
TPC-H Analyzed: Hidden Messages and Lessons
Learned from an Influential Benchmark

Peter Boncz1, Thomas Neumann2, and Orri Erling3

1 CWI, Amsterdam, The Netherlands
boncz@cwi.nl

2 Technical University Munich, Germany
neumann@in.tum.de

3 Openlink Software, United Kingdom
oerling@openlinksw.com

Abstract. The TPC-D benchmark was developed almost 20 years ago,
and even though its current existence as TPC-H could be considered su-
perseded by TPC-DS, one can still learn from it. We focus on the tech-
nical level, summarizing the challenges posed by the TPC-H workload
as we now understand them, which we call “choke points”. We identify
28 different such choke points, grouped into six categories: Aggregation
Performance, Join Performance, Data Access Locality, Expression Calcu-
lation, Correlated Subqueries and Parallel Execution. On the meta-level,
we make the point that the rich set of choke-points found in TPC-H sets
an example on how to design future DBMS benchmarks.4

1 Introduction

Good benchmark design starts with a use case that is recognizable and under-
standable, and where the data being stored as well as query and update work-
loads being posed, resemble those of a wider class of data management problems
faced by IT practitioners (and more, see [1]). However, basing a benchmark
solely on “real-life” data management scenarios, data-sets and query logs will
not necessarily lead to an interesting benchmark, for instance because such real-
world examples characterize what technology can do now, not what it could
do in the future. Moreover, the value in a benchmark is not only in allowing
data management practitioners to test different technologies and compare them
quantitatively, but also in stimulating technological advances.

In the LDBC (Linked Data Benchmark Council) project, these authors are
currently pursuing the design of new benchmarks that will stimulate technolog-
ical advance in graph (and RDF) data management. For this purpose, LDBC
follows a dual design track where on the one hand a Technical User Commu-
nity (TUC) consisting of data management technology practitioners contribute
data-sets and workloads, but on the other hand, technology experts both from
industry and academic database research provide technical guidance on what we

4 Partially supported by EU project LDBC (FP7-317548), see http://ldbc.eu

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301631019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


call “choke points”, that should be embedded in these new benchmarks. Choke
points are those technological challenges underlying a benchmark, whose resolu-
tion will significantly improve the performance of a product.

This paper was written with a dual motivation: (i) to use the by now well-
understood TPC-H benchmark to illustrate examples of what we understand
“choke points” to be, and use TPC-H as an example of a benchmark that con-
tains a rich set of these, and (ii) as an overview and reference for analytical data
management practitioners to better understand the TPC-H workload itself; con-
centrating collected wisdom on this benchmark in a single place.

We do not dispute that TPC-H, which is almost 20 years old, could by some
be regarded as superseded (e.g. by TPC-DS). The purpose of this paper is not
to criticize TPC-H or suggest improvements as has been done elsewhere [2], but
rather to describe what TPC-H is. We would appreciate any future benchmark
to be at least as rich in relevant technical challenges as TPC-D was in 1995.

2 TPC-H Choke Point Analysis

Table 1 contains the summary of our choke point classification, which in the
remainder of this paper will be discussed point-by-point.

2.1 Aggregation Performance.

Aggregations occur in all TPC-H queries, hence performance of group-by and
aggregation is quite important.

CP1.1: Ordered Aggregation. Aggregation implementations typically use a
hash-table to store the group-by keys in. This is an efficient method, because
hash-lookup (with a properly sized hash-table) has constant lookup cost. Hash-
aggregation does run into performance deterioration when the amount of distinct
group-by keys is large. When the hash-table will no longer fit the various CPU
cache levels, cache and TLB misses will make the lookup more costly CPU-wise.
With even more distinct keys, one may get to the situation that the hash-table
cannot be kept in RAM anymore. Here a spilling hash aggregation would be
needed, that first hash-partitions the tuple stream to different files based on the
hash value, and then aggregates the individual files inside RAM one-at-a-time.
Spilling hash aggregations are not obviously superior to other methods, such
as those based on creating a B-tree or, more plausibly, those based on sorting
(external memory sort). In case the group-by keys arrive in sorted order, or
actually much more generally, if all equal group-by keys appear consecutively in
the stream, one should employ ordered aggregation instead of hash aggregation.

These approaches can even be mixed, e.g., using repetitive grouped execu-
tion of hash-aggregation, or using hash-based early aggregation in a sort-based
spilling approach. Therefore the key challenge is detecting which situation ap-
plies, which depends both on the available hardware and the query characteris-
tics. Related to this, the query optimizer has to infer the correct intermediate
result cardinalities, which is relatively simple for most TPC-H query constructs,
but challenging for group-by expressions.



Q1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Q13Q14Q15Q16Q17Q18Q19Q20Q21Q22

CP1 Aggregation Performance. Performance of aggregate calculations.

CP1.1 QEXE: Ordered Aggregation.
CP1.2 QOPT: Interesting Orders.
CP1.3 QOPT: Small Group-by Keys (array lookup).
CP1.4 QEXE: Dependent Group-By Keys (removal of).

CP2 Join Performance. Voluminous joins, with or without selections.

CP2.1 QEXE: Large Joins (out-of-core).
CP2.2 QEXE: Sparse Foreign Key Joins (bloom filters).
CP2.3 QOPT: Rich Join Order Optimization.
CP2.4 QOPT: Late Projection (column stores).

CP3 Data Access Locality. Non-full-scan access to (correlated) table data.

