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Abstract

This thesis is concerned with the problem of place recognition for a
mobile robot using an omnidirectional camera as its sole sensor modal-
ity. The problems we are faced with range from orientation estimation
to loop closure detection, in the absence of any prior knowledge of po-

sition.

In order to resolve the challenging issues encountered by any appearance-
based place recognition system - specifically, perceptual aliasing and
variability - we first develop a quadtree-based image comparison method.
In contrast to most existing methods, this method does not involve
the computationally expensive step of feature or keypoint detection
and description, which utilises the spatial structure property of an
image to provide robustness against dynamic changes in scenes. Our
algorithm is experimentally evaluated on one public dataset, and
two datasets collected by ourselves in different environments, thereby
demonstrating its effectiveness in handling perceptual aliasing and

environment variability.

For many tasks in mobile robotics, it is crucial accurately to determine
the orientation of the robot, relying on a single vision sensor. For this
purpose, we propose an evaluation methodology that focuses on the
ability of different image-based algorithms to establish the heading of
the robot when capturing two images. Critical analysis of performance

is also provided.

In addition, a quadtree-based loop closure detection method is pro-
posed, with the intention of increasing the number of correctly-recognized
revisited locations (high recall) at low false positives (high precision).

The loop closure detection is performed by pairwise image compari-



son. The performance of the proposed method is evaluated using our
collected dataset, which contains highly aliased images and drastic
perceptual changes. The experimental results show that our method
can achieve a high recall at 100% precision, and outperform other

related algorithms in term of closeness to ground truth.
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Chapter 1
Introduction

This thesis is concerned with robust long-term place recognition for autonomous
mobile robots in changing environments. Specifically, this work mainly addresses
two research problems: first, what image-based techniques offer good and reliable
orientation estimation for robots equipped only with vision sensors; secondly, how
a robot may accurately recognize a previously visited place, without any prior
knowledge. In this chapter, we give a brief overview of the background and rele-
vant research works, and the motivations behind the current work. Subsequently,
the main aims and objectives of our research are described. Finally, we provide

a summary of contributions and an overview of the thesis.

Autonomous robotics is a growing and increasingly popular area in both industry
and academic research. Robots of different kinds and capacities from personal
service robots at home to scientific planetary exploration rovers perform a variety
tasks in an intelligent and autonomous manner, potentially bringing great benefits

to mankind.

A classical problem in creating an autonomous robot focuses on the ability of a
robot to localize itself within a given environment, while at the same time map-
ping that same environment. This problem is known as Simultaneous Localization
and Mapping (SLAM). It has been widely studied by the robotics communities
for several decades (Chatila and Laumond [1985]; Davison [2003]; Durrant-Whyte
et al. [1996]; Guivant and Nebot [2001]; Smith et al. [1987]; Williams et al. [2000]),



and is by now considered a relatively mature problem. However, there are still

some challenges that need yet to be overcome.

Different sensor modalities have been used to provide the necessary input for
SLAM solutions. Typically the Global Positioning System (GPS) has been used
for localisation and navigation assistance (Thrun et al. [2006]). However, solu-
tions based on GPS do not work well in indoor or cluttered outdoor environments,
where GPS is generally less accurate or not available. To avoid the need for GPS,
or any other infrastructure, a number of frameworks (Chong and Kleeman [1999];
Crowley [1989]; Guivant et al. [2000]; Rencken [1993]; Ribas et al. [2008]) have
been developed that make use of active sensors (e.g., sonar and laser scanner)
to acquire data. However, these active sensors are normally very heavy, expen-
sive, and energy-hungry, and thus not suitable for some systems that must meet
payload, cost, and power constraints. Examples of such systems include un-
manned aerial vehicles (UAVs), autonomous underwater vehicles (AUV), Mars

Exploration Rovers.

The dead-reckoning (DR) technique has long been used to provide position and
orientation information. Sensors for DR include encoders, the magnetic compass,
and the inertial measurement unit (IMU), among others. However, existing sys-
tems equipped with these sensors universally suffer from precision and reliability
problems. Slippage of the wheels on non-smooth surfaces can cause accumulated
error in position and orientation; a magnetic compass may be subject to inter-
ference from magnetic sources, such as metallic objects; and the readings from
the IMU become increasingly unreliable as errors accumulate and compound over

time.

By contrast, the camera as a passive sensor is an attractive alternative with many
advantages, including low cost and light weight. Moreover, the camera provides
a rich source of information about the environment, which enables the use of
sophisticated computer vision algorithms (detection and recognition algorithms).
In addition, the computational requirements of these computer vision algorithms
are not a significant issue thanks to recent improvements in hardware (e.g., avail-

able parallel graphics processors and multiple CPU threads).



When cameras are used as the primary sensor input, solutions to such a SLAM
problem are referred to as visual SLAM (vSLAM). Since 2005, intense research
has been undertaken to develop a reliable, accurate, and large-scale vSLAM tech-
nique. Many techniques (Cummins and Newman [2010]; Labrosse [2007]; Mad-
dern et al. [2014]; Mei et al. [2009]; Strasdat et al. [2010a]) that rely only on
monocular or stereo visual cues have shown remarkable performance in the vS-
LAM problem.

Nevertheless, there is some way to go before a robust vSLAM solution can be
widely employed in practice. For instance, most state-of-the-art systems require
high quality camera images as input data, and assume that the world in which
the robot works remains almost static in appearance (Durrant-Whyte and Bai-
ley [2006]; Maddern et al. [2012]). These assumptions are not valid in the vast
majority of real-world tasks. For real and long life operation, a robot must be
able to respond to unknown or changing environments. Moreover, it is always

preferable that a robot has low hardware costs.

Appearance-based place recognition is usually performed by finding matches be-
tween the current view of the robot and a set of images of previously visited loca-
tions. However, appearances are often deceiving. There are two basic factors that
make the task of place recognition difficult. Firstly, in dynamic environments,
the appearance of a place may change as objects move, viewpoint changes, or
illumination conditions change (perceptual variability). Secondly, a number of
perceptions from different parts of an environment may look similar (perceptual
aliasing). Therefore, a good image comparison measure is of utmost importance

to reliable completion of a place recognition task.

Some studies (Bellotto et al. [2008]; Cheng et al. [2006]; Labrosse [2007]; Magna-
bosco and Breckon [2013]; Williams and Reid [2010]) exploit the odometry in-
formation obtained by analyzing images taken in consecutive frames to improve
the motion estimation accuracy of the robot, and thereby boost the performance
of vSLAM systems. The pose (position and orientation) estimation technique,
based on a sequence of acquired images, is called in robotics visual odometry
(VO), or visual compass (VC), when only the orientation is desired. Clipp et al.
[2010] introduced a vSLAM system that utilizes the parallelism strategy to per-



form visual odometry and loop closure in a relatively small scale environment.
Many studies have illustrated that VO or VC allows for enhanced localization
and navigation accuracy in robots, since long-term drift can be mitigated. How-
ever, these algorithms suffer from some practical limitations, which often have
their roots in the explicit assumptions that there is sufficient illumination and
a sufficiently large set of features to be extracted from a static, or at least par-
tially static environment. A further assumption is that there must be enough
scene overlap between consecutive frames (Scaramuzza and Fraundorfer [2011]).
Laurent Kneip and Siegwart [2011] enriched a textureless scene with some sparse

natural features, in order for their VO system to work properly.

Loop closure detection is one of the key challenges in a SLAM system: that
is, when, or if the robot has returned to a previously visited place after a long
traverse movement. This information is critical for mobile robots to maintain a
global consistent map of unknown environments, and allows them to correct the
accumulated errors caused by inaccurate sensor measurements. It is difficult to
detect loop closure precisely using metric information, because of accumulated
errors in position estimation, which tend to scale up dramatically with the dimen-
sions of the environment. Loop closure detection using visual cues has attracted
a great deal of attention in recent years. A viable solution to the loop closure
problem using vision requires determining for any two images whether they have

been taken from the same place.

Several successful approaches have been proposed that rely either on global ap-
pearance solutions ( Arroyo et al. [2014]; Badino et al. [2012]; Goedemé et al.
[2007]; Sunderhauf and Protzel [2011]; Wu et al. [2014]), or local feature extrac-
tion ( Anati and Daniilidis [2009]; Cummins and Newman [2010]; Garcia-Fidalgo
and Ortiz [2013]). Most of these frameworks are based on a visual Bag-of-Words
(BoWs) strategy; data structures such as the vocabulary tree, hierarchical k-
means and kd-tree are also used to speed up matching in order to cope with large
scale environments. However, the BoWs method is affected by perceptual aliasing
due to vector quantization, and it involves the learning of the BoWs dictionaries,
whether online or offline. To avoid mismatches (false positives), some algorithms

( Angeli et al. [2008b]; Scaramuzza et al. [2010]) incorporate epipolar constraint



to check spatial consistency and verify candidate matchings.

When a robot is operating over a large area and within a changing environment,
visual loop closure detection will become extremely challenging. For example,
different places may appear the same, which may lead to erroneous loop closing
and thus yield an incorrect mapping. Moreover, perceptual changes such as view-
point and illumination changes, and moving objects are common in the natural
environment. A comparison technique that is not robust against these changes
will lead to incorrect loop closures. Even one erroneous loop closure incorporated

into the map can cause catastrophic failures of estimation algorithms.

Within the context of vSLAM, the considerations about image representation
and matching in the appearance-based place recognition task, and the increasing
demand for high precision VO or VC systems which can extend the applicability
of real time vSLAM motivated the work in this thesis.

Research Aims and Objectives

To build a fully autonomous mobile robot that is capable of operating long-term in
real environments, we must develop place recognition strategies that can handle
unknown or changing environments. Our research aims to improve the capa-
bilities of vSLAM in dynamic environments using an on-board omnidirectional
camera alone. We propose to develop an image comparison method that does not
rely on any artificial landmarks or natural structures within the environments,
that will be robust to the changes encountered by the robot, and that can be
utilized in indoor or outdoor environments. With a view to this aim, we plan to
investigate how to select image-based techniques that are suitable for accurate
and reliable orientation estimation. Our evaluation focuses on the ability of the
techniques to estimate the relative orientation of the robot at the time when the
particular images were captured. In addition, we propose to develop a novel loop
closure detection technique that will enable robots to recognise reliably places
that they are revisiting by matching their current view with previously stored

images, without any prior position knowledge.



