
Towards Reliable Benchmarks of Timed Automata
Rebeka Farkas, Gábor Bergmann

Budapest University of Technology and Economics, Department of Measurement and Information Systems
Email: {farkasr,bergmann}@mit.bme.hu

MTA-BME Lendület Cyber-Physical Systems Research Group

Abstract—The verification of the time-dependent behavior of
safety-critical systems is important, as design problems often
arise from complex timing conditions. One of the most common
formalisms for modeling timed systems is the timed automaton,
which introduces clock variables to represent the elapse of
time. Various tools and algorithms have been developed for the
verification of timed automata. However, it is hard to decide
which one to use for a given problem as no exhaustive benchmark
of their effectiveness and efficiency can be found in the literature.
Moreover, there does not exist a public set of models that can
be used as an appropriate benchmark suite. In our work we
have collected publicly available timed automaton models and
industrial case studies and we used them to compare the efficiency
of the algorithms implemented in the Theta model checker. In
this paper, we present our preliminary benchmark suite, and
demonstrate the results of the performed measurements.

I. INTRODUCTION

Since their introduction by Alur and Dill [1], timed au-
tomata has become one of the most common formalisms for
modeling and verification of real time systems. There is a wide
range of application areas, such as communication protocols
[2] and digital circuits [3]. There are many extensions of the
formalism, such as the probabilistic timed automaton that is
able to represent stochastic behavior or the parametric timed
automaton that can describe parametric timing properties.

The key challenge of the verification of timed automaton-
based models is the same as in case of any formalism: deve-
loping efficient and scalable algorithms that can be applied in
practice. Several algorithms and tools have been designed for
this purpose, that may differ in the supported formalisms and
queries. Since these algorithms are as diverse as the problems
they address, a single best one can not be chosen: for each
algorithm there are classes of models, that can be verified
efficiently and other classes where other approaches would be
more suitable to use. This raises the need for some guidelines
to decide which tool to use for a given model.

A possible solution is to perform an exhaustive benchmark
on a set of relevant problems that can later be used to
determine which approach is the most suitable for a given
problem, however, this would require a set of relevant case
studies to use as inputs. Unfortunately such a benchmark suite
is not available for timed automata.

Our goal is to provide a set of timed automaton models (and
corresponding queries) that can be used as a benchmark suite
for comparing the efficiency of tools and algorithms developed
for the verification of timed automata. It is important that the
benchmark suite should allow the performed measurements to
fulfill the requirements of a reliable benchmark [4], [5].

In this paper we present our preliminary benchmark suite
that we assembled based on this principle and we demonstrate
its usability by measurements that we performed on the
algorithms implemented in the Theta [6] model checker.

II. BACKGROUND

A. Timed automata

1) Basic definitions: Clock variables are a special type of
variables, whose value is constantly increasing as the time
elapses. The only operation on clock variables is the reset
operation that sets the value of a clock to a constant. It is an
instantaneous operation, after which the value of the clock will
continue to increase. The set of clock variables is denoted by
C.

A clock constraint is a conjunctive formula of atomic clock
constraints. There are two types of atomic clock constraints:

• the simple constraint of the form x ∼ n and
• the diagonal constraint of the form x− y ∼ n,

where x, y ∈ C , ∼ ∈ {≤, <,=, >,≥} and n ∈ N. In other
words a clock constraint defines upper and lower bounds on
the values of clocks and the differences of clocks. The set of
clock constraints is denoted by B(C).

A timed automaton extends a finite automaton with clock
variables. It is formally defined as a tuple ⟨L, l0, E, I⟩ where

• L is the set of locations (i.e. control states),
• l0 ∈ L is the initial location,
• E ⊆ L× B(C)× 2C × L is the set of edges and
• I : L → B(C) assigns invariants to locations [7].

The edges in E are defined by the source location, the guard
(represented by a clock constraint), the set of clocks to reset,
and the target location.

2) Extensions of timed automata: Many extensions have
been invented to increase the descriptive and the expressive
power of timed automata.

A network of timed automata [8] is the parallel composition
of a set of timed automata. Communication is possible by
shared variables or hand-shake synchronization using actions
on the edges. Constructing networks of timed automata does
not increase the expressive power, as a network of timed auto-
mata can be transformed into an equivalent timed automaton,
but it does increase the understandability of the model.

A parametric timed automaton [9] is an extension of a timed
automaton, where instead of constants, unbound parameters
are also allowed to appear in clock constraints. Verification of



parametric timed automata focuses on finding the parameter
bindings that satisfy certain properties.

A timed automaton extended with data variables (extended
timed automaton [8]) is an extension, where besides clock
variables, data variables (discrete variables such as integers,
bools, etc.) are also allowed. Data variables can also appear
in constraints to enable transitions (data guards) and can be
modified by transitions (update). However, clock variables are
not allowed to appear in data guards or updates.

