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Abstract

This thesis is concerned with the problem of place recognition for a

mobile robot using an omnidirectional camera as its sole sensor modal-

ity. The problems we are faced with range from orientation estimation

to loop closure detection, in the absence of any prior knowledge of po-

sition.

In order to resolve the challenging issues encountered by any appearance-

based place recognition system - specifically, perceptual aliasing and

variability - we first develop a quadtree-based image comparison method.

In contrast to most existing methods, this method does not involve

the computationally expensive step of feature or keypoint detection

and description, which utilises the spatial structure property of an

image to provide robustness against dynamic changes in scenes. Our

algorithm is experimentally evaluated on one public dataset, and

two datasets collected by ourselves in different environments, thereby

demonstrating its effectiveness in handling perceptual aliasing and

environment variability.

For many tasks in mobile robotics, it is crucial accurately to determine

the orientation of the robot, relying on a single vision sensor. For this

purpose, we propose an evaluation methodology that focuses on the

ability of different image-based algorithms to establish the heading of

the robot when capturing two images. Critical analysis of performance

is also provided.

In addition, a quadtree-based loop closure detection method is pro-

posed, with the intention of increasing the number of correctly-recognized

revisited locations (high recall) at low false positives (high precision).

The loop closure detection is performed by pairwise image compari-



son. The performance of the proposed method is evaluated using our

collected dataset, which contains highly aliased images and drastic

perceptual changes. The experimental results show that our method

can achieve a high recall at 100% precision, and outperform other

related algorithms in term of closeness to ground truth.
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Chapter 1

Introduction

This thesis is concerned with robust long-term place recognition for autonomous

mobile robots in changing environments. Specifically, this work mainly addresses

two research problems: first, what image-based techniques offer good and reliable

orientation estimation for robots equipped only with vision sensors; secondly, how

a robot may accurately recognize a previously visited place, without any prior

knowledge. In this chapter, we give a brief overview of the background and rele-

vant research works, and the motivations behind the current work. Subsequently,

the main aims and objectives of our research are described. Finally, we provide

a summary of contributions and an overview of the thesis.

Autonomous robotics is a growing and increasingly popular area in both industry

and academic research. Robots of different kinds and capacities from personal

service robots at home to scientific planetary exploration rovers perform a variety

tasks in an intelligent and autonomous manner, potentially bringing great benefits

to mankind.

A classical problem in creating an autonomous robot focuses on the ability of a

robot to localize itself within a given environment, while at the same time map-

ping that same environment. This problem is known as Simultaneous Localization

and Mapping (SLAM). It has been widely studied by the robotics communities

for several decades (Chatila and Laumond [1985]; Davison [2003]; Durrant-Whyte

et al. [1996]; Guivant and Nebot [2001]; Smith et al. [1987]; Williams et al. [2000]),

1



and is by now considered a relatively mature problem. However, there are still

some challenges that need yet to be overcome.

Different sensor modalities have been used to provide the necessary input for

SLAM solutions. Typically the Global Positioning System (GPS) has been used

for localisation and navigation assistance (Thrun et al. [2006]). However, solu-

tions based on GPS do not work well in indoor or cluttered outdoor environments,

where GPS is generally less accurate or not available. To avoid the need for GPS,

or any other infrastructure, a number of frameworks (Chong and Kleeman [1999];

Crowley [1989]; Guivant et al. [2000]; Rencken [1993]; Ribas et al. [2008]) have

been developed that make use of active sensors (e.g., sonar and laser scanner)

to acquire data. However, these active sensors are normally very heavy, expen-

sive, and energy-hungry, and thus not suitable for some systems that must meet

payload, cost, and power constraints. Examples of such systems include un-

manned aerial vehicles (UAVs), autonomous underwater vehicles (AUV), Mars

Exploration Rovers.

The dead-reckoning (DR) technique has long been used to provide position and

orientation information. Sensors for DR include encoders, the magnetic compass,

and the inertial measurement unit (IMU), among others. However, existing sys-

tems equipped with these sensors universally suffer from precision and reliability

problems. Slippage of the wheels on non-smooth surfaces can cause accumulated

error in position and orientation; a magnetic compass may be subject to inter-

ference from magnetic sources, such as metallic objects; and the readings from

the IMU become increasingly unreliable as errors accumulate and compound over

time.

By contrast, the camera as a passive sensor is an attractive alternative with many

advantages, including low cost and light weight. Moreover, the camera provides

a rich source of information about the environment, which enables the use of

sophisticated computer vision algorithms (detection and recognition algorithms).

In addition, the computational requirements of these computer vision algorithms

are not a significant issue thanks to recent improvements in hardware (e.g., avail-

able parallel graphics processors and multiple CPU threads).
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When cameras are used as the primary sensor input, solutions to such a SLAM

problem are referred to as visual SLAM (vSLAM). Since 2005, intense research

has been undertaken to develop a reliable, accurate, and large-scale vSLAM tech-

nique. Many techniques (Cummins and Newman [2010]; Labrosse [2007]; Mad-

dern et al. [2014]; Mei et al. [2009]; Strasdat et al. [2010a]) that rely only on

monocular or stereo visual cues have shown remarkable performance in the vS-

LAM problem.

Nevertheless, there is some way to go before a robust vSLAM solution can be

widely employed in practice. For instance, most state-of-the-art systems require

high quality camera images as input data, and assume that the world in which

the robot works remains almost static in appearance (Durrant-Whyte and Bai-

ley [2006]; Maddern et al. [2012]). These assumptions are not valid in the vast

majority of real-world tasks. For real and long life operation, a robot must be

able to respond to unknown or changing environments. Moreover, it is always

preferable that a robot has low hardware costs.

Appearance-based place recognition is usually performed by finding matches be-

tween the current view of the robot and a set of images of previously visited loca-

tions. However, appearances are often deceiving. There are two basic factors that

make the task of place recognition difficult. Firstly, in dynamic environments,

the appearance of a place may change as objects move, viewpoint changes, or

illumination conditions change (perceptual variability). Secondly, a number of

perceptions from different parts of an environment may look similar (perceptual

aliasing). Therefore, a good image comparison measure is of utmost importance

to reliable completion of a place recognition task.

Some studies (Bellotto et al. [2008]; Cheng et al. [2006]; Labrosse [2007]; Magna-

bosco and Breckon [2013]; Williams and Reid [2010]) exploit the odometry in-

formation obtained by analyzing images taken in consecutive frames to improve

the motion estimation accuracy of the robot, and thereby boost the performance

of vSLAM systems. The pose (position and orientation) estimation technique,

based on a sequence of acquired images, is called in robotics visual odometry

(VO), or visual compass (VC), when only the orientation is desired. Clipp et al.

[2010] introduced a vSLAM system that utilizes the parallelism strategy to per-
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form visual odometry and loop closure in a relatively small scale environment.

Many studies have illustrated that VO or VC allows for enhanced localization

and navigation accuracy in robots, since long-term drift can be mitigated. How-

ever, these algorithms suffer from some practical limitations, which often have

their roots in the explicit assumptions that there is sufficient illumination and

a sufficiently large set of features to be extracted from a static, or at least par-

tially static environment. A further assumption is that there must be enough

scene overlap between consecutive frames (Scaramuzza and Fraundorfer [2011]).

Laurent Kneip and Siegwart [2011] enriched a textureless scene with some sparse

natural features, in order for their VO system to work properly.

Loop closure detection is one of the key challenges in a SLAM system: that

is, when, or if the robot has returned to a previously visited place after a long

traverse movement. This information is critical for mobile robots to maintain a

global consistent map of unknown environments, and allows them to correct the

accumulated errors caused by inaccurate sensor measurements. It is difficult to

detect loop closure precisely using metric information, because of accumulated

errors in position estimation, which tend to scale up dramatically with the dimen-

sions of the environment. Loop closure detection using visual cues has attracted

a great deal of attention in recent years. A viable solution to the loop closure

problem using vision requires determining for any two images whether they have

been taken from the same place.

Several successful approaches have been proposed that rely either on global ap-

pearance solutions ( Arroyo et al. [2014]; Badino et al. [2012]; Goedemé et al.

[2007]; Sunderhauf and Protzel [2011]; Wu et al. [2014]), or local feature extrac-

tion ( Anati and Daniilidis [2009]; Cummins and Newman [2010]; Garcia-Fidalgo

and Ortiz [2013]). Most of these frameworks are based on a visual Bag-of-Words

(BoWs) strategy; data structures such as the vocabulary tree, hierarchical k-

means and kd-tree are also used to speed up matching in order to cope with large

scale environments. However, the BoWs method is affected by perceptual aliasing

due to vector quantization, and it involves the learning of the BoWs dictionaries,

whether online or offline. To avoid mismatches (false positives), some algorithms

( Angeli et al. [2008b]; Scaramuzza et al. [2010]) incorporate epipolar constraint
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to check spatial consistency and verify candidate matchings.

When a robot is operating over a large area and within a changing environment,

visual loop closure detection will become extremely challenging. For example,

different places may appear the same, which may lead to erroneous loop closing

and thus yield an incorrect mapping. Moreover, perceptual changes such as view-

point and illumination changes, and moving objects are common in the natural

environment. A comparison technique that is not robust against these changes

will lead to incorrect loop closures. Even one erroneous loop closure incorporated

into the map can cause catastrophic failures of estimation algorithms.

Within the context of vSLAM, the considerations about image representation

and matching in the appearance-based place recognition task, and the increasing

demand for high precision VO or VC systems which can extend the applicability

of real time vSLAM motivated the work in this thesis.

Research Aims and Objectives

To build a fully autonomous mobile robot that is capable of operating long-term in

real environments, we must develop place recognition strategies that can handle

unknown or changing environments. Our research aims to improve the capa-

bilities of vSLAM in dynamic environments using an on-board omnidirectional

camera alone. We propose to develop an image comparison method that does not

rely on any artificial landmarks or natural structures within the environments,

that will be robust to the changes encountered by the robot, and that can be

utilized in indoor or outdoor environments. With a view to this aim, we plan to

investigate how to select image-based techniques that are suitable for accurate

and reliable orientation estimation. Our evaluation focuses on the ability of the

techniques to estimate the relative orientation of the robot at the time when the

particular images were captured. In addition, we propose to develop a novel loop

closure detection technique that will enable robots to recognise reliably places

that they are revisiting by matching their current view with previously stored

images, without any prior position knowledge.
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Contributions

A summary of the contributions of this thesis is as follows:

• An extensive literature review of the most important developments in the

field of vSLAM is presented. The key characteristics of some vSLAM frame-

works are described and a summary table is provided, which enables quick

reference to the key techniques in these approaches. In addition, a fur-

ther literature review of relevant background materials and related works

is provided. In particular, the performance of place recognition systems in

handling challenging cases characterised by perceptual aliasing and percep-

tual variability has been extensively investigated.

• A novel image comparison algorithm has been proposed. We made use of

the whole image as a global visual feature. In order to compensate for

the weaknesses of the global feature, we combined the quadtree decompo-

sition concept with the natural rotational invariance of the omnidirectional

images. This work has been published in (Cao et al. [2012]).

• An evaluation methodology for different image-based techniques with re-

spect to orientation estimation is introduced. Critical analysis of the per-

formance in indoor and outdoor, static and dynamic environments are pro-

vided. This work has been presented in (Cao et al. [2013]).

• A novel appearance-based loop closure detection algorithm that focuses

on tackling challenging cases (perceptual aliasing and perceptual variabil-

ity) has been formulated. This method is distinct from most existing

approaches, which involve the computationally expensive step of feature

extraction and/or candidate verification within a probabilistic framework.

Loop closure detection is achieved by matching places based on the visual

distance scores between a given of pair of places, which ignores the appear-

ance changes caused by a dynamic environment.
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Overview

This thesis is presented in seven chapters. Excluding the Introduction (this

chapter), the thesis is divided into four main sections: background and related

work (Chapters 2); datasets description (Chapter 3); major contributions (Chap-

ters 4, 5 and 6); and conclusions and directions for future research (Chapter 7).

Chapters 2 forms the first section, which provides an overview of the most im-

portant developments in the field of vSLAM, focusing on image representation,

dimensionality reduction techniques, place recognition, visual odometry, quadtree

structure and loop closure detection techniques. A literature review summary ta-

ble is provided at the end of this chapter. Each chapter in the dealing with the

contributions also reviews more specifically related work.

Four datasets are used to evaluate the methods proposed in Chapters 4 and 6, as

well as the three methods for robot orientation estimation in Chapter 5. To avoid

repetition in each chapter, a detailed description of the four datasets is given in

Chapter 3, which constitutes the second part of the thesis.

The third part of the thesis develops the ideas and contributions of this thesis.

The main contribution is Chapter 4, which proposes a novel image comparison

method to increase the robustness of image matching for visual place recognition

tasks. The evaluation of this approach, and a comparison with the state-of-the-

art algorithms are provided in this chapter. In Chapter 5, the performance of

three methods for robot orientation estimation is evaluated, and quantitative

results are provided. A novel development of the algorithmic method developed

in Chapter 4 for loop closure detection is described in Chapter 6. Experimental

validation and a comparison with the state-of-the-art algorithms are provided at

the end of this chapter. Our conclusions and suggestions for future research are

presented in Chapter 7.
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Chapter 2

Background and related work

This chapter reviews the main solutions to the visual SLAM problem, mainly

focusing on methods for place recognition, which is one of the fundamental tasks

in visual SLAM and is typically used for localisation and loop closure. We start

with a short overview of current state-of-the-art visual SLAM algorithms in Sec-

tion 2.1. In order to perform SLAM tasks using visual clues, it is necessary to

describe the acquired images and to be able to compare their descriptions. For

this reason, a subsection (Section 2.2) is dedicated to surveying image detectors,

descriptors, approaches based on Bag-Of-Words (BoW) schemes, and some di-

mensionality reduction techniques for image descriptors that are popular in the

context of visual SLAM. We then illustrate state-of-the-art solutions to the place

recognition task in Section 2.3. An overview of visual odometry, which can be

used in unmanned navigation applications to recover the camera trajectory for ac-

curate localisation, follows in Section 2.4. In Section 2.5, we review some current

loop closure detection techniques that are primarily used for appearance-based

SLAM systems in large-scale unknown environments. In Section 2.6, a review of

methods based on quadtree structure is provided. This data structure is the core

technique of our proposed algorithms. In Section 2.7 we conclude this chapter by

summarising the key characteristics of some reviewed vSLAM frameworks.
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2.1 Visual SLAM

In this section, we will discuss recent advances in visual SLAM. A broader survey

of SLAM approaches can be found in, for example, (Bonin-Font et al. [2008]) and

in (Fuentes-Pacheco et al. [2012]). There is a large body of literature address

SLAM for larger environments using either monocular (Angeli et al. [2008a];

Botterill et al. [2011]; Cummins and Newman [2008a]; Davison [2003]) or stereo

cameras (Kaess and Dellaert [2010]; Konolige et al. [2010]; Mei et al. [2009]; Nistr

et al. [2004]).

Building a representation of the environment is an important task for a mobile

robot, allowing the robot to guide itself autonomously around the surrounding

space. In consequence, this problem has received significant attention in the

past two decades. Next we will look at the state of existing research for map

representations exploited in SLAM systems.

Classically, existing map representation studies are classified in two categories

depending on whether they make use of either metric or topological maps. Ap-

proaches in the metric paradigm, such as those described in (Davison [2003]; Elfes

[1989]; Grisetti et al. [2007]; Ho and Newman [2007]; Kaess and Dellaert [2010];

Montemerlo et al. [2002]; Moravec [1988]; Nistr et al. [2004]; Pinies and Tar-

dos [2008]; Scaramuzza and Siegwart [2008]), represent environments by evenly-

spaced grids for laser-scanner or sonar based SLAM.

Occupancy-grid maps were first suggested by Elfes [1989] in 1987. Each cell of the

grid stores the probability that it is occupied by an obstacle. These approaches

typically work well in bounded environments: however, they suffer from discreti-

sation errors that limit the scale at which the environment can be modelled, and

have high memory requirements.

Approaches in the topological paradigm, such those described in (Beeson et al.

[2005]; Booij et al. [2007]; Chapoulie et al. [2011]; Choset and Nagatani [2001];

Goedemé et al. [2008]; Korrapati and Mezouar [2014]; Kuipers and Byun [1991];

Lin et al. [2013]; Neal and Labrosse [2004]; Ranganathan et al. [2006]; Remolina

and Kuipers [2002]; Siagian and Itti [2009]; Sogo et al. [2001]; Wang and Yagi
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[2012, 2013]; Weiss et al. [2007b]), represent robot environments by graphs. Nodes

in such graphs correspond to distinct places or landmarks, and arcs denote con-

nections between places. Topological maps were first introduced in 1985 as an

attractive alternative to the occupancy-grid map by Chatila and Laumond [1985].

Since topological approaches usually do not require the exact determination of

the geometric position, only the notions of proximity and order, this method al-

lows robotic systems to recover better from drift and slippage phenomena. The

map resolution is determined by the complexity of the environment, and less

storage is required to store the nodes, compared to the large number of grid cells

in occupancy grid maps. Consequently, they permit fast planning, and facili-

tate interfacing to symbolic planners and problem-solvers (Chatila and Laumond

[1985]). However, this advantage comes with the trade-off of reduced accuracy,

because of the absent metric information. The limited accuracy of topological

maps thus restricts the capability of the robot for fast and safe navigation.

Recently, hybrid models that combine metric and topological information have

been proposed as a promising solution to manage large-scale environments. Among

others, these maps are of special interest for efficiently managing large-scale en-

vironments, and for accurate localisation. To achieve this aim, local geometric

information is stored in the nodes of a graph-based global map. There are a num-

ber of SLAM algorithms that aim to create such a hierarchical map: examples

include (Blanco et al. [2008]; Bosse et al. [2004]; Estrada et al. [2005]; Konolige

et al. [2011]; Kouzoubov and Austin [2004]; Kuipers et al. [2004]; Siagian et al.

[2014]; Tomatis et al. [2003]).

With the development of human-robot interaction, robots are gradually mov-

ing into our homes, offices, museums and other public spaces. Some traditional

navigation methods depending on metric maps or topological maps will become

invalid for complex, dynamic and unstructured environments. In order to per-

form human-like tasks alongside humans, a robot needs to have some semantic

information about the entities in the environment.

Adding semantic information to environment maps is a very attractive method for

improving domestic robot navigation. It is assumed that the robot is given certain

knowledge about the building. Such knowledge allows the robot to recognise
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particular areas of the building (kitchen, living room, etc.) on the current map.

More recently, some authors (Astua et al. [2014]; Beeson et al. [2010]; Klasing

et al. [2008]; Vasudevan and Siegwart [2008]) have reported systems in which a

robot can acquire and use semantic information for navigation tasks.

In (Kosecka and Li [2004]; Lamon et al. [2003]; Vale and Ribeiro [2003]; Zivkovic

et al. [2005]), a set of images that represents the environment of a robot is clus-

tered, based on the presence of a number of automatically extracted landmarks.

The method used in (Vale and Ribeiro [2003]) is only suited for image compar-

ison techniques which are a metric function, and does not give correct results if

self-similarities are present in the environment. Zivkovic et al. [2005] described

an algorithm for creating a hierarchical map using graph cuts, and geometric

constraints were applied to overcome self-similarities.

In (Choset and Nagatani [2001]), a generalised Voronoi diagram was constructed

from laser range data to encode the topology of the environment. These early

topological mapping algorithms were not probabilistic. Nowadays, various proba-

bilistic approaches have become popular. They all rely on probabilistic inference

for turning sensor measurements into maps. The popularity of probabilistic tech-

niques arises from the fact that all the sensors for environment perception are

subject to errors (i.e., measurement noise). In addition, the mapping is char-

acterised by uncertainty. Ranganathan et al. [2006], for instance, used Bayesian

inference to obtain the topological structure that best explains a set of panoramic

observations, chosen out of the space of all possible topologies. A Markov Chain

Monte Carlo (MCMC) algorithm was used to estimate the posterior distribu-

tion. Shatkay and Kaelbling [1997] fit Hidden Markov Models (HMMs) to the

incoming sensor data, to solve the aliasing problem for topological mapping. The

states of these HMMs refer to the topological nodes, between which probabilis-

tic state transitions are identified. Other examples of HMM based work include

(Gutierrez-Osuna and Luo [1996]) and (Cassandra et al. [1996]) where a second

order HMM is used to model environments.

Some methods rely on the detection of loop closure to build topological maps.

In these studies, probabilistic methods are also introduced to cope with the un-

certainty of link hypotheses and avoid links between self-similarities. Kristopher
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and Wesley [2005] applied Dempster-Shafer probability theory to the loop closure

problem. Their robot makes a hypothesis whenever it may have revisited a place,

then attempts to verify the hypothesis by continuing to traverse the environment,

gathering evidence that supports or refutes the hypothesis. In their topological

map, each node represents a corner, and the edges represent a sequence of be-

haviours to move the robot from one node to another using a wall-following

strategy. Their method has the advantage that ignorance can be modelled, and

no prior knowledge is needed. However, it can only be applied to sensing-limited

robots in simple environments. In Goedemé et al. [2008], an agglomerative clus-

tering algorithm is applied to a set of places, based on the visual distance, which

is made proportional to the average angle difference of the matching features.

Dempster-Shafer theory is then used to deal with self-similarities for each cluster.

Subclusters connected with accepted hypotheses are merged into one place, while

each refuted hypothesis results in the construction of a new place. After this

decision, a final topological map can be built.

A mobile robot has to solve two essential problems in navigation, namely localisa-

tion (knowing where it is) and mapping (building a map of its environment). As

has been pointed out by earlier researchers, the problem of localisation and map-

ping is a chicken and egg problem: to localize the robot based on uncertain land-

mark estimates, it must update landmark estimates based on noisy sensor mea-

surements taken from the uncertain robot position. Therefore, the two problems

are typically treated simultaneously (Simultaneous Localisation And Mapping).

SLAM has become one of the most widely researched subfields in mobile robotics

since the early 1990s, originally developed by Leonard and Durrant-Whyte [1991],

building on the earlier seminal work of Smith et al. [1987]. Nowadays, SLAM can

be considered a solved problem at a theoretical and conceptual level. However,

SLAM for dynamic, complex and large scale environments, using vision as the

only external sensor, is still an active area of research. This is referred to as

visual SLAM (vSLAM). Since 2005, vSLAM has received much attention in the

computer vision community because of the increasing ubiquity of cameras, and

advanced computing technologies. More recently, in addition to robotics appli-

cations, vSLAM is starting to be implemented in mobile cameras and used in
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Augmented Reality (AR), wearable computing and the automotive sector.

Probabilistic solutions to vSLAM have been studied extensively within the robotic

community. These involve finding an appropriate representation for both the ob-

servation model and the motion model. Practical real-time monocular SLAM

was first demonstrated by Davison [2003], using the Extended Kalman Filter

(EKF) in an indoor environment. The EKF SLAM algorithm is formed by com-

bining the robot pose and the positions of landmarks into a single state vector,

and linearising the observation and motion model at each Kalman filter update.

However, the EKF has a O(n2) computational complexity per step, where n is

the number of landmarks. This complexity stems from the fact that its full state

EKF maintains a full n×n covariance matrix for n landmarks, all of which must

be updated even if just a single landmark is observed. Although this system is

accurate and robust, it cannot be used in a large-scale environment because of

the unacceptable computational overhead.

For this reason, Murphy [1999] introduced Rao-Blackwellised particle filters (RBPFs)

as an effective way of solving the SLAM problem. Unlike the Kalman filter and

derivatives, particle filters do not assume Gaussian noise, and are not subject

to the linear hypotheses of a system. This framework has been extended sub-

sequently by Montemerlo et al. [2002] with a view to approaching the SLAM

problem with landmarks, a method termed as FastSLAM. It has the advantage

that computational complexity of filter updates can be reduced to O(n) via the

Rao-Blackwellisation of the filter: but the absence of an explicit full covariance

matrix can make loop closing more difficult.

Sim et al. [2005] firstly presented a SLAM system based on stereo vision, combin-

ing the FastSLAM algorithm and local features of images in large-scale environ-

ments. Eade and Drummond [2006] proposed a monocular framework based on

FastSLAM, which decomposes the SLAM problem into a robot localisation prob-

lem, and a separate collection of landmark estimation problems. This algorithm

combines particle filtering for localisation with Kalman filtering for mapping.

An alternative technique for solving the SLAM problem is to apply algorithms

used in the computer vision and photogrammetry research community for Struc-
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ture from Motion (SFM). In general, SFM refers to the problem of recovering 3D

information, such as the camera position and orientation, and the position of the

landmarks (the map being composed by the set of landmarks), from a series of

unordered 2D images: this is generally formulated as a computationally expen-

sive off-line process. SFM-based techniques typically maintain the full trajectory

of the camera, and use optimisation to find the best trajectory and landmark

locations.

Techniques such as bundle adjustment (BA), which performs batch optimization

over selected images from the live input, are generating a great deal of interest

in the robotics community. It has been shown by Strasdat et al. [2010b] that

optimization-based approaches provide better performance over filter-based ap-

proaches for the same computational work in purely vSLAM. BA has been used in

many real-time systems as an optimisation technique for visual odometry (Nistr

et al. [2004]) - which only recovers the camera trajectory, without explicitly creat-

ing a map - as well as for vSLAM (Davison [2003]; Karlsson et al. [2005]; Klein and

Murray [2007]; Mouragnon et al. [2006]; Se et al. [2002]; Strasdat et al. [2010a]).

All approaches mentioned above are either based on a single camera (whether

forward-facing or omnidirectional) (Davison [2003]; Karlsson et al. [2005]), or

multiple cameras in a stereo configuration (Nistr et al. [2004]; Se et al. [2002]).

Mei et al. [2009, 2010] presented an RSLAM system, aiming to real-time large

scale SLAM based on stereo vision, which combines accurate visual odometry with

constant-time large-scale mapping, appearance-based loop closure detection, and

pose graph optimisation if required. Another, similar system called FrameSLAM

has been developed by Konolige and Agrawal [2008]: this was further improved

in (Konolige et al. [2010]) by adding a vocabulary tree to provide candidate loop

closures to the RANSAC stage.

In order to allow the use of batch optimization techniques for real-time opera-

tion, Klein and Murray [2007] proposed to perform map building and localization

separately, processed in parallel threads on a dual-core computer. However, this

framework is not well-adapted to large scale exploration due to its high compu-

tational complexity.
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RatSLAM is a bio-inspired single-camera SLAM system developed by Milford

et al. [2004], using a computational model of the rodent hippocampus, which is

distinct from other probabilistic SLAM systems presented so far. The approach

uses a combination of a three-dimensional competitive attractor network and

visual scene matching to form a location hypothesis. This approach was later

adapted by Prasser et al. [2005] to be usable in outdoor environments, and works

well on images obtained from cheap cameras. RatSLAM has successfully mapped

many large-scale indoor and outdoor locations (Milford and Wyeth [2008b]), and

has been combined with other approaches in order to address the challenging

problem of navigation at different times of the day (Glover et al. [2010]).

Appearance-based SLAM systems augment visual localisation methods with the

ability to determine whether an observation comes from a previously unvisited

place.

One of the most successful algorithms is FAB-MAP (Fast Appearance-based Map-

ping), proposed by Cummins and Newman [2008a]. Instead of approaching the

SLAM problem from a geometric perspective, FAB-MAP performs localization

and mapping entirely in appearance space. A rigorous probabilistic approach to

image matching has allowed FAB-MAP to be applied to a 1000km dataset with

robust recognition of known places despite visual ambiguity between spatially

distinct places. Maddern et al. [2011] reported an improvement to the robustness

of FAB-MAP by incorporating odometric information into the place recognition

process. Cadena et al. [2010] combined appearance-based place recognition with

Conditional Random Fields (CRF) to filter out mismatches caused by visual am-

biguity.

In a more recent line of research, Kawewong et al. [2011] presented an online and

incremental appearance-based SLAM named PIRF-Nav, which can handle both

perceptual aliasing and dynamic changes of places in highly dynamic environ-

ment using omnidirecional images. Maddern et al. [2012] developed a Continuous

Appearance-based Trajectory SLAM (CAT-SLAM), which augments sequential

appearance-based place recognition with local metric pose filtering to improve

the frequency and reliability of appearance-based loop closure.
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Milford and Wyeth [2012] presented a solution to visual navigation under weather

or seasonal changes, named SeqSLAM. Instead of matching a single previously

seen image given the current frame, they calculated the best candidate matches

within every local navigation sequence, and then performed the localisation by

recognising coherent sequences of the best candidate matches. In (Milford [2013]),

the author studied the effect of the length of the matching sequences on the

SeqSLAM algorithm performance. However, the SeqSLAM algorithm is based

on an assumption of trajectory invariance, and is sensitive to the length of the

sequence.

Recently, Maddern and Vidas [2012]; Magnabosco and Breckon [2013]; Neubert

et al. [2013] proposed to solve the vSLAM problem based on both visible and

thermal imaging. Thermal and visible imaging provide complementary informa-

tion derived from the same scene: combining them can increase the landmark

detection accuracy and the loop closure detection reliability, allowing a continu-

ous SLAM operation across different times of day.

2.2 Image features and visual vocabulary

One way to characterise an image is based on extraction and description of signif-

icant points or regions. This is a widely applied technique for image retrieval and

object recognition, as well as for robot localisation and loop closure detection.

Image local feature extraction consists of detection and description phases. The

local feature detector serves to locate points which differ significantly from their

immediate neighbourhood, while the feature descriptor captures the information

in a region around these detected feature points. There is no consensus on the

question of which interest point detector and descriptor are more suitable for

vSLAM. Ideally, the feature detector should find salient regions in such a man-

ner that they are repeatably detected despite modest changes in illumination,

translation, orientation and scale.

Harris Corner Detector and Harris-Laplace (Harris and Stephens [1988]; Mikola-

jczyk and Schmid [2001]), Hessian Detector and Hessian-Laplace (Beaudet [1978];
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Mikolajczyk and Schmid [2004]), Difference of Gaussian (DoG, SIFT Detector)

(Lowe [1999, 2004]), Fast-Hessian (SURF-Detector) (Bay et al. [2008]), Center-

Surround Extremas (CenSurE) (Agrawal et al. [2008]), Features from Accelerated

Segment Test (FAST) (Rosten and Drummond [2006]), and Maximally Stable Ex-

tremal Region (MSER) (Matas et al. [2004]) are some prominent feature detectors

that have been applied to vision-based localisation and mapping tasks. Different

detectors offer different properties as required by their varying usage scenarios.

For example, the Harris Corner Detector was explicitly designed for geometric

stability: whereas SIFT keypoints have been shown to be robust to changes in

scale, image plane rotations, illumination, and camera noise; the FAST corner

detector is computationally efficient, but offers lower repeatability.

Similarly, the image descriptor should be distinctive, concise and robust to image

distortions: its performance which can be compared with other descriptors with

reference to a distance metric. Many methods for feature descriptions have been

suggested. (See, for example, Bay et al. [2008]; Calonder et al. [2010]; Lowe [1999,

2004]; Mikolajczyk and Schmid [2005]; Rublee et al. [2011]).

Many global features have also been proposed to describe the image content.

These methods use all pixels to compute a unique signature for the image. Con-

sequently, their use is straightforward: typically, they utilize color property, tex-

tures, or a combination of both. For example, Rubner et al. [1997] proposed a

Histogram search algorithm to characterise an image by its colour distribution;

Menegatti et al. [2004a] applied the Discrete Fourier Transform (DFT) to build

image descriptors for panoramic images; and Kunttu et al. [2004] introduced a

Fourier-based descriptor presented in multiple scales for image retrieval tasks.

Other examples include (Blaer and Allen [2002]; Bradley et al. [2005]; Fazi-Ersi

and Tsotsos [2012]; Itti et al. [1998]; Ulrich and Nourbakhsh [2000]; Weiss et al.

[2007a]; Zhou et al. [2003]).

In the rest of this section, we review some popular image descriptors that have

been exploited by the robotics research community, and assign them to one of

two classes: local feature descriptor, or global appearance descriptor. We also

review visual vocabulary techniques that improve the efficiency of image retrieval

process based on local feature description. The performance evaluation of differ-
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ent detectors and descriptors are given in (Huynh et al. [2009]; Mikolajczyk and

Schmid [2005]; Schmidt et al. [2010]; Winder and Brown [2007]).