Contributions

A summary of the contributions of this thesis is as follows:

e An extensive literature review of the most important developments in the
field of vSLAM is presented. The key characteristics of some vSLAM frame-
works are described and a summary table is provided, which enables quick
reference to the key techniques in these approaches. In addition, a fur-
ther literature review of relevant background materials and related works
is provided. In particular, the performance of place recognition systems in
handling challenging cases characterised by perceptual aliasing and percep-

tual variability has been extensively investigated.

e A novel image comparison algorithm has been proposed. We made use of
the whole image as a global visual feature. In order to compensate for
the weaknesses of the global feature, we combined the quadtree decompo-
sition concept with the natural rotational invariance of the omnidirectional
images. This work has been published in (Cao et al. [2012]).

e An evaluation methodology for different image-based techniques with re-
spect to orientation estimation is introduced. Critical analysis of the per-
formance in indoor and outdoor, static and dynamic environments are pro-
vided. This work has been presented in (Cao et al. [2013]).

e A novel appearance-based loop closure detection algorithm that focuses
on tackling challenging cases (perceptual aliasing and perceptual variabil-
ity) has been formulated. This method is distinct from most existing
approaches, which involve the computationally expensive step of feature
extraction and/or candidate verification within a probabilistic framework.
Loop closure detection is achieved by matching places based on the visual
distance scores between a given of pair of places, which ignores the appear-

ance changes caused by a dynamic environment.



Overview

This thesis is presented in seven chapters. Excluding the Introduction (this
chapter), the thesis is divided into four main sections: background and related
work (Chapters 2); datasets description (Chapter 3); major contributions (Chap-

ters 4, 5 and 6); and conclusions and directions for future research (Chapter 7).

Chapters 2 forms the first section, which provides an overview of the most im-
portant developments in the field of vSLAM, focusing on image representation,
dimensionality reduction techniques, place recognition, visual odometry, quadtree
structure and loop closure detection techniques. A literature review summary ta-
ble is provided at the end of this chapter. Each chapter in the dealing with the

contributions also reviews more specifically related work.

Four datasets are used to evaluate the methods proposed in Chapters 4 and 6, as
well as the three methods for robot orientation estimation in Chapter 5. To avoid
repetition in each chapter, a detailed description of the four datasets is given in

Chapter 3, which constitutes the second part of the thesis.

The third part of the thesis develops the ideas and contributions of this thesis.
The main contribution is Chapter 4, which proposes a novel image comparison
method to increase the robustness of image matching for visual place recognition
tasks. The evaluation of this approach, and a comparison with the state-of-the-
art algorithms are provided in this chapter. In Chapter 5, the performance of
three methods for robot orientation estimation is evaluated, and quantitative
results are provided. A novel development of the algorithmic method developed
in Chapter 4 for loop closure detection is described in Chapter 6. Experimental
validation and a comparison with the state-of-the-art algorithms are provided at
the end of this chapter. Our conclusions and suggestions for future research are

presented in Chapter 7.



Chapter 2
Background and related work

This chapter reviews the main solutions to the visual SLAM problem, mainly
focusing on methods for place recognition, which is one of the fundamental tasks
in visual SLAM and is typically used for localisation and loop closure. We start
with a short overview of current state-of-the-art visual SLAM algorithms in Sec-
tion 2.1. In order to perform SLAM tasks using visual clues, it is necessary to
describe the acquired images and to be able to compare their descriptions. For
this reason, a subsection (Section 2.2) is dedicated to surveying image detectors,
descriptors, approaches based on Bag-Of-Words (BoW) schemes, and some di-
mensionality reduction techniques for image descriptors that are popular in the
context of visual SLAM. We then illustrate state-of-the-art solutions to the place
recognition task in Section 2.3. An overview of visual odometry, which can be
used in unmanned navigation applications to recover the camera trajectory for ac-
curate localisation, follows in Section 2.4. In Section 2.5, we review some current
loop closure detection techniques that are primarily used for appearance-based
SLAM systems in large-scale unknown environments. In Section 2.6, a review of
methods based on quadtree structure is provided. This data structure is the core
technique of our proposed algorithms. In Section 2.7 we conclude this chapter by

summarising the key characteristics of some reviewed vSLAM frameworks.



2.1 Visual SLAM

In this section, we will discuss recent advances in visual SLAM. A broader survey
of SLAM approaches can be found in, for example, (Bonin-Font et al. [2008]) and
in (Fuentes-Pacheco et al. [2012]). There is a large body of literature address
SLAM for larger environments using either monocular (Angeli et al. [2008al;
Botterill et al. [2011]; Cummins and Newman [2008a]; Davison [2003]) or stereo
cameras (Kaess and Dellaert [2010]; Konolige et al. [2010]; Mei et al. [2009]; Nistr
et al. [2004]).

Building a representation of the environment is an important task for a mobile
robot, allowing the robot to guide itself autonomously around the surrounding
space. In consequence, this problem has received significant attention in the
past two decades. Next we will look at the state of existing research for map

representations exploited in SLAM systems.

Classically, existing map representation studies are classified in two categories
depending on whether they make use of either metric or topological maps. Ap-
proaches in the metric paradigm, such as those described in (Davison [2003]; Elfes
[1989]; Grisetti et al. [2007]; Ho and Newman [2007]; Kaess and Dellaert [2010];
Montemerlo et al. [2002]; Moravec [1988]; Nistr et al. [2004]; Pinies and Tar-
dos [2008]; Scaramuzza and Siegwart [2008]), represent environments by evenly-

spaced grids for laser-scanner or sonar based SLAM.

Occupancy-grid maps were first suggested by Elfes [1989] in 1987. Each cell of the
grid stores the probability that it is occupied by an obstacle. These approaches
typically work well in bounded environments: however, they suffer from discreti-
sation errors that limit the scale at which the environment can be modelled, and

have high memory requirements.

Approaches in the topological paradigm, such those described in (Beeson et al.
[2005]; Booij et al. [2007]; Chapoulie et al. [2011]; Choset and Nagatani [2001];
Goedemé et al. [2008]; Korrapati and Mezouar [2014]; Kuipers and Byun [1991];
Lin et al. [2013]; Neal and Labrosse [2004]; Ranganathan et al. [2006]; Remolina
and Kuipers [2002]; Siagian and Itti [2009]; Sogo et al. [2001]; Wang and Yagi



[2012, 2013]; Weiss et al. [2007Db]), represent robot environments by graphs. Nodes
in such graphs correspond to distinct places or landmarks, and arcs denote con-
nections between places. Topological maps were first introduced in 1985 as an
attractive alternative to the occupancy-grid map by Chatila and Laumond [1985].
Since topological approaches usually do not require the exact determination of
the geometric position, only the notions of proximity and order, this method al-
lows robotic systems to recover better from drift and slippage phenomena. The
map resolution is determined by the complexity of the environment, and less
storage is required to store the nodes, compared to the large number of grid cells
in occupancy grid maps. Consequently, they permit fast planning, and facili-
tate interfacing to symbolic planners and problem-solvers (Chatila and Laumond
[1985]). However, this advantage comes with the trade-off of reduced accuracy,
because of the absent metric information. The limited accuracy of topological

maps thus restricts the capability of the robot for fast and safe navigation.

Recently, hybrid models that combine metric and topological information have
been proposed as a promising solution to manage large-scale environments. Among
others, these maps are of special interest for efficiently managing large-scale en-
vironments, and for accurate localisation. To achieve this aim, local geometric
information is stored in the nodes of a graph-based global map. There are a num-
ber of SLAM algorithms that aim to create such a hierarchical map: examples
include (Blanco et al. [2008]; Bosse et al. [2004]; Estrada et al. [2005]; Konolige
et al. [2011]; Kouzoubov and Austin [2004]; Kuipers et al. [2004]; Siagian et al.
[2014]; Tomatis et al. [2003]).

With the development of human-robot interaction, robots are gradually mov-
ing into our homes, offices, museums and other public spaces. Some traditional
navigation methods depending on metric maps or topological maps will become
invalid for complex, dynamic and unstructured environments. In order to per-
form human-like tasks alongside humans, a robot needs to have some semantic

information about the entities in the environment.

Adding semantic information to environment maps is a very attractive method for
improving domestic robot navigation. It is assumed that the robot is given certain

knowledge about the building. Such knowledge allows the robot to recognise
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particular areas of the building (kitchen, living room, etc.) on the current map.
More recently, some authors (Astua et al. [2014]; Beeson et al. [2010]; Klasing
et al. [2008]; Vasudevan and Siegwart [2008]) have reported systems in which a

robot can acquire and use semantic information for navigation tasks.

In (Kosecka and Li [2004]; Lamon et al. [2003]; Vale and Ribeiro [2003]; Zivkovic
et al. [2005]), a set of images that represents the environment of a robot is clus-
tered, based on the presence of a number of automatically extracted landmarks.
The method used in (Vale and Ribeiro [2003]) is only suited for image compar-
ison techniques which are a metric function, and does not give correct results if
self-similarities are present in the environment. Zivkovic et al. [2005] described
an algorithm for creating a hierarchical map using graph cuts, and geometric

constraints were applied to overcome self-similarities.

In (Choset and Nagatani [2001]), a generalised Voronoi diagram was constructed
from laser range data to encode the topology of the environment. These early
topological mapping algorithms were not probabilistic. Nowadays, various proba-
bilistic approaches have become popular. They all rely on probabilistic inference
for turning sensor measurements into maps. The popularity of probabilistic tech-
niques arises from the fact that all the sensors for environment perception are
subject to errors (i.e., measurement noise). In addition, the mapping is char-
acterised by uncertainty. Ranganathan et al. [2006], for instance, used Bayesian
inference to obtain the topological structure that best explains a set of panoramic
observations, chosen out of the space of all possible topologies. A Markov Chain
Monte Carlo (MCMC) algorithm was used to estimate the posterior distribu-
tion. Shatkay and Kaelbling [1997] fit Hidden Markov Models (HMMs) to the
incoming sensor data, to solve the aliasing problem for topological mapping. The
states of these HMMs refer to the topological nodes, between which probabilis-
tic state transitions are identified. Other examples of HMM based work include
(Gutierrez-Osuna and Luo [1996]) and (Cassandra et al. [1996]) where a second

order HMM is used to model environments.

Some methods rely on the detection of loop closure to build topological maps.
In these studies, probabilistic methods are also introduced to cope with the un-

certainty of link hypotheses and avoid links between self-similarities. Kristopher
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and Wesley [2005] applied Dempster-Shafer probability theory to the loop closure
problem. Their robot makes a hypothesis whenever it may have revisited a place,
then attempts to verify the hypothesis by continuing to traverse the environment,
gathering evidence that supports or refutes the hypothesis. In their topological
map, each node represents a corner, and the edges represent a sequence of be-
haviours to move the robot from one node to another using a wall-following
strategy. Their method has the advantage that ignorance can be modelled, and
no prior knowledge is needed. However, it can only be applied to sensing-limited
robots in simple environments. In Goedemé et al. [2008], an agglomerative clus-
tering algorithm is applied to a set of places, based on the visual distance, which
is made proportional to the average angle difference of the matching features.
Dempster-Shafer theory is then used to deal with self-similarities for each cluster.
Subclusters connected with accepted hypotheses are merged into one place, while
each refuted hypothesis results in the construction of a new place. After this

decision, a final topological map can be built.

