36 research outputs found

    Towards Reliable Benchmarks of Timed Automata

    Get PDF
    The verification of the time-dependent behavior of safety-critical systems is important, as design problems often arise from complex timing conditions. One of the most common formalisms for modeling timed systems is the timed automaton, which introduces clock variables to represent the elapse of time. Various tools and algorithms have been developed for the verification of timed automata. However, it is hard to decide which one to use for a given problem as no exhaustive benchmark of their effectiveness and efficiency can be found in the literature. Moreover, there does not exist a public set of models that can be used as an appropriate benchmark suite. In our work we have collected publicly available timed automaton models and industrial case studies and we used them to compare the efficiency of the algorithms implemented in the Theta model checker. In this paper, we present our preliminary benchmark suite, and demonstrate the results of the performed measurements

    Towards a Benchmark for Fog Data Processing

    Full text link
    Fog data processing systems provide key abstractions to manage data and event processing in the geo-distributed and heterogeneous fog environment. The lack of standardized benchmarks for such systems, however, hinders their development and deployment, as different approaches cannot be compared quantitatively. Existing cloud data benchmarks are inadequate for fog computing, as their focus on workload specification ignores the tight integration of application and infrastructure inherent in fog computing. In this paper, we outline an approach to a fog-native data processing benchmark that combines workload specifications with infrastructure specifications. This holistic approach allows researchers and engineers to quantify how a software approach performs for a given workload on given infrastructure. Further, by basing our benchmark in a realistic IoT sensor network scenario, we can combine paradigms such as low-latency event processing, machine learning inference, and offline data analytics, and analyze the performance impact of their interplay in a fog data processing system

    Container-based Cloud Virtual Machine benchmarking

    Get PDF
    This research was pursued under the EPSRC grant, EP/K015745/1, ‘Working Together: Constraint Programming and Cloud Computing,’ an Erasmus Mundus Master’s scholarship and an Amazon Web Services Education Research grant.With the availability of a wide range of cloud Virtual Machines (VMs) it is difficult to determine which VMs can maximise the performance of an application. Benchmarking is commonly used to this end for capturing the performance of VMs. Most cloud benchmarking techniques are typically heavyweight - time consuming processes which have to benchmark the entire VM in order to obtain accurate benchmark data. Such benchmarks cannot be used in real-time on the cloud and incur extra costs even before an application is deployed. In this paper, we present lightweight cloud benchmarking techniques that execute quickly and can be used in near real-time on the cloud. The exploration of lightweight benchmarking techniques are facilitated by the development of DocLite - Docker Container-based Lightweight Benchmarking. DocLite is built on the Docker container technology which allows a user-definedportion (such as memory size and the number of CPU cores) of the VM to be benchmarked. DocLite operates in two modes, in the first mode, containers are used to benchmark a small portion of the VM to generate performance ranks. In the second mode, historic benchmark data is used along with the first modeas a hybrid to generate VM ranks. The generated ranks are evaluated against three scientific high-performance computing applications. The proposed techniques are up to 91 times faster than a heavyweight technique which benchmarks the entire VM. It is observed that the first mode can generate ranks with over 90% and 86% accuracy for sequential and parallel execution of an application. The hybrid mode improves the correlation slightly but the first mode is sufficient for benchmarking cloud VMs.Postprin

    Do Not Be Fooled: Toward a Holistic Comparison of Distributed Ledger Technology Designs

    Get PDF
    Distributed Ledger Technology (DLT) enables a new way of inter-organizational collaboration via a shared and distributed infrastructure. Meanwhile, there is plenty of DLT designs (e.g., Ethereum, IOTA), which differ in their capabilities to meet use case requirements. A structured comparison of DLT designs is required to support the decision for an appropriate DLT design. However, existing criteria and processes are abstract or not suitable for an in-depth comparison of DLT designs. We select and operationalize DLT characteristics relevant for a comprehensive comparison of DLT designs. Furthermore, we propose a comparison process, which enables the structured comparison of a set of DLT designs according to application requirements. The proposed process is validated with a use case analysis of three use cases. We contribute to research and praxis by introducing ways to operationalize DLT characteristics and generate a process to compare different DLT designs accordingly to their suitability in a use case

    TPC-H Analyzed: Hidden Messages and Lessons Learned from an Influential Benchmark

    Get PDF
    The TPC-D benchmark was developed almost 20 years ago, and even though its current existence as TPC H could be considered superseded by TPC-DS, one can still learn from it. We focus on the technical level, summarizing the challenges posed by the TPC-H workload as we now understand them, which w

    Technical perspective DIAMetrics: Benchmarking query engines at scale

    Get PDF
    corecore