 7.19: Local scheduler execution performance for the 2 AU configuration.

182

60% 	 - - 	 --

50% 	 --

40%

30%

20%[

	

10% 	 11 	rIi

	

0% 	 1 	1I 	L
I upi ,> 	Li 	 r

• GM. sch.

HI 	• Bal. sch.

UPTDsch.

Puzzle

Figure 7.20: 7.20: Local scheduler execution performance for the 3 AU configuration.

70%

:::0L:
40% 	 fH
30%!

20% 1T 	H
1 :::

Compress 	Li 	Go 	M88K 	lntmm 	Livemn

E.
iore 	Puzzle 	Fract

Figure 7.21: Local scheduler execution performance for the 1 AU configuration.

183

Conf. Benchmark GM. sch. Bal. sch. PTD sch.

intmm 20.37% 17.30% 25.85%

livermore 18.66% 21.72% 25.76%

fract 22.26% 26.72% 30.50%

ii 7.14% 8.13% 8.89%

1 AU puzzle 5.26% 3.02% 5.81%

compress 19.26% 20.25% 24.01%

go 9.28% 9.41% 14.09 0/c

m88k 11.81% 12.31% 15.54%

Geometric Mean 12.68% 12.45% 16.51%

intmm 40.55% 35.19% 43.37%

livermore 43.52% 36.90% 47.40%

fract 24.25% 28.21% 30.48%

ii 6.45% 7.08% 7.38%

2 AU puzzle 6.46% 1.73% 5.39%

compress 26.63% 27.44% 26.85%

go 10.71% 11.20% 11.02%

m88k 15.17% 15.68% 16.86%

Geometric Mean 17.22% 14.68% 18.27%

intmm 43.96% 39.02% 42.26%

livermore 58.61% 53.27% 57.76%

fract 24.53% 28.74% 31.38%

ii 6.35% 6.92% 7.16%

3 AU puzzle 3.11% 2.04% 2.98%

compress 27.74% 28.45% 26.65%

go 11.07% 11.51% 10.52%

m88k 15.16% 15.76% 15.72%

Geometric Mean 16.62% 16.02% 17.06%

intmm 44.66% 39.39% 41.31%

livermore 63.27% 57.98% 60.50%

fract 24.53% 28.74% 30.95%

li 6.35% 6.91% 7.15%

4 AU puzzle 3.09% 2.02% 2.98%

compress 27.82% 28.63% 26.63%

go 11.16% 11.53% 10.64%

m88k 15.06% 15.65% 15.67%

Geometric Mean 16.80% 16.20% 17.10%

Table 7.15: Performance execution improvement of the local schedulers for the
four configurations. with functional units latencies as defined in Table 4.1.

184

Conf. Benchmark GM. sch. Bal. sch. PTD sch.

intmm 16.10% 15.02% 21.10%

livermore 18.01% 17.97% 18.59%

fra.ct 18.27% 19.98% 21.98%

ii 3.35% 3.26% 4.88%

1 AU puzzle 3.17% 0.85% 3.34%

compress 9.95% 10.06% 12.61%

go 5.13% 3.88% 7.43%

m88k 5.23% 5.38% 7.88%

Geometric Mean 7.89% 6.49% 10.04%

intmia 54.73% 48.25% 56.13%

livermore 58.93% 52.68% 53.44%

fract 33.33% 35.10% 34.81%

ii 8.01% 8.07% 9.69%

2 AU puzzle 4.54% 1.35% 4.49%

compress 29.61% 29.66% 31.49%

go 13.10% 11.72% 14.53%

m88k 15.66% 16.46% 19.21%

Geometric Mean 19.81% 16.53% 21.14%

intmm 65.06% 59.52% 61.44%

livermore 83.98% 70.07% 64.35%

fract 35.91% 39.04% 37.55%

ii 8.69% 9.14% 9.94%

3 AU puzzle 3.79% 2.16% 3.63%

compress 34.40% 35.00% 32.90%

go 14.88% 14.02% 14.74%

m88k 17.15% 18.18% 20.06%

Geometric Mean 22.09% 20.29% 21.85%

intmm 62.56% 59.22% 64.27%

livermore 88.90% 73.43% 64.75%

fract 35.94% 39.13% 36.85%

ii 8.75% 9.22% 9.95%

4 AU puzzle 3.75% 2.13% 3.62%

compress 34.64% :35.34% 33.10%

go 14.79% 13.91% 14.69%

m88k 17.06% 18.09% 19.99%

Geometric Mean 22.12% 20.38% 21.94%

Table 7.16: Performance execution improvement of the local schedulers for the
four configurations, with latencies with equal range of values.

185

Conf. Benchmark GM. sch. Bal. sch. PTD sch.

ii 2.90% 3.06% 3.21%

1 AU go 2.62% 2.94% 5.87%

m88k 7.68% 7.70% 7.62%

Geometric Mean 3.88% 4.11% 5.24%

ii 2.35% 2.47% 2.46%

4 AU go 3.48% 3.79% 3.37%

m88k 7.11% 7.17% 6.94%

Geometric Mean 3.88% 4.07% 3.86%

Table 7.17: Performance execution improvement with a memory unit's cache
hit:miss ratio of 9:1, and with cache penalty hit:miss ratio of 1:10.

The results show that all of the schedulers achieve very little improvements

against the non-scheduled code, if we compare them against the ones with a cache

hit:miss ratio of 2:1, displayed in Table 7.15. The main reasons for this behaviour

is that there is only one memory unit and that given the delay penalty for a

cache miss, there is not enough parallelism in the code to overcome such long

delays. Even with such cache model, the PTD scheduler performs comparably

well against the other schedulers.

7.4.2 Global Optimisations

The evaluation of the global scheduler is divided according to the performance

clue to code motion, tail duplication and the combined effect of both. The results

from these global optimisations are also compared against the improvements due

to local optimisations.

7.4.2.1 Code Motion and Code Duplication

As described previously in Chapter 6, code motion represents the first attempt at

reducing the penalties after local scheduling. Only if code motion fails to remove

a penalty is code duplication called which checks code expansion. Table 7.18

shows the statistics for code motion (first column of each scheduler) and code

duplication (second and third columns). It can be observed that code motion is

employed consistently more often than code duplication. The figures also reveal

that the number of lines of code affected by the transformations is very low when

compared to the total number of lines in the benchmarks (c.f. Table 7.3). The

third column for each scheduler shows the percentage of code expansion due to

186

GM. scheduler Bal. scheduler PTD scheduler

Benchmark Code Code dup. Code Code dup. Code Code dup.

motion inst. perc. motion inst. perc. motion inst. perc.

intmm 10 0 0.0% 9 0 0.0% 18 0 0.0%
livermore 42 0 0.0% 49 0 0.0 1% 73 0 0.0%
fract 73 19 0.3% 74 21 0.3% 122 38 0.7%

ii 30 35 0.2% 50 50 0.3% 60 61 0.4%
puzzle 63 10 1.0% 55 12 1.3% 45 9 0.9%

compress 42 7 0.5% 50 7 0.5% 57 7 0.7%

go 2,388 322 0.3% 2,342 312 0.3% 2,608 423 0.5%
m88k 222 55 0.2% 599 138 0.4% 616 160 0.5%

Table 7.18: Code motion and code duplication statistics.

code duplication where applicable.

The table also shows a pattern in the number of movements which is greater in

the case of the PTD scheduler. However, this cannot always he related to a per-

formance improvement. This is because the effectiveness of the movements is sub-

ject to the run-time behaviour of the program. For instance, a single movement

on a most commonly-executed path can he more effective from a performance

point of view, than a number of movements in rarely-executed ones.

7.4.2.2 Tail Duplication and Block Merging

Tail duplication and block merging represent transformations which are independ-

ent of code motion. Table 7.19 displays the statistics regarding instances of tail

duplication together with block merging (first column for each scheduler). The

table also displays the total number of instructions duplicated as a result of those

transformations (second column). The third column for each scheduler represents

the percentage of code expansion clue to tail duplication. It can he seen that the

code expansion produced by tail duplication is much higher than in the case of

code duplication. Even after merging non-empty blocks to increase ILP, the code

expansion for some of the benchmarks is a cause for concern.

Another observation is that the number of instructions that are copied is the

same for the three schedulers. The reason for this is that once a penalty is to

be removed, the whole basic block is duplicated and merged, whereas in code

duplication, the decision is made on the basis of individual instructions.

187

GM. scheduler Bal. scheduler PTD scheduler
Benchmark Tail Inst. dup. Tail Inst. dup. Tail Inst.dup.

dup. dup. dup. inst. perc. inst. perc. inst. perc.
intrnm 0 0 0% 0 0 0% 0 0 0%

livermore 14 306 15% 14 306 15% 14 306 15%
fract 69 1,036 19% 69 1.036 19% 69 1,036 19%

ii 130 1,403 8% 130 1,403 8% 130 1,403 8%
puzzle 15 183 19% 15 183 19% 15 183 19%
compress 16 122 9% 16 122 9% 16 122 9%
go 1,557 13,993 16% 1,557 13,993 16% 1,557 13,993 16%
m88k 561 5,005 14% 561 5,005 14% 561 5,005 14%

Table 7.19: Tail duplication/block merging statistics.

7.4.2.3 Performance Benefits due to Global Optimisations

The comparisons of the performance execution achieved due to global optimisa-

tion techniques are displayed in Figures 7.22 to 7.25. The figures show the per-

formance of the three schedulers divided in four categories (top right-hand corner

key in each figure): local optimisations, code motion and code duplication, tail

duplication and block merging, and the combined effect of both techniques. (The

performance results of the local optimisations displayed in the first three bars

for each benchmark correspond to the results previously shown in Figures 7.18

to 7.21. This clarifies the performance gains of global optimisations against the

local ones).

The graphs show that, in general, a further improvement due to the global

optimisations is achieved. This performance can be dissected into three parts:

due to code motion, due to tail duplication and the combined effect of these two.

Code Motion/Code Duplication. The performance due to code motion and

code duplication averages between 3.4% to 4.8% against local scheduling for

the three benchmarks, in the four configurations. For the PTD scheduler,

the improvements with respect to the local scheduler vary from 0.2% for

the ii benchmark to around 16% for the puzzle benchmark. For the 1 AU

and 2 AU configurations, the PTD scheduler consistently outperforms the

other two. For the 3 AU and 4 AU configurations, the performance of the

schedulers is on par, with a slightly higher average for the PTD scheduler.

For benchmarks such as compress and go, local scheduling does not obtain

the same performances as the balanced and GM schedulers. However, when

code motion is applied, it can be seen that the PTD scheduler is able to

outperform them.

It can also be observed that the performance patterns due to local schedul-

ing results are preserved after both code motion and code duplication are

applied. This implies that the PTD scheduler is not benefiting overly due

to the global movements being triggered by the PTD measure.

The results also show that the performance suffers no degradation after

global code motion with respect to the local scheduling results. This is

an improvement on the work on code motion in [20], in which some of

the benchmarks suffer from degradation. Appendix C.2 shows the exact

percentage of improvement for the schedulers in the four AU configurations

with respect to their base cases, i.e. unscheduled code.

Tail Duplication/Block Merging. The results from tail duplication and block

merging show that they do not achieve the the same gain in performance as

due to code motion. In fact, for many of the benchmarks there is very little

improvement. The average improvements vary around 0.5% with respect to

the local ones (The intmm benchmark does not show any tail duplication

transformations). However, there are two benchmarks in which a greater

improvement was obtained when compared to the code motion results. The

m88k benchmark averages a 2.6% against local scheduling, which represents

an additional 1.7% improvement over code motion for the four configur-

ations. The benchmark ii marginally outperforms the performance gain

achieved by code motion, when applied to the PTD scheduler.

As with code motion, the pattern observed from the local optimisations

results is maintained when tail duplication is performed. Furthermore, the

optimisation does not cause performance degradation when compared to

local scheduling. The actual figures for performance improvements from

tail duplication and block merging are shown in Appendix C.2.

Combined Effect of Code Motion and Tail Duplication. The combined ef-

fect of code motion and tail duplication presents one particular case that

does not provide the best performance. The livermore benchmark actu-

ally suffers a slight degradation of 0.8% over local scheduling for the 1 AU

configuration. After code motion and tail duplication have both been ap-

plied, local scheduling also needs to be applied since it is more convenient

to handle the complexity of the dependencies and penalties in the merged

block in order to optimise it. However, the optimisation of the new block is

subject to its new set of dependencies and initial schedule. The livermore

benchmark shows that with the newer set of initial conditions, there may

be cases in which the optimisations cannot necessarily yield the best per-

formance.

As mentioned in Section 7.4.1.4, the livermore benchmark spends a con-

siderable amount of time in the initialisation section. Any penalty that

is left unreduced in the critical path of this section is subject to perform-

ance degradation. After analysing this example it was observed that if local

scheduling had not been used after code motion and tail duplication, there

would not have been any degradation.

Even with this degradation, the PTD scheduler performs better than the

other schedulers for the 1 AU configuration. In general, although tail du-

plication does not yield a considerable improvement over local scheduling,

the best performance levels are obtained when both code motion and tail

duplication are utilised. The average improvements over local scheduling

for the set of benchmarks range between 4.2% to 5.6%, for the four config-

urations - puzzle is the benchmark that achieves the highest performance

of all, with an average improvement of 16.8%.

When compared to code motion, the technique with the greatest improve-

ment over local scheduling, the combined effect of both code motion and

tail duplication offers an additional average improvement of 0.7%. The m88k

and fract benchmarks feature greater improvements with 2.9% and 1.2%,

respectively.

Tables C.9 to C.12 in Appendix C.2 show the exact percentage of improve-

ment of the combined effect of code motion and tail duplication for the four

configurations.

190

M88K Go

30%

25% 	 --

20%

15%

10%

5%

I1Ji_JjJ____
Compress 	 Li

• Local sch.

• Code mat.

OTaildup.
• Both tech.

• GM. sch.

• Bal. sch.

• PTDsch.

• GM. sch.

• Bal. sch.

• PTDsch.