A mobile robot has to solve two essential problems in navigation, namely localisa-
tion (knowing where it is) and mapping (building a map of its environment). As
has been pointed out by earlier researchers, the problem of localisation and map-
ping is a chicken and egg problem: to localize the robot based on uncertain land-
mark estimates, it must update landmark estimates based on noisy sensor mea-
surements taken from the uncertain robot position. Therefore, the two problems
are typically treated simultaneously (Simultaneous Localisation And Mapping).
SLAM has become one of the most widely researched subfields in mobile robotics
since the early 1990s, originally developed by Leonard and Durrant-Whyte [1991],
building on the earlier seminal work of Smith et al. [1987]. Nowadays, SLAM can
be considered a solved problem at a theoretical and conceptual level. However,
SLAM for dynamic, complex and large scale environments, using vision as the
only external sensor, is still an active area of research. This is referred to as
visual SLAM (vSLAM). Since 2005, vSLAM has received much attention in the
computer vision community because of the increasing ubiquity of cameras, and
advanced computing technologies. More recently, in addition to robotics appli-

cations, vVSLAM is starting to be implemented in mobile cameras and used in
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Augmented Reality (AR), wearable computing and the automotive sector.

Probabilistic solutions to vSLAM have been studied extensively within the robotic
community. These involve finding an appropriate representation for both the ob-
servation model and the motion model. Practical real-time monocular SLAM
was first demonstrated by Davison [2003], using the Extended Kalman Filter
(EKF) in an indoor environment. The EKF SLAM algorithm is formed by com-
bining the robot pose and the positions of landmarks into a single state vector,
and linearising the observation and motion model at each Kalman filter update.
However, the EKF has a O(n?) computational complexity per step, where n is
the number of landmarks. This complexity stems from the fact that its full state
EKF maintains a full n X n covariance matrix for n landmarks, all of which must
be updated even if just a single landmark is observed. Although this system is
accurate and robust, it cannot be used in a large-scale environment because of

the unacceptable computational overhead.

For this reason, Murphy [1999] introduced Rao-Blackwellised particle filters (RBPFs)
as an effective way of solving the SLAM problem. Unlike the Kalman filter and
derivatives, particle filters do not assume Gaussian noise, and are not subject
to the linear hypotheses of a system. This framework has been extended sub-
sequently by Montemerlo et al. [2002] with a view to approaching the SLAM
problem with landmarks, a method termed as FastSLAM. It has the advantage
that computational complexity of filter updates can be reduced to O(n) via the
Rao-Blackwellisation of the filter: but the absence of an explicit full covariance

matrix can make loop closing more difficult.

Sim et al. [2005] firstly presented a SLAM system based on stereo vision, combin-
ing the FastSLAM algorithm and local features of images in large-scale environ-
ments. Eade and Drummond [2006] proposed a monocular framework based on
FastSLAM, which decomposes the SLAM problem into a robot localisation prob-
lem, and a separate collection of landmark estimation problems. This algorithm

combines particle filtering for localisation with Kalman filtering for mapping.

An alternative technique for solving the SLAM problem is to apply algorithms

used in the computer vision and photogrammetry research community for Struc-

13



ture from Motion (SFM). In general, SFM refers to the problem of recovering 3D
information, such as the camera position and orientation, and the position of the
landmarks (the map being composed by the set of landmarks), from a series of
unordered 2D images: this is generally formulated as a computationally expen-
sive off-line process. SFM-based techniques typically maintain the full trajectory
of the camera, and use optimisation to find the best trajectory and landmark

locations.

Techniques such as bundle adjustment (BA), which performs batch optimization
over selected images from the live input, are generating a great deal of interest
in the robotics community. It has been shown by Strasdat et al. [2010b] that
optimization-based approaches provide better performance over filter-based ap-
proaches for the same computational work in purely vSLAM. BA has been used in
many real-time systems as an optimisation technique for visual odometry (Nistr
et al. [2004]) - which only recovers the camera trajectory, without explicitly creat-
ing a map - as well as for vSLAM (Davison [2003]; Karlsson et al. [2005]; Klein and
Murray [2007]; Mouragnon et al. [2006]; Se et al. [2002]; Strasdat et al. [2010a]).
All approaches mentioned above are either based on a single camera (whether
forward-facing or omnidirectional) (Davison [2003]; Karlsson et al. [2005]), or

multiple cameras in a stereo configuration (Nistr et al. [2004]; Se et al. [2002]).

Mei et al. [2009, 2010] presented an RSLAM system, aiming to real-time large
scale SLAM based on stereo vision, which combines accurate visual odometry with
constant-time large-scale mapping, appearance-based loop closure detection, and
pose graph optimisation if required. Another, similar system called FrameSLAM
has been developed by Konolige and Agrawal [2008]: this was further improved
in (Konolige et al. [2010]) by adding a vocabulary tree to provide candidate loop
closures to the RANSAC stage.

In order to allow the use of batch optimization techniques for real-time opera-
tion, Klein and Murray [2007] proposed to perform map building and localization
separately, processed in parallel threads on a dual-core computer. However, this
framework is not well-adapted to large scale exploration due to its high compu-

tational complexity.
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RatSLAM is a bio-inspired single-camera SLAM system developed by Milford
et al. [2004], using a computational model of the rodent hippocampus, which is
distinct from other probabilistic SLAM systems presented so far. The approach
uses a combination of a three-dimensional competitive attractor network and
visual scene matching to form a location hypothesis. This approach was later
adapted by Prasser et al. [2005] to be usable in outdoor environments, and works
well on images obtained from cheap cameras. RatSLAM has successfully mapped
many large-scale indoor and outdoor locations (Milford and Wyeth [2008b]), and
has been combined with other approaches in order to address the challenging

problem of navigation at different times of the day (Glover et al. [2010]).

Appearance-based SLAM systems augment visual localisation methods with the
ability to determine whether an observation comes from a previously unvisited

place.

One of the most successful algorithms is FAB-MAP (Fast Appearance-based Map-
ping), proposed by Cummins and Newman [2008a]. Instead of approaching the
SLAM problem from a geometric perspective, FAB-MAP performs localization
and mapping entirely in appearance space. A rigorous probabilistic approach to
image matching has allowed FAB-MAP to be applied to a 1000km dataset with
robust recognition of known places despite visual ambiguity between spatially
distinct places. Maddern et al. [2011] reported an improvement to the robustness
of FAB-MAP by incorporating odometric information into the place recognition
process. Cadena et al. [2010] combined appearance-based place recognition with
Conditional Random Fields (CRF) to filter out mismatches caused by visual am-

biguity.

In a more recent line of research, Kawewong et al. [2011] presented an online and
incremental appearance-based SLAM named PIRF-Nav, which can handle both
perceptual aliasing and dynamic changes of places in highly dynamic environ-
ment using omnidirecional images. Maddern et al. [2012] developed a Continuous
Appearance-based Trajectory SLAM (CAT-SLAM), which augments sequential
appearance-based place recognition with local metric pose filtering to improve

the frequency and reliability of appearance-based loop closure.
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Milford and Wyeth [2012] presented a solution to visual navigation under weather
or seasonal changes, named SeqSLAM. Instead of matching a single previously
seen image given the current frame, they calculated the best candidate matches
within every local navigation sequence, and then performed the localisation by
recognising coherent sequences of the best candidate matches. In (Milford [2013]),
the author studied the effect of the length of the matching sequences on the
SeqSLAM algorithm performance. However, the SeqSLAM algorithm is based
on an assumption of trajectory invariance, and is sensitive to the length of the

sequence.

Recently, Maddern and Vidas [2012]; Magnabosco and Breckon [2013]; Neubert
et al. [2013] proposed to solve the vSLAM problem based on both visible and
thermal imaging. Thermal and visible imaging provide complementary informa-
tion derived from the same scene: combining them can increase the landmark
detection accuracy and the loop closure detection reliability, allowing a continu-

ous SLAM operation across different times of day:.

2.2 Image features and visual vocabulary

One way to characterise an image is based on extraction and description of signif-
icant points or regions. This is a widely applied technique for image retrieval and

object recognition, as well as for robot localisation and loop closure detection.

Image local feature extraction consists of detection and description phases. The
local feature detector serves to locate points which differ significantly from their
immediate neighbourhood, while the feature descriptor captures the information
in a region around these detected feature points. There is no consensus on the
question of which interest point detector and descriptor are more suitable for
vSLAM. Ideally, the feature detector should find salient regions in such a man-
ner that they are repeatably detected despite modest changes in illumination,

translation, orientation and scale.

Harris Corner Detector and Harris-Laplace (Harris and Stephens [1988]; Mikola-
jezyk and Schmid [2001]), Hessian Detector and Hessian-Laplace (Beaudet [1978];
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Mikolajczyk and Schmid [2004]), Difference of Gaussian (DoG, SIFT Detector)
(Lowe [1999, 2004]), Fast-Hessian (SURF-Detector) (Bay et al. [2008]), Center-
Surround Extremas (CenSurE) (Agrawal et al. [2008]), Features from Accelerated
Segment Test (FAST) (Rosten and Drummond [2006]), and Maximally Stable Ex-
tremal Region (MSER) (Matas et al. [2004]) are some prominent feature detectors
that have been applied to vision-based localisation and mapping tasks. Different
detectors offer different properties as required by their varying usage scenarios.
For example, the Harris Corner Detector was explicitly designed for geometric
stability: whereas SIFT keypoints have been shown to be robust to changes in
scale, image plane rotations, illumination, and camera noise; the FAST corner

detector is computationally efficient, but offers lower repeatability.

Similarly, the image descriptor should be distinctive, concise and robust to image
distortions: its performance which can be compared with other descriptors with
reference to a distance metric. Many methods for feature descriptions have been
suggested. (See, for example, Bay et al. [2008]; Calonder et al. [2010]; Lowe [1999,
2004]; Mikolajczyk and Schmid [2005]; Rublee et al. [2011]).

Many global features have also been proposed to describe the image content.
These methods use all pixels to compute a unique signature for the image. Con-
sequently, their use is straightforward: typically, they utilize color property, tex-
tures, or a combination of both. For example, Rubner et al. [1997] proposed a
Histogram search algorithm to characterise an image by its colour distribution;
Menegatti et al. [2004a] applied the Discrete Fourier Transform (DFT) to build
image descriptors for panoramic images; and Kunttu et al. [2004] introduced a
Fourier-based descriptor presented in multiple scales for image retrieval tasks.
Other examples include (Blaer and Allen [2002]; Bradley et al. [2005]; Fazi-Ersi
and Tsotsos [2012]; Itti et al. [1998]; Ulrich and Nourbakhsh [2000]; Weiss et al.
[2007al; Zhou et al. [2003]).