2.2.1 Image descriptors

Amongst the various local feature extraction and description methods, SIFT and

SURF dominate the visual descriptor choice. Both exhibit great performance

under a variety of image transformation, and are thus a good choice for the first

two descriptors to review.

SIFT (Scale-Invariant Feature Transform) was developed by Lowe [1999] for im-

age feature extraction in object recognition applications. SIFT extracts features

that are invariant to image scaling, rotation, and camera view-point changes.

The SIFT descriptor represents local image patches around interest points char-

acterised by coordinates in the scale space, in the form of histograms of gradi-

ent directions. The 128-dimensional SIFT descriptors have high discriminative

power, while remaining robust to local variations. These characteristics make

them highly suitable for localisation.

A successful example of the approach based on SIFT features was described by

Se et al. [2001a,b, 2002, 2005]. They built a database map with distinctive SIFT

landmarks from unmodified environments. Without any prior knowledge about

its position, the robot localised itself by matching visual landmarks in the current

image to a database map. In order to reduce computation time, a smaller vector

containing 16 elements rather than 128 (Lowe [1999]) was used to characterise a

SIFT feature. The Euclidean distance measure between the descriptors of two

features was computed to check whether they were below a matching threshold.

Jensfelt et al. [2006] presented a framework that was able to extract landmarks

for SLAM using Harris-Laplace corner detection and a modified SIFT descriptor.

The rotationally ‘variant’ SIFT descriptor was developed in order to make the

landmarks matching procedure faster. This is achieved by avoiding canonical

orientation at the peak of the smoothed histogram.

Currently, there are many variants that improve on the performance of the orig-
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inal SIFT algorithm. For example, PCA-SIFT (Ke and Sukthankar [2004]) ap-

plies Principal Components Analysis (PCA) to the normalized gradient patch

rather than the gradient histogram in order to get a compact descriptor. GSIFT

(Mortensen et al. [2005]) integrates global texture information into the basic

SIFT, while CSIFT (Abdel-Hakim and Farag [2006]) adds color invariance, and

ASIFT (Morel and Yu [2009]) incorporates invariance to affine transformations.

GPU-SIFT (Sinha et al. [2006]) is an implementation of SIFT for GPU (Graphics

Processing Unit), and processes pixels/features in a parallel manner.

Speeded-Up Robust Features (SURF) was developed by Bay et al. [2008] and is

a scale- and rotation-invariant local detector and descriptor. The main motiva-

tion for the development of SURF was to approximate the performance of SIFT

while being more computationally efficient. This is obtained by using integral

images, a Hessian matrix-based measure for the detector and a distribution of

Haar wavelet responses for the descriptor. In the work of Valgren and Lilienthal

[2008], an incremental spectral clustering (ISC) algorithm was applied to segment

continuous space into topological nodes, and local feature matching was used for

localisation. This work focused on robustness to seasonal changes and differing

weather conditions in large scale indoor/outdoor environment. SURF variants

were employed as local feature descriptors of high-resolution panoramic images.

These ignore the rotational invariant characteristic of SURF. Epipolar constraint

was used to improve matching performance at little extra cost.

Gradient Location and Orientation Histogram (GLOH), proposed by Mikolajczyk

and Schmid [2005], is an extension of the SIFT descriptor, and also makes use of

a local position-dependent histogram of gradient orientations around an interest

point. It is designed to increase robustness and distinctiveness. GLOH is differ-

entiated from SIFT in three main aspects: first, instead of the rectangular grid

used in the regular SIFT, GLOH computes the descriptor over a log-polar location

grid; secondly, the gradient orientation is quantised into 16 bins as opposed to 8

bins; and finally, the dimensionality of the descriptor is reduced by using principal

component analysis (PCA). Consequently, GLOH results have been shown to be

more distinctive, but also more expensive to compute than SIFT.

Linde and Lindeberg [2004] designed another histogram-like image descriptor,
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referred to as high dimensional Composed Receptive Field Histograms (CRFH),

which was considered an effective image description for place recognition. A

CRFH is a multidimensional statistical representation of the occurrence of the

responses of several image descriptors applied to the whole image. It can be

computed from several types of image descriptors, such as normalized Guassian

derivatives, differential invariants (mainly the normalised gradient magnitude,

the normalised Laplacian and the normalised determinant of the Hessian) and

chromatic cues obtained from RGB images. Each dimension corresponds to one

descriptor, and the cells of the histogram count the pixels generating similar

responses under all descriptors. This approach permits the capture of various

properties of the images as well as relations that occur between them.

More recently, a few lightweight feature descriptors (binary descriptors), which

are targeting real-time applications processing richer data at higher rates, have

attracted the attention of researchers ( Calonder et al. [2010]; Leutenegger et al.

[2011]; Ortiz [2012]; Rublee et al. [2011]; Yang and Cheng [2014a]).

Binary Robust Independent Elementary Features (BRIEF) was the first binary

descriptor published (Calonder et al. [2010]). It is a general-purpose feature de-

scriptor that can be combined with arbitrary detectors. BRIEF is based on a

relatively small number of intensity difference tests to represent an image patch

as a binary string. Given a pair of points, if the intensity value of the first point

is larger than the intensity value of the second point, the bit corresponding to

this given point pair is assigned to value 1, else 0. Finally, a string of boolean

values can be retrieved after intensity comparison of a number of pairs. BRIEF

is robust to typical photometric and geometric image transformations, but not to

viewpoint changes. It does not use an elaborate sampling pattern, the sampling

scheme being based on uniform and Gaussian random sampling using different

distribution parameters, determined experimentally. As with all the binary de-

scriptors, the distance measure of BRIEF is the number of the different bits

between two binary strings, which can also be computed as the sum of the XOR

operation between the strings (or the number of the wrong correspondences).

Such similarity measure can be computed very efficiently (much faster than the

commonly used L2 norm).
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The ORB (Oriented FAST and Rotated BRIEF, Rublee et al. [2011]) is one of the

extensions of the basic concepts of BRIEF, based on the FAST detector (Rosten

et al. [2010]; Rosten and Drummond [2006]). It addresses the shortcoming of

the basic form of BRIEF mentioned above and improve upon it in two respects.

The first improvement is increased robustness to viewpoint changes based on

computing the unambiguous orientation from the FAST corner. The second im-

provement aspect is learned sampling pairs, achieved by using machine learning to

de-correlate BRIEF features under rotational invariance. This makes the nearest

neighbour search during matching less error-prone (Schmidt et al. [2013]).

BRISK is another extension of BRIEF, proposed by Leutenegger et al. [2011]. It

presents some differences from both BRIEF and ORB in employing a sampling a

pattern that is composed of concentric rings in which points are equally spaced.

The FREAK (Fast Retina Keypoint, Ortiz [2012]) descriptor is also inspired by

BRIEF. It suggests the use of a biologically-inspired retinal sampling pattern,

which is also circular, but with the difference of having a higher density of points

near the centre. This sampling pattern allows for the use of a coarse-to-fine

approach to feature description. The first sampling pairs mainly compare points

in the outer rings of the pattern, while the later pairs mainly compare points in

the inner rings of the pattern. This is similar to the way in which the human

eye operates. FREAK then tries to learn the pairs by maximizing variance of the

pairs and taking pairs that are not correlated. Later, a cascade approach is used

to further speed up the matching, allowing for faster rejection of false matches

and shortening of the computation time.

The LDB (Local Difference Binary, Yang and Cheng [2014a]) descriptor follows

the same basic principle as BRIEF, but using a region-based binary test instead of

the single pixel method to compute the binary strings. In addition to the average

intensity, the average of horizontal and vertical derivatives of equal-sized spatial

regions are both compared, providing a more complete description than BRIEF.

A three-level grid scheme is applied to encode the spatial structure at different

scales. The LDB descriptor is obtained by concatenating the selected bits. To

further enhance the distinctiveness of LDB, Yang and Cheng [2014b] adopt a bit

selection scheme extended from the AdaBoost to automatically select a set of
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salient bits. The goal of this scheme is to maximize (minimize) the Hamming

distance between mismatches (matches). In addition to these local descriptors,

there are ways in which to provide a global description of the information in a

given scene. In the rest of the subsection, we review some popular description

methods given in the literature.

The Discrete Fourier Transform (DFT) of an image can be used as a global

descriptor of the scene that contains information about the dominant structural

patterns, and is invariant with respect to the position of the objects. In particular,

the Fourier transform of omnidirectional images exhibits the property of being

invariant to image rotations, so that the orientation of the robot does not need

to be taken into consideration in the matching phase.

There is another global descriptor, the Fourier-Mellin Invariant (FMI) descrip-

tor introduced by Casasent and Psaltis [1976] that relies on the Fourier-Mellin

Transform (FMT). The FMT takes advantage of properties of the Fourier and

Mellin Transforms, which in combination are invariant with respect to transla-

tion, rotation and scale change. It has been applied by Bulow and Birk [2009];

Goecke et al. [2007]; Kazik and Goktogan [2011] for robot localisation purposes.

Both of the above-mentioned descriptors will be revisited in Section 2.2.3.1 as

data reduction techniques.

In order to mimic the human ability to immediately recognise the meaning (gist)

of a scene, many researchers assume a direct mapping onto scene primitives in

absence of the identity of the objects present. Oliva and Torralba [2001] pro-

posed the Gist descriptor to address this problem. They proposed that the spa-

tial structures of a scene can be described by several important statistic of the

scene. Specifically, the Gist descriptor encodes the amount, or strength, of verti-

cal/horizontal lines in an image, which can contribute to matching images with

similar distributions of lines and textures. The Gist descriptor of an image is

built from the responses of steerable filters at different scales and orientations.

Several models utilising different types of Gist of a scene have been presented in

mobile robotics, and this will be reviewed again in Section 2.3.1.4.
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2.2.2 Visual vocabulary

Place recognition based on matching numerous local features consumes too much

time for use in real-time systems. Consequently, the idea of a visual vocabulary

method inspired by object recognition and text retrieval techniques built upon

local invariant features has frequently been applied to this problem. The visual

word vocabulary is established by clustering a large set of local features extracted

from a training image corpus, in which the visual words are the cluster centers

corresponding to informative regions in a image. A histogram of the frequency

of visual words is used to summarize the entire image, by counting how many

times each of the visual words occurs in the image. Performance in the retrieval

of objects depends heavily on the distinctiveness of the vocabulary.

The first application of visual vocabulary to object retrieval in videos was con-

ducted by Sivic and Zisserman [2003]. This idea was later extended by Nistér

and Stewénius [2006] utilizing hierarchical k-means to recursively subdivide the

feature space in a tree fashion, which allows the image matching to be signifi-

cantly faster in a large database. Schindler et al. [2007] proposed a system for

large-scale place recognition using these tree structures. Many recent appearance-

based localisation and loop closure methods therefore rely on visual bags of words

based on SIFT or SURF features. Wang et al. [2005] employed the idea of the vi-

sual vocabulary relating to grey images to perform global localisation. The visual

vocabulary is learned off-line from SIFT descriptors using the k-means algorithm.

The visual vocabulary technique was also adopted in (Cummins and Newman

[2008a]) where a principal probabilistic approach for appearance-based place

recognition was proposed. The system takes into account the probabilities of

features appearing together, and is able to calculate the probabilities that two

images show the same place. This allows the system to recognise known places de-

spite perceptual aliasing. A recursive Bayes estimation was used for the location

estimation. The loop closure problem was considered over kilometres of travel,

in which the matching between current and reference images was performed by

detecting the presence or absence of features in each image from a visual vocab-

ulary, based on quantized SURF descriptors. In this work, the generative model
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of appearance is learned in an offline process, and the vocabulary dictionary is

offline built as well, as the computational complexity can be prohibitive.

Filliat [2007] chose instead to described an interactive qualitative localisation

system in which the visual vocabulary is learned online along with the image

acquisition, in an incremental manner. Three different features, including SIFT

keypoints, colour histograms and a normalised grey level histogram is extracted

from images taken from a random orientation, and the corresponding words found

in the dictionary. A two stage voting scheme is used to estimate the location.

This process is repeated until either the quality of the vote reaches a given thresh-

old, or a given number of images is reached. If the quality threshold has been

reached, the place is then considered recognized: if no recognition is made and the

limit number of images has been reached, non-recognition is considered achieved.

Epipolar geometry is used to reject outliers when perceptual aliasing is present

in the environment. In order to avoid exhaustive image-to-image comparisons of

the visual features, the inverted index associated with the dictionary was adopted

during the computation of the likelihood for the loop closure. However, using a

simple linear search algorithm entailed that the size of the manageable environ-

ments was quite limited. Consequently the method was only validated for an

indoors environment. Similarly, Angeli et al. [2008b] designed a simple online

method to detect loop closure based on the BoWs scheme through the incremen-

tal creation of a visual vocabulary in a probabilistic framework.

Most recently, Mariottini and Roumeliotis [2011] have presented a strategy for

vision-based localisation using a vocabulary tree: this allows the robot to navi-

gate in a large-scale image map. This image map is represented as a graph, in

which nodes correspond to training images, and links connect similar images. In

this work, the sequence of distinctive images is exploited to disambiguate the

localisation ambiguity. A place recognition system using BoWs combined with

Conditional Random Fields (CRF) was proposed in Cadena et al. [2010], where

CRF-Matching was applied to associate image features. An improvement to this

system that considers features in the background of the image obtained was re-

ported by Cadena et al. [2012]. When the system finds several memorised images

that match the current image, the 3D information is then exploited to solve mis-
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matches.

2.2.3 Dimensionality reduction techniques

Dimensionality reduction is the process of searching for a low-dimensional man-

ifold embedded in the high-dimensional data, and can be divided into feature

selection and feature extraction. A problem that confronts many robotics appli-

cations is the large amount of data to be processed relative to limited computa-

tional resources. Therefore, there is growing demand for image descriptors that

are memory-efficient, and offer rapid calculation and image matching.

2.2.3.1 Fourier transform

Several researchers have explored the use of more general dimensionality reduc-

tion techniques to represent the input image set, such as the Fourier transform

decomposition of the image content into the basis functions. The Fourier coeffi-

cients of the low frequency components were used by Ishiguro and Tsuji [1996];

Yagi et al. [1998], and Menegatti et al. [2003, 2004a,b] to compute the similarity

between a reference image and the current input image, which was computed from

a discrete Fourier transform of an unwrapped omnidirectional image. The sys-

tem can calculate the position of the robot with an accuracy that could be varied

by choosing different number of Fourier components to compare in the similar-

ity function. Specifically, a broad localization could be obtained by calculating

the first few frequency components, while a more precise matching could be ac-

quired by extending calculation to higher frequency components in the similarity

function.

In the work of Ferdaus et al. [2008], colour histograms and the Fourier transform

technique of image comparison were both employed for place recognition. In

order to localise the mobile robot, a discrete Bayes filter was used to represent

probability distributions: the training image with the highest probability value

identifies the probable location of the mobile robot in the environment. Analysis

of visual information was conducted in the frequency domain using the Fourier-
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Mellin Transform (FMT) to obtain rotation, translation and scaling between

consecutive images. These similarity transforms were calculated through phase

correlation and used to update the rover position and heading estimates.

2.2.3.2 Principle Component Analysis (PCA)

Another dimensionality reduction technique is Principal Component Analysis

(PCA) invented by Pearson [1901]. PCA finds the principal components of data

by calculating eigenvalues and eigenvectors of the covariance matrix. It is able

to linearly project high-dimensional image descriptors onto a low-dimensional

subspace, retaining only the principal image components.

Jogan and Leonardis [1999] employed an eigenspace model to build a compact

representation of environments. The image set was represented as points in the

eigenspace by estimating the most significant eigenvectors. The researchers used

the nearest neighbour to estimate the similarity of images, and four criteria were

defined to measure the recognition rate for localisation. However, the limitation

of this method is that it is not sufficiently robust against occlusions and lighting

changes.

The first attempt at dimension reduction for local features was PCA-SIFT, pro-

posed by Ke and Sukthankar [2004]. The original SIFT descriptor is represented

as a 128 dimensional vector: this can be reduced to 36 dimensions, by performing

PCA on the gradient patches of an image.

Krőse et al. [2000] built a representation of the appearance by applying PCA to

the images, and then representing places as a Gaussian density, which enables

Markov localization. PCA is used for the same purpose in (Artac et al. [2002];

Gaspar et al. [2000]; Valenzuela et al. [2012]). Gaspar et al. [2000] proposed a

scheme in which the greyscale omnidirectional image was compressed by building

a reduced-order manifold using PCA. At place recognition time, the current image

is projected onto the components of the PCA space, and a qualitative localisation

is obtained by detecting the nearest neighbors. PCA has also been applied by

Valenzuela et al. [2012] to reduce the SIFT and SURF feature descriptors.
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Artac et al. [2002] implemented an incremental eigenspace model for represent-

ing panoramic images in order to allow for incremental learning and adaptation

without the need to retain all the input data, mitigating the increasing demands

on memory capacity and computational complexity as the number of input im-

ages increases. A similar technique was also adopted to compress image data

with a view to saving memory in (Ishizuka et al. [2011]). The Euclidean distance

between points is used as the measure of image similarity in the eigenspace.

2.2.3.3 Other approaches

While PCA is one of the most widely-used linear dimensionality reductions, this

technique will not work given the scenario that data are distributed on a highly

nonlinear curved surface, i.e., manifolds. A nonlinear dimensionality reduction

technique called Isomap was designed by Tenenbaum et al. [2000] to preserve

the neighbourhood of points in a low-dimensional manifold. Ramos et al. [2012]

applied Isomap to reduce image patches to a low-dimensional space in which

further statistical learning methods are then used to create a probabilistic density

for each place. Place recognition is performed by computing the log-likelihood of

an entire image over each place model.

Image descriptor quantisation techniques are also utilised for dimensionality re-

duction purposes. Generally, each number of elements of the floating-point vector

is quantised so that it falls within a prescribed integer range limit. Tuytelaars and

Schmid [2007] applied quantization to the SIFT descriptor: the resulting vector

is only 4 bits per coordinate. Winder et al. [2009] introduced an image descriptor

pipeline in which the combination of PCA and quantisation is used to compress

the representation of descriptors. Chandrasekhar et al. [2009a] demonstrated a

compressed histogram of gradients (CHOG) descriptor using a tree-code method.

More recently, many efficient approaches have been developed to find binary rep-

resentation of high-dimensional data while maintaining their semantic similarity

in the Hamming space. This is usually performed by thresholding the vectors af-

ter multiplication of the descriptors with a projection matrix, and retaining only

the sign of the results. Such methods combine the effects of dimensionality re-
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duction and binarisation, greatly hastening the matching process while requiring

less memory. The similarity between descriptors can be computed very efficiently

either using hash tables or efficient bit-count operations.

Torralba et al. [2008] proposed a scheme that uses Locality Sensitive Hashing

(LSH) to learn compact binary codes from the Gist descriptor. Salakhutdinov

and Hinton [2007] used nonlinear Neighborhood Component Analysis to bina-

rise the Gist descriptor. Strecha et al. [2012] developed a scheme that uses hash

functions to computer a binary descriptor that is robust to illumination and view-

point. Hua et al. [2007] proposed an algorithm for learning local image descriptors

using Linear Discriminant Analysis. Takacs et al. [2008] reduced the bit rate of

SURF descriptors by using quantisation and entropy coding. Chandrasekhar

et al. [2009b] addressed the compression of SIFT and SURF descriptors using

transform coding. Yeo et al. [2008] used coarsely quantised random projections

on SIFT descriptors to build binary hashes: descriptors are then compared using

the Hamming distance between binary hashes.

2.3 Place recognition

Place recognition is one of the central issues in mobile robotics, determining the

ability of a robot to localize itself in its environment. Vision-based place recogni-

tion methods usually consist of two procedures. Initially, images and prominent

features of the environments are recorded as reference images. The reference im-

ages are labelled with some places. Afterwards, image comparisons are used to

detect whether the current captured image can be associated with a known place.

Recently a variety of approaches have received attention. These methods have

employed either regular forward-facing cameras (Filliat [2007]; Kosecka and Li

[2004]; Torralba et al. [2003]) or omnidirectional sensors (Artac et al. [2002]; Bel-

lotto et al. [2008]; Blaer and Allen [2002]; Gaspar et al. [2000]; Liu and Siegwart

[2014]; Menegatti et al. [2003]; Murillo et al. [2007]; Thompson et al. [2000]; Ul-

rich and Nourbakhsh [2000]; Valgren and Lilienthal [2008]; Wang and Lin [2011])

to acquire images.
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Several approaches to vision-based place recognition have been proposed during

the past two decades, motivated by appearance-based approaches to object recog-

nition. The main concerns for these methods have been: how best to represent

the environment from sensor information to guarantee invariance under changes

of illumination, pose, viewpoint, scale; how to achieve robustness to partial occlu-

sion, clutter, and dynamic backgrounds; and how to ensure efficient and accurate

image matching.

Some authors extracted a set of features - such as points, lines, and contours

(Booij et al. [2007]; Fei-Fei and Perona [2005]) - to find correspondences between

the current captured image and a reference image or set of reference images. The

accuracy of these methods is highly dependent on the features used for matching,

and the robustness of the feature descriptor. Other authors chose instead to use

direct comparison of two images pixel by pixel, or to extract a signature from the

raw images and then calculate the image similarity to perform place recognition

tasks (Gross et al. [2003]; Li et al. [2000]; Pretto et al. [2010]). The disadvantage of

these methods for image matching is that they require large amounts of memory

and are computationally expensive. The combination of both methods provides

a better solution in (Kosecka and Li [2004]; Rostami et al. [2013]).

In (Kosecka and Li [2004]), two different image descriptors and their associated

distance measures were compared. The first descriptor is the gradient orientation

histograms: the second is a set of local scale-invariant features. The experi-

mental results show that the local scale-invariant features outperform orientation

histograms, due to their superior discrimination capabilities and better invariance

properties with respect to viewpoint changes.

Rostami et al. [2013] presented an integrated feature extraction model based on

salient line segments (SLS), in which the local feature vectors are formed from the

frequency of the appearance of SLSs in the finer scale, while the global features are

derived from the coarser scales of the SLSs. In this model, the salient lines of an

image are first obtained in four directions by applying the center-surround filter

and color opponency technique. The SLS of the image patches is then extracted

by creating a histogram of gradients in the receptive cells. Finally, multi-class

SVM with a Radial Basis Function (RBF) kernel is used to classify the input
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image for place recognition. However, the authors reported that their method

could not deal with the presence of shadows and large occlusions.

2.3.1 Solutions to the place-recognition problem

Solutions to the place recognition problems might be divided into four main

types: histograms-based methods, object-based methods, region-based methods,

and context-based methods.

2.3.1.1 Histograms

Histograms of various image properties (e.g. colour or image derivatives) have

been widely used in appearance-based place recognition. The concept of using

colour histograms as a method of matching two images was pioneered by Swain

and Ballard [1991]. Colour histograms of omnidirectional images were originally

utilised in (Ulrich and Nourbakhsh [2000]) to perform place recognition. They

used six one-dimensional histograms for each image, three for the HLS (hue,

luminance, saturation) colour bands and three for either the RGB or normalised

RGB colour bands. Colour images were classified by processing each colour band

separately using nearest-neighbour learning, and the results of classification from

all colour bands were then combined with a simple scheme based on unanimous

voting. The recognition phase was done by comparing images acquired online with

the images of neighbour nodes using histogram matching on individual colour

bands. Histograms were compared with Jeffreys divergence. This method is

inspired by image retrieval techniques, but is more efficient because comparison

is only made with images in the neighbourhood of the current location.

The work studied in (Blaer and Allen [2002]) is closely similar to that in (Ulrich

and Nourbakhsh [2000]). The primary difference between the two works is that

the former addresses the problem of outdoor environmental navigation involv-

ing illumination changes. In order to reduce the impact of lighting variation in

uncontrolled environments, Blaer and Allen [2002] used a normalisation process

on the images before histograming them. The percentage of each colour at that
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particular pixel, regardless of the overall intensity of that pixel, was used for

histograming.

The most commonly used histogram is the colour histogram, which is the repre-

sentation of the distribution of colours values in the image. It has the advantages

of rotation and translation invariance about the viewing axis. However, colour

histograms can simply express the global colour information of an image, without

spatial relationship. They may give ambiguous results in environments with uni-

form colour and luminance characteristics, which often result in high similarity

values among images that are very different but exhibit similar colour histograms.

To address this shortcoming, Zhou et al. [2003] used edge density, gradient magni-

tude and textures in addition to colour information to set up a multidimensional

histogram. The recognition step is to match a multidimensional histogram of

the current image with candidate multidimensional histograms in the sample

database. The Jeffrey divergence was chosen as the distance metric to evalu-

ate the similarity between the current image and any given histogram from the

database. The authors evaluated their method on an intelligent wheelchair in

their lab environment, where the best percentage of correct self-localisation was

82.9%.

Blaer and Allen [2005] developed their earlier work and presented a hybrid method

for localisation. Five levels of resolution for each image were used, instead of one

in colour histogramming. The multiresolution histograms provided additional

information about spatial relationships in the scene. First, the original image

was convolved with a 5×5 Gaussian kernel to blur it: then the blurred image

was sub-sampled down to the lower resolution. The resulting multiresolution

histogram is a set of five 256-bucket sub-histograms.

In (Košecká et al. [2003]), appearance in indoor environments was characterised

by a simple gradient orientation histogram. In order to obtain a more robust

measure, the gradient orientation histograms was computed only for the pixels

with magnitude above an empirically-determined threshold. Once the features

had been selected using gradient orientation histograms, the χ2 distance metric

was used to compare different features. In addition, five sub-images, including
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one in the center and four quarters of the original image, were considered for

comparison when the confidence level was below the given threshold in order to

refine the classification.

Pronobis et al. [2006] modelled a visual place recognition technique based on

composed receptive field histograms in combination with a large margin classi-

fier (Support Vector Machines, SVMs) and applied this to indoor environments.

High-dimensionality histogram features were used as a global image descriptor,

which was computed from second order normalised Gaussian derivative filters

applied to the illumination channel. The histograms consisted of six dimensions,

with 28 bins per dimension.

In more recent work, spatial PACT (Principle Component Analysis of Census

Transform histograms), a new representation for recognising instance (“I am in

Room 113”) and categories (“I am in an office”) of places was introduced in (Wu

and Rehg [2008]). PACT is a global representation that extracts the Census

Transform (CT) histograms for several image patches organised in a grid and

applies PCA to the resulting vector. CT is a non-parametric local transform

designed for establishing correspondences between local patches, which compares

the intensity values of a pixel with its eight neighbourhood pixels. A histogram

of the CT values encodes both local and global information of the image.

Similarly, another interesting recent effort focuses on the classification task to

distinguish places in the environment (Fazi-Ersi and Tsotsos [2012]). In this

work, histograms of oriented uniform LBPs (Local Binary Patterns ) are extracted

from images to categorise places indoors and outdoors. Wang and Yagi [2013]

proposed a new image feature, the Orientation Adjacency Coherence Histogram

(OACH), to carry out coarse topological localisation. SIFT descriptors are then

used for the fine localisation. The system works well in both indoor and outdoor

environments.
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2.3.1.2 Object-based methods

Much research on vision-based place recognition tends to focus on landmark-

based approaches. Such methods rely on either artificial or natural features in

order to extract information about position. Place recognition is performed by

finding matches between the candidate landmarks visible in the current image and

those in the database. This can be very fast and reliable if landmarks are well

designed for efficient detection and well distributed in the environment. Many

early approaches utilised artificial landmarks (Briggs et al. [2000]; Case et al.

[2011]; Fairfield and Maxwell [2001]; Huh et al. [2006]; Sousa et al. [2009]; Yoon

and Kweon [2002]), such as reflectors, ultrasonic beacons, and traffic signs, etc..

Various features have been used as natural landmarks (Asmar [2006]; Hayet et al.

[2003]; Jennings et al. [1999]; Segvic and Ribaric [2001]; Thrun [1998]), such as

simple features (vertical edges, corners), or characteristic objects (doors, corri-

dors, and distinctive buildings).

The main problem in natural landmark-based systems is to detect and match

characteristic features from sensory inputs. The selection of features is impor-

tant, since it will determine the degree of complexity in feature description, de-

tection, and matching. Proper selection of features will also reduce the chances

for ambiguity and increase positioning accuracy.

In a sparse and indoor environment, many of the detected features correspond

to corners. One system described in (Jennings et al. [1999]) used corner features

and least-squares optimisation to find the transformation between the coordinate

frames of the robot for cooperative robot localisation. They proposed an imple-

mentation of a multi-robot navigation system that used stereo vision in dynamic

indoor environments. Segvic and Ribaric [2001] calculated the orientation of a

moving robot by finding the contour of the closed corridor in which the robot

was moving. Thrun [1998] and Asensio et al. [1999] used doors as their primary

landmarks, since doors were regular and easily distinguishable features in their

experimental environment. Their localisation algorithm is based on Markov local-

isation. In (Howard and Kitchen [1999]), the environment was described in terms

of the location of walls and doorways, and a probabilistic localisation technique
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was used for robot localisation. The system maintained a probability distribution

over the space of all possible robot locations.

The problem of selecting salient and distinctive features from gray-scale images

was addressed in (Knapek et al. [2000]). Salient features are selected with the

Harris corner detector, which is robust to small changes in view point. Potential

landmarks are characterised by a feature vector derived from its first and second

derivatives, which are ordered by distinctiveness, the most distinctive being re-

served. Recognition is then performed by nearest neighbour classification. The

most distinctive landmark is that which has the largest Mahalanobis distance

from all the others.

Thompson et al. [2000] described a system where localisation tasks were per-

formed by automatically selecting good landmarks from panoramic images and

places learning. Good landmarks are defined as those having good static and dy-

namic reliability, and that are distributed through the image. An adoption of the

biologically inspired Turn Back and Look behaviour is used to evaluate potential

landmarks. The landmark is represented by a 16×16 window. Static reliability

is determined by the uniqueness of the landmark in its neighbourhood. Uniform

distribution is guaranteed by dividing each image into 4 patches (forward, back,

left and right) and selecting the best four landmarks from each patch. Dynamic

reliability is measured by the average of the static reliabilities along a test path.

The landmarks with the highest dynamic reliability measure are used to repre-

sent the place. Matching is performed by a normalised correlation, to gain some

robustness to illumination changes.

The combination of edge, corner and colour features was used to represent the

environment locations in (Lamon et al. [2001]). Each location was denoted by a

list of characters, where the letter ‘V’ characterised a vertical edge and the letters

‘A’, ‘B’, ‘C’, . . . , ‘P’ represented hue bins detected by a colour patch detector.

The similarity of any two strings was given by the resulting minimum energy of

traversal, the value 0 referring to self-similarity.

Hayet et al. [2003] proposed a visual localisation strategy based on detection and

recognition of visual landmarks that are planar quadrangular objects, such as
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doors, windows, posters, cupboards, etc.. Homography rectification was applied

to obtain an invariant representation for the PCA learning stage. Asmar [2006]

developed a tree trunk recognition system which matches trees by extracting SIFT

features within the borders of the trunks. This is achieved by segmenting quasi-

vertical structures and choosing those structures that intersect the Ground-Sky

separation line.

There are some approaches that rely on image retrieval techniques to identify the

current position of the robot. These are used to find images in a given database

that look similar to the given query image. Wolf et al. [2005] used an image

retrieval system based on local features that are invariant with image transla-

tions and limited scale as the basis of a Monte Carlo localisation technique. Li

[2006] demonstrated an approach for location recognition in indoor environments.

Reduced SIFT features were extracted to represent the individual location and

recognition was approached by feature matching between query and reference

views. The Hidden Markov Model framework was exploited to reduce the am-

biguity due to self-similarity and dynamic changes in the environment. Campos

et al. [2012] described a place recognition framework in which recognition was

conducted by finding the nearest neighbour among SIFT descriptors using mu-

tual information measurement. In ( Liu and Siegwart [2014]), the authors made

use of the color features and geometric information that were extracted from

a panoramic image to represent the environment. A Dirichlet process mixture

model (DPMM) was exploited to estimate the current localization of the robot.

Natural landmarks are flexible, easy to use and cheap: however, they are also often

sparse and unstable. Artificial landmarks are simple and suited for localisation

and place recognition, especially in environments that are impoverished in the

sense that unique natural landmarks are lacking. Artificial landmarks can be

predefined, and this tends to reduce the complexity of the localisation algorithms.

