
Container-Based Cloud Virtual Machine
Benchmarking

Blesson Varghese∗, Lawan Thamsuhang Subba†, Long Thai†, Adam Barker†
∗School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, UK

varghese@qub.ac.uk
†School of Computer Science, University of St Andrews, UK

{lts4, ltt2, adam.barker}@st-andrews.ac.uk

Abstract—With the availability of a wide range of cloud Virtual
Machines (VMs) it is difficult to determine which VMs can
maximise the performance of an application. Benchmarking is
commonly used to this end for capturing the performance of VMs.
Most cloud benchmarking techniques are typically heavyweight
- time consuming processes which have to benchmark the
entire VM in order to obtain accurate benchmark data. Such
benchmarks cannot be used in real-time on the cloud and incur
extra costs even before an application is deployed.

In this paper, we present lightweight cloud benchmarking
techniques that execute quickly and can be used in near real-
time on the cloud. The exploration of lightweight benchmarking
techniques are facilitated by the development of DocLite - Docker
Container-based Lightweight Benchmarking. DocLite is built on
the Docker container technology which allows a user-defined
portion (such as memory size and the number of CPU cores)
of the VM to be benchmarked. DocLite operates in two modes,
in the first mode, containers are used to benchmark a small
portion of the VM to generate performance ranks. In the second
mode, historic benchmark data is used along with the first mode
as a hybrid to generate VM ranks. The generated ranks are
evaluated against three scientific high-performance computing
applications. The proposed techniques are up to 91 times faster
than a heavyweight technique which benchmarks the entire VM.
It is observed that the first mode can generate ranks with over
90% and 86% accuracy for sequential and parallel execution of
an application. The hybrid mode improves the correlation slightly
but the first mode is sufficient for benchmarking cloud VMs.

Keywords-cloud benchmarking; Docker; containers;
lightweight benchmark; hybrid benchmark

I. INTRODUCTION

The cloud computing marketplace has become crowded with
competitors each offering a wide-range of Virtual Machines
(VMs) varying in their performance. With numerous options
available it is challenging for a user to select VMs which
maximise the performance of an application on the cloud.
This results in applications under performing and increasing
running costs on the cloud.

Benchmarking is a technique that is commonly adopted
to tackle the above problem in which the performance at-
tributes of cloud VMs are captured [1], [2]. Benchmark
data is then used to help rank the performance of VMs
[3], [4]. However, cloud benchmarking methods are typically
heavyweight - by this we mean time consuming processes to
benchmark an entire VM, which incur significant monetary
costs. Heavyweight benchmarks [3] are usually obtained by

running the benchmarking tool on the entire VM. For example,
the cr1.8xlarge VM with 244GiB RAM will require over 10
hours to be benchmarked. This time consuming process results
in costs even before an application is deployed on the VM.
This definition of heavyweight will be used throughout the
paper.

In this paper, we explore lightweight cloud benchmarking
techniques - processes which execute quickly and can be used
in near real-time to collect metrics from cloud providers and
VMs. In order to facilitate our exploration of lightweight
benchmarking techniques we introduce DocLite - Docker
Container-based Lightweight Benchmarking. DocLite is built
around the Docker1 container technology [5], [6], [7], [8],
which allows a user-defined portion (such as memory size and
the number of CPU cores) of the VM to be benchmarked. For
example, containers can be used to benchmark 1GB of a VM
that has 256GB RAM. This has the core advantage that cloud
VMs can be rapidly benchmarked for use in real-time, which
in turn helps to reduce benchmarking costs for the purposes of
comparison. Two important research questions that arise are:
(i) how fast can our lightweight technique execute compared
to heavyweight techniques which benchmark the entire VM?
and (ii) how accurate will the generated benchmarks be?

DocLite organises the benchmark data into four groups,
namely memory and process, local communication, compu-
tation and storage. A user of DocLite provides as input a
set of four weights (ranging from 0 to 5), which indicate
how important each of the groups are to the application that
needs to be deployed on the cloud. The weights are mapped
onto the four benchmark groups and are used to generate a
score for ranking the VMs according to performance. DocLite
has two modes of operation. In the first mode containers
are used to benchmark a small portion of a VM to generate
the performance ranks of VMs. In the second mode, historic
benchmark data are used along with the first mode as a hybrid
in order to generate VM ranks.

Three scientific case study applications are used to validate
the benchmarking techniques. The experiments highlight that
the lightweight technique (a) is up to 91 times faster than
the heavyweight technique, and (b) generates rankings with
over 90% and 86% accuracy for sequential and parallel

1http://www.docker.com/



execution of applications when compared to time consuming
heavyweight techniques, which benchmark the whole VM. A
small improvement is obtained in the quality of rankings for
the hybrid technique. The key observation is that lightweight
techniques are sufficient for benchmarking cloud VMs.

This paper makes the following research contributions:

i. the development of lightweight cloud benchmarking tech-
niques that can benchmark VMs in near real-time for
generating performance ranks.

ii. the development of DocLite, a tool that incorporates the
lightweight cloud benchmarking techniques.

iii. an evaluation using containers of varying sizes of VM
memory against the whole VM.

iv. an evaluation of the accuracy of the benchmarks gener-
ated by DocLite on three scientific case study applica-
tions.

The remainder of this paper is organised as follows. Section
II considers related research. Section III proposes two cloud
benchmarking techniques. Section IV considers a tool that
is developed to incorporate the benchmarking techniques.
Section V is an experimental evaluation of the proposed
techniques using three case study applications. Section VI
concludes this paper by reporting future work.