In the rest of this section, we review some popular image descriptors that have
been exploited by the robotics research community, and assign them to one of
two classes: local feature descriptor, or global appearance descriptor. We also
review visual vocabulary techniques that improve the efficiency of image retrieval

process based on local feature description. The performance evaluation of differ-

17



ent detectors and descriptors are given in (Huynh et al. [2009]; Mikolajczyk and
Schmid [2005]; Schmidt et al. [2010]; Winder and Brown [2007]).

2.2.1 Image descriptors

Amongst the various local feature extraction and description methods, SIFT and
SURF dominate the visual descriptor choice. Both exhibit great performance
under a variety of image transformation, and are thus a good choice for the first

two descriptors to review.

SIFT (Scale-Invariant Feature Transform) was developed by Lowe [1999] for im-
age feature extraction in object recognition applications. SIFT extracts features
that are invariant to image scaling, rotation, and camera view-point changes.
The SIFT descriptor represents local image patches around interest points char-
acterised by coordinates in the scale space, in the form of histograms of gradi-
ent directions. The 128-dimensional SIF'T descriptors have high discriminative
power, while remaining robust to local variations. These characteristics make

them highly suitable for localisation.

A successful example of the approach based on SIFT features was described by
Se et al. [2001a,b, 2002, 2005]. They built a database map with distinctive SIF'T
landmarks from unmodified environments. Without any prior knowledge about
its position, the robot localised itself by matching visual landmarks in the current
image to a database map. In order to reduce computation time, a smaller vector
containing 16 elements rather than 128 (Lowe [1999]) was used to characterise a
SIFT feature. The Euclidean distance measure between the descriptors of two
features was computed to check whether they were below a matching threshold.
Jensfelt et al. [2006] presented a framework that was able to extract landmarks
for SLAM using Harris-Laplace corner detection and a modified SIFT descriptor.
The rotationally ‘variant’ SIFT descriptor was developed in order to make the
landmarks matching procedure faster. This is achieved by avoiding canonical

orientation at the peak of the smoothed histogram.

Currently, there are many variants that improve on the performance of the orig-
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inal SIFT algorithm. For example, PCA-SIFT (Ke and Sukthankar [2004]) ap-
plies Principal Components Analysis (PCA) to the normalized gradient patch
rather than the gradient histogram in order to get a compact descriptor. GSIF'T
(Mortensen et al. [2005]) integrates global texture information into the basic
SIFT, while CSIFT (Abdel-Hakim and Farag [2006]) adds color invariance, and
ASIFT (Morel and Yu [2009]) incorporates invariance to affine transformations.
GPU-SIFT (Sinha et al. [2006]) is an implementation of SIFT for GPU (Graphics

Processing Unit), and processes pixels/features in a parallel manner.

Speeded-Up Robust Features (SURF) was developed by Bay et al. [2008] and is
a scale- and rotation-invariant local detector and descriptor. The main motiva-
tion for the development of SURF was to approximate the performance of SIFT
while being more computationally efficient. This is obtained by using integral
images, a Hessian matrix-based measure for the detector and a distribution of
Haar wavelet responses for the descriptor. In the work of Valgren and Lilienthal
[2008], an incremental spectral clustering (ISC) algorithm was applied to segment
continuous space into topological nodes, and local feature matching was used for
localisation. This work focused on robustness to seasonal changes and differing
weather conditions in large scale indoor/outdoor environment. SURF variants
were employed as local feature descriptors of high-resolution panoramic images.
These ignore the rotational invariant characteristic of SURF. Epipolar constraint

was used to improve matching performance at little extra cost.

Gradient Location and Orientation Histogram (GLOH), proposed by Mikolajczyk
and Schmid [2005], is an extension of the SIFT descriptor, and also makes use of
a local position-dependent histogram of gradient orientations around an interest
point. It is designed to increase robustness and distinctiveness. GLOH is differ-
entiated from SIFT in three main aspects: first, instead of the rectangular grid
used in the regular SIFT, GLOH computes the descriptor over a log-polar location
grid; secondly, the gradient orientation is quantised into 16 bins as opposed to 8
bins; and finally, the dimensionality of the descriptor is reduced by using principal
component analysis (PCA). Consequently, GLOH results have been shown to be

more distinctive, but also more expensive to compute than SIFT.

Linde and Lindeberg [2004] designed another histogram-like image descriptor,
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referred to as high dimensional Composed Receptive Field Histograms (CRFH),
which was considered an effective image description for place recognition. A
CRFH is a multidimensional statistical representation of the occurrence of the
responses of several image descriptors applied to the whole image. It can be
computed from several types of image descriptors, such as normalized Guassian
derivatives, differential invariants (mainly the normalised gradient magnitude,
the normalised Laplacian and the normalised determinant of the Hessian) and
chromatic cues obtained from RGB images. Each dimension corresponds to one
descriptor, and the cells of the histogram count the pixels generating similar
responses under all descriptors. This approach permits the capture of various

properties of the images as well as relations that occur between them.

More recently, a few lightweight feature descriptors (binary descriptors), which
are targeting real-time applications processing richer data at higher rates, have
attracted the attention of researchers ( Calonder et al. [2010]; Leutenegger et al.
[2011]; Ortiz [2012]; Rublee et al. [2011]; Yang and Cheng [2014a]).

Binary Robust Independent Elementary Features (BRIEF) was the first binary
descriptor published (Calonder et al. [2010]). It is a general-purpose feature de-
scriptor that can be combined with arbitrary detectors. BRIEF is based on a
relatively small number of intensity difference tests to represent an image patch
as a binary string. Given a pair of points, if the intensity value of the first point
is larger than the intensity value of the second point, the bit corresponding to
this given point pair is assigned to value 1, else 0. Finally, a string of boolean
values can be retrieved after intensity comparison of a number of pairs. BRIEF
is robust to typical photometric and geometric image transformations, but not to
viewpoint changes. It does not use an elaborate sampling pattern, the sampling
scheme being based on uniform and Gaussian random sampling using different
distribution parameters, determined experimentally. As with all the binary de-
scriptors, the distance measure of BRIEF is the number of the different bits
between two binary strings, which can also be computed as the sum of the XOR
operation between the strings (or the number of the wrong correspondences).
Such similarity measure can be computed very efficiently (much faster than the

commonly used L2 norm).
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The ORB (Oriented FAST and Rotated BRIEF, Rublee et al. [2011]) is one of the
extensions of the basic concepts of BRIEF, based on the FAST detector (Rosten
et al. [2010]; Rosten and Drummond [2006]). It addresses the shortcoming of
the basic form of BRIEF mentioned above and improve upon it in two respects.
The first improvement is increased robustness to viewpoint changes based on
computing the unambiguous orientation from the FAST corner. The second im-
provement aspect is learned sampling pairs, achieved by using machine learning to
de-correlate BRIEF features under rotational invariance. This makes the nearest

neighbour search during matching less error-prone (Schmidt et al. [2013]).

BRISK is another extension of BRIEF, proposed by Leutenegger et al. [2011]. Tt
presents some differences from both BRIEF and ORB in employing a sampling a
pattern that is composed of concentric rings in which points are equally spaced.
The FREAK (Fast Retina Keypoint, Ortiz [2012]) descriptor is also inspired by
BRIEF. It suggests the use of a biologically-inspired retinal sampling pattern,
which is also circular, but with the difference of having a higher density of points
near the centre. This sampling pattern allows for the use of a coarse-to-fine
approach to feature description. The first sampling pairs mainly compare points
in the outer rings of the pattern, while the later pairs mainly compare points in
the inner rings of the pattern. This is similar to the way in which the human
eye operates. FREAK then tries to learn the pairs by maximizing variance of the
pairs and taking pairs that are not correlated. Later, a cascade approach is used
to further speed up the matching, allowing for faster rejection of false matches

and shortening of the computation time.

The LDB (Local Difference Binary, Yang and Cheng [2014a]) descriptor follows
the same basic principle as BRIEF, but using a region-based binary test instead of
the single pixel method to compute the binary strings. In addition to the average
intensity, the average of horizontal and vertical derivatives of equal-sized spatial
regions are both compared, providing a more complete description than BRIEF.
A three-level grid scheme is applied to encode the spatial structure at different
scales. The LDB descriptor is obtained by concatenating the selected bits. To
further enhance the distinctiveness of LDB, Yang and Cheng [2014b] adopt a bit

selection scheme extended from the AdaBoost to automatically select a set of
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salient bits. The goal of this scheme is to maximize (minimize) the Hamming
distance between mismatches (matches). In addition to these local descriptors,
there are ways in which to provide a global description of the information in a
given scene. In the rest of the subsection, we review some popular description

methods given in the literature.

The Discrete Fourier Transform (DFT) of an image can be used as a global
descriptor of the scene that contains information about the dominant structural
patterns, and is invariant with respect to the position of the objects. In particular,
the Fourier transform of omnidirectional images exhibits the property of being
invariant to image rotations, so that the orientation of the robot does not need

to be taken into consideration in the matching phase.

There is another global descriptor, the Fourier-Mellin Invariant (FMI) descrip-
tor introduced by Casasent and Psaltis [1976] that relies on the Fourier-Mellin
Transform (FMT). The FMT takes advantage of properties of the Fourier and
Mellin Transforms, which in combination are invariant with respect to transla-
tion, rotation and scale change. It has been applied by Bulow and Birk [2009];
Goecke et al. [2007]; Kazik and Goktogan [2011] for robot localisation purposes.
Both of the above-mentioned descriptors will be revisited in Section 2.2.3.1 as

data reduction techniques.

In order to mimic the human ability to immediately recognise the meaning (gist)
of a scene, many researchers assume a direct mapping onto scene primitives in
absence of the identity of the objects present. Oliva and Torralba [2001] pro-
posed the Gist descriptor to address this problem. They proposed that the spa-
tial structures of a scene can be described by several important statistic of the
scene. Specifically, the Gist descriptor encodes the amount, or strength, of verti-
cal/horizontal lines in an image, which can contribute to matching images with
similar distributions of lines and textures. The Gist descriptor of an image is
built from the responses of steerable filters at different scales and orientations.
Several models utilising different types of Gist of a scene have been presented in

mobile robotics, and this will be reviewed again in Section 2.3.1.4.
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2.2.2 Visual vocabulary

Place recognition based on matching numerous local features consumes too much
time for use in real-time systems. Consequently, the idea of a visual vocabulary
method inspired by object recognition and text retrieval techniques built upon
local invariant features has frequently been applied to this problem. The visual
word vocabulary is established by clustering a large set of local features extracted
from a training image corpus, in which the visual words are the cluster centers
corresponding to informative regions in a image. A histogram of the frequency
of visual words is used to summarize the entire image, by counting how many
times each of the visual words occurs in the image. Performance in the retrieval

of objects depends heavily on the distinctiveness of the vocabulary.