CP3.1 STORAGE: Columnar Locality (favors column storage).
CP3.2 STORAGE: Physical Locality by Key (clustered index, partitioning).
CP3.3 QOPT: Detecting Correlation (ZoneMap,MinMax,multi-attribute histograms).

CP4 Expression Calculation. Efficiency in evaluating (complex) expressions.

CP4.1 Raw Expression Arithmetic.
CP4.1a QEXE: Arithmetic Operation Performance.
CP4.1b QEXE: Overflow Handling (in arithmetic operations).
CP4.1c QEXE: Compressed Execution.
CP4.1d QEXE: Interpreter Overhead (vectorization; CPU/GPU/FPGA JIT compil.).

CP4.2 Complex Boolean Expressions in Joins and Selections.
CP4.2a QOPT: Common Subexpression Elimination (CSE).
CP4.2b QOPT: Join-Dependent Expression Filter Pushdown.
CP4.2c QOPT: Large IN Clauses (invisible join).
CP4.2d QEXE: Evaluation Order in Conjunctions and Disjunctions.

CP4.3 String Matching Performance.
CP4.3a QOPT: Rewrite LIKE(X%) into a Range Query.
CP4.3b QEXE: Raw String Matching Performance (e.g. using SSE4.2).
CP4.3c QEXE: Regular Expression Compilation (JIT/FSA generation).

CP5 Correlated Subqueries. Efficiently handling dependent subqueries.

CP5.1 QOPT: Flattening Subqueries (into join plans).
CP5.2 QOPT: Moving Predicates into a Subquery.
CP5.3 QEXE: Overlap between Outer- and Subquery.

CP6 Parallelism and Concurrency. Making use of parallel computing resources.

CP6.1 QOPT: Query Plan Parallelization.
CP6.2 QEXE: Workload Management.
CP6.3 QEXE: Result Re-use.

Table 1. TPC-H Choke Point (CP) classification, and CP impact per query
(white=light, gray=medium, black=strong).



CP1.2: Interesting Orders. Apart from clustered indexes providing key order,
other operators also preserve or even induce tuple orderings. Sort-based opera-
tors create new orderings, typically the probe-side of a hash join conserves its
order, etc. For instance TPC-H Q3,4,18 join ORDERS and LINEITEM, followed by
aggregation grouped-by on o orderkey. If the tuple order of ORDERS is conserved
by the join, ordered aggregation is applicable. This is not to say that it is always
best to use the join order with ORDERS on the probe side and LINEITEM on the
build side (in hash-join terms), but if this is chosen then the ordered aggregation
benefit should be reaped. A similar opportunity arises in Q21 with a join between
SUPPLIER and LINEITEM, and grouped-by on s suppkey. These are an examples
of interesting order handling where the query optimization space should take
multiple orders into account [3] (i.e. choosing a particular join methods leads to
lower aggregation cost, subsequently).

CP1.3: Small Group-By Keys. Q1 computes eight aggregates: a count, four
sums and three averages. Group-by keys are l returnflag, l linestatus, with
just four occurring value combinations. This points to a possibility to optimize a
special case of group-by. Namely, if all group-by expressions can be represented
as integers in a small range, one can use an array to keep the aggregate totals by
position, rather then keeping them in a hash-table. This can be extended to mul-
tiple group-by keys if their concatenated integer representation is still “small”. In
case of Q1, the group-by attributes are single-characters strings (VARCHAR(1))
which can be stored as an integer e.g. holding the Unicode value.

CP1.4: Dependent Group-By Keys. Q10 has an group-by on c custkey and
the columns c comment, c address, n name, c phone, c acctbal, c name. The
amount of data processed is large, since the query involves a one-year ORDERS

and LINEITEM join towards CUSTOMER. Given that c custkey is the primary
key of CUSTOMER, the query optimizer can deduce that its value functionally
determines the columns c comment, c address, n name, c phone, c acctbal,
c name. As a result, the aggregation operator should have the ability to exclude
certain group-by attributes from key matching: this can greatly reduce the CPU
cost and memory footprint of such an operator. This opportunity arises in many
other queries that have an aggregation that includes a tuple identity (denoted
#) in addition to other columns that are functionally determined by it:

Q3 #o → o shippriority, o orderdate

Q4 #o → o orderpriority

Q10 #c → c comment, c address, n name, c phone, c acctbal, c name

Q13 #c → count(*)

Q18 #c,#l → l quantity, o totalprice, o orderdate, c name

Q20 #s → s address, s name

Q21 #s → s name

Even though declaring keys is optional in the rules of TPC-H, functional
dependency exploitation in aggregation is a clear argument why one would do
so. An additional argument is execution optimization that can be performed
when executing N:1 foreign key joins: the optimizer knows that exactly one value



will be added to an intermediate result record, lowering CPU effort (breaking off
hash-table search after the first hit) and avoidance of intermediate data copying,
which is needed if a join “blows up” an intermediate result in case of a 1:N join.

In this sense, it is noteworthy that the EXASOL TPC-H implementations
do not declare (foreign) keys, but adds a “foreign key check” query set to the
load phase; it is understood that a side effect of this may be the detection of
these (foreign) key constraints. This might avoid the only drawback of declaring
constraints: namely the obligation to check these in the refresh queries.

2.2 Join Performance.

CP2.1: Large Joins. Joins are the most costly relational operators, and there
has been a lot of research and different algorithmic variants proposed. Generally
speaking, the basic choice is between hash- and index-based join methods. It is
no longer assumed that hash-based methods are always superior to index-based
methods; the choice between the two depends on the system implementation of
these methods, as well as on the physical database design: in general, index-
based join methods are used in those situations where the data is stored in an
index with a key of which the join key is a prefix. For the cost model, whether
the index is clustered or unclustered makes a large difference in systems relying
on I/O; but (as by now often is the case) if the TPC-H workload hot-set fits into
the RAM, the unclustered penalty may be only moderate.