Researchers have used different kinds of patterns, coloured marks, 1D or even 2D

barcodes, resorting to geometrical constraints and the associated techniques for

position estimation. Once the landmarks are identified, the 3D position and

orientation of the landmarks relative to the on-board camera can be estimated,

and, consequently, the robot position and orientation relative to the landmarks.
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A self-localisation technique based on colour pattern recognition was proposed

by Yoon and Kweon [2002]. The system used colour image processing to find

coloured markers, which consist of symmetrical and repetitive structures. To

make each landmark distinguishable from the others, and thus to eliminate false

positives for marker recognition, multiple colours having maximum distance in

the chromaticity colour space were selected for each landmark.

Jang et al. [2002] made use of a pair of coloured rectangles as navigation and

localisation aids. Briggs et al. [2000] used simple artificial landmarks which were

made up of self-similar intensity patterns coupled with a barcode for unique

identification for localisation tasks. These landmarks could be easily attached

to the walls. Sousa et al. [2009] proposed a vision system to detect and identify

barcodes, and to retrieve the geometric relationship between the camera and the

observed markers, thereby deriving localisation information for a robot. Huh

et al. [2006] addressed the localisation and navigation problem for service robots

by using invisible two-dimensional barcodes on the floor surface.

In (Fairfield and Maxwell [2001]), small green plastic rings are used as land-

marks. Their method projected the acquired coordinates of the landmarks in

the image plane, then calculates the distances between the robot and the various

landmarks. This perceived distance can be validated by comparison with the

pre-stored positions of landmarks. A simple Kalman filter was integrated into

the visual landmark estimation in order to correct accumulated odometry and

sensor errors.

Mata et al. [2003] made use of information signs to guide a robot based on their

recognition. In this system, the localisation is done by detecting 2D landmarks,

including text and icons designed for human use in an office environment. More

recently, Case et al. [2011] exploited text detection and recognition techniques for

named location recognition, without assumptions about the language structure

or spatial layout of the text. Other approaches for visual markers include using

coloured poles (Sousa et al. [2005]), balls (Betke and Gurvits [1997]; Iocchi and

Nardi [2000]), etc., in soccer environments.

In general, artificial landmarks are easier to detect than natural landmarks. How-
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ever, artificial landmarks require modification of the environment. Most of the

landmark-based localisation systems are tied to a specific environment: they can

rarely be easily applied to different environments. For example, if ceiling lights

are used as primary landmarks, the system will fail if the environment does not

contain ceiling lights, or the robot does not possess a sensor that can detect them.

Therefore, artificial landmarks are hardly feasible, and in any case undesirable in

a large scale environment, such as an entire city.

Alternatively, other systems rely on recognition of objects that are either known

a priori, or extracted dynamically (Ekvall et al. [2006]; Ranganathan and Dellaert

[2007a]; Vasudevan et al. [2007]). This process depends on the objects observed

and their interrelationships.

In the framework of Ekvall et al. [2006], the semantic structure of the environment

in a service robot scenario was acquired automatically. The system used object

recognition techniques to detect objects and build an augmented map, then used

this map to perform navigation and fetching tasks. Image differences between

the presence or absence of foreground objects was used to segment the objects

from their background. After segmentation, visual features (gradient magnitude

and Laplacian response) were extracted and used for building Receptive Field

Concurrence Histograms (RFCH), which can capture more geometric information

compared to a regular histogram. During the running stage, the RFCH of object

hypothesis and the target object were compared using histogram intersection,

resulting in a vote matrix. SIFT matching was used for final verification, giving

a set of hypothesised object locations.

Vasudevan et al. [2007] put forward an object-based hierarchical probabilistic

representation of space which allowed robots to be cognizant of their surround-

ings in a human-compatible fashion. Topological localisation was performed by

conceptualising space, classifying surroundings and then performing recognition

procedures. The SIFT method was used for recognising textured objects. A simi-

lar approach was adopted by Ranganathan and Dellaert [2007a]. A 3D generative

model for place representation was presented, constructed using images and depth

information obtained from a stereo camera. Places were represented as a set of

objects, each object modelled as having a particular shape and appearance. Place
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recognition involved finding the distribution of place labels, given the detected

objects and their locations.

2.3.1.3 Region-based methods

Some approaches do not use landmark objects, employing instead segmented im-

age regions to form the signature of a location. The main problem is to perform

reliable region-based segmentation, in which individual regions are robustly char-

acterised and associated.

Shlomo [1998] described a place recognition method based on matching the image

signature, which was defined as an array of measurement values derived from a

portion of the original image. Reduced-size images (64×48 pixels) with 256 grey

levels were employed to reduce the computational cost of the matching process.

The input image is divided into n × n blocks. For each block, a measurement

function was applied to estimate the image properties, including dominant edge

orientation, significant gradient direction, edge strength, edge density and degree

of texturedness. The similarity between current image signatures and a set of sig-

natures already stored in the database was calculated, in order to judge whether

the current image could be associated to a known location. In addition, match-

ing using multiple measurement functions conjunctively was considered: this was

found to improve the recognition rate significantly.

Matsumoto et al. [1996, 1999, 2000] used a sequence of frontal views along a route

which were captured at a certain interval in the training stage. Place recognition

was then realised, based on the matching of the current view with the memorised

view sequence. The calculation of similarity between the current view and a

reference view was a simple block matching process. The views were represented

by greyscale images, which were more suitable for indoor environments than for

outdoor environments, where lighting condition may change drastically. In order

to overcome this limitation, the stereo disparity can be used as a new type of view

which is independent of changes in lighting condition. However, the disparity

views were not sufficiently stable: moreover, the generation of disparity views

was not fast enough for mobile robot navigation.
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A similar approach was adopted by Hashem and Andreas [2004], here using Ker-

nel PCA to extract features from the visual scene of a mobile robot. PCA is

suitable for data generated by a Gaussian distribution. However, the distribu-

tion of natural images is highly non-Gaussian. Kernel PCA was investigated as

a generalisation of PCA, which takes into account higher order correlations. In

the localisation phase, the features of the current scene and the stored features

were computed: the result of such a comparison giving rise to the knowledge of

the position of the robot.

In (Bellotto et al. [2008]) another image matching algorithm was proposed for

indoor environment place recognition. The heart of this image matching method

involves dividing the scene image into several column regions, and then comparing

each column with a region of a reference image stored beforehand. The measure

of similarity between a slot of the scene image and a region of a stored image is

based on the Normalised Correlation Coefficient. The images employed in this

system are panoramic images reconstructed from snapshots: each image being

made up of 12 snapshots taken at intervals of 30◦.

2.3.1.4 Context-based methods

Context-based approaches take the whole image into account and use dimension-

ality reduction techniques to encode the image. The context information can

be obtained from neighbouring areas of the objects (“local”) or by summarising

image statistics from the image as a whole (“global”).

Contextual information approaches, such as Gist representations have become in-

creasingly popular in the field of computer vision, since they provide rough global

information, useful for many applications. The attractive features of this style of

representation are that it is both memory-efficient and fast to extract. It does

not contain many details about individual objects, and is not very discriminat-

ing, but it can provide sufficient information for coarse scene discrimination: e.g.,

indoor vs. outdoor. Moreover, such contextual information provides priors that

help to disambiguate object recognition and increase the robustness of location

estimation (Oliva and Torralba [2006]).
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Oliva and Torralba [2001] proposed using the Gist descriptor to represent such

spatial structures. This is built from the responses of steerable filters at different

scales and orientations. Several models utilising different type of gist features of

a scene have been presented.

Torralba et al. [2003] used wavelet image decomposition, each image location

being represented by six orientations and four scales. To compute gist features,

the resulting feature vectors were reduced from 384 dimensions to 80 dimensions

using PCA. A Hidden Markov Model (HMM) was utilised to solve the localisation

problem.

A similar system was described in (Siagian and Itti [2007]), where a simple

context-based place recognition algorithm was proposed that combined biolog-

ical centre-surround features from colour, intensity, orientation channels with

visual attention situated within a segment. The gist features can only provide

coarse context for localization, as they would have problems differentiating scenes

when most of the background overlaps, so the saliency model was incorporated

to increase the localisation resolution in this system.

The physical implementation of the model mentioned above was presented in

(Siagian and Itti [2009]). A coarse localisation hypothesis was produced in the

first instance by extracting the gist of a scene: then salient regions were used to

refine it. The gist features and salient regions were then further processed using

a Monte-Carlo localisation algorithm to allow the robot to generate its position.

Pronobis and Caputo [2007] proposed a recognition algorithm based on confidence

estimation of place classification. Unlike the majority of algorithms designed

to recognise pre-defined sets of environments (e.g., kitchen, corridor, etc.), this

algorithm used a soft decision: that is, if the level of confidence of a single cue

could not obtain a reliable decision, additional information, such as both global

and local features, is to be used. A multi-dimensional statistical representation

called Composed Receptive Field Histograms (CRFH) was used for the global

representation, while the SIFT descriptor was exploited in order to obtain the

local image representation. The classifier SVMs extended by SVM was used at

the classification step, which well correlated with classification confidence.
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Sunderhauf and Protzel [2011] presented a lightweight place recognition system

based on the BRIEF-Gist descriptor. BRIEF-Gist is a simple scene descriptor

based on the BRIEF descriptor introduced by Calonder et al. [2010], which en-

codes the whole image in a short bit string. The Hamming distance between two

descriptors is used to find the single global best matching query image. BRIEF-

Gist can be easily implemented, is computationally simple and does not require

learning vocabulary. However, this system has a weakness shared with other ap-

pearance based place recognition systems, in that it is not robust to changes in

vehicle orientation while traversing the same areas in different directions, when

using the appearance of the whole scene to perform recognition.

Murillo and Kosecka [2009] demonstrated place recognition using the Gist descrip-

tor on panoramic images in an urban environment. This descriptor is invariant

with respect to traversal direction. Singh [2010] used the original Gabor-Gist

descriptor in visual loop closure detection with panoramas.

Chang et al. [2010, 2011] and Siagian et al. [2014] utilised the Gist features and

salient regions to solve the localisation problem in indoor and outdoor environ-

ments. Gist features that capture the dominant spatial structure of an image are

used to coarsely localise the robot to within the general vicinity. Saliency is then

employed to refine the location information, by recognising the more conspicuous

areas in the image.

2.3.2 Strategies for dealing with challenging issues

Place recognition is an open and highly challenging problem in computer vi-

sion, especially when applied to mobile robotics in changing environments. Place

recognition is difficult for a number of reasons. First, finding an exact match for a

previously visited place is not trivial for a robot: factors in play include potentially

unreliable sensors, changes of viewpoint, and changes in the environment such as

those caused by moving obstacles. Second, as the world is visually repetitive,

the robot needs to be able to distinguish between different, but similar-looking

places.
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2.3.2.1 Dealing with changes

In order reliably to localise a mobile robot, even in dynamic environments, a va-

riety of strategies have been proposed for resolving environment and viewpoint

changes. One common solutions involves strengthening the ability of the feature

descriptor to cope with various changes. A body of sophisticated invariant fea-

tures extracted from the images have been exploited for image matching, which

include SIFT, SURF and GLOH (many more are presented in Section 2.2). Such

features are represented by the vector computed from the image region localised

at the interest points, which are robust to occlusion and invariant to image trans-

formations such as scale, rotation, moderate illumination and viewpoint changes.

Some examples include the works of Castle et al. [2007]; Se et al. [2002]; Valgren

and Lilienthal [2008], where SIFT or SURF feature detectors provide a rich de-

scription of the environment to match observed visual landmarks despite visual

variability. Recently, the Affine-SIFT (ASIFT) algorithm was proposed by Morel

and Yu [2009] to achieve full affine invariance by sampling various values for the

latitude and the longitude angles in order to compute virtual views of the scene.

The ASIFT algorithm was exploited to perform global localisation in (Majdik

et al. [2013]), where images captured by a camera-equipped Micro Aerial Vehicle

(MAV) need to be matched with images from Google Street View. In this work,

the most challenging problem is severe viewpoint changes between air-level and

ground-level images. The air-ground geometry of the system was used to generate

virtual views of the scene, and a histogram voting scheme was applied to find the

best image correspondences.

Nevertheless, feature-based methods could not successfully establish reliable cor-

respondences if the images were captured from very different viewpoint and under

the sharp illumination changes caused by direct sunlight and shadow in typical

outdoor environments. Common types of features, such as corners and affine

invariant regions are not fully invariant to these changes (Glover et al. [2010];

Milford [2013]). Glover et al. [2010] present an appearance-based SLAM system

based on SURF feature descriptors, the system does not cope well with illumi-

nation changes over the course of a day, as the SURF features are too variable,
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which results in the divergence of map estimate when no matches occur.

In some research works, new kinds of image descriptors are proposed, which de-

pend on the type of captured images. Examples include a polar higher-order

local auto-correlation (PHLAC) (Lin̊aker and Ishikawa [2006]), created for the

extraction of features from omnidirectional images, which is robust to noise and

occlusion to some extent; Haar Invariant Features (Labbani-Igbida et al. [2011]),

which is extracted by adapting Haar invariant integrals to the particular geom-

etry and transformations of an omnidirectional camera; And a Feature Stability

Histogram (FSH) (Bacca et al. [2011]), built using a voting scheme to tackle

long-term SLAM in a changing environment, which stores information about the

number of times each feature has been observed in each node of the topological

map.

Omnidirectional images with a 360◦ field of view make it possible to create fea-

tures that are invariant to the orientation of the robot. For example, various

colour histogram representations were used to perform robot localisation in a

series of papers (Blaer and Allen [2002]; Gonzalez-Barbosa and Lacroix [2002];

Ulrich and Nourbakhsh [2000]). The subspace of eigenvectors are computed from

the original images (Artac et al. [2002]; Gaspar et al. [2000]; Krőse et al. [2000]).

Fourier signatures are applied in (Ferdaus et al. [2008]; Menegatti et al. [2004b])

to represent the omnidirectional images captured for localisation.

Several publications (Möller et al. [2014]; Stürzl and Zeil [2007]) address illumina-

tion invariance through an holistic approach: that is, the entire image is utilised

by resorting to pixel-by-pixel comparison techniques. These methods can be ap-

plied to low-resolution images, and do not require prior assumptions about the

type of visual features to be extracted from the environment. However, prepro-

cessing stages are required in which the images are transformed.

By way of example, we offer the work of Stürzl and Zeil [2007], in which the

image differences are obtained by means of a descent in image distances (DID)

model between image pairs. The preprocessing steps including subtracting the

local mean, difference-of-Gaussian filtering and contrast normalization in order to

make the distance measures invariant to illumination changes and shadow effects.
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In (Möller et al. [2014]), invariance against illumination changes is accomplished

by applying the pixel-wise distance measures proposed in three ways. Specifically,

weak scaling invariance is obtained by finding the minimal Euclidean distance

between two image columns, while strong scaling invariance is obtained by using

normalised cross-correlation. Shift invariance is realised by either subtracting the

mean before comparison of two image columns, or by computing the distance

between edge-filtered vectors.

Maddern et al. [2014] developed the idea of an illumination-invariant colour space

based on monochrome input to reduce the impacts of shadows in raw RGB images.

Similar work can be found in (Alvarez-Mozos et al. [2008]; Corke et al. [2013],

where a single-channel illumination-invariant imaging approach is also used to

alleviate the effects of changes in illumination and shadows in the context of

autonomous road vehicles.

2.3.2.2 Disambiguating ambiguous cases

In addition to the above-mentioned challenges for vision-based place recognition

systems, image matching in scenes can be tricky if the environment contains few,

or very similar features. Moreover, due to the limitations of the perceptual capa-

bilities of the robot, a robot may fail to obtain enough information to distinguish

reliable between two different locations that appear very similar. The problem

is to overcome this perceptual aliasing, namely: the danger that the current im-

age will match not only the corresponding location image, but also falsely match

other reference images at different of other, similar locations.

Many feature-based place recognition methods may fail in environments where

repeated patterns are common, as the invariant features are not sufficiently dis-

criminating and there are many mismatches. This problem often trades off against

the perceptual variability mentioned previously. Improving the robustness of the

selected features to perceptual variability often leads to poor discrimination be-

tween places, and hence to perceptual aliasing. By contrast, trying to eliminate

perceptual aliasing may result in increased susceptibility to perceptual variability.
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Image-matching algorithms usually consist of two independent steps. The first

involves finding a set of potentially matched pairs of interest points between two

images: pruning of these matches is then performed by using geometric consis-

tency, which keeps only correspondences consistent with epipolar constraints, or

homography transformation. In the first step, some studies have made use of more

suitable clustering to avoid false correspondences caused by perceptual aliasing.

For example, the Fisher criterion was used in the work of Labbani-Igbida et al.

[2011] to measure the separation between two classes of built signatures for robot

localisation in indoor environments, providing a particularly wide separation abil-

ity for room classes.

In (Schaffalitzky and Zisserman [2003]), in order to overcome the problem of per-

ceptual aliasing, the idea is to ignore common repetitive features. An ambiguity

score is assigned to each feature, representing the number of features which match

in the other image: then the ambiguity of a match is obtained by take into ac-

count the ambiguity scores of the features. The matching would be discarded if

its ambiguity score is greater than six.

Other approaches fuse multiple sensors in order to have features with comple-

mentary information in the presence of adverse environments with perceptual

aliasing. Zingaretti and Frontoni [2006] combined vision and sonar sensors to

perform the localisation task in aliased environments. Gallegos and Rives [2010]

took advantage of the metric information provided by a laser rangefinder and

fused this with omnidirectional visual information. However, this technique does

not take into account the problems of occlusions and illumination changes.

A wide range of place recognition systems addressed the perceptual aliasing prob-

lem using probabilistic algorithms covering Markov Localisation, Monte-Carlo

Localization and Multi-Hypotheses Localization. That is the case in (Menegatti

et al. [2003]) which exploited a Monte-Carlo Localisation approach to provide

robust appearance-based localisation. Ranganathan and Dellaert [2007b] pre-

sented a similar model for probabilistic topological mapping based on Markov

Chain Monte Carlo (MCMC) and Sequential Importance Sampling (SIS) algo-

rithms, which incorporate previous location information (prior assumptions) into

the recognition of locations to deal with perceptual aliasing. Likewise, Werner
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et al. [2009] developed a sequential Monte Carlo SLAM technique to keep track

of the belief of the position of the robot. This technique used Hausdorff distance

to measure the consistency between the current view and the reference view.

Bacca et al. [2011] proposed a Bayesian filtering-based approach for robot locali-

sation using a topological map: each topological location is assigned a probability

value to restrain the degree of uncertainty. Qamar et al. [2013] addressed the per-

ceptual aliasing problem for SLAM, employing a Fuzzy-Logic based method and

a Fuzzified implementation of Scale Invariant Feature Transform (SIFT). Bellotto

et al. [2008] developed a place recognition framework in which ambiguous infor-

mation is solved by means of a multiple hypothesis tracking technique: the most

plausible hypothesis is used for updating the location of the robot. Goedemé

et al. [2007] applied Dempster-Shafer probabilistic theory to loop closing in order

to avoid false links between different parts of a topological map in environments

with self-similarities.

2.4 Visual odometry

Visual Odometry (VO) has been introduced and investigated in both the com-

puter vision and robotics communities for some years. VO relies on the visual

information from an image sequence to estimate odometry information. VO is

not affected by wheel slip in uneven terrain, or other adverse conditions, and

has the utmost important in GPS-denied environments such as under water, in-

doors, or in the air. Methods have been proposed using both monocular cameras

(Kriechbaumer et al. [2015]; Nistér and Stewénius [2006]; Tomasi and Shi [1993])

and stereo cameras (Maimone et al. [2007]; Matthies and Shafer [1987]; Moravec

[1980]; Nistér and Stewénius [2006]; Olson et al. [2003]). Related work can be

divided into two categories: feature-based, and appearance-based methods. Here,

we review some of this work. More extensive surveys can be found in (Scaramuzza

and Fraundorfer [2011]).

The earliest work on estimating the motion of a vehicle from visual imagery alone

is (Moravec [1980]), where the basic algorithm identifies corner features in each
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camera frame and estimates the depth of each feature using stereo pairs. Sub-

sequently, potential matches are found by normalised cross correlation. Finally,

motion is computed by estimating the rigid body transformation that best aligns

the features at two consecutive robot positions. However, this kind of system

suffers from poor accuracy and is unstable, partly because it relies on scalar

models of measurement error in triangulation. Based upon this work, Matthies

and Shafer [1987] used 3D Gaussian distributions to model triangulation error

and incorporates the error covariance matrix of the triangulated features into

the motion estimation between successive stereo pairs. The motion estimation in

this work was pure translation, without considering orientation. The robot may

navigate safely over short distances: however, over long distances the increasing

orientation errors will lead to useless position estimation. This is extended in

(Olson et al. [2003]) by incorporating an absolute orientation sensor such as a

compass, a sun sensor or a panoramic camera providing periodic orientation up-

dates, with the Förstner corner detector used as the feature detector. The results

indicated that the error growth can be reduced to a linear function of the distance

travelled, outperforming previous visual odometry results.

All the works reviewed above are feature-based methods. This kind of method

tries to detect distinctive points or regions between consecutive image pairs. Al-

though feature extraction can be fast, it often requires assumptions about the type

of features being extracted, and natural environments can sometimes present no

obvious visual landmarks, as in the case of desert or planar regions.

Some successful techniques using the whole appearance of the images have been

proposed in the literature: e.g., (Bulow and Birk [2009]; Fernández et al. [2011];

Garćıa et al. [2012]; Goecke et al. [2007]; Labrosse [2006]; Milford and Wyeth

[2008a]). A visual compass algorithm proposed by Labrosse [2006] provides an

estimate of the heading of the robot from omnidirectional images in an incre-

mental way. In (Goecke et al. [2007]) a Fourier-Mellin transform was applied to

omnidirectional images in order to obtain a visual descriptor for the motion esti-

mation of a vehicle. The motion of a vehicle was decomposed into a rotation and

a translation component. The rotation angle estimate is taken as the median of

the observed angular displacements using a mapping from camera coordinates to
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the ground plane. In the same manner, the low frequency components of Fourier

coefficients are used. Bulow and Birk [2009] proposed an improved Fourier Mellin

Invariant (iFMI) descriptor, and applied this descriptor to an Unmanned Aerial

Vehicle (UAV) for visual odometry to generate photo maps.

In (Fernández et al. [2011]), a single Fourier descriptor was used to represent

each panoramic image obtained. When the Fourier signature has been captured

in two nearby points, the relative orientation of two points will be computed

using the shift theorem. Another example is (Milford and Wyeth [2008a]), in

which the colour images captured from a perspective camera are first converted

to greyscale images, then each pixel column is summed and normalised to form

a one-dimensional array. The resulting arrays are used to extract the rotation

information.

Recently, both appearance-based and feature-based methods were presented in

(Garćıa et al. [2012]) to compute the motion transformation between two consec-

utive images incrementally. The phase information of the Fourier signature was

used to compute the robot orientation, and SURF features were used to detect

the interest points for image comparisons by looking for corresponding points.

Kriechbaumer et al. [2015] evaluated the appearance-based and feature-based

stereo visual odometry algorithms for localization of an autonomous watercraft.

The feature-based technique was shown to provide accurate localization in the

short term, but poor performance on the estimations of pitch and roll angles.

2.5 Loop closure

Appearance-based SLAM is primarily used for detecting loop closures in large-

scale unknown environments, which requires determining if the current robot

view matches any previously visited places, or if it should be classified as a new

place. A great many techniques have been proposed to address this problem. This

section reviews the state-of-the-art algorithms using appearance-only information

to detect loop closure, focusing on the advances in approaches based on similarity

matrices in the context of the topological paradigm, which are of greatest interest

48



in the context of this thesis.

Levin and Szeliski [2004] presented a multi-stage similarity function to address the

localisation and loop closure problems. In the first stage, global colour histograms

are used to obtain a first similarity score. After filtering out the worst matches,

the remaining good matches are employed to compute a 3D rotation based on

the first order moments of a spherical image being invariant under 3D rotation.

Subsequently, Harris corners are extracted, and epipolar geometry is recovered

between the remaining candidate images in a RANSAC framework. Finally, simi-

larities between all pairs of images in the database are stored in a distance matrix

(“correspondence map”). The main diagonal of the distance matrix represents

the self-correspondence and correspondences between temporally neighbouring

frames. An off-diagonal spot show a correspondence between two frames that are

far apart. A loop closure appears as a connected sequence of off-diagonal spots in

the matrix. In a similar vein, Silpa-Anan and Hartley [2005] used SIFT features

combined with Harris corners to generate a visual correspondence map: this is

then used for localisation and loop closure detection.

In (Valgren et al. [2006]), local features are extracted from panoramic images

obtained in sequence and used to cluster the images into nodes, and then to

detect loops. This technique avoids exhaustively computing the similarity matrix

by using a random search guided by heuristics. In (Valgren et al. [2007]), loops

are detected by exhaustive search, though the incremental spectral clustering

method employed can reduce the search space when new images are processed,

which implies less computation time when the similarity measure is costly to

compute. In (Goedemé et al. [2007]), an invariant column segments technique,

combined with rotation-reduced and colour-enhanced SIFT features, has been

used to extract local regions of each image and build place representations. This is

followed by agglomerative clustering of images into distinct places. Loop closures

are detected using Dempster-Shäfer probabilities.

FAB-MAP (Cummins and Newman [2008a]) applied a Chow-Liu dependency

tree and recursive Bayes estimation within a rigid probabilistic framework to

provide loop closure information for the topological mapping system. Similarly,

Angeli et al. [2009] used BayesianLCD to provide loop closure candidates for the
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topological SLAM system.

In (Anati and Daniilidis [2009]), the author described a novel similarity measure

for comparing two panoramic images. The rotational invariance with respect to

changes in heading is achieved by alignment of local features projected on the

horizontal plane using a dynamic programming approach. A Markov Random

Field (MRF) and image similarity matrix were used to model the the probability

of loop closures.

Another similar system was presented by Scaramuzza et al. [2010], in which visual

loop closure detection and closing were attempted through SIFT features match-

ing between the current image and the images in the database. The similarities

between all images was calculated, and loop hypotheses generated by the five

top ranked images, which will be improved by imposing geometrical verification.

Finally, the loop closing optimisation will be invoked if one hypothesis passes this

verification.

In order to remove the effect of repetitive structures of the environment and

visually ambiguous scenes, Ho and Newman [2007] exploited a singular value

decomposition of the similarity matrix. In addition, they examined an extreme

value distribution to ensure the detected sequence does genuinely indicate a loop

closure and to minimise false positives. A similar method was also observed in

(Koch et al. [2010]) to identify loop closure sequences.

Williams et al. [2009] classified loop closures into three categories: (i) map-to-map

matching methods that mainly consider geometry; (ii) image-to-image matching

methods that consider only appearance; and (iii) image-to-map matching meth-

ods that use visual and metric information to perform relocation.

Three representative approaches (Clemente et al. [2007]; Cummins and Newman

[2008a]; Williams et al. [2008]) selected from each category were used to com-

pare the loop closure performance of monocular SLAM systems. Each one has its

benefits and downsides: tunable parameters also affect the ultimate performance.

The comparison results show that the map-to-map method cannot reliably de-

tect loop closures when sparse maps giving inadequate information are used. The

image-to-image method performs well, and could work better with extra metric
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information. However, the image-to-map method combines appearance and ge-

ometry information and achieves the best results.

Labbe and Michaud [2013] presented an online loop closure detection algorithm

for large-scale and long-term SLAM, called Real-Time Appearance-Based Map-

ping (RTAB-Map). This work was inspired by the work of Angeli et al. [2008a]

and based on memory management mechanisms. This method caches the most

recent and frequently observed locations in the main memory called working mem-

ory (WM) for loop closure detection. The rest are stored in an external memory

called long-term memory (LTM).

Recently, compact global image descriptors have been popular in loop closure re-

search, including Gabor-Gist, BRIEF-Gist, and WI-SURF ( Badino et al. [2012];

Liu and Zhang [2012]; Sunderhauf and Protzel [2011]; Wu et al. [2014]). These

descriptors avoid the need to extract the keypoints, and enable rapid comparison

of images.

Sunderhauf and Protzel [2011] developed a method based on the BRIEF-Gist

descriptor to create a representation of the environment to solve the loop closure

problem. However, loop closure cannot be detected if the images are taken at the

identical place but from different points of view. Liu and Zhang [2012] applied

the Gabor-Gist descriptor to detect loop closure in a Bayesian filtering scheme. A

PCA projection is performed to compress the dimensionality of the descriptor in

order to improve the computational efficiency. Wu et al. [2014] presented a loop

closure detection framework in which a simple binary descriptor was obtained

by thresholding the down-sampled images, using Otsu’s method. The similarity

between the descriptors was measured by Mutual Information (MI). Arroyo et al.

[2014] evaluated the performance of several global descriptors extracted from

panoramic images for loop closure detection tasks. The descriptor based on LDB

( Yang and Cheng [2014a]) achieved the best performance among all the compared

descriptors.
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2.6 Quadtree structure

A quadtree (Samet [1984]) is a hierarchical data structure used for modeling two-

dimensional objects, adapted from the binary search tree, but processing four

branches at each node rather than two. The initial application of the quadtree

is in image processing, with the aim of saving space and accelerating various

spatial operations. This technique involves recursively dividing an image into four

equally-sized quadrants, until all the pixels of each quadrant are homogeneous in

colour. Quadtree has long been used for image compression (Burt and Adelson

[1983]), classification and segmentation (Willsky [2002]), spatial indexing and

collision detection (Jones et al. [2004]).

In the area of mobile robotics, quadtree has been frequently utilised for occu-

pancy grid map representation and the task of path planning in order to improve

location and control the trajectory of the robot. Notable examples of such applica-

tion include Burgard et al. [2007]; Guivant et al. [2004]; Pirker [2010]; Shojaeipour

et al. [2010]; Sujan et al. [2006]; Thorpe et al. [2005]. Moreover, many approaches

have been developed for scene classification and visual localization based on the

quadtree decomposition method. An early research work introduced by Kreucher

and Lakshmanan [1999] addressed the problem of lane markers recognition un-

der varying lighting and environmental conditions. A region of the scene image

containing the edge-like feature is repeatedly subdivided into subquadrants until

each pixel in the image has been interrogated as to whether it lies on an edge.

A scene classification method was introduced in Lazebnik et al. [2006], in which

a multilayer quadtree decomposition scheme was exploited in order to obtain

the spatial position information of a scene image. Firstly, a scene image was

subdivided in a quadtree-like manner: then the histograms of visual words about

each subimage being computed. Finally, all the histogram of visual words of all

subimages at different levels were concatenated and used for representing scene

images.

Going further, higher level visual recognition problems were addressed in the work

of Li et al. [2010], where a three-level quadtree representation based on objects was

used for scene classification tasks. Eze and Benosman [2007] proposed a visual
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localization method for mobile robot navigation. In this method, the optimal

patches of the image were generated by quadtree decomposition, from which the

features could be extracted for image matching. Initially, the initial panoramic

image was cut into four equal quadrants. The further division of each quadrant

was determined by the quantity and homogeneity of the information present in

it, such that the difference of the quantity of information between possible sub-

patches is minimized.

Mei et al. [2009] developed a stereo vSLAM system in which FAST corners were

detected in each frame for motion estimates. In order to achieve good tracking

accuracy, these extracted FAST features should be spread throughout the whole

image. To achieve this, the quadtree structure was employed to restrict the

number of features in each quadrant for matching between images. The same

theme of applying the quadtree subdivision technique to monocular SLAM was

also proposed by Strasdat et al. [2010a].

More recently, Saudabayev et al. [2015] reported on a novel terrain classification

framework utilizing an on-board time-of-flight depth sensor. A filtered depth

image was recursively divided first into four equal subimages and so on, the

maximum level of decomposition being four and five. The statistical data of each

subimage at different levels, including minimum, maximum, mean, and standard

deviation values were extracted and stored in a vector, which was then used for

the terrain classification task.

2.7 Conclusions

This chapter outlines the development of approaches to SLAM problems using

cameras as the primary method of generating observations. Despite the achieve-

ments of recent decades, there are still challenges to be faced for vSLAM systems.