II. RELATED WORK

Benchmarking is used to quantify the performance of a com-
puting system [9], [10]. Standard benchmarks such as Linpack
are used for ranking the top supercomputers [11]. However,
there are no standard benchmarking techniques accepted by
the cloud community and there are numerous ongoing efforts
to develop such benchmarks [12], [13], [14]. Benchmarking
offers insight into a number of resources and services offered
by the cloud [15]. There is research exploring benchmarks
for cloud databases [2], for understanding the reliability and
variability of cloud services [16], [17], for gathering network
performance between cloud resources in workows and web
services [18], [19]. In this paper, benchmarking is performed
directly on a VM. Consequently, the entire VM must be bench-
marked for generating accurate benchmarks that can take a
few hours to complete on large VMs. Currently, benchmarking
methods that generate accurate and detailed benchmarks are
heavyweight.

In order to facilitate cloud performance benchmarking in
a meaningful way, benchmarking techniques need to be em-
ployed in near real-time and at the same time produce accurate
benchmarks. This is because VMs have different performance
characteristics over time and sometimes even in small time
periods; Netflix uses a real-time benchmarking method for
selecting VMs that match application requirements2. Alternate
virtualisation technology, such as containers with low boot up
times and a high degree of resource isolation are likely to be
the way forward to achieve lightweight techniques [20], [8].

2http://www.brendangregg.com/blog/2015-03-03/performance-tuning-
linux-instances-on-ec2.html

Preliminary experimental results already indicate that con-
tainers have lower overheads when compared to existing
virtualisation technologies both for high-performance comput-
ing systems [21] as well as for the cloud [22]. Containers
on the cloud is still in its infancy and recent research has
reported employing containers for distributed storage [23],
reproducibility of research [24], and in the context of security
[25].

In this paper, we present novel techniques that employ
container technology to benchmark cloud VMs in near real-
time to produce reliable benchmarks. There is a large body
of research on benchmarking, both at the resource and ser-
vice levels. However, most benchmarking techniques at the
resource level are limited in that they are time consuming and
expensive, thereby restricting their use for actual deployments.
The benefits of containers, such as resource isolation, are
leveraged in the techniques we propose to achieve near real-
time benchmarking of the VM on the cloud.

III. CONTAINER-BASED BENCHMARKING

In this section, two cloud benchmarking methods are pro-
posed and presented. The first is a lightweight method that
employs Docker container technology to benchmark cloud
VMs in real-time. The second method, combines the use of
benchmarks from the first along with historic benchmarks gen-
erated from heavyweight methods (benchmarking the entire
VM) as a hybrid. The aim of both methods is to generate
a ranking of cloud VMs based on performance. The benefit
of using containers is that the amount of VM resources
benchmarked, such as memory size and the number of CPU
cores, can be limited. This benefit is leveraged such that only a
small amount of resources available to a VM are benchmarked
in comparison to heavyweight methods that benchmark the
entire resource of a VM.

A user can opt for either the lightweight or hybrid meth-
ods. A set of user defined weights, W (considered later
in this section), and historic benchmark data, HB, ob-
tained from either a heavyweight method or from previ-
ous executions of the lightweight method can be provided
as input. The lightweight benchmarks are obtained from
Obtain-Benchmark, considered in Algorithm 1, which is
represented as B. Lightweight-Method (Algorithm 2)
takes as input W and B and Hybrid-Method (Algorithm
3) takes HB as additional input.

Algorithm 1 gathers the benchmarks from different cloud
VMs. Consider there are i = 1, 2, · · · ,m different VM types,
and a VM of type i is represented as vmi. A container ci is
created on each VM. In the context of cloud benchmarking,
containers are used to facilitate benchmarking on different
types of VMs by restricting the amount of resources used.

Standard benchmark tools are executed using the container
ci. The latency and bandwidth information for a wide range of
memory and process, computation, local communication and
file related operations are collected. The benchmarks obtained
for each vmi are stored in a file, B, for use by Algorithm 2
and Algorithm 3.



Algorithm 1 Obtain cloud benchmarks

1: procedure OBTAIN–BENCHMARK(mem, CPU cores)
2: for each virtual machine vmi ∈ VM do
3: Create container ci of mem size and CPU cores

on vmi

4: Execute standard benchmark tool on ci
5: Store benchmarks as B
6: end for
7: end procedure

A. Lightweight Method

The benchmarks need to be used to generate ranks of VMs
based on performance. In the lightweight method, no historic
benchmark data is employed. The benchmark data obtained
from using containers, B, is used in this method as shown in
Algorithm 2.

Consider there are j = 1, 2, · · · , n attributes of a VM that
are benchmarked, and ri,j is the value associated with each
jth attribute on the ith VM. The attributes can be grouped as
Gi,k = {ri,1, ri,2, · · ·}, where i = 1, 2, · · ·m, k = 1, 2, · · · , p,
and p is the number of attribute groups. In this paper, four
attribute groups are considered:

1) Memory and Process Group, denoted as G1 captures the
performance and latencies of the processor.

2) Local Communication Group in which the bandwidth of
both memory communications and interprocess commu-
nications are captured under the local communication
group, denoted as G2.

3) Computation Group, denoted as G3 which captures the
performance of integer, float and double operations such
as addition, multiplication and division and modulus.

4) Storage Group in which the file I/O related attributes are
grouped together and denoted as G4.

Algorithm 2 Cloud ranking using lightweight method

1: procedure LIGHTWEIGHT–METHOD(W , B)
2: From B, organise benchmarks into groups, G
3: Normalise groups, Ḡ
4: Score VM using Ḡ.W
5: Generate performance ranks Rp
6: end procedure

The attributes of each group are normalised as r̄i,j =
ri,j−µj

σj
, where µj is the mean value of attribute ri,j over

m VMs and σj is the standard deviation of the attribute
ri,j over m VMs. The normalised groups are denoted as
Ḡi,k = {r̄i,1, r̄i,2, · · ·}, where i = 1, 2, · · ·m, k = 1, 2, · · · , p,
and p is the number of groups.