El GM. sch.

o Bal. sch.

El PTDsch.

I • GM. sch.

• Bal. sch.

•PTDsch.

- 	- 	- 	-
• code mot.

30%- - 	- 	• - 	- - 	- 	-- 	-- - 0 Tail dup.

Both tech.

25%— 	- - -

11Ih1___
ntrnri Livemore 	 Puzzle 	 Fract

Figure 7.22: Simulation results for 1 AU.

191

.1Ii liLIiiIiIi
Go 	 M88K

• Local sch

• Code mot.

- 	0 Tail dup-

0 Both tech

U GM. sch.

• Bal. sch.

• PTD sch.

• GM. sch.

• Bal. sch.

U PTD sch.

I] GM. sch.

O Bal. sob.

o PTD sch.

U GM. sch.

• Bal. sch.

UPTDSM.

35%

[1 	1
25%fflff

20% 	 Hit
II

15%

10%

0% 	 I 	1L 111
L

60%

50%

40%

30%

20%

10%

0%

• Local sch.

• Code mot.

o Tad dup.

U Both tech

• GM. sch.

• Bat. sob.

• PTD sch.

• GM. sch.

• Bat. sch.

• PTD sch.

0 GM. sch.

O Bat. sch.

o PTD sch.

• GM. sch.

• Bat. sch.

U PTD sch.
lntmrn
	

Livernore
	

Puzz'e 	 Fract

Figure 7.23: Simulation results for 2 AU.

192

70%

60%-f-

50%

40%

30%

20%

10% -

0%

lnlmm

30%

25%

20%

15%

10%

50/0

0%

• Local sch.

• Code mat.

[] Tail dup.

• Both tech.

I GM. sch.

I Bal.sch.

I PTDsch.

1 GM. sch.

• Bal. sch.

II PTDsch.

El GM. sch.

O Bat. sch.

o PTDsth.

• GM. sch.

• Bal. sch.

• PTDsch.

ui press Cu 	 M88K

thJL1
Livemore 	 Puzz l e

• Local sch.

• Code mot.
- - 	- - -
	0 Tail dup.

• Both tech.

• GM. sch.

• Bat. sch.

• PTDsch.

• GM. sch.

• Bat. sch.

• PTD sch.

El GM. sch.

LI Bal. sch.

o PTDsch.

• GM. sch.

• Bat. sch.

• PTDsch.
Fract

Figure 7.24: Simulation results for 3 AU.

193

Fract

35%______________________
- - 	 • Local sch.

Code mot.

30% 	rfl Tail dup.

dJl I Both tech. 1.
25% I GM. sch.

!! Bal. sch.

20° PTDSCh.

: 	: 	: Tfl 	rTf1d 15%
PTDsch.

ci GM. sch.
100/0

i O Bal. sch.

5% rnrrn 	11 :;: _________

Compr Li 	 Co 	 M88K

70%

60%-'--

50%

40%

300/0

20%

10%

0°

ntmm

IIH I
Livemore

H 11
Puzzle

Figure 7.25: Simulation results for 4 AU.

194

• Local sch.

• Code mot.

[] Tail dup.

• Both tech.

• GM. sch.

• Bal. sch.

•PTDsch.

• GM. sch.

• Bal. sch.

• PTDsch.

LI GM. sch.

LI Bal. sch.

o PTD sch.

• GM. sch.

• Bal. sch.

•PTDsch.

Conf. Benchmark GM. sch. Bal. sch. PTD sch.

intmin 21.72% 17.37% 26.98%

livermore 19.16% 22.04% 26.80%

fract 23.71% 27.67% 30.81%

ii 7.94% 8.89% 9.12%

1 AU puzzle 10.92% 10.96% 23.47%

compress 20.27% 21.06% 27.13%

go 11.42% 11.80% 17.35%

m88k 12.60% 13.11% 16.22%

Geometric Mean 14.95% 15.52% 20.90%

intmm 42.53% 36.64% 46.77%

livermore 45.70% 38.66% 51.33%

fract 25.85% 29.33% 30.67%

ii. 7.40% 7.85% 7.58%

2 AU puzzle 14.41% 12.47% 22.42%

compress 27.80% 28.41% 30.52%

go 15.08% 15.15% 17.25%

m88k 17.05% 17.47% 17.84%

Geometric Mean 21.03% 20.45% 24.20%

intmni 45.71% 40.26% 47.10%

livermore 61.65% 56.08% 62.82%

fract 26.12% 29.87% 31.66%

li 7.34% 7.74% 7.37%

3 AU puzzle 16.05% 14.78% 19.21%

compress 28.93% 29.68% 30.34%

go 15.53% 15.74% 17.19%

m88k 16.37% 16.89% 16.65%

Geometric Mean 22.42% 22.29% 24.14%

intmin 46.46% 40.66% 46.00%

livermore 66.48% 61.06% 65.71%

fract 26.13% 29.88% 32.28%

ii 7.34% 7.73% 7.37%

4 AU puzzle 17.40% 16.02% 19.21%

compress 28.99% 29.83% 30.32%

go 15.61% 15.73% 17.34%

m88k 16.27% 16.77% 16.68%

Geometric Mean 22.91% 22.77% 24.29%

Table 7.20: Performance execution improvement of code motion for the four
configurations.

195

Conf. Benchmark GM. sch. Bal. sch. PTD sch.

intmm 20.37% 17.30% 25.85%

livermore 18.66% 21.72% 25.78%

fract 22.26% 26.80% 30.84%

ii 7.40% 8.76% 9.28%

1 AU puzzle 5.35% :3.14% 6.04%

compress 19.71% 20.78% 24.32%

go 10.04% 10.20% 15.05%

m88k 14.16% 14.61% 17.71%

Geometric Mean 13.2:3% 13.08% 17.15%

intmm 40.55% 35.19% 43.37%

livermore 43.53% 36.91% 47.38%

fract 24.26% 28.22% :30.48%

ii 6.90% 7.67% 7.83%

2AU puzzle 6.71% 1.98% 5.64%

compress 27.59% 28.43% 27.35%

go 11.84% 12.30% 12.05%

m88k 18.29% 18.74% 19.56%

Geometric Mean 18.16% 15.68% 19.12%

intmm 43.96% 39.02% 42.26%

livermore 58.63% 53.26% 57.62%

fract 24.57% 29.01% 31.41%

li 6.82% 7.49% 7.62%

3 AU puzzle :3.39% 2.31% 3.17%

compress 28.79% 29.54% 27.09%

go 12.25% 12.67% 11.57%

m88k 18.19% 18.72% 18.50%

Geometric Mean 17.65% 17.10% 17.93%

intmm 44.66% 3L39% 41.31%

livermore 63.29% 57.97% 60.42%

fract 24.58% 29.01% :31.11%

ii 6.82% 7.49% 7.61%

4 AU puzzle 3.36% 2.28% 3.16%

compress 28.88% 29.72% 27.07%

go 12.32% 12.67% 11.70%

m88k 18.09% 18.61% 18.45%

Geometric Mean 17.84% 17.27% 17.98%

Table 7.21: Performance execution improvement of code duplication for the four
con figu rat ions.

196

Conf. Benchmark GM. sch. Bal. sch. P'-I'D sch.

intmm 21.72% 17.37% 29.13%

livermore 19.16% 22.05% 24.96%

fract 23.78% 27.75% :32.99%

ii 8.01% 9.05% 9.30%

1 AU puzzle 10.96% 11.00% 23.53%

compress 20.27% 21.06% 27.13%

go 11.93% 12.39% 18.10%

m88k 14.14% 14.65% 18.62%

Geometric Mean 15.28% 15.88% 21.64%

intmin 42.53% 36.64% 46.77%

livermore 45.72% 38.66% 50.92%

fract 25.95% 29.44% 30-67%

ii 7.48% 8.01% 7.86%

2 AU puzzle 14.60% 12.65% 22.48%

compress 27.80% 28.41% 30.98%

go 15.76% 15.88% 18.10%

m88k 19.74% 20.09% 20.84%

Geometric Mean 21.61% 21.03% 24.96%

intmm 45.71% 40.26% 47.10%

livermore 61.65% 56.06% 62.42%

fract 26.21% 29.97% 32.47%

ii 7.41% 7.84% 7.68%

3 AU puzzle 16.17% 14.89% 19.22%

compress 28.93% 29.69% 30.84%

go 16.28% 16.52% 18.08%

m88k 19.34% 19.80% 19.73%

Geometric Mean 23.09% 22.94% 25.05 %
intmm 44.66% 39.39% 41.31%

livermore 63.29% 57.97% 60.42%

fract 24.58% 29.01% 31.11%

li 6.82% 7.49% -1.61%

4 AU puzzle 3.36% 2.28% 3.16%

compress 28.88% 29.72% 27.07%

go 12.32% 12.67% 11.70%

m88k 18.09% 18.61% 18.45%

Geometric Mean 17.84% 17.27% 17.98%

Table 7.22: Performance execution improvement of both code motion and tail
duplication for the four configurations.

197

Approach GM. sch. Bal. sch. PTD sch.

Local scheduling 6.39% 3.65% 7.07%

Code motion 13.43% 13.48% 28.79%

Tail duplication 6.51% 3.80% 7.35%

Both techniques 13.49% 13.53% 28.88%

Table 7.23: Percentage reduction in the issue stall by the schedulers for the puzzle
benchmark (1 AU).

Approach GM. sch. Bal. sch. PTD sch.

Local scheduling 8.12% 2.15% 6.76%

Code motion 18.48% 15.91% 29.33%

Tail duplication 8.44% 2.47% 7.08%

Both techniques 18.73% 16.15% 29.41%

Table 7.24: Percentage reduction in the issue stall by the schedulers for the puzzle
benchmark (2 AU).

7.5 Discussion

To explain the results shown in the previous section, the puzzle benchmark is

analysed in detail. The puzzle benchmark offers the greatest improvements with

code motion for any of the benchmarks, but it offers very little improvements

when tail duplication is applied.

The benchmark has a function that executes for 60% of the total time. The

control flow graph of this function is displayed in Figure 7.26 (c). Figures 7.26 (a)

and (h) show the DAGs from two of the function's basic blocks, B 1 and B 5 ,

respectively.

The function is characterised by basic blocks with many data dependencies

that serialise the execution, and thus restrict local scheduling. The improvement

achieved by code motion is based on the movement of instructions from block B5

to block B 1 that reduces the consecutive penalties in both basic blocks. Even

when there are non-consecutive penalties left in basic block B 1 (as a result of

mixing instructions from B 1 and B5), the increased ILP reduces the stalls of the

issue unit. Of course, the effects of these movements are magnified by the fact

that this function is executed considerably more often than the others.

198

Approach GM. sch. Bal. sch. PTD sch.

Local scheduling 3.90% 2.55% 3.73%

Code motion 20.78% 19.07% 25.08%

Tail duplication 4.25% 2.88% 3.97%

Both techniques 20.95% 19.23% 25.09%

Table 7.25: Percentage reduction in the issue stall by the schedulers for the puzzle
benchmark (3 AU).

Approach GM. sch. Bal. sch. PTD sch.

Local scheduling 3.87% 2.53% 3.73%

Code motion 22.61% 20.75% 25.07%

Tail duplication 4.21% 2.85% 3.97%

Both techniques 22.79% 20.91% 25.09%

Table 7.26: Percentage reduction in the issue stall by the schedulers for the puzzle
benchmark (4 AU).

The PTD scheduler is not the only one to benefit from this scenario. Both

GM and Balanced schedulers reduce the stalls of the issue unit after code motion.

Tables 7.23 to 7.26 list the percentage improvement of the issue stalls due to

different techniques when compared to unscheduled code. It can be observed

that the three schedulers achieve substantial stall reductions to the issue unit

with the help of code motion.

In contrast, when tail duplication is applied, even if basic blocks B5 and B8 in

Figure 7.26 (c) are duplicated and merged, the data dependencies between basic

blocks B6 , B7 and B8 limit the scope for improvement, i.e. the instructions from

basic blocks B6 and B7 cannot be mixed with the ones from basic block B8 .

This is in line with the results for puzzle in Section 7.4.2.3. Tables 7.23 to 7.26

confirm the small improvement in stall reduction over local scheduling when tail

duplication alone is enabled.

When both code motion and tail duplication are applied to the benchmark,

then the improvement is dominated by code motion. It can be seen from the tables

that there is a small percentage reduction in the issues stall when compared to

code motion alone for the four configurations, and this reflects, in general, the

best performance in terms of execution time.

199

(c) The CFG of the function.

t Fit

(a) Basic block B1 (L3. Fit).

fn

(b) Basic block B5 (M. Fit).

Figure 7.26: The most frequently executed function from puzzle.

200

7.6 Summary

This chapter has presented the framework for evaluating the PTD scheduler.

Within this framework, the SUIF compiler was selected to perform the back-end

optimisations and to generate machine code for the micronet-based processor.

The optimisations have been evaluated by compiling a set of C benchmarks and

simulating their output schedules in the instruction-level simulator. The set of

benchmarks covers a range of applications including loop-oriented and control-

flow intensive programs.

The comparisons presented in this chapter were made against two well-known

schedulers: the original list scheduler from Gibbons and Muchnick and the Bal-

anced scheduler from Kerns and Eggers. The evaluation of the PTD scheduler

has been separated between the use of local and global optimisations techniques.

The PTD scheduler attempts to maximise the rate of instruction issue of the

micronet-based processor, by minimising the stalls incurred due to data depend-

encies and resource contentions. The results from the issue stalls to the issue unit

reveal several characteristics of the PTD scheduler. Firstly, the stalls caused by

resource contentions when instructions of the same type are scheduled, and there

are not enough resources of that type, are reduced considerably. This reduction is,

in general, greater than the reduction achieved by the other schedulers. Secondly,

although the stalls caused by data dependencies are not reduced as much as the

other schedulers, the total stall reduction of the issue unit is higher. This repres-

ents a higher overall reduction in relation to the base cases, when compared to

the other well-known schedulers.