3) Verification: The verification approach depends on the
type of property to check. Analysing safety properties is
reduced to searching for reachable states in the state space,
while checking liveness properties is solved by looking for
certain cycles (strongly connected components) in the state
space. [10]

B. Reliable benchmarks

Many requirements of reliable benchmarks are described in
the literature [4], [5]. Although most methodologies focus on
the execution of the benchmarks and not the inputs, some of
the requirements do raise expectations for the benchmark suite.
Realistic The inputs should resemble models from industrial

case studies.
Simple Just like other aspects of the benchmark, the input

models must be understandable.
Scalable Scalable models are necessary in order to support a

wide range of approaches.
Portable For portability, the models and the properties should

be defined in a widely supported format.
Public A reproducible benchmark requires a public bench-

mark suite.
Diverse In order to be able to analyze the strengths of a wide

range of tools, the models and the problems should be
classified and many classes of inputs should be included.

III. RELATED WORK

A. Model checking competitions

In case of most common formalisms, generally accepted
benchmarks are carried out by model checking competitions,
such as the Model Checking Contest1 for Petri Nets, the SV-
COMP2 on software verification and the Hardware Model
Checking Competition3 for hardware models. These compe-
titions are an effective way of assembling and maintaining re-
alistic benchmark suites and performing reliable benchmarks.
However, there is no such competition for timed automata.

B. Benchmarks of timed automata-based models

Since there does not exist a generally accepted benchmark
suite, each tool uses its own set of inputs to demonstrate the
efficiency of its algorithms. Table I summarizes the characte-
ristics of input sets of the most common tools: name of the
tool, input format, total number of models, number of scalable

1https://mcc.lip6.fr/
2https://sv-comp.sosy-lab.org/2018/
3http://fmv.jku.at/hwmcc17/

Tool input #models #scalable query ref
UPPAAL xml, xta 9 3 true true
Kronos aut 5 3 true true
PAT xml, xta 5 5 false false
MCTA xta 5 5 true true
TChecker xta 6 5 false true
REDLIB d 5 5 true false
Shrinktech aut 9 3 false true
CosyVerif grml 15 0 false true
PRISM pta 7 2 true false

TABLE I
AVAILABLE BENCHMARK SUITES

models, whether they describe a property to check, and whet-
her they provide references to papers where these models are
described. While most presented tools operate on networks of
extended timed automata, CosyVerif’s BenchKit [11] consists
of parametric timed automata, and the PRISM benchmark suite
contains probabilistic timed automata.

As it can be seen in the table, most model checkers
have their own input language. However, the most common
input format is xta defined by UPPAAL [8]. The presented
benchmark suites are small, and share many models – e.g.
the scalable models are the same for all benchmark suites,
except for MCTA that uses another kind of scalability (see
Section IV-D). In many cases the properties to verify are not
defined, instead, during benchmarks the complete statespace
of the model is explored. In some cases the source and the
description of the models are also missing.

In conclusion, the current benchmark suites are small, there
are very few scalable models, and portability, diversity and
understandability is not always ensured.

IV. XTA BENCHMARK SUITE

In this section, we present the Xta Benchmark Suite that is
a collection of inputs we propose for comparing the efficiency
of timed automaton verification algorithms. The suite was
constructed to meet the requirements enlisted in Section II-B.
While Table II describes the contained models, the complete
suite, including the models, the queries and the references can
be found online4. Note, that this is a preliminary suite.

A. Sources

The benchmark suite consists of models from existing ben-
chmarks of UPPAAL, PAT, MCTA and CosyVerif, as well as
UPPAAL case studies and other public models. Industrial case
studies were included in order to allow realistic benchmarks.
References to papers describing the models are provided in
order to ease understandability and to assure the benchmark
inputs are realistic, public and portable.

B. Format

In order to help portability, the xta format was chosen for
storing the models, as most timed model checkers are able to
parse this format (even if they are not able to transform their
own input language to xta). Another advantage of this format