One input to Algorithm 2 is W , which is a set of
weights that correspond to each group (for the four groups
G1, G2, G3, G4, the weights are W = {W1,W2,W3,W4}).
For a given application, a few groups may be more important
than the others. For example, if there are a large number of file

read and write operations in a simulation, the Storage group
represented as G4 is important. The weights are provided by
the user based on domain expertise and the understanding of
the importance of each group to the application. Each weight,
Wk, where k = 1, 2, 3, 4 takes value between 0 and 5, where
0 indicates that the group is not relevant to the application and
5 indicates the importance of the group for the application.

Each VM is scored as Si = Ḡi,k.Wk. The scores are ordered
in a descending order for generating Rpi which is the ranking
of the VMs based solely on performance.

B. Hybrid Method

The hybrid method employs benchmarks obtained in real-
time, B, and historic benchmarks, HB, obtained either from a
heavyweight method or a previous execution of the lightweight
method as shown in Algorithm 3. This method accounts for
past and current performance of a VM for generating ranks.

Attribute grouping and normalising are similar to those fol-
lowed in Algorithm 2. The four groups used in the lightweight
method are used here and the attributes are normalised using
the mean and standard deviation values of each attribute.

When historic benchmarks are used, the method for group-
ing the attributes and normalising the groups are similar
to what was followed previously. The attributes from his-
toric benchmark data, hr, can be grouped as HGi,k =
{hri,1, hri,2, · · ·}, where i = 1, 2, · · ·m for m VM types,
k = 1, 2, · · · , p, and p is the number of groups. Four groups,
HG1, HG2, HG3 and HG4, are obtained.

Algorithm 3 Cloud ranking using hybrid method

1: procedure HYBRID–METHOD(W , B, HB)
2: From B, organise benchmarks into groups, G
3: Normalise groups, Ḡ
4: From HB, organise historic benchmarks into groups,
HG

5: Normalise groups, H̄G
6: Score VM using Ḡ.W + H̄G.W
7: Generate performance ranks Rp
8: end procedure

The attributes of each group are normalised as h̄ri,j =
hri,j−hµj

hσj
, where hµj is the mean value of attribute hri,j over

m VMs and hσj is the standard deviation of the attribute hri,j
over m VMs. The normalised groups are denoted as H̄Gi,k =
{h̄ri,1, h̄ri,2, · · ·}, where i = 1, 2, · · ·m, k = 1, 2, · · · , p, and
p is the number of groups.

The set of weights supplied to the hybrid method are same
as the lightweight method. Based on the weights each VM is
scored as Si = Ḡi,k.Wk + H̄Gi,k.Wk. The scores take the
most current and historic benchmarks into account and are
ordered in descending order for generating Rpi, which is the
performance ranking of the VMs.

The benchmarking methods will be affected if there are
multiple workloads running on the same VM. Nonetheless,
given a set of VMs which execute the benchmarking methods,



the output of the methods will enable us to identify a VM
or a subset of VMs that can meet the requirements of an
application provided as a set of weights. The benchmarking
methods considered in this section are incorporated into a
tool presented in the next section. The methods are further
evaluated against real world applications.

IV. DOCLITE IMPLEMENTATION

In this section, the cloud platform and the VMs employed,
the architecture of a tool that incorporates the benchmarking
methods proposed in the previous section, and a sample of the
benchmarks obtained on the cloud using the tool is presented.

A. Platform

The Amazon Web Services (AWS) Elastic Compute Cloud
(EC2)3 is used to evaluate the benchmarking methods. The
previous generation VMs (refer Table I) which have varying
performance and become popular in the scientific community
due to their longevity are chosen.

TABLE I: Amazon EC2 VMs employed for benchmarking

VM Type vCPUs Memory
(GiB)

Processor Clock
(GHz)

m1.xlarge 4 15.0 Intel Xeon E5-2650 2.00
m2.xlarge 2 17.1 Intel Xeon E5-2665 2.40
m2.2xlarge 4 34.2 Intel Xeon E5-2665 2.40
m2.4xlarge 8 68.4 Intel Xeon E5-2665 2.40
m3.xlarge 4 15.0 Intel Xeon E5-2670 2.60
m3.2xlarge 8 30.0 Intel Xeon E5-2670 2.60
cr1.8xlarge 32 244.0 Intel Xeon E5-2670 2.60
cc2.8xlarge 32 60.5 Intel Xeon X5570 2.93
hi1.4xlarge 16 60.5 Intel Xeon E5620 2.40
hs1.8xlarge 16 117.0 Intel Xeon E5-2650 2.00

The Docker container technology is used on the VMs
for benchmarking. Docker is a portable and lightweight tool
that facilitates the execution of distributed applications. It is
advantageous in that container images require less storage
space and consequentially deployment of containers is quick.
Another useful feature of containers is resource isolation - the
resources of a VM can be restricted to a specified amount of
memory or number of cores (virtual CPUs) for benchmarking.
The experiments were performed on 100MB, 500MB and
1000MB of RAM and on a single and on all vCPUs of the
VM. In our approach Docker containers are used on top of
the VMs and the resulting overhead is negligible as reported
by industry experts45.

Container are an abstraction over the VM but at the same
time as considered previously offer resource isolation. Process
switching times captured using a container will effectively be
that of the VM because no other container has access to the
same VM resource. In other words, the workload executing

3http://aws.amazon.com/ec2/previous-generation/
4https://blogs.vmware.com/performance/2014/10/docker-containers-

performance-vmware-vsphere.html
5https://blogs.vmware.com/performance/2015/05/running-transactional-

workloads-using-docker-containers-vsphere-6-0.html

Fig. 1: Architecture of DocLite

on a container cannot interfere with the workload of another
container executing on the same VM.