The performance of the local optimisations has shown that the PTD scheduler

consistently produces better code than the other two. The scheduler achieves an

average improvement of 18.81% for the 1 AU configuration, as opposed to 14.25%

and 14.86% in the case of the GM and balanced schedulers, respectively. When

the architecture is scaled, the average improvement of the PTD scheduler com-

pares well against the other schedulers. For the 4 AU configuration, the average

improvement is 24.48% which levels to 24.49% and 23.86% for the other two sched-

ulers. These results show that the PTD scheduler produces, in general, better

schedules, or at worst, comparable schedules for the micronet-based processor.

The complexity of the PTD scheduler described in Section 5.6 was evaluated

by measuring the compilation times of the set of benchmarks. The algorithm

complexity is governed by the number of penalties, and as the algorithm pro-

201

gresses the number of penalties is reduced. This represents an advantage over

the algorithmic complexity of list-based schedulers which are of the order of n2

(where n is the number of instructions). This advantage is confirmed by the

results of the compilations times, in which the PTD scheduler averaged 46.55%

faster compilation times than the other two schedulers.

The performance of the global optimisations applied to the local schedulers

showed that the movement of instructions beyond basic blocks achieved further

improvement. The results in this chapter have shown how the PTD measure

represents an effective method to perform global optimisations. Although the

improvement of the global movements is limited by data dependencies and influ-

enced by the run-time behaviour of the programs, the results showed an overall

improvements to the local scheduling. Code motion was responsible for the major

percentage of improvement within global optimisations.

This chapter has shown that the PTD scheduler achieves better performances

in terms of issue unit stall reductions and instruction execution times, when com-

pared to two well-known schedulers. Furthermore, the PTD scheduler exhibits a

better algorithm complexity.

202

Chapter 8

Conclusions and Future Work

The clock in a synchronous processor architecture provides precise timings for co-

ordinating its operations. The trend towards increasing the clock speed will yield

diminishing returns in the future for reasons outlined in Chapter 3. This thesis

considered the problem of compiling for a micronet-based processor architecture

which is composed of a network of functional units which operate concurrently and

communicate asynchronously. Compiling for such a target poses unique problems

due to the lack of precise timing models for the instructions.

Compiler optimisations which are dependent on the platform require a good

understanding of the interactions between the back-end of the compiler and the

target architecture. Optimising compilers for synchronous RISC architectures

have been successful for the reason that precise timing models of datapath op-

erations have been available. The datapath components have latencies defined

in terms of clock cycles. The instruction scheduler in the back-end of the com-

piler uses this information to produce an efficient schedule (but not necessarily

an optimal one) which minimises the makespan of the program. In the case of

micronet-based asynchronous architectures by contrast, it is impossible to pre-

cisely model the instruction latencies, and hence the run-time behaviour of the

programs. The latencies of the operations depend on a number of factors such as

the input data, the type of components and the interaction between them. The

order of instructions and their time of completion cannot be consistently pre-

dicted. This makes the task of optimising the instruction schedule for a micronet

target a challenging one.

The micronet architecture has functional units connected as a network, which

operate concurrently and supports fully out-of-order write-back. Instructions are

issued at a rate which is limited by the dependencies between the instructions and

the availability of functional units. The PTD scheduler aims to produce an in-

struction schedule so that they can be issued in quick succession without stalling

203

the issue unit either due to data dependencies or resource contention. Penalties

are assigned to instructions with true dependencies and those which compete for

the same functional unit. PTD first performs optimisations on the instructions

within basic blocks to reduce their penalties. Next, global optimisations tech-

niques which use code motion, code and tail duplication and block merging are

applied to try and reduce the penalties remaining after local scheduling.

8.1 PTD Scheduler

8.1.1 Penalty Measure

The penalty measure is a useful metric for describing the goodness of a schedule

at compilation time for programs targeted at micronet architectures. Although

the measure is not strictly monotonic, however, in practice, schedules with lower

measures display corresponding lower execution times. The measure has been

demonstrated to be effective as a metric for the search heuristic when analysing

schedules. PTD prioritises the order in which the penalties due to different types

of instructions are reduced: those due to memory instructions are tackled first as

they exhibit the longest delays, followed by the penalties due to true dependencies

and the rest of the dependencies.

Such a priority scheme makes sense as long as the memory unit remains the

slowest component in the datapath. For instance, if the latencies of the functional

units are assumed to be even, then so would the priorities as the data dependencies

due to either memory or arithmetic instructions would cause the same amount of

stall and should therefore be penalised equally. Branch instructions preserve their

priority as the cost of stalling the issue unit for every control flow change remains

unaltered. Experiments using the same minimum and maximum latencies for

all the architectural components are summarised in Table 7.16. They yielded

the following results in the 1 AU case for the two largest benchmarks: PTD

outperformed the other two competitors and was able to cope with the low priority

penalties just as well.

8.1.2 Local Optimisations

The local PTD scheduler is different from other traditional techniques which are

all based on a list-based scheduler. The penalty measure is simple yet an effective

metric for statically evaluating the goodness of a schedule. When there is at least

one penalty, the scheduler will traverse the basic block to find an independent

instruction to reduce the penalty. Penalties due to resource contentions are re-

204

duced first; those due to data dependencies in consecutive and non-consecutive

instructions are next tackled in that order. Safety conditions have been defined to

restrict the movement of candidate instructions when the penalty measure cannot

be strictly decremented. It terminates after two passes after the penalty measure

cannot be reduced.

The complexity of the PTD scheduler is derived to be 0 (et 2 + n - e), where

e is the number of penalties in the basic block, n is the number of instructions

and t is the distance in terms of number of instructions between the penalised

and candidate instructions. It is observed that the complexity is governed by

the number of penalties in a basic block, rather than the number of instructions.

Also note that the number of penalties is reduced as the algorithm progresses.

The figures for average compilation times for the benchmarks in Section 7.4.1.1

confirm the speed advantage over list-based schedulers. This is an useful attribute

for just-in-time compilers which have fast scheduling requirements [37] [160].

Memory disambiguation and subgraphs were introduced to further reduce pen-

alties in the PTD scheduler. Without the former, memory instructions must be

considered to be dependent as they might refer to the same location. Results in

Section 7.4.1.2 have demonstrated that a considerable number of memory refer-

ences can be disambiguated which in turn increases the scope for instruction-level

parallelism in the program. Subgraphs were introduced to cope with the negat-

ive effects of patterns termed as overlapping penalties. These are the result of

reducing penalties with neighbouring instructions under the safety conditions.

Subgraphs mask parts of the DAG which constraints the search for candidate in-

structions, which reduced the effects of overlapping penalties. Although in some

of the cases the introduction of constraints in a basic block with meagre paral-

lelism resulted in under-optimised code. However, in general, the introduction of

sub-graphs achieved better results in the case of the PTD scheduler.

8.1.3 Global Optimisations

The global optimisations presented in this thesis are an extension of the local

scheduler when the parallelism found within basic blocks is limited as reflected

in a number of penalties left by the local scheduler. Global movement of instruc-

tions after local scheduling offers the possibility of reducing the penalty measure

further. The global extensions to the local PTD scheduler included code motion,

code and tail duplication and code merging. These well-known techniques were

implemented in the context of a micronet-based asynchronous architecture, and

applied using the penalty-measure metric.

205

Dominator and post-dominator information from a region were used to de-

termine which basic blocks were control-independent, so that instructions could

be moved under the same control conditions. Code duplication is performed when

code motion cannot be applied, mainly due to data dependencies. Selected in-

structions are moved to the parents' basic blocks, in a further attempt to reduce

the penalties. Results in Chapter 7 have shown that with this order, the instances

of code duplication can be kept to a minimum.

A generalisation of code duplication has also been considered as a global op-

timisation. Tail duplication copies and moves all the instructions of the basic

block to its parents, as opposed to moving only the penalised instructions. These

techniques were combined and applied to the PTD scheduler.

8.1.4 Performance of the PTD Scheduler

The main objective of the PTD scheduler was set to reduce as much as possible

the stalls in the issue unit which are caused by data dependencies and resource

contentions in a micronet-based processor. The results of the issue unit stalls

presented in Section 7.4.1.5 showed that the local PTD scheduler achieved com-

parable levels of reduction against the other schedulers, and in some cases, the

reductions were even higher. In general, the PTD scheduler reduced considerably

more stalls due to resource contentions than the other two. Even though PTD

fared less well in the case of stalls due to data dependencies for the four configur-

ations, the overall performance of the PTD scheduler is better against the other

schedulers. Therefore the quality of the code produced by the PTD scheduler is

comparable to its two competitors, but with a much improved time complexity.

Benchmarks with extensive use of memory instructions are limited as there is

only one memory unit considered. The ii and m88k benchmarks have the greatest

demand for the memory unit, and their results suffer most when the architecture is

scaled. Their performance can be improved by increasing the number of memory

functional units. This requires a dynamic memory disambiguator if parallelism

between memory instructions is to be exploited.

8.2 Architectural Model

Although the issue unit of the micronet-based processor issues one instruction at a

time, it operates at a faster speed than the rest of the components, which emulates

multiple issue of instructions. However, even when the architecture is scaled

and global optimisations are performed, the available parallelism is not sufficient

to maintain the issue unit without being stalled. Even when an independent

instruction with its operands available is scheduled after an instruction that is

stalled waiting for a result to be ready, the former instruction has to wait until

the latter is issued.

A centralised issue unit represents a bottleneck, a characteristic of scalar pro-

cessors. A possible solution is to have a multiple-instruction issue unit, but this

would be considerably complex. The instruction set usually has to be modified

as well, since independent instructions have to be made available by the compiler

to the architecture explicitly.

Another source of bottleneck is the presence of only one memory unit in

the architecture. It was demonstrated that benchmarks with large percentages of

memory instructions do not scale well. Having more than one memory unit would

enable more parallelism to be exploited, but a dynamic memory disambiguator

must be included. An asynchronous design of a memory disambiguator represents

a challenge, since the memory operations must be compared in a buffer, a process

which must be synchronised which would damage average-case advantages.

The model described in Chapter 4 considers a datapath in which functional

units do not have queues for holding more than one instruction when the func-

tional unit is busy. The use of queues is characterised by a decoupling effect in

which undesirable latencies are introduced. These latencies pose, in general, a

problem for the data consistency scheme, since more instructions can be in-flight

at the same time. In turn, the issue unit will be stalled by data dependencies most

of the time, and less from resource contentions. The register locking mechanism

will then have to be questioned.

Even with the use of queues, the PTD scheduler could still penalise the data

dependencies, since the price of stalling the issue unit would hold. The penal-

ties from memory instructions would not be as expensive, since a queue could

compensate with their delay. If the processor changes towards an out-of-order

issue unit, the behaviour will become more dynamic (dynamic scheduling), the

complexity in hardware will be increased substantially, but more importantly, the

model for the compiler will become more imprecise.

8.3 Future Work

The PTD scheduler has demonstrated that in the attempt to minimise the cost of

data dependencies and resource contentions in an asynchronous processor, better

schedules can be achieved relatively fast. However, when key penalties, i.e. ones

207

located in the critical path, could not be reduced, the schedules can end under-

optimised.

Part of the future work would be to include a specific scheduling pass to reduce

penalties due to the critical path. These would normally include, a first pass for

consecutive penalties and a second pass for non-consecutive penalties. After these

passes, the rest of the penalties would be dealt with as normal.

For global optimisations, an immediate work would be to include movement of

instructions in the direction of the flow of control. This option may enable more

movement, since it was observed that very little code is able to move. Another

possible consideration is to change the method of moving a penalised instruction,

by finding independent instructions to remove the penalties instead, as in the

local scheduling approach.

8.3.1 Profile Information

The local and global optimisations described in this thesis have been developed

without the use of profile information. The profile information could help tune

both the global as well as local optimisations.

Using the statistics for frequency of execution, a heuristic for often-used basic

blocks could be tailored for deciding whether or not to use subgraphs during local

scheduling. In basic blocks with very limited parallelism, the option for applying

subgraphs can be overturned to avoid the restrictions introduced for selecting

candidate instructions. On the other hand, more scheduling passes can be spent

on a basic block which is heavily executed, with the aim of reducing penalties

remaining after the normal passes. For example, if a consecutive penalty could

not be removed after the first and second scheduling passes, then the first pass

could be invoked again, in a second attempt to reduce it. Any movement of the

previously-executed second pass would change the starting order, so that it may

be possible to reduce it after a rerun of the first scheduling pass.

For global optimisations, profile information could be used in frequently ex-

ecuted paths to put more effort in reducing penalties that could not normally

be reduced. In fact, the use of speculative code motion could be applied if it

can be statically evaluated that the cost of the increase of number of instructions

executed can be outweighed by the gain obtained from penalty reductions.

Another consideration for global optimisation is to concentrate only on the

penalty reductions in paths where the program execution spends most of the

time. This would result in a more efficient method to improve the code with

faster compilation times.

208

8.3.2 Other Optimisations

The global optimisations presented in this thesis are considered as acyclic optim-

isations. They represent an initial search space of code improvement around the

PTD scheduler. Other global optimisations such as cyclic optimisations can be

added to expose more parallelism. Loop unrolling is an example that will impact

programs which contain loops.

8.4 Conclusions

Back-end compiler optimisations rely on an accurate timing model of the target

architecture. This thesis has addressed the problem of optimisations for targets

such as micronet-based asynchronous architectures which have uncertain laten-

cies. The PTD measure was conceived as a way of statically determining the

effect of stalls due to data dependencies and resource contentions in such archi-

tectures. Local and global schedulers based on the PTD measure were devised

and their goodness over competing schedulers have been demonstrated for a set

of benchmarks. PTD-based schedulers will find applications in future processor

architectures in which uncertain communication latencies will dominate the cost

of program execution.

209

Appendix A

Published Papers

A.1 Scheduling Instructions with Uncertain
Latencies in Asynchronous Architectures

Title: 	Scheduling Instructions with Uncertain Latencies in Asynchronous

Architectures.

Authors: 	Damal K. Arvind and Salvador Sotelo-Salazar.