4https://github.com/farkasrebus/XtaBenchmarkSuite



Name Description Source Type Scalable
FISCHER Fischer’s mutual exclusion protocol UPPAAL benchmark MutEx protocol true
CSMA The CSMA/CD protocol UPPAAL benchmark CD protocol true
FDDI Token Ring/FDDI protocol UPPAAL benchmark protocol true
BANDO Bang-Olufsen protocol UPPAAL benchmark CD protocol false
BOCDPFIXED Bang-Olufsen Collision Detection Protocol UPPAAL benchmark CD protocol false
BOCDP BOCDP - original, faulty version UPPAAL benchmark CD protocol false
CRITICAL Critical region PAT benchmark MutEx protocol true
LYNCH Lynch-Shavit protocol PAT benchmark MutEx protocol true
BAWCC Business Agreement with Coordination Completion protocol UPPAAL case studies protocol false
BAWCCENHANCED BAWCC - enhanced version UPPAAL case studies protocol false
SCHEDULE Schedulability Framework model UPPAAL case studies algorithm false
STLS Single Tracked Line Segment MCTA benchmark system false
MUTEX Mutual exclusion protocol MCTA benchmark MutEx protocol false
FAS Fire Alarm System [12] system false
SOLDIERS The soldiers problem public model problem false
ENGINE A running engine public model system false
ANDOR And-Or circuit CosyVerif BenchKit circuit false
BANGOLUFSEN Bang-Olufsen protocol CosyVerif BenchKit protocol false
EXSITH Sluice CosyVerif BenchKit system false
FLIPFLOP Flip-flop circuit CosyVerif BenchKit circuit false
LATCH Latch circuit CosyVerif BenchKit circuit false
MALER Maler’s Jobshop algorithm CosyVerif BenchKit algorithm false
RCP Root Connection Protocol CosyVerif BenchKit protocol false
SIMOP SIMOP Networked Automation System CosyVerif BenchKit system false
SRLATCH SR-latch circuit CosyVerif BenchKit circuit false
TRAIN Train gate controller protocol CosyVerif BenchKit system false

TABLE II
XTA BENCHMARK SUITE MODELS

is that it is possible to define scalable models in a way that the
size of the model can be modified by setting a single constant.

C. Transformations

In many cases the models were transformed. In case of
timed automata, UPPAAL was used to transform the xml-
based models to xta. Parametric timed automata are stored
in an xml based format (grml) by CosyVerif, that was
transformed to xta programmatically. As the xta format does
not allow parameters, they were parsed as const int and
manually bound to a value taken from the Shrinktech model
of the same system, where it was available. Additionally, one
of the models (TRAIN) was modified to a generalized version
(that allows more trains) in order to increase scalability.

D. Scalability

In most existing benchmark suites, scalable models repre-
sent communication protocols and scalability is introduced by
changing the number of participants – i.e. introducing new
timed automata to the network that behave similarly to the
original ones. On the other hand, in the MCTA benchmark
suite scalability is introduced to the model by increasing
constants used in clock constraints.

In the Xta Benchmark Suite only the former type of
models are considered scalable, since the most commonly used
algorithms are not sensitive to the values of bounds [7].

E. Queries

While algorithms based on state space exploration can
operate without a property to check, in order for benchmarks
to be realistic, the Xta Benchmark Suite also provides queries
for most models. This allows to perform measurements on a

wider range of algorithms – such as backward exploration, that
requires the target state to initiate from, or search algorithms
with heuristics that are efficient in finding an execution trace
to the target state but inefficient in state space exploration.

F. Classification
In order to demonstrate diversity the models were classi-

fied according to the type of problem they represent. This
also determines the types of properties to be checked. More
information on the classification can be found online.

V. MEASUREMENTS

Algorithms implemented in the Theta model checking fra-
mework were executed on the benchmark suite. Unlike the
usual purpose of benchmarks, these measurements were per-
formed to analyze the benchmark suite and not the algorithms.

A. Procedure
The measurements were executed on a virtual 64 bit Win-

dows 7 operating system with a 2 core CPU (2.50 GHz) and
4 GB of memory. Each algorithm was run 5 times on each
input and the average of the runtimes was taken. The timeout
was 5 minutes (300,000 milliseconds).

While the complete suite consists of 26 models, those
without a property to check were excluded as well as the ones
containing elements that Theta does not support yet, such as
broadcast channels. This reduced the number of inputs to 11.

The efficiency of six algorithms were compared. Algorithm
LU is presented in [13], algorithm ACT is the improvement
of the algorithm described in [7] by applying the activity
abstraction described in [14] using lazy evaluation and al-
gorithms BINITP, SEQITP, WEAKBINITP, and WEAKSEQITP
are variants of the algorithms described in [15].



Fig. 1. Distribution of execution times

Fig. 2. Summary of results

B. Results

The distribution of execution times can be seen in Figure 1.
Figure 2 summarizes the success rates and runtimes of the exe-
cutions. The rows correspond to algorithms and the columns
correspond to inputs.

The first row of a cell contains a fraction representing the
success rate of the algorithm on the input: the denominator is
the total number of instances of the model (in case of non-
scalable models it is one) and the nominator is the number of
instances successfully verified by the algorithm. The second
row presents the runtime on the largest instance that was
successfully verified or 0.0s if there was none.

Models BANGOLUFSEN and STLS turned out to be too
large to be verified by any of the examined algorithms in the
given time. Executing the algorithm ACT on input CRITICAL
resulted in an exception for all instances.