One limitation of resource isolation in Docker containers
is that I/O performance of the VM cannot be varied. Such a
feature could have benefited cloud VM benchmarking when
I/O bandwidth and latency measurements are accounted for.

In this paper, the benchmarking tool employed is lmbench
[26]. This tool was selected since (i) it is a single tool and can
be easily deployed on the cloud, (ii) it provides a wide variety
of benchmarks related to memory and process, computation,
local communication and file related operations that capture
the performance characteristics of the VM, and (iii) it has
been employed for modelling the performance of cloud VMs
reported in literature [1], [3], [27].

Two types of virtualisation are supported by Amazon VMs,
namely paravirtual and hvm. Two AMIs corresponding to the
virtualisation types were employed - ami-9207e3a1 and
ami-b5120885. The Docker image was created using the
stock Ubuntu images from the Docker server, followed by the
installation of lmbench. The image was uploaded to the Docker
Hub repository and is available for public use6.

B. Architecture

The container based benchmarking methods were imple-
mented as a tool, we refer to as Docker Container-Based
Lightweight Benchmarking tool (DocLite), which is available
from https://github.com/lawansubba/DoCLite. The tool has
three components, namely a web portal, a middleware and
a benchmark repository as shown in Figure 1.

1) Web Portal: The web portal is the user facing component
developed using MVC.NET7 and Bootstrap8. A user provides a
set of four weights W = {W1,W2,W3,W4} that characterises
the application to be deployed on the cloud as input; the
amount of memory and number of cores to be benchmarked

6https://hub.docker.com/u/lawansubba/
7http://www.asp.net/mvc
8http://getbootstrap.com/



along with preferences of whether the benchmark needs to
be executed sequentially or in parallel. The portal is also
responsible for displaying the status of the cloud VMs that
are used and the ranks generated from the benchmarks. In
this paper, lmbench is used, however, the tool is flexible
to accommodate other benchmarking tools and execute them
independently or in any preferred combination.

2) Middleware: The DocLite middleware comprises a
Benchmark Controller and a Cloud Controller. The Benchmark
Controller (i) incorporates the algorithms for lightweight and
hybrid benchmarking considered in Section III, (ii) pulls
benchmark data from the repository for grouping and normal-
ising the data, and (iii) generates the score for each VM based
on the weights provided by the user.

The Cloud Controller comprises of a Cloud Manager and a
Cloud Monitor. The manager initiates cloud VMs and main-
tains them by executing the appropriate scripts for installing
necessary packages and setting up Docker on the VM. The
Docker images that are used are retrieved from the Docker
Hub9 by the manager. The benchmarked data is deposited by
the manager into the repository.

The monitor keeps track of the benchmarks that have started
on the cloud VMs and reports the status of the VM to the
portal. Monitoring is important to the Benchmark Controller
to retrieve data from the repository after benchmarking.

3) Repository: The benchmark data obtained from the
cloud is stored in a repository used by the Benchmark
Controller for generating scores. Both historic and current
benchmark data are stored in the repository. If the lightweight
method is chosen, then the current benchmark data is used,
where as if the hybrid method is chosen, then the historic
data is used along with the current data.

C. Sample Benchmarks

The VMs shown in Table I were benchmarked using Do-
cLite by executing lmbench. Benchmarks for over fifty at-
tributes related to memory and process, local communication,
computation, and storage were obtained using containers of
100MB, 500MB and 1000MB. It is not within the scope of
this paper to present all benchmarks. Therefore, a sample of
three benchmarks is presented as shown in Figure 2.

Figure 2a shows the main memory latency for all
VMs. It is immediately inferred that with the exception
of hs1.8xlarge and hi1.4xlarge the main memory
latencies are comparable for different container sizes. The
exceptions are artefacts of measurements over networks. The
best main memory performance is for the m3 instances. Figure
2b shows the latency for a float division operation on each VM.
Again, similar results are obtained for different container sizes.
The bandwidth of memory read operations on all VMs are
shown in Figure 2c. Maximum memory bandwidth is available
on cr1.8xlarge.

The key observation from the above three samples (also
observed in all benchmarked data) is that there is a minimal

9https://hub.docker.com/

difference on average of less than 2% between the data points
when a container of 100MB, 500MB or 1000MB is used.
Given this small difference for different container sizes and
the time taken to benchmark a VM using a small container
is lower than a larger container, we hypothesise that (i)
the benchmarking methods incorporated in DocLite can be
employed in real-time, and (ii) VM rankings generated using
the lightweight benchmarking methods will be comparable to
heavyweight methods that benchmark the entire VM. This
hypothesis will be evaluated in the next section using three
case study applications.

V. EXPERIMENTAL STUDIES

In this section, three scientific case study applications are
used to evaluate the benchmarking methods. An evaluation
to validate the hypothesis of this research is considered by
comparing the time taken to execute the benchmark on the
VMs and comparing VM rankings generated by an empirical
analysis, a heavyweight method and the two benchmarking
methods.

A. Case Study Applications

Three high-performance computing applications are chosen
to evaluate the benchmarking methods. These applications are
executed on VMs as shown in Table I with at least 15 GiB
memory so that the applications have sufficient memory on
the VM.

The first case study is a molecular dynamics simulation of
a system comprising 10,000 particles in a three dimensional
space used by theoretical physicists [28]. The simulation
solves differential equations to model particles for different
time steps. The simulation is memory intensive with numer-
ous read and write operations and computationally intensive
requiring a large number of float operations. Local communi-
cation between processes are less relevant and the application
does not require file operations.

The second case study is a risk simulation that generates
probable maximum losses due to catastrophic events [29]. The
simulation considers over a million alternate views of a given
year and a number of financial terms to estimate losses. The
simulation is memory intensive with numerous read and write
operations and at the same time computationally intensive
requiring a large number of float operations to be performed
both to compute the risk metrics. The local communication
between processes are less relevant and the application does
not require file operations.