Q9 and Q18 are the queries with the largest joins without selection predicates
between the largest tables ORDERS and LINEITEM. The heaviest case is Q9, which
essentially joins it also with PARTSUPP, PART and SUPPLIER with only a 1 in 17 se-
lection on PART. The join graph has the largest table LINEITEM joining with both
ORDERS and PARTSUPP. It may be possible to get locality on the former join, using
either clustered indexing or table partitioning; this will create a merge-join like
pattern, or a partitioned join where only matching partitions need to be joined.
However, using these methods, the latter join towards the still significantly large
PARTSUPP table will not have locality. This lack of locality causes large resource
consumption, thus Q9 can be seen as the query that tests for out-of-core join
methods (e.g. spilling hash-joins). In TPC-H, by configuring the test machine
with sufficient RAM, typically disk spilling can be avoided, avoiding its high
performance penalty. In the case of parallel database systems, lack of join local-
ity will cause unavoidable network communication, which quickly can become a
performance bottleneck. Parallel database systems can only avoid such commu-
nication by replicating the PARTSUPP, PART and SUPPLIER tables on all nodes –
a strategy which increases memory pressure and disk footprint, but which is not
penalized by extra maintenance cost, since the TPC-H refresh queries do not
modify these particular tables.

For specific queries, usage of special join types may be beneficial. For example,
Q13 can be accelerated by the GroupJoin operator [4], which combines the outer
join with the aggregation and thus avoids building the same hash table twice.

CP2.2: Sparse Foreign Key Joins. Joins occur in all TPC-H queries except
Q1,6; and they are invariably over N:1 or 1:N foreign key relationships. In con-



trast to Q9 and Q18, the joins in all other queries typically involve selections;
very frequently the :1 side of the join is restricted by predicates. This in turn
means that tuples from the N: side, instead of finding exactly one join part-
ner, often find no partner at all. In TPC-H it is typical that the resulting join
hit-ratios are below 1 in 10, and often much lower. This makes it beneficial for
systems to implement a bloom filter test inside the join [5]; since this will elim-
inate the great majority of the join lookups in a CPU-wise cheap way, at low
RAM investments. For example, in case of VectorWise, bloom filters are created
on-the-fly if a hash-join experiences a low hit ratio, and make the PARTSUPP-PART
join in Q2 six times faster, accelerating Q2 two-fold overall.

Bloom filters created for a join should be tested as early as possible, poten-
tially before the join, even moving it down into the probing scan. This way, the
CPU work is reduced early, and column stores may further benefit from reduced
decompression cost in the scan and potentially also less I/O, if full blocks are
skipped [6]. Bloom filter pushdown is furthermore essential in MPP systems in
case of such low hit-ratio joins. The communication protocol between the nodes
should allow a join to be preceded by a bloom filter exchange; before sending
probe keys over the network in a communicating join, each local node first checks
the bloom filter to see if it can match at all. In such way, bloom filters allow to
significantly bring down network bandwidth usage, helping scalability.

CP2.3: Rich Join Order Optimization. TPC-H has queries which join up
to eight tables with widely varying cardinalities. The execution times of different
join orders differ by orders of magnitude. Therefore, finding an efficient join order
is important, and, in general, requires enumeration of all join orders, e.g., using
dynamic programming. The enumeration is complicated by operators that are
not freely reorderable like semi, anti, and outer joins. Because of this difficulty
most join enumeration algorithms do not enumerate all possible plans, and there-
fore can miss the optimal join order. One algorithm that can properly handle
semi-, anti-, and outer-joins was developed by IBM for DB2 [7]. Moerkotte and
Neumann [8] presented a more general algorithm based on hypergraphs, which
supports all relational operators and, using hyperedges, supports join predicates
between more than two tables.

CP2.4: Late Projection. In column stores, queries where certain columns are
only used late in the plan, can typically do better by omitting them from the
original table scans, to fetch them later by row-id with a separate scan operator
which is joined to the intermediate query result. Late projection does have a
trade-off involving locality, since late in the plan the tuples may be in a different
order, and scattered I/O in terms of tuples/second is much more expensive than
sequential I/O. Late projection specifically makes sense in queries where the late
use of these columns happens at a moment where the amount of tuples involves
has been considerably reduced; for example after an aggregation with only few
unique group-by keys, or a top-N operator. There are multiple queries in TPC-H
that have such pattern, the most clear examples being Q5 and Q10.

A lightweight form of late projection can also be applied to foreign key joins,
scanning for the probe side first only the join keys, and only in case there is a



match, fetching the remaining columns (as mentioned in the bloom filter dis-
cussion). In case of sparse foreign key joins, this will lead to reduced column
decompression CPU work, and potentially also less I/O – if full blocks can be
skipped.

2.3 Data Access Locality

A popular data storage technique in data warehousing is the materialized view.
Even though the TPC-H workload consists of multiple query runs, where the
22 TPC-H queries are instrumented with different parameters, it is possible to
create very small materialized views that basically contain the parameterized
answers to the queries. Oracle issued in 1998 the One Million Dollar Challenge,
for anyone who could demonstrate that Microsoft SQLserver 7.0 was not 100
times slower than Oracle when running TPC-D; exploiting the fact that Ora-
cle had introduced materialized views before SQLserver did. Since materialized
views essentially turn the decision support queries of TPC-D into pre-calculated
result-lookups, the benchmark no longer tested ad-hoc query processing capabil-
ities. This led to the split of TPC-D into TPC-R (R for Reporting, now retired,
where materialized views were allowed), and TPC-H, where materialized views
were outlawed. As such, even though materialized views are an important feature
in data warehousing, TPC-H does not test their functionality.