Presented at: The Third International Euro-Par Conference.

Place: 	Passau, Germany.

Date: 	 August 1997.

Publisher: 	Springer Verlag.

210

Scheduling Instructions with Uncertain
Latencies in Asynchronous Architectures

D. K. Arvind and S. Sotelo-Salazar

Department of Computer Science, The University of Edinburgh,
Mayfield Road, Edinburgh EH9 3JZ, Scotland.

Abstract. This paper addresses the problem of scheduling instructions
in micronet-based asynchronous processors (MAP), in which the laten-
cies of the instructions are not precisely known. A PTD scheduler is
proposed which minimises true dependencies, and results are compared
with two list schedulers - the Gibbons and Muchnick scheduler, and a
variation of the Balanced scheduler. The PTD scheduler has a lower
time complexity and produces better quality schedules than the other
two when applied to twenty-three loop- and control-intensive benchmark
programs.

1 Introduction

There has been a revival of interest in the use of asynchrony, albeit in a restricted
form known as self-timing, in the design of processor architectures. Asynchron-
ous circuits offer some distinct advantages. Their power consumption is generally
much lower compared to their synchronous equivalent. This is because at any
time only parts of the asynchronous system are active as required, with the rest
remaining in a quiescent state. Self-timed systems allow a modular approach to
processor design whereby parts can be added and deleted with little impact on
the rest of the system. These systems are also robust to environmental changes.

The feature which is of most interest to our work and which was first re-
cognised in the Micronet model [1] is that asynchrony offers scope for fine-grain
concurrency in the processor architecture. The micronet model exposes this fea-
ture naturally, and asynchronous architectures based on this model are better
able to exploit instruction-level parallelism.

A micronet-based architecture is viewed as a network of typed functional
units. These units operate concurrently and communicate asynchronously with
the rest of the architecture. The functional units themselves can be described
at different levels of abstraction. In this paper the architecture is composed of
the following functional unit types: one or more Arithmetic Unit (AU), a Logic
Unit (LU), a Memory Unit (MU) and a Branch Unit (BU).

The issue and execution of an instruction consist of a sequence of micro-
operations involving the Issue Unit (IU), the Register Bank, and the appropriate
functional unit. An instruction is issued when both its operands are available.
Once the instruction has been issued, it runs to completion unless it is stalled

due to contention for resources in the trajectory of the instruction at any one
of these points: the read ports, the functional unit, the write-back port. The
micronet model enables concurrent execution of the micro-operations of the dif-
ferent instructions in flight, and minimises the costs of instruction stalls due to
resource contentions. The latency of the instruction depends on a number of
factors: its type, the data on which it operates, and the contention for resources
which depends on the mix of instructions.

This paper proposes a relatively inexpensive method for scheduling instruc-
tions within the basic block. The objective of the scheduler is to ensure the rapid
issue of independent instructions, thereby minimising the number of stalls of the
issue unit, and in reducing the contention for the functional units by enabling in-
structions of different types to be in flight at the same time. This is achieved by
assigning penalties to data dependencies and successive instructions of the same
type, and transforming the schedule by moving instructions to reduce the pen-
alties. This results in a schedule in which dependent instructions are separated,
and independent instructions of different types are issued in succession.

The next section describes the traditional list scheduling algorithms such as
Gibbons and Muchnick and the Balanced schedulers.

2 Traditional scheduling heuristics

2.1 The Gibbons and Muchnick (GM) scheduler

This is a well-known example of a list scheduling algorithm proposed originally
for scheduling instructions in pipelined architectures [2]. The algorithm selects
the instructions to be scheduled from a directed acyclic graph, beginning at
the roots. The instructions are selected for scheduling if all their immediate
predecessors have been scheduled. These ready instructions are prioritised on the
following basis: if possible, an instruction is scheduled that will not interlock with
the one just scheduled; given a choice, an instruction will be scheduled which is
most likely to cause interlocks with instructions after it. The complexity in the
absence of any lookahead in the instructions is 0(n 2), where n is the number of
instructions in a basic block.

2.2 The Balanced scheduler

The Balanced scheduler [3] was devised to take account of unpredictable memory
access latencies. The idea is to compute weights for load instructions based on
the number of available independent instructions. The instructions are scheduled
as in a traditional list scheduler with independent instructions being distributed
behind loads to buffer for unpredictable memory accesses. This idea is extended
beyond the load instruction to all the instructions in the MAP architecture. The
priority for ready instructions is based on a weighted sum of values derived from
MAP tailored heuristics - whether the instruction uses the same resources as the
previous scheduled one; the number of immediate successors of the instruction;

the length of the longest path from the instruction to the leaves of the DAG;
and the number of source registers which are freed should the instruction be
scheduled which effectively takes account of the register pressure.

3 The "Penalise True Dependencies" (PTD) scheduler

The essence of this heuristic is to identify true data and resource dependencies
and re-order, where possible, the instructions such that their detrimental effect
is reduced. The schedule is allocated a penalty measure based on the number
and type of these dependencies. A true consecutive data dependency is penalised
by one which is treated as the base case. If the dependency is with a branch or
load instruction then it is penalised more severely. The actual value depends on
the relative latencies of the functional units as shown in Table 1.

Instructions with resource dependencies are treated in a similar manner. If
there are say p functional units of Type A, q units of Type B and r units of Type
C, then a sequence containing more than p consecutive instructions of Type A, or
q of Type B, or r of Type C will incur penalties. This assumes that the latencies
of the three types of FUs are approximately the same; the run-length of the
instructions can be suitably amended to take account of different latencies. The
algorithm to derive this measure has a complexity of 0(n).

Cases of Consecutive Separated
dependencies instructions by one inst.

True dependency
with a load inst. 3 1
True dependency

with a branch inst. 2 0
Resource dependency

within mem. inst. 1 0
Normal true
dependencies 1 0

Table 1. Table of penalties for true data dependencies.

We next demonstrate the correlation between the penalty measure consid-
ering only the true data dependencies and the makespans of the schedules for
the program in Figure 1. The target asynchronous architecture has three types
of functional units: an arithmetic unit (AU), logic unit (LU) and the memory
unit (MU). The latency values for the units ranged over an interval, as shown in
Table 2, with a Gaussian distribution. The results from a stochastic simulator
which exhaustively simulated all the schedules (24,192) and averaged the results
over 20 runs are shown in Figure 2. This result is representative of simulations
of other programs with different spread of latencies. We can observe the trend
that the penalty measure increases in step with the makespans of the schedules.
This should ideally be a strict monotonic function, but the overlaps between the

schedules of neighbouring penalties are tolerable for the heuristic approach. A
scheduler based on minimising the penalty measure is introduced in the next
section.

L4. main:
muli $13,$9,4
la $14,$29,0

main() { addu $15,$14,$13
muli $24,$9,4
la $25,$29,0

mt i, 	j, 	n = 	10; addu $11,$25,$24
mt x[10]; 1w $12,$11,0

muli $13,$10,4
for (i = 0; 	i < n; 	i++) la $14,$29,0
for (j = 0; 	j 	< n; 	j++) addu $24,$14,$13

x[i] = x[i] 	* x[j]; 1w $25,$24,0
mul $11,$12,$25
SW $11,$15,0

} addui $10,$10,1
sit $12,$10,$8
bt $12,L4.main

Figure 1. C and MAP assembly code from our example.

Component
type

Minimum
latency

Maximum
latency

Issue Unit (IU) 1.00 ns 2.00 ns
Input buses 2.00 ns 4.00 ns
Output buses 2.00 ns 4.00 ns
Arithmetic Unit (AU) 4.00 ns 8.50 ns
Logical Unit (LU) 2.00 ns 7.00 ns
Memory Unit (MU) 10.00 ns 20.00 ns

Table 2. Latencies values for the target architecture.

3.1 The PTD scheduler

The PTD scheduler works in two phases: in the first phase the contention for
resources is minimised, and in the second phase consecutive data dependent
instructions are separated.

In the first phase, the types of consecutive instructions are compared and
instructions are moved, where possible, so that the overall penalty measure is
reduced, such that the number of consecutive instructions of the same type is
no greater than the number of functional units of that type.

Makesparis in function of the PTD measure
17000

16500

16000

15500

15000

14500

14000

13500

13000

12500

12000
3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14

PlO measure

Figure 2. Execution distribution for the example.

In the second phase, the schedule is again scanned from start to finish,
to identify consecutive data dependencies, and independent instructions are
sandwiched in between them so that the overall penalty measure is reduced
to zero or cannot be reduced any further due to the lack of suitable instruc-
tions. The details of the PTD scheduler are shown in Figure 3. The functions
PTD -arrange Jeft () and PTD_arrange..right () traverse the schedule in both
directions in search of independent instructions for insertion immediately after
the penalised one. Two transformations are employed: a swap operation and a
move-ahead operation and their use is illustrated in the following example.

Let 1, no, it and o represent consecutive instructions in a schedule with a data
dependency between n and o. This is represented by n —* o. The conditions
for performing a swap(m, it) transformation which eliminates (or reduces) the
penalty to o, are the following:

- in 	it (no is independent of n),
- in 74 o (not producing a penalty) and
—174n

If the penalties go beyond consecutive instructions then in order to ensure
that the penalty measure will be reduced after the swap, the necessary condition
is that the sum of penalties before the movement is greater than the measure
after the transformation is made.

The conditions for performing a m.ove_aheod(x, n) (moves x ahead of n) to
eliminate (or reduce) the penalty to o, are the following:

- 	xIIa,...,xIIl,xlIzn,xIIn,
- x 74o and
— 	74 .r. 1 where x_ 1 and x1 are the instructions previous and following

i, respectively.

void PTD_second_phase(dagnodes *root) {
measure = PTD_measure(root, second-phase);
if (measure > 0)
do {

node = root;
last-measure = measure;

while (node ! NULL) {
if (node -> PTD.penalised > 0)
PTD_arrange_left (node);

if (node -> PTD.penalised > 0)
PTD_arrange_right (node);

node = node -> next;
}

measure = PTD_measure(root, second_phase);
} while (measure < last-measure && measure > 0);

}

Figure 3. The PTD scheduling algorithm - Phase 2.

Again to generalise the rules to allow a move-ahead, the sum of penalties
before the insertion must be greater than the total number of penalties after the
instruction has moved.

The conditions just outlined apply for the PTD -arrange left () function
which examines the left-hand side of the penalised instruction. The analogous
conditions apply for the PTD -arrange right() function but have been omitted
for the sake of brevity. These conditions are sufficient to preserve the semantics
of the program and reduce the PTD measure.

There will be cases where the only way to decrease the PTD measure of a
schedule would be to replace a high penalty, i.e. load from memory, with a less
expensive one, such as a "move register" instruction. So in terms of the penalty,
one of 3 is reduced to 2 by moving an offending instruction, but the goal of
reducing the overall measure is still accomplished.

The complexity of the PTD scheduler is 9(n e) where e is the number of
penalties in the schedule. The worst case is one in which the schedule has at
most n—i consecutive dependencies (a pure sequential code) giving a complexity
of (n 2) and the best case is 0(n). The linear-time complexity for the PTD
scheduler is better than the 0(n 2) for the list scheduler [2] and 0(n 2 a n) 1 for
the balanced scheduler [3].

4 Results

We next compare the quality of schedules produced by the Balanced, Gibbons
and Muchnick (GM) and the PTD schedulers for a range of benchmarks which

1 a is the inverse of the Ackerman function.

represent both loop-intensive (Livermore loops) and control-intensive categories
of programs. These were compiled on the SUIF Compiler for the MAP tar-
get, but without any MAP-specific optimisations, and provided the same base
schedule for the three schedulers under comparison.

The schedules were simulated on a discrete-event model of the MAP archi-
tecture. An architecture file describes the functionality and interconnection,
and the spread of latencies as shown in Table 2. The distribution of latencies
were chosen to best reflect the behaviour of the functional unit. The bimodal
distribution for the Memory Unit captures the behaviour due to cache hits and
misses. The distribution of the latencies for the Arithmetic Unit is based on the
graph in Figure 4 in [4], and the distribution is uniform for the Logic Unit.

The simulation results presented in Figure 4, represent the average of five
simulation runs for each program. They represent the percentage improvement
with respect to the base case, i.e. the SUIF compiler output. The PTD scheduler
outperforms the other two schedulers on both the control-intensive and loop-
intensive programs.

When the number of AUs is increased from one to two (Fig. 5), we see a
marked improvement in the schedules, but this tapers off when the AUs are
increased further. This could be improved upon by scheduling instructions bey-
ond the basic blocks. The favourable run-time complexity of the PTD algorithm
makes this a practical proposition.

3

30%

2 6

2 O

1

1 O

O5&

E
EL

Figure 4. Average improvement for the whole set of benchmarks.

5 Conclusions

The PTD scheduler provides a simple yet effective method for scheduling in-
structions within basic blocks for programs running on MAP architectures. It
has a better time complexity than the other two well-known list schedulers, and

1.0

0.9

0.0

0.7

0.0

0.9

0.4

0.3

0.2

0.1

0.0

I1 AU
2AU
2AU
4 A U

Figure 5. Ratio between the 1 AU and the other configurations.

the quality of the PTD schedules are better for a range of control- and loop-
intensive benchmarks. The method reduces the stalls of the Issue Unit due to
true data dependencies between instructions and enables better utilisation of
the functional units by reducing the resource contention between instructions.
The performance of the scheduler was investigated when the number of Arith-
metic Units was scaled from 1 to 4. Future work will investigate the scheduling
of instructions beyond the basic block boundaries for better utilisation as the
functional units are scaled.

Acknowledgements

We would like to thank the members of the MAP group for useful discussions.
S. Sotelo-Salazar was supported by a postgraduate studentship from the Science
and Technology National Counsel in Mexico (CONACYT).