Although a camera provides rich information about a scene, it is vulnerable to

the effects of variatins in lighting, perspective changes or partial occlusion by

moving objects. As noted, many researchers have examined the issue of how best

to represent and match images in real world environments in order to overcome
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the challenges mentioned above. The effectiveness and reliability of a vSLAM

system depends on many characteristics, such as how the observed environment

is represented, how likely it is that the system will recognise places previously

visited, and how uncertainty is handled, with regard to the type of sensors used

and the intended application of the robot. Table 2.7 collects relevant information

about some vSLAM systems reviewed in this thesis, providing a quick reference

to the key techniques in these frameworks. To generate the summaries, we fo-

cused on the aspects of the type of camera used, the type of the environment

representation, the task required of the system, the type of environment used

to test the performance of the system, and the details of image descriptors and

detectors.

As indicated by many research works in the literature, omnidirectional (catadiop-

tric) cameras are desirable sensors for real-time recognition of places for mobile

robotics. They use lenses and mirrors to view a large area of their surround-

ings. The 360◦ view allows visual information from all sides of the robot to be

acquired simultaneously. This decreases the number of images necessary to repre-

sent the environment, reduces perceptual aliasing, provides rotational invariance

to the field of view, improves robustness to occlusions and matching, and hence

enhances the accuracy and efficiency of place recognition. For these reasons, we

choose an omnidirectional camera as the visual sensor in our research.

Global descriptors and/or local descriptors have been used to represent the envi-

ronment in many popular frameworks. As is evident from existing methods, these

descriptors each have their own advantages and shortcomings. Global methods

compare images using all the pixels of the entire image. Although they are effi-

cient and compact, they cannot handle severe viewpoint changes or occlusions.

On the other hand, the use of local descriptors can be robust to these adverse ef-

fects. Nevertheless, these methods require pre-defined routines for feature extrac-

tion and lack of spatial information. Moreover, it is difficult to extract features

robustly and correctly when the environment is cluttered or featureless. This

motivated us to propose a novel image comparison method in which we consider

the whole image as global visual feature and exploit the quadtree decomposition

technique to capture the spatial information in an image.
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As stated in many studies in the literature, the orientation angle of the robot

directly affects the action model: it is crucial to keeping the robot moving along

the expected path, driving towards the proper target destination, and maintaining

vehicle safety. Therefore, in order to allow a robot to operate robustly for long

periods of time, the orientation of a mobile robot must be determined properly.

Accordingly, we attempt to evaluate various image-based techniques for accurate

orientation estimation. Moreover, the question of how to select the frames to

establish the correct relative orientation is a very important step in most VC

algorithms, and is worth investigating.

On the other hand, an incorrect loop closure can be disastrous for most real-time

SLAM systems, making an inconsistent map of the environment. Despite recent

advances in visual loop closure research, challenges remain to improve tolerance

of changes in the environment and perceptual aliasing. Therefore, it remains

a worthwhile task to develop the effective and robust methods for loop closure

detection.
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Author Camera Map Tasks Environment Descriptor (Detector)

Montemerlo et al. [2002] Mono Metric SLAM Outdoor Image patches

Davison [2003] Mono Metric SLAM Indoor Image patches (shi and

Tomasi operator)

Gross et al. [2003] Omnidir Metric Loc Indoor Image patches

Hayet et al. [2003] Mono Metric Loc Indoor Image patches

Košecká et al. [2003] Mono Topo Loc Indoor Gradient orientation his-

togram

Menegatti et al. [2004a,b] Omnidir Hybrid Loc Indoor Fourier Components

Nistr et al. [2004] Stereo or Mono Metric VO1 Outdoor Image patches (Harris)

Hashem and Andreas [2004] Mono Metric Loc Indoor Kernal PCA (Edge)

Milford et al. [2004] Mono Metric SLAM Indoor Image patches (Edge)

Bradley et al. [2005] Mono Topo Loc Outdoor Weighted Gradient Orien-

tation Histograms

Se et al. [2005] Stereo Metric Map+Loc Indoor SIFT

Wang et al. [2005] Mono Top Map+Loc Indoor SIFT (Harris)

Wolf et al. [2005] Stereo Metric Loc Indoor Image patches

Sim et al. [2005] Stereo Metric SLAM Indoor SIFT

Pronobis et al. [2006] Mono NA PR2 Indoor High dimensional com-

posed receptive field

histograms

Jensfelt et al. [2006] Mono Metric SLAM Indoor SIFT (Harris)

Valgren et al. [2006] Omnidir Topo Mapping Indoor SIFT

Eade and Drummond [2006] Mono Metric SLAM Indoors Image patches

Continued on next page
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Table 2.1 – Continued from previous page

Author Camera Map Tasks Environment Descriptor (Detector)

Goedemé et al. [2007] Omnidir Topo Map+Loc Indoors SIFT+ Invariant column

segment

Booij et al. [2007] Omnidir Hybrid Map+Loc Indoors SIFT

Filliat [2007] Mono Topo Map+Loc Indoors SIFT

Ho and Newman [2007] Mono Metric LC3 Outdoors SIFT

Maimone et al. [2007] Stereo NA VO Outdoor (Forstner or Harris)

Pronobis and Caputo [2007] Mono Topo PR Indoors SIFT (Harris)+ CRFH

Vasudevan et al. [2007] Mono Topo CM4 Indoors SIFT

Weiss et al. [2007a] Stereo Topo Loc Outdoors Weighted Grid Integral In-

variant
Valgren and Lilienthal [2008] Omnidir Topo Mapping In+Out SIFT

Angeli et al. [2008b] Mono Topo SLAM In+Out SIFT+Colour Histogram

Bellotto et al. [2008] Mono Topo Loc Indoors Image patches

Cummins and Newman [2008a] Mono Topo SLAM Outdoors SURF

Eade and Drummond [2008] Mono Topo LC Outdoors SIFT

Milford and Wyeth [2008a] Mono Topo SLAM Outdoors Image patches

Scaramuzza and Siegwart [2008] Omnidir Metric VO Outdoors Image patches

Takacs et al. [2008] Mobile Phone NA AR5 Outdoors SURF

Werner et al. [2008] FPGA Topo SLAM Indoors Colour Histogram

Pinies and Tardos [2008] Mono Metric Mapping Outdoors Image patches (Harris)

Bulow and Birk [2009] Mono NA VO Outdoors Fourier-Mellin Invariant

(FMI)

Continued on next page
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Table 2.1 – Continued from previous page

Author Camera Map Tasks Environment Descriptor (Detector)

Murillo and Kosecka [2009] Omnidir Topo PR Outdoors Gist

Siagian and Itti [2009] Mono Topo Map+Loc Outdoors Gist+SIFT

Mei et al. [2009] Stereo Hybrid SLAM Outdoors SIFT

Angeli et al. [2009] Mono Hybrid SLAM In+Out SIFT+Color Histogram

Cadena et al. [2010] Stereo Topo PR In+Out SURF

Chang et al. [2010] Mono Topo Loc In+Out Gist+Saliency

Comport et al. [2010] Stereo NA VO Image patches

Cummins and Newman [2010] Omnidir Topo SLAM Outdoors SURF

Koch et al. [2010] Omnidir Topo Map+Loc Indoors Image patches

Scaramuzza et al. [2010] Omnidir Metric PR Outdoors SIFT

Singh [2010] Mono Topo LC Outdoors Gist

Strasdat et al. [2010a,b] Mono Metric SLAM Outdoors SURF (FAST)

Konolige et al. [2010] Stereo Hybrid SLAM In+Out SAD (STAR+FAST)

Mei et al. [2010] Stereo Hybrid SLAM Outdoors SIFT

Glover et al. [2010] Mono Hybrid SLAM Outdoors SURF

Botterill et al. [2011] Mono Topo SLAM In+Out Image patches (FAST)

Kaess and Dellaert [2010] Multiple cameras Metric SLAM Indoors Image patches

Konolige et al. [2010] Stereo Hybrid SLAM In+Out FAST+SAD

Mariottini and Roumeliotis [2011] Mono Metric Loc In+Out Image patches

Kawewong et al. [2011] Omnidir Topo SLAM In+Out PIRF (SIFT)

Maddern et al. [2011] Omnidir Hybrid SLAM Outdoors SURF

Continued on next page
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Table 2.1 – Continued from previous page

Author Camera Map Tasks Environment Descriptor (Detector)

Cadena et al. [2012] Stereo Topo SLAM In+Out SURF

Garćıa et al. [2012] Stereo NA VO Indoors SURF

Ramos et al. [2012] Mono Topo PR In+Out Image patches

Maddern et al. [2012] Omnidir Hybrid SLAM Outdoors SURF

Fazi-Ersi and Tsotsos [2012] Mono Topo PR+PC 6 Indoors Histogram of Oriented

Uniform Patterns (HOUP)

Milford [2013] Mono Topo SLAM Outdoors Image patches

Rostami et al. [2013] Mono Topo PR Outdoors Salient Line Segments

(SLS)

Labbe and Michaud [2013] Webcam Metric LC In+Out SURF

Wang and Yagi [2013] Mono Topo Loc In+Out Orientation Adjacency

Coherence Histogram

(OACH)+SIFT

Lin et al. [2013] Mono or Omnidir Topo PR In+Out Extended-HCT

Magnabosco and Breckon [2013] Mono (Cross-spectral) Metric SLAM Outdoors SURF

Siagian et al. [2014] Mono Hybrid Map+Loc In+Out SIFT+Saliency

1VO: Visual Odometry
2PR: Place Recognition
3LC: Loop Closure
4CM: Cognitive Mapping
5AR: Augmented Reality
6PC: Place Classification
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Chapter 3

Datasets

3.1 Introduction

This chapter provides a description of all the datasets that have been used to

evaluate the proposed algorithms in this thesis, including the environments, the

robot platforms, and the cameras employed during acquisition.

We make use of four datasets: one is an open-access indoor environmental dataset

collected by Ullah et al. [2007], which is named COLD; the second is an openly

available outdoor environmental dataset, New College 1 dataset released by Smith

et al. [2009]; the two remaining were acquired by ourselves in indoors and out-

doors environments; these were named ISL, and GummyBear, respectively. The

New College 1 and GummyBear datasets have been utilised for validation of the

proposed image compariosn method. All of the datasets except the New College

1 dataset have been used to evaluate the various image-based techniques for the

robot orientation estimation task, and the indoor dataset (ISL) and New Col-

lege 1 dataset have also been used for evaluation of the loop closure detection

methods.
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Table 3.1: Characteristics of ISL datasets

Dataset Frames Length Rate Notes
ISL 1 679 40m 30fps Static, no objects within the workspace
ISL 2 766 40m 30fps Static, objects in the middle of the

workspace
ISL 3 780 40m 30fps Static objects in the middle of the

workspace, a moving object present
ISL 4 752 40m 30fps Static objects in the middle of the

workspace, two moving objects present

3.2 Indoor datasets: ISL

This dataset has been captured in our laboratory. It consists of four sub-datasets

captured from four different scenarios containing repetitive structures, people

wandering around and moved objects. These four datasets feature significant

numbers of repeated loop closures in both static and dynamic environments. The

sequences contain 679, 766, 780 and 752 images, respectively. For ease of precess-

ing, every omnidirectional image with a size of 200 × 200 pixels was unwrapped

into a panoramic view with a size of 360 × 40 pixels. The unwrapping is per-

formed by scanning the pixels along the radial lines with one degree increment,

and eliminating the pixels that do not correspond to the environment, such that

each panoramic image has a horizontal angular resolution of 1 pixel per degree.

The characteristics of the datasets are described in Table 3.1. This dataset has

been used for evaluation of various orientation estimation algorithms and the pro-

posed loop closure detection algorithm. The evaluation results will be presented

in Chapter 5 and 6.

3.2.1 Acquisition platforms and procedure

A Pioneer robot was instructed to drive along roughly rectangular closed loops

from one end of the experimental area to the other and then back to the starting

position. Each sub-dataset collection consists of a journey around the laboratory

consisting of three loops. A catadioptric system consisting of a digital colour
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camera pointed upwards looking at a hyperbolic mirror (see Fig 3.1 (a)) was used

to capture image sequences of 200× 200 pixels resolution at 30fps. Note that the

location and the appearance of the local scene were synchronously captured as

the robot moved through its workspace.

(a) (b) (c) (d)

Figure 3.1: (a) Catadioptric camera (b) Pioneer robot (c) Experimental environ-
ment without obstacles and (d) Experimental environment with “wall” sitting in
the middle of workspace.

3.2.2 Ground truth

The ground truth information was captured by a VICON motion tracking system,

which provides the position (x, y and z) and orientation (yaw, pitch and roll) of

the robot at 30Hz with an accuracy on the order of millimetres. Seven cameras,

outfitted with infrared (IR) optical filters and an array of IR LEDs, were mounted

on the ceiling. Six IR reflective markers were attached asymmetrically and rigidly

to the robot (see Fig 3.1 (b)). The cameras emit infrared light that is reflected

by the markers attached to the robot. The VICON software constructs a three-

dimensional representation of the markers using the images taken from the seven

cameras and triangulation with the known camera positions, from which it then

derives the pose of the robot. A detailed description of this system may be found

in (http://users.aber.ac.uk/hoh/CS390/512ViconSWManual.pdf).
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3.2.3 The environments and examples

The dataset collection area is an approximately 4m × 5m indoor environment.

Figure 3.2 depicts the trajectories of the robot in four various scenarios, in which

the robot was driven around three closed loops following almost the same path,

where starting points correspond to red points, and green arrows indicate the

driving direction.

(a) ISL 1 (b) ISL 2

(c) ISL 3 (d) ISL 4

Figure 3.2: VICON-recorded robot trajectories in the xy-plane in four different
scenarios.

Scenario 1:

In this scenario, as is common in indoor office environments, there were many

duplicated objects (e.g., tables, chairs, monitors, etc.) around the experimental

area, but no objects within the workspace. There were no obstacles present in
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(a) (b)

(c)

Figure 3.3: ISL dataset 1: 3.3(a) is a typical image from ISL dataset 1; 3.3(b)
is a schematic of the whole environment; and 3.3(c) is the trajectory followed by
the robot, with some annotated points in x, y, t space.
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the workspace during the data capture. Therefore, this dataset is representative

of a static and self-similar environment. Figure 3.2(a) shows the 2D trajectories

followed by the robot. Figure 3.3 shows an example image from this scenario, the

experimental environment, and the trajectory followed by the robot, with some

annotated points in x, y, t space. It is important to note that there is a sudden

jump around point 646 in the trajectory (See Figure 3.3(c)). This might be due to

the fact that some reflective markers were not correctly identified when the robot

was driven near the border of the capture space, which produced an incorrect

tracking result. We have manually corrected the trajectory to avoid bias for the

experimental evaluations.

Scenario 2:

In the second dataset, a wooden box and a white board are introduced, standing

side by side, which forms a “wall” in the middle of the workspace. Due to the

existence of the “wall”, and the height of the wall above the vertical field of view

of the robot during the experiment, from the perspective of the robot within the

experimental area the wall creates two different places, one on each of its sides.

Figure 3.2(b) shows the 2D trajectories followed by the robot. Figure 3.4 shows

a representative image in this scenario, the experimental environment, and the

trajectory followed by the robot, with some annotated points in x, y, t space.

Scenario 3:

In a more realistic scenario, a robot has to be able to deal with environmental

changes after a long term traverse: for example, a object can move, change its

shape and size, or even disappear. Due to the low placement of the camera on

our robot, the projection of moving people in the image is small. Therefore, in

order to produce obvious image variability in this dataset, we specially designed a

scene with changes that involve the appearance and disappearance of a prominent

object. In this case, a bean bag began to appear when the robot was close to

completing its first loop, and then disappears from the field of view of the robot.
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(a) (b)

(c)

Figure 3.4: ISL dataset 2: 3.4(a) is a typical image from dataset 2; 3.4(b) is a
schematic of the whole environment; and 3.4(b) is the trajectory followed by the
robot, with some annotated points in x, y, t space.
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(a) (b)

(c)

Figure 3.5: ISL dataset 3: 3.5(a) is a typical image from dataset 3; 3.5(b) is a
schematic of the whole environment; and 3.5(c) is the trajectory followed by the
robot, with some annotated points in x, y, t space.
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Figure 3.2(c) shows the 2D trajectories followed by the robot. Figure 3.5 shows a

typical image from this scenario, the experimental environment, and the trajec-

tory followed by the robot, with some annotated points in x, y, t space. A bean

bag was placed near point 268 (see Figure. 3.5(c)) when the robot was travelling

toward the end of the first loop, and then was removed as the robot travelled

toward the end of the second loop (point 523). Note that points 268, 523 and

779 are almost the same positions, but on different loops (first, second and third

loops, respectively). Specifically, the bean bag is in sight from frame 159 to 384

in the sequence of this dataset: the robot is closest to the bean bag at point 266

(frame 266), at which point the robot is approximately 0.5 metres from the bean

bag.

Scenario 4:

The fourth dataset is characterised by larger environmental changes. A great

variability in appearance was introduced by a person crouched down beside the

robot, in addition to a bean bag being added during the second lap data collection

process. Note that points 266, 528 and 745 are almost the same positions, but

on different loops (first, second and third loops, respectively). The objects are

in sight from frame 156 to 393 in the sequence of this dataset, the robot is

closest to the objects at point 268 (frame 268), where there is approximately 0.5

metres between the robot and the objects. In a robot configuration in which

only cameras are available, identifying loop closure in this scenario can be very

challenging. Accordingly, this scenario was considered suitable for evaluating the

robustness of the algorithms against dynamic changes. Figure 3.2(d) shows the

2D trajectories followed by the robot. Figure 3.6 shows a typical image grabbed

in this scenario, the experimental environment, and the the trajectory followed

by the robot, with some annotated points in x, y, t space.
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(a) (b)

(c)

Figure 3.6: ISL dataset 4: 3.6(a) is a typical image from dataset 4; 3.6(b) is a
schematic of the whole environment; and 3.6(c) is the trajectory followed by the
robot, with some annotated points in x, y, t space.
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3.3 Indoor datasets: COLD

The COLD database is a publicly available dataset (Ullah et al. [2007]). The

name COLD is an acronym, which stands for COsy (Cognitive systems for Cog-

nitive Assistants) Localization Database. The database consists of three separate

datasets acquired in three different indoor environments across Europe (Saar-

bruecke, Freiburg and Ljubljana). Perspective and omnidirectional image se-

quences were recorded using three different mobile robot platforms. Laser range

scans and odometry data were also collected for most of the sequences. The acqui-

sition process is repeated under a variety of weather and illumination conditions

(sunny, cloudy and night) and across a time span of two to three days. Dynamic

elements, such as people wandering around, and missing or newly added objects,

were introduced into the scenes.

The COLD database has already been used in the literature (Campos et al.

[2012]; Liu and Siegwart [2014]; Wang and Lin [2011]) for evaluating the robust-

ness of vision-based place recognition systems against different kinds of variations

(introduced by illumination variations and human activity). In our work, the

Freiburg sub-dataset (omnidirectional sequence A) is used to validate our pro-

posed method. The mobile robot Pioneer-3 was used as a robot platform with

an omnidirectional camera mounted about 91cm above the ground plane. The

dataset was collected at the rate of 5 frames per second while the robot navigated

through five different functional areas; a printer area, a corridor, two-person of-

fice, a stairs area, and a bathroom. The resolution of an omnidirectional image

is 640×480 pixels, which we unwrapped to 360×40 pixels in order to enable fair

comparison of the experimental results with our other datasets. Ground truth

for position (x, y coordinates) and orientation of the robot was acquired using an

odometry sensor.

Figure. 3.7 shows typical images from COLD database under different weather

and illumination conditions. More detailed information about the COLD database

may be found online (http://www.cas.kth.se/COLD/).
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(a) (b) (c)

Figure 3.7: Example images of the COLD datasets in three different lighting
conditions: (a) night; (b) cloudy; and (c) sunny. The omnidirectional images
are shown in the first and third rows, the corresponding unwrapped images are
shown in the second and fourth rows, respectively.

3.4 Outdoor datasets: GummyBear

This dataset contains three sub-datasets acquired in three different outdoor dy-

namic environments: Field, Carpark, and Tenerife. Each sub-dataset con-

sists of a sequence of images acquired along a “Gummy Bear” path (see Fig-

ure 3.9) by our four-wheel drive, four-wheel steering, electric vechicle Idris (see

Figure 3.10).

The carefully designed path shown in Figure 3.9 has the appearance of a “Gummy

Bear” in profile, and provides many curves and sets of image pairs that are

challenging for visual robot localisation. For example, the “ear” region contains

a sequence of images on a tight curve: and there are pinch points (at the “neck”
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and “knees”), where the robot is quite close to where it has been before, but is

clearly not in the same place (e.g., images 143 and 1162 might be expected to be

similar). The path finishes at the start point, but with Idris rotated through 90◦.

We steered the robot through the environment and collected GPS signal and

image data along its trajectory. Test images were captured as the robot was

moving, by an omnidirectional camera approximately one and a half meters above

the ground surface. Some example images from these datasets are shown in

Figure 3.8, while the characteristics of the datasets are described in Table 3.2.

(a) (b) (c)

Figure 3.8: Example images from the (a) Field, (b) Carpark, and (c) Tener-
ife datasets, respectively. The omnidirectional images are shown in the first and
third rows, the corresponding unwrapped images are shown in the second and
fourth rows, respectively.
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Table 3.2: Characteristics of GummyBear dataset

Dataset Frames Length Rate Notes
Field 1525 60m 6Hz Flat but rough surface, can see

about 50 m
Carpark 2101 60m 8Hz Flat, can see 30 m, light changes,

moving objects
Tenerife 2156 60m 8Hz Bumpy, can see 100 m, moving

objects

The Field dataset was collected in a field-type area, with some buildings in sight,

but consisting mainly of trees and grass. The Carpark dataset was captured in

a carpark with trees around, where few cars were parked (and one moved) and

some parts of the ground were wet with rain, providing challenging reflections

and shadows. The Tenerife dataset was obtained at the El Teide National

Park, Tenerife. Its flat landscape, with fine textures of volcanic sand, pebbles

and occasional rocky outcrops is similar to those encountered on the surface of

Mars. Some tourists were walking around during the data acquisition process.

The position of the robot was estimated using a real-time kinematic (RTK) GPS

system (Hofmann-Wellenhof et al. [1997]). A mobile RTK-GPS unit was mounted

on the robot to receive correction signals over the internet from a GPS base

station. Data was logged and post-processed to measure the position of the robot.

The RTK technique was invented in the early 1990s, which was used to eliminate

or reduce the error sources derived from satellite-based positioning systems, such

as GPS. The basic concept is to estimate the position of the mobile unit relative

to the base station using differenced carrier phase observations. This carrier-

based measurement is more precise than pseudo-code measurements, allowing for

centimeter-level positioning accuracy. We have assumed that it is valid to treat

the orientation derived from the RTK GPS data as ground truth for orientation

estimation, as the relative accuracy of orientation estimate is better than the

accuracy goal of one degree. However, the accuracy and reliability to be achieved

depends on several factors, including satellite availability, baseline length, and

sufficient redundancy of GPS observations.

From Figure 3.9, we can see that there are some data gaps occurring along the
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Figure 3.9: RTK-GPS track from the “Gummy Bear” path for the Field dataset,
with some unwrapped omnidirectional image samples. Image numbers of key
positions are marked in blue.

GPS path. The reason for this is that phase data of satellites is missing in

places, probably due to carrier signal obstruction by objects, or other tracking

problems. For this reason, the Kalman filter was used to smooth the glitches

in our GPS data. To allow comparison, absolute GPS heading is converted to

relative bearing by subtracting the absolute heading of the starting point of the

trajectory, and changed to a range between 0 and 360. This is used as ground

truth for orientation estimation.

The Kalman filter was originally proposed by Kalman and Bucy for estimating the

state of a dynamic system from a series of incomplete and/or noisy measurements

(Kalman [1960]; Kalman and Bucy [1961]). It is an efficient recursive filter, which

assumes that the best estimate of the current state is the last known state. The

state of a system is estimated in a way that minimises the mean-square error.

The filter is modelled by the following two equations:
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Figure 3.10: The Idris robot.

xk+1 = Axk +Buk + wk (3.1)

yk+1 = Cxk + zk (3.2)

where A, B and C are state transition, control input and measurement matrices,

respectively, xk+1 is the state vector of the system at time k+ 1, uk is the known

input vector at time k, yk+1 is the measured output vector at time k + 1, wk is

a process noise and zk is a measurement noise. To simplify the derivation of the

Kalman filter, we assume that the wk and zk follow the normal distribution with

covariance Qk( wk ∼ N(0, Qk) ) and Rk (zk ∼ N(0, Rk)) respectively, and that

they are statistically independent. It should be noted that the control input u

and matrix B are ignored in our case, as the motor of the robot was instructed

to move forward.

The Kalman filter algorithm can be split into two different stages: prediction,

and updating. In the prediction stage, the new state is being predicted: a new
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covariance is also being calculated, the equations being given by:

x̂k = Axk−1 +Buk (3.3)

P̂k = APk−1A
T +Q (3.4)

where x̂k is the predicted state estimation at the actual time step, P̂k is the

predicted estimate covariance matrix, Pk−1 is the updated estimated covariance

at the previous time step, and xk−1 is the updated state estimation from the

previous time step. Next, in the update stage, the current state estimation is

revised using the Equation 3.5, and the updated estimated covariance matrix is

also calculated, using the Equation 3.6.

xk = x̂k +Kk(yk − Cx̂k) (3.5)

Pk = (I −KkC)P̂k, (3.6)

where

Kk = P̂kC
T (CP̂kC

T +R)−1, (3.7)

yk is the measurement at the actual time step, Kk is the Kalman gains matrix,

and I is the identity matrix.

These two stages are conducted alternately and repeated recursively until filtering

ends, given an initial estimated state. In our context, we assumed that the robot

was moving over a planar ground at constant speed, so the z coordinate for the

robot was ignored. The state vector of the robot was simply presented by its

position coordinates, x and y. The process noise covariance matrix Q and the

measurement noise covariance matrix R are tuning parameters: we started with

some reasonable initial estimate, and then tuned Q and R experimentally.
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3.5 Outdoor datasets: New College 1 Dataset

The New College 1 dataset, published by Smith et al. [2009], was intended for

use within the mobile robotics community. It was acquired on a 2.2km-long route

during a wheeled mobile robot trip through different areas of the New College

campus. The dataset comprises 8127 panoramic images captured by a five view

LadyBug panoramic camera. The total length of the acquisition sequence is 44

minutes, and the frame rate is 3Hz. Each of the panoramic images consists of five

single images, each of 384×512 pixels resolution. The dataset presents a dynamic

outdoor environment with multiple loop closures, including moving people and

changing illumination.

Figure 3.12 illustrates some examples from the dataset. Apart from the camera

images, odometry, laser scanner and GPS data were recorded at the same time.

An overview of the trajectory constructed from GPS data is provided in Fig-

ure 3.11. Unfortunately, we can see (Figure 3.11) that the route is not smooth

and intact. This is because the GPS data were not always available during the

acquisition due to instances of lost connections with the satellites.

For the experiments detailed in Chapter 4, we picked a sequence of panoramic

images (Images 120 . . . 1900) from the dataset for our evaluation. In Figure 3.11,

the red dots indicate the position of tested images. These images were collected

when the robot was driven around three laps of the circular area, then traversed

through a short tunnel to another area, before returning to the previously visited

area moving in the opposite direction. In consequence, they are suitable for

testing multiple loop closures detection, especially evaluating the robustness to

very different camera views (traversal directions). More details about the New

College 1 dataset are available on the dataset website (http://www.robots.ox.

ac.uk/NewCollegeData/).
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Figure 3.11: GPS trajectory of the New College 1 Dataset. The parts of the
dataset used in our experiment are indicated by the red dots.

Figure 3.12: Example images from the New College 1 Dataset.
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3.6 Conclusions

This chapter has provided a description of four datasets used to evaluate our

proposed algorithms in this thesis. All datasets were collected using either an

omnidirectional camera, or a five-view panoramic camera, in static or changing

indoor and outdoor environments. The GummyBear dataset was captured in

field-like, car park and Mars-like surroundings. The ground truth was provided

by an RTK GPS. This dataset has been used for performance evaluation of our

quadtree comparison algorithm (see Chapter 4), as well as for comparison of

three methods for estimating robot orientation (see Chapter 5). The ISL dataset

was collected from a laboratory environment, and the ground truth was obtained

from a VICON motion capture system. This dataset has been used to test our

loop closure detection method (see Chapter 6). An open dataset COLD captured

under various weather and illumination conditions (sunny, cloudy and night) has

also been used to evaluate our orientation estimation method (see Chapter 5).

A publicly available dataset New College 1, was recorded in a natural outdoor

environment with people moving within the scene. More importantly, the dataset

contains loop closures traversed in opposite directions when the robot returns,

making it ideal for testing loop closure detection algorithms, and accordingly

it has been exploited to verify the effectiveness of the proposed method (see

Chapter 4.6).
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Chapter 4

A quadtree-based method for

image comparison

4.1 Introduction

In robotic navigation it is common to use a range of sensors, such as laser, sonar,

and GPS, to determine the position of a robot. However, since digital cameras

have become more affordable, more research has been devoted to navigation using

visual cues. Cameras can provide richer sensory input for better place discrimi-

nation, but with this richness comes noise and irrelevant data. Appearance-based

place recognition consists in the main of two procedures. The first involves record-

ing and storing images or prominent features of the environment: this is the pre-

training stage. The robot must then localise itself by matching the current view

with the stored reference images or features. As one would expect, establishing

matches between observation and expectation is the most difficult step. Often,

this requires a search that can be usefully constrained by prior knowledge and

by knowledge of uncertainties about the robot, such as different possible robot

headings. Therefore, the choice of a similarity measure between two images is

the key issue in place recognition tasks.

A great deal of work has been carried out on appearance-based place recognition:
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however, it is difficult to prevent mismatching completely even if state-of-the-

art place recognition techniques are used. Among many methods in appearance-

based place recognition, FAP-MAP, introduced in (Cummins and Newman [2008b])

addressed place recognition as a recursive Bayesian estimation problem, which

adopted distinctive and invariant local features, such as SURF and MSER, and

the BoWs method for computing image similarity. However, FAP-MAP requires

off-line training on a suitable dataset, and extracting and detecting local features

are usually time-consuming.

Recently, several binary descriptors that encode the image with a compact binary

string, and whose similarity can be computed very quickly by the Hamming dis-

tance, have been shown to be very efficient in performing the task of place recogni-

tion. In (Sunderhauf and Protzel [2011]), an appearance-based place recognition

system based on BRIEF-Gist descriptors was proposed, combining the BRIEF

descriptor with the holistic representation of Gist. The BRIEF-Gist feature of-

fers several important advantages, such as robustness to low quality and blurred

images, smaller storage requirements, and faster processing. However, a place

recognition system based on the BRIEF-Gist descriptor (and other, similar algo-

rithms) suffers from the disadvantage that it is not invariant to traversal direction.

In order to overcome this problem, Arroyo et al. [2014] presented a framework that

divides each panoramic image into sub-panoramas and builds the binary descrip-

tor around the center of sub-panoramas. A panoramic image is then represented

by a concatenation of a set of binary strings. Subsequent matching between two

images is based on cross-correlation between sub-panoramas of image pairs.

To achieve a robust image similarity measure between two panoramic images for

place recognition, we use the concept of quadtree decomposition, combined with a

number of standard image distance measures and involved standard three-colour

(RGB) spaces, to create a novel image similarity method, which is robust to per-

ceptual aliasing (the images we tested are mostly made of repetitive features) and

can cope with the appearance of new objects in the robot environment without

prior information. In addition, our method can detect loop closure on the basis

of image matches, which is essential for reliable navigation. Quadtrees not only

provide a noise resistant, fast, and easy to use comparison method, but they
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also allow us to identify those image regions that genuinely represent changes

within the environment. Our method is successfully validated on the Gummy-

Bear and New College 1 datasets, and compared against FAB-MAP, BRIEF-Gist,

and ABLE-P.

The rest of this chapter is organised as follows. Several image difference measure-

ments are reviewed briefly in Section 4.2. The principles of our proposed image

similarity measure are described in Section 4.3. A comparison of this method

applied to different kinds of metrics is presented in Section 4.4. Section 4.5 and

4.6 detail the experiments undertaken, and report results. Finally, Section 4.7

concludes the chapter, and outlines possible future improvements.