The third case study is a block triagonal solver, which is a
NASA Parallel Benchmark (NPB), version 3.3.1 10 [30]. This
mathematical solver is used on a grid size of 162 × 162 ×
162 for 200 iterations. The solver is numerically intensive and
memory and processor related operations are relevant, but does
not take precedence over computations. Local communications
and file operations have little effect on the solver.

10https://www.nas.nasa.gov/publications/npb.html



(a) Main memory latency (b) Float division operation latency (c) Memory read bandwidth

Fig. 2: Sample lmbench benchmarks obtained from DocLite for 100MB, 500MB and 1000MB containers

Fig. 3: Time taken for executing the benchmarks using 100MB, 500MB and 1000MB containers and on the whole VM

B. Evaluation

The aims of the experimental evaluation are to address
two important research questions related to lightweight bench-
marking. They are: 1) how fast can lightweight benchmarking
execute compared to a heavyweight technique that benchmarks
the entire VM? and 2) how accurate will the generated
lightweight benchmarks be?

1) Execution Time of Benchmarks: The first question re-
lated to speed is addressed by demonstrating the feasibility
of the proposed lightweight benchmarking methods in real-
time on the cloud. For this, the time taken to execute the
lightweight and heavyweight benchmarking techniques are
compared as shown in Figure 3. On an average the 100
MB, 500 MB, and 1000 MB containers take 8 minutes, 13
minutes and 18 minutes to complete benchmarking on all the
VMs. Benchmarking the whole VM takes up to 822 minutes
for hs1.4xlarge. It is immediately evident that container-

based benchmarking is between 19-91 times faster than the
benchmarking the entire VM.

2) Accuracy of Benchmarks: The second question related
to accuracy is addressed by evaluating the lightweight methods
against three real-world case study applications. For this, ranks
obtained from DocLite are compared against actual ranks of
VMs when the application is executed. The following steps
are used to evaluate the accuracy of the benchmarks:

• Step 1 - Execute case study application on all VMs.
• Step 2 - Generate empirical ranks for the case study.
• Step 3 - Provide weights of the application to DocLite.
• Step 4 - Obtain benchmark ranks for the application.
• Step 5 - Find correlation of benchmark and empirical

ranks.
In Step 1, the three case study applications were executed

on the VMs. The time taken to execute the application sequen-
tially is presented in Figure 4a to Figure 4c and to execute the



(a) Case study 1 - sequential (b) Case study 2 - sequential (c) Case study 3 - sequential

(d) Case study 1 - parallel (e) Case study 2 - parallel (f) Case study 3 - parallel

Fig. 4: Sequential and parallel execution times for the case study applications

application in parallel using all available vCPUs is presented in
Figure 4d to Figure 4e. In all case studies, the cr1.8xlarge
and cc2.8xlarge have best performance; these VMs show
good performance in memory and process and computation
groups. The m3 VMs are close competitors for sequential
execution and hi1.4xlarge and hs1.8xlarge perform
well for parallel execution. The results from parallel execution
depend on the number of vCPUs available on the VM.

In Step 2, the empirical ranks are generated using the
standard competition ranking approach. The lowest time trans-
lates to the highest rank. If there are two VMs with the
same program execution time they get the same rank and
the ranking is continued with a gap. For example, in Figure
4a, m3.2xlarge and m3.xlarge have the same program
execution time. Both VMs have third rank and the next best
performing VM, hs1.8xlarge obtains the fifth rank.

In Step 3, to generate the rankings from DocLite, a user
provides the set of weights W that characterise the case
study applications, this is further explained in Section [?].
In consultation with domain scientists and practitioners, the
weights for the three case studies are {4, 3, 5, 0}, {5, 3, 5, 0}

and {2, 0, 5, 0} respectively. The above ranks were provided
as input to the two benchmarking methods.

Tables II to IV show the empirical and benchmarking ranks
for the three case studies using the lightweight container
method as obtained in Step 4. Tables V to VII show the ranks
for the case studies using the hybrid method (data from the
lightweight container method along with data from the heavy-
weight method were considered). The historic benchmark data
used in this paper was less than one month old when the hybrid
method was executed.

Sequential and parallel ranks are generated for each case
study using the weights. The empirical ranks are obtained from
the timing results. The ranks obtained when using different
sizes of the container are also reported in the tables.

Given the rank tables for each case study it is important to
determine the accuracy (or quality) of the ranks. In this paper,
the accuracy of results is the correlation between the empirical
ranks and the benchmark ranks. This quality measure validates
the feasibility of using lightweight benchmarks and guarantees
results obtained from benchmarking correspond to reality.



Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 9 10 10 10 9 10 10 10
m2.xlarge 7 4 4 5 10 8 8 8
m2.2xlarge 6 7 6 7 7 9 9 9
m2.4xlarge 5 6 7 6 5 6 6 6
m3.xlarge 4 3 3 3 8 7 7 7
m3.2xlarge 3 5 5 5 6 4 3 4
cr1.8xlarge 1 1 1 1 1 1 1 1
cc2.8xlarge 2 2 2 2 2 2 2 2
hi1.4xlarge 8 8 8 8 3 3 4 3
hs1.8xlarge 10 9 9 9 4 5 5 5

TABLE II: Case Study 1: Empirical and benchmark rankings
for lightweight container benchmarking

Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 10 10 10 10 8 10 10 10
m2.xlarge 6 5 5 4 10 8 8 8
m2.2xlarge 6 7 6 7 7 9 9 9
m2.4xlarge 6 6 7 6 5 6 6 6
m3.xlarge 3 3 3 3 9 7 7 7
m3.2xlarge 3 4 4 5 6 4 4 4
cr1.8xlarge 1 1 1 1 2 1 1 1
cc2.8xlarge 2 2 2 2 1 2 2 2
hi1.4xlarge 9 8 8 8 4 3 3 3
hs1.8xlarge 5 9 9 9 3 5 5 5

TABLE III: Case Study 2: Empirical and benchmark rankings
for lightweight container benchmarking method

In Step 5, the correlation of the benchmark ranks using
different containers and the empirical ranks for benchmarking
is determined and shown in Table VIII and Table IX; the
percentage value shows the degree of correlation. Higher the
correlation value the more robust is the benchmarking method
since it corresponds more closely to the empirical ranks.