References

D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asyn-
chronous processor architectures. Proc. 3rd. International Workshop on
Algorithms and Parallel VLSI Architectures, Leuven, Belgium, August 1994,
pp. 203-215.
P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. Proc. SIGPLAN 1986 Symposium on Compiler Con-
struction, SIGPLAN Notices, 21(7), July 1986, pp. 11-16.
D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction scheduling
when memory latency is uncertain. In ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation, SIGPLAN Notices,
28(6), June 1993, pp. 278-289.
D. J. Kinniment. An evaluation of asynchronous addition. IEEE Trans-
actions on Very Large Scale Integration (VLSI) systems, March 1996, pp.
137-140.

A.2 An Improved PTD Scheduler for
MAP Architectures

Title: 	An Improved PTD Scheduler for MAP Architectures.

Authors: 	Damal K. Arvind and Salvador Sotelo-Salazar.

Presented at: The Forth UK Asynchronous Forum.

Place: 	Imperial College of Science, Technology and Medicine. London,

United Kingdom.

Date: 	July 1998.

219

An Improved PTD Scheduler for MAP
Architectures

D. K. Arvind and S. Sotelo-Salazar
Department of Computer Science, University of Edinburgh

Mayfield Road, Edinburgh E119 3JZ, Scotland.

Abstract

The Penalise True Dependences (PTD) scheduler considered the
effects of true dependences between successive instructions and con-
tention for resources to better utilise the functional units in micronet-
based asynchronous processors. This paper presents an improved ver-
sion which considers dependences beyond successive instructions, and
identifies clearly through subgraphing instructions which could be mov-
ed to reduce the effects. Performance results are presented where
the improved PTD scheduler compares favourably against two well-
known list schedulers - the Gibbons and Muchnick [4] and the balanced
scheduler [5].

1 Introduction

Micronet-based asynchronous processor (MAP) architectures [1] consist of
a network of functional units which operate concurrently and communic-
ate asynchronously. The issue and execution of instructions consist of a
sequence of micro-operations involving the Issue Unit, Operand Fetch Unit,
the Register File and the appropriate Functional Units (Figure 1). An in-
struction is issued when its operands are available. It runs to completion
unless it is stalled due to resource contention at any of the following points
in the trajectory of the instruction: the read ports of the register files, the
functional units, and the write-back port. The latencies of the instructions
are not fixed (in contrast to clocked processors), but depend on a num-
ber of factors: instruction type, the data on which they operate, and the
contention for resources which in turn depends on the mix of instructions.
Data dependences between successive instructions introduce other delays in
asynchronous architectures. In synchronous datapaths, for instance, we can
predict exactly when the result of a previous instruction will be available in
order to issue the following instruction. In the case of the micronet the issue
unit will have to stall for a period of time until the result of the previous
instruction is written back to the register file.

In scheduling instructions for a micronet-based target, we seek to min-
imise the effects of resource contention and data dependences in an envir-
onment where the latencies of the instructions are themselves not fixed but
vary over a range. In a previous paper [2], we had proposed a method for
scheduling instructions for MAP datapaths. The Penalise True Dependence
(PTD) scheduler calculates a penalty measure which reflects the degree of
resource contention and stalls due to data dependences. The scheduler ad-
dresses the problem by moving instructions around which would result in a
legal schedule with a lower penalty measure. (Tables 1 and 2 give the range
of latencies for the functional units and the penalty measures).

Figure 1: The MAP target architecture

This paper presents improvements to the PTD scheduler. Firstly, candid-
ates for penalties are extended to include dependences beyond just successive
instructions. Secondly, the basic blocks of instructions are subdivided into
subgraphs to scope the candidates selected for moving instructions.

In the rest of this paper, the algorithm is described and its time com-
plexity is derived, and performance results are presented where the improved
PTD scheduler compares favourably against two well-known list schedulers
- the Gibbons and Muchnick [4] and the balanced scheduler [5].

Component
type

I Minimum
latency

Maximum
latency

Issue Unit (IU) 1.00 ns 2.00 ns
Input buses 2.00 ns 4.00 ns
Output buses 2.00 ns 4.00 ns
Arithmetic Unit (AU) 4.00 ns 8.50 ns
Logical Unit (LU) 2.00 ns 7.00 ns
Memory Unit (MU) 10.00 ns 20.00 ns

Table 1. Latencies values for the target architecture.

Cases of Consecutive Separated
dependences instructions by one inst.

True dependency
with a load inst. 3 1
True dependency

with a branch inst. 2 0
Resource dependency

within mem. inst. 1 0
Normal true
dependences 1 0

Table 2. Table of penalties for true data dependences.

2 An improved PTD scheduler

The objective of the scheduler is to minimise, where possible, the penalty
measure for a given schedule of instructions within a basic block. The ap-
proach is a greedy one, whereby candidates for movement are chosen such
that no new penalties are introduced. This guarantees that the penalty
measure is always reduced after each movement. Consecutive instructions
are assigned higher penalties as they can potentially result in larger stalls.
The value of the penalty falls with the distance between the producer and
consumer of the result. The maximum distance that we would need to con-
sider is equal to the number of functional units which can potentially operate
in parallel.

The value of the penalty also depends on the types of functional units
involved. For example, the cost of a true dependency between a memory load
instruction is higher than between a register one. Tables 1 and 2 illustrate
the latencies of the different units and the respective penalties. The same
idea is extended to penalising resource conflicts.

2.1 Complexity

The time complexity of the improved PTD scheduler is now 0(pnec+pnc+
pn), where n is the number of instructions in the basic block, e is the
number of penalties, p is the number of functional units in the architecture,
and c is a small constant (c = 2, 3,4). If we analyse the above expression,
the complexity of the scheduler can be reduced to 0(ne). However, in
general conditions, as the algorithm progresses the number of penalties is
reduced and therefore n becomes bigger than e, which means that the
complexity can be reduced to 0(n).

The upper bound, which is represented by a pure sequential code, is
0(n2), with e = n—i and c = 2. Conversely, the lower bound is represented
by a pure independent code and is the order of 0(n), with e = 0.

2.2 Subgraphs

A basic block is composed of a group of instructions that are related in
an ordered way which perform computation over data and which may be
divided into subcomponents (subgraphs) that perform part of the overall
computation. For example, two separate subgraphs would be the compu-
tation of an address and the data that would be loaded or stored in that
address. An example of a directed acyclic graph DAG with two subgraphs
is shown in Figure 2. The node numbering reflects the order in the schedule
and the highlighted arcs denote penalties.

A reordering of instructions by moving instruction 5 in between instruc-
tions 2 and 3, and instruction 6 in between 3 and 4, resulting in the sequence
"2 5 3 6 4", would improve the penalty measure. Any further improvement
is restricted by the overlapping chains of dependences between 2 and 3, and,
5 and 6. Ideally, an unrelated instruction between 5 and 3 would further
reduce the penalty measure. Dividing the basic block DAG into subgraphs
identifies potential source of independent instructions which can be moved to
a smaller search area. In the example, the subgraph on the right is a better
prospect for independent instructions to move between 2 and 3, and, 3 and
4, and would not result in overlapping chains. In practice, there is a greater
probability of finding independent instructions from other subgraphs.

The selection and size of the subgraphs deserve attention. If the size is
too small, then there is a greater chance of producing overlapping chains. If
the size is too large, then the advantages of the subgraphs are diluted.

The granularity concern for the scheduler can be exemplified in the DAG
example in Figure 2. If we choose a subgraph formed from nodes i, 2, 3 and
4, and another subgraph from nodes 5, 6, 7, 8 and 9, the scheduler would try
to intermix the penalties marked and this will end with overlapping chains.

Figure 2: A basic block decomposed by two subgraphs.

The selection of subgraphs is based on the number of predecessors of
each instruction and the ratio between the number predecessors and the
height from its leaves. The number of predecessors is needed to indicate the
size of the DAG at the point and the ratio between this parameter and the
actual height is a rough measure of the potential parallelism in that part of
the DAG.

3 Results

The improved PTD scheduler was compared against two other local sched-
ulers, the balanced scheduler [5] and the original list scheduler from Gibbons
and Muchnick (CM) [4]. In all the cases the scheduling was performed before
register allocation and were tested over a set of benchmarks. An event-driven
stochastic simulator was used to simulate them. The target architecture had
one memory unit, one arithmetic unit, one logical unit and one branch unit.

The set of benchmarks chosen was the set of Livermore loops [3] (few
basic blocks), and a set of control-intensive programs with a larger number
of small basic blocks. Figure 3 depicts the comparison in performance for the
three schedulers. The results presented are the average of five simulations
for each benchmark.

The improved PTD scheduler consistently outperforms the other sched-
ulers for the two set of benchmarks. In the case of Loop7, we see the detri-
mental effect of overlapping chains which are located in the critical path of
the basic block in spite of subgraphing.

50% I 45%

lit [I 35% 1

25% 	 ii • L 	Ill 	Ii nil 	In ii 	0 	DI
Ii 	U 	II

20%
I

1H

III 	H 	Ii.111111 	liii
II 	Iii

liii 	II! 	liii
II 	kM 	iii

III
Ill 	I 	1

ILl 15% I 	hit 'F IIi 	H I. 	III Ill 	iiI
10% I 	H 	I I

[F I 	H H d o 	li 	ii 	ii i 	i 	iii 	dii
lit

1111 	III 	ill
I, 	lift 	lilt lilt 	lilt 	Ill! 	lilt ' 	El

U 	• 	• 	C

L h.•Bal. sch.LI1 PTo.ch

Figure 3: Performance comparison between the three schedulers.

4 Conclusions

The results from the simulations show that the PTD scheduler produces
better quality schedules and has a lower time complexity than the list and
balanced schedulers (The complexity of the list scheduler being 9(n 2), and
0(71 2 a(n)) for the Balanced scheduler). The potential limitation is the in-
troduction of overlapping chains, but in most cases this can be avoided by
dividing the basic blocks into subgraphs.

Acknowledgement s

We would like to thank the members of the MAP group for useful discussions.
S. Sotelo-Salazar was supported by a postgraduate studentship from the
Science and Technology National Counsel in Mexico (CONACYT).

References

D. K. Arvind and V. E. F. Rebello. Instruction-level parallelism in asyn-
chronous processor architectures. Proc. 3rd. International Workshop on
Algorithms and Parallel VLSI Architectures, Leuven, Belgium, August
1994, pp. 203-215.

D. K. Arvind and S. Sotelo-Salazar. Scheduling Instructions with Uncer-
tain Latencies in Asynchronous Architectures. Proc. 3rd. International
Euro-Par Conference. August 1997, pp. 771-778.

J. Feo. An analysis of the computational and parallel complexity of the
Livermore Loops. Parallel Computing Vol. 7, 1988, pp. 163-185.

P. B. Gibbons and S. S. Much nick. Efficient instruction scheduling for a
pipelined architecture. Proc. SIGPLAN 1986 Symposium on Compiler
Construction, SIGPLAN Notices, 21(7), July 1986, pp. 11-16.

D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction schedul-
ing when memory latency is uncertain. In ACM SIGPLAN 1993 Con-
ference on Programming Language Design and Implementation, SIG-
PLAN Notices, 28(6), June 1993, pp. 278-289.

Appendix B

Description File

#System

II-UNIT 0 1 3 1.00 1.55 2.00 0.00 0.50 1.00

XBUS 1 1 3 2.00 2.70 4.00 2.00 2.70 4.00

YBUS 1 1 3 2.00 3.15 4.00 2.00 3.15 4.00

ALUI 2 1 3 4.00 6.50 8.50 0.00 0.00 0.00

LUNIT 4 1 3 2.00 4.00 7.00 0.00 0.00 0.00

ZBUS 6 1 3 2.00 2.85 4.00 2.00 2.85 4.00

XFBUS 1 1 3 2.00 3.05 4.00 2.00 2.95 4.00

YFBUS 1 1 3 2.00 3.10 4.00 2.00 3.00 4.00

ALUF 3 1 3 6.00 6.95 8.00 0.00 0.00 0.00

ZFBUS 6 1 3 2.00 3.05 4.00 2.00 3.00 4.00

MUNIT 5 1 3 10.00 15.00 20.00 0.00 0.00 0.00

WBUS 1 1 3 2.00 3.25 4.00 2.00 3.25 4.00

#Enddef

#Group 0 Integer Alu Group

Number of stages 4

II-UNIT

XBUS YBUS

ALt) I

ZBUS

#Instruct ion

add 	ALU_SUM

addi ALU_SUM

addu ALU_SUMU

addui ALU SUMU

sub 	ALU_DIF

subi ALU_DIF

subu ALU_DIFU

subui ALU DIFU

neg 	ALU_MEG

227

negu ALU_NEGU

mov 	ALU_CPY
la 	ALU_LDA
ii 	ALU_LDC
lai 	ALU_LDC
rem 	ALU_REM
remi ALU_REM
remui ALU_REMU

div ALU_DIV
divi ALU_DIV
divu ALU_DIVU
divui ALU_DIVU

mul 	ALU_MUL
muli ALU_MUL
mulu ALU_MULU
mului ALU_MULU

mtcl ALU_CPY
mtcLd ALU_CPY
ctcl ALU..CPY
ctcl.d ALU_CPY

#Group 1 Floating ALU Group
Number of stages 4
II-UNIT
XFBUS YFBUS
ALUF
ZFBUS

#Instruct ion
add.s FALU_SUM
sub.s FALU_DIF
mul.s FALU_MUL
div.s FALU_DIV

add.d FPILU_SUM
sub.d FALU_DIF
mul.d FALU_MUL
div.d FALU_DIV

add.di FALU_SUM
sub.di FALU_DIF
mul.di FALU_MUL
div.di FALU_DIV

neg.d FALU_NEG

mov.d FALU_CPY
mov.s FALU_CPY

li.d 	FALU_LDD
u.s 	FALU_LDS

228

li.w 	FALU_LDW

cfcl 	FALU_CPY
cfcl.d FALUCPY
mfcl 	FALU_CPY
mfcl.d FALU_CPY

sqrt.d 	FALU_SQRT
sqrt.s 	FALU_SQRT
sqrt.w 	FALU_SQRT

trunc w d FALU_TRUNC
trunc w. s FALU_TRUNC
round w d FALU_ROUND
round w. s FALU_ROUND

cvt.d.s FALU_LDD
cvt.d.w FALU_LDD
cvt.s.d FALU_LDS
cvt.s.w FALU_LDS
cvt.w.d FALU_LDW
cvt.w.s FALU_LDW

c.eq.d 	FALU_EQ
c.eq.s 	FALU_EQ
c.f.d 	FALU_FALSE
c.f.s 	FALU_FALSE
c.ge.d 	FALU_GE
c.ge.s 	FALU_GE
c.gl.d 	FALU_GL
c.gl.s 	FALU_GL
c.gle.d FALU_GLE
c.gle.s 	FALU_GLE
c.gt.d 	FALU_GT
c.gt.s 	FALU_GT
c.le.d 	FALU_LE
c.le.s 	FALU_LE
c.lt.d 	FALU_LT
c.lt.s 	FALU_LT
c.neq.d FALU_NEQ
c.neq.s FALU_NEQ
c.nge.d FALU_NGE
c.nge.s FALU_NGE
c.ngl.d FALU_NGL
c.ngl.s FALU_NGL
c ngle d FALU_NGLE
c ngle. s FALU_NGLE
c.ngt.d FALU_NGT
c.ngt.s FALU_NGT
c.nle.d FALU_NLE
c.nle.s FALU_NLE
c.nit.d FALU_NLT
c.nit.s FALU_NLT
c.t.d 	FALU_TRUE
c.t.s 	FALU_TRUE