CP3.1: Columnar Locality. The original TPC-D benchmark did not allow
the use of vertical partitioning. However, in the past decade TPC-H has been
allowing systems that uniformly vertically partition all tables (“column stores”).
Columnar storage is popular as it accelerates many analytical workloads, without
relying on a DBA to e.g. carefully choose materialized views or clustered indexes.
As such, it is considered a more “robust” technique. The main advantage of
columnar storage is that queries only need to access those columns that actually
are used in a query. Since no TPC-H query is of the form SELECT * FROM ..,
this benefit is present in all queries. Given that roughly half of the TPC-H data
volume is in the columns l comment and o comment (in VectorWise), which are
very infrequently accessed, one realizes the benefit is even larger than the average
fraction of columns used by a query.

Not only do column-stores eliminate unneeded I/O, they also employ effective
columnar compression, and are best combined with an efficient query compiler
or execution engine. In fact, both the TPC-H top-scores for cluster and single-
server hardware platforms in the years 2010-2013 have been in the hands of
columnar products (EXASOL and VectorWise).

CP3.2: Physical Locality by Key. The TPC-H tables ORDERS and LINEITEM

contain a few date columns, that are correlated by the data generator:

– l shipdate = o orderdate + random[1:121],
– l commitdate = o orderdate + random[30:90], and
– l receiptdate = l shipdate + random[1:30].

In Q3, there is a selection with lower bound (LO) on l shipdate and a higher
bound (HI) on o orderdate. Given the above, one could say that o orderdate



is thereby restricted on the day range [LO-121:HI]. Similar bounds follow for
any of the date columns in LINEITEM. The combination of a lower and higher
bound from different tables in Q3 is an extreme case, but in Q4,5,8,10,12 there
are range restrictions on one date column, that carry over to a date restriction
to the other side of the ORDERS-LINEITEM join.

Clustered Indexes. It follows that storing the ORDERS relation in a clustered index
on o orderdate and LINEITEM on a clustered index on any of its date columns; in
combination with e.g. unclustered indexes to enforce their primary keys, leads to
joins that can have high data locality. Not only will a range restriction save I/O
on both scans feeding into the join, but in a nested-loops index join the cursor
will be moving in date order through both tables quasi-sequentially; even if the
access is by the orderkey via an unclustered index lookup. Such an unclustered
index could easily be RAM resident and thus fast to access.

In Q3,4,5,8,10,12 the date range selections take respectively 2,3,12,12,3,12 out
of 72 months. Typically this 1 in 6 to 1 in 36 selection fraction on the ORDERS

table is propagable to the large LINEITEM table, providing very significant ben-
efits. In Q12 the direction is reverted: the range predicate is on l receiptdate

and can be propagated to ORDERS (similar actually happens in Q7, here through
l shipdate). Even though this locality automatically emerges during joins if
ORDERS and LINEITEM both are stored in a clustered index with a date key, the
best plan might not be found by the optimizer if it is not aware of the correlation.
Microsoft SQLserver specifically offers the DATE CORRELATION OPTIMIZATION

setting that tells the optimizer to keep correlated statistics.

Table Partitioning. Range-partitioning is often used in practice on a time dimen-
sion, in which case it provides support for so-called data life-cycle management.
That is, a data warehouse may keep the X last months of data, which means
that every month the oldest archived month must be removed from the dataset.
Using range-partitioning, such can be efficiently achieved by range-partitioning
the data per month, dropping the oldest partition. However, the refresh work-
load of TPC-H does not fit this pattern, since its deletes and inserts are not
time-correlated. The benefit from table partitioning in TPC-H is hence partition
pruning, which both can happen in handling selection queries (by not scanning
those partitions that cannot contain results, given a selection predicate) and in
joins between tables that are partitioned on the primary and foreign keys.

Data correlation could be exploited in partitioning as well, even respect-
ing the TPC-H rule that no index creation directive (or any other DDL) would
mention multiple tables. For example, for range-partitioned tables it is relatively
easy to automatically maintain for all declared foreign key joins to another parti-
tioned table a pruning bitmap for each partition, that tells with which partitions
on the other side the join result is empty. Such a pruning bitmap would steer join
partition pruning and could be cheaply maintained as a side effect of foreign-key
constraint checking.

CP3.3: Detecting Correlation. While the TPC-H schema rewards creating
these clustered indexes, in case of LINEITEM the question then is which of the
three date columns to use as key. One could say that l shipdate is used more



often (in Q6,15,20) than l receiptdate (just Q12), but in fact it should not mat-
ter which column is used, as range-propagation between correlated attributes of
the same table is relatively easy. One way is through creation of multi-attribute
histograms after detection of attribute correlation, such as suggested by the
CORDS work in DB2 [9]. Another method is to use small materialized aggre-
gates [10] or even simpler MinMax indexes (VectorWise) or zone-maps (Netezza),
The latter data structures maintain the MIN and MAX value of each column, for
a limited number of zones in the table. As these MIN/MAX are rough bounds
only (i.e. the bounds are allowed to be wider than the real data), maintenance
that only widens the ranges on need, can be done immediately by any query
without transactional locking.