Consider Table VIII, on an average there is over 90%
and 86% correlation between the empirical and benchmarked
sequential and parallel ranks respectively. It is observed that
increasing the size of the container does not generally increase
the correlation between the ranks. The smallest container of
100 MB performs as well as the other containers.

There is an average improvement of 1%-2% in the correla-
tion between the ranks (Table IX). While the hybrid method
can improve the ranks, it is observed that the position of the
top three ranks are not affected. Again, using the smallest
container does not change the quality of results.

C. Summary

The experimental studies considered container benchmark-
ing both in the context of varying the memory size and number
of virtual cores of the VM. Variation of the number of cores
is evaluated in the sequential (1 virtual core) and parallel
(maximum number of virtual cores available) execution of the
benchmarks. The results indicate that real-time benchmarking
can be achieved which in turn will be useful for decision
making for real-time deployments of applications on the cloud.
This is substantiated by Figure 3; nearly 14 hours are required

Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 10 10 10 10 8 10 10 10
m2.xlarge 6 5 5 5 10 8 8 8
m2.2xlarge 7 7 7 7 7 9 9 9
m2.4xlarge 5 6 6 6 5 6 6 6
m3.xlarge 2 3 3 3 9 7 7 7
m3.2xlarge 3 4 4 4 6 5 5 5
cr1.8xlarge 1 1 1 1 1 2 2 2
cc2.8xlarge 4 2 2 2 2 1 1 1
hi1.4xlarge 8 8 8 8 3 3 3 3
hs1.8xlarge 9 9 9 9 3 4 4 4

TABLE IV: Case Study 3: Empirical and benchmark rankings
for lightweight container benchmarking

Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 9 10 10 10 9 10 10 10
m2.xlarge 7 5 5 5 10 9 9 9
m2.2xlarge 6 7 7 7 7 8 8 8
m2.4xlarge 5 6 6 6 5 6 6 6
m3.xlarge 4 3 3 3 8 7 7 7
m3.2xlarge 3 4 4 4 6 4 4 4
cr1.8xlarge 1 1 1 1 1 1 1 1
cc2.8xlarge 2 2 2 2 2 2 2 2
hi1.4xlarge 8 8 8 8 3 3 3 3
hs1.8xlarge 10 9 9 9 4 5 5 5

TABLE V: Case Study 1: Empirical and benchmark rankings
for hybrid benchmarking

to benchmark a large VM entirely, however, using containers it
can be done in just 8 minutes. This is significant improvement.

The following three key observations are summarised from
the experimental studies:

i. Small containers using lightweight benchmarks perform
similar to large containers. No improvement is observed
in the quality of results with larger containers. On av-
erage, there is over 90% and 86% correlation when
comparing ranks obtained from the empirical analysis and
the 100 MB container.

ii. The hybrid method can slightly improve the quality of
the benchmark rankings, although the position of the top
three ranks do not change. The lightweight method is suf-
ficient to maximise the performance of an application on
the cloud. Implementing hybrid methods will require the
storage of historic benchmark data and its maintenance
over time.

iii. Since container-based benchmarks takes lower execution
time compared to executing them directly on the VM they
can be used for real-time deployment of applications.

VI. CONCLUSIONS

Benchmarking is important for selecting cloud resources
that can maximise the performance of an application on the
cloud. However, current benchmarking techniques are time
consuming since they benchmark an entire VM for obtaining
accurate benchmarks, which we have referred to as ‘heavy-
weight’, thereby limiting their real-time use for deploying an



Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 10 10 10 10 8 10 10 10
m2.xlarge 6 5 5 5 10 9 9 9
m2.2xlarge 6 7 7 7 7 8 8 8
m2.4xlarge 6 6 6 6 5 6 6 6
m3.xlarge 3 3 3 3 9 7 7 7
m3.2xlarge 3 4 4 4 6 4 4 4
cr1.8xlarge 1 1 1 1 2 1 1 1
cc2.8xlarge 2 2 2 2 1 2 2 2
hi1.4xlarge 9 8 8 8 4 3 3 3
hs1.8xlarge 5 9 9 9 3 5 5 5

TABLE VI: Case Study 2: Empirical and benchmark rankings
for hybrid benchmarking

Amazon VM Sequential Ranking Parallel Ranking
Emp-
irical

100
MB

500
MB

1000
MB

Emp-
irical

100
MB

500
MB

1000
MB

m1.xlarge 10 10 10 10 8 10 10 10
m2.xlarge 6 5 5 5 10 9 9 9
m2.2xlarge 7 7 7 7 7 8 8 8
m2.4xlarge 5 6 6 6 5 6 6 6
m3.xlarge 2 3 3 3 9 7 7 7
m3.2xlarge 3 4 4 4 6 4 4 4
cr1.8xlarge 1 1 1 1 1 1 1 1
cc2.8xlarge 4 2 2 2 2 2 2 2
hi1.4xlarge 8 8 8 8 3 3 3 3
hs1.8xlarge 9 9 9 9 3 5 5 5

TABLE VII: Case Study 3: Empirical and benchmark rankings
for hybrid benchmarking

application. In this paper, we have explored an alternative
to existing benchmarking techniques to generate accurate
benchmarks in near real-time by using containers as a means
to achieve ‘lightweight’ benchmarking.