229

bclt 	BUT
bclf 	BCXF

#Group 2 Memory load/store group
Number of Stages 4
II-UNIT
XBUS YBUS
MUNIT
ZBUS

#Instruction
lv 	LD_W
lvi 	LDI_W
sv 	ST_W
swi 	STI_W

lh 	LD_B
ihi 	LD_B
ihu 	LD_BU
lhui LDI_BU
sh 	ST_B
shi 	ST_B
shu 	ST-BU
shui STI_BU

lb 	LD_B
lbi 	LDI_B
lbu 	LD_BU
lbui LDI_BU
sb 	ST_B
sbi 	STI_B
sbu 	ST-BU
sbui STI_BU

sd 	ST_W

l.d 	FLD_W
l.di FLDI_W
l.s FLD_W
l.si FLDI_W

s.d 	FST_W
s.di FSTI_W
s.s FST_W
s.si FSTI_W

#Group 3 Logical operation group
Number of stages 4
II-UNIT
XBUS YBUS
LUNIT
ZBUS

#Instruction

230

sli 	LU_SL
sili LU_SL

sri 	LU_SR
srii LU_SR

sra 	LU_SRA
srai LU_SRA

and 	LUAND
or 	LU_OR
xor 	LU_XOR.
mv 	LU_COM
not 	LU_COM

andi LU_AND
ori LU_OR
xori LU_XOR
mnvi LU_COM

seq 	LU_SEQ
sne 	LU_SNE
sit 	LU_SEL
situ LU_SEL
sie 	LU_SLE
sieu LU_SLE

flop 	LU_NO?

imp 	JMP
bf 	BRIF
bt 	BRIT
call CALL
ret RET
reti RETI
halt HALT

#Enddef

231

Appendix C

Comparison of the schedulers

232

C.1 Local Scheduling

Local Scheduling

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 20.37% 17.30% 25.85%
livermore 18.66% 21.72% 25.76%
fract 22.26% 26.72% 30.50%
ii 7.14% 8.13% 8.89%
puzzle 5.26% 3.02% 5.81%
compress 19.26% 20.25% 24.01%
go 9.28% 9.41% 14.09%
m88k 11.81% 12.31% 15.54%

Average 14.25% 14.86% 18.81%

Geo. Mean 12.68% 12.45% 16.51%

Table C.1: Performance execution improvement for the 1 AU configuration.

Local Scheduling

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 40.55% 35.19% 43.37%
livermore 43.52% 36.90% 47.40%
fract 24.25% 28.21% 30.48%
ii 6.45% 7.08% 7.38%
puzzle 6.46% 1.73% 5.39%
compress 26.63% 27.44% 26.85%
go 10.71% 11.20% 11.02%
m88k 15.17% 15.68% 16.86%

Average 21.72% 20.43% 23.59%
Geo. Mean 17.22% 14.68% 18.27%

Table C.2: Performance execution improvement for the 2 AU configuration.

233

Local Scheduling

Benchmark GM. sch. Bal. sch. PTD sch.

intmin 43.96% 39.02% 42.26%
livermore 58.61% 53.27% 57.76%
fract 24.53% 28.74% 31.38%

ii 6.35% 6.92% 7.16%
puzzle 3.11% 2.04% 2.98%
compress 27.74% 28.45% 26.65%
go 11.07% 11.51% 10.52%

m88k 15.16% 15.76% 15.72%

Average 23.82% 23.21% 24.30%

Geo. Mean 16.62% 16.02% 17.06%

Table C.3: Performance execution improvement for the 3 AU configuration.

Local Scheduling

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 44.66% 39.39% 41.31%

livermore 63.27% 57.98% 60.50%
fract 24.53% 28.74% 30.95%
li 6.35% 6.91% 7.15%
puzzle 3.09% 2.02% 2.98%
compress 27.82% 28.63% 26.63%

go 11.16% 11.53% 10.64%

m88k 15.06% 15.65% 15.67%

Average 24.49% 23.86% 24.48%

Geo. Mean 16.80% 16.20% 17.10%

Table C.4: Performance execution improvement for the 4 AU configuration.

234

C.2 Global Scheduling

Code Motion Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch.

intmm 21.72% 17.37% 26.98% 20.37% 17.30% 25.85%
livermore 19.16% 22.04% 26.80% 18.66% 21.72% 25.78%
fract 23.71% 27.67% 30-81% 22.26% 26.80% 30.84%

ii 7.94% 8.89% 9.12% 7.40% 8.76% 9.28%
puzzle 10.92% 10.96% 23.47% 5.35% 3.14% 6.04%
compress 20.27% 21.06% 27.13% 19.71% 20.78% 24.32%
go 11.42% 11.80% 17.35% 10.04% 10.20% 15.05%
m88k 12.60% 13.11% 16.22% 14.16% 14.61% 17.71%

Average 15.97% 16.61% 22.23% 14.75% 15.41% 19.36%

Geo. Mean 14.95% 15.52% 20.90% 13.23% 13.08% 17.15%

Table C.5: Performance execution improvement for the 1 AU configuration.

Code Motion Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch.

intmm 42.53% 36.64% 46.77% 40.55% 35.19% 43.37%
livermore 45.70% 38.66% 51.33% 43.53% 36.91% 47.38%
fract 25.85% 29.33% 30.67% 24.26% 28.22% 30.48%

li 7.40% 7.85% 7.58% 6.90% 7.67% 7.83%
puzzle 14.41% 12.47% 22.42% 6.71% 1.98% 5.64%

compress 27.80% 28.41% 30.52% 27.59% 28.43% 27.35%

go 15.08% 15.15% 17.25% 11.84% 12.30% 12.05%

m88k 17.05% 17.47% 17.84% 18.29% 18.74% 19.56%

Average 24.48% 23.25% 28.05% 22.46% 21.18% 24.21%

Geo. Mean 21.03% 20.45% 24.20% 18.16% 15.68% 19.12%

Table C.6: Performance execution improvement for the 2 AU configuration.

235

Code Motion Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch.
intmm 45.71% 40.26% 47.10% 43.96% 39.02% 42.26%
livermore 61.65% 56.08% 62.82% 58.63% 53.26% 57.62%
fract 26.12% 29.87% 31.66% 24.57% 29.01% 31.41%
ii 7.34% 7.74% 7.37% 6.82% 7.49% 7.62%
puzzle 16.05% 14.78% 19.21% 3.39% 2.31% 3.17%
compress 28.93% 29.68% 30.34% 28.79% 29.54% 27.09%
go 15.53% 15.74% 17.19% 12.25% 12.67% 11.57%
m88k 16.37% 16.89% 16.65% 18.19% 18.72% 18.50%

Average 27.21% 26.38% 29.04% 24.58% 24.00% 24.90%
Geo. Mean 1 	22.42% 22.29% 24.14% 17.65% 17.10% 17.93%

Table C.7: Performance execution improvement for the 3 AU configuration.

Code Motion Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch. GM. sch. Bal. sch. PTD sch.

intmm 46.46% 40.66% 46.00% 44.66% 39.39% 41.31%
livermore 66.48% 61.06% 65.71% 63.29% 57.97% 60.42%
fract 26.13% 29.88% 32.28% 24.58% 29.01% 31-11%
ii. 7.34% 7.73% 7.37% 6.82% 7.49% 7.61%
puzzle 17.40% 16.02% 19.21% 3.36% 2.28% 3.16%
compress 28.99% 29.83% 30.32% 28.88% 29.72% 27.07%
go 15.61% 15.73% 17.34% 12.32% 12.67% 11.70%
m88k 16.27% 16.77% 16.68% 18.09% 18.61% 18.45%

Average 28.08% 27.21% 29.36% 25.25% 24.64% 25.10%
Geo. Mean 22.91% 22.77% 24.29% 17.84% 17.27% 17.98%

Table C.8: Performance execution improvement for the 4 AU configuration.

236

Code Motion and Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch.

intinm 21.72% 17.37% 29.13%
livermore 19.16% 22.05% 24.96%
fract 23.78% 27.75% 32.99%
ii 8.01% 9.05% 9.30%
puzzle 10.96% 11.00% 23.53%
compress 20.27% 21.06% 27.13%
go 11.93% 12.39% 18.10%
m88k 14.14% 14.65% 18.62%

Average 16.25% 16.92% 22.97%
Geo. Mean 15.28% 15.88% 21.64%

Table C.9: Performance execution improvement for the 1 AU configuration.

Code Motion and Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 42.53% 36.64% 46.77%
livermore 45.72% 38.66% 50.92%
fract 25.95% 29.44% 30.67%
ii 7.48% 8.01% 7.86%
puzzle 14.60% 12.65% 22.48%
compress 27.80% 28.41% 30.98%
go 15.76% 15.88% 18.10%
m88k 19.74% 20.09% 20.84%

Average 24.95% 23.72% 28.58%
Geo. Mean 21.61% 21.03% 24.96%

Table C.10: Performance execution improvement for the 2 AU configuration.

237

Code Motion and Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch.

intmin 45.71% 40.26% 47.10%
livermore 61.65% 56.06% 62.42%
fract 26.21% 29.97% 32.47%
ii 7.41% 7.84% 7.68%
puzzle 16.17% 14.89% 19.22%
compress 28.93% 29.69% 30.84%
go 16.28% 16.52% 18.08%
m88k 19.34% 19.80% 19.73%

Average 27.71% 26.88% 29.69%

Geo. Mean 23.09% 22.94% 25.05%

Table C.11: Performance execution improvement for the 3 AU configuration.

Code Motion and Tail Duplication

Benchmark GM. sch. Bal. sch. PTD sch.

intmm 46.46% 40.66% 46.00%
livermore 66.48% 61.06% 65.52%
fract 26.22% 29.98% 33.71%
ii 7.41% 7.83% 7.67%
puzzle 17.53% 16.14% 19.22%
compress 28.99% 29.83% 30.93%
go 16.35% 16.51% 18.19%
m88k 19.22% 19.68% 19.73%

Average 28.58% 27.71% 30.12%
Geo. Mean 23.59% 23.44% 25.27%

Table C.12: Performance execution improvement for the 4 AU configuration.

238

Bibliography

V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate
versus IPC: The end of the road for conventional microarchitectures. In
Proceedings of the 27th Annual International Symposium on Computer Ar-
chitecture, pages 248-259, June 2000.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, 1986.

V. H. Allan, J. Janardhan, R. M. Lee, and M. Srinivas. Enhanced region
scheduling on a program dependence graph. In Proceedings of the 25th
Annual International Symposium on Microarchitecture (MICRO-25), pages
72-80, December 1992.

D. K. Arvind, R. D. Mullins, and V. E. F. Rebello. Micronets: A model
for decentralising control in asynchronous processor architectures. In Asyn-
chronous Design Methodologies, pages 190-199. IEEE Computer Society
Press, May 1995.

D. K. Arvind and V. E. F. Rebeflo. Instruction-level parallelism in asyn-
chronous processor architectures. In Asynchronous Design Methodologies,
pages 203-215. Elsevier Science Publishers, August 1994.

D. K. Arvind and V. E. F. Rebello. On the performance evaluation of asyn-
chronous processor architectures. In 3rd. International Workshop on Mod-
elling Analysis and Simulation of Computer and Telecommunication Sys-
tems MASCOTS'95, pages 100-105. IEEE Computer Society Press, Janu-
ary 1995.

D. K. Arvind and V. E. F. Rebello. Static scheduling of instructions on
micronet-based asynchronous processors. In 2nd International Symposium
on Advanced Research on Asynchronous Circuits and Systems (ASYNC'96),
pages 80-91. IEEE Computer Society Press, March 1996.

D. K. Arvind and S. Sotelo-Salazar. Scheduling instructions with uncertain
latencies in asynchronous architectures. In 3rd. International Euro-Par
Conference, pages 771-778. Springer, August 1997.

D. I. August et al. Integrated predicated and speculative execution in the
IMPACT EPIC architecture. In Proceedings of the 25th Annual Interna-
tional Symposium on Computer Architecture, pages 227-237, June 1998.

239

H. G. Baker. Precise instruction scheduling without a precise machine
model. ACM Computer Architecture News, 19(6):4-8, December 1991.

K. R. Baker. Introduction to Sequencing and Scheduling. John Wiley &
Sons, 1974.

V. Bala and N. Rubin. Efficient instruction scheduling using finite state
automata. In Proceedings of the 28th Annual International Symposium on
Microarchitecture (MICRO-28), pages 46-56, December 1995.

S. J. Beaty, S. Colcord, and P. H. Sweany. Using genetic algorithms to fine-
tune instruction-scheduling heuristics. In Proceedings of the Second Inter-
national Conference on Massively Parallel Computing Systems (MPCS'96).
EuroMicro, May 1996.