With MinMax indexes, range-predicates on any column can be translated
into qualifying tuple position ranges. If an attribute value is correlated with tuple
position, this reduces the area to scan roughly equally to predicate selectivity.
For instance, even if the LINEITEM is clustered on l receiptdate, this will still
find tight tuple position ranges for predicates on l shipdate (and vice versa).

2.4 Expression Calculation

TPC-H tests expression calculation performance, in three areas:

– CP4.1: raw expression arithmetic.
– CP4.2: complex boolean expressions in joins and selections.
– CP4.3: string matching performance.

We elaborate on different technical aspects of these in the following.
Q1 calculates a full price, and then computes various aggregates.5 The large

amount of tuples to go through in Q1, which selects 99% of LINEITEM, makes it
worthwhile to optimize its many arithmetic calculations.

CP4.1a: Arithmetic Operator Performance. According to the TPC-H rules,
it is allowed to represent decimals as 64-bits doubles, yet this will lead to lim-
ited SIMD opportunities only (4-way in 256-bit AVX). Moreover, this approach
to decimals is likely to be unacceptable for business users of database systems,
because of the rounding errors that inevitably appear on “round” decimal num-
bers. Another alternative for decimal storage is to use variable-length numerical
strings, allowing to store arbitrarily precise numbers; however in that case arith-
metic will be very slow, and this would very clearly show in e.g. Q1.

5 Some notes on Q1.
Compared to Q6, the only other non-join query, the amount of computation done

in Q1 is larger, making it more likely to be CPU-bound than Q6.
Also, Q1 trivially parallelizes: the aggregate result is very small, so the plan can

be run on many cores (or machines) in parallel without need for synchronization or
result communication of any significance. This makes Q1 the only query that allows
to make back-of-the-envelope estimates of the computational power of a database
engine even across systems and platforms and database sizes, since normalization to
a single-core and scale is relatively straightforward.



A common and efficient implementation for decimals is to store integers con-
taining the number without dot. The TPC-H spec states that the decimal type
should support the range [-9,999,999,999.99: 9,999,999,999.99] with increments
of 0.01. That way, the stored integer would be the decimal value times 100 and
42-bits of precision are required for TPC-H decimals, hence a 32-bits integer
is too small but a 64-bits integer suffices. Decimal arithmetic can thus rely on
integer arithmetic, which is machine-supported and even SIMD can be exploited.

It is not uncommon for database systems to keep statistics on the minimum
and maximum values in each table column. The columns used in Q1 exhibit
the following ranges: l extendedprice[0.00:100000.00], l quantity[1.00:50.00],
l discount[0.00:0.10] and l tax[0.00:0.08]. This means that irrespective of how
data is physically stored (columnar systems would typically compress the data),
during query processing these columns could be represented in byte-aligned in-
tegers of 32, 16, 8 and 8 bits respectively. The expression (1-l discount) using
an 8-bits representation can thus be handled by SIMD subtraction, processing
32 tuples per 256-bits AVX instruction. However, the subsequent multiplica-
tion with l extendedprice requires to convert the result of (1-l discount)

to 32-bits integers, still allowing 256-bits SIMD multiplication to process 8 tu-
ples per instruction. This highlights that in order to exploit SIMD well, it pays
to keep data represented as long as possible in as small as possible integers
(stored column-wise). Aligning all values on the widest common denominator
(the 32-bits extendedprice) would hurt the performance of four out of the six
arithmetic operations in our example Q1; making them a factor 4 slower.

While SIMD instructions are most easily applied in normal projection calcu-
lations, it is also possible to use SIMD for updating aggregate totals. In aggre-
gations with group-by keys, this can be done if there are multiple COUNT or SUM
operations on data items of the same width, which then should not be stored
column-wise but rather row-wise in adjacent fields [11].

CP4.1b: Overflow Handling. Arithmetic overflow handling is a seldom cov-
ered topic in database research literature, yet it is a SQL requirement. Over-
flow checking using if-then-else tests for each operation causes CPU overhead,
because it is extra computation. Therefore there is an advantage to ensuring
that overflow cannot happen, by combining knowledge of data ranges and the
proper choice of data types. In such cases, explicit overflow check codes that
would be more costly than the arithmetic itself can be omitted, and SIMD
can be used. The 32-bits multiplication l extendedprice*(1-l discount),
i.e. [0.00:100000.00]*[0.00:0.90] results in the more precise value range [0.0000:
90000.0000] represented by cardinals up to 900 million; hence 32-bits integers still
cannot overflow in this case. Thus, testing can be omitted for this expression.

CP4.1c: Compressed Execution. Compressed execution allows certain pred-
icates to be evaluated without decompressing the data it operates on, saving
CPU effort. The poster-child use case of compressed execution is aggregation on
RLE compressed numerical data [12], however this is only possible in aggregation
queries without group-by. This only occurs in TPC-H Q6, but does not apply
there either given that the involved l extendedprice column is unlikely to be



RLE compressed. As such, the only opportunities for compressed execution in
TPC-H are in column vs. constant comparisons that appear in selection clauses;
here the largest benefits are achieved by executing a VARCHAR comparison on
dictionary-compressed data, such that it becomes an integer comparison.

CP4.1d: Interpreter Overhead The large amount of expression calculation
in Q1 penalizes slow interpretative (tuple-at-a-time) query engines. Various so-
lutions to interpretation have been developed, such as using FPGA hardware
(KickFire), GPU hardware (ParStream), vectorized execution (VectorWise) and
Just-In-Time (JIT) compilation (HyPer, ParAccel); typically beating tuple-at-
a-time interpreters by orders of magnitude in Q1.