Results show that for each algorithm the benchmark suite
contained at least one model where the applicability of the
algorithm was demonstrated and that the execution times are
well distributed on the logarithmic scale.

VI. CONCLUSIONS

This paper proposed a benchmark suite to perform reliable
benchmarks of verification algorithms for timed automata.
The requirements of such a benchmark suite were identified,
then a preliminary collection of inputs were presented. To
demonstrate the applicability of the proposed benchmark suite
the models were used to compare the algorithms implemented

in the Theta model checking framework. The results of the
presented benchmark suggest that the benchmark suite meets
the described requirements.

Future works include increasing the size of the benchmark
suite by importing more models from benchmarks of other
tools or even other timed formalisms, focusing on scalable
models. We also plan to include more industrial case studies
that can be found in the literature.

REFERENCES

[1] R. Alur and D. L. Dill, “The theory of timed automata,” in Real-Time:
Theory in Practice, REX Workshop, Mook, The Netherlands, June 3-7,
1991, Proceedings, 1991, pp. 45–73.

[2] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen,
F. Larsson, P. Pettersson, and W. Yi, “Verification of an audio protocol
with bus collision using UPPAAL,” in Computer Aided Verification, 8th
International Conference, CAV ’96, New Brunswick, NJ, USA, July 31
- August 3, 1996, Proceedings, 1996, pp. 244–256.

[3] O. Maler and A. Pnueli, “Timing analysis of asynchronous circuits using
timed automata,” in Correct Hardware Design and Verification Methods,
IFIP WG 10.5 Advanced Research Working Conference, CHARME ’95,
Frankfurt/Main, Germany, October 2-4, 1995, Proceedings, 1995, pp.
189–205.

[4] K. Huppler, “The art of building a good benchmark,” in Performance
Evaluation and Benchmarking, First TPC Technology Conference,
TPCTC 2009, Lyon, France, August 24-28, 2009, Revised Selected
Papers, 2009, pp. 18–30.

[5] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: requi-
rements and solutions,” International Journal on Software Tools for
Technology Transfer, Nov 2017.

[6] T. Tóth, A. Hajdu, A. Vörös, Z. Micskei, and I. Majzik, “Theta: a frame-
work for abstraction refinement-based model checking,” in Proceedings
of the 17th Conference on Formal Methods in Computer-Aided Design,
D. Stewart and G. Weissenbacher, Eds., 2017, pp. 176–179.

[7] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on Concurrency and Petri Nets, ser. LNCS. Springer
Berlin Heidelberg, 2004, vol. 3098, pp. 87–124.

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL - a tool suite for automatic verification of real-time systems,”
in Hybrid Systems III: Verification and Control, Proceedings of the
DIMACS/SYCON Workshop on Verification and Control of Hybrid
Systems, October 22-25, 1995, Ruttgers University, New Brunswick, NJ,
USA, 1995, pp. 232–243.

[9] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time
reasoning,” in Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, 1993,
pp. 592–601.

[10] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.
[11] F. Kordon and F. Hulin-Hubard, “Benchkit, a tool for massive concurrent

benchmarking,” in 14th International Conference on Application of
Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia,
June 23-27, 2014, 2014, pp. 159–165.

[12] S. F. Arenis, B. Westphal, D. Dietsch, M. Muñiz, and A. S. Andisha,
“The wireless fire alarm system: Ensuring conformance to industrial
standards through formal verification,” in FM 2014: Formal Methods
- 19th International Symposium, Singapore, May 12-16, 2014. Procee-
dings, 2014, pp. 658–672.

[13] F. Herbreteau, B. Srivathsan, and I. Walukiewicz, “Lazy abstractions for
timed automata,” in Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, 2013, pp. 990–1005.

[14] C. Daws and S. Yovine, “Reducing the number of clock variables of
timed automata,” in Proceedings of the 17th IEEE Real-Time Systems
Symposium (RSS ’96. Washington - Brussels - Tokyo: IEEE, Dec. 1996,
pp. 73–81.

[15] T. Tóth and I. Majzik, “Lazy reachability checking for timed automata
using interpolants,” in Formal Modelling and Analysis of Timed Systems,
ser. Lecture Notes in Computer Science, A. Abate and G. Geeraerts, Eds.
Springer, 2017, vol. 10419, pp. 264–280.


	Introduction
	Background
	Timed automata
	Basic definitions
	Extensions of timed automata
	Verification

	Reliable benchmarks

	Related work
	Model checking competitions
	Benchmarks of timed automata-based models

	Xta Benchmark Suite
	Sources
	Format
	Transformations
	Scalability
	Queries
	Classification

	Measurements
	Procedure
	Results

	Conclusions
	References