M. E. Benitez. Register allocation and phase interactions in retargetable
optimizing compilers. Technical Report CS-94-13, University of Virginia,
Department of Computer Science, April 1994.

C. H. K. van Berkel. Handshake Circuits. Cambridge University Press,
1993.

C. H. K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, and
F. Schalij. A fully-asynchronous low-power error corrector for the DCC
player. IEEE Journal of Solid-State Circuits, 29(12):1429-1439, December
1994.

C. H. K. van Berkel, M. B. Josephs, and S. M. Nowick. Scanning the tech-
nology. Proceedings of the IEEE. Special Issue in Asynchronous Circuits,
87(2):223-233, February 1999.

D. Bernstein, D. Cohen, and H. Krawczyk. Code duplication: An assist
for global instructions scheduling. In Proceedings of the 24th Annual In-
ternational Symposium on Microarchitecture (MICRO-24), pages 103-113,
November 1991.

D. Bernstein, D. Cohen, Y. Lavon, and V. Rainish. Performance evalu-
ation of instruction scheduling on the IBM RISC System/6000. In Pro-
ceedings of the 25th Annual International Symposium on Microarchitecture
(MICRO-25), pages 226-235, November 1992.

D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar
machines. In Proceedings of the ACM SICPLAN'91 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 241-255,
June 1991.

D. Berson, R. Gupta, and M. L. Soffa. An evaluation of integrated schedul-
ing and register allocation techniques. In 11th International Workshop on
Languages and Compilers for Parallel Computing, pages 247-262. LNCS
Springer Verlag, August 1998.

240

S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23-
29, July/August 1999.

D. C. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register allocation
and instruction scheduling for RISCs. In Proceedings of the Fourth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, pages 122-131, April 1991.

P. Briggs. Register allocation via graph coloring. Technical Report TR92-
183, Rice University, Department of Computer Science, April 1992.

J. Bruno, J. W. Jones, and K. So. Deterministic scheduling with pipelined
processors. IEEE Transactions On Computers, 29(4):308-316, April 1980.

J. A. Brzozowski and C-J. H. Seger. Asynchronous Circuits. Springer-
Verlag, 1995.

W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu. Wave-pipelining:
A tutorial and research survey. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 6(3) :464-474, September 1998.

V. Cerny. A thermodynamical approach to the travelling salesman problem:
An efficient simulation algorithm. Journal of Optimization Theory and
Application, 45(l):41-45, January 1985.

P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information
to assist classic code optimisations. Software Practice and Experience,
21(12):1301-1321, December 1991.

D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD
thesis, Stanford University, October 1984.

B. Cheng, D. A. Connors, and W. W. Hwu. Optimizing memory accesses
using advanced compile-time memory disambiguation techniques. Technical
Report IMPACT-99-03, Computer and Systems Research Lab, University
of Illinois, June 1999.

H. Chou and C. Chung. An optimal instruction scheduler for super-
scalar processor. IEEE Transactions on Parallel and Distributed Systems,
6(3):303-313, March 1995.

C. Clic. Global code motion/Global value numbering. In Proceedings of
the ACM SIGPLAN'95 Conference on Programming Language Design and
Implementation (PLDI), pages 246-257, June 1995.

E. G. Coffman Jr. et al. Computer and Job-shop Scheduling Theory. John
Wiley & Sons, 1976.

H. Corporaal. Transport Triggered Architectures. Design and Evaluation.
PhD thesis, Electrical Engineering Department, Delft University of Techon-
ology, January 1995.

241

H. Corporaal and H. J. M. Mulder. MOVE: A framework for high perform-
ance processor design. In Proceedings of the 1991 International Conference
on Supercomputing, pages 692-701. IEEE Computer Society Press, Novem-
ber 1991.

T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and
M. Wolczko. Compiling Java just in time: Using runtime compilation to
improve Java program performance. IEEE Micro, 17(3):36-43, May/June
1997.

B. Davari, R. H. Dennard, and G. G. Shahidi. CMOS scaling for high
performance and low power - The next ten years. Proceedings of the
IEEE, 83(4):595-606, April 1995.

J. W. Davidson and A. M. Holler. Subprogram miming: A study of its
effects on program execution time. IEEE Transactions on Software Engin-
eering, 18(2):89-101, February 1992.

J. W. Davidson and S. Jinturkar. An aggressive approach to loop unrolling.
Technical Report CS-95-26, University of Virginia, Department of Com-
puter Science, June 1995.

J. W. Davidson and S. Jinturkar. Improving instruction-level parallelism by
loop unrolling and dynamic memory disambiguation. Technical Report CS-
95-11, University of Virginia, Department of Computer Science, February
1995.

J. B. Dennis. Modular asynchronous control structures for a high perform-
ance processor. In Project MAC Conference on Concurrent Systems and
Parallel Computation, pages 55-80, 1970.

D. J. Eagiesham. 0.18tm CMOS and beyond. In Proceedings of the 36th
ACM/IEEE Design Automation Conference, pages 703-708, June 1999.

J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press,
Cambridge, Mass, 1986.

C. J. Elston, D. B. Christianson, P. A. Findlay, and C. B. Steven. Hades
- Towards the design of an asynchronous superscalar processor. In Asyn-
chronous Design Methodologies, pages 200-209. IEEE Computer Society
Press, May 1995.

T. Emden-Weinert and M. Proksch. Best practice simulated annealing for
the airline crew scheduling problem. Journal of Heuristics, 5(4):419-436,
December 1999.

P. B. Endecott. SCALP: A Superscalar Asynchronous Low-Power Pro-
cessor. PhD thesis, Department of Computer Science, University of
Manchester, 1996.

242

P. B. Endecott. Superscalar instruction issue in an asynchronous micropro-
cessor. lEE Proceedings on Computers and Digital Techniques, 143(5):266-
272, September 1996.

J. T. Feo. An analysis of the computational and parallel complexity of the
Livermore loops. Parallel Computing, 7(2):163-185, June 1988.

J. Ferrante, K. J. Ottenstein, and J. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319-349, July 1987.

J. A. Fisher. Trace scheduling: A technique for global microcode compac-
tion. IEEE Transactions on Computers, 30(7):478-490, July 1981.

M. J. Flynn, P. Hung, and K. W. Rudd. Deep-submicron microprocessor
design issues. IEEE Micro, 19(4):11-22, July/August 1999.

M. Franklin and C. S. Sohi. ARB: A hardware mechanism for dynamic
reordering of memory references. IEEE Transactions On Computers,
45(5):552-571, May 1996.

S. M. Freudenberger, T. R. Gross, and P. G. Lowney. Avoidance and sup-
pression of compensation code in a trace scheduling compiler. ACM Trans-
actions on Programming Languages and Systems, 16(4):1156-1214, July
1994.

S. B. Furber and P. Day. Four-phase micropipeline latch control circuits.
IEEE Transactions On VLSI Systems, 4(2):247-253, June 1996.

S. B. Furber, P. Day, N. C. Paver, and J. V. Woods. AMULET1: A
micropipelined ARM. In Proceedings of the IEEE Computer Conference
(CompCon'9), pages 476-485, March 1994.

S. B. Furber, J. D. Garside, S. Temple, P. Day, and N. C. Paver.
AMULET2e. In Embedded Microprocessor Systems EMS YS'96 - OMI Sixth
Annual Conference, September 1996.

S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver.
AMULET2e: An asynchronous embedded controller. In 3rd. International
Symposium on Advanced Research on Asynchronous Circuits and Systems
(ASYNC'97), pages 290-299. IEEE Computer Society Press, April 1997.

H. van Gageldonk, D. Baumann, C. H. K. van Berkel, D. Gloor, A. Peeters,
and G. Stegmann. An asynchronous low-power 80051 micro controller. In

4 th International Symposium on Advanced Research on Asynchronous Cir-
cuits and Systems (ASYNC'98), pages 96-107. IEEE Computer Society
Press, April 1998.

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W.
Hwu. Dynamic memory disambiguation using the memory conflict buffer.
In Proceedings of the Symposium on Architectural Support for Programming
Languages and Operating Systems, pages 183-195, October 1994.

243

M. R. Carey and D. R. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

J. D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In
Asynchronous Design Methodologies, pages 181-207. Elsevier Science Pub-
ushers, 1993.

J. D. Garside, S. B. Furber, and S.-H. Chung. AMULET3 revealed. In 5th
International Symposium on Advanced Research on Asynchronous Circuits
and Systems (ASYNC'99), pages 51-59. IEEE Computer Society Press,
April 1999.

P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a
pipelined architecture. Proceedings of the SIGPLAN '86 Symposium on
Compiler Construction, 21(7):11-16, July 1986.

N. Giffin. Fractal Formula File From Noel Giffin. http://spanky.
fractint.org/pub/fractals/formulas/noell .frm.

N. Giffin. Hydra Set. http://spanky.fractint.org/pub/fractals/
images/noel/full_sets/hydra. png.

M. J. Gonzlez Jr. Deterministic processor scheduling. ACM Computing
Surveys, 9(3):173-204, September 1977.

M. R. Greenstreet and B. de Alwis. How to achieve worst-case performance.
In 7th International Symposium on Advanced Research on Asynchronous
Circuits and Systems (ASYNC'Ol), pages 206-217. IEEE Computer Society
Press, March 2001.

J. W. Grossman and R. S. Zeitman. An inherently iterative computation
of Ackermann's function. Theoretical Computer Science, 57(2-3) :327-330,
May 1988.

R. Gupta and M. L. Soffa. Region scheduling: An approach for detecting
and redistributing parallelism. IEEE Transactions on Software Engineering,
16(4):421-431, April 1990.

0. Hauck and S. A. Huss. Asynchronous wave pipelines for high throughput
datapaths. In IEEE International Conference on Electronics, Circuits and
Systems, pages 283-286, September 1998.

S. Hauck. Asynchronous design methodologies: An overview. Proceedings
of the IEEE, 83(1):69-93, January 1995.

A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson,
J. Oberg, P. Ellervee, and D. Lundqvist. Lowering power consumption in
clock by using globally asynchronous, locally synchronous design style. In
Proceedings of the 36th ACM/IEEE Design Automation Conference, pages
873-878, June 1999.

J. L. Hennessy and T. Gross. Postpass code optimisation of pipeline
constraints. ACM Transactions on Programming Languages and Systems,
5(3):422-448, July 1983.

J. L. Hennessy, N. P. Jouppi, F. Baskett, T. Gross, and J. Gill. Hard-
ware/software tradeoffs for increased performance. In Proceedings of the
Symposium on Architectural Support for Programming Languages and Op-
erating Systems, pages 2-11. ACM Press, March 1982.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 2nd. edition, 1996.

J. Hoogerbrugge. Code Generation for Transport Triggered Architectures.
PhD thesis, Department of Electrical Engineering, Delft University of Tech-
nology, February 1996.

J. Hoogerbrugge and H. Corporaal. Register file port requirements of trans-
port triggered architectures. In Proceedings of the 27th Annual International
Symposium on Microarchitecture (MICRO-27), pages 191-195, December
1994.

J. Hoogerbrugge and H. Corporaal. Transport-triggering versus operation-
triggering. In 5th International Conference on Compiler Construction
(CC'9), pages 435-449, April 1994.

J. Hoogerbrugge and H. Corporaal. Resource assignment in a compiler
for transport triggered architectures. In Proceedings of the 2nd Annual
Conference of the Advanced School for Computing and Imaging, June 1996.

M. S. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger, S. W. Keckler, and
P. Shivakumar. The optimal logic depth per pipeline stage is 6 to 8 F04
inverter delays. In Proceedings of the 29th Annual International Symposium
on Computer Architecture, pages 14-24, May 2002.

T. C. Hu. Parallel sequencing and assembly line problems. Operations
Research, 9(6):841-848, 1961.

H. Hulgaard, S. M. Burns, and G. Borriello. Testing asynchronous circuits:
A survey. Technical Report 94-03-06, Department of Computer Science and
Engineering, University of Washington, March 1994.

K. Hwang. Advanced Computer Architecture: Parallelism, Scalability and
Programmability. McGraw-Hill, 1st. edition, 1993.

W. W. Hwu et al. The superblock: An effective technique for VLIW and
superscalar compilation. The Journal of Supercomputing, 7(1-2):229-248,
May 1993.

W. W. Hwu et al. Compiler technology for future microprocessors. Pro-
ceedings of the IEEE, 83(12):1623-1640, December 1995.

245

M. J. Bourke III, P. H. Sweany, and S. J. Beaty. Extending list scheduling
to consider execution frequency. In Proceedings of the 29th Annual Hawaii
International Conference on System Sciences, pages 122-131, January 1996.

H. Iwai. CMOS technology - Year 2010 and beyond. IEEE Journal of
Solid-State Circuits, 34(3):357-366, March 1999.

J. Jansen. Compiler Strategies for Transport Triggered Architectures. PhD
thesis, Electrical Engineering Department, Delft University of Techonology,
September 2001.

R. Johnson, D. Pearson, and K. Pingali. The program structure tree: Com-
puting control regions in linear time. In Proceedings of the ACM SIG-
PLAN'94 Conference on Programming Language Design and Implementa-
tion (PLDI), pages 171-185, June 1994.

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

D. R. Kerns and S. J. Eggers. Balanced scheduling: Instruction scheduling
when memory latency is uncertain. In Proceedings of the ACM SICPLAN'93
Conference on Programming Language Design and Implementation (PLDI),
pages 278-289, June 1993.

J. Kessels and P. Marston. Designing asynchronous standby circuits for a
low-power pager. In 3rd. International Symposium on Advanced Research
on Asynchronous Circuits and Systems (ASYNC'97), pages 268-278. IEEE
Computer Society Press, April 1997.

D. J. Kinniment. An evaluation of asynchronous addition. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 4(1):137-140, March
1996.

S. Kirkpatrick, C. D. Gelatt Jr., and M.P. Vecchi. Optimisation by simu-
lated annealing. Science, 220(4598):671-680, May 1983.