CP4.2a: Common Subexpression Elimination. A basic technique helpful in
multiple TPC-H queries is common subexpression elimination (CSE). In Q1, this
reduces the six arithmetic operations to be calculated to just four. CSE should
also recognize that two of the average aggregates can be derived afterwards by
dividing a SUM by the COUNT, both also computed in Q1.

CP4.2b: Join-Dependent Expression Filter Pushdown. In Q7 and Q19
there are complex join conditions which depend on both sides of the join. In Q7,
which is a join query that unites customer-nations (cn) via orders, lineitems,
and suppliers to supplier-nations (sn), and on top of this it selects:
(sn.n name = ’[NATION1]’ AND cn.n name = ’[NATION2]’) OR

(sn.n name = ’[NATION2]’ AND cn.n name = ’[NATION1]’).
Hence TPC-H rewards optimizers that can analyze complex join conditions

which cannot be pushed below the join, but still derive filters from such join
conditions. For instance, if the plan would start by joining CUSTOMER to NATION,
it could immediate filter the latter scan with the condition:
(cn.n name = ’[NATION1]’ OR cn.n name = ’[NATION2]’)

This will reduce data volume with a factor 12.5. A similar technique can be
used on the disjunctive complex expression in Q19. The general strategy is to
take the union of the individual table predicates appearing in the disjunctive
condition, and filter on this in the respective scan. A further optimization is to
rewrite the NATION scans as subqueries in the FROM clause:
(SELECT (CASE n_name = ’[NATION1]’ THEN 1 ELSE 0 END) AS nation1,

(CASE n_name = ’[NATION2]’ THEN 1 ELSE 0 END) AS nation2

FROM nation WHERE n_name = ’[NATION1]’ or n_name = ’[NATION2]’) cn
And subsequently test the join condition as:
(sn.nation1=1 AND cn.nation2=1) OR (sn.nation2=1 AND cn.nation1=1)

The rationale for the above is that integer tests (executed on the large join
result) are faster than string equality. A rewrite like this may not be needed for
(column store) systems that use compressed execution, i.e. the ability to execute
certain predicates in certain operators without decompressing data [13].

CP 4.2c: Large IN Clauses. In Q19, Q16 and Q22 (and also Q12) there are IN
predicates against a series of at most eight constant values – though in practice
OLAP tools that generate SQL queries often create much bigger IN clauses. A
naive way to implement IN is to map it into a nested disjunctive expression;



however this tends to work well with only a handful of values. In case of many
values, performance can typically be won by creating an on-the-fly hash-table,
turning the predicate into a semi-join. This effect where joins turn into selections
can also be viewed as a “invisible join” [13].

CP 4.2d: Evaluation Order in Conjunctions and Disjunctions. In Q19
in particular, but in multiple other queries (e.g. Q6) we see the challenge of
finding the optimal evaluation order for complex boolean expressions consisting
of conjunctions and disjunctions. Conjuctions can use eager evaluation, i.e. in
case of (X and Y) refrain from computing expression Y if X=false. As such, an
optimizer should rewrite such expressions into Y and X in case X is estimated
to be less selective than Y – this problem can be generalized to arbitrarily com-
plex boolean expressions [10]. Estimating the selectivities of the various boolean
expressions may be difficult due to incomplete statistics or correlations. Also,
features like range-partitioning (and partition pruning) may interact with the
actually experienced selectivities – and in fact selectivities might change during
query execution. For instance, in a LINEITEM table that is stored in a clustered
index on l shipdate, a range-predicate on l receiptdate typically first expe-
riences a selection percentage of zero, which at some point starts to rise linearly,
until it reaches 100% before again linearly dropping off to zero. Therefore, there is
an opportunity for dynamic, run-time schemes of determining and changing the
evaluation order of boolean expressions [14]. In the case of VectorWise a 20% per-
formance improvement was realized in Q19 by making the boolean expression op-
erator sensitive to the observed selectivity in conjunctions, swapping left for right
if the second expression is more selective regularly at run-time – and OR(x,y)
being similarly optimized by rewriting it to (NOT(AND(NOT(x),NOT(y))) fol-
lowed by pushing down the inner NOTs (such that NOT(a > 2) becomes a ≤ 2).6

CP 4.3a: Rewrite LIKE(X%) into Range Query. Q2,9,13,14,16,20 contain
expensive LIKE predicates; typically, string manipulations are much more costly
than numerical calculations; and in Q13 it also involves l comment, a single
column that represents 33% of the entire TPC-H data volume (in VectorWise).
LIKE processing has not achieved much research attention; however relying on
regular expression libraries, that interpret the LIKE pattern string (assuming
the pattern is a constant) is typically not very efficient. A better strategy is
to have the optimizer analyze the constant pattern. A special case, is prefix
search (LIKE(’xxx%’) that occurs in Q14,16,20; which can be prefiltered by a
less expensive string range comparison (BETWEEN ’xxx’ AND ’xxy’).

CP4.3b: Raw String Matching Performance. The x86 instruction set has
been extended with SSE4.2 primitives that provide rather a-typical functional-
ity: they encode 16-byte at-a-time string comparisons in a single SIMD instruc-
tion. Using such primitives can strongly speed up long string comparisons; going
through 16 bytes in 4 cycles on e.g. the Nehalem core (this is 20 times faster than
a normal strcmp). However, using these primitives is not always faster, as very

6 Swapping the evaluation should only be done if the expression is guaranteed not to
trigger run-time errors nor contains NULLs – if not, query behavior could be altered.



short string comparisons that break off at the first or second byte can be better
done iteratively. Note that if string comparisons are done during group-by, as
part of a hash-table lookup, they typically find an equal string and therefore
have to go through it fully, such that the SSE4.2 implementation is best. In con-
trast, string comparisons done as part of a selection predicate might more often
fall in the case where the strings are not equal, favoring the iterative approach.