4.2 Image distance metrics

Image distance metrics are methods that can quantitatively evaluate the similar-

ity/dissimilarity between two images, or two image regions. Considerable efforts

have been made to define distance metrics, and methods used thus far include

Euclidean, city-block, earth mover, Mahalanobis, chi-square, Pearson’s correla-

tion coefficient, tangent distance, histogram intersection and many more. In this

section, we briefly introduce some of these metrics to determine which best suits

our application. The reader may refer to (Goshtasby [2012]) for a comprehensive

survey of similarity/dissimilarity measures.

4.2.1 Euclidean distance

The Euclidean distance has been one of the most commonly-used metrics in

computer vision, due to its efficiency and effectiveness (Duda et al. [2001]). It

measures the distance between two images by calculating the square root of the

sum of the squared differences of corresponding pixels in images.

One advantage of this metric is that the distance is a sphere around the centroid

(smoothness). It also has the advantages of being continuously differentiable, and

fast to compute. However, this distance measure suffers from high sensitivity to
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small deformations in images, because it does not take into account the spatial

relationships between pixels. Moreover, it can be over-sensitive to variations in

lighting conditions.

4.2.2 Median of absolute differences

The median of absolute differences (MAD) may be used to measure the dissimi-

larity between two images. Instead of the squares of the difference between the

corresponding pixels used in Euclidean distance, MAD involves calculating the

absolute intensity differences of corresponding pixels in images, sorting the abso-

lute differences, and choosing the middle value as the dissimilarity measure (Duda

et al. [2001]). Compared with the Euclidean distance, MAD has the advantage

of robustness to occlusion and impulse noise.

4.2.3 χ2 distance

The χ2 distance is also called the weighted Euclidean distance. It differs from

the Euclidean distance in that each square is now weighted by the inverse of the

average proportions, so that the distributional equivalence can be satisfied. The

χ2 distance between two images is given by:

χ2(Ii, Ij) =
1

2

h×w∑
k=1

c∑
l=1

(Ij(k, l)− Ii(k, l))2

Ij(k, l) + Ii(k, l)
, (4.1)

where Ii(k, l) and Ij(k, l) are the lth colour component of the kth pixel of images

Ii and Ij, respectively.
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4.2.4 Pearson’s correlation coefficient

Pearson’s correlation coefficient, first presented in Pearson [1896], is also a useful

tool for image comparison. It is given by the following equation:

ρ(Ii, Ij) =

h×w∑
k=1

c∑
l=1

(Ii(k, l)− Īi)(Ij(k, l)− Īj)√√√√h×w∑
k=1

c∑
l=1

(Ii(k, l)− Īi)
2
h×w∑
k=1

c∑
l=1

(Ij(k, l)− Īj)
2

, (4.2)

where Īi and Īj are the mean intensity of image Ii and Ij.

The correlation coefficient ρ value ranges from 1 for two images are identical, to

-1 for two images are completely anti-correlated. Value zero indicates two im-

ages are completely uncorrelated (Huntington [1919]). The correlation coefficient

subtracts the mean intensity from the intensity of each pixel, limiting the bias in

image intensities. Additionally, the scale normalization is performed by dividing

the inner product of the normalized intensities by the standard deviation of in-

tensities in each image. Therefore, this metric is well-suited to comparing images

taken under different illumination conditions, and it is invariant to a linear trans-

formation of either image Ii and/or image Ij. However, it has the disadvantage

of being computationally expensive. Another problem is that if one of the images

has constant, uniform intensity, ρ is undefined due to division by zero.

4.2.5 Histogram intersection distance

In many applications, histograms are used as representations of images. To com-

pare two images, we can compute the similarity between their histograms. The

histogram intersection distance was proposed by Swain and Ballard [1991], and

has been widely used for image retrieval, object recognition and classification
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tasks due to its simplicity and effectiveness. It is defined as:

IHI(hi, hj) =
n∑
k=1

min(hi(k), hj(k)), (4.3)

where hi(k) and hj(k) represent the kth bin of histogram hi and hj, respectively

and m is the number of bins of the histogram .

The histogram encodes an image by the distribution of colours, and discards

all spatial information. This makes histogram intersection distance invariant to

object position and orientation changes. However, this is at the cost of limited

discriminating power.

4.2.6 Earth-mover’s distance

The Earth-Mover’s Distance (EMD) (Rubner et al. [2000]) is an important, per-

ceptually meaningful metric between histograms. The EMD between two his-

tograms is defined as the solution of the transportation problem from linear op-

timization (LP).

Specifically, the EMD is computed by finding the minimum cost required to

transform one histogram into the other. Given two histograms X and Y , the

EMD is defined by the following equation:

EMD(X, Y ) =

m∑
i=1

n∑
j=1

dijfij

m∑
i=1

n∑
j=1

fij

, (4.4)

where fij denotes the flows. Each fij represents the amount transported from the

ith supply to the jth demand; ground distance dij represents the distance between

bin i and bin j in the histograms, chosen according to the task at hand. The nor-

malisation factor is the total flow, defined as:
m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

Xi,
m∑
i=1

Yj),

which is introduced in order to avoid favouring smaller signatures.
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EMD has been successfully used for image retrieval, shape matching and image

registration. However, it has an empirical time complexity between O(n3) and

O(n4), where n is the number of bins in histograms. This high computation cost

is still a major hurdle to using EMD for some applications.

4.2.7 Shannon mutual information

Mutual information (MI) is a measure of statistical dependence. The concept

of MI was introduced by Shannon [1949] and later generalized by Gelfand and

Yaglom [1959]. MI has important uses in communication theory. It was firstly

used as a similarity measure for multi-modal gray scale image registration by Viola

[1995]. The MI between two images is based on their marginal and joint/conditional

entropies.

The MI information for two images is defined as:

MI(X, Y ) =
255∑
i=0

255∑
j=0

pij log2

pij
pipj

, (4.5)

where pij is the joint probability that corresponding pixels in image X and Y

have intensities i and j, respectively; pi and pj are the probability of intensity i

and j appearing in image X and Y .

Shannon MI is a powerful measure for determining the similarity between multi-

modal images. However, it is sensitive to noise, and is relatively computationally

expensive, as density estimation is more time-consuming than a simple correlation

calculation.

4.3 An image comparison measure using Quadtree

We are interested in the spatial structure properties of an image rather than

detailed textural information. Unlike the majority of current image compari-

son methods, which use feature extraction and matching for place recognition,
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our approach is a direct pixel-wise comparison of two images incorporating the

quadtree concept. Quadtrees provide a fast and easy-to-use comparison method

that improves robustness to noise. The comparison process can be mapped to a

top-down built quadtree.

// Base case

begin
In ← Inew;
Ir ← Iref ;
// Calculate the distance (in appearance space) between In and

Ir
Dist=distance(In, Ir);
if Dist > THRESHOLD then

BuildQuadTree(rootNode);
else

Quadtree building stopped;
end

end

// Quadtree building

BuildQuadTree(Node *n)
begin

if n→ dist > THRESHOLD and n→ size > MIN then
// Break image or patch into 4 patches

for n=0 to 3 do
nodeIn=BuildNode(n→ child[i], n, i);
BuildQuadTree(nodeIn));

end

end

end

Algorithm 1: Pseudocode representation of the image comparison algorithm
using quadtree.

Our method is a recursive operation. The principle idea behind the method is

given in the pseudocode in Algorithm 1. It starts with two images which are

to be compared. The first step is to calculate the complete image distance (in

appearance space), employing one of the image metrics described in the previous

section: this forms the root node of the tree. Next, if the images distance saved
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in the root node is above a given threshold, the two images are each divided into

four quadrants of identical size. If this is not the case, the comparison comes to

a halt, as the two images are deemed similar. To what extent the two images

are actually similar is of course influenced by the chosen threshold. For each

non-similar quadrant of the two compared images, further recursive quadrant

comparison is performed. This recursive operation continues until either two

quadrants are judged sufficiently similar, or the resulting quadrants are too small.

Figure 4.1(a) is a visualisation of recursive image comparison and Figure 4.1(b)

the corresponding tree-based representation. Figure 4.1(a) shows that the de-

composition into sub regions provides us not only with robustness to noise, but

also with an indication of the locations of visual change between image pairs.

In addition, it should be noted that there has been camera motion between the

two images, but that the only difference detected is the presence of the car,

demonstrating robustness to small changes. In Figure 4.1(b), the root of the

tree corresponds to the comparison of the two original images. Circles represent

internal nodes of the tree, and leaf nodes correspond quadrants that are either

similar or too small.

(a) Recursively decomposed image pair using
quadtree

(b) Corresponding quadtree representation of
image pair comparison

Figure 4.1: Quadtree decomposition.
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4.4 Quadtree and metrics

In this section we discuss details of implementation, including the choice of im-

age distance metric to use within the quadtree algorithm, and the choice of the

threshold. To use our system for robot localisation it is important that images

that are spatially close together in the real world have a similarity score reflecting

this proximity, and it is the choice of comparison and threshold which determines

this feature of our system.

To determine which distance metric is appropriate for localisation, we first plot

comparison curve charts. These show the value of the metric for image pairs taken

in different physical locations, by moving a robot slowly along a straight line path

and taking an image every 10 centimetres. We compare an image from the mid-

dle of this sequence with all other images, and we seek a measurement that is a)

smooth and b) not too “steep”. The graphs in Figure 4.2 are a sample of these

comparison curve charts. The three curves in each chart represent Euclidean dis-

tance, χ2 distance, and Pearson’s correlation coefficient incorporated within the

quadtree similarity measurement, respectively. In order to produce a fair com-

parison between the three different measures (with thresholds on different scales)

we define an iso-similarity point for each test: this sets the threshold for quadtree

decomposition such that the three distance measures produce identical similar-

ity measures. You can see these iso-similarity points clearly in the two graphs

in Figure 4.2. You can also see that for low thresholds of Euclidean distance

and χ2 distance (Euclidean distance: 21, χ2 distance: 1) and higher threshold

of Pearson’s correlation coefficient (0.78), our quadtree measure is sensitive to

small displacements (left image, Figure 4.2), but that with higher thresholds of

Euclidean distance and χ2 distance (Euclidean distance: 43, χ2 distance: 5.1)

and lower threshold of Pearson’s correlation coefficient (0.43), we are able to de-

termine similarity between images on a broader scale (right image, Figure 4.2).

Briefly summarising our tests, we can see that Euclidean distance, χ2 distance and

Pearson’s Correlation Coefficient can behave in much the same way when we find a

threshold that defines an iso-similarity point. Between the two graphs given here,
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Figure 4.2: Comparison of different metrics applied to our quadtree similarity
measurement: iso-similarity point set at 50 for the left image and 90 for the
right, which occurs at approximately 1,400mm on the x-axis.

the similarity of the iso-similarity point increases from 50% to 90%. Pearson’s

correlation coefficient seems to be the most sensitive to small displacements (has

a narrower peak) and it is also the most computationally-intensive metric we

have considered. Euclidean distance and χ2 distance are both fast and easy to

compute, with the comparison results showing little difference between them.

For the sake of simplicity, for the rest of this paper we will present results from

Euclidean distance only.

4.5 Experiments and results: GummyBear dataset

In this section we examine the effectiveness of our image comparison method. Two

different experiments are conducted on the Field and Carpark sub-datasets of

the GummyBear dataset. These two sub-datasets represent different challenges:

a self-similar environment in Field, and shadows and ground reflections due

to water in the Carpark (more details about this dataset have been given in

Section 3.4). In our experiments we used a collection composed of every 10th

image taken from the dataset. The threshold (THRESHOLD in Algorithm 1)

was set to 45, 40, 35 and 30 for the Field dataset , and 70, 65, 60 and 55 for

the Carpark dataset. Please note that these values represent the appearance

distance in their corresponding distance metrics. Compared images are aligned

by horizontally shifting them, column by column, until a maximum of similarity

is obtained. This is to compensate for the change in heading of the robot during
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Figure 4.3: Physical distance between any pair of the images from the Field
dataset, in meters.

Figure 4.4: Physical distance between any pair of the images from the Carpark
dataset, in meters.

the capture.

Figure 4.3 and Figure 4.4 are the visualisations of physical distances between any

pair of images from the Field and Carpark datasets, respectively. The distance

in meters is calculated using RTK GPS coordinates. The use of a colour spectrum

from warm reds to cool blues maps the distance values from low to high. These

provide the ground truth upon which the proposed image comparison method can

be visually evaluated. For example, the i-th column corresponds to the physical

distance between the locations of capure of the i-th image and all others. The

main diagonals are minimal, as the distance of a location itself is zero. As stated
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in Chapter 3, the Gummy Bear path is a loop, and the robot returns to the

starting position in the loop. It can be observed in Figures 4.3 and 4.4 that the

last column of the first row shows dark red, illustrating the loops.

4.5.1 Experiment 1: Loop closure

The first experiment concerns the problem of loop closure; this is the ability of a

robot to realize when it has been in a particular place before. However, a robot

is unlikely to return to the same pose when it revisits a previous place. The

GummyBear dataset was obtained by driving the robot along a closed loop and

returning to the initial location in the loop with a different orientation: this fact

can be utilized to test the performance of our algorithm, especially its robustness

to changes in robot orientation.

Given a similarity threshold (THRESHOLD in Algorithm 1), the similarity mea-

sures between the start image and all other images in the path can be calculated.

Figure 4.5 shows the results for the Field dataset, and Figure 4.7 shows the re-

sults for the Carpark dataset. As we can see, the similarity scores are increased

towards the end of the path, when the robot has come round to the same place.

This shows that we are able to determine places where the robot has been before,

even when the robot is on uneven ground and at a different orientation.

Image 0 and Image 1481 from the Field dataset were captured at the same loca-

tion with the camera rotated clockwise by about 90 degrees between images. The

visualisations of the aligned quadtree representation on the unwrapped panoramic

images is given in Figure 4.6. This intuitively demonstrates that the proposed

method finds a correct horizontal shifit between the two images. Moreover, this

shows that whilst there are some small differences between the two images, it is

clear that our method is able to determine loop closure within a reasonable toler-

ance, and that the main causes of dissimilarity in this experiment are the frame

around the camera on Idris (which appear as vertical black lines on the images).

Future work may involve handling features such as this in a pre-processing stage.
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Figure 4.5: Similarity between Image 0 and all images of the Field dataset,
demonstrating the possibility of robust loop closure.

Figure 4.6: Left: an image pair (Image 0 and Image 1481 from the Field dataset).
Right: visualisation of left image pair comparison using our proposed method.
The similarity is 96.59%, with a threshold of 45.
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Figure 4.7: Similarity between Image 0 and all images of the Carpark dataset,
demonstrating the possibility of robust loop closure.
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Figure 4.8: Left: an image pair (Image 0 and Image 2119 from the Carpark
dataset). Right: visualisation of left image pair comparison using our proposed
method: the similarity is 96.99%, with a threshold of 70.

Figure 4.8 shows the visulisations of the aligned quadtree representation on the

unwrapped panoramic Image 0 and Image 2119 from the Carpark dataset. As

expected, our method estimates the correct horizontal alignments between them.

In this case, the primary difference between the two images is the orientation:

the small differences are due to the overexposed area of Image 2119.

4.5.2 Experiment 2: Pinch points — nearby, but not the

same place
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Figure 4.9: Similarity between Image 143 and all images of the Field dataset.

In this experiment we investigate the robustness of our quadtree similarity mea-

sure to small displacements. Usually, images taken at closely adjacent positions

are likely to be very similar. By choosing a comparison image close to one of the

“Gummy Bear” pinch points we can see whether it would be possible to deter-

mine when we are close to this image on the return trip. For robust visual robot
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Figure 4.10: Left: an image pair (Image 143 and Image 1162 from the Field
dataset). Right: visualisation of left image pair comparison using our proposed
method: the similarity is 82.24%, with a threshold of 45.

navigation this is a key ability; if we need to work out how to get to a particular

place, it is important that we are able to work out when we are close to it.

Figure 4.9 shows the similarity measure between Image 143 (on the “back” of

the “Gummy Bear”, close to a pinch point) and all others of the Field dataset.

From this we can see a rise in similarity around 1170, as expected, which shows

that our measure can determine when we are near a particular target destination.

It is noted that higher similarity scores also occur around 1450. According to the

ground truth, it is true that Image 1450 and Image 143 are taken from nearby

locations.

Figure 4.10 shows the quadtree visualisation for the pairs of spatially close images

(Image 143 and Image 1162) from the Field dataset. This demonstrates that

there are differences between these two places (which is true), but that there is

still a high similarity between them from an appearance perspective.

Figure 4.11 shows the similarity measure between Image 192 and all others of

the Carpark dataset. As we can see, higher similarity scores are visible around

1300 and 1600. we can observe from the Figure 4.4 that yellow and red area

representing the smaller distance around the 1300th and 1600th row from the

192nd column.

Figure 4.12 shows the quadtree visualisation for the image pair 192:1670 from

the Carpark dataset. Look closely at the image pair, we find that the two

images were captured from different but nearby locations, and under different

illumination conditions: Image 192 was taken under strong sunlight, while Image

1670 was collected while a cloud was covering the sun. In addition, the frame
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Figure 4.11: Similarity between Image 192 and all images of the Carpark
dataset.

Figure 4.12: Left: an image pair (Image 192 and Image 1670 from the Carpark
dataset). Right: visualisation of left image pair comparison using our proposed
method: the similarity is 85%, with a threshold of 70.

around the camera on Idris is again a cause of the dissimilarity between the two

images. As the result shows, the proposed method could detect these changes

and still give a high similarity score.

4.6 Experiments and results: New College 1

Dataset

In this section, we conducted a quantitative evaluation of loop closure detec-

tion performance using our proposed method, and then compared it with three

state-of-the-art frameworks (FAB-MAP, BRIEF-Gist, and ABLE-P). In partic-

ular, we compared the performance of the algorithms for loop closure detection

tasks in two different situations: unidirectional loop closures, and a mixture of
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unidirectional and bidirectional loop closures. We also evaluated the loop clo-

sure detection performance of our proposed method in the presence of noise, and

compared it with two state-of-the-art frameworks (BRIEF-Gist and ABLE-P).

4.6.1 Experimental set-up

The publicly available New College 1 dataset (Smith et al. [2009]) was used to

evaluate each approach. The New College 1 dataset has been covered previously,

in Section 3.5. We chose a sequence from the dataset between Images 120 and

1900 for evaluations.

The dataset does not provide direct information about loop closure, and the GPS

data provided are not completely reliable, so we manually generated the loop

closure ground truth. We assumed that the robot moved at a constant speed,

and initially conducted some tentative experiments on ground truth generation.

The best matches for every nth image were obtained by visual inspection, and

linear interpolation was performed within these fixed matches. Different values of

n (n = 5, 20, 50, respectively) have been used to produce the ground truth for the

sequence between Image 150 and 450, in order to investigate whether changing

the interval (value n) has any significant effect on the loop closure ground truth.

Figure 4.13: Ground truth for the sequence between Images 150 and 450, gener-
ated at different values of n = 5, 20, and 50.
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Figure 4.13 shows the ground truth for the sequence between Images 150 and 450.

Please note that we only created the ground truth from the second traversal. As

we can see, the obtained ground truth using different value n basically coincide,

except around Image 380-390 (X-axis) and Image 693-702 (Y -axis) where the

diagonals have slightly inconsistend slope with n = 5 and 20. Looking more

closely at the sequence between Images 150 and 450, we found that the second

traversal of the loop is not a direct overlap of the first. The Image 693-703 from

the second traversal are not taken at exactly the same location and the same

viewpoint compared to the Image 380-390 from the first traversal, in this case, it

is hard to label the loop closure ground truth unambiguously. Therefore, a match

within a margin of 10 frames is considered a true positive event for loop closure

detection in the following evaluation,

We found, as a result of these tests, that we could not distinguish visually between

the ground truths generated by the different interval values. In consequence, we

chose to generate the loop closure ground truth for the sequence between Im-

ages 120 and 1900 manually, using a 20-frame interval, following Sunderhauf and

Protzel [2011]. Figure 4.14 shows the loop closure ground truth between Im-

ages 120 and 1900 (only the lower triangle is shown), where the red off-diagonals

indicate the locations where loops are closed. It is interesting to see that the

right-side diagonals in the top left of the matrix correspond to the unidirectional

loop closures, while the left-side diagonals correspond to the bidirectional loop

closures.

In the case of FAB-MAP, an open source implementation developed by Glover

et al. [2012] called OpenFABMAP was used for testing. We used the default

parameter settings and chose part of the New College 1 dataset as the training

dataset. Note that the tested images in our experiments are not included in

the training dataset. The final result is a confusion matrix, representing the

probability of loop closure.

BRIEF-Gist was implemented using the C++ language and the BRIEF descriptor

provided by OpenCV (Bradski [2000]). Firstly, a panorama is divided into five

equally sized sub-panoramas, and each sub-panorama is downsampled to 64×64

pixels. Secondly, the center of each sub-panorama is chosen as the keypoint, and

98



Figure 4.14: Ground truth of the New College 1 Dataset.

a BRIEF descriptor with length 32 bytes is computed for each of sub-panoramas

separately. The final descriptor of the panoramas is obtained by concatenating

the five descriptors of the sub-panoramas. The similarity between images is then

measured by the Hamming distance between their descriptors.

ABLE-P was also implemented following the guidelines in the original paper

(Arroyo et al. [2014]). We used the LDB descriptor provided by the authors on

their website (Yang and Cheng [2014a]), and kept the default parameter settings

for the LDB descriptor. The implementation process is similar to that of the

BRIEF-Gist, except for the matching strategy and the number of sub-panoramas.

Each panoramic image is split into six sub-panoramas rather than five, as this

yields much better results (following the advice from the author). The similarity

between the two images is measured by the minimum Hamming distance of the

different LDB strings, which are obtained from the six possible alignments of the

six sub-panoramas of the image.
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4.6.2 Evaluation

We use traditional precision and recall metrics to evaluate the performance of all

methods. Precision is defined as the ratio of the number of true-positive loop

closure detections to the total number of detections. Recall is defined as the ratio

of the true-positive loop closure detections to the loop closures in the ground-

truth. The area under the precision-recall curve, known as the average precision,

is also used to evaluate the overall performance of all algorithms tested. A match

( Sc, Sp) is considered as a true positive detection if the distance to the ground

truth is less than 10 frames in either direction.

For testing our proposed method, we first downsampled the images to 360×40

pixels, then calculated the similarity score between the current scene Sc and the

previous scene Sp: if their similarity is higher than a threshold Ts, we consider

these two images to correspond to a loop closure event. For FAB-MAP, the

confusion matrix obtained shows the probability that the current scene Sc and

the previous scene Sp comes from the same place. In order to make the results

of the different algorithms comparable, we normalized the distance matrices D

derived by the BRIEF-Gist and ABLE-P algorithms with respect to the maximum

distance, making each value range from 0 to 1. In cases of BRIEF-Gist and ABLE-

P, if the normalized distance between the current scene Sc and the previous scene

Sp is lower than a threshold Ts, the match indicates loop closure.

4.6.3 Experiment 1: loop closure

We picked every 20th frames from the sequence (Images 120 . . . 1200) as the cur-

rent robot view (Sc) and performed unidirectional loop closure detection between

these images against all images in the sequence. Given the frame rate of 5Hz and

the velocity of the robot of 0.8m/s( Smith et al. [2009]), every twenty frames cor-

respond to a time interval of roughly 4 seconds and a distance of approximately 3

meters. This is meaningful for loop closure detection according to the size of the

explored environment. By using the thresholds Ts evenly distributed in the range

[0,1] with step size of 0.01, we obtained the precision-recall curves presented in
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Figure 4.16. In a similar way, we conducted the unidirectional and bidirectional

loop closure detections on the sequence of images (Images 120 . . . 1900). In both

cases, we ignored 50 images immediately before and after the current view to

avoid matching images taken within a short time of each other.

The visualizations of experimental results are shown in Figure 4.15 (only the lower

triangles are shown), and the precision-recall curves presented in Figure 4.17.

Table 4.1 summarises the average precision and the best recall rates at precisions

of 100% on two sequences, using all four algorithms.

Table 4.1: Average precision (AP), and best recall (R) at 100% precision.

Images 120 . . . 1200 Images 120 . . . 1900

Algorithm AP R AP R

Our method 99.48% 88.00% 97.35% 69.00%

FAB-MAP 64.60% 9.00% 58.89% 8.00%

BRIEF-Gist 99.27% 83.00% 63.98% 48.00%

ABLE-P 98.82% 80.00% 93.06% 39.00%

As can be seen in Figure 4.15, the Quadtree method and FAB-MAP present

high similarity and probability values for real loop closures, while BRIEF-Gist

and ABLE-P present low distance values, which are shown as diagonals. From

Figure 4.15 we also can see that bidirectional loop closures can be recognized

by our method, FAB-MAP and ABLE-P, revealed as left-side diagonals between

Images 1500 and 1900, while BRIEF-Gist fails to identify them.

It is essential to avoid false positives for a loop closure detection algorithm, as

they have the potential to corrupt the map generated in vSLAM tasks. It can be

observed from Figures 4.16 and 4.17, that all approaches can obtain high rates of

correct detection and reach 100% in precision. In both cases, our method achieved

the highest recall of 88% and 69% at 100% precision, respectively, followed by the

BRIEF-Gist, which obtained the maximum recall of 83% and 48%, respectively,

and ABLE-P, which achieved the best recall of 80% and 39%, respectively. FAB-

MAP ranked last, with highest recall values of only 9% and 8%, respectively.

Nevertheless, this is consistent with the results presented in the original paper

(Newman et al. [2009]), where the best recall rate is slightly less than 10%. It
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(a) Similarity matrix computed using
Quadtree method

(b) Confusion matrix computed using
FABMap

(c) Distance matrix computed using
BRIEF-Gist

(d) Distance matrix computed using ABLE-P

Figure 4.15: (a) Similarity matrix computed using the Quadtree method; (b)
Confusion matrix computed using FABMap (best viewed in magnification); (c)
Distance matrix computed using BRIEF-Gist; and (d) Distance matrix computed
using ABLE-P.
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Figure 4.16: Precision-recall curves between Images 120 and 1200.
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Figure 4.17: Precision-recall curves between Images 120 and 1900.

should be noted that our results, based on part of the New College 1 dataset, may

not be representative of those obtained from the complete dataset: consequently,

comparison might not be valid.

As seen from Table 4.1, in terms of the average precision, the accuracy of the

proposed method, BRIEF-Gist and FAB-MAP is comparable on the sequence of

images (Images 120 . . . 1200). The performance of our method is a little better

than that of the other two methods, and an accuracy of 99.48% is obtained. The

worst performance is shown by FAB-MAP, which only achieved an accuracy of

64.6%. The reasons why FAB-MAP demonstrated inferior performance to the
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other approaches may include a shortage of training data. It is also possible that

the default feature detection type and thresholds used might not work well for

the chosen dataset.

Overall, the proposed approach achieves a competitive trade-off between precision

and recall, and produces a rather good performance in both unidirectional and

bidirectional loop closure detection tasks. However, this is dependent on a specific

dataset , and real-world use would require users to tune the parameters for each

case.

4.6.4 Experiment 2: loop closure on noisy data

In order to evaluate the noise robustness of the proposed method for the loop

closure task, we used natural images (New College 1 dataset) corrupted by syn-

thetic noise. We also compared the proposed method with the BRIEF-Gist and

ABLE-P methods under different levels of noise. Loop detection results for this

experiment were obtained by running the same loop closure detection detailed in

Subsection 4.6.3. The noisy images were generated by adding Gaussian noise to

the sequence of images (Images 120 . . . 1200) using the Matlab function imnoise,

with the variance parameter set to 0.01, 0.02 and 0.03. Figure 4.18 illustrates a

sample image (a) from the New College 1 dataset, and three variant images (b,

c, d) which have been corrupted by Gaussian noise, with mean 0 and different

variances (0.01, 0.02 and 0.03, respectively).

Table 4.2 and Figure 4.19 sum up the average precision and best recall at 100%

precision results, depending on the noise variance, as well as the original results

for comparison. It will be found from Table 4.2 and Figure 4.19 that the per-

formance of our method degrades slightly as the level of noises increases. The

average precision and maximum recall values decrease from 99.48% and 88% to

99.05% and 78%, respectively. The BRIEF-Gist method demonstrated similar

performance to the proposed method, indicating these two methods are robust

enough when encountering noisy images. The ABLE-P method demonstrated the

worse performance, with the highest recall value dropping dramatically from 80%

to 22%. This implies that the LDB descriptor adopted by the ABLE-P method is
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(a) (b)

(c) (d)

Figure 4.18: (a) Original image; (b) Original image corrupted by Gaussian noise
(0, 0.01); (c) Original image corrupted by Gaussian noise (0, 0.02); and (d)
Original image corrupted by Gaussian noise (0, 0.03).

more sensitive to Gaussian noise. Overall, the proposed method achieves better

performance under low level noise with variance of 0.01, while the BRIEF-Gist

method slightly outperforms the proposed method with higher levels of noise, at

variance of 0.02 and 0.03.

Table 4.2: Average precision (AP), and best recall (R) at 100% precision, for
original images and images corrupted by Gaussian noise at different variances.

Original results variance = 0.01 variance = 0.02 variance = 0.03

Algorithm AP R AP R AP R AP R

Our method 99.48% 88.00% 99.28% 86.00% 99.09% 78.00% 99.05% 78.00%

BRIEF-Gist 99.27% 83.00% 99.04% 81.00% 99.05% 82.00% 99.07% 83.00%

ABLE-P 98.82% 80% 92.03% 22.00% 93.78% 29.00% 94.24% 32.00%

4.7 Conclusions

In this chapter we have presented an image similarity measure for robot place

recognition based on the concept of quadtree decomposition. Quadtrees not only

provide a noise-resistant, fast, and easy-to-use comparison method, but also allow

us to identify those image regions that genuinely represent changes within the

environment.
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(a) Average precision (b) Recall at 100% precision

Figure 4.19: (a) Average precision; (b) Best recall at 100% precision of three
methods on original images and noisy images with different variance (0.01, 0.02
and 0.03) and zero mean.

To demonstrate the effectiveness of our method, we conducted the experiments

with two datasets captured in two different outdoor environments. The results of

the experiments indicate that such image similarity methods can handle percep-

tual aliasing and achieve a high recall while maintaining 100% precision in loop

closure detection tasks, even if the same place is seen from a different orienta-

tion and the images are corrupted by Gaussian noise. We compare the proposed

method with other three methods for loop closure detection without additive

noise. The experimental results illustrates that the performance of our proposed

method is superior to those of the other three methods in terms of recall. We

also compare the proposed method with two other methods for loop closure detec-

tion under various levels of additive Gaussian noise. The experimental validation

shows that the proposed method is comparable to that of the BRIEF-Gist method

when processing images contaminated by Gaussian noise.

However, our method is a direct pixel-to-pixel comparison between the images,

and so it might prove to be sensitive to changes in illumination. Nonetheless, the

experimental results have been promising so far, and suggest that our method

provides a reasonable similarity measurement between image pairs, and can be

applied in robot orientation estimation and loop closure detection with multiple

revisits and different camera viewpoints. The further development of this method

will be presented in Chapter 5 and Chapter 6.
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Chapter 5

An evaluation of image-based

estimation techniques for robot

orientation

5.1 Introduction

When mobile robots move, one of the basic problems to be solved is that the

robot must know its orientation as accurately as possible. Various solutions to

the problem have been proposed, using visual cues. We can categorise these

solutions into two main groups: feature-based, and appearance-based. Feature-

based methods try to detect distinctive and robust points, or regions, between

consecutive images, while appearance-based methods concentrate their efforts

on the information extracted from the pixel intensity, the whole image being

represented by a single descriptor, without local feature extraction. The change in

orientation between frames is then computed by aligning the features, or images,

using a calibration of the projection onto the image plane.