J. Knoop, 0. Riithing, and B. Steffen. The power of assignment motion.
In Proceedings of the ACM SICPLAN'95 Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 233-245, June 1995.

M. Ko. Instruction scheduling for Micronet-based asynchronous processors.
Master's thesis, Department of Computer Science, University of Edinburgh,
1995.

G. Koren and D. Shasha. An optimal scheduling algorithm with a compet-
itive factor for real-time systems. Technical Report TR1991-572, New York
University, July 1991.

G. Kostadinidis et al. Implementation of a third-generation 1.10Hz 64b
microprocessor. In Proceedings of the 2002 International IEEE Solid-State
Circuits Conference ISSCC'2002, pages 726-731, February 2002.

246

S. M. Kurlander, T. A. Proebsting, and C. N. Fischer. Efficient instruction
scheduling for delayed-load architectures. ACM Transactions on Program-
ming Languages and Systems, 17(5):740-776, September 1995.

A. Leung, K. V. Palem, and A. Pnueli. A fast algorithm for scheduling
time-constrained instructions on processors with ILP. In Proceedings of the
1998 International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 158-166, October 1998.

A. Leung, K. V. Palem, and C. Ungureanu. Run-time versus compile-time
instruction scheduling in superscalar (RISC) processors: Performance and
tradeoffs. Technical Report 699, New York University, Computer Science,
July 1995.

D. J. Lilja. Exploiting the parallelism available in loops. Computer,
27(2):13-27, February 1994.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Ad-
dison Wesley, 1996.

P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P.
Nix, J. S. O'Donnell, and J. C. Ruttenberg. The Multiflow Trace Scheduling
compiler. The Journal of Supercomputing, 7(1-2):51-142, May 1993.

Luqi and M. Shing. Real-time scheduling for software prototyping. Journal
of Systems Integration. Special Issue on Computer-Aided Prototyping,
6(1):41-72, May 1996.

U. Mahadevan and S. Ramakrishnan. Instruction scheduling over regions:
A framework for scheduling across basic blocks. In 5th International Con-
ference on Compiler Construction (CC'94), pages 419-434, April 1994.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.
Effective compiler support for predicated execution using the Hyperbiock.
In Proceedings of the 25th Annual International Symposium on Microarchi-
tecture (MICRO-25), pages 45-54, December 1992.

R. T. Maniwa. Global Distribution: Clocks and Power. http://www.
eedesign.com/editorial/1995/coverstory9508.html.

A. J. Martin. Programming in VLSI: From communication processes to
delay-insensitive circuits. In Developments in Concurrency and Commu-
nication, pages 1-64. Addison-Wesley, 1990.

A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovié, and P. J. Hazewindus.
The design of an asynchronous microprocessor. In Decennial Caltech Con-
ference on VLSI, pages 351-273. C. L. Seitz, MIT Press, March 1989.

A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovi, and P. J. Hazewindus.
The first asynchronous microprocessor: The test results. ACM Computer
Architecture News, 17(4):95-110, April 1989.

247

A. J. Martin, A. Lines, R. Manohar, M. Nyström, P. Penzes, R. South-
worth, and U. Cummings. The design of an asynchronous MIPS R3000
microprocessor. In Advanced Research in VLSI, pages 164-181, September
1997.

H. Massalin. Superoptimiser - A look at the smallest program. In Pro-
ceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 122-126, Octo-
ber 1987.

D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data
dependence analysis. In Proceedings of the ACM SIGPLAN'91 Conference
on Programming Language Design and Implementation (PLDI), pages 1-14,
June 1991.

A. Moitra. Analysis of hard real-time systems. Technical Report TR85-693,
Department of Computer Science, Cornell University, July 1985.

J. Moreno et al. Architecture compiler and simulation of a tree-based VLIW
processor. Technical Report RC20495, IBM Research Division, Computer
Sciences/ Mathematics, July 1996.

R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen. Combining register al-
location and instruction scheduling. Technical Report CS-TN-95-22, Stan-
ford University, Department of Computer Science, August 1995.

F. Mueller and D. B. Whalley. Avoiding unconditional jumps by code
replication. In Proceedings of the ACM SICPLAN'92 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 322-330,
June 1992.

F. Mueller and D. B. Whalley. Avoiding conditional branches by code
replication. In Proceedings of the ACM SIGPLAN'95 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 56-66, June
1995.

T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura. TITAC:
Design of a quasi-delay-insensitive microprocessor. IEEE Design & Test of
Computers, 11(2):50-63, Summer 1994.

C. Norris and L. L. Pollock. Register allocation sensitive region scheduling.
In Proceedings of the 1995 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), pages 1-10, June 1995.

S. Onder and R. Gupta. Dynamic memory disambiguation in the presence of
out-of-order store issuing. In Proceedings of the 32nd Annual International
Symposium on Microarchitecture (MICRO-32), pages 170-176, November
1999.

248

K. V. Palem and B. B. Simons. Scheduling time-critical instructions on
RISC machines. ACM Transactions on Programming Languages and Sys-
tems, 15(4):632-658, September 1993.

D. A. Patterson. Reduced instruction set computers. Communications of
the ACM, 28(1):8-21, January 1985.

N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and J. Liu.
A low-power, low noise, configurable self-timed DSP. In 4th International
Symposium on Advanced Research on Asynchronous Circuits and Systems
(ASYNC'98), pages 32-42. IEEE Computer Society Press, April 1998.

N. C. Paver, P. Day, S. B. Furber, J. D. Garside, and J. V. Woods. Register
locking in an asynchronous microprocessor. In Proceedings of the Inter-
national Conference on Computer Design (ICCD), pages 351-355. IEEE
Computer Society Press, October 1992.

M. Pedram. Power minimization in IC design: Principles and applications.
ACM Transactions on Design Automation of Electronic Systems, 1(1):3-56,
January 1996.

0. A. Petlin and S. B. Furber. Built-in testing of micropipelines. In 3rd.
International Symposium on Advanced Research on Asynchronous Circuits
and Systems (ASYNC'97), pages 22-29. IEEE Computer Society Press,
April 1997.

M. Pinedo. Scheduling: Theory Algorithm, and Systems. Prentice Hall,
1995.

S. S. Pinter. Register allocation with instruction scheduling: A new ap-
proach. In Proceedings of the ACM SIGPLAN'93 Conference on Program-
ming Language Design and Implementation (PLDI), pages 248-257, June
1993.

T. A. Proebsting and C. N. Fischer. Linear-time, optimal code scheduling
for delayed-load architectures. In Proceedings of the ACM SIGPLAN'91
Conference on Programming Language Design and Implementation (PLDI),
pages 256-267, June 1991.

W. Pugh. The Omega test: A fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 Conference
on Supercomputing, pages 4-13, November 1991.

J. M. Rabaey and M. Pedram. Low Power Design Methodologies. Kluwer
Academic Publishers, 1996.

B. Rahardjo. Asynchronous Tools, available on the Internet. http://www.

cs.man.ac.uk/async/tools/index.html.

249

B. R. Rau and J. A. Fisher. Instruction-level parallelism processing: His-
tory, overview and perspective. The Journal of Supercomputing, 7(1-2):9-
50, May 1993.

C. A. Rey and J. Vaucher. Self-synchronized asynchronous sequential ma-
chines. IEEE Transactions On Computers, 23(12):1306-1311, December
1974.

W. F. Richardson and E. L. Brunvand. The NSR processor prototype. Tech-
nical Report UUCS-92-029, Department of Computer Science, University
of Utah, December 1992.

W. F. Richardson and E. L. Brunvand. Fred: An architecture for a self-
timed decoupled computer. Technical Report UUCS-95-008, Department
of Computer Science, University of Utah, May 1995.

P. A. Riocreux, L. E. M. Brackenbury, M. Cumpstey, and S. B. Furber. A
low-power self-timed Viterbi decoder. In 7th International Symposium on
Advanced Research on Asynchronous Circuits and Systems (ASYNC'Ol),
pages 15-24. IEEE Computer Society Press, March 2001.

S. Rotem et al. RAPPID: An asynchronous instruction length decoder.
In 5th International Symposium on Advanced Research on Asynchronous
Circuits and Systems (ASYNC'99), pages 60-70. IEEE Computer Society
Press, April 1999.

M. S. Schlansker et al. Achieving high levels of instruction-level parallel-
ism with reduced hardware complexity. Technical Report HPL-96-120, HP
Laboratories, November 1994.

M. S. Schlansker and B. R. Rau. EPIC: An architecture for instruction-
level parallel processors. Technical Report HPL-1999-111, HP Laboratories,
February 2000.

M. A. Schuette and J. P. Shen. An instruction-level performance analysis
of the Multiflow TRACE 14/300. In Proceedings of the 24th Annual Inter-
national Symposium on Microarchitecture (MICRO-24), pages 2-11. IEEE
Computer Society Press, November 1991.

C. L. Seitz. Self-timed VLSI systems. In Proceedings of the 1st Caltech
Conference on Very Large Scale Integration, pages 345-355, January 1979.

Semiconductor Industry Association. 	The International Technology
Roadmap for Semiconductors, San Jose, Calif. 1994, 1997, 2000 and 2001.

SGI Compiler Group. SGI Pro6TM. http://oss.sgi.com/projects/
ProG4/.

H. Sharangpani and K. Arora. Itanium processor microarchitecture. IEEE
Micro, 20(5) :24-43, September/ October 2000.

250

K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Branch prediction,
instruction window size, and cache size: Performance trade-offs and sim-
ulation techniques. IEEE Transactions On Computers, 48(11):1260-1281,
November 1999.

M. J. Sebastian Smith. Application-Specific Integrated Circuits. Addison-
Wesley, 1997.

C. Sotiriou. Design of an Asynchronous Processor. PhD thesis, Division of
Informatics, University of Edinburgh, December 2000.

SPEC95. SPEC CINT95 Benchmarks. http: //www. spec. org/osg/cpu95/
CINT95/.

R. F. Sproull, I. E. Sutherland, and C. E. Molnar. Counterfiow pipeline pro-
cessor architecture. Technical Report SMLI TR-94-25, Sun Microsystems
Laboratories Inc., April 1994.

Stanford SUIF Compiler Group. The SUIF Compiler Man Pages, Porky.
http://suif.stanford.edu/suif/suifl/docs/man-porky.l.html.

Stanford SUIF Compiler Group. The SUIF Compiler System. http :
suif.stanford.edu/.

Stanford SUIF Compiler Group. The SUIF Library (Version 1.0). http:
//suif.stanford. edu/suif/suif l/docs/suif_toc.html.

J. A. Stankovic. Real-time and embedded systems. ACM Computing Sur-
veys, 28(1):205-208, March 1996.

K. Stevens et al. CAD directions for high performance asynchronous cir-
cuits. In Proceedings of the 86th ACM/IEEE Design Automation Confer-
ence, pages 116-121, June 1999.

K. Stevens, R. Ginosar, and S. Rotem. Relative timing. In 5th International
Symposium on Advanced Research on Asynchronous Circuits and Systems
(ASYNC'99), pages 208-218. IEEE Computer Society Press, April 1999.

T. Suganuma et al. Overview of the IBM Java just-in-time compiler. IBM
Systems Journal - Java Performance, 39(1):175-193, 2000.

I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-
738, June 1989.

M. N. S. Swamy and K. Thulasiraman. Graphs, Networks, and Algorithms.
John Wiley & Sons, 1981.

P. H. Sweany and S. J. Beaty. Dominator path scheduling - A global
scheduling method. In Proceedings of the 25th Annual International Sym-
posium on Microarchitecture (MICRO-25), pages 260-263, December 1992.

251

A. Takamura et al. TITAC-2: An asynchronous 32-bit microprocessor based
on scalable-delay-insensitive model. In Proceedings of the International
Conference on Computer Design (ICCD), pages 288-294. IEEE Computer
Society Press, October 1997.

J. Teifel and R. Manohar. A high-speed clockless serial link transciver. In 9th
International Symposium on Advanced Research on Asynchronous Circuits
and Systems (ASYNC'03), pages 151-161. IEEE Computer Society Press,
May 2003.

H. Terada, S. Miyata, and M. Iwata. DDMP's: Self-timed super-pipelined
data-driven multimedia processors. Proceedings of the IEEE, 87(2):282-296,
February 1999.

J. A. Tierno, A. J. Martin, and D. Borkovié. An asynchronous micropro-
cessor in gallium arsenide. Technical Report CS-TR-93-38, Department of
Computer Science, California Institute of Technology, November 1993.

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Redu-
cing power in high-performance microprocessors. In Proceedings of the 35th
ACM/IEEE Design Automation Conference, pages 732-737, June 1998.

Trimaran Consortium. An Infrastructure for Research in Instruction-Level
Parallelism. http://www.trimaran.org/.

J. D. Ullman. NP-complete scheduling problems. Journal of Computer and
Systems Sciences, 10(3):384-393, June 1975.

M. C. Valluri and R. Govindarajan. Evaluating register allocation and
instruction scheduling techniques in out-of-order issue processors. In Pro-
ceedings of the 1999 International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 78-83, October 1999.

T. Verhoeff. Delay-insensitive codes - An overview. Distributed Comput-
ing, 3(1):1-8, 1988.

T. Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Eindhoven
University of Technology, Faculty of Mathematics and Computing Science,
1994.

H. S. Warren Jr. Instruction scheduling for the IBM RISC System/6000
processor. IBM Journal on Research and Development, 34(1):85-91, Janu-
ary 1990.

N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley, 2nd. edition, 1993.

R. P. Wilson et al. SUIF: An Infrastructure for Research on Paralleliz-
ing and Optimizing Compilers. http://suif . stanford.edu/suif/suif 1/
suif-overview/suif.html.

252

Q. Wu, M. Pedram, and X. Wu. Clock-gating and its application to low
power design of sequential circuits. IEEE Transactions on Circuits and
Systems, 47(103):415-420, March 2000.

Y. Zorian. 	System-chip test strategies. In Proceedings of the 35th
ACM/IEEE Design Automation Conference, pages 752-757, June 1998.

253