CP4.3c: Regular Expression Compilation. Complex LIKE expression should
best not be handled in an interpretative way, assuming that the LIKE search
pattern is a constant string. The database query compiler could compile a Fi-
nite State Automaton (FSA) for recognizing the pattern. Another approach is to
decompose the LIKE expression into a series of simpler functions, e.g. one that
searches forward in a string and returns the new matching offset. This should be
used in an iterative way, taking into account backtracking after a failed search.

2.5 CP-CorrelatedSubqueries.

CP5.1: Flattening Subqueries. Many TPC-H queries have correlated sub-
queries. All of these query plans can be flattened, such that the correlated sub-
query is handled using an equi-join, outer-join or anti-join [15]. In Q21, for
instance, there is an EXISTS clause (for orders with more than one supplier)
and a NOT EXISTS clauses (looking for an item that was received too late). To
execute Q21 well, systems need to flatten both subqueries, the first into an equi-
join plan, the second into an anti-join plan. Therefore, the execution layer of the
database system will benefit from implementing these extended join variants.

The ill effects of repetitive tuple-at-a-time subquery execution can also be
mitigated in execution systems use vectorized, or block-wise query execution, al-
lowing to run sub-queries with thousands of input parameters instead of one. The
ability to look up many keys in an index in one API call, creates the opportunity
to benefit from physical locality, if lookup keys exhibit some clustering.

CP5.2: Moving Predicates into a Subquery. Q2 shows a frequent pattern:
a correlated subquery which computes an aggregate that is subsequently used in
a selection predicate of a similarly looking outer query (“select the minimum cost
part supplier for a certain part”). Here the outer query has additional restrictions
(on part type and size) that are not present in the correlated subquery, but should
be propagated to it. Similar opportunities are found in Q17, and Q20.

CP5.3: Overlap between Outer- and Subquery. In Q2,11,15,17 and Q20
the correlated subquery and the outer query have the same joins and selections.
In this case, a non-tree, rather DAG-shaped query plan [16] would allow to
execute the common parts just once, providing the intermediate result stream
to both the outer query and correlated subquery, which higher up in the query
plan are joined together (using normal query decorrelation rewrites). As such,
TPC-H rewards systems where the optimizer can detect this and whose the
execution engine sports an operator that can buffer intermediate results and
provide them to multiple parent operators. In Q17, decorrelation, selective join
push-down, and re-use together result in a speedup of a factor 500 in HyPer.



2.6 Parallelism and Concurrency

The TPC-H workload consists of two tests: the Power test and the Throughput
test. The full query set of the former consists of the 22 TPC-H queries plus
two refresh queries, which contain both inserts and deletes to the ORDERS and
LINEITEM tables, that delete scattered ranges of orders from the orderkey space.
In the Throughput test, a number of concurrent Power query streams, with
different selection parameters, are posed to the system. The implementer can
decide in the Throughput run whether to run the refresh streams in parallel
with the query streams or not. For the Power test, the geometric mean of all
queries results in a Power score. Using the geometric mean implies that the
relative improvements to the performance of any query counts equally in the
score, regardless whether this is a long-running or short-running query. The
upside of this is, is that even as hardware evolves and potentially favors the
performance of one query over the other, it remains interesting to optimize the
full workload. On the flip-side, one can maintain that for end-users it would
normally be more relevant if the long-running queries get optimized. This aspect,
absolute run-time, does form part of TPC-H in the form of the Throughput score,
which is derived from the full time span it takes to finish all the streams.

CP6.1: Query Plan Parallelization. When TPC-D was conceived, high-end
servers would be equipped with a handful of single-core CPU chips (SMP), but
very often servers would sport just a single CPU. By 2013, even single-server
systems can contain 64 cores; and as such the importance of parallel query per-
formance has increased. In the first decade of TPC-H this only affected the Power
test, since it runs every query sequentially, hence it is important that the work
gets divided over all cores. With only a few cores available, the Throughput test,
which runs 5 (100GB) or 7 (1TB) or more query sets concurrently, could simply
run sequential plans on every core and still achieve good system utilization. In
the past years, however, having well-performing paralellism is important both in
the Power and Throughput tests.

Query plan parallelization in the multi-core area is currently an open issue.
At the time of this writing, there is active academic debate on how to paral-
lelize the join operator on many-core architectures, with multiple sophisticated
algorithms being devised and tested [17]. We can assume that the current gen-
eration of industrial systems runs less-sophisticated algorithms, and presumably
in the current state may not scale linearly on many-core architectures. As such,
many-core query parallelization, both in terms of query optimization and query
execution is an unresolved choke point.

Further, MPP database systems from the very start focused on scaling out;
typically relying on table partitioning over multiple nodes in a cluster. Table
partitioning is specifically useful here in order to achieve data locality; such that
queries executing in the cluster find much of the data being operated on on
the local node already, without need for communication. Even in the presence
of high-throughput (e.g. Infiniband) network hardware, communication band-
width can easily become a bottleneck. For CP6, we acknowledge that the query
impact color-classification in Table 1 is debatable. This classification assumes co-



partitioning of ORDERS and LINEITEM to classify queries using these as medium
hard or hard (if other tables are involved as well). Single-table queries parallelize
trivially and are white. The idea is that with table partitioning, good parallel
speedup is achievable, whereas without it this is harder. Typically, single-server
multi-core parallelism does not rely on table partitioning, though it could.