Among these solutions, many methods rely on optical flow, or local image features

to establish the spatial relationship between two images. However, these methods

are generally sensitive to the systematic errors caused by intrinsic and extrinsic
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calibrations. Tracking feature points is a challenging situation in an omnidi-

rectional vision-based system, since images obtained from hyperbolic quadratic

mirror surfaces are highly distorted. On the other hand, some methods visually

describe the environment locations based on global descriptors. These descriptors

are normally very fast to compute and compact, simplifying the image matching

process. A few frameworks using various global descriptors have been reviewed

in Chapter 2. An interesting example is the work of Payá et al. [2014], which

compared four global decsriptors in order to resolve the robot pose estimation

and mapping problems using omnidirectional information. The four descriptors

in question were based on the Discrete Fourier Transform (DFT), Principal Com-

ponent Analysis (PCA), Histograms of Oriented Gradients (HOG), and Gist of

scenes, respectively. The relative orientation of the robot is then computed from

the comparion between the global image descriptors.

In this chapter, we aim to address the question “What image based techniques

are best for orientation estimation?” We do this by comparing appearance-based

methods such as the visual compass (Labrosse [2006]), our proposed quadtree

method (Cao et al. [2012]) and feature matching techniques such as SIFT (Scale-

invariant feature transform, Lowe [2004]). In order to make our comparison of

these methods thorough, we measure their performance on our collected outdoor

dataset (GummyBear ) and indoor dataset (ISL), as well as on the open dataset

(COLD-Freiburg omnidirectional sequences A). We also make a direct comparison

with experimental results in (Payá et al. [2014]). In this comparison, we restrict

our attention to the orientation estimation task.

The remainder of this chapter is organised as follows. The next section (Sec-

tion 5.2) addresses the compared methods in order to evaluate their relative

performance in estimating robot orientation. Section 6.3 offers evaluation results

on the GummyBear, ISL, COLD and log-transformed COLD datasets. The final

section concludes our study and states its findings.
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5.2 Computing robot orientation

In this section, we describe the compared methods for orientation estimation.

These techniques include a feature-based method, our proposed method, the vi-

sual compass, and those employed in (Payá et al. [2014]).

5.2.1 A feature-based method: SIFT

In this method, SIFT features (Lowe [2004]) were extracted from our panoramic

images and then used to align these images. The method was implemented by

ourselves using the C language and the SIFT descriptor provided by the authors

on their website (http://www.cs.ubc.ca/~lowe/keypoints/). The orientation

estimation operates as follows: the interest points are first detected from a pair

of images using a scale-space difference-of-Gaussians approach. Each detected

interest point is characterized by a SIFT descriptor, which is a histogram of

gradient orientation within the subregion around the interest point, and contains

128 elements. Euclidean distance was used to compute the difference between

SIFT features, and an acceptance ratio of 0.6 was chosen for matching similar

interest points between two images. Two features are matched if their distance in

feature space is less than 0.6 times the distance of the second closest feature. In

order to obtain a reliable solution in the presence of outliers, matches were also

filtered using a Gaussian distribution to model the feature displacements, cutting

off the matches if displacements are one standard deviation away from the mean.

Once features have been matched, the two images are aligned by computing the

average horizontal displacement over all the features. Figure 5.1 shows the feature

correspondences between two images, using the method described above.

5.2.2 Visual compass

The implementation of the visual compass is provided by Labrosse [2006]. This

method is based on a linear search for the minimum of the difference function.

The Euclidean distance in image space was used to measure the similarity between
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Figure 5.1: SIFT matching example

images. The relative rotation between a pair of successive panoramic images is

obtained by finding the best match (minimum difference) between a reference im-

age and a column-wise shift of the current image. The column shift corresponds

to the orientation change between two images (see Figure 5.2). The orientation

estimation is done from a moving reference image: the decision on when to change

it being made using a measure of difference between images. This offers a com-

promise between accumulating error and comparing similar images to get a better

estimation of the change in orientation. It should be noted that only the parts of

the images that correspond to the front and back of the moving robot are used

in the matching process.

Figure 5.2: Visual compass example. The top row shows a reference image, and
the bottom row shows the current image, where the dashed box indicates the
column shift α between the two images, corresponding to the relative rotation
between them.

110



5.2.3 A quadtree-based method

The core technique we use for orientation estimation is an image similarity mea-

sure method based on the quadtree decomposition combined with a number of

standard image distance measures, which has been presented in Chapter 4. We

calculated the orientation change between current and reference images by shift-

ing the columns of current image leading to the maximum similarity between the

two images. The column shift gives the orientation difference when working with

panoramic images.

5.2.4 Other methods used in related publications

Four global appearance descriptors are applied to represent the omnidirectional

images in (Payá et al. [2014]), which involves the study of viability of these de-

scriptors for map building and localisation tasks. The experiments conducted

consist of two phases: learning, and validation. In the learning phase, the de-

scriptors for each image in the database are computed to build the map. In the

validation phase, the descriptor of the current image captured by the robot is

generated, and then compared with all the descriptors in the map in terms of

Euclidean distances: the distance vector obtained is then sorted in ascending

order. The nearest neighbour in the database is defined as the image with the

minimum distance, which is used to estimate the present position of the robot.

Once the robot has been localized in the map, the orientation can be calculated

by comparing the descriptors of the current image with the nearest neighbour.

Next, we will briefly investigate four descriptors, and how the orientation of the

robot is computed using these descriptors.

5.2.4.1 A Discrete Fourier Transform (DFT) descriptor

In a Fourier domain, each point represents a particular frequency contained in

the image. An image in the spatial domain can be transformed into the frequency

domain by taking the Discrete Fourier transform. The DFT descriptor describes
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the appearance of a scene using the Fourier coefficients of the low frequency

components, called the Fourier signature (FS), which is acquired by the following

steps: first, the one-dimensional DFT of every row of the panoramic image is

calculated, then the frequency components are stored in a matrix, line by line.

Only a subset of the columns in the matrix is retained: this corresponds to the

lower spatial frequencies, and functions as a signature for the image. This matrix

can be decomposed into a magnitude matrix and a phase matrix.

The motion of the robot can be separated into translation and rotation com-

ponents. When using a panoramic image to represent the environment of the

robot, the rotational component of the motion corresponds to a horizontal shift

in the image. One of the most important properties of the DFT is that the hori-

zontal shifts between two panoramic images cause only a linear phase shift, and

no magnitude shift, when working on each row of the images. As a result, the

relative orientation of the robot can be estimated by computing the phase shift

between two DFT descriptors. The FS configurable parameter is the number of

the Fourier coefficients saved as the signature: this parameter is used to control

the computational cost and accuracy.

5.2.4.2 A Principal Components Analysis descriptor

Principal Components Analysis (PCA) finds the principal components of data by

calculating the eigenvalues and eigenvectors of the covariance matrix. Each image

can be treated as a vector: PCA is able to linearly project a high-dimensional

image onto a low-dimensional subspace, retaining only the principal image com-

ponents, as mentioned earlier in Section 2.2.3.2. However, the standard PCA

descriptor obtained is not robust to robot orientation changes. In order to rem-

edy this weakness, Jogan and Leonardis [2000] proposed a representation which

simulates all possible rotations (for example N) for the robot when collecting one

image at each location. First, a set of N artificially-rotated images is created

from each original panoramic image, which generates N data vectors per origi-

nal image. The rotational PCA projection is then performed for N data vectors,

forming the final representation of each location. Rotating the image is equivalent
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to phase shifting its principal component coefficients: this fact can be used for

orientation estimation by simulating the projections of all the rotations (N). It

is worth noting that in (Payá et al. [2014]), due to the tremendous computational

and memory burden when processing the whole dataset, only 200 images were

chosen to carry out the experiments. The variable parameters are the numbers

of artificial image rotations.

5.2.4.3 A Histograms of Oriented Gradients descriptor

A Histograms of Oriented Gradients (HOG) descriptor was introduced by Dalal

and Triggs [2005]. The essential thought behind this technique is that the ap-

pearance and shape of local objects in an image can be characterized by the

distribution of intensity gradients, or edge directions. The implementation of

these descriptors relies on the following stages: the image is first divided into

small cells, which can be either rectangular or radial; for each cell, a histogram

of oriented gradients over the pixels of the cell is accumulated; a histogram over

a larger region (block) is accumulated; and the normalisation is computed over

all of the cells in this block, introducing better invariance to illumination and

shadowing. The final descriptor is represented by the combination of this set of

histograms.

In (Payá et al. [2014]), HOGs of panoramic images are built in both the hor-

izontal and vertical directions, yielding two descriptors. The first descriptor is

obtained by dividing the panoramic image into horizontal cells and accumulating

the histograms, while the second is built by dividing the panoramic image into

vertical cells with overlapping. The orientation can be calculated by comparison

of vertical block descriptors between the test image and the nearest image in the

map. The variable parameters of the descriptor for orientation estimation are the

numbers of horizontal cells.
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5.2.4.4 A Gist descriptor

The study in (Oliva and Torralba [2001, 2006]) shows that humans have an abil-

ity to rapidly recognize and understand the meaning (“gist”) of complex visual

scenes, where the gist refers to the structural information about the scene lay-

out, and provides a low dimensional representation of a scene. A Gist descriptor

was originally proposed in (Oliva and Torralba [2001]): this was also termed the

Spatial Envelope of a scene.

The procedure for building a Gist descriptor is as follows. First, the image is

convolved with a set of Gabor filters (k) at different orientations and scales,

producing k feature map; Each feature map is then divided into N × N non-

overlapping blocks, and the average of feature values in each block is computed.

Finally, the averaged values of all feature maps are concatenated, resulting in a

Gist descriptor. Dimension reduction is sometimes performed, using PCA.

In (Payá et al. [2014]), the descriptor of the panoramic image was constructed

around the Gist concept, which promotes invariance against rotations on the

ground plane. A low-pass Gaussian filter was employed to downsample the image

and an image pyramid was then built, describing image properties at different

orientations and scales. The technique used to divide the images into a number

of blocks was similar to that used in the HOG method: i.e., both horizontal and

vertical division. Two descriptors are obtained after the blockification process:

these are used for localisation and orientation estimations, respectively, as in

HOG. The variable parameter of the descriptor for orientation estimation is the

number of orientations per scale used by the Gabor filter.

5.3 Experiments

In this section, experimental results from testing different methods for orientation

estimation are shown. Three datasets have been used for testing: these are the

GummyBear, ISL and COLD datasets. For convenience, the visual compass, the

quadtree based method and the SIFT feature-based method are abbreviated as
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VC, QT and SIFT, respectively.

5.3.1 Outdoor experimental results: GummyBear dataset

For both the QT and SIFT methods we estimate the orientation in two ways.

The first uses the first image as a reference, from which the orientation is calcu-

lated. The second uses a moving reference image, and accumulates changes in

orientation. In the second instance we present results skipping a fixed number of

images between pairs. Figure 5.3 illustrates the procedure of computing orienta-

tion based on these two techniques. The VC method uses a moving reference with

automatically adjusted skips: therefore, it is compared to the methods using a

fixed reference image. We compared the results of all methods with ground truth

data from post-processed RTK GPS data. Table 5.1 gives quantitative results for

all cases.

(a) (b)

Figure 5.3: Simplified illustration of alternative techniques for computing orien-
tation using: (a) a fixed reference image; and (b) a moving reference image.

Figures 5.4 to 5.6 show the results for the three methods with a fixed reference

image for QT and SIFT (the VC method uses a moving reference image, but this

is internal to the method and not exposed). These show that both appearance-

based methods perform well and consistently for the whole path of the robot. The

feature-based method performs well when the images are close to the reference

image, but poorly when separated by many frames in which no features were

found to match. This might be due to a lack of matched SIFT features, since

distortions are unavoidably introduced by the parabolic mirror and the relatively

low resolution of the images, as we can see in the following examples. Indeed,

the orientation could not be calculated at all for many frames using the SIFT
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Table 5.1: Mean Error, Mean Absolute Error and Standard Deviation Error for
the GummyBear dataset (F: Field; C: Carpark; T: Tenerife; f, 5 and 20
following SIFT and QT, respectively, indicate orientation estimation based on a
fixed reference, and a moving reference with the corresponding skip value.)

Mean Error MAE SD
Method F C T F C T F C T
VC 4.63 -1.33 -24.47 8.21 6.17 28.77 10.43 19.47 33.12
SIFT f 10.61 -3.57 -2.89 15.45 18.62 10.94 21.70 40.52 21.63
SIFT 5 -35.28 -48.82 -69.55 40.63 53.53 71.28 39.68 47.38 62.52
SIFT 20 -17.01 48.63 -5.36 84.71 85.25 84.03 105.30 96.87 107.69
QT f 16.00 -0.76 -11.59 20.54 11.36 15.39 25.30 16.60 20.88
QT 5 -38.42 -55.79 9.70 43.10 59.15 55.86 49.73 59.32 78.76
QT 20 5.90 5.66 -10.00 8.67 11.74 18.66 11.10 23.38 22.39

method: 36% in the case of Carpark, 62% for Field, and 67% for Tenerife.
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Figure 5.4: Experimental results for dataset Carpark, with a fixed reference
image.
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Figure 5.5: Experimental results for dataset Field, with a fixed reference image.
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(b) Orientation error from ground truth

Figure 5.6: Experimental results for dataset Tenerife, with a fixed reference
image.

Two example results are given in Figures 5.7 and 5.8 after applying the SIFT

method. In the first example, the number of detected keypoints from the image

pair (Images 1399 and 1436) of the Carpark dataset are 100 (Image 1399)

and 90 (Image 1436), respectively, and the matches are 5. From the matching

results shown in Figure 5.7 (bottom), we can see that the SIFT features can be

matched correctly between two frames that are relatively closely spaced in the

environment. In the second example, the number of detected keypoints from the

image pair (Images 0 and 570) of the Carpark dataset are 136 (Image 0) and

128 (Image 570), and the match is only 1: in fact, this match connects two points

that do not actually correspond in the world. Therefore, when spatially distant

reference frame is used, the SIFT method fails to find sufficient correct matches

for orientation computing.
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Figure 5.7: Top: an example image pair (Image 1399: upper, Image 1436: lower)
from the Carpark dataset. Bottom: SIFT matching result.

Figure 5.8: Top: an example image pair (Image 0: upper, Image 570: lower) from
the Carpark dataset. Bottom: SIFT matching result.

The SIFT method performs better than both appearance-based methods on the

Tenerife dataset. This is because the boundary between sky and land is very
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strong, not visible all around the robot, and slanted with respect to the horizontal.

Alignment of the images using pixel values will therefore tend to align the skyline,

introducing a bias due to the slant.

Figures 5.9 to 5.11 show the results for the incremental QT and SIFT methods

that use a moving reference. For both methods, pairs were created by skipping a

fixed number of images, and results are given for different values of the number

of images skipped (5, 10 and 20).
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(b) Orientation from the SIFT method

Figure 5.9: Experimental results for dataset Carpark, with a moving reference
image.

These results clearly show that choosing the correct compromise between better

short term rotation estimation and frequently-accumulating error is critical. In

fact, none of these results are as good as that of the VC. This is due to the

subpixel processing and the automatic, adaptive estimation of the best compro-

mise performed in the VC. Nevertheless, the QT method performs similarly to
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(b) Orientation from the SIFT method

Figure 5.10: Experimental results for dataset Field, with a moving reference
image.

the SIFT method if orientation is accumulatively calculated by skipping more

images. This is in line with the fact that the SIFT method performs better when

the reference image is not too different from the processed images.

5.3.2 Indoor experimental results: ISL dataset

Both QT and SIFT methods were tested for performance in orientation estimation

in the same manner used for the outdoor experiments: the current orientation

of the robot is calculated using its previous orientation, and by accumulating

changes in orientation (see Figure 5.3). The VC method uses exactly the same

techniques as in the outdoor experiments. Ground truth was available through a

VICON system.
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Figure 5.11: Experimental results for dataset Tenerife, with a moving reference
image.

As mentioned in Chapter 3, the ISL dataset consists of four sub-datasets, each

comprising three complete loops in dynamic environments that contain both static

and moving obstacles. We use each sub-dataset as three independent datasets to

evaluate the performance of orientation estimation, and test repeatability of all

methods.

The quantitative results for four sub-datasets are summarized in Tables 5.2 to

5.5 that list the mean error, mean absolute error and standard deviation error. In

the last column of each table, we present the maximum Mahalanobis distance of

errors between each of two loops. This value reveals the difference in performance

between each independent test, and allows us to evaluate the repeatability of

orientation estimation accuracy for each method.
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Table 5.2: Mean Error, Mean Absolute Error, Standard Deviation Error and
Maximum Mahalanobis Distance for ISL 1 ( 3, 5 and 10 following SIFT and
QT, respectively, indicate orientation estimation based on a moving reference
with the corresponding skip value: these apply to the following tables).

Mean Error MAE SD

Method L1 L2 L3 L1 L2 L3 L1 L2 L3 MMD

VC 5.80 8.63 8.09 7.30 11.35 9.82 6.59 9.07 8.68 0.36

SIFT 3 10.42 8.56 13.09 11.69 11.21 15.89 8.67 9.84 20.52 0.34

SIFT 5 11.27 6.7 8.74 12.59 9.77 12.55 9.10 9.24 13.32 0.50

SIFT 10 11.70 5.73 14.23 12.78 8.80 14.69 7.87 8.66 9.09 0.98

QT 3 -12.76 -30.63 -30.80 12.76 30.63 30.80 4.63 13.54 14.77 1.78

QT 5 -2.69 -17.61 -17.81 3.49 17.61 17.81 3.41 12.57 17.94 1.63

QT 10 15.67 -9.99 1.08 16.79 18.55 19.91 13.13 23.7 24.12 1.37

Table 5.3: Mean Error, Mean Absolute Error, Standard Deviation Error and
Maximum Mahalanobis Distance for ISL 2.

Mean Error MAE SD

Method L1 L2 L3 L1 L2 L3 L1 L2 L3 MMD

VC 3.92 5.02 8.13 5.49 7.46 8.74 5.10 7.30 5.17 0.82

SIFT 3 13.98 25.11 27.67 18.72 26.38 28.00 20.94 18.87 22.10 0.68

SIFT 5 17.16 18.96 34.37 18.38 20.42 34.51 13.83 14.26 21.75 0.95

SIFT 10 27.40 36.04 29.55 28.78 36.42 29.83 22.14 14.71 19.08 0.47

QT 3 -1.26 -12.15 -5.50 6.06 12.15 7.51 16.55 9.82 9.33 1.58

QT 5 3.03 -11.35 2.19 4.46 11.56 11.19 4.29 11.79 13.17 1.62

QT 10 15.06 1.26 -13.16 15.87 17.44 18.27 11.96 22.04 21.86 1.63
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Table 5.4: Mean Error, Mean Absolute Error, Standard Deviation Error and
Maximum Mahalanobis Distance for ISL 3.

Mean Error MAE SD

Method L1 L2 L3 L1 L2 L3 L1 L2 L3 MMD

VC 8.84 13.69 8.87 10.15 14.56 10.42 8.06 8.00 7.42 0.62

SIFT 3 23.34 17.74 17.53 25.65 18.37 19.03 19.42 10.79 13.88 0.43

SIFT 5 23.30 17.98 16.45 24.08 18.62 17.89 17.00 10.25 13.38 0.45

SIFT 10 26.07 34.74 20.13 26.84 34.74 20.74 18.73 17.53 12.50 0.98

QT 3 0.95 -2.19 -7.25 6.60 7.50 8.27 9.54 9.56 9.39 1.10

QT 5 12.52 6.32 5.23 13.14 13.51 13.51 8.33 14.18 15.32 0.60

QT 10 -7.80 -9.02 -11.68 9.00 19.00 19.06 8.84 23.95 23.11 0.23

Table 5.5: Mean Error, Mean Absolute Error, Standard Deviation Error and
Maximum Mahalanobis Distance for ISL 4.

Mean Error MAE SD

Method L1 L2 L3 L1 L2 L3 L1 L2 L3 MMD

VC 7.57 7.49 11.72 8.98 8.63 13.23 6.96 5.75 8.09 0.62

SIFT 3 22.15 19.60 16.56 23.12 20.38 17.92 17.08 11.89 12.45 0.37

SIFT 5 17.70 16.96 20.68 18.63 17.92 21.41 11.32 11.41 11.89 0.32

SIFT 10 15.70 15.03 24.20 16.37 15.87 24.84 10.31 9.96 13.71 0.80

QT 3 4.04 9.42 -2.50 8.66 12.73 8.55 11.23 11.61 10.72 1.07

QT 5 13.42 13.15 -4.09 14.70 17.05 13.08 12.73 14.69 16.11 1.24

QT 10 5.94 9.75 -23.08 7.48 21.93 25.72 9.41 27.19 26.75 1.55

Figure 5.12 and Table 5.2 show the results for the three methods on the dataset

ISL 1. These show that there is a certain amount of drift for all methods. The QT

method performs best when we choose the interval of five images to accumulate

changes in orientation, as its results show little drift and is closest to the ground

truth. Regarding repeatability, the VC and the SIFT methods both perform well

and better than the QT method, and obtain consistent experimental results.

The results over dataset ISL 2 are shown in Figure. 5.13 and Table 5.3. The

QT and the VC methods both perform well, while the SIFT method suffers from

strong drift, although it has the best repeatability according to the maximum
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Mahalanobis distance value. Figure 5.14 and Table 5.4 show the results for the

three methods on the dataset ISL 3. The performance of the quadtree method

is surprisingly good, both in accuracy and repeatability, followed by that of the

VC. Figure 5.15 and Table 5.5 show the results on the dataset ISL 4. We can see

that the appearance-based method performs better than the SIFT method. The

VC and the SIFT method both show consistency of experimental results.
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(c) Orientation from the VC method

Figure 5.12: Experimental results for dataset ISL 1, with a moving reference
image.
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(c) Orientation from the VC method

Figure 5.13: Experimental results for dataset ISL 2, with a moving reference
image.
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(c) Orientation from the VC method

Figure 5.14: Experimental results for dataset ISL 3, with a moving reference
image.
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(c) Orientation from the VC method

Figure 5.15: Experimental results for dataset ISL 4, with a moving reference
image.
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In general, the different methods achieve similar performances on the ISL 1

dataset. For the ISL 2, ISL 3 and ISL 4 datasets, we found that using every

third frame for estimating pairwise relative orientation worked best for the QT

method, and its performance is slightly superior to that of the VC. It should be

noted that the worst performance occurs with the SIFT method on the ISL 2,

ISL 3 and ISL 4 datasets. It will be observed that the performance of the SIFT

method decreased dramatically at the same point of different loops, where the

robot starts to rotate and moves onto the other side of workspace. Examining

the images taken around that location shows that a large red piece of furniture is

present on the left of the image: as the robot moves, this piece of furniture is pro-

gressively absent on the left, and present on the right of the image. As described

in Chapter 3, a large obstacle was introduced in the centre of the workspace for

the ISL 2, ISL 3 and ISL 4 datasets: this is visible in the middle of the images.

Due to the intervention of this obstacle, and discontinuous changes in the appear-

ance caused by the furniture, the SIFT method fails to find the correct feature

matches for orientation computing purposes. Moreover, since the orientation is

calculated from the previous calculated orientation, the error is compounded over

time. As a result of the factors mentioned above, the SIFT method was judged

to give the least satisfactory performance when considering results on the ISL 2,

ISL 3 and ISL 4 datasets.

5.3.3 Indoor experimental results: COLD dataset

The experiment presented here is inspired by (Payá et al. [2014]), which compares

the performance of four types of global-appearance descriptors for map creation

and localisation tasks. In (Payá et al. [2014]), the relative orientation between

the current image and the images saved in the database is estimated to test the

performance of the descriptors. We performed similar experiments using the QT,

SIFT and VC methods on the same dataset (the Freiburg sub-dataset of the

COLD dataset). As mentioned in Chapter 3, the raw omnidirectional images

in the ISL and GummyBear dataset were unwrapped into 360×40 and 360×55

pixels panoramic images, respectively: this makes the angular resolution 1 pixel
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per degree, such that the best shift between an image pair is directly equal to the

relative rotation angle undertaken by the camera. It should be noted that the

COLD dataset exploited in our research is a sequence of omnidirectional images

with a resolution of 640×480 pixels, which are then unwrapped for a 360×40

pixels panoramic image for fair comparison with our collected datasets.

For the QT and SIFT methods, we compute a relative orientation between all

image pairs of the dataset: each pair of images is chosen between the two con-

secutive images, as well as skipping one and two images. For the VC method,

it is important to note that instead of using a reduced Field Of View (FOV)

around the front and back of the omnidirectional camera, we used a wide FOV

(100◦) around the front of the camera only in order to remove visible intrusion by

the support of the camera. We have shown the quantitative results for the three

methods in Table 5.6.

As can be seen from Table 5.6, all methods have near-zero mean errors. This

led to an investigation of the statistical difference of the mean errors away from

zero. We tested the null hypothesis that the mean error is equal to zero, using

one sample t-tests (α = 0.05). The statistical significance results are presented

in parentheses, following the mean error values, in Table 5.6. It should be noted

that the mean error of the SIFT 1 method (which exploits consecutive images for

relative rotation estimation) over the Night dataset is statistically different from

zero, with a p-value of less than 0.05, while the others do not differ statistically

significantly from zero. From the t-tests, we can conclude that all methods other

than the SIFT 1 method resulted in a similar average error (zero).
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Table 5.6: Mean Error (p-Value), Mean Absolute Error, and Standard Deviation
Error of relative orientation estimation, using the COLD dataset.

Mean Error (p-Value) MAE SD

Method Sunny Cloudy Night Sunny Cloudy Night Sunny Cloudy Night

VC 0.03 (0.81) 0.07 (0.33) 0.10 (0.11) 2.41 1.17 0.66 5.29 2.68 1.75

SIFT 1 -0.04 (0.54) -0.05 (0.45) -0.15 (0.00) 1.22 1.12 0.75 2.76 2.45 2.01

SIFT 2 -0.01 (0.96) -0.19 (0.25) -0.24 (0.06) 2.30 2.01 1.49 5.06 4.38 3.95

SIFT 3 -0.18 (0.55) -0.21 (0.45) -0.39 (0.06) 3.19 2.65 2.03 6.92 6.18 5.27

QT 1 0.21 (0.36) 0.02 (0.80) -0.04 (0.32) 1.73 1.03 0.60 9.01 2.25 1.89

QT 2 -0.07 (0.66) 0.03 (0.81) 0.01 (0.93) 2.40 1.89 1.13 4.72 3.57 2.91

QT 3 -0.08 (0.74) -0.06 (0.78) -0.02 (0.84) 3.15 2.55 1.61 5.54 4.43 2.87

From Table 5.6, we also can see that the SIFT 1 method performs well on the

Sunny dataset (with the lowest SD error), while the QT and VC methods perform

well on the Cloudy and Night datasets. The major characteristic of images in

the Sunny dataset is severe variations in illumination, which greatly affect the

appearance of a room as a result of changes in highlights, shadows and reflectance.

Moreover, all images were acquired with auto-exposure, leading to a decrease

in contrast in the images. Appearance-based algorithms involving the direct

comparison of pixels of images based purely on a Euclidean distance metric have

difficulties in dealing with these images. This may explain why they perform less

well than the SIFT method on the Sunny dataset.

The results from (Payá et al. [2014]) are presented in Table 5.7. From this we

can see that the Rotational PCA descriptor-based method achieved marginally

the best result among the four descriptors, providing a mean error of 0.75 and a

standard deviation error of 1.3. This indicates that most of the estimated orien-

tation errors fall within −0.41◦ and 2.41◦. It is noteworthy that only 200 images

were used for the Rotational PCA-based method, while the whole dataset was

utilized to evaluate the other three methods. Additionally, the Rotational PCA

descriptor-based mapping scheme applied in (Payá et al. [2014]) cannot be created

incrementally: in this case, a complete map of the environment must be available

before the navigation, which limits the autonomy of the robot. Therefore, this

method may be not appropriate for some realistic robotics tasks such as vSLAM.

Another weakness of this method is the higher computational load involved. As
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described in subsection (Subsection 5.2.4.2), in order to make localisation insen-

sitive to in-plane orientation of the robot, a number of rotated panoramic images

that all represent a single location are created, which encode the varying orien-

tations of the robot. PCA is then applied on these spinning images to obtain the

PCA subspace, and this incurs higher computational cost. However, the other

three descriptors do not have the above-mentioned disadvantages. According to

Table 5.7, similar results were obtained by the other three descriptors, and the

the estimation mean errors can be limited to approximately one degree if the

parameters are tuned properly.

Table 5.7: Mean and Standard Deviation Error of relative orientation estimation
using different descriptors on the COLD dataset in (Payá et al. [2014]). Note
that the mean presented here is the smallest mean: or mean with the smallest
standard deviation, when the means are identical.

Descriptor Mean SD

Fourier Signature 1 1.41

Rotational PCA 0.75 1.32

HOG 1 1.73

Gist 1 1.41

Comparing the results in Table 5.7 with the results of Table 5.6, it may be seen

that, when working on the Cloudy and Night datasets, the SIFT 1 and QT 1

methods and the VC method when applied to the Night dataset alone, result in

the smaller mean error, tending to zero, and a slightly larger standard deviation

error. However, the small difference between the mean error and the standard

deviation makes it very difficult to draw conclusions concerning the difference

in accuracy between the various approaches. Further studies are necessary to

investigate whether there are statistically significant differences between these

approaches.
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5.3.4 Indoor experimental results: COLD dataset (based

on HS colour space and log transformation)

In this subsection, we evaluate the performance of the proposed method (QT)

for estimating the pairwise relative orientation between frames, based on the

COLD dataset, but in the HSV (Hue, Saturation, and Value) colour space rather

than RGB colour space. In addition, the logarithmic transformation of the

COLD dataset has been used for evaluation of the QT method. The experiments

were conducted in exactly the same way as in the previous subsection (Sub-

section 5.3.3). Orientation estimates are obtained between each pair of images

created by choosing two consecutive frames, skipping one frame, and skipping

two frames.

5.3.4.1 Experimental results: HS colour space

HSV is a perceptual colour space, designed by Smith [1978]. It is defined in a

way that is similar to human perception, which separates luminance from colour

information. This is very useful in many applications, such as tracking, human

detection, and medical image processing. In this experiment, the value component

of HSV is discarded, which determines the image brightness. The conversion from

RGB to HSV colour space is defined by the following equations mentioned by

Ososinski and Labrosse [2013]. For 0 ≤ R,G,B ≤ 1,

M = max(R,G,B),

m = min(R,G,B),

C = M −m.
(5.1)
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With this, HSV is defined as

H = 60◦ ×


undefined if C = 0,
G−B
C

mod 6 if M = R,
B−R
C

+ 2 if M = G,
R−G
C

+ 4 if M = B,

S =

{
0 if C = 0,
C
V

otherwise,

V = M.

(5.2)

Table 5.8: Mean Error (p-Value), Mean Absolute Error, and Standard Deviation
Error of relative orientation estimation, using the COLD dataset in HS colour
space.

Mean Error (p-Value) MAE SD

Method Sunny Cloudy Night Sunny Cloudy Night Sunny Cloudy Night

QT 1 0.21 (0.99/0.42) 0.10 (0.83/0.79) -0.19 (0.03/0.00) 2.17 2.90 0.77 10.22 14.07 2.32

QT 2 0.13 (0.67/0.79) 0.63 (0.42/0.39) -0.41 (0.02/0.00) 4.41 5.20 1.64 14.07 19.75 4.52

QT 3 0.88 (0.27/0.30) 0.47 (0.54/0.57) -0.61 (0.04/0.01) 6.68 5.94 2.53 19.36 18.15 6.59

Table 5.8 summarises the estimation accuracy with respect to different frame

rates. We also made a statistical comparison of the QT method based on HS

colour space and RGB colour space. We evaluate the difference of mean error

between the HS model and RGB model using a two-sample t-test, with signifi-

cance level of 0.05. The statistical significance results (p-value) are presented in

parentheses (the left-hand number), following the mean error values, in Table 5.8.

In addition, we tested the null hypothesis that the mean error of estimation based

on the HS model is equal to zero, using one sample t-test, with significance level

of 0.05. The statistical significance results (p-value) are presented in parentheses

(the right-hand number), following the mean error values, in Table 5.8. The es-

timation results of the QT method, based on the RGB colour space are shown in

Table 5.6 (on page 133).
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For the Sunny dataset, the mean errors, based on the HS model, are 0.21, 0.13,

and 0.88, with a standard deviation of 10.22, 14.07, and 19.36, and the corre-

sponding mean errors, based on RGB model, are 0.21, -0.07, and -0.08, with a

standard deviation of 9.01, 4.72, and 5.54. The p-values for the paired t-tests

are 0.99, 0.67, and 0.27. It can be seen that the estimation accuracy of the HS

model based method is statistically comparable with that of the RGB model

based method for the Sunny dataset, when looking only at the mean error. How-

ever, when comparing the MAE (Mean absolute error) and SD error values of

these two colour space based QT methods, we observe that the HS model based

method yielded a less precise estimate than the RGB model based method, as

the HS model based method produced higher values of MAE and SD.