The first application of visual vocabulary to object retrieval in videos was con-
ducted by Sivic and Zisserman [2003]. This idea was later extended by Nistér
and Stewénius [2006] utilizing hierarchical k-means to recursively subdivide the
feature space in a tree fashion, which allows the image matching to be signifi-
cantly faster in a large database. Schindler et al. [2007] proposed a system for
large-scale place recognition using these tree structures. Many recent appearance-
based localisation and loop closure methods therefore rely on visual bags of words
based on SIFT or SURF features. Wang et al. [2005] employed the idea of the vi-
sual vocabulary relating to grey images to perform global localisation. The visual

vocabulary is learned off-line from SIFT descriptors using the k-means algorithm.

The visual vocabulary technique was also adopted in (Cummins and Newman
[2008a]) where a principal probabilistic approach for appearance-based place
recognition was proposed. The system takes into account the probabilities of
features appearing together, and is able to calculate the probabilities that two
images show the same place. This allows the system to recognise known places de-
spite perceptual aliasing. A recursive Bayes estimation was used for the location
estimation. The loop closure problem was considered over kilometres of travel,
in which the matching between current and reference images was performed by
detecting the presence or absence of features in each image from a visual vocab-

ulary, based on quantized SURF descriptors. In this work, the generative model
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of appearance is learned in an offline process, and the vocabulary dictionary is

offline built as well, as the computational complexity can be prohibitive.

Filliat [2007] chose instead to described an interactive qualitative localisation
system in which the visual vocabulary is learned online along with the image
acquisition, in an incremental manner. Three different features, including SIFT
keypoints, colour histograms and a normalised grey level histogram is extracted
from images taken from a random orientation, and the corresponding words found
in the dictionary. A two stage voting scheme is used to estimate the location.
This process is repeated until either the quality of the vote reaches a given thresh-
old, or a given number of images is reached. If the quality threshold has been
reached, the place is then considered recognized: if no recognition is made and the
limit number of images has been reached, non-recognition is considered achieved.
Epipolar geometry is used to reject outliers when perceptual aliasing is present
in the environment. In order to avoid exhaustive image-to-image comparisons of
the visual features, the inverted index associated with the dictionary was adopted
during the computation of the likelihood for the loop closure. However, using a
simple linear search algorithm entailed that the size of the manageable environ-
ments was quite limited. Consequently the method was only validated for an
indoors environment. Similarly, Angeli et al. [2008b] designed a simple online
method to detect loop closure based on the BoWs scheme through the incremen-

tal creation of a visual vocabulary in a probabilistic framework.

Most recently, Mariottini and Roumeliotis [2011] have presented a strategy for
vision-based localisation using a vocabulary tree: this allows the robot to navi-
gate in a large-scale image map. This image map is represented as a graph, in
which nodes correspond to training images, and links connect similar images. In
this work, the sequence of distinctive images is exploited to disambiguate the
localisation ambiguity. A place recognition system using BoWs combined with
Conditional Random Fields (CRF) was proposed in Cadena et al. [2010], where
CRF-Matching was applied to associate image features. An improvement to this
system that considers features in the background of the image obtained was re-
ported by Cadena et al. [2012]. When the system finds several memorised images

that match the current image, the 3D information is then exploited to solve mis-
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matches.

2.2.3 Dimensionality reduction techniques

Dimensionality reduction is the process of searching for a low-dimensional man-
ifold embedded in the high-dimensional data, and can be divided into feature
selection and feature extraction. A problem that confronts many robotics appli-
cations is the large amount of data to be processed relative to limited computa-
tional resources. Therefore, there is growing demand for image descriptors that

are memory-efficient, and offer rapid calculation and image matching.

2.2.3.1 Fourier transform

Several researchers have explored the use of more general dimensionality reduc-
tion techniques to represent the input image set, such as the Fourier transform
decomposition of the image content into the basis functions. The Fourier coeffi-
cients of the low frequency components were used by Ishiguro and Tsuji [1996];
Yagi et al. [1998], and Menegatti et al. [2003, 2004a,b] to compute the similarity
between a reference image and the current input image, which was computed from
a discrete Fourier transform of an unwrapped omnidirectional image. The sys-
tem can calculate the position of the robot with an accuracy that could be varied
by choosing different number of Fourier components to compare in the similar-
ity function. Specifically, a broad localization could be obtained by calculating
the first few frequency components, while a more precise matching could be ac-
quired by extending calculation to higher frequency components in the similarity

function.

In the work of Ferdaus et al. [2008], colour histograms and the Fourier transform
technique of image comparison were both employed for place recognition. In
order to localise the mobile robot, a discrete Bayes filter was used to represent
probability distributions: the training image with the highest probability value
identifies the probable location of the mobile robot in the environment. Analysis

of visual information was conducted in the frequency domain using the Fourier-
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Mellin Transform (FMT) to obtain rotation, translation and scaling between
consecutive images. These similarity transforms were calculated through phase

correlation and used to update the rover position and heading estimates.

2.2.3.2 Principle Component Analysis (PCA)

Another dimensionality reduction technique is Principal Component Analysis
(PCA) invented by Pearson [1901]. PCA finds the principal components of data
by calculating eigenvalues and eigenvectors of the covariance matrix. It is able
to linearly project high-dimensional image descriptors onto a low-dimensional

subspace, retaining only the principal image components.

Jogan and Leonardis [1999] employed an eigenspace model to build a compact
representation of environments. The image set was represented as points in the
eigenspace by estimating the most significant eigenvectors. The researchers used
the nearest neighbour to estimate the similarity of images, and four criteria were
defined to measure the recognition rate for localisation. However, the limitation
of this method is that it is not sufficiently robust against occlusions and lighting

changes.

The first attempt at dimension reduction for local features was PCA-SIFT, pro-
posed by Ke and Sukthankar [2004]. The original SIFT descriptor is represented
as a 128 dimensional vector: this can be reduced to 36 dimensions, by performing

PCA on the gradient patches of an image.

Krése et al. [2000] built a representation of the appearance by applying PCA to
the images, and then representing places as a Gaussian density, which enables
Markov localization. PCA is used for the same purpose in (Artac et al. [2002];
Gaspar et al. [2000]; Valenzuela et al. [2012]). Gaspar et al. [2000] proposed a
scheme in which the greyscale omnidirectional image was compressed by building
a reduced-order manifold using PCA. At place recognition time, the current image
is projected onto the components of the PCA space, and a qualitative localisation
is obtained by detecting the nearest neighbors. PCA has also been applied by
Valenzuela et al. [2012] to reduce the SIFT and SURF feature descriptors.
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Artac et al. [2002] implemented an incremental eigenspace model for represent-
ing panoramic images in order to allow for incremental learning and adaptation
without the need to retain all the input data, mitigating the increasing demands
on memory capacity and computational complexity as the number of input im-
ages increases. A similar technique was also adopted to compress image data
with a view to saving memory in (Ishizuka et al. [2011]). The Euclidean distance

between points is used as the measure of image similarity in the eigenspace.

2.2.3.3 Other approaches

While PCA is one of the most widely-used linear dimensionality reductions, this
technique will not work given the scenario that data are distributed on a highly
nonlinear curved surface, i.e., manifolds. A nonlinear dimensionality reduction
technique called Isomap was designed by Tenenbaum et al. [2000] to preserve
the neighbourhood of points in a low-dimensional manifold. Ramos et al. [2012]
applied Isomap to reduce image patches to a low-dimensional space in which
further statistical learning methods are then used to create a probabilistic density
for each place. Place recognition is performed by computing the log-likelihood of

an entire image over each place model.

Image descriptor quantisation techniques are also utilised for dimensionality re-
duction purposes. Generally, each number of elements of the floating-point vector
is quantised so that it falls within a prescribed integer range limit. Tuytelaars and
Schmid [2007] applied quantization to the SIFT descriptor: the resulting vector
is only 4 bits per coordinate. Winder et al. [2009] introduced an image descriptor
pipeline in which the combination of PCA and quantisation is used to compress
the representation of descriptors. Chandrasekhar et al. [2009a] demonstrated a

compressed histogram of gradients (CHOG) descriptor using a tree-code method.

More recently, many efficient approaches have been developed to find binary rep-
resentation of high-dimensional data while maintaining their semantic similarity
in the Hamming space. This is usually performed by thresholding the vectors af-
ter multiplication of the descriptors with a projection matrix, and retaining only

the sign of the results. Such methods combine the effects of dimensionality re-
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duction and binarisation, greatly hastening the matching process while requiring
less memory. The similarity between descriptors can be computed very efficiently

either using hash tables or efficient bit-count operations.

Torralba et al. [2008] proposed a scheme that uses Locality Sensitive Hashing
(LSH) to learn compact binary codes from the Gist descriptor. Salakhutdinov
and Hinton [2007] used nonlinear Neighborhood Component Analysis to bina-
rise the Gist descriptor. Strecha et al. [2012] developed a scheme that uses hash
functions to computer a binary descriptor that is robust to illumination and view-
point. Hua et al. [2007] proposed an algorithm for learning local image descriptors
using Linear Discriminant Analysis. Takacs et al. [2008] reduced the bit rate of
SURF descriptors by using quantisation and entropy coding. Chandrasekhar
et al. [2009b] addressed the compression of SIFT and SURF descriptors using
transform coding. Yeo et al. [2008] used coarsely quantised random projections
on SIFT descriptors to build binary hashes: descriptors are then compared using

the Hamming distance between binary hashes.

2.3 Place recognition

Place recognition is one of the central issues in mobile robotics, determining the
ability of a robot to localize itself in its environment. Vision-based place recogni-
tion methods usually consist of two procedures. Initially, images and prominent
features of the environments are recorded as reference images. The reference im-
ages are labelled with some places. Afterwards, image comparisons are used to
detect whether the current captured image can be associated with a known place.
Recently a variety of approaches have received attention. These methods have
employed either regular forward-facing cameras (Filliat [2007]; Kosecka and Li
[2004]; Torralba et al. [2003]) or omnidirectional sensors (Artac et al. [2002]; Bel-
lotto et al. [2008]; Blaer and Allen [2002]; Gaspar et al. [2000]; Liu and Siegwart
[2014]; Menegatti et al. [2003]; Murillo et al. [2007]; Thompson et al. [2000]; Ul-
rich and Nourbakhsh [2000]; Valgren and Lilienthal [2008]; Wang and Lin [2011])

to acquire images.
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Several approaches to vision-based place recognition have been proposed during
the past two decades, motivated by appearance-based approaches to object recog-
nition. The main concerns for these methods have been: how best to represent
the environment from sensor information to guarantee invariance under changes
of illumination, pose, viewpoint, scale; how to achieve robustness to partial occlu-
sion, clutter, and dynamic backgrounds; and how to ensure efficient and accurate

image matching.

