48 research outputs found

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    Signal fingerprinting and machine learning framework for UAV detection and identification.

    Get PDF
    Advancement in technology has led to creative and innovative inventions. One such invention includes unmanned aerial vehicles (UAVs). UAVs (also known as drones) are now an intrinsic part of our society because their application is becoming ubiquitous in every industry ranging from transportation and logistics to environmental monitoring among others. With the numerous benign applications of UAVs, their emergence has added a new dimension to privacy and security issues. There are little or no strict regulations on the people that can purchase or own a UAV. For this reason, nefarious actors can take advantage of these aircraft to intrude into restricted or private areas. A UAV detection and identification system is one of the ways of detecting and identifying the presence of a UAV in an area. UAV detection and identification systems employ different sensing techniques such as radio frequency (RF) signals, video, sounds, and thermal imaging for detecting an intruding UAV. Because of the passive nature (stealth) of RF sensing techniques, the ability to exploit RF sensing for identification of UAV flight mode (i.e., flying, hovering, videoing, etc.), and the capability to detect a UAV at beyond visual line-of-sight (BVLOS) or marginal line-of-sight makes RF sensing techniques promising for UAV detection and identification. More so, there is constant communication between a UAV and its ground station (i.e., flight controller). The RF signals emitting from a UAV or UAV flight controller can be exploited for UAV detection and identification. Hence, in this work, an RF-based UAV detection and identification system is proposed and investigated. In RF signal fingerprinting research, the transient and steady state of the RF signals can be used to extract a unique signature. The first part of this work is to use two different wavelet analytic transforms (i.e., continuous wavelet transform and wavelet scattering transform) to investigate and analyze the characteristics or impacts of using either state for UAV detection and identification. Coefficient-based and image-based signatures are proposed for each of the wavelet analysis transforms to detect and identify a UAV. One of the challenges of using RF sensing is that a UAV\u27s communication links operate at the industrial, scientific, and medical (ISM) band. Several devices such as Bluetooth and WiFi operate at the ISM band as well, so discriminating UAVs from other ISM devices is not a trivial task. A semi-supervised anomaly detection approach is explored and proposed in this research to differentiate UAVs from Bluetooth and WiFi devices. Both time-frequency analytical approaches and unsupervised deep neural network techniques (i.e., denoising autoencoder) are used differently for feature extraction. Finally, a hierarchical classification framework for UAV identification is proposed for the identification of the type of unmanned aerial system signal (UAV or UAV controller signal), the UAV model, and the operational mode of the UAV. This is a shift from a flat classification approach. The hierarchical learning approach provides a level-by-level classification that can be useful for identifying an intruding UAV. The proposed frameworks described here can be extended to the detection of rogue RF devices in an environment

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Propagation Modelling for Urban Source Localization and Navigation

    Get PDF

    Cloud-based Indoor Positioning Platform for Context-adaptivity in GNSS-denied Scenarios

    Get PDF
    The demand for positioning, localisation and navigation services is on the rise, largely owing to the fact that such services form an integral part of applications in areas such as human activity recognition, robotics, and eHealth. Depending on the field of application, these services must accomplish high levels of accuracy, massive device connectivity, real-time response, flexibility, and integrability. Although many current solutions have succeeded in fulfilling these requirements, numerous challenges remain in terms of providing robust and reliable indoor positioning solutions. This dissertation has a core focus on improving computing efficiency, data pre-processing, and software architecture for Indoor Positioning Systems (IPSs), without throwing out position and location accuracy. Fingerprinting is the main positioning technique used in this dissertation, as it is one of the approaches used most frequently in indoor positioning solutions. The dissertation begins by presenting a systematic review of current cloud-based indoor positioning solutions for Global Navigation Satellite System (GNSS) denied scenarios. This first contribution identifies the current challenges and trends in indoor positioning applications over the last seven years (from January 2015 to May 2022). Secondly, we focus on the study of data optimisation techniques such as data cleansing and data augmentation. This second contribution is devoted to reducing the number of outliers fingerprints in radio maps and, therefore, reducing the error in position estimation. The data cleansing algorithm relies on the correlation between fingerprints, taking into account the maximum Received Signal Strength (RSS) values, whereas the Generative Adversarial Network (GAN) network is used for data augmentation in order to generate synthetic fingerprints that are barely distinguishable from real ones. Consequently, the positioning error is reduced by more than 3.5% after applying the data cleansing. Similarly, the positioning error is reduced in 8 from 11 datasets after generating new synthetic fingerprints. The third contribution suggests two algorithms which group similar fingerprints into clusters. To that end, a new post-processing algorithm for Density-based Spatial Clustering of Applications with Noise (DBSCAN) clustering is developed to redistribute noisy fingerprints to the formed clusters, enhancing the mean positioning accuracy by more than 20% in comparison with the plain DBSCAN. A new lightweight clustering algorithm is also introduced, which joins similar fingerprints based on the maximum RSS values and Access Point (AP) identifiers. This new clustering algorithm reduces the time required to form the clusters by more than 60% compared with two traditional clustering algorithms. The fourth contribution explores the use of Machine Learning (ML) models to enhance the accuracy of position estimation. These models are based on Deep Neural Network (DNN) and Extreme Learning Machine (ELM). The first combines Convolutional Neural Network (CNN) and Long short-term memory (LSTM) to learn the complex patterns in fingerprinting radio maps and improve position accuracy. The second model uses CNN and ELM to provide a fast and accurate solution for the classification of fingerprints into buildings and floors. Both models offer better performance in terms of floor hit rate than the baseline (more than 8% on average), and also outperform some machine learning models from the literature. Finally, this dissertation summarises the key findings of the previous chapters in an open-source cloud platform for indoor positioning. This software developed in this dissertation follows the guidelines provided by current standards in positioning, mapping, and software architecture to provide a reliable and scalable system

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore