96 research outputs found

    The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach

    Get PDF
    Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Over the past decades, the shrinking transistor size, benefited from the advancement of IC technology, enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Different from many existing DTM heuristics that are based on simple intuitions, we seek to address the thermal problems through a rigorous analytical approach, to achieve the high predictability requirement in real-time system design. In this regard, we have made a number of important contributions. First, we develop a series of lemmas and theorems that are general enough to uncover the fundamental principles and characteristics with regard to the thermal model, peak temperature identification and peak temperature reduction, which are key to thermal-constrained real-time computer system design. Second, we develop a design-time frequency and voltage oscillating approach on multi-core platforms, which can greatly enhance the system throughput and its service capacity. Third, different from the traditional workload balancing approach, we develop a thermal-balancing approach that can substantially improve the energy efficiency and task partitioning feasibility, especially when the system utilization is high or with a tight temperature constraint. The significance of our research is that, not only can our proposed algorithms on throughput maximization and energy conservation outperform existing work significantly as demonstrated in our extensive experimental results, the theoretical results in our research are very general and can greatly benefit other thermal-related research

    Soft real-time scheduling on multiprocessors

    Get PDF
    The design of real-time systems is being impacted by two trends. First, tightly-coupled multiprocessor platforms are becoming quite common. This is evidenced by the availability of affordable symmetric shared-memory multiprocessors and the emergence of multicore architectures. Second, there is an increase in the number of real-time systems that require only soft real-time guarantees and have workloads that necessitate a multiprocessor. Examples of such systems include some tracking, signal-processing, and multimedia systems. Due to the above trends, cost-effective multiprocessor-based soft real-time system designs are of growing importance. Most prior research on real-time scheduling on multiprocessors has focused only on hard real-time systems. In a hard real-time system, no deadline may ever be missed. To meet such stringent timing requirements, all known theoretically optimal scheduling algorithms tend to preempt process threads and migrate them across processors frequently, and also impose certain other restrictions. Hence, the overheads of such algorithms can significantly reduce the amount of useful work that is accomplished and limit their practical implementation. On the other hand, non-optimal algorithms that are more practical suffer from the drawback that their validation tests require workload restrictions that can approach roughly 50% of the available processing capacity. Thus, for soft real-time systems, which can tolerate occasional or bounded deadline misses, and hence, allow for a tradeoff between timeliness and improved processor utilization, the existing scheduling algorithms or their validation tests can be overkill. The thesis of this dissertation is: Processor utilization can be improved on multiprocessors while providing non-trivial soft real-time guarantees for different soft real-time applications, whose preemption and migration overheads can span different ranges and whose tolerances to tardiness are different, by designing new algorithms, simplifying optimal algorithms, and developing new validation tests. The above thesis is established by developing validation tests that are sufficient to provide soft real-time guarantees under non-optimal (but more practical) algorithms, designing and analyzing a new restricted-migration scheduling algorithm, determining the guarantees on timeliness that can be provided when some limiting restrictions of known optimal algorithms are relaxed, and quantifying the benefits of the proposed mechanisms through simulations. First, we show that both preemptive and non-preemptive global earliest-deadline-first(EDF) scheduling can guarantee bounded tardiness (that is, lateness) to every recurrent real-time task system while requiring no restriction on the workload (except that it not exceed the available processing capacity). The tardiness bounds that we derive can be used to devise validation tests for soft real-time systems that are EDF-scheduled. Though overheads due to migrations and other factors are lower under EDF (than under known optimal algorithms), task migrations are still unrestricted. This may be unappealing for some applications, but if migrations are forbidden entirely, then bounded tardiness cannot always be guaranteed. Hence, we consider providing an acceptable middle path between unrestricted-migration and no-migration algorithms, and as a second result, present a new algorithm that restricts, but does not eliminate, migrations. We also determine bounds on tardiness that can be guaranteed under this algorithm. Finally, we consider a more efficient but non-optimal variant of an optimal class of algorithms called Pfair scheduling algorithms. We show that under this variant, called earliest- pseudo-deadline-first (EPDF) scheduling, significantly more liberal restrictions on workloads than previously known are sufficient for ensuring a specified tardiness bound. We also show that bounded tardiness can be guaranteed if some limiting restrictions of optimal Pfair algorithms are relaxed. The algorithms considered in this dissertation differ in the tardiness bounds guaranteed and overheads imposed. Simulation studies show that these algorithms can guarantee bounded tardiness for a significant percentage of task sets that are not schedulable in a hard real-time sense. Furthermore, for each algorithm, conditions exist in which it may be the preferred choice