Some authors extracted a set of features - such as points, lines, and contours
(Booij et al. [2007]; Fei-Fei and Perona [2005]) - to find correspondences between
the current captured image and a reference image or set of reference images. The
accuracy of these methods is highly dependent on the features used for matching,
and the robustness of the feature descriptor. Other authors chose instead to use
direct comparison of two images pixel by pixel, or to extract a signature from the
raw images and then calculate the image similarity to perform place recognition
tasks (Gross et al. [2003]; Li et al. [2000]; Pretto et al. [2010]). The disadvantage of
these methods for image matching is that they require large amounts of memory
and are computationally expensive. The combination of both methods provides
a better solution in (Kosecka and Li [2004]; Rostami et al. [2013]).

In (Kosecka and Li [2004]), two different image descriptors and their associated
distance measures were compared. The first descriptor is the gradient orientation
histograms: the second is a set of local scale-invariant features. The experi-
mental results show that the local scale-invariant features outperform orientation
histograms, due to their superior discrimination capabilities and better invariance

properties with respect to viewpoint changes.

Rostami et al. [2013] presented an integrated feature extraction model based on
salient line segments (SLS), in which the local feature vectors are formed from the
frequency of the appearance of SLSs in the finer scale, while the global features are
derived from the coarser scales of the SLSs. In this model, the salient lines of an
image are first obtained in four directions by applying the center-surround filter
and color opponency technique. The SLS of the image patches is then extracted
by creating a histogram of gradients in the receptive cells. Finally, multi-class
SVM with a Radial Basis Function (RBF) kernel is used to classify the input
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image for place recognition. However, the authors reported that their method

could not deal with the presence of shadows and large occlusions.

2.3.1 Solutions to the place-recognition problem

Solutions to the place recognition problems might be divided into four main
types: histograms-based methods, object-based methods, region-based methods,

and context-based methods.

2.3.1.1 Histograms

Histograms of various image properties (e.g. colour or image derivatives) have
been widely used in appearance-based place recognition. The concept of using
colour histograms as a method of matching two images was pioneered by Swain
and Ballard [1991]. Colour histograms of omnidirectional images were originally
utilised in (Ulrich and Nourbakhsh [2000]) to perform place recognition. They
used six one-dimensional histograms for each image, three for the HLS (hue,
luminance, saturation) colour bands and three for either the RGB or normalised
RGB colour bands. Colour images were classified by processing each colour band
separately using nearest-neighbour learning, and the results of classification from
all colour bands were then combined with a simple scheme based on unanimous
voting. The recognition phase was done by comparing images acquired online with
the images of neighbour nodes using histogram matching on individual colour
bands. Histograms were compared with Jeffreys divergence. This method is
inspired by image retrieval techniques, but is more efficient because comparison

is only made with images in the neighbourhood of the current location.

The work studied in (Blaer and Allen [2002]) is closely similar to that in (Ulrich
and Nourbakhsh [2000]). The primary difference between the two works is that
the former addresses the problem of outdoor environmental navigation involv-
ing illumination changes. In order to reduce the impact of lighting variation in
uncontrolled environments, Blaer and Allen [2002] used a normalisation process

on the images before histograming them. The percentage of each colour at that
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particular pixel, regardless of the overall intensity of that pixel, was used for

histograming.

The most commonly used histogram is the colour histogram, which is the repre-
sentation of the distribution of colours values in the image. It has the advantages
of rotation and translation invariance about the viewing axis. However, colour
histograms can simply express the global colour information of an image, without
spatial relationship. They may give ambiguous results in environments with uni-
form colour and luminance characteristics, which often result in high similarity

values among images that are very different but exhibit similar colour histograms.

To address this shortcoming, Zhou et al. [2003] used edge density, gradient magni-
tude and textures in addition to colour information to set up a multidimensional
histogram. The recognition step is to match a multidimensional histogram of
the current image with candidate multidimensional histograms in the sample
database. The Jeffrey divergence was chosen as the distance metric to evalu-
ate the similarity between the current image and any given histogram from the
database. The authors evaluated their method on an intelligent wheelchair in

their lab environment, where the best percentage of correct self-localisation was

82.9%.

Blaer and Allen [2005] developed their earlier work and presented a hybrid method
for localisation. Five levels of resolution for each image were used, instead of one
in colour histogramming. The multiresolution histograms provided additional
information about spatial relationships in the scene. First, the original image
was convolved with a 5x5 Gaussian kernel to blur it: then the blurred image
was sub-sampled down to the lower resolution. The resulting multiresolution

histogram is a set of five 256-bucket sub-histograms.

In (Kosecka et al. [2003]), appearance in indoor environments was characterised
by a simple gradient orientation histogram. In order to obtain a more robust
measure, the gradient orientation histograms was computed only for the pixels
with magnitude above an empirically-determined threshold. Once the features
had been selected using gradient orientation histograms, the y? distance metric

was used to compare different features. In addition, five sub-images, including
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one in the center and four quarters of the original image, were considered for
comparison when the confidence level was below the given threshold in order to

refine the classification.

Pronobis et al. [2006] modelled a visual place recognition technique based on
composed receptive field histograms in combination with a large margin classi-
fier (Support Vector Machines, SVMs) and applied this to indoor environments.
High-dimensionality histogram features were used as a global image descriptor,
which was computed from second order normalised Gaussian derivative filters
applied to the illumination channel. The histograms consisted of six dimensions,

with 28 bins per dimension.

In more recent work, spatial PACT (Principle Component Analysis of Census
Transform histograms), a new representation for recognising instance (“I am in
Room 113”) and categories (“I am in an office”) of places was introduced in (Wu
and Rehg [2008]). PACT is a global representation that extracts the Census
Transform (CT) histograms for several image patches organised in a grid and
applies PCA to the resulting vector. CT is a non-parametric local transform
designed for establishing correspondences between local patches, which compares
the intensity values of a pixel with its eight neighbourhood pixels. A histogram

of the CT values encodes both local and global information of the image.

Similarly, another interesting recent effort focuses on the classification task to
distinguish places in the environment (Fazi-Ersi and Tsotsos [2012]). In this
work, histograms of oriented uniform LBPs (Local Binary Patterns ) are extracted
from images to categorise places indoors and outdoors. Wang and Yagi [2013]
proposed a new image feature, the Orientation Adjacency Coherence Histogram
(OACH), to carry out coarse topological localisation. SIFT descriptors are then
used for the fine localisation. The system works well in both indoor and outdoor

environments.
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2.3.1.2 Object-based methods

Much research on vision-based place recognition tends to focus on landmark-
based approaches. Such methods rely on either artificial or natural features in
order to extract information about position. Place recognition is performed by
finding matches between the candidate landmarks visible in the current image and
those in the database. This can be very fast and reliable if landmarks are well
designed for efficient detection and well distributed in the environment. Many
carly approaches utilised artificial landmarks (Briggs et al. [2000]; Case et al.
[2011]; Fairfield and Maxwell [2001]; Huh et al. [2006]; Sousa et al. [2009]; Yoon
and Kweon [2002]), such as reflectors, ultrasonic beacons, and traffic signs, etc..
Various features have been used as natural landmarks (Asmar [2006]; Hayet et al.
[2003]; Jennings et al. [1999]; Segvic and Ribaric [2001]; Thrun [1998]), such as
simple features (vertical edges, corners), or characteristic objects (doors, corri-

dors, and distinctive buildings).

The main problem in natural landmark-based systems is to detect and match
characteristic features from sensory inputs. The selection of features is impor-
tant, since it will determine the degree of complexity in feature description, de-
tection, and matching. Proper selection of features will also reduce the chances

for ambiguity and increase positioning accuracy.

In a sparse and indoor environment, many of the detected features correspond
to corners. One system described in (Jennings et al. [1999]) used corner features
and least-squares optimisation to find the transformation between the coordinate
frames of the robot for cooperative robot localisation. They proposed an imple-
mentation of a multi-robot navigation system that used stereo vision in dynamic
indoor environments. Segvic and Ribaric [2001] calculated the orientation of a
moving robot by finding the contour of the closed corridor in which the robot
was moving. Thrun [1998] and Asensio et al. [1999] used doors as their primary
landmarks, since doors were regular and easily distinguishable features in their
experimental environment. Their localisation algorithm is based on Markov local-
isation. In (Howard and Kitchen [1999]), the environment was described in terms

of the location of walls and doorways, and a probabilistic localisation technique
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was used for robot localisation. The system maintained a probability distribution

over the space of all possible robot locations.

The problem of selecting salient and distinctive features from gray-scale images
was addressed in (Knapek et al. [2000]). Salient features are selected with the
Harris corner detector, which is robust to small changes in view point. Potential
landmarks are characterised by a feature vector derived from its first and second
derivatives, which are ordered by distinctiveness, the most distinctive being re-
served. Recognition is then performed by nearest neighbour classification. The
most distinctive landmark is that which has the largest Mahalanobis distance

from all the others.

Thompson et al. [2000] described a system where localisation tasks were per-
formed by automatically selecting good landmarks from panoramic images and
places learning. Good landmarks are defined as those having good static and dy-
namic reliability, and that are distributed through the image. An adoption of the
biologically inspired Turn Back and Look behaviour is used to evaluate potential
landmarks. The landmark is represented by a 16x16 window. Static reliability
is determined by the uniqueness of the landmark in its neighbourhood. Uniform
distribution is guaranteed by dividing each image into 4 patches (forward, back,
left and right) and selecting the best four landmarks from each patch. Dynamic
reliability is measured by the average of the static reliabilities along a test path.
The landmarks with the highest dynamic reliability measure are used to repre-
sent the place. Matching is performed by a normalised correlation, to gain some

robustness to illumination changes.

The combination of edge, corner and colour features was used to represent the
environment locations in (Lamon et al. [2001]). Each location was denoted by a
list of characters, where the letter ‘V’ characterised a vertical edge and the letters
‘A’ ‘B, ‘C?, ..., ‘P’ represented hue bins detected by a colour patch detector.
The similarity of any two strings was given by the resulting minimum energy of

traversal, the value 0 referring to self-similarity.

Hayet et al. [2003] proposed a visual localisation strategy based on detection and

recognition of visual landmarks that are planar quadrangular objects, such as
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doors, windows, posters, cupboards, etc.. Homography rectification was applied
to obtain an invariant representation for the PCA learning stage. Asmar [2006]
developed a tree trunk recognition system which matches trees by extracting SIF'T
features within the borders of the trunks. This is achieved by segmenting quasi-
vertical structures and choosing those structures that intersect the Ground-Sky

separation line.