For the cloudy dataset, the mean errors, based on the HS model, are 0.1, 0.63, and

0.47, with a standard deviation of 14.07, 19.75, and 18.15, and the corresponding

mean errors, based on the RGB model, are 0.02, 0.03, and -0.06, with a standard

deviation of 2.25, 3.57, and 4.43. The p-values for the paired t-tests are 0.83, 0.42,

and 0.54. As can be seen, there was no statistically significant difference between

the mean errors of the compared methods. However, the HS model based method

is less precise than the RGB model based method, giving a higher SD value.

For the Night dataset, the mean errors, based on the HS model, are -0.19, -0.41,

and -0.61, with a standard deviation of 2.32, 4.52, and 6.59, and the corresponding

mean errors, based on the RGB model, are -0.04, 0.01, and -0.02, with a standard

deviation of 1.89, 2.91, and 2.87. The p-values for the paired t-tests are 0.03, 0.02,

and 0.04. It can be seen that the estimation mean errors of the two methods are

statistically significantly different. The p-values for the one sample t-test of the

HS model based method on the Night dataset are all approximately equal to zero.

This indicates that the mean error of the HS model based method is significantly

different from zero.

In general, we found that ignoring the value (V) component of the HSV colour

space does not improve the accuracy of orientation estimation, or the robustness

of the QT method against illumination variations. Moreover, the HS model based

QT method performed slightly worse than the RGB model based QT method on

the Night dataset. This seems to be a consequence of the characteristics of the
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Night dataset, which exhibits low luminance, drab colour, and low contrast. In

addition, the projection of the higher dimensional RGB onto the lower dimen-

sional HS model leads to loss of information. This might be another reason for

the inferior performance of the HS model based QT method. From the above

experimental validation, we may conclude that the QT method is more suited to

the orientation estimation in an RGB colour space than in an HS colour space.

5.3.4.2 Experimental results: log transformation

In this subsection, we apply the QT method to the logarithmic transformed

COLD data, and make a statistical comparison between its performance and that

of the RGB model based QT method on the orientation estimation task. The

experiments were conducted in exactly the same way as in Subsection 5.3.3. Ori-

entation estimates are obtained between each pair of images created by choosing

two consecutive frames, skipping one frame, and skipping two frames, respec-

tively.

The logarithmic transformation of an RGB image can be mathematically ex-

pressed as:

s = c ∗ log(1 + r) (5.3)

where c is a constant, r is the original pixel value, and s is the resulting pixel

value. The log transformation is a nonlinear transformation: it maps a narrow

range of low pixel values in the input image into a wider range of output levels

( Jain et al. [1995]). In our experiment c is set to 1. We apply the logarithmic

transformation to each of the three colour components (R, G and B) separately.

Figure 5.16 shows three images selected from COLD dataset. The left column

shows the original images and the right column is the resulting log-transformed

images.

Table 5.9 illustrates the mean error, mean absolute error, and standard devia-

tion error of the relative orientation estimation, using the log-transformed COLD

dataset. In addition, a paired t-test, with significance level of 0.05, has been

utilised to evaluate the difference of mean error between the QT methods based
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(a) (b)

Figure 5.16: Example images from Sunny (top row), Cloudy (middle row), and
Night (bottom row) dataset of COLD datasets, (a) original images, and (b)
corresponding log-transformed images.

on the log-transformed data and the RGB model. The statistical significance

results (p-values) are presented in parentheses (the left-hand number), following

the mean error values, in Table 5.9. A one sample t-test, with significance level

of 0.05, has also been used to test the null hypothesis that the mean error of

estimation based on log-transformed data is equal to zero. The statistical signif-

icance results (p-values) are presented in parentheses (the right-hand number),

following the mean error values, in Table 5.9.

Table 5.9: Mean Error (p-Value), Mean Absolute Error, and Standard Deviation
Error of relative orientation estimation, using the COLD dataset after logarithmic
transformation.

Mean Error (p-Value) MAE SD

Method Sunny Cloudy Night Sunny Cloudy Night Sunny Cloudy Night

QT 1 -0.23 (0.34/0.29) -0.21 (0.00/0.00) -0.34 (8.27/1.32) 1.20 0.96 0.65 5.71 2.27 2.15

QT 2 -0.15 (0.74/0.37) -0.21 (0.20/0.12) -0.32 (0.02/0.00) 2.49 1.82 1.17 4.77 3.56 3.14

QT 3 -0.18 (0.77/0.44) -0.10 (0.86/0.59) -0.19 (0.37/0.20) 3.06 2.56 1.75 5.38 4.34 3.77

As we can see from the results in Table 5.9 and in Table 5.6 (on page 133), the

QT 1 method using the log-transformed Sunny dataset achieves slightly better

performance than using the same images in RGB colour space, since it yields

a lower SD value (5.71), while the two methods have statistically similar mean

errors (p-value for the paired t-test is 0.34, i.e., greater than 0.05). For the

Cloudy dataset, the QT 1 method using log-transformed images achieved a worse
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performance than when using images in an RGB colour space: the difference

in mean error between these two methods is statistically significantly different

(the p-value for the paired t-test is 0.007, i.e., smaller than 0.05). Similarly,

worse results were obtained by the QT 2 method on the log-transformed Night

dataset. We can see clearly that with this method there are some overexposed

areas and shadows in the images from the Sunny dataset. As we know, the log-

transformation can improve contrast in a poor quality image, because low pixel

values are mapped over a wider range, while the higher values are compressed.

This might explain why the QT 1 method produced better results on the log-

transformed Sunny dataset. However, directly using logarithmic mapping on the

individual R, G, and B channels has the effect of reducing the contrast between

the colour channels, resulting in desaturation. This can be seen from the bottom

column of Figure 5.16. It should be emphasised that the worst performances of

the QT 1 and QT 2 methods were achieved on the Cloudy and Night datasets,

respectively.

5.4 Conclusions

In this chapter we have evaluated three methods for robot orientation estimation

with panoramic images, in order to determine what image-based techniques are

suitable for this task. The outdoor experimental results show that the QT method

performs better than the SIFT method when the distance between pairs of images

becomes high, while the SIFT based method does well over short image separation

distances. This implies that the appearance-based method is likely to work better

at lower frame rates, and so be more appropriate for loop closure tasks, at least for

orientation estimation. Moreover, the appearance-based methods (QT and VC)

perform better than the feature-based method when the environment is visually

variable, but not too contrasty. The experimental results on the ISL dataset show

that drift is unavoidable for all methods over the course of a whole experiment.

By comparison, the QT and VC methods suffer less from drift than the SIFT

method. The results over the COLD dataset show that the QT and VC methods

work well under stable illumination conditions, while the SIFT method works
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better when there are significant illumination changes in the environments. The

results from (Payá et al. [2014]) show that Rotational PCA achieved the best

rotation estimates, based on the reduced COLD dataset. However, when new

images are incorporated into the created map, the projection results of PCA

have to be recalculated for all images. This does not meet the requirement of

many real world problems, such as vSLAM. The DFT, HOG, and Gist tend to

produce similar results if the parameters are tuned properly. Further studies are

needed to test for statistically significant differences between the VC, SIFT and

QT methods, and those deployed in (Payá et al. [2014]). Finally, we investigated

the performance of QT on the COLD dataset in an HS colour space and after

logarithmic transformation. The experimental results show that an RGB colour

space is more suitable for our proposed QT method than an HS colour space.

The experimental results on the log-transformed COLD dataset show that, to

some extent, the logarithmic transformation could improve the performance of

the QT method when confronted with changes in illumination, with a standard

deviation error of roughly 5◦ on Sunny dataset. Therefore, further work will also

be necessary with a view to enhancing the robustness of the proposed method to

illumination variations.
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Chapter 6

A quadtree-based method for

loop closure detection

6.1 Introduction

A mobile robot should be able to determine when it has returned to a visited

place after some time: this is known as loop closure which is an essential part of

vSLAM system. Loop closures technique based on visual information has received

much attention in recent years, as cameras have become more easily available and

the opportunity has been grasped to exploit to rich visual detail embedded in

images to match images collected along robot routes. Some examples are the local

feature-based methods of Angeli et al. [2008b]; Cummins and Newman [2008a];

Labbe and Michaud [2013]; Scaramuzza et al. [2010]: and the global descripotor-

based methods of Badino et al. [2012]; Liu and Zhang [2012]; Sunderhauf and

Protzel [2011]; and Wu et al. [2014]. More recently, with the great boost in

performance of Convolutional Neural Networks (CNNs) on image classification

and object recognition tasks, deep features from various layers of CNNs can be

applied to describe the image and implement the task of loop closure detection

(Hou et al. [2015]; Sünderhauf et al. [2015]). However, in natural environments,

repetitive structures and dynamic objects continue to pose severe challenges for

any place recognition system.
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In our work, we use an omnidirectional camera as the only sensor modality. A

quadtree-based image comparison method incorporating Euclidean distance and

Pearson Correlation coefficient metric is used to evaluate loop closure through

very simple decision rules. The decision will be made by comparing the similar-

ity score between two scenes returned by the quadtree-based method with the

selected loop closure threshold. The overall procedures of our method will be

described in the next section. The quadtree decomposition process employed in

our method is concerned with the spatial structure property of an image, rather

than detailed textural information: this focus renders our method robust against

dynamic changes in scenes, such as the movement of objects within a scene. The

detail of our quadtree method was described in Chapter 4.

6.2 Methodology

Measuring the distance or similarity between the current observation and the

view of a location in the built map is a fundamental problem in a visual loop

closure system. We approach this by simply calculating the similarity of two

views after removing areas that are marked as too different, using our quadtree

decomposition method.

Our method recursively compares quadrants of two images to be compared using

the Euclidean distance metric or Pearson’s correlation coefficient until either the

two quadrants are judged similar, or the quadrants become too small. When two

quadrants are not judged sufficiently similar, they are each separated into four

quadrants of the same size, and the process is repeated. Through this process, the

locations of visual changes between image pairs will be indicated: exploiting this

information, we then can obtain the Euclidean distance or Pearson Correlation

coefficient of similar areas of the two images. We then apply this scoring (Sc) to

determine loop closure acceptance or rejection. There are two thresholds (Tquadtree

and Tloop) that are the main factors affecting the quadtree construction process

and the performance of loop closure detection:

Tquadtree: This is the threshold for quadtree decomposition. During the compari-
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son, the two images or sub-regions of each image pair are considered as similar if

their Euclidean distance (resp. Pearson’s correlation coefficient) is below (resp.

above) this threshold. Through all our experiments, Tquadtree for the Euclidean

distance metric is set to 42, while 0.6 is used for the Pearson’s correlation coeffi-

cient, since they appeared to give the best results in general.

Tloop: This is the threshold for determining loop-closure acceptance or rejection.

If the score Sc returned by the quadtree-based method is higher than this thresh-

old, we accept that the observation comes from the same place as the reference

image. This parameter is difficult to set in order to obtain both high precision

and high recall rate loop closures. We have explored different ways to determine

this threshold, and will discuss this in more detail below in subsection (Subsec-

tion 6.2). The relationship between the precision rate, the recall rate, and this

threshold are discussed in discussion section (Section 6.3), where precision-recall

statistics are generated by varying threshold Tloop.

It will be apparent that the depth of the quadtree depends on the value for thresh-

old Tquadtree and the smallest region size predefined. We stop splitting a quadrant

when it is sufficiently small. The performance difference of our algorithm with

different smallest sizes (20 × 20, 10 × 10 and 5 × 5 of pixels) of quadrant have

were compared: as there were no significant differences between them, we chose

20× 20 pixels as the smallest quadrant size, in order to increase the comparison

speed of the algorithm.

How to choose Tloop?

We selected the widely-used Euclidean distance (represented as E) or Pearson

Correlation coefficient (represented as C) metrics for quadtree decomposition.

We then choose one of them to yield the final distance between two given images,

using our algorithm. Consequently, a total of four cases will be adduced, labeled

CC, CE, EE and EC, respectively.

To determine an appropriate threshold (Tloop) for loop closure detection, the

following three procedures are performed.
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First, we plot the histograms of the scores between the first image and all images

of each dataset using different distance metrics. This provide evidence that the

scores from all datasets can be modeled as an asymmetrical distribution with a

long tail on one side (see Figure A.1 - A.4 on page 178 - 181).

Secondly, in terms of the shape of the histograms we acquired, we fit Lognormal,

Weibull, Gamma, Normal and Logistic distributions, and use PPCC (Probability

Plot Correlation Coefficient) to discover the distribution family most appropri-

ate for our data. The PPCC test is known to be a powerful, but easy-to-use

suitability-of-fit test that indicates whether or not it is reasonable to assume that

the observed data comes from a specific distribution. It should be noted that

Normal and Logistic distributions are symmetrical, and apparently not a good

fit to our data. We calculated the PPCC values in an attempt to provide an

intuitive comparison with other distributions and a reference for the reader.

Table A.1 - A.4 in Appendix A (page 178 - 181) show the maximum PPCC

values for different distributions. Almost all tests support the conclusion that

our data give a reasonably good fit to the log-normal distribution, except in two

cases that utilize the CE method and the CC method on the ISL 1 dataset. In

these two cases, the Weibull distribution is a slightly better fit than the others.

Overall, the Weibull, Gamma and Log-normal densities are similar in shape for

the same coefficient of variation.

Finally, after choosing a Log-normal distribution to fit the data, we estimate

parameters (meanlog µ and stdlog σ) of this model. We then obtain the mean

and standard deviation of the data, using the following equations:

mean = e(µ+σ
2/2), (6.1)

SD = (eσ
2 − 1)(e2µ+σ

2

); (6.2)

Finally, the threshold Tloop is set as mean+ i×SD, where i = 1, 1.5, 2, 2.5, 3, 3.5,

and 4.
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6.3 Experimental results and discussion

In this section, we carry out some experiments to evaluate which distance mea-

sure is the most appropriate for our application. We then perform the compari-

son between the proposed method and the four state-of-the-art descriptor-based

schemes in the loop closure detection task.

A series of experiments were performed based on the ISL dataset, which was col-

lected by ourselves within an indoor environment and contains four sub-datasets.

ISL 1 and ISL 2 are characterized by high perceptual aliasing in a static environ-

ment: while ISL 3 and ISL 4 were recorded to validate the matching capability

in the presence of scene changes. More detail on this dataset has been provided

in Chapter 3. We chose one particular position (marked in red in Figure 3.2 )

which interested us to determine whether the algorithm would be able to detect

a loop closure at this particular place.

6.3.1 Evaluation loop closure accuracy

A precision-recall metric is used for performance evaluation in the following ex-

periments. Precision is defined as the number of correct loop closure detections

divided by the total number of detections, and recall as the number of correct

loop closure detections divided by the number of ground truth loop closures.

Expected correct detections are defined as previously visited VICON locations

within a given distance dist (e.g., dist = 1m) of the current location. This pa-

rameter can be designed according to the requirements (coarse, or more accurate)

of the application in question. To compare different precision-recall curves, we

calculate the average precision, which can be estimated geometrically by the area

under the precision-recall curve: a high score represents both high recall, and high

precision. In addition, the best recall rates at 100% precision for all methods are

compared. The experimental results are presented in the following subsections.
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6.3.2 Evaluation the proposed method

We present our results on the detection accuracy, and evaluate how the accuracy

depends on the chosen distance metrics.

Precision-Recall (PR) curves for each sub-dataset are illustrated in Figures 6.1,

6.2, 6.3 and 6.4, respectively. Each figure contains four plots showing the results

of different distance metrics used to determine the thresholds for loop closure

detection, and each precision-recall statistic of the plot is calculated for varying

dist, which was carried out with dist = 0.1m, 0.2m, 0.3m. . . , 1m for a total of

10 values. It is apparent that the parameter dist accommodates varying levels

of detection quality at ranges from 0.1m to 1m. When dist increases, precision

increases and recall decreases. Each curve is produced by applying a specific

parameter Tloop (mean + i × SD). A range of values (1, 1.5, 2, 2.5, 3, 3.5, and

4) for i were tested. Furthermore, each curve is summarised by average precision

(AP), a measure that corresponds to the area under the precision-recall curve.

Tables 6.1- 6.4 show the AP for each sub-dataset using different distance metrics.
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(a) (b)

(c) (d)

Figure 6.1: Recall and precision curves, depending on the parameter of correct
detection criteria, for ISL 1. The first distance metric in the caption is used for
quadtree decomposition: the second, for calculating the distance between similar
areas of two images applies to the following figures.
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(a) (b)

(c) (d)

Figure 6.2: Recall and precision curves, depending on the parameter of correct
detection criteria, for ISL 2.

148



(a) (b)

(c) (d)

Figure 6.3: Recall and precision curves, depending on the parameter of correct
detection criteria, for ISL 3.
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(a) (b)

(c) (d)

Figure 6.4: Recall and precision curves, depending on the parameter of correct
detection criteria, for ISL 4.

From Figure 6.1 we can see that the detection quality on the dataset ISL 1 is good,

and that full precision can be obtained if we tune the parameters d and Tloop, but

at the cost of sacrificing recall. Except in the case shown in Figure 6.1(d), lower

precision is obtained when Tloop is set to mean + SD. It should be noted that

loop closure cannot be detected when Tloop is set to mean+4SD, as in Figure 6.1.

Figure 6.2 shows the results on the dataset ISL 2. We can observe that they are

slightly infior to the results on ISL 1, especially, when Tloop is mean+SD, which
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is the hardest requirement for a true positive.

Figures 6.3 and 6.4 show the precision-recall curves resulting from the datasets

ISL 3 and ISL 4: these two datasets are challenging due to the appearance of

obstacles. However, the proposed method is able to reliably identify the loops,

and this is attributable to the success of the method in identifying and removing

the part of the compared image pair that genuinely corresponds to the areas

of the environment affected by variabilities. Several examples can be found in

Figures 6.5 and 6.6, where the left column shows the original three loop closure

image pairs detected by our method, the right column shows the corresponding

visualisation of image pair comparisons: red rectangles indicate the patch matches

exceeding the similarity threshold Tquadtree, while the bottom shows the distance

produced by our method between the Image 0 and all images, based on ISL 3

and ISL 4, respectively.
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(a) Left: Image 268 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left

image pair comparison using our proposed loop closure detection method, the distance is 15.38

computed after neglecting the parts of image pair which represent changes in the environment

labeled by red rectangles.

(b) Left: Image 523 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left image

pair comparison using our proposed loop closure detection method: the distance is 15.75.

(c) Left: Image 779 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left image

pair comparison using our proposed loop closure detection method: the distance is 14.83.
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(d) Distance beteen Image 0 and all Images.

Figure 6.5: Examples of loop closure detection based on the CE scheme. Im-
ages 0, 268, 523 and 779 from the ISL 3 dataset were captured at nearly the
same location, but with slight offset or rotation of the camera viewpoint (see
Figure 3.5(c)).
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(a) Left: Image 266 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left

image pair comparison using our proposed loop closure detection method: the distance is 20.42,

computed after neglecting the parts of the image pair that represents changes in the environment,

as labeled by red rectangles.

(b) Left: Image 538 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left image

pair comparison using our proposed loop closure detection method: the distance is 21.34.

(c) Left: Image 745 (Bottom) closes a loop with Image 0 (Top). Right: visualisation of left image

pair comparison using our proposed loop closure detection method: the distance is 22.37.
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(d) Distance between Image 0 and all Images.

Figure 6.6: Examples of loop closure detection based on the CE scheme. Images
0, 266, 538 and 745 from the ISL 4 dataset were captured at nearly the same
location, but with slight offset or rotation of camera viewpoint (see Figure 3.6(c)).
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We can see from Figure 3.5(c) that Images 0, 268, 523 and 779 from the ISL 3

dataset are taken from nearly the same position. The distances between Image 0

and Image 268, Image 0 and Image 523, and Image 0 and Image 779 computed by

our method are 15.38, 15.75 and 14.83, respectively. As can be seen in Figure 6.5,

a bean bag is present in Image 268 that is not seen in the previous visit (Image

0), and disappears in the two subsequent visits (Images 523 and 779). For the

three ISL 4 examples, we can see from Figure 3.6(c) that Images 0, 266, 528 and

745 from the ISL 4 dataset are also collected from nearly the same location. the

distance between Images 0 and 266, Images 0 and 528, and Images 0 and 745 are

20.42, 21.34 and 22.37, respectively. In these cases, there are more changes in

the appearance, which are present in Image 268 and absent in Images 0, 538 and

745. As we expected, our method is able to find these loop closures in spite of

the changes in the environment.

Table 6.1: Average precision for the ISL 1 dataset.

Threshold CC CE EE EC

Mean+ 1SD 99.76% 99.68% 98.27% 90.76%

Mean+ 1.5SD 99.66% 99.62% 99.82% 99.15%

Mean+ 2SD 99.11% 98.92% 99.16% 98.14%

Mean+ 2.5SD 98.14% 99.16% 98.37% 98.70%

Mean+ 3SD 93.33% 98.43% 98.29% 93.33%

Mean+ 3.5SD 40.00% 91.70% 96.20% 80.00%

Mean+ 4SD — 93.33% 91.70% 40.00%

Table 6.2: Average precision for the ISL 2 dataset.

Threshold CC CE EE EC

Mean+ 1SD 87.32% 95.27% 84.97% 72.28%

Mean+ 1.5SD 95.15% 94.21% 95.68% 96.06%

Mean+ 2SD 95.15% 97.00% 97.77% 97.77%

Mean+ 2.5SD 96.06% 81.22% 95.89% 81.22%

Mean+ 3SD 90.90% 60.20% 79.87% 60.20%

Mean+ 3.5SD 55.19% 50.00% 70.39% 50.00%

Mean+ 4SD 44.00% 44.00% 59.80% 44.00%
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Table 6.3: Average precision for the ISL 3 dataset.

Threshold CC CE EE EC

Mean+ 1SD 97.46% 97.85% 98.04% 95.34%

Mean+ 1.5SD 98.14% 98.86% 98.63% 98.98%

Mean+ 2SD 98.20% 97.71% 97.99% 97.49%

Mean+ 2.5SD 98.25% 98.09% 98.23% 98.04%

Mean+ 3SD 97.63% 97.53% 97.53% 92.90%

Mean+ 3.5SD 78.68% 88.32% 96.96% 78.68%

Mean+ 4SD 5.00% 79.19% 92.90% 40.00%

Table 6.4: Average precision for the ISL 4 dataset.

Threshold CC CE EE EC

Mean+ 1SD 91.89% 87.29% 88.85% 85.03%

Mean+ 1.5SD 98.11% 96.81% 91.64% 92.45%

Mean+ 2SD 96.01% 89.32% 93.76% 95.99%

Mean+ 2.5SD 95.08% 92.39% 95.90% 96.22%

Mean+ 3SD 83.24% 87.22% 96.22% 69.70%

Mean+ 3.5SD 62.70% 83.00% 88.01% 55.79%

Mean+ 4SD 50.00% 50.00% 83.76% 50.00%

As indicated in Table 6.1-Table 6.4, the best detection performance was achieved

by EE when the threshold value was set at mean+ 1.5SD, providing an average

precision (AP) of 99.82% on the ISL 1 dataset. This was closely followed by the

CC, CE and EC, which obtained 99.76%, 99.68%, and 99.15% AP, respectively.

On the ISL 2 dataset, the EE and EC both produced equal best performances:

the obtained largest AP was 97.77%, closely followed by the CE, with 97% AP.

The CC yielded the worst results, with the obtained largest AP at 96.06%. On

the ISL 3 datset, performance from best to worst was: EC, CE, EE, and CC,

with the AP of 98.98%, 98.86%, 98.63%, and 98.25%, respectively. On the ISL

4 dataset, the CC obtained a performance of 98.11% AP, followed by CE with

96.81%: EE and EC achieved the lowest performance, at 96.22% AP.

In general, the different metrics perform similarly on loop closure detection for

each sub-dataset. In our subsequent comparative study, we select Pearson Cor-

relation coefficient and Euclidean distance metrics as the representative metrics
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for quadtree decomposition, and final distance measure between images (CE),

respectively.

6.3.3 Comparison with other methods

In this section, we compare the accuracy of the proposed method against the

BRIEF-Gist (Sunderhauf and Protzel [2011]), LDB-based method, WI-SIFT and

WI-SURF (Badino et al. [2012]) for loop closure detection, using the ISL dataset.

We selected the same position chosen in the previous experiment to evaluate the

performance of all methods at this particular place (marked in red in Figure 3.2).

In the case of BRIEF-Gist, we used the same implementation used in Chapter 4

for testing. However, we split each panoramic image vertically into six blocks

and resized each block to 60 × 60 pixels in order to obtain a suitable patch

size for descriptor generation. The center of each image block is defined as the

keypoint without rotation or scale: the BRIEF descriptor is computed for each

block, so a complete image will contain six descriptors. The final distance (in

appearance space) between two scenes is the average Hamming distance of six

pairs of descriptors.

The same algorithm is also applied to the LDB, SIFT and SURF descriptors: in

this way we obtain the global binary (LDB) or floating-point (SIFT and SURF)

descriptions of the image. For convenience, the LDB-based method is named

LDB-Gist. The Hamming distance is used for computing distances in LDB-Gist,

while the Euclidean distance is used in WI-SIFT and WI-SURF. The implemen-

tation of the LDB descriptor is taken from (Yang and Cheng [2014a]), and the

SIFT and SURF descriptors from OpenCV(Bradski [2000]). The default feature

dimensions of LDB, SIFT and SURF were chosen in our experiments, and were

32, 128 and 64 bytes, respectively. Figures 6.8 - 6.11 present the distance (in

appearance space) produced by all methods between the image of interest (Image

0) and all the images of the ISL dataset.
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Figure 6.7: Precision and recall curves for the ISL 4 dataset.

dist <= 0.2m dist <= 0.5m dist <= 1m

Algorithm AP R AP R AP R

Our method 94.21% 65.00% 94.75% 57.00% 90.63% 58.00%

BRIEF-Gist 74.38% 35.00% 89.42% 62.00% 90.89% 61.00%

LDB-Gist 82.93% 50.00% 94.62% 63.00% 91.81% 64.00%

WI-SIFT 75.75% 35.00% 87.91% 38.00% 83.67% 54.00%

WI-SURF 57.82% 19.00% 74.47% 8.00% 74.06% 19.00%

Table 6.5: Average precision (AP), and best recall (R) at 100% precision, for the
ISL 4 dataset.

For purposes of comparison, the max-normalization scheme was used to bring
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Figure 6.8: Distance (in appearance space) between Image 0 and all images of
the ISL 1 dataset: (a) Euclidean distance of our method; (b) Hamming distance
of BRIEF-Gist; (c) Hamming distance of LDB-Gist; (d) Euclidean distance of
WI-SIFT; and (e) Euclidean distance of WI-SURF.

158



Our method

D
is

ta
nc

e

0

10

20

30

40

50

60

70

 

Image index
0 100 200 300 400 500 600 700 800

ISL 2

(a) Our method

BRIEF-GIST

D
is

ta
nc

e
0

20

40

60

80

100

 

Image index
0 100 200 300 400 500 600 700 800

ISL 2

(b) BRIEF-Gist

LDB-Gist

D
is

ta
nc

e

0

20

40

60

80

100

120

140

 

Image index
0 100 200 300 400 500 600 700 800

ISL 2

(c) LDB-Gist

WI-SIFT

D
is

ta
nc

e

0

200

400

600

800

 

Image index
0 100 200 300 400 500 600 700 800

ISL 2

(d) WI-SIFT

WI-SURF

D
is

ta
nc

e

0

0.5

1

1.5

 

Image index
0 100 200 300 400 500 600 700 800

ISL 2

ISL 2

(e) WI-SURF

Figure 6.9: Distance between Image 0 and all images of the ISL 2 dataset: (a)
Euclidean distance of our method; (b) Hamming distance of BRIEF-Gist; (c)
Hamming distance of LDB-Gist; (d) Euclidean distance of WI-SIFT; and (e)
Euclidean distance of WI-SURF.
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Figure 6.10: Distance between Image 0 and all images of the ISL 3 dataset: (a)
Euclidean distance of our method; (b) Hamming distance of BRIEF-Gist; (c)
Hamming distance of LDB-Gist; (d) Euclidean distance of WI-SIFT; and (e)
Euclidean distance of WI-SURF.
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Figure 6.11: Distance between Image 0 and all images of the ISL 4 dataset: (a)
Euclidean distance of our method; (b) Hamming distance of BRIEF-Gist; (c)
Hamming distance of LDB-Gist; (d) Euclidean distance of WI-SIFT; and (e)
Euclidean distance of WI-SURF.
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all distances obtained from all methods into the range [0, 1]. The decisions for

closing loops were based on thresholding of the normalized distances (Tloop).

We first examined the effect of Tloop on precision and recall. We varied the Tloop

within the range from 0 to 1 with a step of 0.01, in order to generate well-defined

curves. We also tested the performance of all methods under different detection

quality constraints (closeness to ground truth). As described in the discussion of

our previous experiments, we applied a distance threshold dist (in metric space),

so that all the possible pairs taken within, for example, 1m were considered a

true positive. In this test, the distance threshold dist was set to 0.2, 0.5 and 1m,

successively, and precision and recall results for each method at these different

thresholds are generated: these are shown in Figures 6.12 - 6.15. Tables 6.6- 6.9

summarize the average precision, and the best recall rates at precision of 100%,

on each sub-dataset respectively.

The ISL 1 dataset is characterized by perceptual aliasing, which proves challeng-

ing for all vision-based place recognition frameworks. The experimental results

depicted in Figure 6.12 and Table 6.6 show that surprisingly good results are ob-

tained using the proposed method. The average precision varies between 96.96%

and 99.85%, and the best recall varies between 65% and 93%, depending on the

value set for threshold dist. Recall results drop severely for the other methods:

the BRIEF-Gist and WI-SIFT methods perform similarly on this dataset in terms

of average precision and best recall.

In the case of ISL 2, the presence of objects within the experiment area helps

to relieve the perceptual aliasing problem. The accuracy of BRIEF-Gist , LDB-

Gist and WI-SIFT were significantly increased with dist <=0.5m, as is seen from

the experimental results presented in Figure 6.13 and Table 6.7. Our proposed

method presents the best performance with dist <=0.2m and dist <=1m, achiev-

ing 96.36% and 91.16% recall respectively, with no false positives. WI-SURF

again records the worst performance on this dataset.

Figure 6.14 shows the precision-recall curve for ISL 3, where all methods except

WI-SURF exhibit the same behaviour with the stricter threshold dist (smaller

value): our method performs best with dist <=1m. It can be seen that the

162



presence of an object in this dataset (Images 159 to Image 384) does not affect

the accuracy of any of the methods.

ISL 4 was more challenging, as the environment contained more changes, which

were present from Image 156 to Image 393. It can be observed from Figure 6.15

and Table 6.9 that the average precision of our method still reached 94.21% and

recall reached 65% at 100% precision, under the strictest situation (dist <=0.2m).

However, the average precision and the recall of BRIEF-Gist , LDB-Gist and WI-

SIFT show substantially lower scores for this dataset than for ISL 3. Our method,

BRIEF-Gist and LDB-Gist recorded similar performances with dist <=0.5m and

dist <=1m, followed by WI-SIFT.

It can be see from Table 6.6- 6.9 that the performance of each method does not

always improve when we increase the distance threshold dist (from 0.2m to 1m).