    The Interplay of Reward and Energy in Real-Time Systems

    Get PDF
    This work contends that three constraints need to be addressed in the context of power-aware real-time systems: energy, time and task rewards/values. These issues are studied for two types of systems. First, embedded systems running applications that will include temporal requirements (e.g., audio and video). Second, servers and server clusters that have timing constraints and Quality of Service (QoS) requirements implied by the application being executed (e.g., signal processing, audio/video streams, webpages). Furthermore, many future real-time systems will rely on different software versions to achieve a variety of QoS-aware tradeoffs, each with different rewards, time and energy requirements.For hard real-time systems, solutions are proposed that maximize the system reward/profit without exceeding the deadlines and without depleting the energy budget (in portable systems the energy budget is determined by the battery charge, while in server farms it is dependent on the server architecture and heat/cooling constraints). Both continuous and discrete reward and power models are studied, and the reward/energy analysis is extended with multiple task versions, optional/mandatory tasks and long-term reward maximization policies.For soft real-time systems, the reward model is relaxed into a QoS constraint, and stochastic schemes are first presented for power management of systems with unpredictable workloads. Then, load distribution and power management policies are addressed in the context of servers and homogeneous server farms. Finally, the work is extended with QoS-aware local and global policies for the general case of heterogeneous systems

    Real-Time Wireless Sensor-Actuator Networks for Cyber-Physical Systems

    Get PDF
    A cyber-physical system (CPS) employs tight integration of, and coordination between computational, networking, and physical elements. Wireless sensor-actuator networks provide a new communication technology for a broad range of CPS applications such as process control, smart manufacturing, and data center management. Sensing and control in these systems need to meet stringent real-time performance requirements on communication latency in challenging environments. There have been limited results on real-time scheduling theory for wireless sensor-actuator networks. Real-time transmission scheduling and analysis for wireless sensor-actuator networks requires new methodologies to deal with unique characteristics of wireless communication. Furthermore, the performance of a wireless control involves intricate interactions between real-time communication and control. This thesis research tackles these challenges and make a series of contributions to the theory and system for wireless CPS. (1) We establish a new real-time scheduling theory for wireless sensor-actuator networks. (2) We develop a scheduling-control co-design approach for holistic optimization of control performance in a wireless control system. (3) We design and implement a wireless sensor-actuator network for CPS in data center power management. (4) We expand our research to develop scheduling algorithms and analyses for real-time parallel computing to support computation-intensive CPS

    Dynamic Voltage Scaling for Energy- Constrained Real-Time Systems

    Get PDF
    The problem of reducing energy consumption is dominating the design of several real-time systems. The Dynamic Voltage Scaling (DVS) technique, provided by most microprocessors, allow to balance computational speed versus energy consumption. We present some novel energy-aware scheduling algorithms that allow to expoit this technique while meeting real-time constraints. In particular, we present the GRUB-PA algorithm which, unlike most existing algorithms, allows to reduce energy consumption on real-time systems consisting of any kind of task. We also present a working implementation of the algorithm on Linux

    Dynamic Thermal and Power Management: From Computers to Buildings

    Get PDF
    Thermal and power management have become increasingly important for both computing and physical systems. Computing systems from real-time embedded systems to data centers require effective thermal and power management to prevent overheating and save energy. In the mean time, as a major consumer of energy buildings face challenges to reduce the energy consumption for air conditioning while maintaining comfort of occupants. In this dissertation we investigate dynamic thermal and power management for computer systems and buildings. (1) We present thermal control under utilization bound (TCUB), a novel control-theoretic thermal management algorithm designed for single core real-time embedded systems. A salient feature of TCUB is to maintain both desired processor temperature and real-time performance. (2) To address unique challenges posed by multicore processors, we develop the real-time multicore thermal control (RT-MTC) algorithm. RT-MTC employs a feedback control loop to enforce the desired temperature and CPU utilization of the multicore platform via dynamic frequency and voltage scaling. (3) We research dynamic thermal management for real-time services running on server clusters. We develop the control-theoretic thermal balancing (CTB) to dynamically balance temperature of servers via distributing clients\u27 service requests to servers. Next, (4) we propose CloudPowerCap, a power cap management system for virtualized cloud computing infrastructure. The novelty of CloudPowerCap lies in an integrated approach to coordinate power budget management and resource management in a cloud computing environment. Finally we expand our research to physical environment by exploring several fundamental problems of thermal and power management on buildings. We analyze spatial and temporal data acquired from an real-world auditorium instrumented by a multi-modal sensor network. We propose a data mining technique to determine the appropriate number and location of temperature sensors for estimating the spatiotemporal temperature distribution of the auditorium. Furthermore, we explore the potential energy savings that can be achieved through occupancy-based HVAC scheduling based on real occupancy data of the auditorium

    Hard Real-Time Java:Profiles and Schedulability Analysis

    Get PDF
    • …
    corecore