CP6.2: Workload Management. Another important aspect in handling the
Throughput test is workload management, which concerns providing multiple
concurrent queries as they arrive, and while they run, with computational re-
sources (RAM, cores, I/O bandwidth). The problem here is that the database
system has no advance knowledge of the workload to come, hence it must
adapt on-the-fly. Decisions that might seem optimal at the time of arrival of a
query, might lead to avoidable thrashing if suddenly additional resource-intensive
queries arrive. In the case of the Power test, workload management is trivial:
it is relatively easy to devise an algorithm that while observing that maximally
one query is active, assigns all resources to it. For the Throughput run, as more
queries arrive, progressively less resources have to be given to the queries, un-
til the point where there are that many queries in the system and each query
gets only a single core. Since paralellism never achieves perfect scalability, in
such cases of high load overall, the highest throughput tends to be achieved by
running sequential plans in parallel. Workload management is even more com-
plicated in MPP systems, since a decision needs to be made on (i) which nodes
to involve in each query and (ii) how many resources per node to use.

CP6.3: Result Re-use. A final observation on the Throughput test is that
with a high number of streams, i.e. beyond 20, a significant amount of identical
queries emerge in the resulting workload. The reason is that certain parameters,
as generated by the TPC-H workload generator, have only a limited amount of
parameters bindings (e.g. there are at most 5 different values for region name
r name). This weakness opens up the possibility of using a query result cache,
to eliminate the repetitive part of the workload. A further opportunity that
detects even more overlap is the work on recycling [18], which does not only
cache final query results, but also intermediate query results of “high worth”.
Here, worth is a combination of partial-query result size, partial-query evaluation
cost, and observed (or estimated) frequency of the partial-query in the workload.
It is understood in the rules of TPC-H, though, that any form of result caching
should not depend on explicit DBMS configuration parameters, but reflect the
default behavior of the system, in order to be admissible. This rule precludes
designing query re-use strategies that particularly target TPC-H, rather, such
strategies should be beneficial for most of the intended workloads for which the
database system was designed.

3 Conclusion

In this paper we have (shortly) introduced the concept of “choke points” as be-
ing the (hidden) challenges that underlie a benchmark design with the potential
to stimulate technological progress. These choke points should point into rele-
vant directions where technological advances are needed; the idea being that the



benchmark gives DBMS designers a tangible reward in pursuing solutions for
these. The focus of the paper, has been in applying a “post-mortem” analysis
in this regard on TPC-H. We have shown that TPC-H contains a rich set of
such choke points, many of which have led to advances in the state-of-the-art in
analytical relational database products in the past two decades; and in fact still
contains a number of unsolved challenges. Even despite its age, and arguably
reduced value today, we thus argue that TPC-H as introduced in the 1990s (as
TPC-D) should be an example for future benchmark designers.

References

1. Huppler, K.: The art of building a good benchmark. In: Performance Evaluation
and Benchmarking. Springer (2009) 18–30

2. Nambiar, R.O., Poess, M.: The making of TPC-DS. In: VLDB. (2006) 1049–1058
3. Simmen, D.E., Shekita, E.J., Malkemus, T.: Fundamental techniques for order

optimization. In Jagadish, H.V., Mumick, I.S., eds.: Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec,
Canada, June 4-6, 1996, ACM Press (1996) 57–67

4. Moerkotte, G., Neumann, T.: Accelerating queries with group-by and join by
groupjoin. PVLDB 4 (2011) 843–851

5. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25 (1993) 73–170

6. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs.
In: Proceedings of the 35th SIGMOD international conference on Management of
data, ACM (2009) 627–640

7. Rao, J., Lindsay, B., Lohman, G., Pirahesh, H., Simmen, D.: Using EELs: A
practical approach to outerjoin and antijoin reordering. In: ICDE. (2001) 595–606

8. Moerkotte, G., Neumann, T.: Dynamic programming strikes back. In: SIGMOD
Conference. (2008) 539–552

9. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: Cords: Automatic dis-
covery of correlations and soft functional dependencies. In: SIGMOD Conference.
(2004) 647–658

10. Moerkotte, G.: Small materialized aggregates: A light weight index structure for
data warehousing. In: VLDB. (1998) 476–487

11. Zukowski, M., Nes, N., Boncz, P.A.: DSM vs. NSM: Cpu performance tradeoffs in
block-oriented query processing. In: DaMoN. (2008) 47–54

12. Abadi, D.J.: Query execution in column-oriented database systems. MIT PhD
Dissertation (2008) PhD Thesis.

13. Abadi, D.J., Madden, S., Hachem, N.: Column-stores vs. row-stores: how different
are they really? In: SIGMOD Conference. (2008) 967–980

14. Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman, G.M.: Adaptively
reordering joins during query execution. In: ICDE. (2007) 26–35

15. Seshadri, P., Pirahesh, H., Leung, T.Y.C.: Complex query decorrelation. In: ICDE.
(1996) 450–458

16. Neumann, T., Moerkotte, G.: A framework for reasoning about share equivalence
and its integration into a plan generator. In: BTW. (2009) 7–26

17. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on
multi-core cpus: Tuning to the underlying hardware. In: ICDE. (2013)

18. Nagel, F., Boncz, P., Viglas, S.D.: Recycling in pipelined query evaluation. In:
ICDE. (2013)