This threshold determines the range within which all possible pairs are considered

a true positive loop closure event. From Figures 6.8 - 6.11, we can see that the

distance curves produced by all methods between the image of interest (Image

0) and all the images of the ISL dataset is jagged rather than smooth. In this

case, the algorithm has probably yielded a number of error matches under the

restrictive detection quality constraints applied in our experiment. Moreover, the

ground truth for loop closure evaluation contains all frames in the sequence of

each ISL dataset whose distance falls within the dist relative to the current frame,

excluding the most closely adjacent 50 frames. This means that the number of

successful ground truth for loop closures will rise with the increase of dist, possibly

resulting in reduced recall rates. This may explain why not all results improve for

all values of dist when dist is increased from 0.2m to 1m. For instance, the best

recall of BRIEF-Gist at the 100% precision level presented in Table 6.7 increases

from 41% to 81% when increasing the dist value from 0.2m to 0.5m, but falls

from 81% to 64% when increasing the dist value from 0.5m to 1m. Similarly, the

AP increases from 84.54% to 98.9% when increasing the dist value from 0.2m to

0.5m, but falls from 98.9% to 86.59% when increasing the dist value from 0.5m

to 1m.

Overall, from Figures 6.12 - 6.15 and Table 6.6 - 6.9 we can conclude that our

method achieved a higher recall rate, while maintaining 100% precision with
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a restrictive value of dist, for all datasets. Moreover, satisfactory results were

obtained by our method using ISL 1, which implies that our method is suitable

for more accurate loop closure detection under conditions of strong perceptual

aliasing. We believe that one reason for this is that the colour images used in our

method contain richer information than the grayscale images of other methods.

Two binary descriptors, BRIEF-Gist and LDB-Gist, exhibited comparable dis-

criminative power with SIFT: that is, when converted to a global descriptor; in

addition, they were less expensive to compute. It is notable that the drop in recall

results was most significant for WI-SURF over the whole dataset, showing this

descriptor to be insufficiently discriminating for the loop closure detection task.

As may be observed that, the LDB-Gist obtains a slightly better result compared

to BRIEF-Gist on ISL 4, showing greater robustness to perceptual changes. One

possible reason is that the LDB descriptor exploits intensity and gradient pair-

wise comparison: this provides superior discrimination capability, as the BRIEF

descriptor makes use of the intensity comparison only.
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Figure 6.12: Precision and recall curves for the ISL 1 dataset.

dist <= 0.2m dist <= 0.5m dist <= 1m

Algorithm AP R AP R AP R

Our method 96.96% 65.00% 99.27% 88.00% 99.85% 93.00%

BRIEF-Gist 71.47% 50.00% 83.80% 42.00% 91.92% 69.00%

LDB-Gist 72.72% 50.00% 79.52% 46.00% 82.52% 43.00%

WI-SIFT 77.10% 46.00% 89.91% 43.00% 89.51% 62.00%

WI-SURF 58.09% 31.00% 73.76% 23.00% 80.63% 29.00%

Table 6.6: Average precision (AP), and best recall (R) at 100% precision, for the
ISL 1 dataset.
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Figure 6.13: Precision and recall curves for the ISL 2 dataset.

dist <= 0.2m dist <= 0.5m dist <= 1m

Algorithm AP R AP R AP R

Our method 96.36% 62.00% 94.99% 70.00% 91.16% 63.00%

BRIEF-Gist 84.54% 41.00% 98.60% 81.00% 86.59% 64.00%

LDB-Gist 80.58% 38.00% 98.14% 80.00% 84.47% 61.00%

WI-SIFT 74.84% 34.00% 94.45% 56.00% 78.48% 34.00%

WI-SURF 61.35% 28.00% 71.39% 27.00% 60.03% 14.00%

Table 6.7: Average precision (AP), and best recall (R) at 100% precision, for the
ISL 2 dataset.
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Figure 6.14: Precision and recall curves for the ISL 3 dataset.

dist <= 0.2m dist <= 0.5m dist <= 1m

Algorithm AP R AP R AP R

Our method 98.47% 78.00% 98.30% 82.00% 94.65% 64.00%

BRIEF-Gist 96.96% 81.00% 96.04% 77.00% 89.39% 71.00%

LDB-Gist 98.59% 84.00% 99.08% 86.00% 88.17% 71.00%

WI-SIFT 98.33% 72.00% 96.55% 79.00% 84.85% 52.00%

WI-SURF 82.59% 19.00% 84.91% 44.00% 70.85% 24.00%

Table 6.8: Average precision (AP), and best recall (R) at 100% precision, for the
ISL 3 dataset.
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Figure 6.15: Precision and recall curves for the ISL 4 dataset.

dist <= 0.2m dist <= 0.5m dist <= 1m

Algorithm AP R AP R AP R

Our method 94.21% 65.00% 94.75% 57.00% 90.63% 58.00%

BRIEF-Gist 74.38% 35.00% 89.42% 62.00% 90.89% 61.00%

LDB-Gist 82.93% 50.00% 94.62% 63.00% 91.81% 64.00%

WI-SIFT 75.75% 35.00% 87.91% 38.00% 83.67% 54.00%

WI-SURF 57.82% 19.00% 74.47% 8.00% 74.06% 19.00%

Table 6.9: Average precision (AP), and best recall (R) at 100% precision, for the
ISL 4 dataset.
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6.4 Conclusions

In this chapter, we have presented a new method to solve the loop closure prob-

lem. Our method is a straightforward matching between the observation and the

reference view, no prior knowledge being required. This approach is based on a

quadtree decomposition process, which allows us to ignore any dynamic changes

within the scene that may have occurred between multiple visits. This capability

provides benefits when dealing with a changing environment. The final decision

of loop closure acceptance or rejection is simply achieved by comparing the sim-

ilarity measurement between a pair of images and the threshold value. To our

knowledge, the proposed method is a first attempt to model visual loop closure

based on a quadtree concept. We have evaluated the algorithm using our own

collected dataset (ISL). Experimental results show that our algorithm is effective,

in most cases: the algorithm can attain 100% precision, with higher recall when

the parameters are well tuned. Moreover, we performed a comparison between

the proposed method and other, state-of-the-art descriptor-based methods in the

visual loop closure detection application. The experimental results show that

the best performance was achieved by the proposed method in strong perceptual

aliasing scenarios, and more precise detection results were obtained in terms of

closeness to the ground truth.
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Chapter 7

Conclusions

This chapter summarises the work performed in this thesis, discusses the research

outcomes, points out the limitations of the current work, and outlines possible

directions for future research.

7.1 Summary of thesis

To build a fully autonomous mobile robot that is capable of operating for long

periods in real environments, we must develop place recognition strategies that

can handle unknown or changing environments. A visual sensor can provide

such a robot with an incredible amount of information required to perceive its

environment. This thesis has described the development of appearance-based

place recognition strategies that aim to yield robustness to perceptual aliasing

and dynamic changes of the environment.

We started with a brief background discussion of the selected topics of this thesis.

Following on from this, we carried out a literature review of the main solutions

to the SLAM problem with a camera as the only sensor, covering image detec-

tors, descriptors, approaches based on BoWs schemes and a few dimensionality-

reduction techniques for image descriptors. We then discussed the studies that

overlap with our research, dividing these into four subgroups: place recognition,
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visual odometry, loop closure and quadtree structure. Although place recognition

has been widely researched, and demonstrated successfully in many real world

implementations, significant challenges remain, because a robot is likely to en-

counter perceptual variability and perceptual aliasing problems. Based on this

review, we concluded that it is still highly appropriate to design and implement

place recognition methods in order to increase the robustness of vSLAM solutions.

This provided the main motivation for the original works that follows (Chapter 4-

6). The main outcome of this investigation was the decision to focus effort on

combining the quadtree decomposition concept with the omnidirectional vision

sensors in order to tackle changes in the environment.

Four datasets were utilised to evaluate the proposed methods, that were cho-

sen to span a variety of environments. For the outdoor scenes, the GummyBear

dataset was captured in field-like, car park and Mars-like surroundings, including

ground truth provided by an RTK GPS, which allows centimetre-level accuracy

of positioning. A publicly-available dataset, New College 1, was also utilized:

this consists of sequences recorded within the New College Campus in a dynamic

environment comprising multiple unidirectional and bidirectional loops. For the

indoor scenes, the ISL dataset was collected from a laboratory environment. A

VICON motion capture system provided the ground truth. Moreover, the COLD

dataset (Ullah et al. [2007]), commonly utilised as a benchmark for place recog-

nition, was adopted: this was obtained under various weather and illumination

conditions (sunny, cloudy and night). Consequently, the results reported in the

evaluation in this thesis can be compared with the results of other researchers, or

reproduced by others. The detailed description of above four datasets was given

in an individual Chapter (Chapter 3).

Many image matching techniques have shown good results in the place recogni-

tion task in recent years. However, their reliance on local features limits their

ability to handle a relatively featureless environment. Moreover, these techniques

ignore the spatial information contained in the image. The techniques based on

global descriptors cannot deal with severe viewpoint changes and partial occlu-

sions. Therefore, a new image comparison method based on a recently developed

quadtree decomposition algorithm (Cao et al. [2012]) was proposed (Chapter 4).
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The process of comparison corresponds to a top-down quadtree construction pro-

cedure, which gives the robot the ability to capture the variation between image

pairs. In addition, to compensate for unknown rotation of the robot between

visits, alignment is carried out to find the maximum similarity of the compared

image pair, this alignment consisting of a simple column-by-column shift. Our

collected dataset, which contains the sequence of images captured along a care-

fully designed “Gummy Bear” path, has been used to evaluate the algorithm.

The qualitative results of the experiment have demonstrated that this method

is effective at dealing with self-similar environments, and is robust to viewpoint

changes of the robot. Moreover, the proposed method has been compared with

three alternative existing methods (FAB-MAP(Cummins and Newman [2008a]),

BRIEF-Gist(Sunderhauf and Protzel [2011]), and ABLE-P(Arroyo et al. [2014]))

on the same dataset (New College 1) in the loop closure detection task without

additive noise. The experimental results have shown that the proposed method

is close to the two comparative methods (BRIEF-Gist and ABLE-P) if only uni-

directional loop closure detection is needed, while it achieves much better recall

rate at 100% precision than other methods if both unidirectional and bidirectional

loop closure detection are considered. The worst results were obtained by FAB-

MAP in both cases: the reasons for its poor performance might be a shortage of

training data and the severe challenge of a self-similar environment.

Another experiment was carried out to analyse the performance of the proposed

method on noisy images. The experimental results demonstrate that the pro-

posed method is robust to noise. A quantitative comparison between the proposed

method and the BRIEF-Gist and ABLE-P methods was conducted, and the ex-

perimental results indicate that both the proposed method and the BRIEF-Gist

method achieve similar performance when Gaussian noise is introduced, while the

ABLE-P method yields inferior results.

Taking into account long-term navigation, an important prerequisite for a mobile

robot is to successfully determine its own orientation. In order to investigate

what image-based techniques can give us a good and reliable estimation result,

we evaluated the performance of three methods (quadtree-based, visual compass

and SIFT-based methods) on three datasets (GummyBear, ISL, COLD) for the
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purpose of robot orientation estimation (Chapter 5) in indoor and outdoor envi-

ronments.

We introduced two ways to test the performance of the quadtree and SIFT meth-

ods on GummyBear and ISL datasets. First, a fixed image is used as a reference

image and the current orientation is given relative to the reference image. This

process has the drawback that the estimation becomes less reliable as the images

become more different. Second, a moving reference image is used with specified

skips, and the current orientation is calculated by accumulating the changes in

orientation. It is apparent that the estimation becomes less and less accurate due

to accumulated errors.

The evaluation of the quadtree and SIFT methods on the COLD dataset were

carried out in a similar way to that of (Payá et al. [2014]). The relative orientation

between all image pairs from the dataset was calculated, each pairs of images is

chosen between the two consecutive images, as well as skipping one and two

images. The visual compass method was validated on all datasets using a moving

reference with automatically adjusted skips.

The experimental results on the GummyBear dataset revealed that the two

appearance-based methods were superior to the SIFT method at lower frame

rates. The results on the ISL dataset showed that less drift occurred using the

appearance-based methods, while better repeatability was presented using the

SIFT method in most cases. The COLD dataset results showed that appearance-

based methods performed better under stable illumination, while the SIFT method

performed well when illumination variations were large (the Sunny dataset). The

experimental results on the COLD dataset in HS colour space and after logarith-

mic transformation indicated that RGB colour space is more suitable for QT than

HS colour space, and that logarithmic transformation could be useful to some de-

gree for increasing robustness against illumination changes. Compared with the

result of Payá et al. [2014], all three methods achieved smaller mean errors, but

with larger standard deviation. It is obviously difficult to draw conclusions about

the differences in performance between different methods. Moreover, the different

sizes of datasets used in the experiments makes direct comparisons difficult.
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Recently, loop closure techniques using visual have received a great deal of atten-

tion. Visual cues can play an important role in correcting for accumulated errors,

and in obtaining an overall consistent map, especially when a robot is operating

over a large area and is in motion over long periods. However, these techniques

have to tackle changing environments, and even a single erroneous loop closure

incorporated into the map can lead to system failure. Consequently, much work

has focused on pushing false positive rates closer to zero, while maintaining a

high percentage of correctly-recognized loop closures.

Following the current trend, we developed a new loop closure detection method

based on the quadtree decomposition algorithm (Chapter 6). The task of deciding

whether a robot has returned to a previously visited area or not is formulated as a

binary classification problem. Based on a similarity value calculated by using our

quadtree-based method and a predefined threshold, a decision is made whether

the two scenes are sufficiently similar to meet the identity criteria. The exper-

imental results have shown that the proposed method provides a very effective

performance of loop closure detection on the ISL dataset. We have achieved 100%

precision with higher recall when the parameters are tuned properly. In addition,

the proposed method has been compared to other state-of-the-art descriptor-

based algorithms: BRIEF-Gist, LDB-based method, WI-SIFT and WI-SURF,

using the ISL dataset. The results have shown that the proposed method is ca-

pable of detecting the loop closure with accuracy in strong perceptual aliasing

scenarios, and under the stricter ground truth criteria.

The main drawback of our quadtree-based algorithms is lengthy computation

times caused by the necessity of exhaustively matching between image pairs. The

typical cost of matching is about three seconds on a computer with an Intel Core

i3 1.7GHz processor and 4GB RAM. Therefore, these algorithms are currently

not capable of meeting real-time constraints. In the next Section, we suggest

several possible strategies to speed up computation.

In summary, we conclude that the developed quadtree-based image comparison

algorithm has been utilised effectively for the task of place recognition, in that

we have shown that it can handle ambiguous data and adapt to changing en-

vironments. This indicates that the methods presented in this thesis have the
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potential to become an essential component of a full vSLAM system that relies

on omnidirectional images alone.

7.2 Future work

In this section, we list a number of possible research directions that might be

investigated in future research on the basis of the work presented in this thesis.

• Improvements on the complexity of the quadtree decomposition algorithm

As our quadtree decomposition algorithm uses an exhaustive search strat-

egy to find the best match (maximum similarity) between two panoramic

images, the computational cost increases with the dimensions of the im-

ages. Seeking a fast and simple strategy would undoubtedly be beneficial

in improving the efficiency of methods based on this algorithm, including

the proposed orientation estimation and loop closure detection approaches.

One interesting option would be to find a local minimum, thereby avoid-

ing exhaustive searching: one such strategy is deployed in Labrosse [2006].

Another possibility might be to exploit a parallel solution for quadtree de-

composition, or to make use of specialist hardware units such as a graphics

processing unit (GPU) in order to allow real-time operation.

• Investigation of different tree structures, and partition or segmentation ap-

proaches.

In this thesis, we used the fixed-partition quadtree matching model. In

our future study, the effects of different tree structures and partition or seg-

mentation approaches will be investigated. Specifically, instead of using the

fixed-partition quadtree representation, variable size of patches containing

more sematic content might be studied. An interesting work in this context

was presented recently in (Milford et al. [2014]), where sub-image patch

matching processes with high-tolerance properties were conducted for place

recognition tasks under dynamic conditions.
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• Improvements on robustness against illumination variations

In order to make mobile robot operation feasible for real-world applications,

the algorithm must be able to adapt to illumination changes. In fact, this

is a very challenging problem in robot vision, and far from being solved.

As seen in Chapter 5, the three sub-datasets of the COLD dataset (Sunny,

Cloudy and Night) contain different lighting conditions, from brightly sun-

lit, shadowed and reflective areas to artificial fluorescent light. Our method

involving the direct comparison of pixels of images is more sensitive to

changing illumination conditions than the SIFT method. An alternative

approach could use chrominance colour spaces that separate luminance and

chromatic components, as suggested by (Ososinski and Labrosse [2013]),

such as the log-chromaticity colour space (LCCS), in which an illumination-

invariant representation of images can be obtained. Another strategy, pre-

sented by (Maddern et al. [2014]), might be a way to mitigate this issue:

this uses an illumination-invariant transformation to reduce the problems

associated with illumination changes due to sunlight and shadow.

• Combination of appearance-based and feature-based methods into a single

scheme

The comparative experiments in Chapter 5 show that a major advantage of

appearance-based methods over feature-based methods is realized in situa-

tions in which features cannot be extracted easily due to a featureless en-

vironment, or feasible matches cannot be found when the distance between

two images becomes high. However, appearance-based methods perform

poorly when the environment becomes too contrasty (as in the Tenerife

dataset). Combining them would be a possible direction for future research.

A suitable binary descriptor, the local difference binary (LDB) descriptor,

described in (Yang and Cheng [2014a]) demonstrated a good performance

on image matching in our comparative study, and is computationally inex-

pensive.

• Dynamically adjusting configuration parameters of loop closure detection

The algorithm proposed in Chapter 6 has two key parameters that allow it to
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carry out quadtree decomposition and loop closure validation. Currently,

the performance of the proposed method is heavily dependent on tuning

the parameters manually. Therefore, providing loosely estimated ranges

for these two parameters that can be learned autonomously by the robot,

thus allowing the system to adapt to different accuracy requirements and

environments, is of great potential interest.

• Improvement on orientation estimation accuracy

The experimental results in Chapter 5 show that all the surveyed methods,

as with odometry technique, inevitably exhibit drift because of compound-

ing of small errors. Using a more sophisticated method for orientation

estimation that incorporates the quadtree method will be explored. One

possible extension will be employing an advanced probabilistic framework

for making decisions on loop closures.

• Development of a novel visual SLAM system in the topological paradigm

Our next step of research is to generate topological maps and implement a

novel visual SLAM system that integrates the proposed loop closure detec-

tion method and benefits from visual odometry measurements. The ideas

developed in Clipp et al. [2010], which introduces a vSLAM system utilizing

the parallelism strategy to perform visual odometry and loop closure, may

be of assistance here. However, this is only a weak intuition and it would

need to be thoroughly examined.
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Appendix A

A.1 Histograms for the ISL dataset

(a) (b)

(c) (d)

Figure A.1: Histograms of the comparison scores between the image of interest
(Image 0) and all the images of the ISL 1 dataset, based on (a) CC; (b) EC; (c)
EE; and (d) CE methods.
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(a) (b)

(c) (d)

Figure A.2: Histograms of the comparison scores between the image of interest
(Image 0) and all the images of the ISL 2 dataset, based on (a) CC; (b) EC; (c)
EE; and (d) CE methods.
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(a) (b)

(c) (d)

Figure A.3: Histograms of the comparison scores between the image of interest
(Image 0) and all the images of the ISL 3 dataset, based on (a) CC; (b) EC; (c)
EE; and (d) CE methods.

180



(a) (b)

(c) (d)

Figure A.4: Histograms of the comparison scores between the image of interest
(Image 0) and all the images of the ISL 4 dataset, based on (a) CC; (b) EC; (c)
EE; and (d) CE methods.

A.2 PPCC coefficients

Table A.1: PPCC coefficients for the histograms shown as Figures A.1(a) - A.4(a)
.

PPCC Correlation+Correlation

Lognormal Weibull Gamma Normal Logistic

Dataset 1 0.9689229411 0.977073821 0.9761692924 0.9055135176 0.9043657409

Dataset 2 0.9739792096 0.9700923616 0.9716783767 0.9217004098 0.9328743971

Dataset 3 0.9667442036 0.9678026507 0.968114015 0.902265964 0.9105684899

Dataset 4 0.979823357 0.9790401456 0.9798161287 0.9228542565 0.9309041085
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Table A.2: PPCC coefficients for the histograms shown as Figures A.1(b) - A.4(b)
.

PPCC Correlation+Euclidean

Lognormal Weibull Gamma Normal Logistic

Dataset 1 0.975212627 0.980127937 0.980127937 0.8466752474 0.8561546343

Dataset 2 0.9796200224 0.9696720903 0.9696720903 0.8773302345 0.8974234873

Dataset 3 0.9706217127 0.9655686403 0.9655686403 0.8582467033 0.876328254

Dataset 4 0.9879187903 0.9838271258 0.9838271258 0.8993611044 0.9127139509

Table A.3: PPCC coefficients for the histograms shown as Figures A.1(c) - A.4(c)
.

PPCC Euclidean+Correlation

Lognormal Weibull Gamma Normal Logistic

Dataset 1 0.9856892722 0.9807424123 0.9832184175 0.9423689004 0.9495512008

Dataset 2 0.9856892722 0.9783347547 0.9833856761 0.9626279286 0.970204955

Dataset 3 0.9746428723 0.9671987264 0.9708461519 0.9348337956 0.9475945034

Dataset 4 0.983731783 0.9754622127 0.9815156935 0.9665888421 0.9750520421

Table A.4: PPCC coefficients for the histograms shown as Figures A.1(d) - A.4(d)
.

PPCC Euclidean+Euclidean

Lognormal Weibull Gamma Normal Logistic

Dataset 1 0.9796472521 0.9473764055 0.9473764055 0.7878638068 0.8122517511

Dataset 2 0.9735673268 0.9380902614 0.9380902614 0.8129470282 0.8358561496

Dataset 3 0.9729729171 0.9401481371 0.9401481371 0.7746009186 0.7981593895

Dataset 4 0.9817191156 0.9508582257 0.9508582257 0.8212775985 0.8426485947
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Krőse, B., Vlassis, N., Bunschoten, R., and Motomura, Y. A probabilistic model

for appearance-based robot localization. In First European Symposium on Am-

bience Intelligence, pages 264–274, 2000. 26, 43

Kriechbaumer, T., Blackburn, K., Breckon, T., Hamilton, O., and Riva-Casado,

M. Quantitative evaluation of stereo visual odometry for autonomous vessel

localisation in inland waterway sensing applications. Sensors, 15(12):31869–

31887, 2015. 46, 48

Kristopher, R. B. and Wesley, H. H. Loop closing in topological maps. In Proc.

Int. Conf. Robotics and Automation, 2005. 11

Kuipers, B. and Byun, Y.-T. A robot exploration and mapping strategy based

on a semantic hierarchy of spatial representations. Journal of Robotics and

Autonomous Systems, 8:47–63, 1991. 9

Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., and Savelli, F. Local

metrical and global topological maps in the hybrid spatial semantic hierarchy.

In Int. Conf. on Robotics & Automation, pages 4845–4851, 2004. 10

Kunttu, I., Lepisto, L., Rauhamaa, J., and Visa, A. Multiscale fourier descrip-

tor for shape-based image retrieval. In Proc. Int. Conf. Pattern Recognition,

volume 2, pages 765–768, 2004. 17

Labbani-Igbida, O., Charron, C., and Mouaddib, E. M. Haar invariant signa-

tures and spatial recognition using omnidirectional visual information only.

Autonomous Robots, 30(3):333–349, 2011. 43, 45

Labbe, M. and Michaud, F. Appearance-based loop closure detection for online

large-scale and long-term operation. IEEE Transactions on Robotics, 29(3):

734–745, 2013. 51, 59, 141

197



REFERENCES

Labrosse, F. The visual compass: Performance and limitations of an appearance-

based method. Journal of Field Robotics, 23(10):913–941, 2006. 47, 108, 109,

175

Labrosse, F. Short and long-range visual navigation using warped panoramic

images. Robotics and Autonomous Systems, 55(9):675 – 684, 2007. 3

Lamon, P., Nourbakhsh, I., Jensen, B., and Siegwart, R. Deriving and matching

image fingerprint sequences for mobile robot localization. In Proc. Int. Conf.

Robotics and Automation, 2001. 34

Lamon, P., Tapus, A., Glauser, E., and Tomatis, N. Environmental modeling

with fingerprint sequences for topological global localization. In Proc. Int.

Conf. Intelligent Robots and Systems, pages 3781–3786, 2003. 11

Laurent Kneip, M. C. and Siegwart, R. Robust real-time visual odometry with a

single camera and an IMU. In Proc. of the British Machine Vision Conference,

pages 16.1–16.11, 2011. 4

Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. Proc. Int. Conf. Computer

Vision and Pattern Recognition, 2:2169–2178, 2006. 52

Leonard, J. and Durrant-Whyte, H. Mobile robot localization by tracking geo-

metric beacons. IEEE Transactions on Robotics and Automation, 7(3):376–382,

1991. 12

Leutenegger, S., Chli, M., and Siegwart, R. BRISK: Binary robust invariant

scalable keypoints. Proc. Int. Conf. Computer Vision, 0:2548–2555, 2011. 20,

21

Levin, A. and Szeliski, R. Visual odometry and map correlation. In Proc. Int.

Conf. Computer Vision and Pattern Recognition, pages 611–618, 2004. 49

Li, F. Probabilistic location recognition using reduced feature set. In Proc. Int.

Conf. on Robotics and Automation, 2006. 35

198



REFERENCES

Li, J., Wang, J., and Wiederhold, G. IRM: integrated region matching for image

retrieval. In Proc. Int. Conf. Multimedia, pages 147–156, 2000. 29

Li, L., Su, H., Li, F., and Xing, E. P. Object Bank: A high-level image repre-

sentation for scene classification & semantic feature sparsification. Advances

in Neural Information Processing Systems, pages 1378–1386, 2010. 52

Lin, H.-Y., Lin, Y.-H., and Yao, J.-W. Scene change detection and topological

map construction using omnidirectional image sequences. In MVA, pages 57–

60, 2013. 9, 59

Linde, O. and Lindeberg, T. Object recognition using composed receptive field

histograms of higher dimensionality. In Proc. Int. Conf. Pattern Recognition,

2004. 19

Lin̊aker, F. and Ishikawa, M. Real-time appearance-based Monte Carlo localiza-

tion. Robotics and Autonomous Systems, 54(3):205–220, 2006. 43

Liu, M. and Siegwart, R. Topological mapping and scene recognition with

lightweight color descriptors for an omnidirectional camera. IEEE Transac-

tions on Robotics, 30(2):310–324, 2014. 28, 35, 70

Liu, Y. and Zhang, H. Visual loop closure detection with a compact image

descriptor. In Proc. Int. Conf. Intelligent Robots and Systems, pages 1051–

1056, 2012. 51, 141

Lowe, D. Object recognition from local scale-invariant features. In Proc. Int.

Conf. Computer Vision, pages 1150–1157, 1999. 17, 18

Lowe, D. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004. 17, 108, 109

Maddern, W., Milford, M., and Wyeth, G. CAT-SLAM: Probabilistic localisation

and mapping using a continuous appearance-based trajectory. Int. J. Rob. Res.,

31(4):429–451, 2012. 3, 15, 59

Maddern, W., Stewart, A., McManus, C., Upcroft, B., Churchill, W., and New-

man, P. Illumination invariant imaging: Applications in robust vision-based

199



REFERENCES

localisation, mapping and classification for autonomous vehicles. In Proc. Int.

Conf. Robotics and Automation, 2014. 3, 44, 176

Maddern, W. and Vidas, S. Towards robust night and day place recognition using

visible and thermal imaging. Rss Beyond Laser & Vision Alternative Sensing

Techniques for Robotic Perception, 2012. 16

Maddern, W., Milford, M., and Wyeth, G. Continuous appearance-based trajec-

tory SLAM. In Proc. Int. Conf. Robotics and Automation, pages 3595–3600,

2011. 15, 58

Magnabosco, M. and Breckon, T. P. Cross-spectral visual simultaneous localiza-

tion and mapping (SLAM) with sensor handover. Robotics and Autonomous

Systems, 61(2):195 – 208, 2013. 3, 16, 59

Maimone, M., Cheng, Y., and Matthies, L. Two years of visual odometry on the

Mars Exploration Rovers. Journal of Field Robotics, 24(3):169–186, 2007. 46,

57

Majdik, A., Albers-Schoenberg, Y., and Scaramuzza, D. MAV urban localiza-

tion from Google street view data. In Proc. Int. Conf. Intelligent Robots and

Systems, pages 3979–3986, 2013. 42

Mariottini, G. and Roumeliotis, S. I. Active vision-based robot localization and

navigation in a visual memory. In Proc. Int. Conf. Robotics and Automation,

pages 6192–6198, 2011. 24, 58

Mata, M., Armingol, J. M., Escalera, A. D. L., and Salichs, M. A. Using learned

visual landmarks for intelligent topological navigation of mobile robots. In

Proc. Int. Conf. Robotics and Automation, pages 1324–1329, 2003. 36

Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide-baseline stereo

from maximally stable extremal regions. Image Vision Comput., 22(10):761–

767, 2004. 17

Matsumoto, Y., Inaba, M., and Inoue, H. Visual navigation using view-sequenced

route representation. Proc. Int. Conf. Robotics and Automation, pages 83–88,

1996. 38

200



REFERENCES

Matsumoto, Y., Sakai, K., Inaba, M., and Inoue, H. Visual navigation using om-

nidirectional view sequence. In Proc. Int. Conf. Intelligent Robots and Systems,

pages 317–322, 1999. 38

Matsumoto, Y., Sakai, K., Inaba, M., and Inoue, H. View-based approach to

robot navigation. In Proc. Int. Conf. Intelligent Robots and Systems, pages

1702–1708, 2000. 38

Matthies, L. and Shafer, S. Error modeling in stereo navigation. IEEE Journal

of Robotics and Automation, 3(3):239–250, 1987. 46, 47

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. A constant time

efficient stereo SLAM system. In British Machine Vision Conference, 2009. 3,

9, 14, 53, 58

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. RSLAM: A system

for large-scale mapping in constant-time using stereo. International Journal of

Computer Vision, pages 1–17, 2010. 14, 58

Menegatti, E., Zoccarato, M., Pagello, E., and Ishiguro, H. Hierarchical image-

based localisation for mobile robots with Monte-Carlo localisation. In Proc. of

European Conference on Mobile Robots, pages 13–20, 2003. 25, 28, 45

Menegatti, E., Maeda, T., and Ishiguro, H. Image-based memory for robot nav-

igation using properties of omnidirectional images. Robotics and Autonomous

Systems, 47(4):251–267, 2004a. 17, 25, 56

Menegatti, E., Zoccarato, M., Pagello, E., and Ishiguro, H. Image-based Monte-

Carlo localisation without a map. Robotics and Autonomous Systems, 48:17–30,

2004b. 25, 43, 56

Mikolajczyk, K. and Schmid, C. Indexing based on scale invariant interest points.

In Proc. Int. Conf. Computer Vision, volume 1, pages 525–531, 2001. 16

Mikolajczyk, K. and Schmid, C. Scale and affine invariant interest point detectors.

International Journal of Computer Vision, 60(1):63–86, 2004. 17

201



REFERENCES

Mikolajczyk, K. and Schmid, C. A performance evaluation of local descrip-

tors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27

(10):1615–1630, 2005. 17, 18, 19

Milford, M. Vision-based place recognition: how low can you go? I. J. Robotic

Res., 32(7):766–789, 2013. 16, 42, 59

Milford, M., Scheirer, W., Vig, E., Glover, A., Baumann, O., Mattingley, J., and

Cox, D. Condition-invariant, top-down visual place recognition. In Proc. Int.

Conf. Robotics and Automation, pages 5571–5577, 2014. 175

Milford, M. and Wyeth, G. Single camera vision-only SLAM on a suburban

road network. In Proc. Int. Conf. Robotics and Automation, pages 3684–3689,

2008a. 47, 48, 57

Milford, M. and Wyeth, G. Mapping a suburb with a single camera using a

biologically inspired SLAM system. IEEE Transactions on Robotics, 24(5):

1038–1053, 2008b. 15

Milford, M. and Wyeth, G. SeqSLAM: Visual route-based navigation for sunny

summer days and stormy winter nights. In Proc. Int. Conf. Robotics and Au-

tomation, pages 1643–1649, 2012. 15

Milford, M., Wyeth, G., and Prasser, D. RatSLAM: A hippocampal model for

simultaneous localization and mapping. In Proc. Int. Conf. Robotics and Au-

tomation, volume 1, pages 403–408, 2004. 15, 56
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