There are some approaches that rely on image retrieval techniques to identify the
current position of the robot. These are used to find images in a given database
that look similar to the given query image. Wolf et al. [2005] used an image
retrieval system based on local features that are invariant with image transla-
tions and limited scale as the basis of a Monte Carlo localisation technique. Li
[2006] demonstrated an approach for location recognition in indoor environments.
Reduced SIFT features were extracted to represent the individual location and
recognition was approached by feature matching between query and reference
views. The Hidden Markov Model framework was exploited to reduce the am-
biguity due to self-similarity and dynamic changes in the environment. Campos
et al. [2012] described a place recognition framework in which recognition was
conducted by finding the nearest neighbour among SIFT descriptors using mu-
tual information measurement. In ( Liu and Siegwart [2014]), the authors made
use of the color features and geometric information that were extracted from
a panoramic image to represent the environment. A Dirichlet process mixture

model (DPMM) was exploited to estimate the current localization of the robot.

Natural landmarks are flexible, easy to use and cheap: however, they are also often
sparse and unstable. Artificial landmarks are simple and suited for localisation
and place recognition, especially in environments that are impoverished in the
sense that unique natural landmarks are lacking. Artificial landmarks can be
predefined, and this tends to reduce the complexity of the localisation algorithms.
Researchers have used different kinds of patterns, coloured marks, 1D or even 2D
barcodes, resorting to geometrical constraints and the associated techniques for
position estimation. Once the landmarks are identified, the 3D position and
orientation of the landmarks relative to the on-board camera can be estimated,

and, consequently, the robot position and orientation relative to the landmarks.
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A self-localisation technique based on colour pattern recognition was proposed
by Yoon and Kweon [2002]. The system used colour image processing to find
coloured markers, which consist of symmetrical and repetitive structures. To
make each landmark distinguishable from the others, and thus to eliminate false
positives for marker recognition, multiple colours having maximum distance in

the chromaticity colour space were selected for each landmark.

Jang et al. [2002] made use of a pair of coloured rectangles as navigation and
localisation aids. Briggs et al. [2000] used simple artificial landmarks which were
made up of self-similar intensity patterns coupled with a barcode for unique
identification for localisation tasks. These landmarks could be easily attached
to the walls. Sousa et al. [2009] proposed a vision system to detect and identify
barcodes, and to retrieve the geometric relationship between the camera and the
observed markers, thereby deriving localisation information for a robot. Huh
et al. [2006] addressed the localisation and navigation problem for service robots

by using invisible two-dimensional barcodes on the floor surface.

In (Fairfield and Maxwell [2001]), small green plastic rings are used as land-
marks. Their method projected the acquired coordinates of the landmarks in
the image plane, then calculates the distances between the robot and the various
landmarks. This perceived distance can be validated by comparison with the
pre-stored positions of landmarks. A simple Kalman filter was integrated into
the visual landmark estimation in order to correct accumulated odometry and

Sensor errors.

Mata et al. [2003] made use of information signs to guide a robot based on their
recognition. In this system, the localisation is done by detecting 2D landmarks,
including text and icons designed for human use in an office environment. More
recently, Case et al. [2011] exploited text detection and recognition techniques for
named location recognition, without assumptions about the language structure
or spatial layout of the text. Other approaches for visual markers include using
coloured poles (Sousa et al. [2005]), balls (Betke and Gurvits [1997]; locchi and

Nardi [2000]), etc., in soccer environments.

In general, artificial landmarks are easier to detect than natural landmarks. How-
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ever, artificial landmarks require modification of the environment. Most of the
landmark-based localisation systems are tied to a specific environment: they can
rarely be easily applied to different environments. For example, if ceiling lights
are used as primary landmarks, the system will fail if the environment does not
contain ceiling lights, or the robot does not possess a sensor that can detect them.
Therefore, artificial landmarks are hardly feasible, and in any case undesirable in

a large scale environment, such as an entire city.

Alternatively, other systems rely on recognition of objects that are either known
a priori, or extracted dynamically (Ekvall et al. [2006]; Ranganathan and Dellaert
[2007al; Vasudevan et al. [2007]). This process depends on the objects observed

and their interrelationships.

In the framework of Ekvall et al. [2006], the semantic structure of the environment
in a service robot scenario was acquired automatically. The system used object
recognition techniques to detect objects and build an augmented map, then used
this map to perform navigation and fetching tasks. Image differences between
the presence or absence of foreground objects was used to segment the objects
from their background. After segmentation, visual features (gradient magnitude
and Laplacian response) were extracted and used for building Receptive Field
Concurrence Histograms (RFCH), which can capture more geometric information
compared to a regular histogram. During the running stage, the RFCH of object
hypothesis and the target object were compared using histogram intersection,
resulting in a vote matrix. SIFT matching was used for final verification, giving

a set of hypothesised object locations.

Vasudevan et al. [2007] put forward an object-based hierarchical probabilistic
representation of space which allowed robots to be cognizant of their surround-
ings in a human-compatible fashion. Topological localisation was performed by
conceptualising space, classifying surroundings and then performing recognition
procedures. The SIFT method was used for recognising textured objects. A simi-
lar approach was adopted by Ranganathan and Dellaert [2007a]. A 3D generative
model for place representation was presented, constructed using images and depth
information obtained from a stereo camera. Places were represented as a set of

objects, each object modelled as having a particular shape and appearance. Place
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recognition involved finding the distribution of place labels, given the detected

objects and their locations.

2.3.1.3 Region-based methods

Some approaches do not use landmark objects, employing instead segmented im-
age regions to form the signature of a location. The main problem is to perform
reliable region-based segmentation, in which individual regions are robustly char-

acterised and associated.

Shlomo [1998] described a place recognition method based on matching the image
signature, which was defined as an array of measurement values derived from a
portion of the original image. Reduced-size images (64 x48 pixels) with 256 grey
levels were employed to reduce the computational cost of the matching process.
The input image is divided into n x n blocks. For each block, a measurement
function was applied to estimate the image properties, including dominant edge
orientation, significant gradient direction, edge strength, edge density and degree
of texturedness. The similarity between current image signatures and a set of sig-
natures already stored in the database was calculated, in order to judge whether
the current image could be associated to a known location. In addition, match-
ing using multiple measurement functions conjunctively was considered: this was

found to improve the recognition rate significantly.

Matsumoto et al. [1996, 1999, 2000] used a sequence of frontal views along a route
which were captured at a certain interval in the training stage. Place recognition
was then realised, based on the matching of the current view with the memorised
view sequence. The calculation of similarity between the current view and a
reference view was a simple block matching process. The views were represented
by greyscale images, which were more suitable for indoor environments than for
outdoor environments, where lighting condition may change drastically. In order
to overcome this limitation, the stereo disparity can be used as a new type of view
which is independent of changes in lighting condition. However, the disparity
views were not sufficiently stable: moreover, the generation of disparity views

was not fast enough for mobile robot navigation.
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A similar approach was adopted by Hashem and Andreas [2004], here using Ker-
nel PCA to extract features from the visual scene of a mobile robot. PCA is
suitable for data generated by a Gaussian distribution. However, the distribu-
tion of natural images is highly non-Gaussian. Kernel PCA was investigated as
a generalisation of PCA, which takes into account higher order correlations. In
the localisation phase, the features of the current scene and the stored features
were computed: the result of such a comparison giving rise to the knowledge of

the position of the robot.

In (Bellotto et al. [2008]) another image matching algorithm was proposed for
indoor environment place recognition. The heart of this image matching method
involves dividing the scene image into several column regions, and then comparing
each column with a region of a reference image stored beforehand. The measure
of similarity between a slot of the scene image and a region of a stored image is
based on the Normalised Correlation Coefficient. The images employed in this
system are panoramic images reconstructed from snapshots: each image being

made up of 12 snapshots taken at intervals of 30°.

2.3.1.4 Context-based methods

Context-based approaches take the whole image into account and use dimension-
ality reduction techniques to encode the image. The context information can
be obtained from neighbouring areas of the objects (“local”) or by summarising

image statistics from the image as a whole (“global”).

Contextual information approaches, such as Gist representations have become in-
creasingly popular in the field of computer vision, since they provide rough global
information, useful for many applications. The attractive features of this style of
representation are that it is both memory-efficient and fast to extract. It does
not contain many details about individual objects, and is not very discriminat-
ing, but it can provide sufficient information for coarse scene discrimination: e.g.,
indoor vs. outdoor. Moreover, such contextual information provides priors that
help to disambiguate object recognition and increase the robustness of location
estimation (Oliva and Torralba [2006]).
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Oliva and Torralba [2001] proposed using the Gist descriptor to represent such
spatial structures. This is built from the responses of steerable filters at different
scales and orientations. Several models utilising different type of gist features of

a scene have been presented.

Torralba et al. [2003] used wavelet image decomposition, each image location
being represented by six orientations and four scales. To compute gist features,
the resulting feature vectors were reduced from 384 dimensions to 80 dimensions
using PCA. A Hidden Markov Model (HMM) was utilised to solve the localisation

problem.

A similar system was described in (Siagian and Itti [2007]), where a simple
context-based place recognition algorithm was proposed that combined biolog-
ical centre-surround features from colour, intensity, orientation channels with
visual attention situated within a segment. The gist features can only provide
coarse context for localization, as they would have problems differentiating scenes
when most of the background overlaps, so the saliency model was incorporated

to increase the localisation resolution in this system.

The physical implementation of the model mentioned above was presented in
(Siagian and Itti [2009]). A coarse localisation hypothesis was produced in the
first instance by extracting the gist of a scene: then salient regions were used to
refine it. The gist features and salient regions were then further processed using

a Monte-Carlo localisation algorithm to allow the robot to generate its position.

Pronobis and Caputo [2007] proposed a recognition algorithm based on confidence
estimation of place classification. Unlike the majority of algorithms designed
to recognise pre-defined sets of environments (e.g., kitchen, corridor, etc.), this
algorithm used a soft decision: that is, if the level of confidence of a single cue
could not obtain a reliable decision, additional information, such as both global
and local features, is to be used. A multi-dimensional statistical representation
called Composed Receptive Field Histograms (CRFH) was used for the global
representation, while the SIF'T descriptor was exploited in order to obtain the
local image representation. The classifier SVMs extended by SVM was used at

the classification step, which well correlated with classification confidence.
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Sunderhauf and Protzel [2011] presented a lightweight place recognition system
based on the BRIEF-Gist descriptor. BRIEF-Gist is a simple scene descriptor
based on the BRIEF descriptor introduced by Calonder et al. [2010], which en-
codes the whole image in a short bit string. The Hamming distance between two
descriptors is used to find the single global best matching query image. BRIEF-
Gist can be easily implemented, is computationally simple and does not require
learning vocabulary. However, this system has a weakness shared with other ap-
pearance based place recognition systems, in that it is not robust to changes in
vehicle orientation while traversing the same areas in different directions, when

using the appearance of the whole scene to perform recognition.