The fundamental assumption of this research is that light-
weight benchmarking can produce comparable ranks to when
an entire VM is benchmarked. This assumption is validated in
this paper by generating ranks based on using containers and
producing VM ranks which are compared against the ranks
when an application is run on the entire VM. The correlation
between the two sets of rank is found to be high which
validates the assumption of this research.

Docker Container-based Lightweight Benchmarking tool,
referred to as ‘DocLite’ was developed to facilitate lightweight
benchmarking. DocLite organises the benchmark data into four
groups, namely memory and process, local communication,
computation and storage. A user of DocLite provides as
input a set of four weights (ranging from 0 to 5), which
indicate how important each of the groups are to scientific
high-performance computing applications that needs to be
deployed on the cloud. The weights are mapped onto the four
benchmark groups and are used to generate a score for ranking
the VMs according to performance. DocLite operates in two
modes. In the first mode, containers are used to benchmark a
portion of the VM to generate ranks of cloud VMs, and the
second in which data obtained from the first mode is used in
conjunction with historic data as a hybrid. DocLite is available
to download from https://github.com/lawansubba/DoCLite. It

Case study Sequential Ranking Parallel Ranking
100
MB

500
MB

1000
MB

100
MB

500
MB

1000
MB

1 89.1 87.9 92.1 90.3 86.7 90.3
2 88.5 88.5 84.7 83.0 83.0 83.0
3 95.2 95.2 95.2 87.6 87.6 87.6

TABLE VIII: Correlation (in %) between empirical and bench-
marking ranks for the lightweight benchmarking method

Case study Sequential Ranking Parallel Ranking
100
MB

500
MB

1000
MB

100
MB

500
MB

1000
MB

1 93.9 93.9 93.9 93.9 93.9 93.9
2 88.5 88.5 88.5 86.7 86.7 86.7
3 95.2 95.2 95.2 88.8 88.8 88.8

TABLE IX: Correlation (in %) between empirical and bench-
marking ranks for the hybrid benchmarking method

is observed that benchmarking using DocLite is between 19-
91 times faster than a heavyweight technique making them
suitable for real-time. The experimental results highlight that
the benchmarks obtained from container-based techniques are
on an average over 90% accurate making them reliable.
Container-based technology is useful for benchmarking on the
cloud and can form the basis for developing fast and reliable
benchmarking techniques.

Container-based benchmarking techniques presented in
this paper execute on Unix/Linux-based VMs regardless of
whether they are provided by public/private clouds. We have
tested these techniques on both previous and next generation
VMs provided by Amazon although in this paper the results
are presented for previous generation VMs. The techniques are
repeatable by simply following the steps we have presented in
Section III-A and Section III-B. However, the results obtained
from the same type of VM may not be always the same, since
performance of VMs are dependent on a number of factors
including the workload at the data centre.

We aim to extend our research in the future in the following
four directions. Firstly, testing the benchmarking methodology
on a wider range of applications as well as extending DocLite
for monitoring the performance of the cloud VM executing an
application to support dynamic scheduling.

Secondly, the benchmarking techniques in this paper focus
on modelling the performance of a single VM using multiple
cores. Hence, only memory and process, local communication,
computation and storage are relevant without considering
service level benchmarking that incorporates network bench-
marks. Research that takes networking aspects into account has
been explored previously [31], [32]. However, in this research
we have not explored the integration of network benchmarks
with the techniques proposed in this paper. By incorporating
the networking aspect into the benchmarking the range of
applications that can be benchmarked by the techniques can
be widened.

Thirdly, the techniques we have proposed requires a user to
provide a set of weights that describe the memory and process,



computation, local communication and storage requirements of
an application which need to be known beforehand. Hence,
the benchmarking techniques are best suited for the class
of problems, such as scientific high-performance computing
workloads on the cloud, where the requirements of the ap-
plication are known prior to deployment. The techniques can
be significantly improved if the weights can be automatically
determined using techniques such as profiling given the source
code of the application that needs to be benchmarked on the
cloud.

Fourthly, the hybrid method uses the same weight for both
current and historic data. In this paper, the historic data is less
than one month old; hence using the same weight generated
good results as indicated by the correlation table. However,
more historic data is likely to be stale and may not require the
same weight as current benchmark data. We aim to consider
the automatic generation of weights for historic data based on
how stale it is.

ACKNOWLEDGMENT

This research was pursued under the EPSRC grant,
EP/K015745/1, ‘Working Together: Constraint Programming
and Cloud Computing,’ an Erasmus Mundus Master’s scholar-
ship and an Amazon Web Services Education Research grant.

REFERENCES

[1] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 22, Issue 6, 2011, pp. 931-945.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” Proceedings of
the 1st ACM Symposium on Cloud Computing, 2010, pp. 143-154.

[3] B. Varghese, O. Akgun, I. Miguel, L. Thai and A. Barker, “Cloud Bench-
marking for Performance,” Proceedings of the 6th IEEE International
Conference on Cloud Computing Technology and Science, 2014, pp.
535-540.

[4] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl and C. Tosun,
“Benchmarking in the Cloud: What it Should, Can, and Cannot Be,”
Selected Topics in Performance Evaluation and Benchmarking (Editors:
R. Nambiar and M. Poess), Lecture Notes in Computer Science, 2013,
pp. 173-188.

[5] C. Anderson, “Docker,” IEEE Software, 2015, pp. 102-105.
[6] J. Bottomley and P. Emelyanov, “Containers,” USENIX ;login:, Vol. 39,

No. 5, 2014, pp. 6-10.
[7] W. Felter, A. Ferreira, R. Rajamony and J. Rubio, “An Updated Per-

formance Comparison of Virtual Machines and Linux Containers,” IBM
Research Report, RC25482 (AUS1407-001), 2014.

[8] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing, Vol. 1, Issue 3, 2014, pp. 81-84.

[9] D. Kaeli and K. Sachs, “Computer Performance Evaluation and Bench-
marking,” Lecture Notes on Computer Science 5419, Springer, 2009.

[10] K. Huppler, “The Art of Building a Good Benchmark,” Performance
Evaluation and Benchmarking (Editors: R. Nambiar and M. Poess),
Lecture Notes in Computer Science, 2009, pp. 18-30.

[11] J. J. Dongarra, P. Luszczek and A. Petitet, “The LINPACK Benchmark:
Past, Present and Future,” Concurrency and Computation: Practice and
Experience, Vol. 15, 2013, pp. 803-820.

[12] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl and C. Tosun,
“Benchmarking in the Cloud: What it Should, Can, and Cannot Be,”
Selected Topics in Performance Evaluation and Benchmarking (Editors:
R. Nambiar and M. Poess), Lecture Notes in Computer Science, 2013,
pp. 173-188.

[13] L. Gillam, B. Li, J. O’Loughlin and A. P. S. Tomar, “Fair Benchmarking
for Cloud Computing systems,” Journal of Cloud Computing: Advances,
Systems and Applications, Vol. 2, Issue 6, 2013.

[14] Z. Li, L. O’Brien, H. Zhang and R. Cai, “On a Catalogue of Metrics
for Evaluating Commercial Cloud Services,” Proceedings of the 13th
International Conference on Grid Computing, 2012, pp.164-173.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D.
Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsa, “Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware” Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

[16] A. Lenk, M. Menzel, J. Lipsky, S. Tai and P. Offermann, “What are you
paying for? Performance Benchmarking for Infrastructure-as-a-Service
Offerings,” Proceedings of the 4th International Conference on Cloud
Computing, 2011, pp. 484-491.

[17] J. Schad, J. Dittrich, J. -A. Quiane-Ruiz, “Runtime Measurements in the
Cloud: Observing, Analyzing, and Reducing Variance,” Proceedings of
the VLDB Endowment, Vol. 3, Issue 1-2, 2010, pp. 460-471.

[18] A. Li, X. Zong, S. Kandula, X. Yang and M. Zhang, “CloudProphet:
Towards Application Performance Prediction in Cloud,” Proceedings of
the ACM SIGCOMM 2011 conference, 2011, pp. 426-427.

[19] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A.
Klepchukov, S. Patil, A. Fox and D. Patterson “Cloudstone: Multi-
Platform Multi-Language Benchmark and Measurement Tools for Web
2.0,” Proceedings of Cloud Computing and its Applications, 2008.

[20] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier and L. Peterson,
“Container-based Operating system Virtualization: A Scalable, High-
performance Alternative to Hypervisors ,” Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems, 2007,
pp. 275-287.

[21] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, C. A.
F. De Rose, “Performance Evaluation of Container-Based Virtualization
for High Performance Computing Environments,” Proceedings of the
21st Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, 2013, pp. 233-240.

[22] W. Li, A. Kanso and A. Gherbi, “Leveraging Linux Containers to
Achieve High Availability for Cloud Services,” Proceedings of the IEEE
International Conference on Cloud Engineering, 2015, pp. 76-83.

[23] H. Yoon, M. Ravichandran and K. Schwan, “Distributed Cloud Storage
Services with FleCS Containers,” Open Cirrus Summit, 2011.

[24] C. Boettiger, “An Introduction to Docker for Reproducible Research,”
ACM SIGOPS Operating Systems Review - Special Issue on Repeata-
bility and Sharing of Experimental Artifacts, Vol. 49, Issue 1, 2015, pp.
71-79.

[25] T. Bui, “Analysis of Docker Security,” arXiv:1501.02967 [cs.CR], 2015.
[26] C. Staelin, “lmbench - An Extensible Micro-benchmark Suite,” Software

- Practice and Experience, 2004.
[27] S. Ostermann, A. Iosup, R. Prodan, T. Fahringer and D. Epema, “A

Performance Analysis of EC2 Cloud Computing Services for Scientific
Computing,” Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, Vol. 34, 2010,
pp 115-131.

[28] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A.
Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D. Sacerdoti, J.
K. Salmon, Y. Shan and D. E. Shaw, “Scalable Algorithms for Molecular
Dynamics Simulations on Commodity Clusters,” Proceedings of the
ACM/IEEE Conference on Supercomputing, Article No. 84, 2006.

[29] A. K. Bahl, O. Baltzer, A. Rau-Chaplin, and B. Varghese, “Parallel
Simulations for Analysing Portfolios of Catastrophic Event Risk,” Work-
shop Proceedings of the International Conference of High Performance
Computing, Networking, Storage and Analysis, 2012.

[30] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R.
S. Schreiber, H. D. Simon, V. Venkatakrishnan, S. K. Weeratunga,
“The NAS Parallel Benchmarks - Summary and Preliminary Results,”
Proceedings of the ACM/IEEE Conference on Supercomputing, 1991,
pp. 158-165.

[31] M. Luckeneder and A. Barker,“ Location, Location, Location: Data-
Intensive Distributed Computing in the Cloud,” Proceedings of the 5th
IEEE International Conference on Cloud Computing Technology and
Science, 2013, pp. 647-654.

[32] L. Thai, A. Barker, B. Varghese, O. Akgun and I. Miguel, “Optimal
Deployment of Geographically Distributed Workflow Engines on the
Cloud,” Proceedings of the 6th IEEE International Conference on Cloud
Computing Technology and Science, 2014, pp. 811-816.