Murillo and Kosecka [2009] demonstrated place recognition using the Gist descrip-
tor on panoramic images in an urban environment. This descriptor is invariant
with respect to traversal direction. Singh [2010] used the original Gabor-Gist

descriptor in visual loop closure detection with panoramas.

Chang et al. [2010, 2011] and Siagian et al. [2014] utilised the Gist features and
salient regions to solve the localisation problem in indoor and outdoor environ-
ments. Gist features that capture the dominant spatial structure of an image are
used to coarsely localise the robot to within the general vicinity. Saliency is then
employed to refine the location information, by recognising the more conspicuous

areas in the image.

2.3.2 Strategies for dealing with challenging issues

Place recognition is an open and highly challenging problem in computer vi-
sion, especially when applied to mobile robotics in changing environments. Place
recognition is difficult for a number of reasons. First, finding an exact match for a
previously visited place is not trivial for a robot: factors in play include potentially
unreliable sensors, changes of viewpoint, and changes in the environment such as
those caused by moving obstacles. Second, as the world is visually repetitive,
the robot needs to be able to distinguish between different, but similar-looking

places.
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2.3.2.1 Dealing with changes

In order reliably to localise a mobile robot, even in dynamic environments, a va-
riety of strategies have been proposed for resolving environment and viewpoint
changes. One common solutions involves strengthening the ability of the feature
descriptor to cope with various changes. A body of sophisticated invariant fea-
tures extracted from the images have been exploited for image matching, which
include SIFT, SURF and GLOH (many more are presented in Section 2.2). Such
features are represented by the vector computed from the image region localised
at the interest points, which are robust to occlusion and invariant to image trans-

formations such as scale, rotation, moderate illumination and viewpoint changes.

Some examples include the works of Castle et al. [2007]; Se et al. [2002]; Valgren
and Lilienthal [2008], where SIFT or SURF feature detectors provide a rich de-
scription of the environment to match observed visual landmarks despite visual
variability. Recently, the Affine-SIFT (ASIFT) algorithm was proposed by Morel
and Yu [2009] to achieve full affine invariance by sampling various values for the
latitude and the longitude angles in order to compute virtual views of the scene.
The ASIFT algorithm was exploited to perform global localisation in (Majdik
et al. [2013]), where images captured by a camera-equipped Micro Aerial Vehicle
(MAV) need to be matched with images from Google Street View. In this work,
the most challenging problem is severe viewpoint changes between air-level and
ground-level images. The air-ground geometry of the system was used to generate
virtual views of the scene, and a histogram voting scheme was applied to find the

best image correspondences.

Nevertheless, feature-based methods could not successfully establish reliable cor-
respondences if the images were captured from very different viewpoint and under
the sharp illumination changes caused by direct sunlight and shadow in typical
outdoor environments. Common types of features, such as corners and affine
invariant regions are not fully invariant to these changes (Glover et al. [2010];
Milford [2013]). Glover et al. [2010] present an appearance-based SLAM system
based on SURF feature descriptors, the system does not cope well with illumi-

nation changes over the course of a day, as the SURF features are too variable,
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which results in the divergence of map estimate when no matches occur.

In some research works, new kinds of image descriptors are proposed, which de-
pend on the type of captured images. Examples include a polar higher-order
local auto-correlation (PHLAC) (Linaker and Ishikawa [2006]), created for the
extraction of features from omnidirectional images, which is robust to noise and
occlusion to some extent; Haar Invariant Features (Labbani-Igbida et al. [2011]),
which is extracted by adapting Haar invariant integrals to the particular geom-
etry and transformations of an omnidirectional camera; And a Feature Stability
Histogram (FSH) (Bacca et al. [2011]), built using a voting scheme to tackle
long-term SLAM in a changing environment, which stores information about the
number of times each feature has been observed in each node of the topological

map.

Omnidirectional images with a 360° field of view make it possible to create fea-
tures that are invariant to the orientation of the robot. For example, various
colour histogram representations were used to perform robot localisation in a
series of papers (Blaer and Allen [2002]; Gonzalez-Barbosa and Lacroix [2002];
Ulrich and Nourbakhsh [2000]). The subspace of eigenvectors are computed from
the original images (Artac et al. [2002]; Gaspar et al. [2000]; Krése et al. [2000]).
Fourier signatures are applied in (Ferdaus et al. [2008]; Menegatti et al. [2004b])

to represent the omnidirectional images captured for localisation.

Several publications (Moller et al. [2014]; Stiirzl and Zeil [2007]) address illumina-
tion invariance through an holistic approach: that is, the entire image is utilised
by resorting to pixel-by-pixel comparison techniques. These methods can be ap-
plied to low-resolution images, and do not require prior assumptions about the
type of visual features to be extracted from the environment. However, prepro-

cessing stages are required in which the images are transformed.

By way of example, we offer the work of Stiirzl and Zeil [2007], in which the
image differences are obtained by means of a descent in image distances (DID)
model between image pairs. The preprocessing steps including subtracting the
local mean, difference-of-Gaussian filtering and contrast normalization in order to

make the distance measures invariant to illumination changes and shadow effects.
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In (Moller et al. [2014]), invariance against illumination changes is accomplished
by applying the pixel-wise distance measures proposed in three ways. Specifically,
weak scaling invariance is obtained by finding the minimal Euclidean distance
between two image columns, while strong scaling invariance is obtained by using
normalised cross-correlation. Shift invariance is realised by either subtracting the
mean before comparison of two image columns, or by computing the distance

between edge-filtered vectors.

Maddern et al. [2014] developed the idea of an illumination-invariant colour space
based on monochrome input to reduce the impacts of shadows in raw RGB images.
Similar work can be found in (Alvarez-Mozos et al. [2008]; Corke et al. [2013],
where a single-channel illumination-invariant imaging approach is also used to
alleviate the effects of changes in illumination and shadows in the context of

autonomous road vehicles.

2.3.2.2 Disambiguating ambiguous cases

In addition to the above-mentioned challenges for vision-based place recognition
systems, image matching in scenes can be tricky if the environment contains few,
or very similar features. Moreover, due to the limitations of the perceptual capa-
bilities of the robot, a robot may fail to obtain enough information to distinguish
reliable between two different locations that appear very similar. The problem
is to overcome this perceptual aliasing, namely: the danger that the current im-
age will match not only the corresponding location image, but also falsely match

other reference images at different of other, similar locations.

Many feature-based place recognition methods may fail in environments where
repeated patterns are common, as the invariant features are not sufficiently dis-
criminating and there are many mismatches. This problem often trades off against
the perceptual variability mentioned previously. Improving the robustness of the
selected features to perceptual variability often leads to poor discrimination be-
tween places, and hence to perceptual aliasing. By contrast, trying to eliminate

perceptual aliasing may result in increased susceptibility to perceptual variability.
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Image-matching algorithms usually consist of two independent steps. The first
involves finding a set of potentially matched pairs of interest points between two
images: pruning of these matches is then performed by using geometric consis-
tency, which keeps only correspondences consistent with epipolar constraints, or
homography transformation. In the first step, some studies have made use of more
suitable clustering to avoid false correspondences caused by perceptual aliasing.
For example, the Fisher criterion was used in the work of Labbani-Ighida et al.
[2011] to measure the separation between two classes of built signatures for robot
localisation in indoor environments, providing a particularly wide separation abil-

ity for room classes.

In (Schaffalitzky and Zisserman [2003]), in order to overcome the problem of per-
ceptual aliasing, the idea is to ignore common repetitive features. An ambiguity
score is assigned to each feature, representing the number of features which match
in the other image: then the ambiguity of a match is obtained by take into ac-
count the ambiguity scores of the features. The matching would be discarded if

its ambiguity score is greater than six.

Other approaches fuse multiple sensors in order to have features with comple-
mentary information in the presence of adverse environments with perceptual
aliasing. Zingaretti and Frontoni [2006] combined vision and sonar sensors to
perform the localisation task in aliased environments. Gallegos and Rives [2010]
took advantage of the metric information provided by a laser rangefinder and
fused this with omnidirectional visual information. However, this technique does

not take into account the problems of occlusions and illumination changes.

A wide range of place recognition systems addressed the perceptual aliasing prob-
lem using probabilistic algorithms covering Markov Localisation, Monte-Carlo
Localization and Multi-Hypotheses Localization. That is the case in (Menegatti
et al. [2003]) which exploited a Monte-Carlo Localisation approach to provide
robust appearance-based localisation. Ranganathan and Dellaert [2007b] pre-
sented a similar model for probabilistic topological mapping based on Markov
Chain Monte Carlo (MCMC) and Sequential Importance Sampling (SIS) algo-
rithms, which incorporate previous location information (prior assumptions) into

the recognition of locations to deal with perceptual aliasing. Likewise, Werner
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et al. [2009] developed a sequential Monte Carlo SLAM technique to keep track
of the belief of the position of the robot. This technique used Hausdorff distance

to measure the consistency between the current view and the reference view.

Bacca et al. [2011] proposed a Bayesian filtering-based approach for robot locali-
sation using a topological map: each topological location is assigned a probability
value to restrain the degree of uncertainty. Qamar et al. [2013] addressed the per-
ceptual aliasing problem for SLAM, employing a Fuzzy-Logic based method and
a Fuzzified implementation of Scale Invariant Feature Transform (SIFT). Bellotto
et al. [2008] developed a place recognition framework in which ambiguous infor-
mation is solved by means of a multiple hypothesis tracking technique: the most
plausible hypothesis is used for updating the location of the robot. Goedemé
et al. [2007] applied Dempster-Shafer probabilistic theory to loop closing in order
to avoid false links between different parts of a topological map in environments

with self-similarities.

2.4 Visual odometry

Visual Odometry (VO) has been introduced and investigated in both the com-
puter vision and robotics communities for some years. VO relies on the visual
information from an image sequence to estimate odometry information. VO is
not affected by wheel slip in uneven terrain, or other adverse conditions, and
has the utmost important in GPS-denied environments such as under water, in-
doors, or in the air. Methods have been proposed using both monocular cameras
(Kriechbaumer et al. [2015]; Nistér and Stewénius [2006]; Tomasi and Shi [1993])
and stereo cameras (Maimone et al. [2007]; Matthies and Shafer [1987]; Moravec
[1980]; Nistér and Stewénius [2006]; Olson et al. [2003]). Related work can be
divided into two categories: feature-based, and appearance-based methods. Here,
we review some of t